6.9(2)二元一次方程组的解法(二)
第二节 二元一次方程组的解法(含答案)...七年级数学 学而思
第二节二元一次方程组的解法1.二元一次方程组的解法基本思路是消元,即通过运用代入法或加减法把二元一次方程组转化为一元一次方程,从而求出方程组的解. (1)代入消元法:通过等量代换,消去方程组中的一个未知数,使二元一次方程组转化为一元一次方程,从而求得一个未知数的值,然后再求出被消去未知数的值,从而确定原方程组的解的方法.代入消元法解二元一次方程组的一般步骤:①从方程组中选一个系数比较简单的方程,将这个方程组中的一个未知数例如y,用含另一个未知数如x的代数式表示出来;②将变形后的关系式代入另一个方程,消去一个未知数,得到一个一元一次方程;③解这个一元一次方程,求出x(或y)的值;④将求得的未知数的值代入变形后的关系式中,求出另一个未知数的值;⑤把求得的x、y的值用“{”联立起来,就是方程组的解.(2)加减消元法:加减法是消元法的一种,也是解二元一次方程组的基本方法之一.加减法不仅在解二元一次方程组中适用,也是今后解其它方程(组)经常用到的方法.加减消元法解二元一次方程组的一般步骤:①变换系数:方程组的两个方程中,如果同一个未知数的系数既不相等又不互为相反数,就用适当的数去乘方程的两边,使某一个未知数的系数相等或互为相反数;②加减消元:把两个方程的两边分别相减或相加,消去一个未知数,得到一个一元一次方程;③解这个一元一次方程,求得未知数的值;④回代:将求出的未知数的值代入原方程组的任意一个方程中,求出另一个未知数的值;⑤把所求得的两个未知数的值写在一起,就得到原方程组的解,需要把求得的x,y的值用“{”联立起来.2.特殊方程组的解法对于具有某些特点的二元一次方程组,如果仍按常规方法不仅运算量大,而且容易出错,则可根据题目的特点,利用整体思想来采用特殊方法简化方程组,接着再采用代入或加减消元法解出相应x,y的值即可.(1)系数轮换法:适用方程组类型:如果把方程组中的每一个未知数依次轮换后,虽然每个方程都变了,但是整个方程组仍不变,步骤:解题时,把各方程相加,即可得到x+ y=常数的形式,把各方程相减,即可得到x- y=常数的形式,这两个新的方程组成的方程组就是原方程组化简后的结果,便可以采用加减或代入消元法求得未知数的值.(2)换元法:适用方程组类型:方程组项数较多、系数较为复杂,而且会有相同的部分或者是互为相反数的部分多次出现;步骤:解题时,把方程中相同的部分或者是互为相反数的部分看成是一个整体,用另一个字母来替换,从而简化原先项数多、系数复杂的方程组,再采用常规的加减或者代入消元法来求得未知数的值.(3)倒数法:适合方程组类型:方程中出现分母是和的形式,分子是积的形式⋅+yx xy步骤:解题时,采用倒数法变换成分子是和、分母是积的形式,xyyx +然后进行拆分,利用加减或者代入或者换元法来解出x ,y 的值.1.代入消元方法的选择①运用代入法时,将一个方程变形后,必须代入另一个 方程,否则就会 得出“0=0”的形式,求不出未知数的值;②当方程组中有一个方程的一个未知数的系数是1或一1时,用代入法较简便. 2.加减消元方法的选择①一般选择系数绝对值最小的未知数消元;②当某一未知数的系数互为相反数时,用加法消元;当某一未知数的系数相 等时,用减法消元;③某一未知数系数成倍数关系时,直接使其系数互为相反数或相等,再用 加减消元求解;④当相同的未知数的系数都不相同时,找出某一个未知数的系数的最小公倍数,同时对两个方程进行变形,转化为系数的绝对值相同的方程,再用加减消元求解,例1.如果关于x ,y 的方程组⎩⎨⎧-=-=+223a y x y x 的解是负数,则a 的取值范围是( )54.<<-a A 5.>a B 4.-<a C D .无解检测1.(浙江绍兴期末)已知关于x ,y 的方程组⎩⎨⎧-=-=-,52253a y x ay x 若x ,y 的值互为相反数,则a 的值为( )5.-A 5.B 20.-C 20.D例2.(四川南江县期末)已知,0)112(|32|2=+++--y x y x 则( )⎩⎨⎧==12.y x A ⎩⎨⎧-==30.y x B ⎩⎨⎧-=-=51.y x C ⎩⎨⎧-=-=72.y x D检测2.(山东滨州期末)已知,0|72|)12(2=-++--y x y x 则=-y x 3( )3.A 1.B 6.-C 8.D例3.(湖北黄冈期末)若y x h y xb a ba -+--332243是同类项,则b a -的值是( )0.A 1.B 2.C 3.D检测3.若y x nm +243与n m y x -5是同类项,则m .n 的值分别是( ) 3,2.A 1,2.B 0,2.C 2,1.D例4.(湖南衡阳县一模)解方程组:⎩⎨⎧=+=+,604320122016604120162012y x y x 则yx yx -+值是3.A 3.-B 6.C 6.-D检测4.(1)(江苏海门市期末)如果实数x ,y 满足方程组⎩⎨⎧=+=+,4222y x y x 那么=+y x(2)(安徽泗县校级模拟)关于x ,y 的二元一次方程组⎩⎨⎧-=+-=+22132y x k y x 的解满足y x +,1=则k=例5.