新华东师大版七年级数学下册第七章二元一次方程组练习题4及答案.docx

合集下载

华东师大版数学七年级下册 二元一次方程组解决倍差百分率问题练习(Word版含答案)

华东师大版数学七年级下册 二元一次方程组解决倍差百分率问题练习(Word版含答案)

7.4.1二元一次方程组解决倍差百分率问题一.选择题(共7小题)1.《九章算术》是人类科学史上应用数学的“算经之首”,书中记载:今有三人共车,二车空;二人共车,九人步.问:人与车各几何?译文:若3人坐一辆车,则两辆车是空的;若2人坐一辆车,则9人需要步行,问:人与车各多少?设有x辆车,人数为y,根据题意可列方程组为()A.B.C.D.2.通过对一份中学生营养快餐的检测,得到以下信息:①快餐总质量为300g;②快餐的成分:蛋白质、碳水化合物、脂肪、矿物质;③蛋白质和脂肪含量占50%;矿物质的含量是脂肪含量的2倍;蛋白质和碳水化合物含量占85%.若设一份营养快餐中含蛋白质x(g),含脂肪y(g),则可列出方程组()A.B.C.D.3.有甲、乙两种商品,甲商品的利润率为5%,乙商品的利润率为4%,共获利46元.价格调整后,甲商品的利润率为4%,乙商品的利润率为5%,共获利44元,则两种商品的进价分别是()A.400元,600元B.600元,400元C.580元,440元D.520元,460元4.我国古代数学名著《孙子算经》中记载了一道题,大意是:100匹马恰好拉了100片瓦,已知3匹小马能拉1片瓦,1匹大马能拉3片瓦,求小马,大马各有多少匹.若设小马有x匹,大马有y匹,则下列方程组中正确的是()A.B.C.D.5.某公司上半年生产甲、乙两种型号的无人机若干架,已知甲种型号无人机架数比总架数的一半多11架,乙种型号无人机架数比总架数的三分之一少2架.设甲种型号无人机x架,乙种型号无人机y架,根据题意可列出的方程组是()A.B.C.D.6.我国古代问题:以绳测井,若将绳三折测之,绳多四尺,若将绳四折测之,绳多一尺,井深几何?这段话的意思是:用绳子量井深,把绳三折来量,井外余绳四尺,把绳四折来量,井外余绳一尺,井深几尺?()A.8尺B.12尺C.16尺D.18尺7.小慧去花店购买鲜花,若买5支玫瑰和3支百合,则她所带的钱还剩下10元;若买3支玫瑰和5支百合,则她所带的钱还缺4元.若只买8支玫瑰,则她所带的钱还剩下()A.31元B.30元C.25元D.19元二.填空题(共5小题)8.小岩打算购买气球装扮学校“毕业典礼”活动会场,气球的种类有笑脸和爱心两种,两种气球的价格不同,但同一种气球的价格相同.由于会场布置需要,购买时以一束(4个气球)为单位,已知第一、二束气球的价格如图所示,则第三束气球的价格为.9.某公司用30000元购进两种货物,货物卖出后,一种货物的利润是10%,另一种物的利润是11%,共获得利润3150元,该两种货物进货花费分别为x,y元,根据题意列方程组为.10.《九章算术》是我国东汉初年编订的一部数学经典著作.在它的“方程”一章里,一次方程组是由算筹布置而成的.《九章算术》中的算筹图是竖排的,现在我们把它改为横排,如图1、图2.图中各行从左到右列出的算筹数分别表示未知数x,y的系数与相应的常数项.把图1所示的算筹图用我们现在所熟悉的方程组形式表述出来,就是.类似地,图2所示的算筹图我们可以表述为.11.某商家将蓝牙耳机、多接口优盘、迷你音箱共22个,搭配为A,B,C三种盲盒各一个.其中A盒中有2个耳机,3个优盘,1个音箱;B盒中耳机与音箱的数量之和等于优盘的数量,耳机与音箱的数量之比为3:2;C盒中有1个耳机,3个优盘,2个音箱.经核算,A盒的价值为145元,B盒的价值为245元,则C盒的价值为元.12.某旅馆的客房有三人间和两人间两种,三人间每间每天60元,两人间每间每天50元,一个50人的旅游团到该旅馆住宿,租住了若干客房,且每个客房正好住满,一天共花去住宿费1100元,则三人间客房租了间.三.解答题(共10小题)13.某校住校生宿舍有大小两种寝室若干间,据统计该校高一年级男生740人,使用了55间大寝室和50间小寝室,正好住满;女生730人,使用了大寝室50间和小寝室55间,也正好住满.求该校的大小寝室每间各住多少人?14.5月份,甲、乙两个工厂用水量共为200吨.进入夏季用水高峰期后,两工厂积极响应国家号召,采取节水措施.6月份,甲工厂用水量比5月份减少了15%,乙工厂用水量比5月份减少了10%,两个工厂6月份用水量共为174吨,求两个工厂5月份的用水量各是多少?15.去年新冠病毒疫情初期,口罩供应短缺,某地规定:每人每次限购5只.李红出门买口罩时,无论是否买到,都会消耗家里库存的口罩一只,如果有口罩买,他将买回5只.已知李红家原有库存15只,出门10次购买后,家里现有口罩35只.求李红出门没有买到口罩的次数.16.某校为实现垃圾分类投放,准备在校园内摆放大、小两种垃圾桶.购买2个大垃圾桶和4个小垃圾桶共需600元;购买6个大垃圾桶和8个小垃圾桶共需1560元.(1)求大、小两种垃圾桶的单价;(2)该校购买8个大垃圾桶和24个小垃圾桶共需多少元?17.随着中国传统节日“端午节”的临近,东方红商场决定开展“欢度端午,回馈顾客”的让利促销活动,对部分品牌粽子进行打折销售.其中,甲品牌粽子打八折,乙品牌粽子打七五折.已知打折前,买6盒甲品牌粽子和3盒乙品牌粽子需660元;打折后,买50盒甲品牌粽子和40盒乙品牌粽子需要5200元,(1)打折前甲、乙两种品牌粽子每盒分别为多少元?(2)阳光敬老院需购买甲品牌粽子80盒,乙品牌粽子100盒,问:打折后购买这批粽子比不打折节省了多少钱?18.在当地农业技术部门指导下,小明家种植的菠萝喜获丰收.去年菠萝的利润(利润=收入﹣支出)为12000元,今年菠萝的收入比去年增加了20%,支出减少了10%,预计今年的利润比去年多11400元.请计算:(1)今年的利润是元;(2)列方程组计算小明家今年种植菠萝的收入和支出.19.某商店需要购进甲、乙两种商品共160件,其进价和售价如下表:(注:利润=售价﹣进价)甲乙进价(元/件)1535售价(元/件)2045若商店计划销售完这批商品后能使利润达到1100元,问甲、乙两种商品应分别购进多少件?20.某商场计划拨款9万元从厂家购进50台电视机,已知该厂家生产三种不同型号的电视机,出厂价分别为:甲种每台1500元,乙种每台2100元,丙种每台2500元.(1)若商场同时购进其中两种不同型号电视机共50台,用去9万元,请你研究一下商场的进货方案;(2)若商场销售一台甲种电视机可获利150元,销售一台乙种电视机可获利200元,销售一台丙种电视机可获利250元.在同时购进两种不同型号电视机的方案中,为使销售利润最多,你选择哪一种进货方案?21.甲、乙两种商品原来的单价和为100元.因市场变化,甲商品降价10%,乙商品提价40%,调价后,两种商品的单价和比原来的单价和提高了20%.问甲、乙两种商品原来的单价各是多少元?22.某校七年级400名学生到郊外参加植树活动,已知用3辆小客车和1辆大客车每次可运送学生105人,用1辆小客车和2辆大客车每次可运送学生110人.(1)每辆小客车和每辆大客车各能坐多少名学生?(2)若计划租小客车m辆,大客车n辆,一次送完,且恰好每辆车都坐满:①请你设计出所有的租车方案;②若小客车每辆租金150元,大客车每辆租金250元,请选出最省钱的租车方案,并求出最少租金.7.4.1二元一次方程组解决倍差百分率问题参考答案与试题解析一.选择题(共7小题)1.《九章算术》是人类科学史上应用数学的“算经之首”,书中记载:今有三人共车,二车空;二人共车,九人步.问:人与车各几何?译文:若3人坐一辆车,则两辆车是空的;若2人坐一辆车,则9人需要步行,问:人与车各多少?设有x辆车,人数为y,根据题意可列方程组为()A.B.C.D.【解答】解:设共有y人,x辆车,依题意得:.故选:B.2.通过对一份中学生营养快餐的检测,得到以下信息:①快餐总质量为300g;②快餐的成分:蛋白质、碳水化合物、脂肪、矿物质;③蛋白质和脂肪含量占50%;矿物质的含量是脂肪含量的2倍;蛋白质和碳水化合物含量占85%.若设一份营养快餐中含蛋白质x(g),含脂肪y(g),则可列出方程组()A.B.C.D.【解答】解:设一份营养快餐中含蛋白质x(g),含脂肪y(g),根据题意得:,即,故选:D.3.有甲、乙两种商品,甲商品的利润率为5%,乙商品的利润率为4%,共获利46元.价格调整后,甲商品的利润率为4%,乙商品的利润率为5%,共获利44元,则两种商品的进价分别是()A.400元,600元B.600元,400元C.580元,440元D.520元,460元【解答】解:设甲商品的进价为x元,乙商品的进价为y元,根据题意可得:,解得:,答:甲商品的进价为600元,乙商品的进价为400元,故选:B.4.我国古代数学名著《孙子算经》中记载了一道题,大意是:100匹马恰好拉了100片瓦,已知3匹小马能拉1片瓦,1匹大马能拉3片瓦,求小马,大马各有多少匹.若设小马有x匹,大马有y匹,则下列方程组中正确的是()A.B.C.D.【解答】解:根据题意可得:,故选:C.5.某公司上半年生产甲、乙两种型号的无人机若干架,已知甲种型号无人机架数比总架数的一半多11架,乙种型号无人机架数比总架数的三分之一少2架.设甲种型号无人机x架,乙种型号无人机y架,根据题意可列出的方程组是()A.B.C.D.【解答】解:设甲种型号无人机x架,乙种型号无人机y架,根据题意可列出的方程组是:.故选:D.6.我国古代问题:以绳测井,若将绳三折测之,绳多四尺,若将绳四折测之,绳多一尺,井深几何?这段话的意思是:用绳子量井深,把绳三折来量,井外余绳四尺,把绳四折来量,井外余绳一尺,井深几尺?()A.8尺B.12尺C.16尺D.18尺【解答】解:设绳长是x尺,井深是y尺,依题意得:,解得:,即井深是8尺.故选:A.7.小慧去花店购买鲜花,若买5支玫瑰和3支百合,则她所带的钱还剩下10元;若买3支玫瑰和5支百合,则她所带的钱还缺4元.若只买8支玫瑰,则她所带的钱还剩下()A.31元B.30元C.25元D.19元【解答】解:设每支玫瑰x元,每支百合y元,依题意,得:5x+3y+10=3x+5y﹣4,∴y=x+7,∴5x+3y+10﹣8x=5x+3(x+7)+10﹣8x=31.故选:A.二.填空题(共5小题)8.小岩打算购买气球装扮学校“毕业典礼”活动会场,气球的种类有笑脸和爱心两种,两种气球的价格不同,但同一种气球的价格相同.由于会场布置需要,购买时以一束(4个气球)为单位,已知第一、二束气球的价格如图所示,则第三束气球的价格为18元.【解答】解:笑脸气球的价格为x元,爱心气球的价格为y元,根据题意,得:,解得:,即笑脸气球的价格为3.5元,爱心气球的价格为5.5元,则第三束气球的价格为2×3.5+2×5.5=18(元),故答案为:18元.9.某公司用30000元购进两种货物,货物卖出后,一种货物的利润是10%,另一种物的利润是11%,共获得利润3150元,该两种货物进货花费分别为x,y元,根据题意列方程组为.【解答】解:设两种货物进货花费分别为x,y元,依题意得:.故答案是:.10.《九章算术》是我国东汉初年编订的一部数学经典著作.在它的“方程”一章里,一次方程组是由算筹布置而成的.《九章算术》中的算筹图是竖排的,现在我们把它改为横排,如图1、图2.图中各行从左到右列出的算筹数分别表示未知数x,y的系数与相应的常数项.把图1所示的算筹图用我们现在所熟悉的方程组形式表述出来,就是.类似地,图2所示的算筹图我们可以表述为.【解答】解:由题意可得,图2所示的算筹图我们可以表述为:,故答案为:.11.某商家将蓝牙耳机、多接口优盘、迷你音箱共22个,搭配为A,B,C三种盲盒各一个.其中A盒中有2个耳机,3个优盘,1个音箱;B盒中耳机与音箱的数量之和等于优盘的数量,耳机与音箱的数量之比为3:2;C盒中有1个耳机,3个优盘,2个音箱.经核算,A盒的价值为145元,B盒的价值为245元,则C盒的价值为155元.【解答】解:设1个耳机的价值为x元,1个优盘的价值为y元,1个音箱的价值为z元,B 盒中耳机的数量为3n(n为正整数)个,则音箱的数量为2n个,优盘的数量为5n个,依题意得:.若n=2,则B盒的价值至少是A盒价值的3倍,∴n=2不合适,∴n只能为1,∴方程②为3x+5y+2z=245③.3×③﹣4×②得:x+3y+2z=155,即C盒的价值为155元.故答案为:155.12.某旅馆的客房有三人间和两人间两种,三人间每间每天60元,两人间每间每天50元,一个50人的旅游团到该旅馆住宿,租住了若干客房,且每个客房正好住满,一天共花去住宿费1100元,则三人间客房租了10间.【解答】解:设两人间客房租了x间,三人间客房租了y间,依题意得:,解得:,∴三人间客房租了10间.故答案为:10.三.解答题(共10小题)13.某校住校生宿舍有大小两种寝室若干间,据统计该校高一年级男生740人,使用了55间大寝室和50间小寝室,正好住满;女生730人,使用了大寝室50间和小寝室55间,也正好住满.求该校的大小寝室每间各住多少人?【解答】解:设该校的大寝室每间住x人,小寝室每间住y人,由题意得:,解得:.答:该校的大寝室每间住8人,小寝室每间住6人.14.5月份,甲、乙两个工厂用水量共为200吨.进入夏季用水高峰期后,两工厂积极响应国家号召,采取节水措施.6月份,甲工厂用水量比5月份减少了15%,乙工厂用水量比5月份减少了10%,两个工厂6月份用水量共为174吨,求两个工厂5月份的用水量各是多少?【解答】解:设甲工厂5月份的用水量是x吨,乙工厂5月份的用水量是y吨,依题意,得:,解得:.答:甲工厂5月份的用水量是120吨,乙工厂5月份的用水量是80吨.15.去年新冠病毒疫情初期,口罩供应短缺,某地规定:每人每次限购5只.李红出门买口罩时,无论是否买到,都会消耗家里库存的口罩一只,如果有口罩买,他将买回5只.已知李红家原有库存15只,出门10次购买后,家里现有口罩35只.求李红出门没有买到口罩的次数.【解答】解:设李红出门没有买到口罩的次数是x,买到口罩的次数是y,依题意得:,解得:.答:李红出门没有买到口罩的次数是4.16.某校为实现垃圾分类投放,准备在校园内摆放大、小两种垃圾桶.购买2个大垃圾桶和4个小垃圾桶共需600元;购买6个大垃圾桶和8个小垃圾桶共需1560元.(1)求大、小两种垃圾桶的单价;(2)该校购买8个大垃圾桶和24个小垃圾桶共需多少元?【解答】解:(1)设大垃圾桶的单价为x元,小垃圾桶的单价为y元,依题意得:,解得:.答:大垃圾桶的单价为180元,小垃圾桶的单价为60元.(2)180×8+60×24=2880(元).答:该校购买8个大垃圾桶和24个小垃圾桶共需2880元.17.随着中国传统节日“端午节”的临近,东方红商场决定开展“欢度端午,回馈顾客”的让利促销活动,对部分品牌粽子进行打折销售.其中,甲品牌粽子打八折,乙品牌粽子打七五折.已知打折前,买6盒甲品牌粽子和3盒乙品牌粽子需660元;打折后,买50盒甲品牌粽子和40盒乙品牌粽子需要5200元,(1)打折前甲、乙两种品牌粽子每盒分别为多少元?(2)阳光敬老院需购买甲品牌粽子80盒,乙品牌粽子100盒,问:打折后购买这批粽子比不打折节省了多少钱?【解答】解:(1)设打折前甲品牌粽子每盒x元,乙品牌粽子每盒y元,根据题意得:,解得:,答:打折前甲品牌粽子每盒70元,乙品牌粽子每盒80元.(2)80×70×(1﹣80%)+100×80×(1﹣75%)=3120(元).答:打折后购买这批粽子比不打折节省了3120元.18.在当地农业技术部门指导下,小明家种植的菠萝喜获丰收.去年菠萝的利润(利润=收入﹣支出)为12000元,今年菠萝的收入比去年增加了20%,支出减少了10%,预计今年的利润比去年多11400元.请计算:(1)今年的利润是23400元;(2)列方程组计算小明家今年种植菠萝的收入和支出.【解答】解:(1)12000+11400=23400(元).故答案为:23400.(2)设小明家去年种植菠萝的收入为x元,支出是y元,依题意得:,解得:,∴(1+20%)x=(1+20%)×42000=50400,(1﹣10%)y=(1﹣10%)×30000=27000.答:小明家今年种植菠萝的收入为50400元,支出是27000元.19.某商店需要购进甲、乙两种商品共160件,其进价和售价如下表:(注:利润=售价﹣进价)甲乙进价(元/件)1535售价(元/件)2045若商店计划销售完这批商品后能使利润达到1100元,问甲、乙两种商品应分别购进多少件?【解答】解:设甲种商品应购进x件,乙种商品应购进y件,依题意得:,解得:,答:甲种商品应购进100件,乙种商品应购进60件.20.某商场计划拨款9万元从厂家购进50台电视机,已知该厂家生产三种不同型号的电视机,出厂价分别为:甲种每台1500元,乙种每台2100元,丙种每台2500元.(1)若商场同时购进其中两种不同型号电视机共50台,用去9万元,请你研究一下商场的进货方案;(2)若商场销售一台甲种电视机可获利150元,销售一台乙种电视机可获利200元,销售一台丙种电视机可获利250元.在同时购进两种不同型号电视机的方案中,为使销售利润最多,你选择哪一种进货方案?【解答】解:(1)解分三种情况计算:①设购甲种电视机x台,乙种电视机y台.解得.②设购甲种电视机x台,丙种电视机z台.则,解得:.③设购乙种电视机y台,丙种电视机z台.则解得:(不合题意,舍去);(2)方案一:25×150+25×200=8750.方案二:35×150+15×250=9000元.答:购甲种电视机25台,乙种电视机25台;或购甲种电视机35台,丙种电视机15台.购买甲种电视机35台,丙种电视机15台获利最多.21.甲、乙两种商品原来的单价和为100元.因市场变化,甲商品降价10%,乙商品提价40%,调价后,两种商品的单价和比原来的单价和提高了20%.问甲、乙两种商品原来的单价各是多少元?【解答】解:设甲种商品原来的单价是x元,乙种商品原来的单价是y元,依题意得,解得:.答:甲种商品原来的单价是40元,乙种商品原来的单价是60元.22.某校七年级400名学生到郊外参加植树活动,已知用3辆小客车和1辆大客车每次可运送学生105人,用1辆小客车和2辆大客车每次可运送学生110人.(1)每辆小客车和每辆大客车各能坐多少名学生?(2)若计划租小客车m辆,大客车n辆,一次送完,且恰好每辆车都坐满:①请你设计出所有的租车方案;②若小客车每辆租金150元,大客车每辆租金250元,请选出最省钱的租车方案,并求出最少租金.【解答】解:(1)设每辆小客车能坐x人,每辆大客车能坐y人,据题意:,解得:,答:每辆小客车能坐20人,每辆大客车能坐45人;(2)①由题意得:20m+45n=400,∴n=,∵m、n为非负整数,∴或或,∴租车方案有三种:方案一:小客车20车、大客车0辆,方案二:小客车11辆,大客车4辆,方案三:小客车2辆,大客车8辆;②方案一租金:150×20=3000(元),方案二租金:150×11+250×4=2650(元),方案三租金:150×2+250×8=2300(元),∴方案三租金最少,最少租金为2300元.。

新华东师大版七年级数学下册第七章二元一次方程组练习题3及答案.docx

新华东师大版七年级数学下册第七章二元一次方程组练习题3及答案.docx

(新课标)华东师大版七年级下册 二元一次方程组练习题100道(卷一) (范围:代数: 二元一次方程组)一、判断1、⎪⎩⎪⎨⎧-==312y x 是方程组⎪⎪⎩⎪⎪⎨⎧=-=-910326523y x y x 的解 …………( )2、方程组⎩⎨⎧=+-=5231y x xy 的解是方程3x-2y=13的一个解( ) 3、由两个二元一次方程组成方程组一定是二元一次方程组( )4、方程组⎪⎪⎩⎪⎪⎨⎧=-++=+++25323473523y x y x ,可以转化为⎩⎨⎧-=--=+27651223y x y x ( )5、若(a 2-1)x 2+(a-1)x+(2a-3)y=0是二元一次方程,则a 的值为±1( )6、若x+y=0,且|x|=2,则y 的值为2 …………( )7、方程组⎩⎨⎧=+-=+81043y x xm my mx 有唯一的解,那么m 的值为m ≠-5 …………( )8、方程组⎪⎩⎪⎨⎧=+=+623131y x y x 有无数多个解 …………( )9、x+y=5且x ,y 的绝对值都小于5的整数解共有5组 …………( )10、方程组⎩⎨⎧=+=-3513y x y x 的解是方程x+5y=3的解,反过来方程x+5y=3的解也是方程组⎩⎨⎧=+=-3513y x y x 的解 ………( ) 11、若|a+5|=5,a+b=1则32-的值为ba ………()12、在方程4x-3y=7里,如果用x 的代数式表示y ,则437y x +=( ) 二、选择:13、任何一个二元一次方程都有( ) (A )一个解; (B )两个解; (C )三个解;(D )无数多个解;14、一个两位数,它的个位数字与十位数字之和为6,那么符合条件的两位数的个数有( ) (A )5个(B )6个(C )7个(D )8个15、如果⎩⎨⎧=+=-423y x a y x 的解都是正数,那么a 的取值范围是( ) (A )a<2;(B )34->a ; (C )342<<-a ; (D )34-<a ;16、关于x 、y 的方程组⎩⎨⎧=-=+my x m y x 932的解是方程3x+2y=34的一组解,那么m 的值是( ) (A )2;(B )-1;(C )1;(D )-2;17、在下列方程中,只有一个解的是( )(A )⎩⎨⎧=+=+0331y x y x (B )⎩⎨⎧-=+=+2330y x y x(C )⎩⎨⎧=-=+4331y x y x(D )⎩⎨⎧=+=+3331y x y x18、与已知二元一次方程5x-y=2组成的方程组有无数多个解的方程是( )(A )15x-3y=6 (B )4x-y=7 (C )10x+2y=4 (D )20x-4y=319、下列方程组中,是二元一次方程组的是( )(A )⎪⎩⎪⎨⎧=+=+9114y x y x (B )⎩⎨⎧=+=+75z y y x (C )⎩⎨⎧=-=6231y x x(D )⎩⎨⎧=-=-1y x xy y x 20、已知方程组⎩⎨⎧-=+=-135b y ax y x 有无数多个解,则a 、b 的值等于( ) (A )a=-3,b=-14(B )a=3,b=-7(C )a=-1,b=9(D )a=-3,b=1421、若5x-6y=0,且xy ≠0,则yx y x 3545--的值等于( ) (A )32(B )23(C )1 (D )-122、若x 、y 均为非负数,则方程6x=-7y 的解的情况是( ) (A )无解(B )有唯一一个解 (C )有无数多个解(D )不能确定23、若|3x+y+5|+|2x-2y-2|=0,则2x 2-3xy 的值是( ) (A )14(B )-4(C )-12 (D )1224、已知⎩⎨⎧-==24y x 与⎩⎨⎧-=-=52y x 都是方程y=kx+b 的解,则k 与b 的值为( )(A )21=k ,b=-4(B )21-=k ,b=4(C )21=k ,b=4(D )21-=k ,b=-4三、填空:25、在方程3x+4y=16中,当x=3时,y=________,当y=-2时,x=_______若x 、y 都是正整数,那么这个方程的解为___________; 26、方程2x+3y=10中,当3x-6=0时,y=_________;27、如果0.4x-0.5y=1.2,那么用含有y 的代数式表示的代数式是_____________;28、若⎩⎨⎧-==11y x 是方程组⎩⎨⎧-=-=+1242a y x by ax 的解,则⎩⎨⎧==______________b a ; 29、方程|a|+|b|=2的自然数解是_____________;30、如果x=1,y=2满足方程141=+y ax ,那么a=____________; 31、已知方程组⎩⎨⎧-=+=+my x ay x 26432有无数多解,则a=______,m=______;32、若方程x-2y+3z=0,且当x=1时,y=2,则z=______; 33、若4x+3y+5=0,则3(8y-x)-5(x+6y-2)的值等于_________; 34、若x+y=a ,x-y=1同时成立,且x 、y 都是正整数,则a 的值为________; 35、从方程组)0(030334≠⎩⎨⎧=+-=--xyz z y x z y x 中可以知道,x:z=_______;y:z=________;36、已知a-3b=2a+b-15=1,则代数式a 2-4ab+b 2+3的值为__________;四、解方程组37、⎪⎪⎩⎪⎪⎨⎧=-=-1332343n m nm ;38、)(6441125为已知数a ay x ay x ⎩⎨⎧=-=+; 39、⎪⎪⎩⎪⎪⎨⎧=++=+125432y x yx y x ; 40、⎪⎩⎪⎨⎧=--+=-++0)1(2)1()1(2x y x x x y y x ;41、⎪⎪⎩⎪⎪⎨⎧++=++=+=+6253)23(22)32(32523233y x y x yx y x ;42、⎪⎪⎩⎪⎪⎨⎧=-++=-++1213222132y x y x ;43、⎪⎩⎪⎨⎧=-+-=-+=-+3113y x z x z y z y x ;44、⎪⎩⎪⎨⎧=+=+=+101216x z z y y x ;45、⎪⎩⎪⎨⎧=-+=+-=-+35351343z y x z y x z y x ;46、⎪⎩⎪⎨⎧=+-==30325:3:7:4:z y x z x y x ; 五、解答题:47 时,甲看错了①式中的x的系数,解得⎪⎪⎩⎪⎪⎨⎧==475847107y x ;乙看错了方程②中的y 的系数,解得⎪⎪⎩⎪⎪⎨⎧==19177681y x ,若两人的计算都准确无误,请写出这个方程组,并求出此方程组的解;48、使x+4y=|a|成立的x 、y 的值,满足(2x+y-1)2+|3y-x|=0,又|a|+a=0,求a 的值;49、代数式ax 2+bx+c 中,当x=1时的值是0,在x=2时的值是3,在x=3时的值是28,试求出这个代数式;50、要使下列三个方程组成的方程组有解,求常数a 的值。

