电子线路第四版线性部分 谢嘉奎 复习资料

合集下载

电子线路 非线性部分(第四版)谢嘉奎 第3章正弦波振荡器

电子线路 非线性部分(第四版)谢嘉奎 第3章正弦波振荡器
Qe —— 有载品质因数
(a)并联谐振回路 图 3-1-5 谐振回路的相频特性曲线
可见在实际振荡电路中,是依靠具有负斜率相频特性 的谐振回路来满足相位稳定条件的,且 Qe 越高,Z() 随 的变化斜率越大,频率稳定度越高。
3.1.3 基本组成及其分析方法
要产生稳定的正弦振荡,振荡器必须满足起振、平衡、 稳定三项条件。 1.组成 ① 可变增益放大器——提供足够的增益,且其增益随 输入电压增大而减小。
① A() 放大管(可略) 并联谐振回路相移 Z()
② f(),随 的变化十分缓慢,可认为它与 无关。
故 Z() 随 变化的特性可代表 T() 随 变化的特性。
并联谐振回路,其相频特性
z ( ) arctan
2( 0 )
0
Qe
0 ——谐振频率
① 振荡器离开原平衡状态,导致停振或突变到新的平 衡状态。原平衡状态是不稳定的,应避免。
② 振荡器有回到平衡状态的趋势。当干扰消失后,能 回到平衡状态。原平衡状态是稳定的。 必须讨论稳定条件,保证振荡器所处平衡状态是稳定的。
二、振幅稳定条件
图 3-1-2 所示环路增益特 性,还满足振幅稳定条件。 1.稳定过程 若 Vi ViA , T ( osc ) 1,干扰使:
2.环路增益存在两个平衡点的情况 如图 3-1-3 所示,振荡器存在着两个平衡点 A 和 B, 其中 A 是稳定的,B 点是否稳定? 分析:若使 Vi > ViB ,则 T(osc) 随之增大,导致 Vi 进 一步增大,从而更远离平衡点 B。最后到达平衡点 A。 反之,若 Vi ViB T ( osc )
Vi ,直到停止振荡。
可见,这种振荡器不满足振幅起 振条件,必须加大的电冲击,产生大 于ViB 的起始扰动电压,才能进入平衡 点 A,产生持续等幅振荡。

电子线路_非线性部分(第四版)谢嘉奎_绪论第一章_标准

电子线路_非线性部分(第四版)谢嘉奎_绪论第一章_标准
调幅广播发射机的组成
各部分作用:
(1)振荡器 产生 fosc 的高频振荡信号,几十千赫以上。 (2)高频放大器 多级小信号谐振放大器,放大振荡信号,使频率倍增 至 fc,并提供足够大的载波功率。 (3)调制信号放大器 多级放大器,前几级为小信号放大器,放大微音器的 电信号;后几级为功放,提供功率足够的调制信号。
电磁波一部分被吸收,另一 部分被反射或折射到地面。 频率越高,被吸收的能量越 小,但频率超过一定值,电 磁波会穿过电离层,不再返 回地面
地球表面是弯曲的,所以只 能限制在视线范围内
图 0-1-2 无线电波传播方式
传播距离:电离层 > 地面 > 直线
3.调制和解调
(1)调制 由携有信息的电信号(如音频信号)去控制高频振荡信 号的某一参数(如振幅),使该参数按照电信号的规律而变 化(调幅)。
非线性电路:对信号进行处理时,使用了器件特性的 非线性部分,利用器件的非线性完成振荡、频率变换等功 能。
器件特性与使用条件密切相关,例如:
小信号条件下,输入信号小,在一定条件下电路可用 线性等效电路表示,例如各种小信号放大器(《线性电子线 路》)中,器件的特性归属线性电子线路。
大信号条件下,输入信号大,必涉及器件的非线性部 分,例如功率放大器。故不能用线性等效电路表示电子器 件的特征,而必须用非线性电路的分析方法。所以,功放 归属非线性电子线路。
(2) 混频器
两路输入为:
① 由高放级:已调信号 fc 。 ② 由本机振荡器:本振信号 fL。 作用:载波变频——将已调信号的载波由 fc (高频)变换
为 fI (中频), fI = |fc - fL |而调制波形不变。
(3)本机振荡
产生频率为 fL =|fc fI |(或 fL = fc - fI )的高频等幅振荡

电子线路 非线性部分 第四版 谢嘉奎 课件 第五章 角度解调

电子线路 非线性部分 第四版 谢嘉奎 课件 第五章 角度解调

5.3.3 相位鉴频器 (鉴相器phase detector) 鉴相器是用来比较两个同频输入电压 u1 (t ) 和 u2 (t ) 的相位,而输 出电压 u0 ( t ) 是两个输入电压相位差的函数, uo (t ) 即 uo ( t ) = f [ϕ1 ( t ) − ϕ 2 ( t )] 鉴相器 u (t )
u1 u2
调频脉 冲序列
低通滤波器或 脉冲计数器
u3 单稳 u4