(河北古冶区一模)已知a ,b 满足方程组⎩⎨⎧=-=+,283b a b a 则=+b a2.A3.B4.C5.D检测5.(1)(河北模拟)已知e 、f 满足方程组⎩⎨⎧=-=--,6223e f f e 则f e +2的值为( )2.A 4.B 6.C 8.D(2)(广东广州中考)已知a .b 满足方程组⎩⎨⎧=-=+,43125b a b a 则b a +的值为第二节 二元一次方程组的解法(建议用时:35分钟)实战演练1.用加减法解方程组⎩⎨⎧-=-=+15y x y x 中,消x 用 法,消y 用 法( )A.加,加 B .加,减 C .减,加 D .减,减2.若用代入法解方程组⎩⎨⎧+==,12332y x yx 以下各式代入正确的是( )1)32(23.+=x x A 1)32(23.+=y x B1)23(23.+=x x C 1623.+⋅=x x x D3.若,0|52||12|=--+--y x y x 则x+y 的值为( )4.A5.B6.C7.D4.已知:|32|++y x 与2)2(y x +互为相反数,则=-y x ( )7.A 5.B 3.C 1.D5.(山东临清市期末)已知方程组⎩⎨⎧=+=-my x y x 24中x ,y 相加为0,则m 的值为( )2.A 2.-B 0.C 4.D6.(河北石家庄校级模拟)若方程组⎩⎨⎧=++=+my x m y x 32253的解x 与y 互为相反数,则m 的值为( )2.-A 0.B 2.C 4.D7.若方程组⎩⎨⎧=+=+16156653y x y x &的解也是方程103=+ky x 的解,则( )6.=k A 10.=k B 9.=k C 101.=k D 8.若3243y x b a +与ba y x -634的和是单项式,则=+b a ( ) 3.-A 0.B 3.C 6.D9.按如图8 -2—1所示的运算程序,能使输出结果为3的x ,y 的值是( )128--2,5.-==y x A ⋅-==3,3.y x B 2,.4.=-=y x C 9,3.-=-=y x D10.(山东临沂中考)已知x ,y 满足方程组⎩⎨⎧=+=+,4252y x y x 则y x -的值为( )⎩⎨⎧==12.11y x 是方程组⎩⎨⎧=-=+04by ax by ax 的解,那么=+-))((b a b a 12.已知方程组⎩⎨⎧-=+=-123225m y x my x 的解x ,y 互为相反数,则m=13.(江苏常州期末)若关于x ,y ,的二元一次方程组⎩⎨⎧=+-=+22132y x a y x 的解满足x+ y=l ,则a 的值为14.三个同学对问题“若方程组⎪⎩⎪⎨⎧=+=+222111c y b x a c y b x a 的解是⎩⎨⎧==,43y x 求方程组⎪⎩⎪⎨⎧=+=+222111523523c y b x a c y b x a 的解.”提出各自的想法.甲说:“这个题目好像条件不够,不能求解”;乙说:“它们的系数有一定的规律,可以试试”;丙说:“能不能把第二个方程组的两个方程的两边都除以5,通过换元替换的方法来解决”,参考他们的讨论,你认为这个题目的解应该是 .15.(“信利杯”竞赛题)已知:a ,b ,c 三个数满足,31=+b a ab ,41=+c b bc ,51=+a c ca 则ca bc ab abc++的值为 16.(重庆校级自主招生)解方程组:⎩⎨⎧=+=+200320042005200620052004y x y x17.解方程组:⎪⎩⎪⎨⎧-=-=-+-421621y x y x18.已知方程组⎩⎨⎧+=---=+ay x ay x 317的解中,x 为非正数,y 为负数.(1)求a 的取值范围; (2)化简.|2||3|++-a a19.(江苏张家港市期末)已知关于x ,y 的方程组⎩⎨⎧+=+=+12242m y x my x (实数m 是常数).(1)若x+y=1,求实数m 的值;(2)若,51≤-≤-y x 求m 的取值范围; (3)在(2)的条件下,化简:.|32||2|-++m m20.(黑龙江讷河市校级期末)已知二元一次方程组⎩⎨⎧+=-+=+1593a y x a y x 的解x ,y 均是正数.(1)求a 的取值范围; (2)化简.|4||54|--+a a拓展创新21.解方程组:⎩⎨⎧==+44y -3x 23y x 2拓展1.解方程组:⎪⎪⎩⎪⎪⎨⎧=-=+443232y x y x 拓展2.解方程组:⎪⎪⎩⎪⎪⎨⎧=-=+41432132x y xy x y xy极限挑战22.(全国初中数学竞赛)若,0634=--z y x ),0(072=/=-+xyz z y x 则式子222222103225z y x z y x ---+的值等于( )21.-A219.-B 15.-C 13.-D课堂答案培优答案。
二元一次方程组的解法
二元一次方程组的解法在数学学科中,解方程是一个非常重要的内容。
而二元一次方程组是解方程的一种特殊形式,它由两个二元一次方程组成。
解决二元一次方程组的问题可以帮助我们更好地理解和应用代数知识。
下面,我将为大家详细介绍二元一次方程组的解法。
一、代入法代入法是解决二元一次方程组的最常用方法之一。