(新课标)华东师大版七年级数学下册第七章二元一次方程组练习题1及答案

(新课标)华东师大版七年级数学下册第七章二元一次方程组练习题1及答案

2017-2018学年(新课标)华东师大版七年级下册二元一次方程组解法练习题精选(含答案)一.解答题(共16小题)1.求适合的x,y的值.2.解下列方程组(1)(2)(3)(4).3.解方程组:4.解方程组:5.解方程组:6.已知关于x,y的二元一次方程y=kx+b的解有和.(1)求k,b的值.(2)当x=2时,y的值.(3)当x为何值时,y=3?7.解方程组:(1);(2).8.解方程组:9.解方程组:10.解下列方程组:(1)(2)11.解方程组:(1)(2)12.解二元一次方程组:(1);(2).13.在解方程组时,由于粗心,甲看错了方程组中的a,而得解为,乙看错了方程组中的b,而得解为.(1)甲把a看成了什么,乙把b看成了什么?(2)求出原方程组的正确解.14.15.解下列方程组:(1);(2).16.解下列方程组:(1)(2)二元一次方程组解法练习题精选(含答案)参考答案与试题解析一.解答题(共16小题)1.求适合的x,y的值.考点:解二元一次方程组.809625分析:先把两方程变形(去分母),得到一组新的方程,然后在用加减消元法消去未知数x,求出y的值,继而求出x的值.解答:解:由题意得:,由(1)×2得:3x﹣2y=2(3),由(2)×3得:6x+y=3(4),(3)×2得:6x﹣4y=4(5),(5)﹣(4)得:y=﹣,把y的值代入(3)得:x=,∴.点本题考查了二元一次方程组的解法,主要运用了加减消元法和代入法.评:2.解下列方程组(1)(2)(3)(4).考点:解二元一次方程组.809625分析:(1)(2)用代入消元法或加减消元法均可;(3)(4)应先去分母、去括号化简方程组,再进一步采用适宜的方法求解.解答:解:(1)①﹣②得,﹣x=﹣2,解得x=2,把x=2代入①得,2+y=1,解得y=﹣1.故原方程组的解为.(2)①×3﹣②×2得,﹣13y=﹣39,解得,y=3,把y=3代入①得,2x﹣3×3=﹣5,解得x=2.故原方程组的解为.(3)原方程组可化为,①+②得,6x=36,x=6,①﹣②得,8y=﹣4,y=﹣.所以原方程组的解为.(4)原方程组可化为:,①×2+②得,x=,把x=代入②得,3×﹣4y=6,y=﹣.所以原方程组的解为.点评:利用消元法解方程组,要根据未知数的系数特点选择代入法还是加减法①相同未知数的系数相同或互为相反数时,宜用加减法;②其中一个未知数的系数为1时,宜用代入法.3.解方程组:考点:解二元一次方程组.809625专题:计算题.分析:先化简方程组,再进一步根据方程组的特点选用相应的方法:用加减法解答:解:原方程组可化为,①×4﹣②×3,得7x=42,解得x=6.把x=6代入①,得y=4.所以方程组的解为.点评:注意:二元一次方程组无论多复杂,解二元一次方程组的基本思想都是消元.消元的方法有代入法和加减法.4.解方程组:考点:解二元一次方程组.809625专题:计算题.分析:把原方程组化简后,观察形式,选用合适的解法,此题用加减法求解比较简单.解答:解:(1)原方程组化为,①+②得:6x=18,∴x=3.代入①得:y=.所以原方程组的解为.点评:要注意:两个二元一次方程中同一未知数的系数相反或相等时,把这两个方程的两边相加或相减,就能消去这个未知数,得到一个一元一次方程这种方法叫做加减消元法.本题适合用此法.5.解方程组:考点:解二元一次方程组.809625专题: 计算题;换元法.分析: 本题用加减消元法即可或运用换元法求解.解答:解:,①﹣②,得s+t=4, ①+②,得s ﹣t=6, 即, 解得.所以方程组的解为.点评: 此题较简单,要熟练解方程组的基本方法:代入消元法和加减消元法.6.已知关于x ,y 的二元一次方程y=kx+b 的解有和.(1)求k ,b 的值. (2)当x=2时,y 的值. (3)当x 为何值时,y=3? 考点: 解二元一次方程组.809625专计算题.题:分析:(1)将两组x,y的值代入方程得出关于k、b的二元一次方程组再运用加减消元法求出k、b的值.(2)将(1)中的k、b代入,再把x=2代入化简即可得出y的值.(3)将(1)中的k、b和y=3代入方程化简即可得出x的值.解答:解:(1)依题意得:①﹣②得:2=4k,所以k=,所以b=.(2)由y=x+,把x=2代入,得y=.(3)由y=x+把y=3代入,得x=1.点评:本题考查的是二元一次方程的代入消元法和加减消元法,通过已知条件的代入,可得出要求的数.7.解方程组:(1);(2).考点:解二元一次方程组.809625分析:根据各方程组的特点选用相应的方法:(1)先去分母再用加减法,(2)先去括号,再转化为整式方程解答.解答:解:(1)原方程组可化为,①×2﹣②得:y=﹣1,将y=﹣1代入①得:x=1.∴方程组的解为;(2)原方程可化为,即,①×2+②得:17x=51,x=3,将x=3代入x﹣4y=3中得:y=0.∴方程组的解为.点评:这类题目的解题关键是理解解方程组的基本思想是消元,掌握消元的方法有:加减消元法和代入消元法.根据未知数系数的特点,选择合适的方法.8.解方程组:考点:解二元一次方程组.809625专题:计算题.分析:本题应把方程组化简后,观察方程的形式,选用合适的方法求解.解答:解:原方程组可化为,①+②,得10x=30,x=3,代入①,得15+3y=15,y=0.则原方程组的解为.点评:解答此题应根据各方程组的特点,有括号的去括号,有分母的去分母,然后再用代入法或加减消元法解方程组.9.解方程组:考点:解二元一次方程组.809625专题:计算题.分析:本题为了计算方便,可先把(2)去分母,然后运用加减消元法解本题.解答:解:原方程变形为:,两个方程相加,得4x=12,x=3.把x=3代入第一个方程,得4y=11,y=.解之得.点评:本题考查的是二元一次方程组的解法,方程中含有分母的要先化去分母再对方程进行化简、消元,即可解出此类题目.10.解下列方程组:(1)(2)考点:解二元一次方程组.809625专题:计算题.分析:此题根据观察可知:(1)运用代入法,把①代入②,可得出x,y的值;(2)先将方程组化为整系数方程组,再利用加减消元法求解.解答:解:(1),由①,得x=4+y③,代入②,得4(4+y)+2y=﹣1,所以y=﹣,把y=﹣代入③,得x=4﹣=.所以原方程组的解为.(2)原方程组整理为,③×2﹣④×3,得y=﹣24,把y=﹣24代入④,得x=60,所以原方程组的解为.点评:此题考查的是对二元一次方程组的解法的运用和理解,学生可以通过题目的训练达到对知识的强化和运用.11.解方程组:(1)(2)考点:解二元一次方程组.809625专题:计算题;换元法.分析:方程组(1)需要先化简,再根据方程组的特点选择解法;方程组(2)采用换元法较简单,设x+y=a,x﹣y=b,然后解新方程组即可求解.解答:解:(1)原方程组可化简为,解得.(2)设x+y=a,x﹣y=b,∴原方程组可化为,解得,∴∴原方程组的解为.此题考查了学生的计算能力,解题时要细心.点评:12.解二元一次方程组:(1);(2).解二元一次方程组.809625考点:计算题.专题:分(1)运用加减消元的方法,可求出x、y的值;析:(2)先将方程组化简,然后运用加减消元的方法可求出x、y的值.解答:解:(1)将①×2﹣②,得15x=30,x=2,把x=2代入第一个方程,得y=1.则方程组的解是;(2)此方程组通过化简可得:,①﹣②得:y=7,把y=7代入第一个方程,得x=5.则方程组的解是.点评:此题考查的是对二元一次方程组的解法的运用和理解,学生可以通过题目的训练达到对知识的强化和运用.13.在解方程组时,由于粗心,甲看错了方程组中的a,而得解为,乙看错了方程组中的b,而得解为.(1)甲把a看成了什么,乙把b看成了什么?(2)求出原方程组的正确解.考点:解二元一次方程组.809625专题:计算题.分析:(1)把甲乙求得方程组的解分别代入原方程组即可;(2)把甲乙所求的解分别代入方程②和①,求出正确的a、b,然后用适当的方法解方程组.解答:解:(1)把代入方程组,得,解得:.把代入方程组,得,解得:.∴甲把a看成﹣5;乙把b看成6;(2)∵正确的a是﹣2,b是8,∴方程组为,解得:x=15,y=8.则原方程组的解是.点评:此题难度较大,需同学们仔细阅读,弄清题意再解答.14.考点:解二元一次方程组.809625分析:先将原方程组中的两个方程分别去掉分母,然后用加减消元法求解即可解答:解:由原方程组,得,由(1)+(2),并解得x=(3),把(3)代入(1),解得y=,∴原方程组的解为.点评:用加减法解二元一次方程组的一般步骤:1.方程组的两个方程中,如果同一个未知数的系数既不互为相反数又不相等,就用适当的数去乘方程的两边,使一个未知数的系数互为相反数或相等;2.把两个方程的两边分别相加或相减,消去一个未知数,得到一个一元一次方程;3.解这个一元一次方程;4.将求出的未知数的值代入原方程组的任意一个方程中,求出另一个未知数,从而得到方程组的解.15.解下列方程组:(1);(2).考点:解二元一次方程组.809625分析:将两个方程先化简,再选择正确的方法进行消元.解答:解:(1)化简整理为,①×3,得3x+3y=1500③,②﹣③,得x=350.把x=350代入①,得350+y=500,∴y=150.故原方程组的解为.(2)化简整理为,①×5,得10x+15y=75③,②×2,得10x﹣14y=46④,③﹣④,得29y=29,∴y=1.把y=1代入①,得2x+3×1=15,∴x=6.故原方程组的解为.点评:方程组中的方程不是最简方程的,最好先化成最简方程,再选择合适的方法解方程.16.解下列方程组:(1)(2)考点:解二元一次方程组.809625分析:观察方程组中各方程的特点,用相应的方法求解.解答:解:(1)①×2﹣②得:x=1,将x=1代入①得:2+y=4,y=2.∴原方程组的解为;(2)原方程组可化为,①×2﹣②得:﹣y=﹣3,y=3.将y=3代入①得:x=﹣2.∴原方程组的解为.点评:解此类题目要注意观察方程组中各方程的特点,采用加减法或代入法求解.。

华师大版七年级数学下册第7章一次方程组质量评估试卷(包含答案)

华师大版七年级数学下册第7章一次方程组质量评估试卷(包含答案)

第7章质量评估试卷[时间:90分钟 分值:120分]一、选择题(每题3分,共30分)1.下列方程中,是二元一次方程的是( ) A .8x 2+1=y B .y =8x +1 C .y =8x D .xy =12.已知关于x ,y 的二元一次方程组⎩⎪⎨⎪⎧ax -y =4,3x +by =4的解是⎩⎪⎨⎪⎧x =2,y =-2,则a +b 的值是( )A .1B .2C .-1D .03.二元一次方程组⎩⎪⎨⎪⎧x +y =2,2x -y =4的解是( )A .⎩⎪⎨⎪⎧x =0,y =2B .⎩⎪⎨⎪⎧x =2,y =0C .⎩⎪⎨⎪⎧x =3,y =-1D .⎩⎪⎨⎪⎧x =1,y =14.若方程组⎩⎨⎧3x -y =4k -5,2x +6y =k的解中x +y =2 019,则k 等于()A .2 018B .2 019C .2 020D .2 0215.某学校计划用34件同样的奖品全部用于奖励在“经典诵读”活动中表现突出的班级,一等奖奖励6件,二等奖奖励4件,则分配一、二等奖个数的方案有( )A .4种B .3种C .2种D .1种6.设y =kx +b ,且当x =1时,y =1;当x =2时,y =-4,则k ,b 的值依次为( )A . 3,-2B . -3,4C . 6,-5D . -5,67.如果单项式2x m +2n y 与-3x 4y 4m -2n 是同类项,则m ,n 的值为( )A .m =-1,n =2.5B .m =1,n =1.5C .m =2,n =1D .m =-2,n =-18.若关于x ,y 的二元一次方程组⎩⎪⎨⎪⎧x +y =5k ,x -y =9k 的解也是二元一次方程2x +3y =6的解,则k 的值是( )A .-34B .34 C .43 D .-439.某出租车起步价所包含的路程为0~2 km ,超过2 km 的部分按每千米另收费.津津乘坐这种出租车走了7 km ,付了16元;盼盼乘坐这种出租车走了13 km ,付了28元.设这种出租车的起步价为x 元,超过2 km 后每千米收费y 元,则下列方程正确的是( )A .⎩⎪⎨⎪⎧x +7y =16,x +13y =28B .⎩⎪⎨⎪⎧x +(7-2)y =16,x +13y =28C .⎩⎪⎨⎪⎧x +7y =16,x ×(13-2)y =28D .⎩⎪⎨⎪⎧x +(7-2)y =16,x +(13-2)y =2810.[2019·台州]一道来自课本的习题:小红将这个实际问题转化为二元一次方程组问题,设未知数x ,y ,已经列出一个方程x 3+y 4=5460,则另一个方程正确的是( )A .x 4+y 3=4260B .x 5+y 4=4260C .x 4+y 5=4260D .x 3+y 4=4260 二、填空题(每题4分,共24分)11.若x ,y 满足方程组⎩⎪⎨⎪⎧3x +y =17,x -y =3,则x +y =____.12.若a -3b =2,3a -b =6,则b -a 的值为________. 13.《九章算术》中有一道题的条件是:“今有大器五一容三斛,大器一小器五容二斛.”大致意思是:有大小两种盛米的桶,5大桶加1小桶共盛3斛米,1大桶加5小桶共盛2斛米,依据该条件,1大桶加1小桶共盛_______斛米.(注:斛是古代一种容量单位)14.六一儿童节,某幼儿园用100元钱给小朋友买了甲、乙两种不同的玩具共30个,单价分别为2元和4元,则该幼儿园购买了甲、乙两种玩具分别为____、____个.15.若|x +y +1|+(2x +y +1)2=0,则x =________,y =________.16.对于实数a ,b ,定义运算“◆”:a ◆b =⎩⎪⎨⎪⎧a 2+b 2,a ≥b ,ab ,a <b .例如:4◆3,因为4>3,所以4◆3=42+32=5.若x ,y 满足方程组⎩⎪⎨⎪⎧4x -y =8,x +2y =29,则x ◆y =________. 三、解答题(共66分) 17.(12分)解下列方程组:(1)⎩⎪⎨⎪⎧y =4-x ,①7x +6y =3;② (2)⎩⎪⎨⎪⎧3x +2y =8,①7x -4y =10;② (3)⎩⎨⎧x 2+y 3=2,①0.2x -0.3y =0.8.②18.(8分)已知⎩⎪⎨⎪⎧x =4,y =2与⎩⎪⎨⎪⎧x =-1,y =-3都满足等式y =kx +b .(1)求k 与b 的值; (2)求当x =5时,y 的值.19.(8分)[2019·淮安]某公司用火车和汽车运输两批物资,具体运输情况如下表所示:试问每节火车车皮和每辆汽车平均各装物资多少吨?20.(8分)在某体育用品商店,购买30根跳绳和60个毽子共用720元,购买10根跳绳和50个毽子共用360元.(1)跳绳、毽子的单价各是多少元?(2)该店在“五·四”青年节期间开展促销活动,所有商品按同样的折数打折销售.节日期间购买100根跳绳和100个毽子只需1 800元,该店的商品按原价的几折销售?21.(10分)小明在解方程组⎩⎪⎨⎪⎧mx +5y =-17,4x -ny =1时,由于粗心看错了方程组中的n 而得到的解为⎩⎪⎨⎪⎧x =4,y =3.小红同样粗心,看错了方程组中的m ,她得到的解为⎩⎪⎨⎪⎧x =-3,y =-1.求原方程组的解.22.(10分)某旅行社组织一批游客外出旅游,原计划租用45座客车若干辆,但有15人没有座位;若租用同样数量的60座客车,则多出一辆车,且其余客车恰好坐满.已知45座客车租金为每辆220元,60座客车租金为每辆300元.(1)这批游客的人数是多少?原计划租用多少辆45座客车?(2)若租用同一种车,要使每位游客都有座位,应该怎样租用才合算?23.(10分)小明到某服装商场进行社会调查,了解到该商场为了激励营业员的工作积极性,实行“月总收入=基本工资+计件奖金”的方法,并获得如下信息:假设营业员的月基本工资为x元,销售每件服装奖励y元.(1)求x,y的值;(2)若营业员小丽某月的总收入不低于1 800元,那么小丽当月至少要卖服装多少件?(3)商场为了多销售服装,对顾客推荐一种购买方式:如果购买甲3件,乙2件,丙1件共需315元;如果购买甲1件,乙2件,丙3件共需285元.某顾客想购买甲、乙、丙各一件共需____元.参考答案一、选择题(每题3分,共30分) 1.B 2.B 3.B【解析】 ⎩⎨⎧x +y =2,①2x -y =4.②①+②,得3x =6,解得x =2.把x =2代入①,得y =0,所以方程组的解为⎩⎨⎧x =2,y =0.4.C【解析】 ⎩⎨⎧3x -y =4k -5,①2x +6y =k .②①+②,得5x +5y =5k -5,即x+y =k -1.∵x +y =2 019,∴k -1=2 019,∴k =2 020.故选C .5.B【解析】 设一等奖个数x 个,二等奖个数y 个,根据题意,得6x +4y =34,使方程成立的解有⎩⎨⎧x =1,y =7或⎩⎨⎧x =3,y =4或⎩⎨⎧x =5,y =1,∴方案一共有3种.故选B .6.D 7.B【解析】 根据题意,得⎩⎨⎧m +2n =4,4m -2n =1,解得⎩⎨⎧m =1,n =1.5.8.B【解析】 ⎩⎨⎧x +y =5k ,①x -y =9k .②①+②,得2x =14k ,∴x =7k . ①-②,得2y =-4k ,∴y =-2k .∴方程组的解为⎩⎨⎧x =7k ,y =-2k .把⎩⎨⎧x =7k ,y =-2k代入2x +3y =6,得14k -6k =6, 合并同类项,得8k =6,解得k =34.9.D10.B【解析】 设未知数x ,y ,已经列出一个方程x 3+y 4=5460,则另一个方程正确的是x 5+y 4=4260.故选B .二、填空题(每题4分,共24分)11.7【解析】 ⎩⎨⎧3x +y =17,①x -y =3.②,①+②,得4x =20,解得x =5.把x =5代入②,得y =2,则x +y =5+2=7.12.-2【解析】 解二元一次方程组⎩⎨⎧a -3b =2,3a -b =6,得⎩⎨⎧a =2,b =0,∴b -a =-2.13. 56【解析】 设1个大桶可以盛米x 斛,1个小桶可以盛米y 斛,则⎩⎨⎧5x +y =3,x +5y =2,故5x +x +y +5y =5,则x +y =56.所以1大桶加1小桶共盛56斛米.14. 10 20【解析】 设该幼儿园购买了甲种玩具x 个,乙种玩具y 个.根据题意,得⎩⎨⎧x +y =30,2x +4y =100,解得⎩⎨⎧x =10,y =20,即该幼儿园购买了甲种玩具10个,乙种玩具20个.15.0 -1【解析】 ∵|x +y +1|+(2x +y +1)2=0,∴⎩⎨⎧x +y =-1,2x +y =-1,解得⎩⎨⎧x =0,y =-1.16.60【解析】 由题意可知⎩⎨⎧4x -y =8,x +2y =29,解得⎩⎨⎧x =5,y =12.因为x <y ,所以x ◆y =xy =60.三、解答题(共66分)17.解:(1)把①代入②,得7x +6(4-x )=3,解得x =-21.把x =-21代入①,得y =4+21=25.所以原方程组的解为⎩⎨⎧x =-21,y =25.(2)①×2,得6x +4y =16.③②+③,得13x =26,解得x =2.把x =2代入①,得6+2y =8,解得y =1.所以原方程组的解为⎩⎨⎧x =2,y =1.(3)①×6,②×10,得⎩⎨⎧3x +2y =12,③2x -3y =8.④③×3,得9x +6y =36.⑤④×2,得4x -6y =16.⑥⑤+⑥,得13x =52,解得x =4.把x =4代入③,得y =0.所以原方程组的解为⎩⎨⎧x =4,y =0.18.解:(1)将⎩⎨⎧x =4,y =2和⎩⎨⎧x =-1,y =-3分别代入y =kx +b ,得⎩⎨⎧2=4k +b , ①-3=-k +b .②①-②,得5k =5,解得k =1.将k =1代入②,得-3=-1+b ,解得b =-2.所以k =1,b =-2.(2)由(1)知y =x -2.将x =5代入y =x -2,得y =3.19.解:设每节火车车皮装物资x 吨,每辆汽车装物资y 吨.根据题意,得⎩⎨⎧2x +5y =130,4x +3y =218,解得⎩⎨⎧x =50,y =6.答:每节火车车皮装物资50吨,每辆汽车装物资6吨.20.解:(1)设跳绳的单价为x 元/根,毽子的单价为y 元/个.由题意,得⎩⎨⎧30x +60y =720,10x +50y =360,解得⎩⎨⎧x =16,y =4.答:跳绳的单价为16元/根,毽子的单价为5元/个.(2)设该店的商品按原价的a 折销售.由题意,得(100×16+100×4)×a 10=1 800,解得a =9.答:该店的商品按原价的9折销售.21.解:∵看错方程组中的n 得到的解为⎩⎨⎧x =4,y =3,∴4m +15=-17,解得m =-8.∵看错方程组中的m 得到的解为⎩⎨⎧x =-3,y =-1,∴-12+n =1,解得n =13.因此,方程组为⎩⎨⎧-8x +5y =-17,4x -13y =1,解得⎩⎪⎨⎪⎧x =187,y =57.22.解:(1)设这批游客的人数是x 人,原计划租用45座客车y 辆.根据题意,得⎩⎨⎧45y +15=x ,60(y -1)=x ,解得⎩⎨⎧x =240,y =5.答:这批游客共有240人,原计划租用5辆45座客车.(2)租45座客车:240÷45≈5.3(辆),故需租6辆,租金为220×6=1 320(元).租60座客车:240÷60=4(辆),故需租4辆,租金为300×4=1200(元).∵1 200<1 320,∴租4辆60座客车更合算.23.(3)150(1)解:由题意,得⎩⎨⎧x +200y =1 400,x +150y =1 250,解得⎩⎨⎧x =800,y =3,即x 的值为800,y 的值为3.(2)解:设小丽当月要卖服装z 件.由题意,知800+3z =1 800.解得z =33313.由题意,得z 为正整数,故在z >33313中的最小正整数是334.答:小丽当月至少要卖服装334件.(3)【解析】 设一件甲为a 元,一件乙为b 元,一件丙为c 元.由题意,得⎩⎨⎧3a +2b +c =315,a +2b +3c =285,将两式相加,得4a+4b+4c=600,则a+b+c=150.答:购买甲、乙、丙各一件共需150元.。

