万有引力与航天题型汇总汇总2
06 万有引力与航天高考真题分项详解(解析版)
十年高考分类汇编专题06万有引力与航天(2011-2020)目录题型一、考查万有引力定律、万有引力提供物体重力的综合类问题 ............................................ 1 题型二、考查万有引力提供卫星做圆周运动向心力的相关规律 .................................................... 6 题型三、考查飞船的变轨类问题 ...................................................................................................... 18 题型四、考查万有引力与能量结合的综合类问题 .......................................................................... 20 题型五、考查双星与三星系统的规律 .............................................................................................. 21 题型六、关于开普勒三定律的相关考查 .......................................................................................... 22 题型七、天体运动综合类大题 . (25)题型一、考查万有引力定律、万有引力提供物体重力的综合类问题1.(2020全国1).火星的质量约为地球质量的110,半径约为地球半径的12,则同一物体在火星表面与在地球表面受到的引力的比值约为( ) A. 0.2B. 0.4C. 2.0D. 2.5【考点】万有引力在非绕行问题中的应用 【答案】B【解析】设物体质量为m ,在火星表面所受引力的大小为F 1,则在火星表面有:1121M mF GR 在地球表面所受引力的大小为F 2,则在地球表面有:2222M mF GR 由题意知有:12110M M ;1212R R故联立以上公式可得:21122221140.4101F M R F M R ==⨯=。
(完整word版)万有引力与航天试题全集(含详细答案)
万有引力与航天试题全集(含答案)一、选择题:本大题共。
1、地球绕太阳运动的轨道是一椭圆,当地球从近日点向远日点运动时,地球运动的速度大小(地球运动中受到太阳的引力方向在地球与太阳的连线上,并且可认为这时地球只受到太阳的吸引力)()A。
不断变大B。
逐渐减小 C.大小不变 D。
没有具体数值,无法判断2、对于开普勒第三定律的表达式=k的理解正确的是A.k与a3成正比B.k与T2成反比C.k值是与a和T无关的值D.k值只与中心天体有关3、苹果落向地球,而不是地球向上运动碰到苹果,下列论述中正确的是A.由于苹果质量小,对地球的引力小,而地球质量大,对苹果的引力大造成的B.由于地球对苹果有引力,而苹果对地球没有引力而造成的C。
苹果对地球的作用力和地球对苹果的作用力是相等的,由于地球质量极大,不可能产生明显的加速度D.以上说法都正确4、某球状行星具有均匀的密度ρ,若在赤道上随行星一起转动的物体对行星表面的压力恰好为零,则该行星自转周期为(万有引力常量为G)A. B.C。
D.5、关于开普勒第三定律的公式=k,下列说法中正确的是A。
公式只适用于绕太阳做椭圆轨道运行的行星 B.公式适用于所有围绕星球运行的行星(或卫星)C。
式中的k值,对所有行星(或卫星)都相等D。
式中的k值,对围绕不同星球运行的行星(或卫星)都相同6、根据观测,某行星外围有一模糊不清的环,为了判断该环是连续物还是卫星群,测出了环中各层的线速度v的大小与该层至行星中心的距离R。
则以下判断中正确的是A。
若v与R成正比,则环是连续物B。
若v与R成反比,则环是连续物C。
若v2与R成反比,则环是卫星群D。
若v2与R成正比,则环是卫星群7、关于太阳系中各行星的轨道,以下说法正确的是A。
所有行星绕太阳运动的轨道都是椭圆 B.有的行星绕太阳运动的轨道是圆C。
不同行星绕太阳运动的椭圆轨道的半长轴是不同的D。
不同的行星绕太阳运动的轨道各不相同8、类似于太阳与行星间的引力,地球和月球有相当大的万有引力,为什么它们不靠在一起,其原因是A。
专题02万有引力定律-2023年高考物理万有引力与航天常用模型最新模拟题精练(解析版)
高考物理《万有引力与航天》常用模型最新模拟题精练专题02.万有引力定律一.选择题1.(2022山西太原二模)人类在不同的星球能跳多高?若人在地球上以某一速度跳起,其重心可上升的高度为0.5m ,那么他以同样的速度在水星跳起重心可上升1.3m ,而在火星同样可上升1.3m 。
已知地球的半径为R ,水星的半径约为0.38R ,火星的半径约为0.53R ,可估算出()A.火星的质量为水星质量的5338倍B.火星与水星的密度相等C. 2.6倍D.5338【参考答案】D【名师解析】根据22v g h =,因同样的速度在火星和水星上跳起的高度相等,可知g 火=g 水根据2mM G mg R =,可得2gR M G =,2253=((38M R M R =火火水水,选项A 错误;根据33443Mg GR R ρππ==,可得38=53R R ρρ=火水水火,选项B 错误;根据22v g h =,可得1.3===2.60.5h g g h 火地地火,选项C 错误;根据2v m mg R=可得v gR =53==38v R v R 火火水水D 正确。