u FM
限幅放大
微分
半波整流 (a)
低通滤波
uo
u FM
t
u1
t
u2 u3
t t
u4 uo (b)
t t
2. 鉴频器的主要特性
能全面描述鉴频器主要特性的是鉴频特性曲线。它是指鉴频器的输出 电压uo(t),与其输入FM信号瞬时频偏Δω(t)或Δf(t)之间的关系曲线
5.3
调频波的解调原理及电路
5.3.1 鉴频方法及其实现模型 5.3.2 振幅鉴频器(斜率鉴频器) 5.3.3 相位鉴频器 5.3.4 比例鉴频器 5.3.5 移相乘积鉴频器
5.3 调频波的解调原理及电路
5.3.1 鉴频方法及其实现模型
1. 鉴频方法 调频信号的解调是从调频波 uFM = U cos[ωo t + m ∫ uΩ (t )dt ] 中 恢 复 出 原 调制信号 uΩ (t ) 过程,完成调频波解调过程的电路称为频率检波器 将调频波进行特定的波形变换,根据波形变换特点的不同,可归 纳以下几种实现方法: 第一种方法,将调频波通过频率—幅度线性变换网络,将调频波变换 成调频—调幅波,再通过包络检波器检测出反映幅度变化的解调电 压。把这种鉴频器称为斜率鉴频器,或称振幅鉴频器 。

线性电子线路(谢嘉奎)第四版第一章课件

线性电子线路(谢嘉奎)第四版第一章课件

ni pi AT e 2kT
3 2
Eg 0
ni pi AT e 2kT
式中,浓度单位为cm , A——常量 (硅:3.88×1016 cm-3K-3/2,锗:1.76×1016cm-3K-3/2) T——热力学温度
-3
3 2
Eg 0
k——是玻尔兹曼常数(8.63×10-5 eV/K),
Eg0 ——T=0 K(即-273℃)时的禁带宽度,导带与价 带间的距离(硅为1.21 eV, 锗为0.785 eV) 该公式的核心是什么? 载流子浓度是温度的函数
ni pi AT e 2kT
公式表明,本征半导体的载流子浓度和温度、材料有关。 将相关参数带入公式中,可以得到300K时硅的 ni=1.43×1010cm-3 (教材给出1.5×1010cm-3,不准确)。 由此可以看到,尽管本征半导体在室温情况下具有一 定的导电能力,但是,本征半导体中载流子的数目远小于 原子数目(硅:4.96×1022cm-3),因此本征半导体的导 电能力很低。 结论:室温下本征半导体的导电能力非常弱 说明:本征半导体的导电能力随温度升高,增加很快 硅,500K时:ni=3.53×1014cm-3, 600K时 : ni=4.81×1015cm-3
3.本征激发和复合 因热激发而出现的自由电子和空穴是同时成对出现 的,称为电子-空穴对。 游离的部分自由电子也可能回到空穴中去,称为复合
本征激发
+4 +4 +4
+4
+4 +4
+4 +4 +4
复合
本征激发数目越多,复合量 越大,使得本征激发数目减 少;这又使得复合减少。 最终,在一定温度下达到动态平衡

电子线路第四版线性部分教学大纲

电子线路第四版线性部分教学大纲

电子线路第四版线性部分教学大纲一、课程简介电子线路是现代电子技术中的基础课程之一,是掌握电子技术的必修课程。

本课程为电子线路第四版,主要围绕电路中的线性部分展开教学。

通过本课程的学习,学生将会掌握电路的基本理论和方法,包括电子元器件、线性电路基础、放大器、滤波器等知识点。

二、课程内容1.电子元器件•电子元器件的种类及其特点•半导体材料和二极管•三极管的基本原理及应用•MOS场效应管的基本原理及应用2.线性电路基础•电路基本理论及基本电路变换•节能器、电阻、电容、电感等电子元器件的应用•戴维南定理和环路定理在电路分析中的应用3.放大器•放大器的原理及分类•功率放大器的特点和应用•反馈的基本理论和应用4.滤波器•滤波器的基本原理及分类•有源RC滤波器和有源滤波器的应用•操作放大器和滤波器的结合三、教学目标通过本课程的学习,学生应该能够: - 深入了解电子元器件的种类及其特点,掌握半导体材料和二极管的原理及应用 - 熟悉三极管和MOS场效应管的基本原理及应用,并能在电路中灵活运用 - 掌握电路基本理论,重点掌握戴维南定理和环路定理在电路分析中的应用,能够运用节能器、电阻、电容、电感等电子元器件进行电路设计 - 熟悉放大器的原理及分类,了解功率放大器的特点和应用,了解反馈的基本理论和应用场景 - 掌握滤波器的基本原理及分类,熟悉有源RC滤波器和有源滤波器的应用场景,掌握操作放大器和滤波器的结合应用四、教学方法本课程采用理论教学与实践教学相结合的方式进行教学。