2023年春学期华师版七年级数学下册第七章《一次方程组》综合测评卷附答案解析

2023年春学期华师版七年级数学下册第七章《一次方程组》综合测评卷附答案解析

2023年春学期七年级数学下册第七章《一次方程组》综合测评卷一、单选题(每小题4分,共48分)1.下列方程中,是二元一次方程的是()A.xy =1B.x +1y=2C.y =3x -1D.x +y +z =12.下列方程组中,表示二元一次方程组的是()A.3{5x y z x +=+=B.5{1x y x y+==C.3{5x y xy +==D.11{122x y y x =++=3.下列各组数中,是二元一次方程52x y -=的一个解的是()A.31x y =⎧⎨=⎩B.13x y =⎧⎨=⎩C.20x y =⎧⎨=⎩D.02x y =⎧⎨=⎩4.将方程2x -3y -4=0变形为用含有y 的式子表示x ,正确的是()A.2x =3y +4B.x =32y +2C.3y =2x -4D.y =243x -5.方程01ax y x by +=⎧⎨+=⎩的解是11x y =⎧⎨=-⎩,则a ,b 为()A.01a b =⎧⎨=⎩B.10a b =⎧⎨=⎩C.11a b =⎧⎨=⎩D.00a b =⎧⎨=⎩6.已知e ,f 满足方程组32,26,e f f e -=⎧⎨-=⎩则2e +f 的值为()A.2B.4C.6D.87.已知23x y --+(2x+y+11)2=0,则()A.21x y =⎧⎨=⎩B.03x y =⎧⎨=-⎩C.15x y =-⎧⎨=-⎩D.27x y =-⎧⎨=-⎩8.已知关于x ,y 的方程组2342x y ax by -=⎧⎨+=⎩,与3564x y bx ay -=⎧⎨+=-⎩,有相同的解,则a ,b 的值为()A.21a b =-⎧⎨=⎩B.12a b =⎧⎨=-⎩C.12a b =⎧⎨=⎩D.12a b =-⎧⎨=-⎩9.若方程组()213431kx k y x y ⎧+-=⎨+=⎩,的解x 和y 互为相反数,则k 的值为()A.2B.-2C.3D.-310.为确保信息安全,信息需加密传输,发送方将明文加密后传输给接收方,接收方收到密文后解密还原为明文,已知某种加密规则为,明文a,b 对应的密文为a+2b,2a-b,例如:明文1,2对应的密文是5,0,当接收方收到的密文是1,7时,解密得到的明文是()A.3,-1B.1,-3C.-3,1D.-1,311.若方程组23133530.9a b a b -=⎧⎨+=⎩的解是8.31.2a b =⎧⎨=⎩,则方程组2(2)3(1)133(2)5(1)30.9x y x y +--=⎧⎨++-=⎩的解是()A.8.31.2x y =⎧⎨=⎩B.10.32.2x y =⎧⎨=⎩C. 6.32.2x y =⎧⎨=⎩D.10.30.2x y =⎧⎨=⎩12.端午节前夕,某超市用1680元购进A ,B 两种商品共60,其中A 型商品每件24元,B 型商品每件36元.设购买A 型商品x 件、B 型商品y 件,依题意列方程组正确的是()A.6036241680x y x y +=⎧⎨+=⎩B.6024361680x y x y +=⎧⎨+=⎩C.3624601680x y x y +=⎧⎨+=⎩D.2436601680x y x y +=⎧⎨+=⎩二、填空题(每小题4分,共16分)13.若mx 3m -2n -nym +2n =1是关于x ,y 的二元一次方程,则mn=____________14.关于x ,y 的二元一次方程组23,1ax by ax by +=⎧⎨-=⎩的解为1,1x y =⎧⎨=-⎩,则2a b -的值为______15.一桶油,连桶共8kg,用去一半以后,连桶的质量为4.5kg.问原来有油多少千克?若设油的质量为x kg,桶的质量为y kg,则根据题意可列方程组为______.16.已知方程组111222a x b y c a x b y c +=⎧⎨+=⎩的解是6{8x y ==,则方程组111222345{345a x b y c a x b y c +=+=的解是_________.三、解答题(6个小题,共56分)17.用适当的方法解下列方程组.(1)21437x y x y =-⎧⎨+=⎩;(2)3222328x y x y +=⎧⎨+=⎩.18.为预防新冠肺炎病毒,市面上95KN 等防护型口罩出现热销.已知3个A 型口罩和2个B 型口罩共需31元;6个A 型口罩和5个B 型口罩共需70元.(1)求一个A 型口罩和一个B 型口罩的售价各是多少元?(2)小红打算用160元(全部用完)购买A 型,B 型两种口罩(要求两种型号的口罩均购买),正好赶上药店对口罩价格进行调整,其中A 型口罩售价上涨40%,B 型口罩按原价出售,则小红有多少种不同的购买方案?请设计出来.19.某超市代理销售,A B 两种鲜牛奶,这两种鲜奶的成本价和销售价如表格所示,它们的保质期为一天,当天未售出的鲜奶必须全部销毁.该超市某天用1320元购进,A B 两种鲜奶共200瓶,卖出180瓶,当天共获得570元的利润.价格类别成本价(元/瓶)销售价(元/瓶)A 种鲜奶58B 种鲜奶914(1)求该超市这一天购进,A B 种鲜奶各多少瓶;(2)小明列出方程180(85)(149)570m n m n +=⎧⎨-+-=⎩来解决另一个问题,你认为小明要解决的问题可能是什么?小明所列的方程组解决这个问题能得出正确的答案吗?若可以,请求结果;若不可以,请列出正确的方程或方程组,不必求解.20.某文具店有甲,乙两种水笔,它们的单价分别为a 元/支,b 元/支,若购买甲种水笔5支,乙种水笔2支,共花费25元,购买甲种水笔3支,乙种水笔4支,共花费29元.(1)求a 和b 的值;(2)甲种水笔涨价m 元/支(02m <<),乙种水笔单价不变,小明花了40元购买了两种水笔10支,那么购买甲种水笔多少支?(用含m 的代数式表示).21.玲玲家准备装修一套新住房,若甲、乙两个装饰公司合作,需6周完成,共需装修费为5.2万元;若甲公司单独做4周后,剩下的由乙公司来做,还需9周才能完成,共需装修费4.8万元,玲玲的爸爸妈妈商量后决定只选一个公司单独完成.(1)设甲公司的每周工作效率为m,乙公司每周的工作效率为n,则可列出方程为.(2)如果从节约时间的角度考虑应选哪家公司?(3)如果从节的开支的角度考虑呢?请说明理由.22.小林在某商店购买商品A,B共三次,只有其中一次购买时,商品A,B同时打折,其余两次均按标价购买,三次购买商品A,B的数量和费用如表所示:购买商品A的数量/个购买商品B的数量/个购买总费用/元第一次购物651140第二次购物371110第三次购物981062(1)在这三次购物中,第_____________次购物打了折扣;(2)求出商品A,B的标价;(3)若商品A,B的折扣相同,问商店是打几折出售这两种商品的?参考答案:1.C【详解】根据二元一次方程的定义:只含有两个未知数,并且未知数最高次数是2的整式方程,故选C. 2.D【详解】A、有三个未知数,故不是二元一次方程组;B、有两个未知数,第二个方程不是整式方程,故不是二元一次方程组;C、有两个未知数,第二个方程的次数是2次,故不是二元一次方程组;D、有两个未知数,方程的次数是1次,所以是二元一次方程组,故选D.3.B【详解】解:A、把31xy=⎧⎨=⎩代入方程得:左边=15-1=14,右边=2,∵左边≠右边,∴不是方程的解;B、把13xy=⎧⎨=⎩代入方程得:左边=5-3=2,右边=2,∵左边=右边,∴是方程的解;C、把2xy=⎧⎨=⎩代入方程得:左边=10-0=10,右边=2,∵左边≠右边,∴不是方程的解;D、把2xy=⎧⎨=⎩代入方程得:左边=0-2=-2,右边=2,∵左边≠右边,∴不是方程的解;故选:B.4.B【详解】2x-3y-4=0,2x=4+3y,x=32y+2,故选B. 5.B【详解】解:由题意得:1011a b -=⎧⎨-=⎩,解得:10a b =⎧⎨=⎩.故选B6.D【详解】3226e f f e -=⎧⎨-=⎩①②,①+②得,2e +f =8,故选:D.7.D【详解】由题意得:2302110x y x y --=⎧⎨++=⎩,解得:27x y =-⎧⎨=-⎩,故选D.8.B【详解】关于x ,y 的方程组2342x y ax by -=⎧⎨+=⎩与3564x y bx ay -=⎧⎨+=-⎩,有相同的解,所以234356x y x y -=⎧⎨-=⎩,解得20x y =⎧⎨=⎩,将20x y =⎧⎨=⎩代入24ax by bx ay +=⎧⎨+=-⎩可得2224a b =⎧⎨=-⎩,解得12a b =⎧⎨=-⎩,故选B.9.A【详解】由题意可得4310x y x y +=⎧⎨+=⎩,解得11x y =⎧⎨=-⎩,把11x y =⎧⎨=-⎩代入方程2kx+(k-1)y=3得2k-(k-1)=3,解得k=2;故选A.10.A【详解】由题意得:2127a b a b +=⎧⎨-=⎩,解得:31a b =⎧⎨=-⎩,故选A.11.C【详解】由题意知,28.31 1.2x y +=⎧⎨-=⎩,解得, 6.32.2x y =⎧⎨=⎩,故选:C.12.B【详解】解:设购买A 型商品x 件、B 型商品y 件,依题意列方程组:6024361680x y x y +=⎧⎨+=⎩故选B.13.2【详解】因为mx 3m -2n -nym +2n =1是关于x ,y 的二元一次方程,所以可得:32121m n m n -=⎧⎨+=⎩,解得:12 14m n ⎧=⎪⎪⎨⎪=⎪⎩,所以2mn=,故答案为:2.14.2【详解】解:由题意,得231a b a b -⎧⎨+⎩=①=②,解得4313a b ⎧=⎪⎪⎨⎪=-⎪⎩,2a b -=41233⎛⎫-⨯- ⎪⎝⎭=2,故答案为:2.15.814.52x y x y +=⎧⎪⎨+=⎪⎩【详解】油的质量为x kg,桶的质量为y kg,由题意得81 4.52x y x y +=⎧⎪⎨+=⎪⎩故答案为81 4.52x y x y +=⎧⎪⎨+=⎪⎩.16.1010x y =⎧⎨=⎩【详解】试题分析:根据题意,把方程组的解6{8x y ==代入111222{a x b y c a x b y c +=+=,可得11122268{68a b c a b c +=+=①②,把①和②分别乘以5可得11122230405{30405a b c a b c +=+=,和所求方程组111222345{345a x b y c a x b y c +=+=比较,可知1112223104105{3104105a b c a b c ⨯+⨯=⨯+⨯=,因此方程组的解为10{10x y ==.17.(1)11x y =⎧⎨=⎩;(2)1016x y =-⎧⎨=⎩【详解】(1)21,437,x y x y =-⎧⎨+=⎩①②将①代入②,()42137y y -+=,解得,1y =,把1y =代入①得,1x =,∴原方程组的解为11x y =⎧⎨=⎩.(2)322,2328,x y x y +=⎧⎨+=⎩①②,32⨯-⨯②①,得,580y =,解得,16y =.将16y =代入①:3322x +=解得,10x =-,∴原方程组的解为1016x y =-⎧⎨=⎩.18.(1)一个A 型口罩的售价为5元,一个B 型口罩的售价为8元(2)小红有2种不同的购买方案,方案1:购买8个A 型口罩,13个B 型口罩;方案2:购买16个A 型口罩,6个B 型口罩【详解】(1)设一个A 型口罩的售价为x 元,一个B 型口罩的售价为y 元,依题意,得:32316570x y x y +=⎧⎨+=⎩,解得:58x y =⎧⎨=⎩,答:一个A 型口罩的售价为5元,一个B 型口罩的售价为8元;(2)解:设购买A 型口罩m 个,B 型口罩n 个,根据题意,得5(140%)8160m n ++=,即78160m n +=,∴满足条件的m ,n 有:8m =,13n =或16m =,6n =,∴小红有2种购买方案:第一种方案:A 型口罩购买8个,B 型口罩购买13个;第二种方案:A 型口罩购买16个,B 型口罩购买6个;19.(1)该超市这一天购进A 种鲜奶120瓶,购买B 种鲜奶80瓶.(2)要解决的问题是A 种鲜奶与B 种鲜奶各销售了多少瓶?小明所列的方程组不能解决这个问题,其中利润的计算是错误的,正确的方程组是:1808141320570m n m n +=⎧⎨+=+⎩.【详解】(1)解:设该超市这一天购进A 种鲜奶x 瓶,购买B 种鲜奶()200x -瓶,则()592001320x x +-=,解得:120x =,则80200=-x ,答:该超市这一天购进A 种鲜奶120瓶,购买B 种鲜奶80瓶.(2)小明列出方程180(85)(149)570m n m n +=⎧⎨-+-=⎩要解决的问题是A 种鲜奶与B 种鲜奶各销售了多少瓶?小明所列的方程组不能解决这个问题,其中利润的计算是错误的,设A 种鲜奶卖出m 瓶,卖出B 种鲜奶n 瓶,则正确的方程组是:1808141320570m n m n +=⎧⎨+=+⎩.20.(1)a 的值为3,b 的值为5;(2)购买甲102m-支【详解】(1)依题意有52253429a b a b +=⎧⎨+=⎩,解得35a b =⎧⎨=⎩.故a 的值为3,b 的值为5;(2)设购买甲种水笔x 支,则购买乙种糖果()10x -支,依题意有:()()351040m x x ++-=,解得:102x m=-;故购买甲102m -支.21.(1)16m n +=;(2)时间上考虑选择甲公司;(3)从节约开支上考虑选择乙公司【详解】(1)解:设工作总量为1,设甲公司的每周工作效率为m ,乙公司每周的工作效率为n ,则16m n +=,故答案为:16m n +=.(2)解:设工作总量为1,设甲公司的每周工作效率为m ,乙公司每周的工作效率为n ,根据题意得,16491m n m n ⎧+=⎪⎨⎪+=⎩;解得:110115m n ⎧=⎪⎪⎨⎪=⎪⎩∵111015>∴甲公司的效率高,所以从时间上考虑选择甲公司.(3)解:设甲公司每周费用为a 万元,乙公司每周费用为b 万元,根据题意得:66 5.249 4.8a b a b +=⎧⎨+=⎩;解得:35415a b ⎧=⎪⎪⎨⎪=⎪⎩∴公司共需33010655⨯==万元,乙公司共需415415⨯=万元,4万元<6万元,∴从节约开支上考虑选择乙公司.22.(1)三;(2)商品A 的标价为90元,商品B 的标价为120元;(3)商店是打6折出售这两种商品的【详解】(1)解:由表中数据可知,第三次购买商品数量比第一次、第二次都多,但总费用却比第一次、第二次低,从而确定第三次购物打了折扣,故答案为:三;(2)解:设商品A 的标价为x 元,商品B 的标价为y 元,则651140371110x y x y +=⎧⎨+=⎩①②,②2⨯-①得91080y =,解得120y =,将120y =代入①得到90x =,答:商品A 的标价为90元,商品B 的标价为120元;(3)解:设商店是打m 折出售这两种商品,则()9908120·106210m⨯+⨯=,解得6m =,答:若商品A ,B 的折扣相同,问商店是打6折出售这两种商品的.。

初中数学华师大版七年级下学期第第7章一次方程组单元测试卷(含解析)

初中数学华师大版七年级下学期第第7章一次方程组单元测试卷(含解析)

初中数学华师大版七年级下学期第第7章一次方程组单元测试卷(含解析)一、单选题1.已知方程组,则x+y+z的值为( )A. 6B. -6C. 5D. -52.已知方程组和方程组有相同的解,则的值是()A. 1B.C. 2D.3.下列方程组中是二元一次方程组的是()A. B. C. D.4.甲、乙二人同时同地出发,都以不变的速度在300米环形跑道上奔跑.若反向而行,每隔相遇一次,若同向而行,则每隔相遇一次,已知甲比乙跑得快,设甲每秒跑米,乙每秒跑米,则可列方程为()A. B. C. D.5.利用两块长方体木块测量两张桌子的高度.首先按图方式放置,再交换两木块的位置,按图方式放置.测量的数据如图,则桌子高度是()A. B. C. D.6.小悦买书需用48元钱,付款时恰好用了1元和5元的纸币共12张.设所用的1元纸币为张.根据题意,下面所列方程正确的是()A. B. C. D.7.某工程队共有27人,每天每人可挖土4方,或运土5方,为使挖出的土及时运走,应分配挖土和运土的人分别是()A. 12人,15人B. 14人,13人C. 15人,12人D. 13人,14人8.《孙子算经》是中国古代重要的数学著作,纸书大约在一千五百年前,其中一道题,原文是:“今三人共车,两车空;二人共车,九人步.问人与车各几何?”意思是:现有若干人和车,若每辆车乘坐3人,则空余两辆车:若每辆车乘坐2人,则有9人步行,问人与车各多少?设有x人,y辆车,可列方程组为()A. B. C. D.9.小明和小亮在一起探究一个数学活动.首先小亮站立在箱子上,小明站立在地面上(如图1),然后交换位置(如图2),测量的数据如图所示,想要探究的问题有:①小明的身高;②小亮的身高;③箱子的高度;④小明与小亮的身高和.根据图上信息,你认为可以计算出的是()A. ①B. ②C. ③D. ④10.如图,在数轴上标出若干个点,每相邻的两个点之间的距离都是1个单位,点A,B,C,D表示的数分别是整数a、b、c、d,且满足,则的值为()A. B. C. D.二、填空题11.有A、B、C三种商品,如果购5件A、2件B、3件C共需513元,购3件A、6件B、5件C共需375件,那么购A、B、C各一件共需________元.12.如图,从左边第一个格子开始向右,在每个小格子中都填入一个整数,使得其中任意三个相邻格子中所填整数之和都相等.5 4则________,第2019个格子填入的整数为________13.陕北的放羊娃隔着沟唱着信天游,比他们养的羊数.一个唱到:“你羊没有我羊多,你若给我一只羊,我的是你的两倍”,另一个随声唱到:“你要给我一只养,咱俩的羊儿一样多” 听了他们的对唱,你能知道他们各有多少只羊吗?答:________.14.若方程2x2a+b-4+4y3a-2b-3=1是关于x,y的二元一次方程,则a=________,b=________.15.已知,方程是关于的二元一次方程,则________.三、计算题16.解下列方程组.(1)(2)四、解答题17.关于x、y的二元一次方程组与的解相同,求a、b的值.18.某景点的门票价格如下表:某校八年级(一)、(二)两班计划去游览该景点,其中(1)班人数少于50人,(2)班人数多于50人且少于100人,如果两班都以班为单位单独购票,则一共支付1828元,如果两班联合起来作为一个团体购票,则只需花费1020元.(1)两个班各有多少名学生?(2)团体购票与单独购票相比较,两个班各节约了多少元?19.解方程组时,由于粗心,小天看错了方程组中的a,得到解为,小轩看错了方程组中的b,得到解为,求方程组正确的解.20.有一场足球比赛,共有九支球队参加,采取单循环赛,其记分和奖励方案如下表:甲队参加完了全部8场比赛,共得积分16分.(1)求甲队胜负的所有可能情况;(2)若每一场比赛,每一个参赛队员均可得出场费500元,求甲队参加了所有8场比赛的队员的个人总收入(奖金加上出场费).21.7月4日,2020长白山地下森林徒步活动鸣枪开始,一名34岁的男子带着他的两个孩子一同参加了比赛.下面是两个孩子与记者的部分对话:妹妹:我和哥哥的年龄和是16岁.哥哥:两年后,妹妹年龄的3倍与我的年龄相加恰好等于爸爸的年龄.根据对话内容,请你用方程的知识帮记者求出现在..哥哥和妹妹的年龄各是多少岁?答案解析部分一、单选题1.【答案】C【解析】【解答】解:∵,①+②+③,得x+y+z=5,故答案为:C.【分析】根据方程组,三个方程相加即可得到x+y+z的值.2.【答案】A【解析】【解答】解:解方程组,得,代入x+y+m=0得,m=1,故答案为:A.【分析】根据两方程组有相同的解,将方程组中两个已知方程组成方程组,求出x、y的值,然后将其代入x+y+m=0中,即可求出m.3.【答案】D【解析】【解答】解:A. ,不是二元一次方程组;B. ,不是二元一次方程组;C. ,不是二元一次方程组;D. ,是二元一次方程组;故答案为:D.【分析】根据二元一次方程组的定义逐项判定即可。