2.(2022山东枣庄一模)假设沿地轴的方向凿通一条贯穿地球两极的隧道,隧道极窄,地球仍可看作一个球心为O 、半径为R 、质量分布均匀的球体。
从隧道口P 点由静止释放一小球,下列说法正确的是(提示:一个带电金属圆球达到静电平衡时,电荷均匀分布在球外表面,球内部场强处处为0,外部某点场强与一个位于球心、与球所带电荷量相等的点电荷在该点产生的场强相同。
)()A.小球先做匀加速运动,后做匀减速运动B.小球在O 点受到地球的引力最大C.小球以O 点为平衡位置做简谐运动D.小球与地球组成系统的引力势能先增加后减少【参考答案】C【名师解析】设小球距圆心的距离为r ,地球的密度为ρ,小球的质量为m ,根据题意,由万有引力公式2GMmF r =可得,小球下落过程中,受到的引力为43F G mr πρ=则小球下落过程中所受引力的大小与到地心的距离成正比,且方向指向地心,故小球以O 点为平衡位置做简谐运动。
万有引力与航天--2-- word答案
万有引力与航天(二)基础题:1、关于地球的第一宇宙速度,下列说法中正确的是( B C )B 、它是近地圆形轨道上人造卫星的运行速度C 、它是能使卫星进入近地轨道的最小发射速度D 、它是能使卫星进入轨道的最大发射速度2、当人造卫星进入轨道作匀速圆周运动后,下列叙述不正确的是( C )A 、在任何轨道上运动时,地球球心都在卫星的轨道平面内B 、卫星运动速度一定不超过7.9km/sC 、卫星内的物体仍受重力作用,并可用弹簧秤直接测出所受重力的大小D 、卫星运行时的向心加速度等于卫星轨道所在处的重力加速度3、已知引力常量G 、月球中心到地球中心的距离R 和月球绕地球运行的周期T 。
仅利用 这三个数据,可以估算出的物理量有 ( B D )A .月球的质量B .地球的质量C .地球的半径D .月球绕地球运行速度的大小4、1970年4月24日,我国自行设计、制造的第一颗人造地球卫星“东方红一号”发射成功,开创了我国航天事业的新纪元。
“东方红一号”的运行轨道为椭圆轨道,其近地点M 和远地点N 的高度分别为439km 和2384km ,则( B C )A 、卫星在M 点的势能大于N 点的势能B 、卫星在M 点的角速度大于N 点的角速度C 、卫星在M 点的加速度大于N 点的加速度D 、卫星在N 点的速度大于7.9km/s5、图是“嫦娥一号奔月”示意图,卫星发射后通过自带的小型火箭多次变轨,进入地月转移轨道,最终被月球引力捕获,成为绕月卫星,并开展对月球的探测,下列说法正确的是( C )A .发射“嫦娥一号”的速度必须达到第三宇宙速度B .在绕月圆轨道上,卫星周期与卫星质量有关C .卫星受月球的引力与它到月球中心距离的平方成反比D .在绕月轨道上,卫星受地球的引力大于受月球的引力中等题6、已知太阳到地球与地球到月球的距离的比值约为390,月球绕地球旋转的周期约为27天.利用上述数据以及日常的天文知识,可估算出太阳对月球与地球对月球的万有引力的比值约为( B )A. 0.2B. 2C. 20D. 200 M N 地球7、英国《新科学家(New Scientist )》杂志评选出了2008年度世界8项科学之最,在XTEJ1650-500双星系统中发现的最小黑洞位列其中,若某黑洞的半径R 约45km ,质量M和半径R 的关系满足Gc R M 22=(其中c 为光速,G 为引力常量),则该黑洞表面引力加速度的数量级为 ( C )A .8210m/sB .10210m/sC .12210m/sD .14210m/s 8、一行星绕恒星作圆周运动。
(完整word版)万有引力与航天题型归纳一中,推荐文档
万有引力与航天题型总结题型一、求天体的质量(或密度)1.根据天体表面上物体的重力近似等于物体所受的万有引力,由mg=G 2RMm 得 G g R M 2=.式中M 、g 、R 分别表示天体的质量、天体表面的重力加速度和天体的半径.已知一名宇航员到达一个星球,在该星 球的赤道上用弹簧秤测量一物体的重力为G 1,在 两极用弹簧秤测量该物体的重力为G 2,经测量该星球的半径为R,物体的质量为m.求:该星球的质量.设星球的质量为M,物体在两极的重力等于万有引力,即 解得2.根据绕中心天体运动的卫星的运行周期和轨道半径,求中心天体的质量 卫星绕中心天体运动的向心力由中心天体对卫星的万有引力提供,利用牛顿第二定律得222224Tmr mr r v m r Mm G πω===.若已知卫星的轨道半径r 和卫星的运行周期T 、角速度ω或线速度v ,可求得中心天体的质量为G r GTr G rv M 3223224ωπ===例1、下列几组数据中能算出地球质量的是(万有引力常量G 是已知的)( CD )A.地球绕太阳运行的周期T 和地球中心离太阳中心的距离rB.月球绕地球运行的周期T 和地球的半径rC.月球绕地球运动的角速度和月球中心离地球中心的距离rD.月球绕地球运动的周期T 和轨道半径r[解析]要区分天体半径和天体圆周运动的轨道半径.已知地球绕太阳运行的周期和地球的轨道半径只能求出太阳的质量,而不能求出地球的质量,所以A 项不对.已知月球绕地球运行的周期和地球的半径,不知道月球绕地球的轨道半径,所以不能求地球的质量,所以B 项不对.已知月球绕地球运动的角速度和轨道半径,由22ωmr rMm G=可以求出中心天体地球的质量,所以C 项正确.由2224T mr r Mm G π=求得地球质量为2324GT r M π=,所以D 项正确. 例2. 天文学家新发现了太阳系外的一颗行星。
这颗行星的体积是地球的4.7倍,是地球的25倍。
万有引力与航天典型例题精析(附答案)