它的基本思想是将一个方程的其中一个未知数表示为另一个方程中的未知数,然后代入另一个方程进行求解。
例如,我们有以下二元一次方程组:方程1:2x + y = 5方程2:3x - y = 1我们可以先将方程1中的y表示为方程2中的未知数:y = 3x - 1然后将y的值代入方程1,得到:2x + (3x - 1) = 5化简后,我们可以得到一个一元一次方程:5x - 1 = 5解这个方程,我们可以得到x的值为2。
将x的值代入方程1,我们可以求得y 的值为1。
因此,这个二元一次方程组的解为x=2,y=1。
二、消元法消元法是解决二元一次方程组的另一种常用方法。
它的基本思想是通过对方程组进行加减运算,消去其中一个未知数,然后求解另一个未知数。
例如,我们有以下二元一次方程组:方程1:2x + y = 5方程2:3x - y = 1我们可以将方程1乘以3,方程2乘以2,得到:方程1:6x + 3y = 15方程2:6x - 2y = 2然后将方程2的两倍加到方程1上,得到:9y = 17解这个一元一次方程,我们可以得到y的值为17/9。
将y的值代入方程1,我们可以求得x的值为5/3。
因此,这个二元一次方程组的解为x=5/3,y=17/9。
三、图像法图像法是解决二元一次方程组的另一种可视化方法。
它的基本思想是将方程组转化为直线的图像,通过观察直线的交点来求解方程组的解。
例如,我们有以下二元一次方程组:方程1:2x + y = 5方程2:3x - y = 1我们可以将这两个方程转化为直线的形式:方程1对应的直线为:y = -2x + 5方程2对应的直线为:y = 3x - 1我们可以在坐标系中画出这两条直线,并观察它们的交点。
二元一次方程组的解法
二元一次方程组的解法在代数学中,二元一次方程组是由两个未知数和两个方程组成的方程组。
解决这种方程组的方法有很多种,下面将介绍其中三种常见的解法。
方法一:代入法代入法是一种比较简单直观的解二元一次方程组的方法。
假设有如下二元一次方程组:{ Equation1{ Equation2首先将其中一个方程(不妨设为方程1)的其中一个未知数表示为另一个未知数的函数,然后代入另一个方程(方程2)中消去这个未知数,从而得到一个只包含一个未知数的一次方程。
例如,假设方程组为:{ 2x + 3y = 7 Equation1{ 5x - y = 1 Equation2我们可以通过将方程2中y表示为x的函数(y = 5x - 1),将其代入方程1中,得到:2x + 3(5x - 1) = 7然后将这个一次方程化简,求解得到x的值。
将x的值代入方程2中,即可得到y的值。
最终得到方程组的解。
方法二:消元法消元法是解二元一次方程组的常用方法之一。
它通过逐步消去一个未知数,将方程组化为只含有一个未知数的一次方程,然后求解得到解。
例如,假设方程组为:{ 2x + 3y = 7 Equation1{ 5x - y = 1 Equation2我们可以通过将方程1乘以5,将方程2乘以2,然后将两个方程相减,消去y的系数,得到一个只含有x的一次方程:10x + 15y = 3510x - 2y = 2--------------17y = 33通过化简这个一次方程,求解得到y的值。
将y的值代入方程1或方程2中,即可得到x的值。
最终得到方程组的解。
方法三:Cramer法则Cramer法则是一种基于行列式的解二元一次方程组的方法。
假设有如下二元一次方程组:{ Equation1{ Equation2首先计算系数矩阵A的行列式值D,然后在D中用方程组右边的常数项替换掉A的某一列,得到矩阵Dx。
同理,用方程组右边的常数项替换掉A的另一列,得到矩阵Dy。
二元一次方程组的解法(22)
3 x + 5 y = 21,① 2 x − 5 y = −11.②
5y和 −5y
互为相反数…… 互为相反数…… ( ) +(
左边
相加…… 相加……
还能怎样解 下面的二元一次 方程组? 方程组? )
)
=
+(
右边
解:根据等式的基本性质, 根据等式的基本性质, 方程① 方程② 方程①+方程②得:
第二节 二元一次方程组的解法
第二课时 用加减法解二元一次方程组
回顾(代入法) 回顾(代入法)
x + 2 y = 4 解方程组: 2 x − y = 3
用代入法解二元一次方程组的步骤: 用代入法解二元一次方程组的步骤: 第一步:变形。 第一步:变形。 第二步:代入。 第二步:代入。 第三步:解方程。 第三步:解方程。 第四步:回代。 第四步:回代。 第五步:结论。 第五步:结论。 第六步:检验。 第六步:检验。
3x + 5 y = 21,① 2 x − 5 y = − 11.②
5 x = 10.
解得: 解得:x = 2. 把 x = 2 代入①,解得: y = 3. 代入① 解得:
x = 2, 所以方程组的解为 y = 3.
例1.解下列二元一次方程组 1.解下列二元一次方程组
2 x − 5 y = 7 ,① 2 x + 3 y − 1.② =
解得: 解得: y = 3. x 代入③ 把 y. = 3代入③,得: = 2 .
x = 2, 所以方程组的解为: 所以方程组的解为 . y = 3.
把②变形得 5 y = 2x +11 可以直接代入① 可以直接代入①呀!