新华东师大版七年级数学下册第七章二元一次方程组练习题2及答案.docx

新华东师大版七年级数学下册第七章二元一次方程组练习题2及答案.docx

(新课标)华东师大版七年级下册二元一次方程组解法练习题一.解答题(共16小题)1.解下列方程组(1)(2)(3))(6441125为已知数a a y x a y x ⎩⎨⎧=-=+(4)(5)(6).(7)(8)⎩⎨⎧=--+=-++0)1(2)1()1(2x y x x x y y x(9)(10)⎪⎪⎩⎪⎪⎨⎧=-++=-++1213222132y x y x2.求适合的x ,y 的值.3.已知关于x,y的二元一次方程y=kx+b的解有和.(1)求k,b的值.(2)当x=2时,y的值.(3)当x为何值时,y=3?1.解下列方程组(1)(2);(3);(4)(5).(6)(7)(8)(9)(10);2.在解方程组时,由于粗心,甲看错了方程组中的a,而得解为,乙看错了方程组中的b,而得解为.(1)甲把a看成了什么,乙把b看成了什么?(2)求出原方程组的正确解.二元一次方程组解法练习题精选参考答案与试题解析一.解答题(共16小题)1.求适合的x,y的值.考点:解二元一次方程组.809625分析:先把两方程变形(去分母),得到一组新的方程,然后在用加减消元法消去未知数x,求出y的值,继而求出x的值.解答:解:由题意得:,由(1)×2得:3x﹣2y=2(3),由(2)×3得:6x+y=3(4),(3)×2得:6x﹣4y=4(5),(5)﹣(4)得:y=﹣,把y的值代入(3)得:x=,∴.点评:本题考查了二元一次方程组的解法,主要运用了加减消元法和代入法.2.解下列方程组(1)(2)(3)(4).考点:解二元一次方程组.809625分析:(1)(2)用代入消元法或加减消元法均可;(3)(4)应先去分母、去括号化简方程组,再进一步采用适宜的方法求解.解答:解:(1)①﹣②得,﹣x=﹣2,解得x=2,把x=2代入①得,2+y=1,解得y=﹣1.故原方程组的解为.(2)①×3﹣②×2得,﹣13y=﹣39,解得,y=3,把y=3代入①得,2x﹣3×3=﹣5,解得x=2.故原方程组的解为.(3)原方程组可化为,①+②得,6x=36,x=6,①﹣②得,8y=﹣4,y=﹣.所以原方程组的解为.(4)原方程组可化为:,①×2+②得,x=,把x=代入②得,3×﹣4y=6,y=﹣.所以原方程组的解为.点评:利用消元法解方程组,要根据未知数的系数特点选择代入法还是加减法:①相同未知数的系数相同或互为相反数时,宜用加减法;②其中一个未知数的系数为1时,宜用代入法.3.解方程组:考点:解二元一次方程组.809625专题:计算题.分析:先化简方程组,再进一步根据方程组的特点选用相应的方法:用加减法.解答:解:原方程组可化为,①×4﹣②×3,得7x=42,解得x=6.把x=6代入①,得y=4.所以方程组的解为.点评:;二元一次方程组无论多复杂,解二元一次方程组的基本思想都是消元.消元的方法有代入法和加减法.4.解方程组:考点:解二元一次方程组.809625 专题:计算题.分析:把原方程组化简后,观察形式,选用合适的解法,此题用加减法求解比较简单.解答:解:(1)原方程组化为,①+②得:6x=18,∴x=3.代入①得:y=.所以原方程组的解为.点评:要注意:两个二元一次方程中同一未知数的系数相反或相等时,把这两个方程的两边相加或相减,就能消去这个未知数,得到一个一元一次方程,这种方法叫做加减消元法.本题适合用此法.5.解方程组:考点:解二元一次方程组.809625专题:计算题;换元法.分析:本题用加减消元法即可或运用换元法求解.解答:解:,①﹣②,得s+t=4,①+②,得s﹣t=6,即,解得.所以方程组的解为.点评:此题较简单,要熟练解方程组的基本方法:代入消元法和加减消元法.6.已知关于x,y的二元一次方程y=kx+b 的解有和.(1)求k,b的值.(2)当x=2时,y的值.(3)当x为何值时,y=3?考点:解二元一次方程组.809625专题:计算题.分析:(1)将两组x,y的值代入方程得出关于k、b 的二元一次方程组,再运用加减消元法求出k、b的值.(2)将(1)中的k、b代入,再把x=2代入化简即可得出y的值.(3)将(1)中的k、b和y=3代入方程化简即可得出x的值.解答:解:(1)依题意得:①﹣②得:2=4k,所以k=,所以b=.(2)由y=x+,把x=2代入,得y=.(3)由y=x+把y=3代入,得x=1.点评:本题考查的是二元一次方程的代入消元法和加减消元法,通过已知条件的代入,可得出要求的数.7.解方程组:(1);(2).考点:解二元一次方程组.809625分析:根据各方程组的特点选用相应的方法:(1)先去分母再用加减法,(2)先去括号,再转化为整式方程解答.解答:解:(1)原方程组可化为,①×2﹣②得:y=﹣1,将y=﹣1代入①得:x=1.∴方程组的解为;(2)原方程可化为,即,①×2+②得:17x=51,x=3,将x=3代入x﹣4y=3中得:y=0.∴方程组的解为.点这类题目的解题关键是理解解方程组的基本思想是消元,掌握消元的方法评:有:加减消元法和代入消元法.根据未知数系数的特点,选择合适的方法.8.解方程组:考点:解二元一次方程组.809625专题:计算题.分析:本题应把方程组化简后,观察方程的形式,选用合适的方法求解.解答:解:原方程组可化为,①+②,得10x=30,x=3,代入①,得15+3y=15,y=0.则原方程组的解为.点评:解答此题应根据各方程组的特点,有括号的去括号,有分母的去分母,然后再用代入法或加减消元法解方程组.9.解方程组:考点:解二元一次方程组.809625专题:计算题.分析:本题为了计算方便,可先把(2)去分母,然后运用加减消元法解本题.解答:解:原方程变形为:,两个方程相加,得4x=12,x=3.把x=3代入第一个方程,得4y=11,y=.解之得.点评:本题考查的是二元一次方程组的解法,方程中含有分母的要先化去分母,再对方程进行化简、消元,即可解出此类题目.10.解下列方程组:(1)(2)考解二元一次方程组.809625点:专题:计算题.分析:此题根据观察可知:(1)运用代入法,把①代入②,可得出x,y的值;(2)先将方程组化为整系数方程组,再利用加减消元法求解.解答:解:(1),由①,得x=4+y③,代入②,得4(4+y)+2y=﹣1,所以y=﹣,把y=﹣代入③,得x=4﹣=.所以原方程组的解为.(2)原方程组整理为,③×2﹣④×3,得y=﹣24,把y=﹣24代入④,得x=60,所以原方程组的解为.点评:此题考查的是对二元一次方程组的解法的运用和理解,学生可以通过题目的训练达到对知识的强化和运用.11.解方程组:(1)(2)考点:解二元一次方程组.809625 专题:计算题;换元法.分析:方程组(1)需要先化简,再根据方程组的特点选择解法;方程组(2)采用换元法较简单,设x+y=a,x﹣y=b,然后解新方程组即可求解.解答:解:(1)原方程组可化简为,解得.(2)设x+y=a,x﹣y=b,∴原方程组可化为,解得,∴∴原方程组的解为.点此题考查了学生的计算能力,解题时要细心.评:12.解二元一次方程组:(1);(2).考点:解二元一次方程组.809625 专题:计算题.分析:(1)运用加减消元的方法,可求出x、y的值;(2)先将方程组化简,然后运用加减消元的方法可求出x、y的值.解答:解:(1)将①×2﹣②,得15x=30,x=2,把x=2代入第一个方程,得y=1.则方程组的解是;(2)此方程组通过化简可得:,①﹣②得:y=7,把y=7代入第一个方程,得x=5.则方程组的解是.点评:此题考查的是对二元一次方程组的解法的运用和理解,学生可以通过题目的训练达到对知识的强化和运用.13.在解方程组时,由于粗心,甲看错了方程组中的a,而得解为,乙看错了方程组中的b ,而得解为.(1)甲把a看成了什么,乙把b看成了什么?(2)求出原方程组的正确解.考点:解二元一次方程组.809625专题:计算题.分析:(1)把甲乙求得方程组的解分别代入原方程组即可;(2)把甲乙所求的解分别代入方程②和①,求出正确的a、b,然后用适当的方法解方程组.解答:解:(1)把代入方程组,得,解得:.把代入方程组,得,解得:.∴甲把a看成﹣5;乙把b看成6;(2)∵正确的a是﹣2,b是8,∴方程组为,解得:x=15,y=8.则原方程组的解是.点评:此题难度较大,需同学们仔细阅读,弄清题意再解答.14.考点:解二元一次方程组.809625分析:先将原方程组中的两个方程分别去掉分母,然后用加减消元法求解即可.解答:解:由原方程组,得,由(1)+(2),并解得x=(3),把(3)代入(1),解得y=∴原方程组的解为.点评:用加减法解二元一次方程组的一般步骤:1.方程组的两个方程中,如果同一个未知数的系数既不互为相反数又不相等,就用适当的数去乘方程的两边,使一个未知数的系数互为相反数或相等;2.把两个方程的两边分别相加或相减,消去一个未知数,得到一个一元一次方程;3.解这个一元一次方程;4.将求出的未知数的值代入原方程组的任意一个方程中,求出另一个未知数,从而得到方程组的解.15.解下列方程组:(1);(2).考点:解二元一次方程组.809625分析:将两个方程先化简,再选择正确的方法进行消元.解答:解:(1)化简整理为,①×3,得3x+3y=1500③,②﹣③,得x=350.把x=350代入①,得350+y=500,∴y=150.故原方程组的解为.(2)化简整理为,①×5,得10x+15y=75③,②×2,得10x﹣14y=46④,③﹣④,得29y=29,∴y=1.把y=1代入①,得2x+3×1=15,∴x=6.故原方程组的解为.点评:方程组中的方程不是最简方程的,最好先化成最简方程,再选择合适的方法解方程.16.解下列方程组:(1)(2)考点:解二元一次方程组.809625分析:观察方程组中各方程的特点,用相应的方法求解.解答:解:(1)①×2﹣②得:x=1,将x=1代入①得:2+y=4,y=2.∴原方程组的解为;(2)原方程组可化为,①×2﹣②得:﹣y=﹣3,y=3.将y=3代入①得:x=﹣2.∴原方程组的解为.解此类题目要注意观察方程组中各方程的特点,采用加减法或代入法求解.点评:。

(新课标)华东师大版七年级数学下册同步训练:二元一次方程组和它的解(考点分析)

(新课标)华东师大版七年级数学下册同步训练:二元一次方程组和它的解(考点分析)

2017-2018学年(新课标)华东师大版七年级下册7.1二元一次方程组和它的解一.选择题(共8小题)1.若方程mx+ny=6的两个解是,,则m,n的值为()A. 4,2 B.2,4 C.﹣4,﹣2 D.﹣2,﹣42.已知是二元一次方程组的解,则m﹣n的值是()A. 1 B.2 C.3 D. 43.若是关于x、y的二元一次方程ax﹣3y=1的解,则a的值为()A. 7 B.2 C.﹣1 D.﹣54.二元一次方程x+2y=3的解的个数是()A. 1 B.2 C 3 D.无数5.已知二元一次方程3x﹣4y=1,则用含x的代数式表示y是()A. y=B.y=C.y=D.y=﹣6.方程组的解是,则a,b为()A.B. C D.7.下列方程组中,解是的是()A.B.C.D.8.二元一次方程x﹣2y=1有无数多个解,下列四组值中不是该方程的解的是()A.B.C.D.二.填空题(共7小题)9.关于x,y的方程组的解是,则|m+n|的值是_________ .10.已知是方程2x+ay=5的解,则a= _________ .11.4x a+2b﹣5﹣2y3a﹣b﹣3=8是二元一次方程,那么a﹣b= _________ .12.在二元一次方程2x﹣y=3中,当x=2时,y= _________ .13.试写出一个以为解的二元一次方程组_________ .14.若方程组的解是,则a+b的值是_________ .15.2x+y=5的正整数解是_________ .三.解答题(共6小题)16.已知关于x、y的方程组的解为,求m、n的值.17.已知关于x,y的方程组的解为,求m n的值.18.根据图中提供的信息,写出T恤衫的单价x(元/件)与驱虫剂的单价y(元/瓶)满足的二元一次方程组.19.是否存在m值,使方程(|m|﹣2)x2+(m+2)x+(m+1)y=m+5是关于x,y的二元一次方程?若存在,求出m的值;若不存在,请说明理由.20.甲、乙两人共同解方程组,由于甲看错了方程①中的a,得到方程组的解为;乙看错了方程②中的b,得到方程组的解为x=5,y=4.试计算a2014+(﹣b)2013的值.7.1二元一次方程组和它的解参考答案与试题解析一.选择题(共8小题)1.若方程mx+ny=6的两个解是,,则m,n的值为()A. 4,2 B.2,4 C ﹣4,﹣2 D.﹣2,﹣4考点:二元一次方程的解.菁优网版权所有专题:计算题.分析:将x与y的两对值代入方程计算即可求出m与n的值.解答:解:将,分别代入mx+ny=6中,得:,①+②得:3m=12,即m=4,将m=4代入①得:n=2,故选:A点评:此题考查了二元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.2.已知是二元一次方程组的解,则m﹣n的值是()A. 1 B.2 C.3 D. 4考点:二元一次方程组的解.菁优网版权所有专题:计算题.分析:将x与y的值代入方程组求出m与n的值,即可确定出m﹣n的值.解答:解:将x=﹣1,y=2代入方程组得:,解得:m=1,n=﹣3,则m﹣n=1﹣(﹣3)=1+3=4.故选:D点评:此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程成立的未知数的值.3.若是关于x、y的二元一次方程ax﹣3y=1的解,则a的值为()A. 7 B.2 C.﹣1 D.﹣5考点:二元一次方程的解.菁优网版权所有专题:计算题.分析:将x=1,y=2代入方程计算即可求出a的值.解答:解:将x=1,y=2代入方程得:a﹣6=1,解得:a=7,故选A.点评:此题考查了二元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.4.二元一次方程x+2y=3的解的个数是()A. 1 B.2 C.3 D.无数考点:解二元一次方程.菁优网版权所有分析:由于二元一次方程x+2y=3是不定方程,所以有无数组解.解答:解:由二元一次方程的解的定义知,任意一个二元一次方程都有无数个解.故选:D.点评:二元一次方程都有无数个解,但对于一些特殊解有有数个.5.已知二元一次方程3x﹣4y=1,则用含x的代数式表示y是()A. y=B.y= C y=D.y=﹣考点:解二元一次方程.菁优网版权所有专题:计算题.分析:将x看做已知数求出y即可.解答:解:3x﹣4y=1,解得:y=.故选B.点评:此题考查了解二元一次方程,解题的关键是将x看做已知数求出y.6.方程组的解是,则a,b为()A.B.C.D.考点:二元一次方程组的解.菁优网版权所有分析:此题可以把x,y的值代入,即可求出a,b的值解答:解:依题意,得a﹣1=0,1﹣b=1∴a=1,b=0.故选B.点评:此题考查的是对二元一次方程的解的理解,解这类题时可把已知的值代入转化成求a,b的方程,这样就可以求出a,b的值.7.下列方程组中,解是的是()A.B. C D.考点:二元一次方程组的解.菁优网版权所有分析:根据解方程组,可得方程组的解,可得答案.解答:解:A、的解是,故A不符合题意;B、的解是,故B不符合题意;C、的解是,故C符合题意;D、的解是,故D不符合题意;故选:C.点评:本题考查了二元一次方程组的解,分别求出每一个方程组的解,再选出答案.8.二元一次方程x﹣2y=1有无数多个解,下列四组值中不是该方程的解的是()A.B.C.D.考点:二元一次方程的解.菁优网版权所有专题:计算题.分析:将x、y的值分别代入x﹣2y中,看结果是否等于1,判断x、y的值是否为方程x﹣2y=1的解.解答:解:A、当x=0,y=﹣时,x﹣2y=0﹣2×(﹣)=1,是方程的解;B、当x=1,y=1时,x﹣2y=1﹣2×1=﹣1,不是方程的解;C、当x=1,y=0时,x﹣2y=1﹣2×0=1,是方程的解;D、当x=﹣1,y=﹣1时,x﹣2y=﹣1﹣2×(﹣1)=1,是方程的解;故选:B.点评:本题考查二元一次方程的解的定义,要求理解什么是二元一次方程的解,并会把x,y的值代入原方程验证二元一次方程的解.二.填空题(共7小题)9.关于x,y的方程组的解是,则|m+n|的值是 3 .考点:二元一次方程组的解.菁优网版权所有专题:计算题.分析:将x与y的值代入方程组计算求出m与n的值,即可确定出所求式子的值.解答:解:将x=1,y=3代入方程组得:,解得:m=﹣1,n=﹣2,则|m+n|=|﹣1﹣2|=|﹣3|=3.故答案为:3点评:此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程成立的未知数的值.10.已知是方程2x+ay=5的解,则a= 1 .考点:二元一次方程的解.菁优网版权所有专题:计算题.分析:知道了方程的解,可以把这对数值代入方程,得到一个含有未知数a 的一元一次方程,从而可以求出a的值.解答:解:把代入方程2x+ay=5得:4+a=5,解得:a=1,故答案为:1.点评:此题考查的知识点是二元一次方程的解,解题关键是把方程的解代入原方程,使原方程转化为以系数a为未知数的方程,一组数是方程的解,那么它一定满足这个方程,利用方程的解的定义可以求方程中其他字母的值.11.4x a+2b﹣5﹣2y3a﹣b﹣3=8是二元一次方程,那么a﹣b= 0 .考点:二元一次方程的定义;解二元一次方程组.菁优网版权所有分析:根据二元一次方程的定义即可得到x、y的次数都是1,则得到关于a,b的方程组求得a,b的值,则代数式的值即可求得.解答:解:根据题意得:,解得:.则a﹣b=0.故答案为:0.点评:主要考查二元一次方程的概念,要求熟悉二元一次方程的形式及其特点:含有2个未知数,未知数的项的次数是1的整式方程.12.在二元一次方程2x﹣y=3中,当x=2时,y= 1 .考点:解二元一次方程.菁优网版权所有专题:计算题.分析:直接把x=2代入二元一次方程2x﹣y=3,求出y的值即可.解答:解:当x=2时,原方程可化为2×2﹣y=3,解得y=1.故答案为:1.点评:本题考查的是解二元一次方程,把x=2代入得到关于y的一元一次方程是解答此题的关键.13.试写出一个以为解的二元一次方程组.考点:二元一次方程组的解.菁优网版权所有专题:开放型.分析:本题是一个开放性的题目,答案不唯一,只有举出一个方程组,把x=3,y=﹣1代入方程组,每个方程的左右两边分别相等即可.解答:解:∵当x=3,y=﹣1时,x+y=2,x﹣y=4,符合条件的一个方程组是,故答案为:.点评:本题考查了二元一次方程组的解,本题具有一定的代表性,是一道开放性的题目,答案不唯一,再如:等.14.若方程组的解是,则a+b的值是 5 .考点:二元一次方程组的解.菁优网版权所有专题:计算题.分析:所谓“方程组”的解,指的是该数值满足方程组中的每一方程的值,只需将方程的解代入方程组,就可得到关于m,n的二元一次方程组,解得a,b 的值,即可求a+b的值.解答:解:根据定义,把代入方程得:,所以a=,b=,∴a+b=5.故答案为:5.点评:此题主要考查了二元一次方程组解的定义.以及解二元一次方程组的基本方法.15.2x+y=5的正整数解是,.考点:解二元一次方程.菁优网版权所有专题:探究型.分析:根据方程2x+y=0有正整数解可分别令x=1,x=2求出y的对应值即可.解答:解:∵当x=1时,2×1+y=5,解得y=3;当x=2时,2×2+y=5,解得y=1,∴方程2x+y=0有正整数解为:,.当x取大于2的整数,求出的y是负数,即正整数解只有两个,故答案为:,.点评:本题考查的是二元一次方程,由于二元一次方程是不定方程,在解答此类题目时要先设出一个未知数的值,然后求出另一个数的对应值.三.解答题(共6小题)16.已知关于x、y的方程组的解为,求m、n的值.考点:二元一次方程组的解.菁优网版权所有专题:计算题.分析:将x与y的值代入方程组计算即可求出m与n的值.解答:解:将代入方程组得:,②﹣①得:n=,即n=1,将n=1代入②得:m=1,则.点评:此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程成立的未知数的值.17.已知关于x,y的方程组的解为,求m n的值.考点:二元一次方程组的解.菁优网版权所有分析:所谓“方程组”的解,指的是该数值满足方程组中的每一方程的值,只需将方程的解代入方程组,就可得到关于m,n的二元一次方程组,解得m,n 的值,即可求m n的值.解答:解:根据定义,把代入方程组,得,解得.那么m n=3﹣2=.点评:此题主要考查了二元一次方程组解的定义,以及解二元一次方程组的基本方法,比较简单.18.根据图中提供的信息,写出T恤衫的单价x(元/件)与驱虫剂的单价y(元/瓶)满足的二元一次方程组.考点:由实际问题抽象出二元一次方程组.菁优网版权所有分析:根据图象可知两件上衣和两瓶驱虫剂共44元,一件上衣和3瓶驱虫剂共26元,据此列出方程组即可.解答:解:设每件上衣x元,每瓶驱虫剂y元,根据题意得:点评:本题考查了由实际问题抽象出二元一次方程组的知识,解题的关键是从题目中找到两个等量关系,这是列方程组的依据.19.是否存在m值,使方程(|m|﹣2)x2+(m+2)x+(m+1)y=m+5是关于x,y的二元一次方程?若存在,求出m的值;若不存在,请说明理由.考点:二元一次方程的定义.菁优网版权所有分析:利用二元一次方程的定义得出其系数的关系进而求出即可.解答:解:∵方程(|m|﹣2)x2+(m+2)x+(m+1)y=m+5是关于x,y的二元一次方程,∴|m|﹣2=0,m+2≠0,m+1≠0,解得:m=2.故当m=2时,方程(|m|﹣2)x2+(m+2)x+(m+1)y=m+5是关于x,y的二元一次方程.点评:此题主要考查了二元一次方程的定义,正确把握定义是解题关键.20.甲、乙两人共同解方程组,由于甲看错了方程①中的a,得到方程组的解为;乙看错了方程②中的b,得到方程组的解为x=5,y=4.试计算a2014+(﹣b)2013的值.考点:二元一次方程组的解.菁优网版权所有分析:将代入方程组的第二个方程,x=5,y=4代入方程组的第一个方程,联立求出a与b的值,即可求出所求式子的值.解答:解:将代入方程组中的4x﹣by=﹣2得:﹣12+b=﹣2,即b=10;将x=5,y=4代入方程组中的ax+5y=15得:5a+20=15,即a=﹣1,则a2014+(﹣b)2013=1﹣1=0.点评:此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程成立的未知数的值.。