理论教学的主要内容包括: - 课前预习:让学生在课前对所要学习的知识点进行了解,为后续的理论讲解打下基础。

- 讲解理论:通过对电路基本理论、电子元器件、放大器、滤波器等内容进行详细的讲解,使学生逐步掌握这些知识点的核心要点。

- 练习:通过课堂练习、作业等方式,巩固学生的理论基础,同时培养学生的分析和解决问题的能力。

实践教学的主要内容包括:- 实验:通过设计与实验相结合的方式,让学生亲手操作电路,加深对理论知识的理解和掌握。

电子线路-非线性部分(第四版)谢嘉奎-第4章振幅调制-解调与混频电路讲课讲稿

电子线路-非线性部分(第四版)谢嘉奎-第4章振幅调制-解调与混频电路讲课讲稿
用三角函数展开
v O ( t ) V m c0 c t o M a V s m c Ω 0 o cc t o s t s
V m c0 c o t 1 2 M s a V m c0 o c Ω ) t s 1 2 M (a V m c0 o c Ω ) t s
单音调制时调幅信号的频谱:由三个分量组成:
(7)
所以,输出调幅波电流的数学表达式为
i I m 0 ( 1 M a cΩ o ) cs to c t s
(8)
式中:Im0 = a1Vcm :调制前载波电流振幅;
Im0(1 + Ma cos t) :调幅波电流振幅;
若负载M 为aLC2a调2aV谐1回m路k,aV V 谐mm 振0 在Mfac:,调谐幅振度电。阻
(2)
其中,c = 2fc:载波角频率; fc:载波频率,c >> 。
若同时作用在一个非线性器件 i = f(v) 上,有
Vcmcos ct + V cos t
(3)
将非线性器件的输出电流用三角函数展开
i a 0 a 1 v a 2 v 2 a 3 v 3
(4)
将式(3)代入式(4) ,取前三项,则
1.电路组成模型
vO (t) [[[V v A c m (tc) V 0 m k A av A M M v( A t)(tc )]c v V m v c( o t)(c tts )]A ]co cts
式中,AM :相乘器乘积系数; A:相加器的加权系数,且 A = k,AM AVcm = ka。
(6)
若负载为 LC 调谐回路, ,2 ,2c 均远离 c,去
掉它们及直流分量,则式(6)可写为
ia1Vcm cocsta2Vcm V[cocs(Ω)tcosc (Ω)t] a1Vcm cocst2a2Vcm VcocstcoΩs t

高频电子线路课件(谢嘉奎第四版)1-5

高频电子线路课件(谢嘉奎第四版)1-5

当 VS = VREF 时 误差放大器输出静态电压,经电压比较器使 T1 管的 导通时间为 ton 或占空系数为 d0,稳压器的输出电压
VO = VREF
R1 R2 = f T
调解过程如下: VO VS ton d VO 反之亦然。
1.5.3 开关型稳压器
开关型稳压器的调整管工作在开关状态,通过控制开 关的启闭时间来调整输出电压。
一、直流–直流变换器 1.降压型变换器
如图 1–5–15(a)所示,电路由开关 S、续流二极管 D 和低通滤波器 L1、C2 组成。 S 闭合:vA = VI,D 截止, 电感 L1 充电。
S 断开:vA = 0,D 导通 (设VD(on) = 0),电感 L1 放电。
稳压二极管构成的基准电压源电路如图 1–5–13(a)所示。
基准电压 VREF
VREF = VZ - 2V(on)
VZ - 3V(on) R2VZ ( R1 - 2 R2 )V(on) R1 = R1 R2 R1 R2
VZ(6 ~ 8 V)具有正温度系数,V(on) 具有负温度系数。
满足 R1 - 2 R2 = - VZ / T 时,基准电压 VREF 的温 R2 V(on) / T 度系数
1.5.2 串联型稳压器
一、工作原理 1.组成
串联型稳压器的组成 如图 1-5-12(a)所示。 串联型稳压器组成: 调整管、取样电路、 基准电压源和比较放大器。
图 1-5-12(a)
串联稳压电路的组成方框图
串联型稳压器组成: 调整管 —— 功率管或 复合管与负载串联。 比较放大器 —— 单管 放大器、差分放大器、集 成运放等。 基 准 电 压 源 —— 温 度 系数很小的电压源电路。

(电子线路线性部分谢嘉奎第四版)第4章+放大器基础-2

(电子线路线性部分谢嘉奎第四版)第4章+放大器基础-2

半电路共模交流通路
voc1 − voc2 voc = A = =0 vc vic vic
双端输出电路利用对称性抑制共模信号。 双端输出电路利用对称性抑制共模信号。
利用对称性抑制共模信号(温漂)原理: 利用对称性抑制共模信号(温漂)原理:
T ↑→ICQ1 = ICQ2 ↑→VCQ1 =VCQ2 ↓ (=VCC − ICQ1RC)
第4章
放大器基础
4.4 差分放大器
差分放大器具有抑制零点漂移的作用, 差分放大器具有抑制零点漂移的作用,广泛用于集 成电路的输入级,是另一类基本放大器。 成电路的输入级,是另一类基本放大器。
4.4.1 电路结构
VCC T1 RC + vo RL REE VEE RC T2 RC T1 VCC RC RL + REE VEE T2
β3R3
R3 + rb′e3 + R1 // R2
)
KCMR = gmRo3 很大
14
第4章
放大器基础
任意输入时, 任意输入时,输出信号的计算
单端输出时
vo1 = voc1 + vod1 = A c1vic + A d1vid v v vo2 = voc2 + vod2 = A c2vic + A d2vid v v
4
第4章
放大器基础
VCC RC T1 + vo RL REE VEE T1 + RC T2
差模性能分析 双端输出电路
1)半电路差模交流通路 ) REE 对差模视为短路。 对差模视为短路。 因 iC1 = ICQ + ic iC2 = ICQ - ic
+ vi1 -