二元一次方程组的解法(2)知识点
初中数学知识点研究单元名称:七(下)第十章一次方程组章节名称:第二节二元一次方程组的解法课时名称:第二课时知识点:加减法解二元一次方程组一.知识点目标:1. 掌握加减消元法解二元一次方程组的方法;2. 能熟练、正确、灵活掌握代入法和加减法解二元一次方程组;3.会对一些特殊的方程组进行特殊的求解.二、知识点分析:知识点一、加减消元法解二元一次方程组两个二元一次方程中同一未知数的系数相反或相等时,将两个方程的两边分别相加或相减,就能消去这个未知数,得到一个一元一次方程,这种方法叫做加减消元法,简称加减法.知识点诠释:用加减消元法解二元一次方程组的一般步骤:(1)方程组的两个方程中,如果同一个未知数的系数既不互为相反数,又不相等,那么就用适当的数乘方程的两边,使同一个未知数的系数互为相反数或相等;(2)把两个方程的两边分别相加或相减,消去一个未知数,得到一个一元一次方程;(3)解这个一元一次方程,求得一个未知数的值;(4)将这个求得的未知数的值代入原方程组中的任意一个方程中,求出另一个未知数的值,并把求得的两个未知数的值用“大括号”联立起来,就是方程组的解.知识点二、选择适当的方法解二元一次方程组解二元一次方程组的基本思想(一般思路)是消元,消元的方法有两种:代入消元和加减消元,通过适当练习做到巧妙选择,快速消元.三.知识点训练(一)基础训练1.解方程组:2.解方程组:(二)能力训练1.已知关于x、y的方程组ax by cex dy f+=⎧⎨+=⎩的解为31xy=⎧⎨=⎩,求关于x、y的方程组()()()()a x yb x y ce x y d x y f-++=⎧⎨-++=⎩的解.2. 解方程组3 6101 610x y x yx y x y+-⎧+=⎪⎪⎨+-⎪-=-⎪⎩(三)拓展训练1. 试求方程组27526x y x y ⎧-=--⎪⎨-=-⎪⎩的解.2.若二元一次方程组和y=kx+9有相同解,求(k+1)2的值.(汶阳中学 姜向阳)知识点训练答案(一)基础训练1. 2..(二)能力训练1.【思路点拨】如果用一般方法来解答此题,很难达到目标,观察发现,两方程的系数相同,只是未知数的呈现方式不同,如果我们把x -y ,x+y 看作一个整体,则两个方程同解.解:方程组的解仅仅与未知数的系数有关,与未知数选用什么字母无关,因此把(x -y )与(x+y )分别看成一个整体当作未知数,可得3,1.x y x y -=⎧⎨+=⎩ 解得:2,1.x y =⎧⎨=-⎩【总结】本例采用了类比的方法,若把其中的x+y 和x -y 分别看作整体,则第二个方程组与第一个方程组相同,即x+y =1,x -y =3.2.【思路点拨】解决本题有多种方法:加减法或代入法,或整体代入法,整体代入法最简单.【答案与解析】解:设,610x y x y m n +-==,则 原方程组可化为31m n m n +=⎧⎨-=-⎩①② 解得12m n =⎧⎨=⎩即16210x y x y +⎧=⎪⎪⎨-⎪=⎪⎩ ,所以620x y x y +=⎧⎨-=⎩解得137x y =⎧⎨=-⎩所以原方程组的解为137x y =⎧⎨=-⎩. 【总结升华】解一个方程组的方法一般有多种方法,我们要根据方程组的特点选择最简便的求解方法.(三)拓展训练1.解:27526x y x y ⎧-=--⎪⎨-=-⎪⎩①② ①-②,整理得513y y -=- ③∵50y -≥,∴13-y ≥0,即y ≤13,当513y ≤≤时,③可化为513y y -=-,解得9y =;当5y ≤时,③可化为513y y -=-,无解.将9y =代入②,得23x -=,解得15x =-或.综上可得,原方程组的解为:19x y =-⎧⎨=⎩或59x y =⎧⎨=⎩. 【总结】解含有绝对值的方程组,一般先转化为含绝对值的一元一次方程,再分类讨论求出解.2.解:方程组,①×3+②得:11x=22,解得:x=2,将x=2代入①得:6﹣y=7,解得:y=﹣1,∴方程组的解为,将代入y=kx+9得:k=﹣5,则当k=﹣5时,(k+1)2=16.。
二元一次方程的解法
二元一次方程的解法二元一次方程的解:使二元一次方程左、右两边的值相等的一对未知数的值,叫做二元一次方程的一个解。
1.消元解法“消元”是解二元一次方程组的基本思路。
所谓“消元”就是减少未知数的个数,使多元方程最终转化为一元多次方程再解出未知数。
这种将方程组中的未知数个数由多化少,逐一解决的解法,叫做消元解法。
代入消元法(1)概念:将方程组中一个方程的某个未知数用含有另一个未知数的代数式表示出来,代入另一个方程中,消去一个未知数,得到一个一元一次方程,最后求得方程组的解.。
这种解方程组的方法叫做代入消元法,简称代入法。
(2)代入法解二元一次方程组的步骤①选取一个系数较简单的二元一次方程变形,用含有一个未知数的代数式表示另一个未知数;②将变形后的方程代入另一个方程中,消去一个未知数,得到一个一元一次方程(在代入时,要注意不能代入原方程,只能代入另一个没有变形的方程中,以达到消元的目的);③解这个一元一次方程,求出未知数的值;④将求得的未知数的值代入①中变形后的方程中,求出另一个未知数的值;⑤用“{”联立两个未知数的值,就是方程组的解;⑥最后检验(代入原方程组中进行检验,方程是否满足左边=右边)。
2.加减消元法(1)概念:当方程中两个方程的某一未知数的系数相等或互为相反数时,把这两个方程的两边相加或相减来消去这个未知数,从而将二元一次方程化为一元一次方程,最后求得方程组的解,这种解方程组的方法叫做加减消元法,简称加减法.(2)加减法解二元一次方程组的步骤①利用等式的基本性质,将原方程组中某个未知数的系数化成相等或相反数的形式;②再利用等式的基本性质将变形后的两个方程相加或相减,消去一个未知数,得到一个一元一次方程(一定要将方程的两边都乘以同一个数,切忌只乘以一边,然后若未知数系数相等则用减法,若未知数系数互为相反数,则用加法);③解这个一元一次方程,求出未知数的值;④将求得的未知数的值代入原方程组中的任何一个方程中,求出另一个未知数的值;⑤用“{”联立两个未知数的值,就是方程组的解;⑥最后检验求得的结果是否正确(代入原方程组中进行检验,方程是否满足左边=右边)。