万有引力与航天一、选择题1.有科学家推测,太阳系的第九颗行星可以说是“隐居”着的地球的“孪生兄弟”,从地球上看,它永远在太阳的“背面”,永远与地球、太阳在一条直线上,因此,人类一直未能发现它,由以上信息可以确定 ( )A .这颗行星的轨道半径与地球相等B .这颗行星的半径等于地球的半径C .这颗行星绕太阳公转的周期与地球相同D .这颗行星的自转周期与地球相同2.(2007年高考宁夏理综)天文学家发现某恒星有一颗行星在圆形轨道上绕其运动,并测出了行星的轨道半径和运动周期.由此可推算出 ( )A .行星的质量B .行星的半径C .恒星的质量D .恒星的半径C .若v 2∝1/R 去,则该层是土星的一部分D .若v 2∝1/R 亩,则该层是土星的卫星群3.(2008年高考山东理综)据报道,我国数据中继卫星“天链一号01星”于2008年4月25日在西昌卫星发射中心发射升空,经过4次变轨控制后,于5月1日成功定点在东经77o 赤道上空的同步轨道.关于成功定点后的“天链一号01星”,下列说法正确的是 ( )A .运行速度大于7.9 km /sB .离地面高度一定,相对地面静止C .绕地球运行的角速度比月球绕地球运行的角速度大D .向心加速度与静止在赤道上物体的向心加速度大小相等4.同步卫星离地心距离为r ,运行速率为v 1,加速度为a 1;地球赤道上的物体随地球自转的向心加速度为a 2,第一宇宙速度为v 2,地球的半径为R ,则下列比值正确的是( )5.宇航员在月球上做自由落体实验,将某物体由距月球表面高h 处释放,经时间t 后落到月球表面(设月球半径为R).据上述信息推断,飞船在月球表面附近绕月球做匀速圆周运动所必须具有的速率为 ( )6(10分)在某个半径为m 105=R 的行星表面,对于一个质量1=m kg 的砝码,用弹簧称量,其重力的大小N 6.1=G 。
请您计算该星球的第一宇宙速度1v 是多大?(注:第一宇宙速度1v ,也即近地、最大环绕速度;本题可以认为物体重力大小与其万有引力的大小相等。
必修二第六章《万有引力与航天》知识点归纳与重点题型总结
高中物理必修二第六章万有引力与航天知识点概括与要点题型总结一、行星的运动1、开普勒行星运动三大定律①第必定律(轨道定律):全部行星绕太阳运动的轨道都是椭圆,太阳处在椭圆的一个焦点上。
②第二定律(面积定律):对随意一个行星来说,它与太阳的连线在相等的时间内扫过相等的面积。
推论:近期点速度比较快,远日点速度比较慢。
③第三定律(周期定律):全部行星的轨道的半长轴的三次方跟它的公转周期的二次方的比值都相等。
a3即:T 2k此中k是只与中心天体的质量相关,与做圆周运动的天体的质量没关。
推行:对环绕同一中心天体运动的行星或卫星,上式均成立。
K 取决于中心天体的质量例 . 有两个人造地球卫星,它们绕地球运行的轨道半径之比是1: 2,则它们绕地球运行的周期之比为。
二、万有引力定律1、万有引力定律的成立F G Mm①太阳与行星间引力公式r 2②月—地查验③卡文迪许的扭秤实验——测定引力常量 GG 6.67 10 11N2/ kg22、万有引力定律m①内容:自然界中任何两个物体都相互吸引,引力的大小与物体的质量m1和 m2的乘积成正比,与它们之间的距离 r 的二次方成反比。
即:F G m1m2r 2②合用条件(Ⅰ)可当作质点的两物体间,r 为两个物体质心间的距离。
(Ⅱ)质量散布均匀的两球体间,r 为两个球体球心间的距离。
③运用(1)万有引力与重力的关系:重力是万有引力的一个分力,一般状况下,可以为重力和万有引力相等。
忽视地球自转可得:mg G MmR2例 . 设地球的质量为 M ,赤道半径 R ,自转周期 T ,则地球赤道上质量为 m 的物体所受重力的大小为(式中 G 为万有引力恒量)(2)计算重力加快度G Mm地球表面邻近( h 《R ) 方法:万有引力≈重力mgMmR 2地球上空距离地心 r=R+h 处 mg ' G2 方法:( R h)在质量为 M ’,半径为 R ’的随意天体表面的重力加快度g ' ' 方法:mg''G M ' ' mR '' 2(3)计算天体的质量和密度Mm利用自己表面的重力加快度:GR 2mgMm v 2 24 2利用环绕天体的公转:G r 2m m rm 2 r 等等rT(注:联合 M4 R 3 获得中心天体的密度)3例 . 宇航员站在一星球表面上的某高处,以初速度 V 0 沿水平方向抛出一个小球,经过时间t ,球落到星球表面,小球落地时的速度大小为 V. 已知该星球的半径为 R ,引力常量为G ,求该星球的质量 M 。
万有引力与航天(天体)所有经典习题分类汇总
公转的周期为 288 年。若把它和地球绕太阳公转的轨道都看作圆,问它与太阳的距离约是地球与太阳距离的多少倍?(最后结果可 用根式表示)
20.飞船沿半径为 R 的圆周绕地球运动,其周期为 T,如果飞船要返回地面,可在轨道上的某一点 A 处,将速率降低到适当数值,从而 使飞船沿着以地心为焦点的特殊椭圆轨道运动,椭圆和地球表面在 B 点相切,如图所示,如果地球半径为 R0,求飞船由 A 点到 B 点 所需的时间。
4.已知以下的哪组数据就可算出地球的质量( ) A.地球绕太阳运动的周期 T 及地球到太阳中心的距离 R C.月球绕地球运动的周期 T 及月球的质量 A.轨道半径变小 B.向心加速度变小
5.探测器绕月球做匀速圆周运动,变轨后在周期较小的轨道上仍做匀速圆周运动,则变轨后与变轨前相比( 6.假如一作圆周运动的人造地球卫星的轨道半径增大到原来的 2 倍,仍做圆周运动,则( A.根据公式 v r ,可知卫星运动的线速度将增大到原来的 2 倍 B.根据公式 F C.根据公式 F
10 ) (
)
c
b b
c a
c a
b
c a
b C b
c a
a
A
甲
11
B
乙
D
12
18.地球公转运行的轨道半径 R=1.49×10 m,地球的公转周期为 1 年,土星运行的轨道半径 R′=1.43×10 m,则其周期多长?