重邮复试书目

重邮复试书目

4. 物流管理:《现代物流管理》邓明荣主编 高等教育出版社 2005年版
5.电子商务:《电子商务物流管理》杨路明主编 机械工业出版社 2007年版
6.企业管理:《企业管理学》杨善林主编 高等教育出版社 2004年版
7.管理学 《管理学》周三多主编高等教育出版社 (面向21世纪课程教材) 2005年第二版
3. 刑法(总论):《刑法学》第三版(普通高等教育国家级规划教材系列“九五”规划高等学校法学教材) 张明楷著 法律出版社 2007年8月版
4. 民法(总论):《民法学》第二版(普通高等教育国家级规划教材系列“九五”规划高等学校法学教材)王利民、杨立新、王轶、程啸著 法律出版社 2008年2月版
《机械制造技术基础》 袁绩乾、李文贵等编 机械工业出版社2003
年第1版
4. 机电一体化技术:《机电一体化系统设计》 张建民编 北京理工大学出版社 2001年
5. 微机原理与接口:《32位微机原理与接口技术》仇玉章等编著 清华大学出版社 2000年8月第1版
(三)、工业工程430137:
3. 通信原理:《通信原理(第2版)(高等学校精品教材)》蒋青等编 人民邮电出版社 2008
4. 电路分析基础:《电路(第5版)》邱关源编 高等教育出版社
5. 低频电子电路:《电子线路》(线性部分)第四版 谢嘉奎等 高等教育出版社 1999
(二)、电工理论与新技术080805 :
5. 信号与线性系统:《信号与系统》杨晓非等编 科学出版社 2008
二、计算机科学与技术学院:
计算机应用技术081203、计算机软件与理论081202、计算机系统结构081201、计算机技术430112 、软件工程430113:

非线性电子线路(谢嘉奎第四版 部分)

非线性电子线路(谢嘉奎第四版 部分)

声明:由不动脑筋而直接抄取答案的行为引发的后果自负,与本人无任何关联,愿好自为之。

解释权归本人所有。

1-2 一功率管,它的最大输出功率是否仅受其极限参数限制?为什么? 解:否。

还受功率管工作状态的影响,在极限参数中,P CM 还受功率管所处环境温度、散热条件等影响。

1-3 一功率放大器要求输出功率P 。

= 1000 W ,当集电极效率ηC 由40%提高到70‰时,试问直流电源提供的直流功率P D 和功率管耗散功率P C 各减小多少?解:当ηC1 = 40% 时,P D1 = P o /ηC = 2500 W ,P C1 = P D1 P o =1500 W当ηC2 = 70% 时,P D2 = P o /ηC =1428.57 W ,P C2 = P D2 P o = 428.57 W 可见,随着效率升高,P D 下降,(P D1 P D2) = 1071.43 WP C 下降,(P C1 P C2) = 1071.43 W1-6 如图所示为低频功率晶体管3DD325的输出特性曲线,由它接成的放大器如图1-2-1(a )所示,已知V CC = 5 V ,试求下列条件下的P L 、P D 、ηC (运用图解法):(1)R L = 10Ω,Q 点在负载线中点,充分激励;(2)R L = 5 Ω,I BQ 同(1)值,I cm = I CQ ;(3)R L = 5Ω,Q 点在负载线中点,激励同(1)值;(4)R L = 5 Ω,Q 点在负载线中点,充分激励。

解:(1) R L = 10 Ω 时,作负载线(由V CE = V CC I C R L ),取Q 在放大区负载线中点,充分激励,由图得V CEQ1 = 2.6V ,I CQ1 = 220mA ,I BQ1 = I bm = 2.4mA因为V cm = V CEQ1V CE(sat) = (2.6 0.2) V = 2.4 V ,I cm = I CQ1 = 220 mA 所以mW 26421cm cm L ==I V P ,P D = V CC I CQ1 =1.1 W ,ηC = P L / P D = 24%(2) 当R L = 5 Ω 时,由V CE = V CC I C R L 作负载线,I BQ 同(1)值,即I BQ2 = 2.4mA ,得Q 2点,V CEQ2 = 3.8V ,I CQ2 = 260mA这时,V cm = V CC V CEQ2 = 1.2 V ,I cm = I CQ2 = 260 mA所以 mW 15621cm cm L ==I V P ,P D = V CC I CQ2 = 1.3 W ,ηC = P L / P D = 12%(3)当R L = 5 Ω,Q 在放大区内的中点,激励同(1),由图Q 3点,V CEQ3 = 2.75V ,I CQ3= 460mA ,I BQ3 = 4.6mA , I bm = 2.4mA 相应的v CEmin = 1.55V ,i Cmax = 700mA 。