《二元一次方程组的解法》教学设计
《二元一次方程组的解法》教学设计【教材依据】这节课内容是华师大版数学七年级下册第七章《二元一次方程组》的第二节,本节内容共安排了2个课时去完成。
本节课为《二元一次方程组的解法》第1课时。
在本节之前,学生已经掌握了有理数、整式的运算、解一元一次方程等知识,对二元一次方程、二元一次方程组等概念已了解,学生已经具备了进一步学习二元一次方程组解法的基本能力。
这节课的主要内容是用代入消元法解二元一次方程组,教材从实际问题出发,通过培养学生自主探索、合作交流、分析问题、解决问题的能力来学习二元一次方程组的解法——代入消元法。
探索如何用代入消元法将“二元”转化为“一元”的消元过程和用代入消元法解二元一次方程分别是本节课的重、难点。
组织学生学好本节课的内容将会为以后的“三元一次方程组、函数、线性方程组、高次方程组”学习打下坚实的基础。
一、设计思路(一)指导思想新课标指出,教学活动是师生积极参与、交往互动、共同发展的过程。
在课堂教学中学生是学习的主体,教师是学习的组织者、引导者与合作者。
教师在组织引导学生学习的过程中要充分调动学生学习的兴趣、积极性、主动性;要求学生通过积极思考、动手实践、自主探索、合作交流来提高数学能力。
(二)教学目标1.知识与技能。
(1)掌握用代入法解二元一次方程组的步骤。
(2)熟练运用代入法解简单的二元一次方程组。
2.过程与方法。
(1)培养学生的分析、动手、数学思维能力。
(2)使学生能迅速在所给的二元一次方程组中,选择一个系数较简单的方程进行变形。
(3)通过解决问题使学生初步理解用代入法解二元一次方程组的基本思路。
3.情感态度与价值观。
(1)通过合作交流,探索二元一次方程组的解法。
(2)培养学生的合作交流意识、自主探索、分析问题、解决问题能力。
(三)教学重、难点1.教学重点:用代入消元法解二元一次方程组。
2.教学难点:在解题过程中让学生充分体会“消元”思想和“化未知为已知”的化归思想。
(四)教学理念与方法本课借助多媒体辅助教学,给学生以直观形象的演示,增强学生感性认识的同时增强教学效。
6.9 二元一次方程组及其解法(2)
例题
3x 5 y 21 2 x 5 y 11
为什么用加法?
3x 5 y 2x 5 y
左边 + 左边 解:由+得: 5 x
21 11
= 右边 + 右边
3 1 2 x y 3 4 2 4 5 7 x y 6 15 5
小结
加减法解二元一次方程组的步骤:
①变形:使某个未知数的系数绝对值相等.
②加减消元.
③解一元一次方程.
④代入得另一个未知数的值,从而得方程组 的解.
提高练习
(1)如果x+y=a,x-y=b,那么2x-3y等
相同未知量前的系数绝对值相等。
根据这一特点,利用等式性质能达到消元的 目的吗?
试一试
3x 5 y 21 2 x 5 y 11
法一:把变形得: 法二:把变形得:
5 y 11 x 2
代入,消去 x
5 y 2 x 11
直接代入
法三: 5 y 和 5 y 互为相反数,
可以直接把这两个方程的两边分别相减
练习
x 2 y 7 x y 3
x 5 y 4 3x 5 y 12
3x 2 y 7 3x 2 y 5
观察
2 x 4 y 9 3x 5 y 8
(1)上面的方程组是否符合用加减法消元的条 件? (2)如何转化,可使某个未知数系数的绝对值 相等?
于 132的值. (3)已知 和 .
(2)已知x+y=30,x-y=20,求2(x-2y)2-
有相同的解,求a、b的值.
数学北师大版六年级下册二元一次方程及其解法
6.9二元一次方程组及其解法闻素人 教学目标1.理解二元一次方程组的概念,以及二元一次方程组的解的概念。
2.能利用代入消元的方法熟练地解二元一次方程组。
3.经历解二元一次方程组的过程,体验数学的化归思想,而且知道解一次方程组中化归的基本方法:消元,即把二元化为一元,通过解一元一次方程达到解二元一次方程组的目的。
4.在学习中感受中华民族的传统灿烂文化,增强学生的民族自豪感,增加学生的民族自信心。
教学重点、难点重点:掌握用代入消元法解二元一次方程组的方法。
难点:理解代入消元法的基本思路。
教学过程一.复习旧知,作好铺垫1、_________________________________________________是二元一次方程。
2、下列方程中,属于二元一次方程的是( )10y x 5.D 0z 4y 3x 2.C 1xy .0y 51x 2.A 2=+=-+==+ B 3、将方程y x 3y x 2的式子表示变形为用=+______________________,x y 的式子表示用含_________________________________;二.情境引入,激发兴趣1.方程组通过“母亲节”引入例题得到方程组的概念:母亲节要到了,小丽打算用零用钱买一束康乃馨送给母亲,小丽买了红色和粉色康乃馨共16支,一共花了10元钱,已知红色康乃馨0.7元一支,粉色康乃馨0.5元一支,你知道这束花由几支红色康乃馨、几支粉色康乃馨组成?方程组:由几个方程组成的一组方程叫做方程组。
2.二元一次方程组二元一次方程组的概念:方程组中含有两个未知数,含有未知数的项的次数都是一次,这样的方程组叫做二元一次方程组。
例.判断下列方程组中,哪些是二元一次方程组?⎪⎩⎪⎨⎧=+=-1z 2y 3y x )1( ⎪⎩⎪⎨⎧-=+-=8y 76y 9x 14)2( ⎪⎩⎪⎨⎧-=-=-5x 9y 3344y 4x )3(2 ⎪⎩⎪⎨⎧-==+2xy 21y 6x 5)4( 3.二元一次方程组的解例.二元一次方程组⎪⎩⎪⎨⎧=+=+10y 5.0x 7.016y x 的解是 ( ) A. ⎪⎩⎪⎨⎧==14y 2x B.⎪⎩⎪⎨⎧==3y 13x C.⎪⎩⎪⎨⎧==6y 10x D.⎪⎩⎪⎨⎧==13y 5x 二元一次方程组的解:在二元一次方程组中,使每个方程都适合的解,叫做二元一次方程组的解。