19.据美联社 2002 年 10 月 7 日报道,天文学家在太阳系的 9 大行星之外,又发现了一颗比地球小得多的新行星,而且还测得它绕太阳 2
4 2 v 3 GT 2
C.行星运动的轨道半径为 vT
D.行星运动的加速度为
2 v T
13.假设地球是一半径为 R.质量分布均匀的球体。一矿井深度为 d。已知质量分布均匀的球壳对壳内物体的引力为零。矿井底部和地面 处的重力加速度大小之比为( d A.1- R d B.1+ R
第六章万有引力与航天单元检测二 附答案
万有引力与航天检测二一、选择题(15小题:每小题4分,共45分.)1.万有引力定律的发现实现了物理学史上的第一次大统一——“地上物理学”和“天上物理学”的统一.它表明天体运动和地面上物体的运动遵循相同的规律.牛顿在发现万有引力定律的过程中将行星的椭圆轨道运动假想成圆周运动;另外,还应用到了其它的规律和结论,其中有( )A.牛顿第二定律B.牛顿第三定律C.开普勒的研究成果D.卡文迪许通过扭秤实验得出的引力常数2.两个质量均匀的球体相距较远的距离r,它们之间的万有引力为10-8 N.若它们的质量、距离都增加为原来的2倍,则它们间的万有引力为()A.4×10-8N B.10-8N C.2×10-8 N D.10 -4N3.两个质量为M的星体,其连线的垂直平分线为PQ,O为两星体连线的中点.如图所示,一个质量为m的物体从O沿OP方向一直运动下去,则它受到的万有引力大小变化情况是()A.一直增大B.一直减小C.先减小,后增大D.先增大,后减小4.一飞船在某行星表面附近沿圆轨道绕该行星飞行,认为行星是密度均匀的球体.要确定该行星的密度只需要测量()A.飞船的轨道半径B.飞船的运行速度C.飞船的运行周期D.行星的质量5.最近,科学家在望远镜中看到太阳系外某一恒星有一行星,并测得它围绕恒星运动一周所用的时间为1200 年,它与该恒星的距离为地球到太阳距离的100倍.假定该行星绕恒星运行的轨道和地球绕太阳运行的轨道都是圆周,仅利用以上两个救据可以求出的量有()A.恒星质量与太阳质量之比B.恒星密度与太阳密度之比C.行星质量与地球质量之比D.行星运行速度与地球公转速度之比6.假设太阳系中天体的密度不变,天体直径和天体之间距离都缩小为原来的一半,地球绕太阳公转近似为匀速圆周运动,则下列物理量变化正确的是()A.地球的向心力变为缩小前的一半B.地球的向心力变为缩小前的1/16C.地球绕太阳公转周期与缩小前的相同D.地球绕太阳公转周期变为缩小前的一半7.关于“亚洲一号”地球同步通讯卫星,下述说法正确的是()A.已知它的质量是1.24t,若将它的质量增为2.48t,其同步轨道半径变为原来的2倍B.它的运行速度为7. 9km/sC.它可以定点在北京的正上方,所以我国能利用其进行电视转播D.它距地面的高度约为地球半径的5倍,所以卫星的向心加速度约为其下方地面上物体的重力加速度的1/368.(2009重庆理综)据报道,“嫦娥一号”和“嫦娥二号”绕月飞行器的圆形轨道距月球表面分别约为200Km和100Km,运动速率分别为v1和v2,那么v1和v 2的比值为(月球半径取1700Km ) ( )A .1918B .1918C .1819D .18199.2009年5月11日美国“阿特兰蒂斯”号航天飞机发射升空,机上的7名宇航员通过5次太空行走对哈勃望远镜进行了最后一次维护,为其更换了相机、电池、陀螺仪、对接环、光谱仪等设备。
高中物理万有引力与航天解题技巧及经典题型及练习题(含答案)含解析
高中物理万有引力与航天解题技巧及经典题型及练习题(含答案)含解析一、高中物理精讲专题测试万有引力与航天1.一宇航员在某未知星球的表面上做平抛运动实验:在离地面h 高处让小球以某一初速度水平抛出,他测出小球落地点与抛出点的水平距离为x 和落地时间t ,又已知该星球的半径为R ,己知万有引力常量为G ,求: (1)小球抛出的初速度v o (2)该星球表面的重力加速度g (3)该星球的质量M(4)该星球的第一宇宙速度v (最后结果必须用题中己知物理量表示) 【答案】(1) v 0=x/t (2) g=2h/t 2 (3) 2hR 2/(Gt 2) (4) 2hRt【解析】(1)小球做平抛运动,在水平方向:x=vt , 解得从抛出到落地时间为:v 0=x/t(2)小球做平抛运动时在竖直方向上有:h=12gt 2, 解得该星球表面的重力加速度为:g=2h/t 2;(3)设地球的质量为M ,静止在地面上的物体质量为m , 由万有引力等于物体的重力得:mg=2MmGR 所以该星球的质量为:M=2gR G= 2hR 2/(Gt 2); (4)设有一颗质量为m 的近地卫星绕地球作匀速圆周运动,速率为v ,由牛顿第二定律得: 22Mm v G m R R=重力等于万有引力,即mg=2MmGR, 解得该星球的第一宇宙速度为:2hRv gR ==2.天文学家将相距较近、仅在彼此的引力作用下运行的两颗恒星称为双星.双星系统在银河系中很普遍.利用双星系统中两颗恒星的运动特征可推算出它们的总质量.已知某双星系统中两颗恒星围绕它们连线上的某一固定点分别做匀速圆周运动,周期均为T ,两颗恒星之间的距离为r ,试推算这个双星系统的总质量.(引力常量为G ) 【答案】【解析】设两颗恒星的质量分别为m 1、m 2,做圆周运动的半径分别为r 1、r 2,角速度分别为w 1,w 2.根据题意有 w 1=w 2 ① (1分) r 1+r 2=r ② (1分)根据万有引力定律和牛顿定律,有 G ③ (3分) G④ (3分)联立以上各式解得⑤ (2分)根据解速度与周期的关系知⑥ (2分)联立③⑤⑥式解得(3分)本题考查天体运动中的双星问题,两星球间的相互作用力提供向心力,周期和角速度相同,由万有引力提供向心力列式求解3.我国发射的“嫦娥三号”登月探测器靠近月球后,经过一系列过程,在离月球表面高为h 处悬停,即相对月球静止.