完整版华师大版七年级下册数学第7章 一次方程组含答案

完整版华师大版七年级下册数学第7章 一次方程组含答案

华师大版七年级下册数学第7章一次方程组含答案一、单选题(共15题,共计45分)1、以下说法:①关于x的方程x+ =c+ 的解是x=c(c≠0);②方程组的正整数解有2组;③已知关于x,y的方程组,其中﹣3≤a≤1,当a=1时,方程组的解也是方程x+y=4﹣a的解;其中正确的有()A.②③B.①②C.①③D.①②③2、有甲,乙,丙三种商品,如果购甲3件,乙2件,丙1件共需315元钱,购甲1件,乙2件,丙3件共需285元钱,那么购甲,乙,丙三种商品各一件共需()A.50B.100C.150D.2003、如果关于x,y的方程组的解是二元一次方程3x+2y=14的一个解,那么m的值( )A.1B.-1C.2D.-24、甲、乙二人按3:2的比例投资开办了一家公司,约定除去各项支出外,所得利润按投资比例分成.若第一年甲分得的利润比乙分得的利润的2倍少3千元,求甲、乙二人各分得利润多少千元.若设甲分得x千元,乙分得y千元,由题意得()A. B. C. D.5、某中学现有学生500人,计划一年后女生在校人数增加,男生在校人数增加,这样,在校学生总数将增加.问该校现有女生和男生的人数分别是()A.女生180和男生320B.女生320和男生180C.女生200和男生300D.女生300和男生2006、足球比赛中,每场比赛都要分出胜负每队胜1场得3分,负一场扣1分,某队在8场比赛中得到12分,若设该队胜的场数为x负的场数为y,则可列方程组为()A. B. C. D.7、若是关于x、y的二元一次方程,则m的值是()A.1或2B.1C.2D.38、若二元一次方程组的解为则的值是()A.3B.1C.D.29、已知是方程组的解,则a,b间的关系是()A.4b+9a=1B.4b-9a=1C.3a+2b=1D.4b+9a=-110、某课外活动小组的学生准备分组外出活动,若每组7人,则余下3人;若每组8人,则少5人.求课外活动小组的人数x和应分成的组数y,依题意得方程组为()A. B. C. D.11、利用加减消元法解方程组,下列做法正确的是()A.要消去y,可以将①×5+②×2B.要消去x,可以将①×3+②×(﹣5)C.要消去y,可以将①×5+②×3D.要消去x,可以将①×(﹣5)+②×212、下列是二元一次方程组的是()A. B. C. D.13、三元一次方程组,的解为()A. B. C. D.14、已知是二元一次方程组的解,那么 x+y 的值是( )A.0B.5C.-1D.115、若是二元一次方程,则()A.m=3,n=4B.m=2,n=1C.m=1,n=2D.m=-1, n=2二、填空题(共10题,共计30分)16、已知方程组与有相同的解,则m2﹣2mn+n2=________17、某市政府筹集了抗疫情必需物资120吨运往武汉灾区,现有甲、乙两种车型,每辆的运载能力和运费如下表所示:(假设每辆车均满载)车型甲乙汽车运载量(吨/辆) 5 8汽车运费(元/辆) 400 500若全部物资都用甲、乙两种车型来运送,需要运费8200元.设用甲、乙两种车型分别为x辆,y辆,依题意,列出方程组为________.18、已知方程组和的解相同,则2m﹣n=________.19、某校初三在综合实践活动中举行了“应用数字”智能比赛,按分数高低取前60名获奖,原定一等奖5人,二等奖15人,三等奖40人,现调整为一等奖10人,二等奖20人,三等奖30人,调整后一等奖平均分降低3分,二等奖平均分降低2分,三等奖平均分降低1分,如果原来二等奖比三等奖平均分数多7分,则调整后一等奖比二等奖平均分数多________ 分.20、如图,从左边第一个格子开始向右,在每个小格子中都填入一个整数,使得其中任意三个相邻格子中所填整数之和都相等.5 4 则________,第2019个格子填入的整数为________21、若关于x、y的二元一次方程组的解是二元一次方程的2x+3y=15的解,则k的值为________.22、孔明同学在解方程组的过程中,错把b看成了6,他其余的解题过程没有出错,解得此方程组的解为,又已知3k+b=1,则b 符合题意值应该是________.23、若关于x,y的方程组的解满足,则的最小整数解为________.24、小亮解方程组的解为,由于不小心,滴上了两滴墨水,刚好遮住了两个数和▲,请你帮他找回▲这个数,▲=________.25、一辆汽车在行驶过程中,路程y(千米)与时间x(小时)之间的函数关系如图所示.当0≤x≤1时,y关于x的函数解析式为y=60x,那么当1≤x≤2时,y关于x的函数解析式为________.三、解答题(共5题,共计25分)26、解方程组:27、某中学积极响应国家号召,落实垃圾“分类回收,科学处理"的政策,准备购买A、B两种型号的垃圾分类回收箱共20只,放在校园各个合适位置,以方便师生进行垃圾分类投放。

华东师大版数学七年级下册 二元一次方程组和它的解练习(Word版含答案)

华东师大版数学七年级下册 二元一次方程组和它的解练习(Word版含答案)

7.1二元一次方程组和它的解★含有个未知数,并且含有未知数的项的次数都是的方程叫做二元一次方程.★含有两个未知数的两个一次方程所组成的一组方程叫做二元一次方程组.★二元一次方程的解:使二元一次方程两边的值相等的一组未知数的值,叫做二元一次方程的解.一般情况下,一个二元一次方程有个解.★二元一次方程组中的两个方程的公共解,叫做二元一次方程组的解。

通常情况下,一个二元一次方程组只有一个解,它是一对数值.一.选择题(共7小题)1.有下列方程:①xy=2;②3x=4y;③x+=2;④y2=4x;⑤=3y﹣1;⑥x+y﹣z=1.其中二元一次方程有()A.1个B.2个C.3个D.4个2.下列方程组中,是二元一次方程组的是()A.B.C.D.3.下列方程组的解为的是()A.B.C.D.4.母亲节来临,小明去花店为妈妈准备节日礼物.已知康乃馨每支2元,百合每支3元.小明将30元钱全部用于购买这两种花(两种花都买),小明的购买方案共有()A.3种B.4种C.5种D.6种5.二元一次方程x﹣2y=1有无数多个解,下列四组值中不是该方程的解的是()A.B.C.D.6.某校举行篮球赛,每场比赛都要分出胜负,每队胜一场得2分,负一场得1分.八年级一班在16场比赛中得26分.设该班胜x场,负y场,则根据题意,下列方程组中正确的是()A.B.C.D.7.二果问价源于我国古代数学著作《四元玉鉴》“九百九十九文钱,甜果苦果买一千,甜果九个十一文,苦果七个四文钱,试问甜果苦果各几个?”设甜果为x个,苦果y个,下列方程组表示正确的是()A.B.C.D.二.填空题(共6小题)8.若(a﹣2)x|a|﹣1+3y=1是关于x、y的二元一次方程,则a的值为.9.已知关于x,y的方程(2a+6)x|b|﹣1+(b﹣2)=﹣8是二元一次方程,则a=,b =.10.若方程2x2m+3+(n+3)y|n|﹣2=4是关于x,y的二元一次方程,则m n=.11.已知关于x,y的二元一次方程组的解满足x+y=0,则m的值为.12.已知等式:①=;②2x=5y﹣x;③3x﹣5y=0;④=,其中可以通过适当变形得到3x=5y的等式是.(填序号)13.若关于x,y的二元一次方程组的解满足x﹣y=2,则m的值为.三.解答题(共7小题)14.已知是方程的解,求﹣5a+2b+1964的值.15.我国古代数学名著《孙子算经》中有“鸡兔同笼”问题:“今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何”,意思是:鸡和兔关在一个笼子里,从上面看有35个头,从下面看有94条腿,问笼中鸡或兔各有多少只?16.甲、乙两人练习赛跑,如果甲让乙先跑10米,那么甲跑5秒钟就可以追上乙;如果甲让乙先跑2秒钟,那么甲跑4秒钟就能追上乙,求两人每秒钟各跑多少米?17.已知关于x、y的二元一次方程组的解是,求(a+b)2﹣(a﹣b)(a+b)的值.18.求方程4x+5y=21的整数解.19.甲、乙两位同学在解方程组时,甲把字母a看错了得到方程组的解为;乙把字母b看错了得到方程组的解为.(1)求a,b的正确值;(2)求原方程组的解.20.若干名游客要乘坐游船,要求每艘游船乘坐的人数相同.如果每艘游船乘坐12人,结果剩下1人未能上船;若有一艘游船空着开走,则所有游客正好能平均分坐到其余游船上.已知每艘游船最多能容纳15人.请你通过计算,说明游客共有多少人?7.1二元一次方程组和它的解参考答案与试题解析★含有_两_个未知数,并且含有未知数的项的次数都是1_的_整式_方程叫做二元一次方程.★含有两个未知数的两个一次方程所组成的一组方程叫做二元一次方程组.★二元一次方程的解:使二元一次方程两边的值相等的一组未知数的值,叫做二元一次方程的解.一般情况下,一个二元一次方程有无数_个解.★二元一次方程组中的两个方程的公共解,叫做二元一次方程组的解。

最新华东师大版七年级下册数学第七章二元一次方程组练习题3及答案.docx

最新华东师大版七年级下册数学第七章二元一次方程组练习题3及答案.docx

(新课标)华东师大版七年级下册 二元一次方程组练习题100道(卷一) (范围:代数: 二元一次方程组)一、判断1、⎪⎩⎪⎨⎧-==312y x 是方程组⎪⎪⎩⎪⎪⎨⎧=-=-910326523y x y x 的解 …………( )2、方程组⎩⎨⎧=+-=5231y x xy 的解是方程3x-2y=13的一个解( )3、由两个二元一次方程组成方程组一定是二元一次方程组( )4、方程组⎪⎪⎩⎪⎪⎨⎧=-++=+++25323473523y x y x ,可以转化为⎩⎨⎧-=--=+27651223y x y x ( )5、若(a 2-1)x 2+(a-1)x+(2a-3)y=0是二元一次方程,则a 的值为±1( )6、若x+y=0,且|x|=2,则y 的值为2 …………( )7、方程组⎩⎨⎧=+-=+81043y x xm my mx 有唯一的解,那么m 的值为m ≠-5 …………( )8、方程组⎪⎩⎪⎨⎧=+=+623131y x y x 有无数多个解 …………( )9、x+y=5且x ,y 的绝对值都小于5的整数解共有5组 …………( )10、方程组⎩⎨⎧=+=-3513y x y x 的解是方程x+5y=3的解,反过来方程x+5y=3的解也是方程组⎩⎨⎧=+=-3513y x y x 的解 ………( )11、若|a+5|=5,a+b=1则32-的值为b a ………()12、在方程4x-3y=7里,如果用x 的代数式表示y ,则437y x +=( ) 二、选择:13、任何一个二元一次方程都有( ) (A )一个解; (B )两个解; (C )三个解; (D )无数多个解;14、一个两位数,它的个位数字与十位数字之和为6,那么符合条件的两位数的个数有( )(A )5个 (B )6个 (C )7个 (D )8个 15、如果⎩⎨⎧=+=-423y x a y x 的解都是正数,那么a 的取值范围是( )(A )a<2; (B )34->a ; (C )342<<-a ; (D )34-<a ;16、关于x 、y的方程组⎩⎨⎧=-=+m y x m y x 932的解是方程3x+2y=34的一组解,那么m 的值是( )(A )2; (B )-1; (C )1; (D )-2; 17、在下列方程中,只有一个解的是( ) (A )⎩⎨⎧=+=+0331y x y x (B )⎩⎨⎧-=+=+2330y x y x(C )⎩⎨⎧=-=+4331y x y x (D )⎩⎨⎧=+=+3331y x y x18、与已知二元一次方程5x-y=2组成的方程组有无数多个解的方程是( )(A )15x-3y=6 (B )4x-y=7 (C )10x+2y=4 (D )20x-4y=319、下列方程组中,是二元一次方程组的是( )(A )⎪⎩⎪⎨⎧=+=+9114y x y x(B )⎩⎨⎧=+=+75z y y x(C )⎩⎨⎧=-=6231y x x(D )⎩⎨⎧=-=-1y x xy y x20、已知方程组⎩⎨⎧-=+=-135b y ax y x 有无数多个解,则a 、b 的值等于( )(A )a=-3,b=-14 (B )a=3,b=-7 (C )a=-1,b=9 (D )a=-3,b=14 21、若5x-6y=0,且xy ≠0,则yx yx 3545--的值等于( )(A )32(B )23(C )1 (D )-122、若x 、y 均为非负数,则方程6x=-7y 的解的情况是( ) (A )无解 (B )有唯一一个解 (C )有无数多个解 (D )不能确定23、若|3x+y+5|+|2x-2y-2|=0,则2x 2-3xy 的值是( ) (A )14 (B )-4 (C )-12 (D )1224、已知⎩⎨⎧-==24y x 与⎩⎨⎧-=-=52y x 都是方程y=kx+b 的解,则k 与b 的值为( ) (A )21=k ,b=-4 (B )21-=k ,b=4 (C )21=k ,b=4 (D )21-=k ,b=-4三、填空:25、在方程3x+4y=16中,当x=3时,y=________,当y=-2时,x=_______若x 、y 都是正整数,那么这个方程的解为___________; 26、方程2x+3y=10中,当3x-6=0时,y=_________; 27、如果0.4x-0.5y=1.2,那么用含有y 的代数式表示的代数式是_____________;28、若⎩⎨⎧-==11y x 是方程组⎩⎨⎧-=-=+1242a y x b y ax 的解,则⎩⎨⎧==______________b a ;29、方程|a|+|b|=2的自然数解是_____________; 30、如果x=1,y=2满足方程141=+y ax ,那么a=____________;31、已知方程组⎩⎨⎧-=+=+my x ay x 26432有无数多解,则a=______,m=______;32、若方程x-2y+3z=0,且当x=1时,y=2,则z=______; 33、若4x+3y+5=0,则3(8y-x)-5(x+6y-2)的值等于_________; 34、若x+y=a ,x-y=1同时成立,且x 、y 都是正整数,则a 的值为________; 35、从方程组)0(030334≠⎩⎨⎧=+-=--xyz z y x z y x 中可以知道,x:z=_______;y:z=________;36、已知a-3b=2a+b-15=1,则代数式a 2-4ab+b 2+3的值为__________; 四、解方程组37、⎪⎪⎩⎪⎪⎨⎧=-=-1332343n m nm ; 38、)(6441125为已知数a ay x a y x ⎩⎨⎧=-=+; 39、⎪⎪⎩⎪⎪⎨⎧=++=+125432y x yx y x ; 40、⎪⎩⎪⎨⎧=--+=-++0)1(2)1()1(2x y x x x y y x ;41、⎪⎪⎩⎪⎪⎨⎧++=++=+=+6253)23(22)32(32523233y x y x y x y x ; 42、⎪⎪⎩⎪⎪⎨⎧=-++=-++1213222132y x y x ;43、⎪⎩⎪⎨⎧=-+-=-+=-+3113y x z x z y z y x ; 44、⎪⎩⎪⎨⎧=+=+=+101216x z z y y x ;45、⎪⎩⎪⎨⎧=-+=+-=-+35351343z y x z y x z y x ; 46、⎪⎩⎪⎨⎧=+-==30325:3:7:4:z y x z x y x ;五、解答题:47时,甲看错了①式中的x 的系数,解得⎪⎪⎩⎪⎪⎨⎧==475847107y x ;乙看错了方程②中的y 的系数,解得⎪⎪⎩⎪⎪⎨⎧==19177681y x ,若两人的计算都准确无误,请写出这个方程组,并求出此方程组的解;48、使x+4y=|a|成立的x 、y 的值,满足(2x+y-1)2+|3y-x|=0,又|a|+a=0,求a 的值;49、代数式ax 2+bx+c 中,当x=1时的值是0,在x=2时的值是3,在x=3时的值是28,试求出这个代数式;50、要使下列三个方程组成的方程组有解,求常数a 的值。

华东师大版2019-2020学年七年级下册数学第七章 二元一次方程组单元测试卷(含答案)

华东师大版2019-2020学年七年级下册数学第七章 二元一次方程组单元测试卷(含答案)

华东师大版2019-2020学年七年级下册数学第七章 二元一次方程组单元测试卷(含答案)一、选择题(共10题;共30分)1.下列各式是二元一次方程的是 ( )A. 3x 2+5=21B. x +2y =0C. −5x =25D. x +2y =12.如图所示的两台天平保持平衡,已知每块巧克力的重量相等,且每个果冻的重量也相等,则每块巧克力和每个果冻的重量分别为( )A. 10g , 40gB. 15g , 35gC. 20g , 30gD. 30g , 20g3.用代入法解方程组 {y =1−x ①x −2y =4②时,将方程①代入方程②正确的是( ) A. x −2+2x =4 B. x −2−2x =4 C. x −2+x =4 D. x −2−x =4 4.如果方程 x +2y =−4,kx −y −5=0,2x −y =7 有公共解,则 k 的值是( )A. -1B. 1C. -2D. 45.已知 {x =2y =1 是方程组 {ax +by =5bx +ay =1的解,则 3−a −b 的值是( ) A. –1 B. 1 C. 2 D. 36.已知关于x 、y 的二元一次方程组 {2x −y =k x −2y =−1满足x=y ,则k 的值为( ) A. -1 B. 0 C. 1 D. 27.已知两数x , y 之和是10,x 比y 的2倍小1,则所列方程组正确的是( ) A. {x +y =10x =2y −1 B. {x +y =10x =2y +1 C. {x +y =10y =2x −1 D. {x +y =10y =2x +18.已知关于x ,y 的二元一次方程组 {2ax +by =3ax −by =1的解为 {x =1y =−1 ,则a ﹣2b 的值是( ) A. ﹣2 B. 2 C. 3 D. ﹣39.中华文化十大精深,源远流长,我国古代数学著作《增删算法统宗》记载“绳索量竿”问题:“一条竿子一条索,索比竿子短一托。

(新课标)华东师大版七年级数学下册第七章二元一次方程组练习题2及答案

(新课标)华东师大版七年级数学下册第七章二元一次方程组练习题2及答案

2017-2018学年(新课标)华东师大版七年级下册二元一次方程组解法练习题一.解答题(共16小题)1.解下列方程组(1)(2)(3))(6441125为已知数a a y x a y x ⎩⎨⎧=-=+(4)(5)(6).(7)(8)⎩⎨⎧=--+=-++0)1(2)1()1(2x y x x x y y x(9)(10)⎪⎪⎩⎪⎪⎨⎧=-++=-++1213222132y x y x2.求适合的x ,y 的值.3.已知关于x,y的二元一次方程y=kx+b的解有和.(1)求k,b的值.(2)当x=2时,y的值.(3)当x为何值时,y=3?1.解下列方程组(1)(2);(3);(4)(5).(6)(7)(8)(9)(10);2.在解方程组时,由于粗心,甲看错了方程组中的a,而得解为,乙看错了方程组中的b,而得解为.(1)甲把a看成了什么,乙把b看成了什么?(2)求出原方程组的正确解.二元一次方程组解法练习题精选参考答案与试题解析一.解答题(共16小题)1.求适合的x,y的值.考点:解二元一次方程组.809625分析:先把两方程变形(去分母),得到一组新的方程,然后在用加减消元法消去未知数x,求出y的值,继而求出x的值.解答:解:由题意得:,由(1)×2得:3x﹣2y=2(3),由(2)×3得:6x+y=3(4),(3)×2得:6x﹣4y=4(5),(5)﹣(4)得:y=﹣,把y的值代入(3)得:x=,∴.点评:本题考查了二元一次方程组的解法,主要运用了加减消元法和代入法.2.解下列方程组(1)(2)(3)(4).考点:解二元一次方程组.809625分析:(1)(2)用代入消元法或加减消元法均可;(3)(4)应先去分母、去括号化简方程组,再进一步采用适宜的方法求解.解答:解:(1)①﹣②得,﹣x=﹣2,解得x=2,把x=2代入①得,2+y=1,解得y=﹣1.故原方程组的解为.(2)①×3﹣②×2得,﹣13y=﹣39,解得,y=3,把y=3代入①得,2x﹣3×3=﹣5,解得x=2.故原方程组的解为.(3)原方程组可化为,①+②得,6x=36,x=6,①﹣②得,8y=﹣4,y=﹣.所以原方程组的解为.(4)原方程组可化为:, ①×2+②得,x=,把x=代入②得,3×﹣4y=6,y=﹣.所以原方程组的解为. 点评: 利用消元法解方程组,要根据未知数的系数特点选择代入法还是加减法: ①相同未知数的系数相同或互为相反数时,宜用加减法;②其中一个未知数的系数为1时,宜用代入法.3.解方程组:考点:解二元一次方程组.809625 专题:计算题. 分析:先化简方程组,再进一步根据方程组的特点选用相应的方法:用加减法. 解答: 解:原方程组可化为,①×4﹣②×3,得7x=42,解得x=6.把x=6代入①,得y=4.所以方程组的解为.点评: ;二元一次方程组无论多复杂,解二元一次方程组的基本思想都是消元.消元的方法有代入法和加减法.4.解方程组:考点:解二元一次方程组.809625 专题:计算题. 分析: 把原方程组化简后,观察形式,选用合适的解法,此题用加减法求解比较简单.解答: 解:(1)原方程组化为, ①+②得:6x=18,∴x=3.代入①得:y=.所以原方程组的解为. 点评: 要注意:两个二元一次方程中同一未知数的系数相反或相等时,把这两个方程的两边相加或相减,就能消去这个未知数,得到一个一元一次方程,这种方法叫做加减消元法.本题适合用此法.5.解方程组:考点:解二元一次方程组.809625专题:计算题;换元法. 分析:本题用加减消元法即可或运用换元法求解. 解答: 解:, ①﹣②,得s+t=4,①+②,得s ﹣t=6,即, 解得.所以方程组的解为. 点评:此题较简单,要熟练解方程组的基本方法:代入消元法和加减消元法.6.已知关于x ,y 的二元一次方程y=kx+b 的解有和.(1)求k ,b 的值.(2)当x=2时,y 的值.(3)当x 为何值时,y=3?考点:解二元一次方程组.809625 专计算题.题:分析:(1)将两组x ,y 的值代入方程得出关于k 、b 的二元一次方程组,再运用加减消元法求出k 、b 的值.(2)将(1)中的k 、b 代入,再把x=2代入化简即可得出y 的值.(3)将(1)中的k 、b 和y=3代入方程化简即可得出x 的值.解答: 解:(1)依题意得:①﹣②得:2=4k ,所以k=,所以b=.(2)由y=x+,把x=2代入,得y=.(3)由y=x+把y=3代入,得x=1.点评: 本题考查的是二元一次方程的代入消元法和加减消元法,通过已知条件的代入,可得出要求的数.7.解方程组:(1);(2).考点:解二元一次方程组.809625分析:根据各方程组的特点选用相应的方法:(1)先去分母再用加减法,(2)先去括号,再转化为整式方程解答.解答:解:(1)原方程组可化为,①×2﹣②得:y=﹣1,将y=﹣1代入①得:x=1.∴方程组的解为;(2)原方程可化为,即,①×2+②得:17x=51,x=3,将x=3代入x﹣4y=3中得:y=0.∴方程组的解为.点评:这类题目的解题关键是理解解方程组的基本思想是消元,掌握消元的方法有:加减消元法和代入消元法.根据未知数系数的特点,选择合适的方法.8.解方程组:考点:解二元一次方程组.809625专题:计算题.分析:本题应把方程组化简后,观察方程的形式,选用合适的方法求解. 解答: 解:原方程组可化为,①+②,得10x=30,x=3,代入①,得15+3y=15,y=0.则原方程组的解为.点评: 解答此题应根据各方程组的特点,有括号的去括号,有分母的去分母,然后再用代入法或加减消元法解方程组.9.解方程组:考点:解二元一次方程组.809625专题:计算题.分析:本题为了计算方便,可先把(2)去分母,然后运用加减消元法解本题.解答: 解:原方程变形为:,两个方程相加,得4x=12,x=3.把x=3代入第一个方程,得4y=11,y=.解之得. 点评: 本题考查的是二元一次方程组的解法,方程中含有分母的要先化去分母,再对方程进行化简、消元,即可解出此类题目.10.解下列方程组:(1)(2)考点:解二元一次方程组.809625 专题:计算题. 分此题根据观察可知:析: (1)运用代入法,把①代入②,可得出x ,y 的值;(2)先将方程组化为整系数方程组,再利用加减消元法求解.解答: 解:(1),由①,得x=4+y ③,代入②,得4(4+y )+2y=﹣1,所以y=﹣,把y=﹣代入③,得x=4﹣=.所以原方程组的解为.(2)原方程组整理为,③×2﹣④×3,得y=﹣24,把y=﹣24代入④,得x=60,所以原方程组的解为.点评: 此题考查的是对二元一次方程组的解法的运用和理解,学生可以通过题目的训练达到对知识的强化和运用.11.解方程组:(1)(2)考解二元一次方程组.809625点:专题:计算题;换元法.分析: 方程组(1)需要先化简,再根据方程组的特点选择解法; 方程组(2)采用换元法较简单,设x+y=a ,x ﹣y=b ,然后解新方程组即可求解.解答:解:(1)原方程组可化简为, 解得.(2)设x+y=a ,x ﹣y=b ,∴原方程组可化为, 解得, ∴∴原方程组的解为. 点评:此题考查了学生的计算能力,解题时要细心.12.解二元一次方程组:(1); (2).考点:解二元一次方程组.809625专题:计算题.分析:(1)运用加减消元的方法,可求出x、y的值;(2)先将方程组化简,然后运用加减消元的方法可求出x、y的值.解答:解:(1)将①×2﹣②,得15x=30,x=2,把x=2代入第一个方程,得y=1.则方程组的解是;(2)此方程组通过化简可得:,①﹣②得:y=7,把y=7代入第一个方程,得x=5.则方程组的解是.点评:此题考查的是对二元一次方程组的解法的运用和理解,学生可以通过题目的训练达到对知识的强化和运用.13.在解方程组时,由于粗心,甲看错了方程组中的a,而得解为,乙看错了方程组中的b,而得解为.(1)甲把a看成了什么,乙把b看成了什么?(2)求出原方程组的正确解.考点:解二元一次方程组.809625专题:计算题.分析:(1)把甲乙求得方程组的解分别代入原方程组即可;(2)把甲乙所求的解分别代入方程②和①,求出正确的a、b,然后用适当的方法解方程组.解答:解:(1)把代入方程组,得,解得:.把代入方程组,得,解得:.∴甲把a看成﹣5;乙把b看成6;(2)∵正确的a是﹣2,b是8,∴方程组为,解得:x=15,y=8.则原方程组的解是.点评:此题难度较大,需同学们仔细阅读,弄清题意再解答.14.考点:解二元一次方程组.809625分析:先将原方程组中的两个方程分别去掉分母,然后用加减消元法求解即可.解答:解:由原方程组,得,由(1)+(2),并解得x=(3),把(3)代入(1),解得y=∴原方程组的解为.点评:用加减法解二元一次方程组的一般步骤:1.方程组的两个方程中,如果同一个未知数的系数既不互为相反数又不相等,就用适当的数去乘方程的两边,使一个未知数的系数互为相反数或相等;2.把两个方程的两边分别相加或相减,消去一个未知数,得到一个一元一次方程;3.解这个一元一次方程;4.将求出的未知数的值代入原方程组的任意一个方程中,求出另一个未知数,从而得到方程组的解.15.解下列方程组:(1); (2). 考点:解二元一次方程组.809625分析:将两个方程先化简,再选择正确的方法进行消元. 解答: 解:(1)化简整理为, ①×3,得3x+3y=1500③,②﹣③,得x=350.把x=350代入①,得350+y=500,∴y=150.故原方程组的解为.(2)化简整理为, ①×5,得10x+15y=75③,②×2,得10x ﹣14y=46④,③﹣④,得29y=29,∴y=1.把y=1代入①,得2x+3×1=15,∴x=6.故原方程组的解为.点评:方程组中的方程不是最简方程的,最好先化成最简方程,再选择合适的方法解方程.16.解下列方程组:(1)(2)考点:解二元一次方程组.809625分析:观察方程组中各方程的特点,用相应的方法求解.解答:解:(1)①×2﹣②得:x=1,将x=1代入①得:2+y=4,y=2.∴原方程组的解为;(2)原方程组可化为,①×2﹣②得:﹣y=﹣3,y=3.将y=3代入①得:x=﹣2.∴原方程组的解为.点评:解此类题目要注意观察方程组中各方程的特点,采用加减法或代入法求解.。