七年级数学二元一次方程组的解法人教实验版知识精讲
初一数学二元一次方程组的解法人教实验版【本讲教育信息】一、教学内容:二元一次方程组的解法二、教学重点:(1)掌握二元一次方程和二元一次方程组的概念 (2)掌握二元一次方程组的解法三、知识点扫描:(1)二元一次方程:含有两个未知数,并且未知数项的次数是1的方程。
(2)二元一次方程组:两个二元一次方程合在一起,就组成了二元一次方程组。
(3)二元一次方程组的解:二元一次方程组的两个方程的公共解,叫做二元一次方程组的解。
(4)代入消元法:由二元一次方程组中的一个方程,将一个未知数用含另一个未知数的式子表示出来,再代入另一个方程,实现消元,进而求得这个二元一次方程组的解,这种方法叫做代入消元法.简称代入法。
(5)加减消元法:两个二元一次方程中同一未知数的系数相反或相等时,将两个方程的两边相加或相减,就能消去一个未知数,得到一个一元一次方程,这种方法叫做加减消元法,简称加减法。
四、中考考点分析:本节中考命题的重点是二元一次方程(组)的有关概念及二元一次方程(组)的解法,考查方法有直接用代入法或加减法解二元一次方程组,分值不高,且以填空、选择、简单解答题的形式出现。
【典型例题】例一、已知二元一次方程组⎩⎨⎧=-=-)2(3n m 2)1(4n 2m ,则m+n 的值是( )。
A 、1B 、0C 、-2D 、-1解法一:由(1)得m=4+2n 代入(2)中得2(4+2n )-n=3解得n=-35m=32∴m+n=-1 解法二:用(2)-(1)得m+n=-1例二、[2008中考试题]若方程组⎩⎨⎧=+=-9.30b 5a 313b 3a 2的解是⎩⎨⎧==2.1b 5.8a 则方程组⎩⎨⎧=-++=--+9.30)1y (5)2x (313)1y (3)2x (2的解是( ) A 、⎩⎨⎧==2.1y 5.8x B 、⎩⎨⎧==2.2y 5.10x C 、⎩⎨⎧==2.2y 5.6x D 、⎩⎨⎧==2.0y 5.10x解:例三、若方程组⎩⎨⎧=-=-16by ax 332y x 5与⎩⎨⎧=-=-22by 2ax 519y 2x 有相同的解,求a 、b 的值。
二元一次方程组的解法
二元一次方程组的解法二元一次方程组的解法一、目标认知学习目标:1.了解二元一次方程、二元一次方程组及其解的含义;2.会检验一组数是不是某个二元一次方程组的解;3.会用代入法和加减法解二元一次方程组,了解代入消元法和加减消元法的基本思想;4.能够根据题目特点熟练选用代入法或加减法解二元一次方程组;5.能借助二元一次方程组解决一些实际问题,使用代数方法去反应现实生活中的等量关系,体会代数方法的优越性.重点:二元一次方程组的解法.难点:熟练运用代入法和加减法解二元一次方程组.二、知识要点梳理知识点一:二元一次方程的概念含有两个未知数(一般设为x、y),并且含有未知数的项的次数都是1,像这样的方程叫做二元一次方程. 如x+y=24,都是二元一次方程.要点诠释:(1)在方程中“元”是指未知数,“二元”就是指方程中有且只有两个未知数.(2)“未知数的次数为1”是指含有未知数的项(单项式)的次数是1. 如xy的次数是2,所以方程6xy+9=0不是二元一次方程.(3)二元一次方程的左边和右边都必须是整式. 如方程的左边不是整式,所以它就不是二元一次方程.(4)判断某个方程是不是二元一次方程,一般先把它化为ax+by+c=0的形式,再根据定义判断,例如:2x+4y=3+2x不是二元一次方程,因为通过移项,原方程变为4y=3,不符合二元一次方程的形式。
知识点二:二元一次方程的解能使二元一次方程左右两边的值都相等的两个未知数的值,叫做二元一次方程的解。
由于使二元一次方程的左右两边相等的未知数的值不只一个,故每个二元一次方程都有无数组解。
如,,,……,都是二元一次方程x+y=3的解,我们把有无数组解的这样的方程又称之为不定方程。
要点诠释:(1)使二元一次方程左右两边都相等的两个未知数的值(二元一次方程的每一个解,都是一对数值,而不是一个数值),即二元一次方程的解都要用“{”联立起来,如,是二元一次方程x +y=2的解。
二元一次方程组的解法及应用
二元一次方程组的解法及应用在数学中,二元一次方程组是由两个未知数和两个方程组成的方程组。
解二元一次方程组的过程非常重要,不仅可以帮助我们求解实际问题,还可以培养我们的逻辑思维和分析能力。
本文将介绍二元一次方程组的解法以及其在实际生活中的应用。
一、二元一次方程组的解法解二元一次方程组的常用方法有三种:代入法、消元法和等式法。
下面将分别介绍这三种方法的具体步骤。
1. 代入法代入法是解二元一次方程组最简单的方法之一。
其基本思想是将一个方程的解代入另一个方程中,从而得到另一个方程只含有一个未知数的一次方程,然后通过求解这个一次方程来确定未知数的值。
具体步骤如下:(1)选择一个方程,将其中的一个未知数用另一个未知数的表达式代替。
(2)将代入后的方程代入另一个方程中,得到只含有一个未知数的一次方程。
(3)求解得到一个未知数的值。
(4)将求得的未知数的值代入代入步骤(1)中的方程,求解得到第二个未知数的值。
通过多次代入和求解,可以得到整个二元一次方程组的解。
2. 消元法消元法是解二元一次方程组的另一种常用方法。
其基本思想是通过将方程组中某个方程的两边乘以适当的系数,使得两个方程的某个未知数的系数相等或者互为相反数,然后将这两个方程相加或相减,从而消去某个未知数,求解另一个未知数的值。
具体步骤如下:(1)通过适当的乘法将两个方程的某个未知数的系数相等或互为相反数。
(2)将这两个方程相加或相减,消去某个未知数。