非线性电子线路(谢嘉奎第四版部分)问题详解

非线性电子线路(谢嘉奎第四版部分)问题详解

声明:由不动脑筋而直接抄取答案的行为引发的后果自负,与本人无任何关联,愿好自为之。

解释权归本人所有。

1-2 一功率管,它的最大输出功率是否仅受其极限参数限制?为什么?解:否。

还受功率管工作状态的影响,在极限参数中,P CM 还受功率管所处环境温度、散热条件等影响。

1-3 一功率放大器要求输出功率P。

= 1000 W,当集电极效率ηC由40%提高到70‰时,试问直流电源提供的直流功率P D和功率管耗散功率P C各减小多少?解:当ηC1 = 40%时,P D1 = P o/ηC = 2500 W,P C1 = P D1P o=1500 W当ηC2 = 70%时,P D2 = P o/ηC =1428.57 W,P C2 = P D2P o = 428.57 W可见,随着效率升高,P D下降,(P D1 P D2) = 1071.43 WPC下降,(P C1 P C2) = 1071.43 W1-6 如图所示为低频功率晶体管3DD325的输出特性曲线,由它接成的放大器如图1-2-1(a)所示,已知V CC = 5 V,试求下列条件下的P L、P D、ηC(运用图解法):(1)R L= 10Ω,Q点在负载线中点,充分激励;(2)R L = 5 Ω,I BQ同(1)值,I cm = I CQ;(3)R L = 5Ω,Q点在负载线中点,激励同(1)值;(4)R L = 5 Ω,Q点在负载线中点,充分激励。

解:(1) R L = 10 Ω时,作负载线(由V CE = V CC I C R L),取Q在放大区负载线中点,充分激励,由图得V CEQ1 = 2.6V,ICQ1= 220mA,I BQ1 = I bm = 2.4mA因为V cm = V CEQ1V CE(sat) = (2.6 0.2)V = 2.4 V,I cm = I CQ1 = 220 mA所以mW26421cmcmL==IVP,P D= V CC I CQ1 =1.1 W,ηC = P L/ P D = 24%(2) 当R L = 5 Ω时,由V CE = V CCICRL作负载线,I BQ同(1)值,即I BQ2 =2.4mA,得Q2点,V CEQ2 =3.8V,I CQ2 = 260mA这时,V cm = V CC V CEQ2 = 1.2 V,I cm = I CQ2 = 260 mA所以mW15621cmcmL==IVP,P D = V CC I CQ2 = 1.3 W,ηC = P L/ P D = 12%(3)当R L = 5 Ω,Q在放大区的中点,激励同(1),由图Q3点,V CEQ3 = 2.75V,I CQ3= 460mA,I BQ3 = 4.6mA, I bm = 2.4mA相应的v CEmin= 1.55V,i Cmax= 700mA。

厦门大学846电子线路-总复习指南

厦门大学846电子线路-总复习指南

注:本指南为个人在师兄师姐总结的基础上,更加的完善,并加入了自己的思路和方法。

复习指南(模电和数电+非线性)一、前言:1、需要准备的参考书目:①谢嘉奎主编的《电子线路(线性部分)》(第四版)②《电子线路(第四版)》教学指导书③阎石主编的《数字电子技术基础》(第五版)④《数字电子技术基础》习题解答(阎石,王红编,高教出版社)注:如果复习时间充裕的话可另准备一本谢嘉奎主编的《电子线路(非线性部分)》。

其他版本的如康华光的模电和数电最好不要用。

2、①模电和数电的基本知识点和考核重点要着重记忆②课后习题做两边以上,有些重点题目要重复多次做③真题做两遍以上3、真题最后一道大题30分,内容考查为《非线性部分》+NE555,这部分我会总结一些易考知识点,如果时间充裕,可以结合课本仔细的学习一下,但不用涉及计算,只需理论即可。

4、真题答案只作为参考,由于学校没有公布答案,答案多为自己以及前辈编写,有些只提供计算思路和计算公式,没有详细的数字答案,务必亲自动手计算;5、整个复习指南分为三个部分:模电,数电,非线性;包括考核重点、易于被轻视的但易考核的知识点以及重点习题;6、整个总结都是本人自己结合前辈和真题总结出来的,每个人自己都有自己的想法,一定要找到适合自己的复习方法,要结合考试知识点并重点分析历年真题。

7、2013年整个考试题模拟部分难度较前几年有所加大(个人感觉),模电部分考查了第三章六类场效应管的基本特性,第四章基本组态放大电路和差分放大电路,第六章集成运放;数电部分考查了第四章组合逻辑电路,第六章时序逻辑电路分析,第十章NE555组成的单稳态电路和多谐振荡器(两种电路的组合电路:多个555,其中一个为单稳态,一个为多谐振荡器)8、【电子线路(线性部分)】前三章不必太花时间看课本和做课后练习,只要找点那些易考点就行了,重点在四、五、六章;【数电部分】第一、二章不是重点,都是基础知识,稍微复习一下就行。

重点是第三、四、五、六章和第十章的NE555详情请看淘宝链接:/item.htm?spm=0.0.0.0.wI2Tkk&id=36331110566注:本指南为个人在师兄师姐总结的基础上,更加的完善,并加入了自己的思路和方法。

第1讲 1绪论(高频)

第1讲 1绪论(高频)