关闭发动机后,探测器自由下落,落到月球表面时的速度大小为v ,已知万有引力常量为G ,月球半径为R ,h R <<,忽略月球自转,求: (1)月球表面的重力加速度0g ; (2)月球的质量M ;(3)假如你站在月球表面,将某小球水平抛出,你会发现,抛出时的速度越大,小球落回到月球表面的落点就越远.所以,可以设想,如果速度足够大,小球就不再落回月球表面,它将绕月球做半径为R 的匀速圆周运动,成为月球的卫星.则这个抛出速度v 1至少为多大?【答案】(1)202v g h =(2)222v R M hG =(3)212v R v h=【解析】(1)根据自由落体运动规律202v g h =,解得202v g h=(2)在月球表面,设探测器的质量为m ,万有引力等于重力,02MmGmg R=,解得月球质量222v R M hG=(3)设小球质量为'm ,抛出时的速度1v 即为小球做圆周运动的环绕速度万有引力提供向心力212''v Mm G m R R =,解得小球速度至少为212v Rv h=4.从在某星球表面一倾角为θ的山坡上以初速度v 0平抛一物体,经时间t 该物体落到山坡上.已知该星球的半径为R ,一切阻力不计,引力常量为G ,求: (1)该星球表面的重力加速度的大小g (2)该星球的质量M .【答案】(1) 02tan v t θ (2) 202tan v R Gtθ 【解析】 【分析】(1)物体做平抛运动,应用平抛运动规律可以求出重力加速度.(2)物体在小球的表面受到的万有引力等于物体的重力,由此即可求出. 【详解】(1)物体做平抛运动,水平方向:0x v t =,竖直方向:212y gt = 由几何关系可知:02y gt tan x v θ== 解得:02v g tan tθ=(2)星球表面的物体受到的重力等于万有引力,即:2MmGmg R= 可得:2202v R tan gR M G Gtθ==【点睛】本题是一道万有引力定律应用与运动学相结合的综合题,考查了求重力加速度、星球自转的周期,应用平抛运动规律与万有引力公式、牛顿第二定律可以解题;解题时要注意“黄金代换”的应用.5.在物理学中,常常用等效替代、类比、微小量放大等方法来研究问题.如在牛顿发现万有引力定律一百多年后,卡文迪许利用微小量放大法由实验测出了万有引力常量G 的数值,如图所示是卡文迪许扭秤实验示意图.卡文迪许的实验常被称为是“称量地球质量”的实验,因为由G 的数值及其它已知量,就可计算出地球的质量,卡文迪许也因此被誉为第一个称量地球的人.(1)若在某次实验中,卡文迪许测出质量分别为m 1、m 2相距为r 的两个小球之间引力的大小为F ,求万有引力常量G ;(2)若已知地球半径为R ,地球表面重力加速度为g ,万有引力常量为G ,忽略地球自转的影响,请推导出地球质量及地球平均密度的表达式.【答案】(1)万有引力常量为212Fr G m m =.(2)地球质量为2R gG,地球平均密度的表达式为34g RG ρπ=【解析】 【分析】根据万有引力定律122m m F Gr=,化简可得万有引力常量G ; 在地球表面附近的物体受到重力等于万有引力2MmG mg R=,可以解得地球的质量M ,地球的体积为343V R π=,根据密度的定义M Vρ=,代入数据可以计算出地球平均密度. 【详解】(1)根据万有引力定律有:122m m F Gr = 解得:212Fr G m m =(2)设地球质量为M ,在地球表面任一物体质量为m ,在地球表面附近满足:2MmGmg R= 得地球的质量为: 2R gM G =地球的体积为:343V R π=解得地球的密度为:34gRGρπ=答:(1)万有引力常量为212Fr G m m =.(2)地球质量2R gM G=,地球平均密度的表达式为34gRGρπ=.6.据报道,科学家们在距离地球20万光年外发现了首颗系外“宜居”行星.假设该行星质量约为地球质量的6倍,半径约为地球半径的2倍.若某人在地球表面能举起60kg 的物体,试求:(1)人在这个行星表面能举起的物体的质量为多少? (2)这个行星的第一宇宙速度是地球第一宇宙速度的多少倍?【答案】(1)40kg (2 【解析】 【详解】(1)物体在星体表面的重力等于物体受到的万有引力,又有同一个人在两个星体表面能举起的物体重力相同,故有:22GM m GM mmg m g R R ''行地地行地行===; 所以,2221260406R M m m kg kg M R '⋅⋅⨯行地行地===; (2)第一宇宙速度即近地卫星的速度,故有:22 GMm mv R R =所以,v =;所以, v v 行地;7.“场”是除实物以外物质存在的另一种形式,是物质的一种形态.可以从力的角度和能量的角度来描述场.反映场力性质的物理量是场强.(1)真空中一个孤立的点电荷,电荷量为+Q ,静电力常量为k ,推导距离点电荷r 处的电场强度E 的表达式.(2)地球周围存在引力场,假设地球是一个密度均匀的球体,质量为M ,半径为R ,引力常量为G .a .请参考电场强度的定义,推导距离地心r 处(其中r ≥R )的引力场强度E 引的表达式.b .理论上已经证明:质量分布均匀的球壳对壳内物体的引力为零.推导距离地心r 处(其中r <R )的引力场强度E 引的表达式. 【答案】(1)2kQE r =(2)a . 2GM E r =引 b . 3GM E r R =引【解析】 【详解】 (1)由F E q =,2qQ F k r= ,得 2kQE r = (2)a .类比电场强度定义,F E m=万引,由2GMmF r =万, 得 2GME r=引b .由于质量分布均匀的球壳对其内部的物体的引力为0,当r <R 时,距地心r 处的引力场强是由半径为r 的“地球”产生的.设半径为r 的“地球”质量为M r ,33334433r M r M r MR Rππ=⨯=. 得23r GM GME r r R==引8.已知火星半径为R ,火星表面重力加速度为g ,万有引力常量为G ,某人造卫星绕火星做匀速圆周运动,其轨道离火星表面高度等于火星半径R ,忽略火星自转的影响。