(3)求解得到一个未知数的值。
(4)将求得的未知数的值代入其中一个方程,求解得到第二个未知数的值。
通过多次消元和求解,可以得到整个二元一次方程组的解。
3. 等式法等式法是解二元一次方程组的另一种有效的方法。
其基本思想是通过将两个方程进行相减或相加,得到只含有一个未知数的一次方程,然后通过求解这个一次方程来确定未知数的值。
具体步骤如下:(1)通过适当的乘法或加减法将两个方程相减或相加,得到一个只含有一个未知数的一次方程。
二元一次方程组知识点归纳及解题技巧汇总
二元一次方程组知识点归纳及解题技巧汇总二元一次方程组知识点归纳及解题技巧汇总1、二元一次方程:含有两个未知数,并且未知数的项的次数都是1,像这样的方程叫做二元一次方程。
2、二元一次方程组:把具有相同未知数的两个二元一次方程合在一起。
3、二元一次方程组的解:一般地,使二元一次方程两边的值相等的两个未知数的值,叫做二元一次方程的解,二元一次方程有无数个解。
4、二元一次方程组的解:一般地,二元一次方程组的两个方程的公共解,叫做二元一次方程组的解。
5、消元法解二元一次方程组:(1) 基本思路:未知数又多变少。
(2) 消元法的基本方法:将二元一次方程组转化为一元一次方程。
6.解法:通过“代入”消去一个未知数,从而求出方程组的解的方法叫做代入消元法(elimination by substitution),简称代入法。
例:解方程组x+y=5①6x+13y=89②解:由①得x=5-y ③把③带入②,得6(5-y)+13y=89y=59/7把y=59/7带入③,得x=5-59/7即x=-24/7∴x=-24/7y=59/7 为方程组的解加减消元法:例:解方程组x+y=9①x-y=5②解:①+② 2x=14即 x=7把x=7带入①得7+y=9解得y=-2∴x=7y=-2 为方程组的解7. 二元一次方程组的解有三种情况:1.有一组解如方程组x+y=5① 6x+13y=89② x=-24/7 y=59/7 为方程组的解2.有无数组解如方程组x+y=6① 2x+2y=12②因为这两个方程实际上是一个方程(亦称作“方程有两个相等的实数根”),所以此类方程组有无数组解。
3.无解如方程组x+y=4① 2x+2y=10②,因为方程②化简后为x+y=5 这与方程①相矛盾,所以此类方程组无解。
注意:用加减法或者用代入消元法解决问题时,应注意用哪种方法简单,避免计算麻烦或导致计算错误。
教科书中没有的几种解法(一)加减-代入混合使用的方法.例1, 13x+14y=41 (1)14x+13y=40 (2)解:(2)-(1)得x-y=-1 x=y-1 (3)把(3)代入(1)得13(y-1)+14y=4113y-13+14y=4127y=54y=2把y=2代入(3)得x=1所以:x=1,y=2特点:两方程相加减,单个x或单个y,这样就适用接下来的代入消元.(二)换元法例2, (x+5)+(y-4)=8(x+5)-(y-4)=4令x+5=m,y-4=n原方程可写为m+n=8m-n=4解得m=6,n=2所以x+5=6,y-4=2所以x=1,y=6特点:两方程中都含有相同的代数式,如题中的x+5,y-4之类,换元后可简化方程也是主要原因。
(完整版)二元一次方程组的常见解法
二元一次方程组的常见解法二元一次方程组中含有两个未知数,所以解二元一次方程组的主要思路就是消元,即消去一个未知数,使其转化为一元一次方程,这样就可以先解出一个未知数,然后设法求另一个未知数.常见的消元方法有两种:代入消元法和加减消元法.一、代入法即由二元一次方程中的一个方程变形,将一个未知数用含另一个未知数的式子表示出来,再代入另一个方程中,实现消元,进而求解.一般情况下用代入法解方程组时,选择变形的方程要尽可能的简单,表示的代数式也要尽可能的简单,以利于计算.2x+5y=-21①例1、解方程组x+3y=8 ②解由②得:x=8-3y ③把③代入①得2(8-3y)+5y=-21解得:y=37把y=37代入③得:x=8-3×37=-103x=-103所以这个方程组的解是y=37二、整体代入法当方程组中的两个方程存在整数倍数关系时,用代入法解可将整数倍数关系数中较小的一个变形,用另一个字母代数式表示它后代入另一个方程.3x-4y=9①例2、解方程组9x-10y=3②解由①得3x=4y+9 ③把③代入②得3(4y+9)-10y=3解得y=-12把y=-12代入③得3x=4×(-12)+9解得x=-13x=-13所以方程组的解是y=-12三、加减消元法即方程组中两个二元一次方程中的同一个未知数的系数相等时,让两个方程相减.如果方程组中两个二元一次方程中的同一个未知数的系数互为相反数时则让两个方程相减.消去一个未知数,得到一个一元一次方程,这种方法叫加减消元法.2x+3y=14 ①例3、解方程组4x-5y=6②解由①×2得4x+6y=28 ③③-②得:11y=22解得y=2把y=2代入②得4x-5×2=6解得x=4x=4所以方程组的解为y=2四、整体运用加减法即当两个二元一次方程中的某一部分完全相同或符号相反时,可以把这两个方程两边相加或相减,把相同的部分整体消去.3(x+2)+(y-1)=4 ①例4 解方程组3(x+2)+(1-y)=2 ②解①-②得(y-1)-(1-y)=4-2整理得2y=4解得y=2把y=2 代入①得3(x+2)+(2-1)=4整理得3x+7=4解得x=-1x=-1所以方程组的解为y=2解二元一次方程组的主要方法有代入法和消元法,因为方程的形式是多种多样的.所以在解方程中一定要仔细观察方程中各部分以及各个未知数和它们的系数之间的关系的找到最简便的解题方法.。
《二元一次方程组的解法》数学教学PPT课件(3篇)
用一个未知数的代数式 表示另一个未知数 消去一个元 分别求出两个未知数的值
写出方程组的解
学习目标
1、理解解二元一次方程组的另一种常用方法——“加减 消元法” ; 2、熟练以及灵活应用加减消元法解二元一次方程组.