达标测试华东师大版七年级数学下册第7章一次方程组同步训练试题(含答案解析)

达标测试华东师大版七年级数学下册第7章一次方程组同步训练试题(含答案解析)

七年级数学下册第7章一次方程组同步训练考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、若方程x+y=3,x﹣2y=6和kx+y=7有公共解,则k的值是()A.1 B.﹣1 C.2 D.﹣22、用加减法将方程组4311455x yx y-=⎧⎨+=-⎩中的未知数x消去后,得到的方程是().A.2y=6 B.8y=16 C.﹣2y=6 D.﹣8y=16 3、下列方程组中,属于二元一次方程组的是()A.31x yx z+=⎧⎨+=⎩B.2121x yx y⎧+=⎨+=-⎩C.235x yx y-=⎧⎨+=⎩D.212x yxy-=⎧⎨=⎩4、用代入消元法解二元一次方程组220x yx y=+⎧⎨-=⎩①②,将①代入②消去x,可得方程()A.(y+2)+2y=0 B.(y+2)﹣2y=0 C.x=12x+2 D.x﹣2(x﹣2)=05、某商场按定价销售某种商品时,每件可获利45元;按定价的8.5折销售该商品8件与将定价降低35元销售该商品12件所获利润相等.该商品的进价、定价分别是( )A .95元,180元B .155元,200元C .100元,120元D .150元,125元6、用代入法解方程组25?53?x y x y -=⎧⎨+=⎩①②,以下各式正确的是( ) A .()2352x x --=B .()5235x x -=-C .()553+-=x xD .()556x x -= 7、已知x ,y 满足235348x y x y -=⎧⎨-=⎩,则x -y 的值为( ) A .3 B .-3 C .5 D .08、已知关于x ,y 的方程组111222a x b y c a x b y c +=⎧⎨+=⎩的唯一解是41x y =⎧⎨=⎩,则关于m ,n 的方程组)()(111122222626a m b n c b a m b n c b ⎧--=+⎪⎨--=+⎪⎩的解是( ) A .52m n =⎧⎨=-⎩ B .41m n =⎧⎨=⎩ C .11m n =-⎧⎨=-⎩ D .51m n =⎧⎨=-⎩ 9、《九章算术》是中国古代的一本重要数学著作,其中有一道方程的应用题:“五只雀、六只燕,共重16两,雀重燕轻.互换其中一只,恰好一样重.问每只雀、燕的重量各为多少?”解:设雀每只x 两,燕每只y 两,则可列出方程组为( )A .561656x y x y y x +=⎧⎨+=+⎩B .561645x y x y y x +=⎧⎨+=+⎩C .651665x y x y y x +=⎧⎨+=+⎩D .651654x y x y y x+=⎧⎨+=+⎩ 10、若21x y =⎧⎨=⎩为10x y =-⎧⎨=⎩都是方程ax +by =1的解,则a +b 的值是( ) A .0 B .1 C .2 D .3第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、若x2a﹣3+yb+2=3是二元一次方程,则a﹣b=__.2、若关于x、y的二元一次方程组2133x y mx y-=+⎧⎨+=⎩的解满足x+y=1,则m的值为__________.3、某销商10月份销售B、C三种奶茶的数量之比为2:3:4,A、B、C三种奶茶的单价之比为1:2:3.11月份该销售商加大了宣传力度,并根据季节对三种奶茶的价格作了适当的调整,预计11月份三种奶茶的销售总额将比10月份有所增加,其中A奶茶增加的销售额占11月份销售总额的110,A、C奶茶的销售额之比是2:9.11月份三种奶茶的单价之和比10月份增加2336.11月份C奶茶的数量在10月份基础上上调50%,A、B奶茶的数量不变,则11月份A、B奶茶的单价之比为 ___.4、方程组43139x yx y+=-⎧⎨+=⎩的解是:_____.5、填空:端午节时,王老师用72元钱买了荷包和五彩绳共20个.其中荷包每个4元,五彩绳每个3元,在这个问题中的等量关系是:(1)荷包个数+五彩绳个数=______;(2)______=72三、解答题(5小题,每小题10分,共计50分)1、(1)解方程3(x+1)=8x+6;(2)解方程组57 3212x yx y+=⎧⎨-=⎩.2、某中学为了表彰在书法比赛中成绩突出的学生,购买了钢笔30支,毛笔20支,共用了1070元,其中每支毛笔比钢笔贵6元.(1)求钢笔和毛笔的单价各为多少元?(2)①学校仍需要购买上面的两种笔共60支(每种笔的单价不变).陈老师做完预算后,向财务处王老师说:“我这次买这两种笔,需支领1322元.”王老师算了一下,说:“如果只买这两种笔,你的帐肯定算错了!”请判断王老师的说法是否正确,并说明理由;②陈老师突然想起,所做的预算中还包括一支签字笔.如果签字笔的单价为不大于10元的整数,请直接写出签字笔的单价3、解方程组:(1)5 24 x yx y+=⎧⎨-=⎩(2)2(1)1341x yy x--=⎧⎨=-⎩4、解方程组410 2210x yy x+-=⎧⎨-+=⎩.5、解方程组:326?22x yx y-=⎧⎨+=⎩.-参考答案-一、单选题1、C【解析】【分析】先求出326x yx y+=⎧⎨-=⎩①②的解,然后代入kx+y=7求解即可.【详解】解:联立326x yx y+=⎧⎨-=⎩①②,②-①,得-3y=3,∴y=-1,把y=-1代入①,得x-1=3∴x=4,∴41xy=⎧⎨=-⎩,代入kx+y=7得:4k﹣1=7,∴k=2,故选:C.【点睛】本题考查了解二元一次方程组,解二元一次方程组的基本思路是消元,二元方程转化为一元方程是解题的关键.2、D【解析】【分析】根据二元一次方程组的加减消元法可直接进行求解.【详解】解:用加减法将方程组4311455x yx y-=⎧⎨+=-⎩①②中的未知数x消去,则有①-②得:﹣8y=16;故选D.【点睛】本题主要考查二元一次方程组的求解,熟练掌握二元一次方程组的求解是解题关键.3、C【解析】根据二元一次方程组的基本形式及特点进行判断,即:①方程组中的两个方程都是整式方程.②方程组中共含有两个未知数.③每个方程都是一次方程.【详解】解:A、该方程组中含有3个未知数,不是二元一次方程组,故本选项不符合题意B、该方程组中的第一个方程的最高次数为2,不是二元一次方程组,故本选项不符合题意;C、该方程组符合二元一次方程组的定义,故本选项符合题意;D、该方程组中的第二个方程的最高次数为2,不是二元一次方程组,故本选项不符合题意;故选:C.【点睛】本题主要考查二元一次方程组的判定,解题的关键是熟练掌握二元一次方程组的基本形式及特点.4、B【解析】【分析】把x﹣2y=0中的x换成(y+2)即可.【详解】解:用代入消元法解二元一次方程组220x yx y=+⎧⎨-=⎩①②,将①代入②消去x,可得方程(y+2)﹣2y=0,故选:B.【点睛】此题主要考查了解二元一次方程组,解方程组的基本思想是消元,基本方法是代入消元和加减消元.5、B【分析】设每件商品标价x 元,进价y 元,则根据题意表示出销售8件和销售12件的利润,进而得出等式,求出方程组的解即可.【详解】解:设每件商品标价x 元,进价y 元则根据题意得:()()4580.85124535x y x y =+⎧⎨⨯-=⨯-⎩, 解得:200155x y =⎧⎨=⎩, 答:该商品每件进价155元,标价每件200元.故选:B .【点睛】本题考查了二元一次方程的应用,找出正确等量关系是解题关键.6、B【解析】【分析】根据代入消元法的步骤把②变形代入到①中,然后整理即可得到答案.【详解】解:由②得35y x =-,代入①得2(35)5x x --=,移项可得52(35)x x -=-,故选B .【点睛】本题考查了代入消元法,熟练掌握代入法是解题的关键.7、A【解析】【分析】用第二个方程减去第一个方程即可解答.【详解】解:∵235348x y x y -=⎧⎨-=⎩ ∴3x -4y -(2x -3y )=8-5x -y =3.故选A.【点睛】本题主要考查了解二元一次方程组以及求代数式的值,掌握整体法成为解答本题的关键.8、A【解析】【分析】先将关于,m n 的方程组变形为)(())(()111222261261a m b n c a m b n c ⎧--+=⎪⎨--+=⎪⎩,再根据关于,x y 的方程组的解可得26411m n -=⎧⎨+=-⎩,由此即可得出答案. 【详解】解:关于,m n 的方程组可变形为)(())(()111222261261a m b n c a m b n c ⎧--+=⎪⎨--+=⎪⎩,由题意得:26411m n -=⎧⎨+=-⎩,解得52m n =⎧⎨=-⎩, 故选:A .【点睛】本题考查了求二元一次方程组的解,正确发现两个方程组之间的联系是解题关键.9、B【解析】【分析】根据题意列二元一次方程组即可.【详解】解:设雀每只x 两,燕每只y 两则五只雀为5x ,六只燕为6y共重16两,则有5616x y +=互换其中一只则五只雀变为四只雀一只燕,即4x +y六只燕变为五只燕一只雀,即5y +x且一样重即45x y y x +=+由此可得方程组561645x y x y y x +=⎧⎨+=+⎩. 故选:B .【点睛】列二元一次方程组解应用题的一般步骤审:审题,明确各数量之间的关系;设:设未知数(一般求什么,就设什么);找:找出应用题中的相等关系;列:根据相等关系列出两个方程,组成方程组;解:解方程组,求出未知数的值;答:检验方程组的解是否符合题意,写出答案.10、C【解析】【分析】把21x y =⎧⎨=⎩为10x y =-⎧⎨=⎩代入ax +by =1,建立方程组,再解方程组即可. 【详解】 解: 21x y =⎧⎨=⎩为10x y =-⎧⎨=⎩都是方程ax +by =1的解, 21,1a b a ①②解②得:1,a =-把1a =-代入①得:3,b =1.3a b13 2.a b故选C【点睛】本题考查的是二元一次方程的解,二元一次方程组的解法,掌握“利用方程的解建立新的二元一次方程”是解本题的关键.二、填空题1、3【解析】【分析】先根据二元一次方程的定义求出a 、b 的值,然后代入a ﹣b 计算即可.【详解】解:∵x 2a ﹣3+yb +2=3是二元一次方程,∴2a ﹣3=1,b +2=1,∴a =2,b =﹣1,则a ﹣b =2﹣(﹣1)=2+1=3.故答案为:3.【点睛】本题考查了二元一次方程的定义,熟练掌握二元一次方程组的定义是解答本题的关键.方程的两边都是整式,含有两个未知数,并且未知数的项的次数都是1次的方程叫做二元一次方程.2、﹣1【解析】【分析】由①+②,得:2224x y m +=+ ,从而得到2x y m +=+ ,再由x +y =1,可得到21+=m ,即可求解.【详解】解:2133x y m x y -=+⎧⎨+=⎩①②, 由①+②,得:2224x y m +=+ ,∴2x y m +=+ ,∵x +y =1,∴21+=m ,解得:1m =- .故答案为:-1【点睛】本题主要考查了解二元一次方程和二元一次方程的解,由①+②得到2x y m +=+ 是解题的关键.3、9:7【解析】【分析】根据三种饮料的数量比、单价比,可以按照比例设未知数,即10月份A 、B 、C 三种饮料的销售的数量和单价分别为2a 、3a 、4a ;b 、2b 、3b .可以表示出10月份各种饮料的销售额和总销售额.因问题中涉及到A 的10月销售数量,因此可以设11月份A 的销售量为x ,再根据A 11月份的单价求出11月份A 的销售额和C 的销售额.可以根据饮料增加的销售额占11月份销售总额比,用未知数列出等式关键即可求解出.【详解】解:由题意可设10月份A 、B 、C 三种饮料的销售的数量为2a 、3a 、4a ,单价为b 、2b 、3b ;11月份A 的销售量为x ,则11月份A 、B 、C 三种饮料的销售的数量为2a 、3a 、6a ;10∴月份奶茶销售额为2324320a b a b a b ab ⋅+⋅+⋅=,11月份A 种奶茶的销售额为:2ax , A 、C 奶茶的销售额之比是2:9,11∴月份C 种奶茶的销售额为:9ax ,11∴月份C 种奶茶的价格为1.5x , 11月份三种奶茶的单价之和比10月份增加2336, 11∴月份三种奶茶的单价之和为2359(23)(1)366b b b b +++=, 11∴月份B 种奶茶的单价为:5959( 1.5)( 2.5)66b x x b x --=-, A 奶茶增加的销售额占11月份销售总额的110, 15922[113( 2.5)]106ax ab ax a b x ∴-=+-,解得3x b =,∴5972.563b x b -=, 73:9:73b b ∴=. 即11月份A 、B 奶茶的单价之比为为9:7.故答案为:9:7.【点睛】此题考查的是二元一次方程的应用,掌握用代数式表示每个参数,并用整体法解题是关键.4、285395x y ⎧=⎪⎪⎨⎪=-⎪⎩【解析】【分析】②×3-①求出x 的值,再把x 的值代入②求出y 的值即可.【详解】解:43139x y x y +=-⎧⎨+=⎩①② ②×3-①,得5x =28∴x =285把x =285代入②得,283+95y ⨯= ∴395y =-∴方程组的解为285395x y ⎧=⎪⎪⎨⎪=-⎪⎩故答案为:285395 xy⎧=⎪⎪⎨⎪=-⎪⎩【点睛】本题考查了解二元一次方程组,能把二元一次方程组转化成一元一次方程是解此题的关键.5、 20 荷包钱数+五彩绳钱数【解析】【分析】(1)根据题意即得出荷包个数+五彩绳个数就是王老师买荷包和五彩绳的总个数,即得出答案;(2)根据王老师用了72元钱买荷包和五彩绳,即可直接填空.【详解】(1)根据题意可知荷包个数+五彩绳个数就是王老师买荷包和五彩绳的总个数,即为20个.故答案为:20.(2)根据题意王老师用了72元钱买荷包和五彩绳,所以荷包钱数+五彩绳钱数=72.故答案为:荷包钱数+五彩绳钱数.【点睛】本题考查一元一次方程的实际应用.找准等量关系是解答本题的关键.三、解答题1、(1)x=35;(2)23xy=⎧⎨=-⎩【解析】【分析】(1)去括号,移项,合并同类项,系数化成1即可;(2)①×2+②得出13x=26,求出x,把x=2代入①求出y即可.【详解】解:(1)3(x+1)=8x+6,去括号,得3x+3=8x+6,移项,得3x-8x=6-3,合并同类项,得-5x=3,系数化成1,得x=35;(2)573212x yx y+=⎧⎨-=⎩①②,①×2+②,得13x=26,解得:x=2,把x=2代入①,得10+y=7,解得:y=-3,所以方程组的解是23xy=⎧⎨=-⎩.【点睛】本题考查了解二元一次方程组和解一元一次方程,能正确根据等式的性质进行变形是解(1)的关键,能把二元一次方程组转化成一元一次方程是解(2)的关键.2、 (1)钢笔的单价为19元,毛笔的单价为25元(2)①王老师的说法是正确的,理由见解析;②2元/支或8元/支【解析】【分析】(1)设钢笔的单价为x 元,则毛笔的单价为()6x +元,根据买钢笔30支,毛笔20支,共用了1070元建立方程,求出其解即可;(2)①根据第一问的结论设钢笔为y 支,所以毛笔则为()60y -支,求出方程的解不是整数则说明算错了;②设钢笔为y 支,毛笔则为()60y -支,签字笔的单价为a 元,根据条件建立方程求出其解就可以得出结论.(1)设钢笔的单价为x 元,则毛笔的单价为()6x +元,由题意得:()302061070x x ++=,解得:19x =.625x +=,答:钢笔的单价为19元,毛笔的单价为25元;(2)①王老师的说法是正确的.理由:设钢笔为y 支,所以毛笔则为()60y -支.根据题意,得()1925601322y y +-=, 解得893y =(不符合题意), ∴陈老师肯定算错了;②设钢笔为y 支,签字笔的单价为a 元,则根据题意,得()1925601322y y a +-=-,∴6178y a =+,∵a 、y 都是整数,∴178a +应被6整除,∴a 为偶数,∵a 为小于10元的整数,∴a 可能为2、4、6、8,当2a =时,6180y =,30y =,符合题意;当4a =时,6182y =,913y =,不符合题意; 当6a =时,6184y =,923y =,不符合题意; 当8a =时,6186y =,31y =,符合题意,∴签字笔的单价可能2元或8元.【点睛】本题考查了列二元一次方程解实际问题的运用,列一元一次方程解实际问题的运用,在解答时根据题意等量关系建立方程是关键.3、 (1)32x y =⎧⎨=⎩(2)45x y =⎧⎨=⎩【解析】【分析】(1) 利用加减消元法求出解即可;(2) 方程组整理后,利用加减消元法求出解即可.(1)解:524x yx y+=-=⎧⎨⎩①②,①+②得,3x=9,即x=3, 把x=3代入①得,y=2,则方程组的解为32xy=⎧⎨=⎩;(2)解:方程组整理得:23431x yx y-=-+=-⎧⎨⎩①②,①×2+②得,y=5,把y=5代入①得,x=4,则方程组的解为45 xy=⎧⎨=⎩【点睛】本题考查二元一次方程组的解法.关键是熟练掌握代入消元法和加减消元法的应用.4、31015xy⎧=⎪⎪⎨⎪=-⎪⎩.【解析】【分析】利用加减消元法解方程组即可得答案.【详解】原方程组可整理得41221x y y x +=⎧⎨-=-⎩①②, ②×2得:442y x -=-③①+③得:51y =-, 解得:15y =-, 将15y =-代入①得:1415x -=, ∴310x =, ∴原方程组的解为:31015x y ⎧=⎪⎪⎨⎪=-⎪⎩. 【点睛】本题考查解二元一次方程组,解二元一次方程组的主要思想是消元,主要有代入消元法和加减消元法,熟练掌握并灵活运用适当的方法是解题关键.5、10767x y ⎧=⎪⎪⎨⎪=-⎪⎩【解析】【分析】直接利用加减消元法解方程组求解即可;【详解】解:32622x y x y -=⎧⎨+=⎩①②, ①+②×2,得7x =10,解得:x=107,把x=107代入②,得207+y=2,解得:y=67 -,所以方程组的解是10767xy⎧=⎪⎪⎨⎪=-⎪⎩.【点睛】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.。

华东师大版数学七年级下册 二元一次方程组解决工程问题练习(Word版含答案)

华东师大版数学七年级下册 二元一次方程组解决工程问题练习(Word版含答案)