高中物理万有引力与航天常见题型及答题技巧及练习题(含答案)
高中物理万有引力与航天常见题型及答题技巧及练习题(含答案)一、高中物理精讲专题测试万有引力与航天1.一艘宇宙飞船绕着某行星作匀速圆周运动,已知运动的轨道半径为r ,周期为T ,引力常量为G ,行星半径为求:(1)行星的质量M ;(2)行星表面的重力加速度g ;(3)行星的第一宇宙速度v .【答案】(1)(2) (3)【解析】【详解】 (1)设宇宙飞船的质量为m ,根据万有引力定律 求出行星质量(2)在行星表面求出:(3)在行星表面求出:【点睛】本题关键抓住星球表面重力等于万有引力,人造卫星的万有引力等于向心力.2.从在某星球表面一倾角为θ的山坡上以初速度v 0平抛一物体,经时间t 该物体落到山坡上.已知该星球的半径为R ,一切阻力不计,引力常量为G ,求:(1)该星球表面的重力加速度的大小g(2)该星球的质量M .【答案】(1) 02tan v t θ (2) 202tan v R Gtθ 【解析】【分析】(1)物体做平抛运动,应用平抛运动规律可以求出重力加速度.(2)物体在小球的表面受到的万有引力等于物体的重力,由此即可求出.【详解】(1)物体做平抛运动,水平方向:0x v t =,竖直方向:212y gt = 由几何关系可知:02y gt tan x v θ== 解得:02v g tan tθ= (2)星球表面的物体受到的重力等于万有引力,即:2Mm Gmg R = 可得:2202v R tan gR M G Gtθ== 【点睛】本题是一道万有引力定律应用与运动学相结合的综合题,考查了求重力加速度、星球自转的周期,应用平抛运动规律与万有引力公式、牛顿第二定律可以解题;解题时要注意“黄金代换”的应用.3.地球同步卫星,在通讯、导航等方面起到重要作用。
已知地球表面重力加速度为g ,地球半径为R ,地球自转周期为T ,引力常量为G ,求:(1)地球的质量M ;(2)同步卫星距离地面的高度h 。
【答案】(1)(2)【解析】【详解】 (1)地球表面的物体受到的重力等于万有引力,即:mg=G解得地球质量为:M=; (2)同步卫星绕地球做圆周运动的周期等于地球自转周期T ,同步卫星做圆周运动,万有引力提供向心力,由牛顿第二定律得:解得:;【点睛】 本题考查了万有引力定律的应用,知道地球表面的物体受到的重力等于万有引力,知道同步卫星的周期等于地球自转周期、万有引力提供向心力是解题的前提,应用万有引力公式与牛顿第二定律可以解题.4.某行星表面的重力加速度为g ,行星的质量为M ,现在该行星表面上有一宇航员站在地面上,以初速度0v 竖直向上扔小石子,已知万有引力常量为G .不考虑阻力和行星自转的因素,求:(1)行星的半径R ;(2)小石子能上升的最大高度.【答案】(1)GM Rg (2)202v h g = 【解析】 (1)对行星表面的某物体,有:2GMm mg R =- 得:GM R g(2)小石子在行星表面作竖直上抛运动,规定竖直向下的方向为正方向,有: 2002v gh =-+得:202v h g=5.宇航员王亚平在“天宫一号”飞船内进行了我国首次太空授课.若已知飞船绕地球做匀速圆周运动的周期为T ,地球半径为R ,地球表面重力加速度g ,求:(1)地球的第一宇宙速度v ;(2)飞船离地面的高度h .【答案】(1)v =(2)h R = 【解析】【详解】 (1)根据2v mg m R=得地球的第一宇宙速度为:v =(2)根据万有引力提供向心力有:()2224()Mm G m R h R h Tπ=++, 又2GM gR =,解得:h R = .6.“天宫一号”是我国自主研发的目标飞行器,是中国空间实验室的雏形,2017年6月,“神舟十号”与“太空一号”成功对接.现已知“太空一号”飞行器在轨运行周期为To ,运行速度为0v ,地球半径为R ,引力常量为.G 假设“天宫一号”环绕地球做匀速圖周运动,求:()1“天宫号”的轨道高度h .()2地球的质量M .【答案】(1)00 2v T h R π=- (2)300 2v T M Gπ= 【解析】【详解】(1)设“天宫一号”的轨道半径为r ,则有:002r v T π=“天宫一号”的轨道高度为:h r R =- 即为:002v T h R π=- (2)对“天宫一号”有:22204Mm G m r r T π= 所以有:3002v T M Gπ= 【点睛】万有引力应用问题主要从以下两点入手:一是星表面重力与万有引力相等,二是万有引力提供圆周运动向心力.7.双星系统一般都远离其他天体,由两颗距离较近的星体组成,在它们之间万有引力的相互作用下,绕中心连线上的某点做周期相同的匀速圆周运动。
高考物理知识点专题之万有引力与航天 专题02 变轨问题(解析版)
02.变轨问题—万有引力与航天绕地球做匀速圆周运动的人造卫星所需向心力由万有引力提供,r m r Tm ma r v m r GMm 222224ωπ====,轨道半径r 确定后(在轨),与之对应的卫星线速度r GM v =,周期GMr T 32π=,向心加速度=a 2r GM 等也都是唯一确定的。
如果卫星的质量是确定的,那么,与轨道半径r 对应的卫星的动能、重力势能、总机械能也是唯一确定的。
一旦卫星发生了变轨,即轨道半径r 发生了变化,上述所有物理量都将随之变化。
一类变轨是卫星因为受稀薄大气的影响速度变小,从而做向心运动,使卫星在更低的轨道运行;另一类变轨例如发射同步卫星,先将卫星发射到近地轨道I ,使其绕地球做匀速圆周运动,速率为1v ,变轨时在P 点点火加速,短时间内将速率由1v 增加到2v ,使卫星进入椭圆形转移轨道 II ;卫星运行到远地点Q 时,速率为3v ,此时进行第二次点火加速,短时间内将速率由3v 增加到4v ,使卫星进入同步轨道III ,绕地球做匀速圆周运动。