绪 论 年开始, 代移动通信技术。 从1996年开始,出现了第 代移动通信技术。 年开始 出现了第2.5代移动通信技术 2000年,开始研究第三代移动通信技术,我国是以 年 开始研究第三代移动通信技术, 大唐电信集团为代表提出的TD-SCDMA。ITU确定 。 大唐电信集团为代表提出的 确定 了三个3G通信系统的接口技术标准,即:WCDMA、 了三个 通信系统的接口技术标准, 通信系统的接口技术标准 、 CDMA2000以及 以及TD-SCDMA。 以及 。 CDMA使用码分扩频技术,先进功率和话音激活 使用码分扩频技术, 使用码分扩频技术 至少可提供大于3倍 网络容量。 至少可提供大于 倍GSM网络容量。 网络容量
高频电子线路
电子线路(非线性部分) 非线性部分)
谢嘉奎主编,高等教育出版社, 谢嘉奎主编,高等教育出版社,第四版
安 颖
2010年8月 年 月
ananying@
绪 论
关于课程的说明 关于课程的说明
模拟电子技术) 先学课程 电子线路的线性部分(模拟电子技术)
相关课程 信号与系统 后继课程 通信原理 专业基础课, 课程性质 专业基础课,考试 主要内容 无线通信系统中的基本模拟电路单元
绪 论
1G——模拟技术时代已成为历史 模拟技术时代已成为历史 1G 1G是以美国的AMPS系统和英国改进型系统TACS为代 1G是以美国的AMPS系统和英国改进型系统TACS为代 是以美国的AMPS系统和英国改进型系统TACS 表的模拟蜂窝移动通信网。对应的接入技术是FDMA 表的模拟蜂窝移动通信网。对应的接入技术是FDMA 技术,主要关注语音信号的传输。 技术,主要关注语音信号的传输。 2G——窄带数字技术时代已到中后期 窄带数字技术时代已到中后期 2G 2G是以欧洲的GSM和美国的IS-95为代表的窄带数字 2G是以欧洲的GSM和美国的IS-95为代表的窄带数字 是以欧洲的GSM和美国的IS 蜂窝移动通信系统。对应的接入技术分别是TDMA TDMA和 蜂窝移动通信系统。对应的接入技术分别是TDMA和 窄带CDMA技术,接收电子邮件或网页。 CDMA技术 窄带CDMA技术,接收电子邮件或网页。

电子线路非线性部分(第四版)谢嘉奎第6章反馈控制电路

电子线路非线性部分(第四版)谢嘉奎第6章反馈控制电路

误差传递函数 He(s)
H
e
(
s)
=
e i
(s) (s)
=
e
e(
(s)
s)
o
(
s)
=
1
Ho (s) Ho(s)
一、瞬态响应及稳态相位误差
根据线性系统理论
相位误差的瞬态响应: e(t) = L1e(s) = L1He(s)i(s)
稳态相位误差:
e
=
lim
t

e
环路基本方程
pe(t) AdAoAF(p)e(t) = pe(t)

se(s) AdAoAF(s)e(s) = si(s) e(s) = i(s) o(s)
开环传递函数 Ho(s)
H
o
(
s
)
=
o e
( (
s) s)
闭环传递函数 H(s)
H (s) = o (s) = Ad Ao AF (s) = Ho (s) i (s) s Ad Ao AF (s) 1 Ho (s)
若输入固有角频差 i(t) = i
环路锁定时
e
(t
)
=
de (t
dt
)
=
0
即 i = o,e(t) 为固定值,以 e 表示,称为稳态相
位误差。
据回路方程有
AdAoAF(0)sine = i
式中, AF(0) 为低通滤波器的直流增益。
所以
e
=
arcsin i
第 6 章 反馈控制电路
6.1 反馈控制电路概述 6.2 锁相环路性能分析 6.3 集成锁相环及其应用
第 6 章 反馈控制电路

高频电子线路课件(谢嘉奎第四版)1-3

高频电子线路课件(谢嘉奎第四版)1-3
阻大。
② 采用自举电路
R1 ,R2 , C2,取代 R 。特 点:交流电位由 O 经 C2 自举到 C 点,即 vC vO。
工作原理:Av 1,故 vB vO vC,通过 R2 的交流电流 i 0, 因而从 B 点向虚线框看进去的交
流电阻(vB/i)很大,趋于无穷,T3 的交流负载电阻便近似等于
图 1-3-4 二极管偏置电路
3.VBE 倍增电路
VBB
VBE3(1
R1 R2
)
(1)偏置电路
由 T3、R1、R2 组成,且由电 流源 IR 激励,为互补功率管 T1、 T2 提供偏置电压 VBB。
图 1–3–5 VBE 倍增偏置电路
T3、R1 构成电压并联负反馈电路,反馈电路的输出电 阻很小,几乎不影响输入信号的传输。
1.3 乙类推挽功率放大电路
从原理电路到实用电路,还需解决如下等问题:
① 交越失真 —— 加偏置电路; ② 双电源 —— 单电源供电; ③ 互补管难配 —— 准互补推挽电路; ④ 安全 —— 过载保护; ⑤ 充分激励 —— 输入激励电路。
一、交越失真和偏置电路
1.交越失真(Crossover Distortion) (1)定义 在零偏置条件下,考虑到导通电压的影响,输出电压 波形在衔接处出现的失真,称交越失真。
五、输入激励电路
1.必要性
互补功放, 功率管为射随器,Av < 1。若要求输出最大 信号功率,则要求激励
级提供振幅接近电源电
压的推动电压(单电源
为 VCC /2 )。
2.电路 T3:输入激励级, T3 的直流负载 R(忽略 T1 和 T2基 极电流),直流负 载线为Ⅰ。
图 1–3–9(a) 未加自举电容的电路 (b)输入激励级图解分析