7.4.3二元一次方程组解决工程问题一.选择题(共4小题)1.2台大收割机和5台小收割机同时工作2h共收割小麦3.6hm2,3台大收制机和2台小收割机同时工作5h共收割小麦8hm2,1台大收割机和1台小收割机每小时各收割小麦多少hm2?若设1台大收割机和1台小收割机每小时各收割小麦xhm2和yhm2.根据题意,可得方程组()A.B.C.D.2.一个存有一些水的水池,有一个进水口和若干个口径相同的出水口,进水口每分钟进水3立方米,若同时打开进水口和三个出水口,池中水16分钟放完,若同时打开进水口和五个出水口,池中水9分钟放完,池中原有水()立方米.A.288B.296C.302D.3163.用白铁皮做罐头盒,每张铁皮可制盒身25个,或制盒底40个,一个盒身与两个盒底配成一套罐头盒.现有45张白铁皮,设用x张制盒身,y张制盒底,恰好配套.则下列方程组中符合题意的是()A.B.C.D.4.中国古代人民很早就在生产生活中发现了许多有趣的数学问题,其中《孙子算经》中有个问题:今有三人共车,二车空;二人共车,九人步,问人与车各几何?这道题的意思是:今有若干人乘车,每三人共乘一车,最终剩余2辆车:若每2人共乘一车,最终剩余9个人无车可乘.问有多少人,多少辆车?设共有x人,y辆车,可列方程组为()A.B.C.D.二.填空题(共3小题)5.某市在落实国家“精准扶贫”政策的过程中,为某村修建一条长为400米的公路,由甲、乙两个工程队负责施工.甲工程队独立施工两天后,乙工程队加入,两工程队联合施工3天后,还剩50米的工程.已知甲工程队每天比乙工程队多施工2米,求甲、乙工程队每天各施工多少米.设甲工程队每天施工x米,乙工程队每天施工y米,根据题意,列出方程组.6.为了预防新冠肺炎疫情的发生,学校免费为师生提供防疫物品.某校花4200元购进洗手液与84消毒液共300瓶,已知洗手液的价格是20元/瓶,84消毒液的价格是5元/瓶.该校购进洗手液和84消毒液各多少瓶?设该校购进洗手液x瓶,购进84消毒液y瓶,则可列方程组为.7.某地准备对一段长120m的河道进行清淤疏通.若甲工程队先用4天单独完成其中一部分河道的疏通任务,则余下的任务由乙工程队单独完成需要9天;若甲工程队先单独工作8天,则余下的任务由乙工程队单独完成需要3天.设甲工程队平均每天疏通河道xm,乙工程队平均每天疏通河道ym,则(x+y)的值为.三.解答题(共5小题)8.在《二元一次方程组》这一章的复习课上,王老师让同学们根据下列条件探索还能求出哪些量:在我市“精准扶贫”工作中,甲、乙两个工程队先后接力为扶贫村庄修建条335米长的公路,甲队每天修建20米,乙队每天修建25米,一共用15天完成.(1)小红同学根据题意,列出了一个尚不完整的方程组请写出小红所列方程组中未知数x,y表示的意义:x表示,y表示;并写出该方程组中?处的数应是,*处的数应是;(2)小芳同学的思路是想设甲工程队一共修建了x米公路,乙工程队一共修建了y米公路.下面请你按照小芳的设想列出方程组,并求出乙队修建了多少天?9.某家具厂生产一种方桌,设计时1m3的木材可做50个桌面或300条桌腿.现有10m3的木材,怎样分配桌面和桌腿使用的木材,才能使桌面和桌腿刚好配套.(一张桌面配四条桌腿)10.有一批机器零件共418个,若甲先做2天,乙再加入合作,则再做2天可超产2个;若乙先做3天,然后两人再共做2天,则还有8个未完成.问甲、乙两人每天各做多少个零件?11.某村经济合作社决定把22吨竹笋加工后再上市销售,刚开始每天加工3吨,后来在乡村振兴工作队的指导下改进加工方法,每天加工5吨,前后共用6天完成全部加工任务,问该合作社改进加工方法前后各用了多少天?12.为了打造区域中心城市,实现攀枝花跨越式发展,我市花城新区建设正按投资计划有序推进.花城新区建设工程部,因道路建设需要开挖土石方,计划每小时挖掘土石方540m3,现决定向某大型机械租赁公司租用甲、乙两种型号的挖掘机来完成这项工作,租赁公司提供的挖掘机有关信息如下表所示:租金(单位:元/台•时)挖掘土石方量(单位:m3/台•时)甲型挖掘机10060乙型挖掘机12080(1)若租用甲、乙两种型号的挖掘机共8台,恰好完成每小时的挖掘量,则甲、乙两种型号的挖掘机各需多少台?(2)如果每小时支付的租金不超过850元,又恰好完成每小时的挖掘量,那么共有哪几种不同的租用方案?7.4.3二元一次方程组解决工程问题参考答案与试题解析一.选择题(共4小题)1.2台大收割机和5台小收割机同时工作2h共收割小麦3.6hm2,3台大收制机和2台小收割机同时工作5h共收割小麦8hm2,1台大收割机和1台小收割机每小时各收割小麦多少hm2?若设1台大收割机和1台小收割机每小时各收割小麦xhm2和yhm2.根据题意,可得方程组()A.B.C.D.【解答】解:设1台大收割机和1台小收割机每小时各收割小麦x公顷,y公顷,由题意得,,故选:A.2.一个存有一些水的水池,有一个进水口和若干个口径相同的出水口,进水口每分钟进水3立方米,若同时打开进水口和三个出水口,池中水16分钟放完,若同时打开进水口和五个出水口,池中水9分钟放完,池中原有水()立方米.A.288B.296C.302D.316【解答】解:设池中原有水为a立方米,出水速度为每分钟x立方米,则有:,解得:a=288,x=7.即池中原有水288立方米.故选:A.3.用白铁皮做罐头盒,每张铁皮可制盒身25个,或制盒底40个,一个盒身与两个盒底配成一套罐头盒.现有45张白铁皮,设用x张制盒身,y张制盒底,恰好配套.则下列方程组中符合题意的是()A.B.C.D.【解答】解:设用x张制作盒身,y张制作盒底,根据题意得:.故选:C.4.中国古代人民很早就在生产生活中发现了许多有趣的数学问题,其中《孙子算经》中有个问题:今有三人共车,二车空;二人共车,九人步,问人与车各几何?这道题的意思是:今有若干人乘车,每三人共乘一车,最终剩余2辆车:若每2人共乘一车,最终剩余9个人无车可乘.问有多少人,多少辆车?设共有x人,y辆车,可列方程组为()A.B.C.D.【解答】解:∵每三人共乘一车,最终剩余2辆车,∴3(y﹣2)=x;∵若每2人共乘一车,最终剩余9个人无车可乘,∴x=2y+9.∴可列方程组为.故选:C.二.填空题(共3小题)5.某市在落实国家“精准扶贫”政策的过程中,为某村修建一条长为400米的公路,由甲、乙两个工程队负责施工.甲工程队独立施工两天后,乙工程队加入,两工程队联合施工3天后,还剩50米的工程.已知甲工程队每天比乙工程队多施工2米,求甲、乙工程队每天各施工多少米.设甲工程队每天施工x米,乙工程队每天施工y米,根据题意,列出方程组.【解答】解:由题意可得,,故答案是:.6.为了预防新冠肺炎疫情的发生,学校免费为师生提供防疫物品.某校花4200元购进洗手液与84消毒液共300瓶,已知洗手液的价格是20元/瓶,84消毒液的价格是5元/瓶.该校购进洗手液和84消毒液各多少瓶?设该校购进洗手液x瓶,购进84消毒液y瓶,则可列方程组为.【解答】解:设该校购进洗手液x瓶,该校购进84消毒液y瓶,根据题意可得:,故答案为:.7.某地准备对一段长120m的河道进行清淤疏通.若甲工程队先用4天单独完成其中一部分河道的疏通任务,则余下的任务由乙工程队单独完成需要9天;若甲工程队先单独工作8天,则余下的任务由乙工程队单独完成需要3天.设甲工程队平均每天疏通河道xm,乙工程队平均每天疏通河道ym,则(x+y)的值为20.【解答】解:由题意,得,解得:.∴x+y=20.故答案为:20.三.解答题(共5小题)8.在《二元一次方程组》这一章的复习课上,王老师让同学们根据下列条件探索还能求出哪些量:在我市“精准扶贫”工作中,甲、乙两个工程队先后接力为扶贫村庄修建条335米长的公路,甲队每天修建20米,乙队每天修建25米,一共用15天完成.(1)小红同学根据题意,列出了一个尚不完整的方程组请写出小红所列方程组中未知数x,y表示的意义:x表示甲队修路的天数,y表示乙队修路的天数;并写出该方程组中?处的数应是15,*处的数应是335;(2)小芳同学的思路是想设甲工程队一共修建了x米公路,乙工程队一共修建了y米公路.下面请你按照小芳的设想列出方程组,并求出乙队修建了多少天?【解答】解:(1)根据方程组中第二个方程可得x是与甲队每天修建的长度相乘,y是与乙队每天修建的长度相乘,这样可得出x、y分别是甲、乙两队各自修路的天数,从而得到x+y=15,20x+25y=335;故答案为:甲队修路的天数;乙队修路的天数;15;335;(2)方程组为:,由①得,x=335﹣y③,将③式代入②式得,,解得,y=175,所以,乙队修建了175米,修建的天数为(天).答:乙队修建了175米,修建了7天.9.某家具厂生产一种方桌,设计时1m3的木材可做50个桌面或300条桌腿.现有10m3的木材,怎样分配桌面和桌腿使用的木材,才能使桌面和桌腿刚好配套.(一张桌面配四条桌腿)【解答】解:设用xm3的木材做桌面,用ym3的木材做桌腿,根据题意得出:,解得:,答:用6m3的木材做桌面,用4m3的木材做桌腿,才能使桌面和桌腿刚好配套.10.有一批机器零件共418个,若甲先做2天,乙再加入合作,则再做2天可超产2个;若乙先做3天,然后两人再共做2天,则还有8个未完成.问甲、乙两人每天各做多少个零件?【解答】解:设甲每天做x个零件,乙每天做y个零件,则,解得.故甲每天做80个零件,乙每天做50个零件.11.某村经济合作社决定把22吨竹笋加工后再上市销售,刚开始每天加工3吨,后来在乡村振兴工作队的指导下改进加工方法,每天加工5吨,前后共用6天完成全部加工任务,问该合作社改进加工方法前后各用了多少天?【解答】解:设改进加工方法前用了x天,改进加工方法后用了y天,依题意,得:,解得:.答:该合作社改进加工方法前用了4天,改进加工方法后用了2天.12.为了打造区域中心城市,实现攀枝花跨越式发展,我市花城新区建设正按投资计划有序推进.花城新区建设工程部,因道路建设需要开挖土石方,计划每小时挖掘土石方540m3,现决定向某大型机械租赁公司租用甲、乙两种型号的挖掘机来完成这项工作,租赁公司提供的挖掘机有关信息如下表所示:租金(单位:元/台•时)挖掘土石方量(单位:m3/台•时)甲型挖掘机10060乙型挖掘机12080(1)若租用甲、乙两种型号的挖掘机共8台,恰好完成每小时的挖掘量,则甲、乙两种型号的挖掘机各需多少台?(2)如果每小时支付的租金不超过850元,又恰好完成每小时的挖掘量,那么共有哪几种不同的租用方案?【解答】解:(1)设甲、乙两种型号的挖掘机各需x台、y台.依题意得:,解得.答:甲、乙两种型号的挖掘机各需5台、3台;(2)设租用m辆甲型挖掘机,n辆乙型挖掘机.依题意得:60m+80n=540,化简得:3m+4n=27.∴m=9﹣n,∴方程的解为或或.当m=5,n=3时,支付租金:100×5+120×3=860元>850元,超出限额;当m=1,n=6时,支付租金:100×1+120×6=820元<850元,符合要求;当m=9,n=0时,支付租金:100×9+120×0=900元>850元,超出限额;答:有一种租车方案,即租用1辆甲型挖掘机和6辆乙型挖掘机.。

华东师大版数学七年级下册 二元一次方程组解决行程及方案问题练习(Word版含答案)

华东师大版数学七年级下册 二元一次方程组解决行程及方案问题练习(Word版含答案)

7.4.5二元一次方程组解决行程及方案问题一.选择题(共6小题)1.一辆汽车从A地驶往B地,前路段为普通公路,其余路段为高速公路.已知汽车在普通公路上行驶的速度为60km/h,在高速公路上行驶的速度为100km/h,汽车从A地到B地一共行驶了2.2h.设普通公路长、高速公路长分别为xkm、ykm,则可列方程组为()A.B.C.D.2.一道来自课本的习题:从甲地到乙地有一段上坡与一段平路.如果保持上坡每小时走3km,平路每小时走4km,下坡每小时走5km,那么从甲地到乙地需54min,从乙地到甲地需42min.甲地到乙地全程是多少?小红将这个实际问题转化为二元一次方程组问题,设未知数x,y,已经列出一个方程+=,则另一个方程正确的是()A.+=B.+=C.+=D.+=3.一列快车长70m,一列慢车长80m.若两车同向而行,快车从追上慢车到完全离开所用时间(即“会车”时间)为20s;若两车相向而行,则两车从相遇到离开所用的时间为4s.设两车速度分别是xm/s、ym/s,则可得方程组为()A.B.C.D.4.从茂名电白到湛江赤坎全长约为105km,一辆小汽车、一辆货车同时从茂名电白、湛江赤坎两地相向开出,经过45分钟相遇,相遇时小汽车比货车多行6km,设小汽车和货车的速度分别为xkm/h,ykm/h,则下列方程组正确的是()A.B.C.D.5.某商场购进商品后,加价40%作为销售价,商场搞优惠促销,决定由顾客抽奖决定折扣.某顾客购买甲、乙两种商品,分别抽到七折和九折,共付款399元,两种商品原售价之和为490元,设两种商品的进价分别为x、y元,根据题意所列方程组为()A.B.C.D.6.某宾馆准备正好用200元购买价格分别为50元和25元的两种换气扇(两种都要买),则可供宾馆选择的方案有()A.3种B.4种C.5种D.6种二.填空题(共4小题)7.甲、乙两人相距42千米,若两人同时相向而行,可在6小时后相遇;而若两人同时同向而行,乙可在14小时后追上甲,设甲的速度为x千米/时,乙的速度为y千米/时,列出的二元一次方程组为.8.为了合理使用电力资源,缓解用电紧张状况,我国电力部门出台了使用“峰谷电”的政策及收费标准(如表).已知王老师家4月份使用“峰谷电”95千瓦时,缴电费43.40元,问王老师家4月份“峰电”和“谷电”各用了多少千瓦时?设王老师家4月份“峰电”用了x 千瓦时,“谷电”用了y千瓦时,根据题意可列方程组.用电时间段收费标准峰电08:00~22:000.56元/千瓦时谷电22:00~08:000.28元/千瓦时9.爸爸沿街匀速行走,发现每隔7分钟从背后驶过一辆103路公交车,每隔5分钟从迎面驶来一辆103路公交车,假设每辆103路公交车行驶速度相同,而且103路公交车总站每隔固定时间发一辆车,那么103路公交车行驶速度是爸爸行走速度的倍.10.某果园计划种植梨树和苹果树共1000株,实际上梨树种植量比计划增长10%,而苹果树种植量比计划减少5%.若设实际种植梨树x株,苹果树y株,列二元一次方程为.三.解答题(共7小题)11.一艘轮船在相距90千米的甲、乙两地之间匀速航行,从甲地到乙地顺流航行用6小时,逆流航行比顺流航行多用4小时.(1)求该轮船在静水中的速度和水流速度;(2)若在甲、乙两地之间建立丙码头,使该轮船从甲地到丙地和从乙地到丙地所用的航行时间相同,问甲、丙两地相距多少千米?12.越来越多的人在用微信付款、转账.把微信账户里的钱转到银行卡叫做提现,自2016年3月1日起,每个微信账户终身享有1000元的免费提现额度,当累计提现金额超过1000元时,超出的部分需支付0.1%的手续费,以后每次提现支付的手续费均为提现金额的0.1%,(1)小明用自己的微信账户第一次提现金额为1500元,需支付手续费元.(2)小丽使用微信至今,用自己的微信账户共提现三次,提现金额和手续费如下:第一次第二次第三次提现金额a b2a+3b手续费/元00.2 3.1求小丽前两次提现的金额分别为多少元.13.某工厂计划生产甲、乙两种产品,已知生产每件甲产品需要4吨A种原料和2吨B种原料,生产每件乙产品需要3吨A种原料和1吨B种原料.该厂现有A种原料120吨,B种原料50吨.(1)甲、乙两种产品各生产多少件,恰好使两种原料全部用完?(2)在(1)的条件下,计划每件甲产品的售价为3万元,每件乙产品的售价为5万元,可全部售出.根据市场变化情况,每件甲产品实际售价比计划上涨a%,每件乙产品实际售价比计划下降10%,结果全部出售的总销售额比原计划增加了3.5万元,求a的值.14.中秋节来临之际,香港美心月饼公司推出了“美心七星伴月月饼”礼盒,由一个三黄白莲蓉的明月月饼和七个明星小月饼组成,明月月饼口味不可选择,但明星小月饼的口味可以自由搭配.(1)现有A、B两种礼盒的“美心七星伴月月饼”,八月份月饼上市,经经销商初步定价,买7个A礼盒的钱刚好可以购买6个B礼盒;购买3个A礼盒的花费比购买2个B礼盒多200元.求A、B两种礼盒的售价.(2)在第一问的基础上,九月份,该经销商将两种礼盒的月饼进行促销:A礼盒每盒售价打八折销售,B礼盒每盒售价直接降价m元,结果九月份售卖结束,A礼盒还剩余了,B礼盒全部售卖完,但卖出去的B礼盒的数量为A礼盒总数量的,经销商决定将剩余的A礼盒赠送给自己的员工作为福利;已知每盒A礼盒成本价为200元,每盒B礼盒的成本价为240,九月份销售结束,该经销商的利润率为20%,求m的值.15.面对“新冠疫情”,甲、乙两公司全体员工踊跃参与“携手防疫,共渡难关”捐款活动.已知甲公司有20人,乙公司有30人,第一次甲公司平均每人捐款比乙公司多100元,甲、乙两公司第一次共捐款8000元.(1)求第一次甲公司、乙公司平均每人捐款分别为多少元?(2)为了进一步支持抗击“新冠疫情”,甲、乙两公司全体员工进行了第二次捐款活动,甲公司第二次平均每人捐款在第一次的基础上增加了30%,乙公司第二次平均每人捐款在第一次的基础上增加了元;结果甲、乙两公司第二次捐款总额比第一次捐款总额多3000元,求m的值.16.郑州“7.20”特大暴雨灾害,人民的生活受到了极大的影响.“一方有难,八方支援”,某市筹集了大量的生活物资,用A、B两种型号的货车,分两批运往郑州,具体运输情况如表:第一批第二批A型货车的辆数(单位:辆)12B型货车的辆数(单位:辆)35累计运输物资的吨数(单位:吨)2850备注:第一批、第二批每辆货车均满载(1)求A、B两种型号货车每辆满载分别能运多少吨生活物资?(2)该市后续又筹集了70吨生活物资,若想恰好一次全部运走,需要怎样安排两种型号的货车?有哪几种运输方案?(3)运送生活物资到受灾地区,运输公司不收取任何费用,但是一辆A型货车需油费500元,一辆B型货车需油费450元,为了节约成本,运送上述70吨物资到郑州应选择哪种运输方案?17.为发展校园足球运动,我市四校决定联合购买一批足球运动装备.经市场调查发现,甲、乙两商场以同样的价格出售同种品牌的足球队服和足球.已知每套队服比每个足球多60元,5套队服与8个足球的费用相等,经洽谈,甲商场优惠方案是每购买10套队服,送1个足球;乙商场优惠方案是购买队服超过80套,则购买足球打8折.(1)求每套队服和每个足球的价格各是多少?(2)若这四所学校联合购买100套队服和a(a>10)个足球,请用含a的式子分别表示出到甲商场和乙商场购买装备所花的费用.(3)在(2)的条件下,若a=70,假如你是本次购买任务的负责人,你认为到甲、乙哪家商场购买比较合算?请说明理由.7.4.5二元一次方程组解决行程及方案问题参考答案与试题解析一.选择题(共6小题)1.一辆汽车从A地驶往B地,前路段为普通公路,其余路段为高速公路.已知汽车在普通公路上行驶的速度为60km/h,在高速公路上行驶的速度为100km/h,汽车从A地到B地一共行驶了2.2h.设普通公路长、高速公路长分别为xkm、ykm,则可列方程组为()A.B.C.D.【解答】解:设普通公路长、高速公路长分别为xkm、ykm,依题意,得:.故选:C.2.一道来自课本的习题:从甲地到乙地有一段上坡与一段平路.如果保持上坡每小时走3km,平路每小时走4km,下坡每小时走5km,那么从甲地到乙地需54min,从乙地到甲地需42min.甲地到乙地全程是多少?小红将这个实际问题转化为二元一次方程组问题,设未知数x,y,已经列出一个方程+=,则另一个方程正确的是()A.+=B.+=C.+=D.+=【解答】解:设未知数x,y,已经列出一个方程+=,则另一个方程正确的是:+=.故选:B.3.一列快车长70m,一列慢车长80m.若两车同向而行,快车从追上慢车到完全离开所用时间(即“会车”时间)为20s;若两车相向而行,则两车从相遇到离开所用的时间为4s.设两车速度分别是xm/s、ym/s,则可得方程组为()A.B.C.D.【解答】解:由题意可得,故选:C.4.从茂名电白到湛江赤坎全长约为105km,一辆小汽车、一辆货车同时从茂名电白、湛江赤坎两地相向开出,经过45分钟相遇,相遇时小汽车比货车多行6km,设小汽车和货车的速度分别为xkm/h,ykm/h,则下列方程组正确的是()A.B.C.D.【解答】解:由题意可得,,即,故选:D.5.某商场购进商品后,加价40%作为销售价,商场搞优惠促销,决定由顾客抽奖决定折扣.某顾客购买甲、乙两种商品,分别抽到七折和九折,共付款399元,两种商品原售价之和为490元,设两种商品的进价分别为x、y元,根据题意所列方程组为()A.B.C.D.【解答】解:依题意得:,故选:C.6.某宾馆准备正好用200元购买价格分别为50元和25元的两种换气扇(两种都要买),则可供宾馆选择的方案有()A.3种B.4种C.5种D.6种【解答】解:设购买价格为50元的换气扇x个,价格为25元的换气扇y个,依题意得:50x+25y=200,化简得:y=8﹣2x.又∵x,y均为正整数,∴或或,∴可供宾馆选择的方案有3种.故选:A.二.填空题(共4小题)7.甲、乙两人相距42千米,若两人同时相向而行,可在6小时后相遇;而若两人同时同向而行,乙可在14小时后追上甲,设甲的速度为x千米/时,乙的速度为y千米/时,列出的二元一次方程组为.【解答】解:根据甲走6小时的路程+乙走6小时的路程=42,得方程6(x+y)=42;根据乙走14小时的路程=甲走14小时的路程+42,得方程14y=14x+42.可列方程组为.8.为了合理使用电力资源,缓解用电紧张状况,我国电力部门出台了使用“峰谷电”的政策及收费标准(如表).已知王老师家4月份使用“峰谷电”95千瓦时,缴电费43.40元,问王老师家4月份“峰电”和“谷电”各用了多少千瓦时?设王老师家4月份“峰电”用了x千瓦时,“谷电”用了y千瓦时,根据题意可列方程组.用电时间段收费标准峰电08:00~22:000.56元/千瓦时谷电22:00~08:000.28元/千瓦时【解答】解:设王老师家4月份“峰电”用了x千瓦时,“谷电”用了y千瓦时,根据图表得方程组:.9.爸爸沿街匀速行走,发现每隔7分钟从背后驶过一辆103路公交车,每隔5分钟从迎面驶来一辆103路公交车,假设每辆103路公交车行驶速度相同,而且103路公交车总站每隔固定时间发一辆车,那么103路公交车行驶速度是爸爸行走速度的6倍.【解答】解:设103路公交车行驶速度为x米/分钟,爸爸行走速度为y米/分钟,两辆103路公交车间的间距为s米,根据题意得:,解得:x=6y.故答案为:6.10.某果园计划种植梨树和苹果树共1000株,实际上梨树种植量比计划增长10%,而苹果树种植量比计划减少5%.若设实际种植梨树x株,苹果树y株,列二元一次方程为+=1000.【解答】解:设实际种植梨树x株,苹果树y株,列二元一次方程为:+=1000.故答案为:+=1000.三.解答题(共7小题)11.一艘轮船在相距90千米的甲、乙两地之间匀速航行,从甲地到乙地顺流航行用6小时,逆流航行比顺流航行多用4小时.(1)求该轮船在静水中的速度和水流速度;(2)若在甲、乙两地之间建立丙码头,使该轮船从甲地到丙地和从乙地到丙地所用的航行时间相同,问甲、丙两地相距多少千米?【解答】解:(1)设该轮船在静水中的速度是x千米/小时,水流速度是y千米/小时,依题意,得:,解得:.答:该轮船在静水中的速度是12千米/小时,水流速度是3千米/小时.(2)设甲、丙两地相距a千米,则乙、丙两地相距(90﹣a)千米,依题意,得:=,解得:a=.答:甲、丙两地相距千米.12.越来越多的人在用微信付款、转账.把微信账户里的钱转到银行卡叫做提现,自2016年3月1日起,每个微信账户终身享有1000元的免费提现额度,当累计提现金额超过1000元时,超出的部分需支付0.1%的手续费,以后每次提现支付的手续费均为提现金额的0.1%,(1)小明用自己的微信账户第一次提现金额为1500元,需支付手续费0.5元.(2)小丽使用微信至今,用自己的微信账户共提现三次,提现金额和手续费如下:第一次第二次第三次提现金额a b2a+3b手续费/元00.2 3.1求小丽前两次提现的金额分别为多少元.【解答】解:(1)(1500﹣1000)×0.1%=0.5(元).故答案为:0.5;(2)由题意得:,解得:,∴小丽前两次提现的金额分别为500元、700元.答:小丽前两次提现的金额分别为500元、700元.13.某工厂计划生产甲、乙两种产品,已知生产每件甲产品需要4吨A种原料和2吨B种原料,生产每件乙产品需要3吨A种原料和1吨B种原料.该厂现有A种原料120吨,B种原料50吨.(1)甲、乙两种产品各生产多少件,恰好使两种原料全部用完?(2)在(1)的条件下,计划每件甲产品的售价为3万元,每件乙产品的售价为5万元,可全部售出.根据市场变化情况,每件甲产品实际售价比计划上涨a%,每件乙产品实际售价比计划下降10%,结果全部出售的总销售额比原计划增加了3.5万元,求a的值.【解答】解:(1)设生产甲种产品x件,乙种产品y件,恰好使两种原料全部用完,依题意得:,解得:.答:生产甲种产品15件,乙种产品20件,恰好使两种原料全部用完.(2)依题意得:3×(1+a%)×15+5×(1﹣10%)×20=15×3+20×5+3.5,解得:a=30.答:a的值为30.14.中秋节来临之际,香港美心月饼公司推出了“美心七星伴月月饼”礼盒,由一个三黄白莲蓉的明月月饼和七个明星小月饼组成,明月月饼口味不可选择,但明星小月饼的口味可以自由搭配.(1)现有A、B两种礼盒的“美心七星伴月月饼”,八月份月饼上市,经经销商初步定价,买7个A礼盒的钱刚好可以购买6个B礼盒;购买3个A礼盒的花费比购买2个B礼盒多200元.求A、B两种礼盒的售价.(2)在第一问的基础上,九月份,该经销商将两种礼盒的月饼进行促销:A礼盒每盒售价打八折销售,B礼盒每盒售价直接降价m元,结果九月份售卖结束,A礼盒还剩余了,B礼盒全部售卖完,但卖出去的B礼盒的数量为A礼盒总数量的,经销商决定将剩余的A礼盒赠送给自己的员工作为福利;已知每盒A礼盒成本价为200元,每盒B礼盒的成本价为240,九月份销售结束,该经销商的利润率为20%,求m的值.【解答】解:(1)设A礼盒的售价为x元,B礼盒的售价为y元,依题意得:,解得:.答:A礼盒的售价为300元,B礼盒的售价为350元.(2)设共卖出a个B礼盒,则共有a个A礼盒,依题意得:300×0.8×a(1﹣)+(350﹣m)a﹣200×a﹣240a=(200×a+240a)×20%,整理得:480+350﹣m=512+288,解得:m=30.答:m的值为30.15.面对“新冠疫情”,甲、乙两公司全体员工踊跃参与“携手防疫,共渡难关”捐款活动.已知甲公司有20人,乙公司有30人,第一次甲公司平均每人捐款比乙公司多100元,甲、乙两公司第一次共捐款8000元.(1)求第一次甲公司、乙公司平均每人捐款分别为多少元?(2)为了进一步支持抗击“新冠疫情”,甲、乙两公司全体员工进行了第二次捐款活动,甲公司第二次平均每人捐款在第一次的基础上增加了30%,乙公司第二次平均每人捐款在第一次的基础上增加了元;结果甲、乙两公司第二次捐款总额比第一次捐款总额多3000元,求m的值.【解答】解:(1)设第一次甲公司平均每人捐款为x元,乙公司平均每人捐款为y元,由题意得:,解得:,答:第一次甲公司平均每人捐款为220元,乙公司平均每人捐款为120元;(2)由题意得:20×220×(1+30%)+30×(120+)=8000+3000,解得:m=280,答:m的值为280.16.郑州“7.20”特大暴雨灾害,人民的生活受到了极大的影响.“一方有难,八方支援”,某市筹集了大量的生活物资,用A、B两种型号的货车,分两批运往郑州,具体运输情况如表:第一批第二批A型货车的辆数(单位:辆)12B型货车的辆数(单位:辆)35累计运输物资的吨数(单位:吨)2850备注:第一批、第二批每辆货车均满载(1)求A、B两种型号货车每辆满载分别能运多少吨生活物资?(2)该市后续又筹集了70吨生活物资,若想恰好一次全部运走,需要怎样安排两种型号的货车?有哪几种运输方案?(3)运送生活物资到受灾地区,运输公司不收取任何费用,但是一辆A型货车需油费500元,一辆B型货车需油费450元,为了节约成本,运送上述70吨物资到郑州应选择哪种运输方案?【解答】解:(1)设每辆A型货车满载能运x吨生活物资,每辆B型货车满载能运y吨生活物资,依题意得:,解得:.答:每辆A型货车满载能运10吨生活物资,每辆B型货车满载能运6吨生活物资.(2)设应安排m辆A型货车,n辆B型货车,依题意得:10m+6n=70,∴m=7﹣n.又∵m,n均为自然数,∴或或,∴共有3种运输方案,方案1:安排7辆A型货车;方案2:安排4辆A型货车,5辆B型货车;方案3:安排1辆A型货车,10辆B型货车.(3)选择方案1所需油费500×7=3500(元);选择方案2所需油费500×4+450×5=4250(元);选择方案3所需油费500×1+450×10=5000(元).∵3500<4250<5000,∴运送上述70吨物资到郑州应选择运输方案1:安排7辆A型货车.17.为发展校园足球运动,我市四校决定联合购买一批足球运动装备.经市场调查发现,甲、乙两商场以同样的价格出售同种品牌的足球队服和足球.已知每套队服比每个足球多60元,5套队服与8个足球的费用相等,经洽谈,甲商场优惠方案是每购买10套队服,送1个足球;乙商场优惠方案是购买队服超过80套,则购买足球打8折.(1)求每套队服和每个足球的价格各是多少?(2)若这四所学校联合购买100套队服和a(a>10)个足球,请用含a的式子分别表示出到甲商场和乙商场购买装备所花的费用.(3)在(2)的条件下,若a=70,假如你是本次购买任务的负责人,你认为到甲、乙哪家商场购买比较合算?请说明理由.【解答】解:(1)设每个足球的价格是x元,每套队服的价格为y元,由题意得:,解得:,答:每套队服的价格各是160元,每个足球的价格是100元.(2)到甲商场购买装备所花的费用为:100×160+100(a﹣10)=(100a+15000)(元),到乙商场购买装备所花的费用为:100×160+100×0.8a=(80a+16000)(元);(3)到乙商场购买比较合算,理由如下:当a=70时,到甲商场购买装备所花的费用是:100a+15000=100×70+15000=22000(元),到乙商场购买装备所花的费用是:80a+16000=80×70+16000=21600(元),∵22000>21600,∴到乙商场购买比较合算.。