如图所示:1.如图所示,一颗人造卫星原来在椭圆轨道1绕地球E 运行,在P 变轨后进入轨道2做匀速圆周运动下列说法正确的是A.不论在轨道1还是在轨道2运行,卫星在P 点的速度都相同B.不论在轨道1还是在轨道2运行,卫星在P 点的加速度都相同C.卫星在轨道1的任何位置都具有相同加速度D.卫星在轨道2的任何位置都具有相同动量 【答案】B【解析】从1到2,需要加速逃逸,A 错;2Mm Gma R =可得21a R∝,半径相同,加速度相同,卫星在椭圆轨道1上运动时,运动半径变化,a 在变,C 错B 对;卫星在圆形轨道2上运动时,过程中的速度方向时刻改变,所以动量方向不同,D 错。
2.如图6所示,飞船从轨道1变轨至轨道2。
若飞船在两轨道上都做匀速圆周运动,不考虑质量变化,相对于在轨道1上,飞船在轨道2上的A.动能大B.向心加速度大C.运行周期长D.角速度小【解析】根据r m r Tm ma r v m r GMm 222224ωπ====, 得,动能=k E r GMm 2,r 变大,所以动能变小,A 错误;加速度=a 2r GM ,r 变大,所以加速度变小,B 错误;周期GMr T 32π=,r 变大,所以周期变大,C 正确;角速度3rGM=ω,r 变大,所以角速度变小,D 正确。
2023年高考物理一轮复习 万有引力与航天 一遍过(二)含答案
一轮复习考点一遍过7——万有引力定律之二目录 一、 引力加速度、重力加速度和向心加速度的区别 二、 星球瓦解问题 三、 双星问题 四、 追及问题 五、 天体的机械能 六、 综合问题一、 引力加速度、重力加速度和向心加速度的区别 1.(多选)如图所示,地球赤道上的山丘e 、近地资源卫星p 和同步通信卫星q 均在赤道平面上绕地心做匀速圆周运动.设e 、p 、q 的圆周运动速率分别为v 1、v 2、v 3,向心加速度分别为a 1、a 2、a 3,则( ). A .v 1>v 2>v 3 B .v 1<v 3<v 2 C .a 1>a 2>a 3 D .a 1<a 3<a 22如图,拉格朗日点L 1位于地球和月球连线上,处在该点的物体在地球和月球引力的共同作用下,可与月球一起以相同的周期绕地球运动。
据此,科学家设想在拉格朗日点L 1建立空间站,使其与月球同周期绕地球运动。
以a 1、a 2分别表示该空间站和月球向心加速度的大小,a 3表示地球同步卫星向心加速度的大小。
以下判断正确的是( ) A.a 2>a 3>a 1 B.a 2>a 1>a 3 C.a 3>a 1>a 2D.a 3>a 2>a 13. 国务院批复,自2016年起将4月24日设立为“中国航天日”。
1970年4月24日我国首次成功发射的人造卫星东方红一号,目前仍然在椭圆轨道上运行,其轨道近地点高度约为440 km,远地点高度约为2 060 km;1984年4月8日成功发射的东方红二号卫星运行在赤道上空35 786 km 的地球同步轨道上。
设东方红一号在远地点的加速度为a 1,东方红二号的加速度为a 2,固定在地球赤道上的物体随地球自转的加速度为a 3,则a 1、a 2、a 3的大小关系为( ) A.a 2>a 1>a 3 B.a 3>a 2>a 1 C.a 3>a 1>a 2 D.a 1>a 2>a 3二、 星球瓦解问题4.2018年2月,我国500 m 口径射电望远镜(天眼)发现毫秒脉冲星“J0318+0253”,其自转周期T =5.19 ms ,假设星体为质量均匀分布的球体,已知万有引力常量为11226.6710N m /kg -⨯⋅。
高考物理新力学知识点之万有引力与航天知识点总复习有解析(2)
高考物理新力学知识点之万有引力与航天知识点总复习有解析(2)一、选择题1.我国“北斗二代”计划在2020年前发射35颗卫星,形成全球性的定位导航系统,比美国GPS多5颗.多出的这5颗是相对地面静止的高轨道卫星(以下简称“静卫”),其他的有27颗中轨道卫星(以下简称“中卫”)的轨道高度为“静卫”轨道高度的.下列说法正确的是() A.“中卫”的线速度介于7.9km/s和11.2km/s之间B.“静卫”的轨道必须是在赤道上空C.如果质量相同,“静卫”与“中卫”的动能之比为3∶5D.“静卫”的运行周期小于“中卫”的运行周期2.关于地球同步通讯卫星,下列说法中正确的是()A.它的轨道可以是椭圆B.各国发射的这种卫星轨道半径都一样C.它不一定在赤道上空运行D.它运行的线速度一定大于第一宇宙速度3.2015年7月25日,我国发射的新一代北斗导航卫星,全部使用国产微处理器芯片(CPU),圆了航天人的“中国芯”之梦,该卫星在圆形轨道运行速度v满足()A.v<7.9 km/sB.7.9 km/s<v<11.2 km/sC.11.2 km/s<v<16.7 km/sD.v>16.7 km/s4.关于做匀速圆周运动的人造地球卫星,下列说法中正确的是()A.半径越大,周期越大B.半径越大,周期越小C.所有卫星的周期都相同,与半径无关D.所有卫星的周期都不同,与半径无关5.如图所示,发射地球同步卫星时,先将卫星发射至近地圆轨道1,然后经点火将卫星送入椭圆轨道2,然后再次点火,将卫星送入同步轨道3.轨道1、2相切于Q点,2、3相切于P点,则当卫星分别在1、2、3轨道上正常运行时,下列说法中正确的是( ).A.卫星在轨道3上的速率大于在轨道1上的速率B.卫星在轨道3上的角速度大于在轨道1上的角速度C.卫星在轨道1上经过Q点时的加速度大于它在轨道2上经过Q点时的加速度D.卫星在轨道2上经过P点时的加速度等于它在轨道3上经过P点时的加速度6.由于地球的自转,使得静止在地面的物体绕地轴做匀速圆周运动.对于这些做匀速圆周运动的物体,以下说法正确的是()A .向心力指向地心B .速度等于第一宇宙速度C .加速度等于重力加速度D .周期与地球自转的周期相等7.电影《流浪地球》深受观众喜爱,地球最后找到了新家园,是一颗质量比太阳大一倍的恒星,假设地球绕该恒星作匀速圆周运动,地球到这颗恒星中心的距离是地球到太阳中心的距离的2倍。