演示文稿目录

演示文稿目录

为二十一世纪而教育中国人(线性电子电路)天下没有教不好的学生,只有不会教书的老师。

曾浩今天的汗水决定明天的生活要注意从里到外好好打扮自己不要随便否定自己,相信你,你就是最优秀的,没有人会比你做得更好电子电路( 线性部分(第四版))嘉奎主编高等教育出版社授课曾浩重庆邮电大学目录第1章晶体二极管第2章晶体三极管第3章场效应管第4章放大器基础第5章放大器中的负反馈第6章集成运算放大器及其运用电路第一章晶体二极管1.1 半导体物理基础知识1.2 PN结1.3 晶体二极管电路的分析方法1.4 晶体二极管的应用1.5 * 其它二极管第二章晶体三极管2.1 放大模式下的晶体三极管工作原理2.2 晶体三极管的其它工作模式2.3 埃伯尔斯-莫尔模型2.4 晶体三极管的伏安特性曲线2.5 晶体三极管的小信号电路模型2.6 晶体三极管电路分析方法2.7 晶体三极管运用原理2.8 集成工艺第三章场效应管3.1 MOS场效应管3.2 结型场效应管3.3 场效应管应用原理第四章放大器基础4.1 偏置电路和耦合方式4.2 放大器的性能指标4.3 基本组态电路4.4 差分放大器补充内容:功率放大器4.5 电流源电路及其运用4.6 集成运算放大器4.7 放大器的频率特性4.8 * 放大器的噪声第五章放大器中的负反馈5.1 反馈放大器的基本概念5.2 负反馈对放大器性能的影响5.3 * 负反馈放大器的性能分析5.4 深度负反馈5.5 负反馈放大器的稳定性第六章集成运算放大器及其运用电路6.1 集成运放应用电路的组成原理6.2 集成运放的性能参数及其对应用电路的影响6.3 * 高精度和高速宽带集成运放6.4 集成电压比较器。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