(新课标)华东师大版七年级数学下册第七章二元一次方程组练习题4及答案

(新课标)华东师大版七年级数学下册第七章二元一次方程组练习题4及答案

2017-2018学年(新课标)华东师大版七年级下册《二元一次方程组》一、填空题1、二元一次方程4x-3y=12,当x=0,1,2,3时,y=____2、在x+3y=3中,若用x 表示y ,则y= ,用y 表示x ,则x=3、已知方程(k 2-1)x 2+(k+1)x+(k-7)y=k+2,当k=______时,方程为一元一次方程;当k=______时,方程为二元一次方程。

4、对二元一次方程2(5-x)-3(y-2)=10,当x=0时,则y=____;当y=0时,则x=____。

5、方程2x+y=5的正整数解是______。

6、若(4x-3)2+|2y+1|=0,则x+2=。

7、方程组⎩⎨⎧==+b xy ay x 的一个解为⎩⎨⎧==32y x ,那么这个方程组的另一个解是。

8、若21=x 时,关于y x 、的二元一次方程组⎩⎨⎧=-=-212by x y ax 的解互为倒数,则=-b a 2。

二、选择题1、方程2x-3y=5,xy=3,33=+yx ,3x-y+2z=0,62=+y x 中是二元一次方程的有( )个。

A、1 B、2C、3 D、42、方程2x+y=9在正整数范围内的解有( )A 、1个B 、2个C 、3个D 、4个3、与已知二元一次方程5x-y=2组成的方程组有无数多个解的方程是( )A 、10x+2y=4B 、4x-y=7C 、20x-4y=3D 、15x-3y=64、若是m y x 25与2214-++n m n y x 同类项,则n m -2的值为 ( )A 、1B 、-1C 、-3D 、以上答案都不对5、在方程(k 2-4)x 2+(2-3k)x+(k+1)y+3k=0中,若此方程为二元一次方程,则k 值为( )A 、2B 、-2C 、2或-2D 、以上答案都不对. 6、若⎩⎨⎧-==12y x 是二元一次方程组的解,则这个方程组是( )A 、⎩⎨⎧=+=-5253y x y xB 、⎩⎨⎧=--=523x y x yC 、⎩⎨⎧=+=-152y x y xD 、⎩⎨⎧+==132y x y x 7、在方程3)(3)(2=--+x y y x 中,用含x 的代数式表示y ,则 ( )A 、35-=x yB 、3--=x yC 、35+=x yD 、35--=x y8、已知x=3-k,y=k+2,则y与x的关系是( )A、x+y=5 B、x+y=1 C、x-y=1 D、y=x-19、下列说法正确的是( )A、二元一次方程只有一个解 B、二元一次方程组有无数个解C、二元一次方程组的解必是它所含的二元一次方程的解 D、三元一次方程组一定由三个三元一次方程组成10、若方程组⎩⎨⎧=+=+16156653y x y x 的解也是方程3x+ky=10的解,则k的值是( =)A、k=6 = B、k=10 C、k=9 D、k=101 三、解答题1、解关于x 的方程)1(2)4)(1(+-=--x a x a a2、已知方程组⎩⎨⎧=+=+c y ax y x 27,试确定c a 、的值,使方程组:(1)有一个解;(2)有无数解;(3)没有解3、关于y x 、的方程3623-=+k y kx ,对于任何k 的值都有相同的解,试求它的解。

2020—2021年华东师大版七年级数学下册《二元一次方程组》单元测试题及答案.docx

2020—2021年华东师大版七年级数学下册《二元一次方程组》单元测试题及答案.docx

(新课标)华东师大版七年级下册第7章二元一次方程组单元考试题一、选择题1、下列方程组中是二元一次方程组的是( )A 、12xy x y =⎧⎨+=⎩B 、52313x y y x -=⎧⎪⎨+=⎪⎩C 、20135x z x y +=⎧⎪⎨-=⎪⎩D 、5723x x y=⎧⎪⎨+=⎪⎩ 2、已知12x y =-⎧⎨=⎩是二元一次方程组321x y mnx y +=⎧⎨-=⎩的解,则m -n 的值为( )A 、1B 、2C 、3D 、43、11.如果3251b a 与y x x b a ++-141是同类项,则x ,y 的值是( ) A .⎩⎨⎧==31y x B .⎩⎨⎧==22y x C .⎩⎨⎧==21y x D .⎩⎨⎧==32y x4、在等式b kx y +=中,当x=0时,y=1-;当x=1-时,y=0,则这个等式是( )A .1--=x yB .x y -=C .1+-=x yD .1+=x y 5、如果⎩⎨⎧=+-=-+0532082z y x z y x ,其中xyz ≠0,那么x :y :z=( )A .1:2:3B .2:3:4C .2:3:1D .3:2:16、如果方程组⎩⎨⎧=-+=+5)1(21073y a ax y x 的解中的x 与y 的值相等,那么a 的值是( )A .1B .2C .3D .47、若::2:3:7a b c =,且32a b c b -+=-,则C 的值为( ) A 、7 B 、63 C 、10.5 D 、5.25 8、哥哥与弟弟的年龄和是18岁,弟弟对哥哥说:“当我的年龄是你现在年龄的时候,你就是18岁”。

如果现在弟弟的年龄是X 岁,哥哥的年龄是y 岁,下列方程组正确的是() A 、1818x y y x y =-⎧⎨-=-⎩ B 、1818y x x y y -=⎧⎨-=+⎩ C 、1818x y y x y+=⎧⎨-=+⎩ D 、1818y xy y x =-⎧⎨-=-⎩二、填空题(3分×6=18分)9、把方程23x y +=改写成用含X 的式子表示y 的形式,得y = __________10已知321a b +-与2(42)a b ++互为相反数,则a =,b =; 11、已知234ab c ==,且52332a b c -+=-,则a =,b =,c =;12、若直线7+=ax y 经过一次函数1234-=-=x y x y 和的交点,则a 的值是.13、如果一个二元一次方程的一个解是⎩⎨⎧-==11y x ,请你写出一个符合题意的二元一次 方程.14、三个同学对问题“若方程组111222a xb yc a x b y c +=⎧⎨+=⎩的解是34x y =⎧⎨=⎩,求方程组111222325325a x b y c a x b y c +=⎧⎨+=⎩的解”。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(新课标)华东师大版七年级下册《二元一次方程组》一、填空题1、二元一次方程4x-3y=12,当x=0,1,2,3时,y=____2、在x+3y=3中,若用x 表示y ,则y= ,用y 表示x ,则x=3、已知方程(k 2-1)x 2+(k+1)x+(k-7)y=k+2,当k=______时,方程为一元一次方程;当k=______时,方程为二元一次方程。

4、对二元一次方程2(5-x)-3(y-2)=10,当x=0时,则y=____;当y=0时,则x=____。

5、方程2x+y=5的正整数解是______。

6、若(4x-3)2+|2y+1|=0,则x+2=。

7、方程组⎩⎨⎧==+b xy a y x 的一个解为⎩⎨⎧==32y x ,那么这个方程组的另一个解是。

8、若21=x 时,关于y x 、的二元一次方程组⎩⎨⎧=-=-212by x y ax 的解互为倒数,则=-b a 2。

二、选择题1、方程2x-3y=5,xy=3,33=+y x ,3x-y+2z=0,62=+y x 中是二元一次方程的有( )个。

A、1 B、2C、3 D、42、方程2x+y=9在正整数范围内的解有( )A 、1个B 、2个C 、3个D 、4个3、与已知二元一次方程5x-y=2组成的方程组有无数多个解的方程是( )A 、10x+2y=4B 、4x-y=7C 、20x-4y=3D 、15x-3y=64、若是m y x 25与2214-++n m n y x 同类项,则n m -2的值为 ( )A 、1B 、-1C 、-3D 、以上答案都不对5、在方程(k 2-4)x 2+(2-3k)x+(k+1)y+3k=0中,若此方程为二元一次方程,则k 值为( )A 、2B 、-2C 、2或-2D 、以上答案都不对.6、若⎩⎨⎧-==12y x 是二元一次方程组的解,则这个方程组是( ) A 、⎩⎨⎧=+=-5253y x y x B 、⎩⎨⎧=--=523x y x y C 、⎩⎨⎧=+=-152y x y x D 、⎩⎨⎧+==132y x y x 7、在方程3)(3)(2=--+x y y x 中,用含x 的代数式表示y ,则 ( )A 、35-=x yB 、3--=x yC 、35+=x yD 、35--=x y8、已知x=3-k,y=k+2,则y与x的关系是( )A、x+y=5 B、x+y=1 C、x-y=1 D、y=x-19、下列说法正确的是( )A、二元一次方程只有一个解B、二元一次方程组有无数个解C、二元一次方程组的解必是它所含的二元一次方程的解 D、三元一次方程组一定由三个三元一次方程组成10、若方程组⎩⎨⎧=+=+16156653y x y x 的解也是方程3x+ky=10的解,则k的值是( =)A、k=6 = B、k=10 C、k=9 D、k=101三、解答题1、解关于x 的方程)1(2)4)(1(+-=--x a x a a2、已知方程组⎩⎨⎧=+=+c y ax y x 27,试确定c a 、的值,使方程组: (1)有一个解;(2)有无数解;(3)没有解3、关于y x 、的方程3623-=+k y kx ,对于任何k 的值都有相同的解,试求它的解。

§8.2消元——二元一次方程组的解法一、用代入法解下列方程组(1)⎩⎨⎧=+=-5253y x y x (2) ⎩⎨⎧=--=523x y x y(3)⎩⎨⎧=+=-152y x y x (4)⎩⎨⎧+==-1302y x y x(5)⎩⎨⎧-=+=-14329m n n m (6)⎩⎨⎧=+-=-q p q p 451332二、用加减法解下列方程组(1)⎩⎨⎧=+=-924523n m n m (2)⎩⎨⎧=+=-524753y x y x(3)⎩⎨⎧=--=-7441156y x y x (4)⎩⎨⎧-=+-=-53412911y x y x(5)⎪⎩⎪⎨⎧=-=+2.03.05.0523151y x y x (6)⎩⎨⎧=+=+a y x a y x 343525( 其中a 为常数)三、解答题1、代数式by ax +,当2,5==y x 时,它的值是7;当5,8==y x 时,它的值是4,试求5,7-==y x 时代数式by ax -的值。

2、求满足方程组⎩⎨⎧=-=--20314042y x m y x 中的y 值是x 值的3倍的m 的值,并求y x xy + 的值。

3、列方程解应用题一个长方形的长减少10㎝,同时宽增加4㎝,就成为一个正方形,并且这两个图形的面积相等,求员长方形的长、宽各是多少。

§8.3实际问题与二元一次方程组列方程解下列问题1、有甲乙两种债券,年利率分别是10%与12%,现有400元债券,一年后获利45元,问两种债券各有多少?2、一种饮料大小包装有3种,1个中瓶比2小瓶便宜2角,1个大瓶比1个中瓶加1个小瓶贵4角,大、中、小各买1瓶,需9元6角。

3种包装的饮料每瓶各多少元?3、某班同学去18千米的北山郊游。

只有一辆汽车,需分两组,甲组先乘车、乙组步行。

车行至A 处,甲组下车步行,汽车返回接乙组,最后两组同时达到北山站。

已知汽车速度是60千米/时,步行速度是4千米/时,求A 点距北山站的距离。

4、某校体操队和篮球队的人数是5:6,排球队的人数比体操队的人数2倍少5人,篮球队的人数与体操队的人数的3倍的和等于42人,求三种队各有多少人?5、甲乙两地相距60千米,A、B两人骑自行车分别从甲乙两地相向而行,如果A比B先出发半小时,B每小时比A多行2千米,那么相遇时他们所行的路程正好相等。

求A、B两人骑自行车的速度。

(只需列出方程即可)6、已知甲、乙两种商品的原价和为200元。

因市场变化,甲商品降价10%,乙商品提高10%,调价后甲、乙两种商品的单价和比原单价和提高了5%。

求甲、乙两种商品的原单价各是多少元。

7、2辆大卡车和5辆小卡车工作2小时可运送垃圾36吨,3辆大卡车和2辆小卡车工作5小时可运输垃圾80吨,那么1辆大卡车和1辆小卡车各运多少吨垃圾。

8、12支球队进行单循环比赛,规定胜一场得3分,平一场得1分,负一场得0分。

若有一支球队最终的积分为18分,那么这个球队平几场?9、现有A 、B 、C 三箱橘子,其中A 、B 两箱共100个橘子,A 、C 两箱共102个,B 、C 两箱共106个,求每箱各有多少个?第八单元测试一、选择题(每题3分,共24分)1、表示二元一次方程组的是( )A 、⎩⎨⎧=+=+;5,3x z y xB 、⎩⎨⎧==+;4,52y y xC 、⎩⎨⎧==+;2,3xy y xD 、⎩⎨⎧+=-+=222,11xy x x y x 2、方程组⎩⎨⎧=-=+.134,723y x y x 的解是( ) A 、⎩⎨⎧=-=;3,1y x B 、⎩⎨⎧-==;1,3y x C 、⎩⎨⎧-=-=;1,3y x D 、⎩⎨⎧-=-=.3,1y x 3、设⎩⎨⎧=+=.04,3z y y x ()0≠y 则=z x ( ) A 、12 B 、121-C 、12-D 、.121 4、设方程组()⎩⎨⎧=--=-.433,1by x a by ax 的解是⎩⎨⎧-==.1,1y x 那么b a ,的值分别为( ) A 、;3,2- B 、;2,3- C 、;3,2- D 、.2,3-5、方程82=+y x 的正整数解的个数是( )A 、4B 、3C 、2D 、16、在等式n mx x y ++=2中,当3.5,3;5,2=-=-===x y x y x 则时时时,=y ( )。

A 、23 B 、-13 C 、-5 D 、137、关于关于y x 、的方程组⎩⎨⎧-=+-=-5m212y 3x 4m 113y 2x 的解也是二元一次方程2073=++m y x 的解,则m 的值是( )A 、0B 、1C 、2D 、21 8、方程组⎩⎨⎧=-=-82352y x y x ,消去y 后得到的方程是( ) A 、01043=--x x B 、8543=+-x xC 、8)25(23=--x xD 、81043=+-x x二、填空题(每题3分,共24分)1、21173+=x y 中,若,213-=x 则=y _______。

2、由==--y y x y x 得表示用,,06911_______,=x x y 得表示,_______。

3、如果⎩⎨⎧=-=+.232,12y x y x 那么=-+-+3962242y x y x _______。

4、如果1032162312=--+--b a b a y x 是一个二元一次方程,那么数a =___,b =__。

5、购面值各为20分,30分的邮票共27枚,用款6.6元。

购20分邮票_____枚,30分邮票_____枚。

6、已知⎩⎨⎧==⎩⎨⎧=-=310y 2x y x 和是方程022=--bx ay x 的两个解,那么a =,b = 7、如果b a a b y x y x 4222542-+-与是同类项,那么 a =,b =。

8、如果63)2(1||=---a x a 是关于x 的一元一次方程,那么aa 12--=。

三、用适当的方法解下列方程(每题4分,共24分) 1、⎩⎨⎧=-=+-6430524m n n m 2、⎪⎪⎩⎪⎪⎨⎧=--=-323113121y x y x3、⎩⎨⎧=-=+110117.03.04.0y x y x4、⎪⎩⎪⎨⎧=+=+-722013152y x y x5、⎩⎨⎧-=+=--c y x c y x 72963112(c 为常数)6、⎩⎨⎧-=++=--c d y x d c y x 23434(d c 、为常数)四、列方程解应用题(每题7分,共28分)1、初一级学生去某处旅游,如果每辆汽车坐45人,那么有15个学生没有座位;如果每辆汽车坐60人,那么空出1辆汽车。

问一工多少名学生、多少辆汽车。

2、某校举办数学竞赛,有120人报名参加,竞赛结果:总平均成绩为66分,合格生平均成绩为76分,不及格生平均成绩为52分,则这次数学竞赛中,及格的学生有多少人,不及格的学生有多少人。

3、有一个两位数,其数字和为14,若调换个位数字与十位数字,就比原数大18则这个两位数是多少。

(用两种方法求解)4、甲乙两地相距20千米,A从甲地向乙地方向前进,同时B从乙地向甲地方向前进,两小时后二人在途中相遇,相遇后A就返回甲地,B仍向甲地前进,A回到甲地时,B离甲地还有2千米,求A、B二人的速度。

答案第八章§8.1一、1、-4,-0,34,38-- 2、y x x y 33,33-=-= 3、-1,1 4、2,3 5、⎩⎨⎧==⎩⎨⎧==12,31y x y x 6、2.75 7、,23⎩⎨⎧==y x 8、11.5 二、ADDBCCAADB三、1、当32≠≠a a 且时,=x 32-a 2、略 3、⎪⎩⎪⎨⎧==232y x §8.2一、1、⎪⎪⎩⎪⎪⎨⎧-==75720y x 2、⎩⎨⎧-=-=118y x 3、⎩⎨⎧-==12y x 4、⎩⎨⎧-=-=21y x 5、⎪⎪⎩⎪⎪⎨⎧-==196195y x6、⎪⎪⎩⎪⎪⎨⎧=-=75673y x 二、1、⎪⎩⎪⎨⎧==212n m 2、⎪⎪⎩⎪⎪⎨⎧-==2123y x 3、⎪⎪⎩⎪⎪⎨⎧-==221163y x 4、⎪⎩⎪⎨⎧==733y x 5、⎪⎪⎩⎪⎪⎨⎧==17121714y x 6、⎩⎨⎧==0y a x 三、1、⎩⎨⎧-==43b a 2、3 3、长3216、宽322 §8.31、⎩⎨⎧==250150y x2、⎪⎩⎪⎨⎧===163050z y x3、2.25Km4、体操队10人,排球队15人,篮球队12人 5、设甲的速度是x 千米/小时,乙的速度是y 千米/小时,⎪⎩⎪⎨⎧=-=+2130302y x y x 6、7、⎩⎨⎧==24y x 8、平5场或3场或1场 9、⎪⎩⎪⎨⎧===545248C B A 第八单元测试一、DBCABDCD二、1、4 2、1169,9611+-y x 3、2 4、718 5、15 6、2,31- 7、53,115- 8、2-=a三、1、⎪⎩⎪⎨⎧=-=143y m 2、⎪⎪⎩⎪⎪⎨⎧==11121130y x 3、⎩⎨⎧==11y x 4、⎪⎪⎩⎪⎪⎨⎧==1136225y x 5⎪⎪⎩⎪⎪⎨⎧-==c y c x 2145 6、⎪⎪⎩⎪⎪⎨⎧+-=+=1361113115d c y dc x四 1、240名学生,5辆车 2、及格的70人,不及格的50人 3、原数是684、A 的速度5.5千米/时,B 的速度是4.5千米/时。

相关文档
最新文档