新知探究
想一想
为了解方程组
3x+2y=13 3x-2y=5
不用代入法能否消去其中的未知数y ?
旧校舍面积的4倍,那么应该拆除多少旧校舍,建造多少新校
舍?(单位:m2 )
拆 (x m2)
设应拆除旧校舍x m2 ,建 造新校舍y m2 .
根据题意列方程组
20000 m2
y=4x
y-x=20000× 30﹪.
y=4x 即
y-x=6000
新建 (y m2)
1.解方程组: x=3y+2, ① x+3y=8. ②
随堂练习
1、用代入消元法解下列方程组
y=2x ⑴
x=4
x=—y2-5
y=8 ⑵
x=5 y=15
x+y=12
4x+3y=65
x+y=11 x=9
3x-2y=9
x=3
⑶ x-y=7
y=2 ⑷ x+2y=3
y=0
2、若方程5x 2m+n + 4y 3m-2n = 9是关于x、y的二元 一次方程,求m 、n 的值.
把y=0.8代入①可得x=2
{ x=2
故原方程的解为 y=0.8
{7x+4y-10=0
例3 解方程组 4x+2y-5=0
{7x+4y=10 ①
解:原方程组可化为 4x+2y=5 ②
由方程②得y=(5-4x)/2 将上式带入①整理,得10- x =10
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
复习回顾
解二元一次方程组 3 x 2 y 7 ①
3x 2 y 5 ②
此方程组除了用 代入法解还可用 其它方法吗?
解:① + ②得:6 x 2
所以方程组的解是:
1 x 3 ① - ②得: 4 y 12
y 3
1 x 3 y3
复习回顾
加减消元法: 通过两个方程相加(或相减)消去一个未 知数,将方程组转化为一元一次方程,这种解 法叫做加减消元法,简称加减法。 二元方程
个方程两边分别相减?
用加减消元法解方程组, 2 x 4 y 9
分别相加?什么时候采用把两
复习回顾
用加减消元法解方程组的一般步骤: (1)变形,使某个未知数的系数绝对值相等. (2)加减消元. (3)解一元一次方程. (4)代入得另一个未知数的值,从而得方程 组的解.
我型我秀
1、用加减法解下列方程组:
复习回顾
一、二元一次方程组的定义及特征
代入消元
二元 一元 二、二元一次方程组解的定义及解的个数 转化为
三、解二元一次方程组的指导思想 (1)代入消元法及适用范围
用代入法解二元一次方程组的一般方法, 常常选用系数较简单的方程变形,这有利于正 确、简捷的消元.
复习回顾
四、用代入法将下列解二元一次方程组转化 为解一元一次方程:
3 x 5 y 41 (1) 9 x 10 y 52 3 1 2 3 x 4 y 2 (2) 4 x 5 y 7 5 6 15
我型我秀
2、如果x+y=a,x-y=b,那么2x-3y等于 3、已知方程组 .
6 x 2 y 18 4 x y 5 和方程组 3ax 4by 18 ax by 1
加减消元 转换
一元方程
复习回顾
下列方程组中同一个未知数的系数有什么特点? x 2 y 7 (1) Nhomakorabea x y 3
3 x 2 y 7 (3) 3x 2 y 5
x 5y 4 (2) 3x 5 y 12
(4) 什么时候采用把两个方程两边 3x 5 y 8
有相同的解,求a、b的值.
畅所欲言
对自己说,你有什么收获?
对同学说,你有什么温馨提示?
对老师说,你还有什么困惑?
今日作业
1
补充作业
预习6.9(3)
2
作业要求:请认真书写!
3 x 1 y ① 由① 代入② (1) 1 y 2 y 5 消去 x 3x 2 y 5 ② 5 x 2 y 25 0 ① 由 ②代入① (2) 5x (3x 5) 25 0 3 x 5 2 y ② 消去 y 2 x y 5 ① 由①得 y 5 2 x (3) 2 x 4(5 2 x) 2 2x 4 y 2 ② 代入②消去 y 2 s 2t 3① 由①得 t 2s 3 (4) 3s 2s 3 8 代入②消去 t 3s 2t 8 ②