I = I S (e
V VT
− 1)
正偏时: 反偏时:
I ≈ I Se
V VT
I ≈ − IS
VT = kT q
其中:热电压 Is 约增加一倍。 10℃,
7、硅 PN 结:VD(on)=0.7V 锗 PN 结:VD(on)=0.3V 8、PN 结的击穿特性:热击穿(二极管损坏,不可恢复) ,齐纳击穿 (可恢复) 。
Ro 越小,RL 对 Av 影响越小。
Avs =
源电压增益:
vo v v Ri = o ⋅ i = Av vs vi vs Rs + Ri
Ri 越大,RS 对 Avs 影响越小。 (2)电流放大器:
Ai =
电流增益:
io ii
ion io ion R = ⋅ = Ai (1 + L ) ii ii io Ro
36、负反馈对放大器性能影响主要表现为: (1)降低增益 (2)减小增益灵敏度(或提高增益稳定性) (3)改变电路输入、输出电阻 (4)减小频率失真(或扩展通频带) (5)减小非线性失真 (6)噪声性能不变(信噪比不变) 37、基本放大器引入负反馈的原则: (1)在电路输出端: 若要求电路 vo 稳定或 Ro 小,应引入电压负反馈。 若要求电路 io 稳定或 Ro 大,应引入电流负反馈。 (2)在电路输入端: 若要求 Ri 大或从信号源索取的电流小, 引入串联负反馈。
若要求 Ri 小或从信号源索取的电流大, 引入并联负反馈。 (3)反馈效果与信号源内阻 RS 的关系: 若电路采用 RS 较小的电压源激励,应引入串联负反馈。 若电路采用 RS 较大的电流源激励,应引入并联负反馈。 38、深度负反馈条件:将 T >> 1 或 F >> 1 称为深度负反馈条件。 39、深度负反馈条件下 Avf 的估算: (1)根据反馈类型确定 kf 含义,并计算 kf 若串联反馈:将输入端交流开路 若并联反馈:将输入端交流短路 (2)确定 Afs(= xo / xs) 含义,并计算 Afs = 1 / kf (3)将 Afs 转换成 Avfs = vo / vs
40、 虚短虚断: 虚短路不能理解为两输入端短接, 只是 (v– - v+) 的 值小到了可以忽略不计的程度。实际上,运放正是利用这个极其微小
的差值进行电压放大的。同样,虚断路不能理解为输入端开路,只是 输入电流小到了可以忽略不计的程度。 41、重点
42、反向放大器:
二、计算题
1、第一章:习题 1-13
α = I cn I E ≈ I c I E ≤ 1
IC ≈ α IE
β=
β α α= 1+ β 1−α
( 1 + β)I CBO = β I B + I CEO ≈ β I B IC = β I B +
I E = (1 + β ) I B
15、三极管的三种组态:
16、混合Π型小信号电路模型:
rb′e =
30、集成运放性能特点: Av 很大:(104 ~ 107 或 80 ~ 140 dB) Ri 很大:(几 kΩ~ 105 MΩ) Ro 很小:(几十Ω) 静态输入、输出电位均为零。
31、三种组态电路中,共基电路频率特性最好、共发最差。 32、反馈放大器:将放大器输出信号的一部分或全部,通过反馈网络 回送到电路输入端,并对输入信号进行调整,所形成的闭合回路即反 馈放大器。 33、(重点)反馈放大器组成框图:
vo = −
反向放大器:
Rf vs R1
Rf R )vs = (1 + f )v+ R1 R1
vo = (1 +
同向放大器:
(2)加减法器:习题 6-1
9、PN 结的电容特性:势垒电容、扩散电容。 10、三极管内部结构特点:发射区掺杂浓度大;基区薄;集电结面积 大。 11、三极管的工作状态及其外部工作条件: 放大模式:发射结正偏,集电结反偏; 饱和模式:发射结正偏,集电结正偏; 截止模式:发射结反偏,集电结反偏。 12、三极管工作在放大模式下: 对 NPN 管各极电位间要求:Ve<Vb<Vc 对 PNP 管各极电位间要求:Ve>Vb>Vc 例:测得某三极管的三个极的电压分别为 U1=10V,U2=3V, U3=2.3V,请判断此三极管的类型、工作状态、并指出其 B C E 极。 解:电压值都为正,可判断为 NPN 管;假设三极管工作在放大状 态,根据电位间要求:Ve<Vb<Vc,可判断 U1=10V 为 C 极电压, U2-U3=0.7V,可判断 U2=3V 为 B 极电压;U3=2.3V 为 E 极电压;且 UCE=10-2.3=7.7V>0.3V,由此可判断此三极管为 NPN 型三极管,且工 作在放大状态,假设成立。 13、三极管静态工作点:IBQ、TCQ、VCEQ 14、公式:
Ain =
短路电流增益:
Ro 越大,RL 对 Ai 影响越小。
Ais =
源电流增益:
io i RS i = o ⋅ i = Ai is ii is RS + Ri
Ri 越小,RS 对 Ais 影响越小。
Ag =
(3)互导放大器:互导增益:
io vi
Ar =
(4)互阻放大器:互阻增益: 24、理想放大器性能特点:
开环增益: 反馈系数: 闭环增益: 反馈深度: 环路增益:
A = xo / xi′
kf = xf / xo Af = xo / xi
= xo A A x / x′ = = o i = xi′ + xf 1 + xf / xi′ 1 + Akf F
F = 1 + Akf = 1 + T
T = xf / xi′ = Akf
申明:本复习资料仅作为考试参考,不代表百分百会考本资料上的内 容。 一、选择填空题 1、本征半导体:纯净的、不含杂质的半导体称为本征半导体。 2、本征激发是半导体中产生自由的电子空穴对的条件。 3、N 型半导体:本征半导体中掺入少量五价元素构成。 4、P 型半导体:本征半导体中掺入少量三价元素构成。 5、PN 结的基本特性:单向导电性(即正向导通,反向截止) 。除了 单向导电性外还有反向击穿特性、温度特性、电容特性。 6、PN 结的伏安特性方程式:
反馈深度 F(或环路增益 T )是衡量反馈强弱的一项重要指标。 其值直 接影响电路性能。 34、判断反馈类型 — 采用短路法: 判断电压与电流反馈:假设输出端交流短路,若反馈信号消失, 则为电压反馈;反之为电流反馈。 电压反馈使得输出电阻减小,电流反馈使得输出电阻增大。 判断串联与并联反馈:假设输入端交流短路,若反馈作用消失, 则为并联反馈;反之为串联反馈。 串联反馈使得输入电阻增大,并联反馈使得输入电阻减小。 35、几个例题:
19、金属-氧化物-半导体场效应管:
20、增强型 MOS 管特性小结:
21、MOSFET 的特性曲线:
22、放大器性能的主要指标有:输入电阻 Ri 、输出电阻 Ro、增益 A。 23、小信号放大器四种电路模型:
(1)电压放大器:
Av =
电压增益:
vo vi
Avt =
开路电压增益:
vot vo vot R = ⋅ = Av (1 + o ) vi vi vo RL
2、第二章:习题 2-12
3、第三章: (1)习题 3-6
(2)习题 3-11
4、第四章: (1)习题 4-15 共发型放大器:
(2)习题 4-19 共基型放大器:
(3)习题 4-20 共集型放大器:
(4)习题 4-35 差分放大器:
五、第六章 (1)反向放大器、同向放大器的计算记公式就可以了。
∂vB′E ∂iB
=
Q
∂iE ∂vB′E ⋅ ∂iB ∂iE
= (1 + β )re = (1 + β )
Q
26 I CQ
rce 三极管输出电阻,数值较大。RL<< rce 时,常忽略。
VA 为厄尔利电压。 题目中若给出 VA, 需计算 rce, 若没有给出, 忽略 rce。 17、相关例题见第二章 PPT 34 36 37 38 41 43 页。 18、结型场效应管的特性小结:
vo ii
考试有可能会告诉你 Ri R0 的大小,让我们选择放大器的类型。 25、放大器的失真:
26、差分放大器的特点:抑制共模信号,放大差模信号。 27、差放性能指标归纳总结:
28、理想差放特点:输入电阻 Ri 无穷大,输出电阻 R0 无穷小,共模 抑制比无穷大。 29、(了解)镜像电流源电路:
相关文档
最新文档