高中物理万有引力与航天常见题型及答题技巧及练习题(含答案)含解析
高中物理万有引力与航天常见题型及答题技巧及练习题(含答案)含解析一、高中物理精讲专题测试万有引力与航天1.一宇航员在某未知星球的表面上做平抛运动实验:在离地面h 高处让小球以某一初速度水平抛出,他测出小球落地点与抛出点的水平距离为x 和落地时间t ,又已知该星球的半径为R ,己知万有引力常量为G ,求: (1)小球抛出的初速度v o (2)该星球表面的重力加速度g (3)该星球的质量M(4)该星球的第一宇宙速度v (最后结果必须用题中己知物理量表示)【答案】(1) v 0=x/t (2) g=2h/t 2 (3) 2hR 2/(Gt 2) (4) t【解析】(1)小球做平抛运动,在水平方向:x=vt , 解得从抛出到落地时间为:v 0=x/t(2)小球做平抛运动时在竖直方向上有:h=12gt 2, 解得该星球表面的重力加速度为:g=2h/t 2;(3)设地球的质量为M ,静止在地面上的物体质量为m , 由万有引力等于物体的重力得:mg=2MmGR 所以该星球的质量为:M=2gR G= 2hR 2/(Gt 2); (4)设有一颗质量为m 的近地卫星绕地球作匀速圆周运动,速率为v ,由牛顿第二定律得: 22Mm v G m R R=重力等于万有引力,即mg=2MmGR,解得该星球的第一宇宙速度为:v ==2.宇航员在某星球表面以初速度v 0竖直向上抛出一个物体,物体上升的最大高度为h .已知该星球的半径为R ,且物体只受该星球的引力作用.求: (1)该星球表面的重力加速度;(2)从这个星球上发射卫星的第一宇宙速度.【答案】(1)202v h(2) v 【解析】本题考查竖直上抛运动和星球第一宇宙速度的计算.(1) 设该星球表面的重力加速度为g′,物体做竖直上抛运动,则202v g h='解得,该星球表面的重力加速度22v gh'=(2) 卫星贴近星球表面运行,则2vmg mR'=解得:星球上发射卫星的第一宇宙速度02Rv g R vh=='3.宇航员站在某质量分布均匀的星球表面一斜坡上P点,沿水平方向以初速度v0抛出一个小球,测得小球经时间t落到斜坡另一点Q上,斜坡的倾角α,已知该星球的半径为R,引力常量为G,求该星球的密度(已知球的体积公式是V=43πR3).【答案】03tan2VRGtαπ【解析】试题分析:平抛运动在水平方向上做匀速直线运动,在竖直方向上做自由落体运动,根据平抛运动的规律求出星球表面的重力加速度.根据万有引力等于重力求出星球的质量,结合密度的公式求出星球的密度.设该星球表现的重力加速度为g,根据平抛运动规律:水平方向:x v t=竖直方向:212y gt=平抛位移与水平方向的夹角的正切值212tangtyx v tα==得:02tanvgtα=设该星球质量M,对该星球表现质量为m1的物体有112GMmm gR=,解得GgRM2=由343V Rπ=,得:03tan2vMV RGtαρπ==4.我国科学家正在研究设计返回式月球软着陆器,计划在2030年前后实现航天员登月,对月球进行科学探测。
万有引力与航天典型题集(精)
1.已知地球同步卫星离地心的距离为r,运行速度为v 1,加速度为a 1,地球赤道上的物体随地球自转的向心加速度为a 2,第一宇宙速度为v 2,地球的半径为R,则下列比值正确的是:R r a a 21 221 r R a a R r v v 21 r Rv v 21 A B C D2.用m 表示地球通讯卫星(同步卫星)的质量,用h 表示它离地面的高度,R 0表示地球半径,g 0表示地球表面处的重力加速度,ω0表示地球自转的角速度。
则通讯卫星所受的地球对它的万有引力大小:A.等于 0 B.等于20020h R gR m C.等于340020 g R m D.以上均不对 3.近地人造卫星1和2绕地球做匀速圆周运动的周期分别为T 1和T 2,设在卫星1、卫星2各自所在的高度上的重力加速度大小分别为g 1、g 2,则A. B. C. D.4.宇宙飞船以周期为T 绕地地球作圆周运动时,由于地球遮挡阳光,会经历“日全食”过程,如图所示。
已知地球的半径为R,地球质量为M,引力常量为G,地球自转周期为T 0,太阳光可看作平行光,宇航员在A 点测出的张角为 ,则A. 飞船绕地球运动的线速度为B. 一天内飞船经历“日全食”的次数为T/T 0C. 飞船每次“日全食”过程的时间为D. 飞船周期为T=5. 某颗地球同步卫星正下方的地球表面上有一观察者,他用天文望远镜观察被太阳光照射的此卫星,试问,春分那天(太阳光直射赤道)在日落12小时内有多长时间该观察者看不见此卫星?已知地球半径为R,地球表面处的重力加速度为g,地球自转周期为T,不考虑大气对光的折射 22sin()RT/(2)aT 222sin()sin()R RGM6.我国发射的“嫦娥一号”探月卫星沿近似于圆形的轨道绕月飞行。
为了获得月球表面全貌的信息,让卫星轨道平面缓慢变化。
卫星将获得的信息持续用微波信号发回地球。
设地球和月球的质量分别为M 和m,地球和月球的半径分别为R 和R 1,月球绕地球的轨道半径和卫星绕月球的轨道半径分别为r 和r 1,月球绕地球转动的周期为T。
高考物理万有引力与航天常见题型及答题技巧及练习题(含答案)含解析
高考物理万有引力与航天常见题型及答题技巧及练习题(含答案)含解析一、高中物理精讲专题测试万有引力与航天1.“天宫一号”是我国自主研发的目标飞行器,是中国空间实验室的雏形.2013年6月,“神舟十号”与“天宫一号”成功对接,6月20日3位航天员为全国中学生上了一节生动的物理课.已知“天宫一号”飞行器运行周期T,地球半径为R,地球表面的重力加速度为g,“天宫一号”环绕地球做匀速圆周运动,万有引力常量为G.求:(1)地球的密度;(2)地球的第一宇宙速度v;(3)“天宫一号”距离地球表面的高度.【答案】(1)34gGR ρπ=(2)v gR= (3)22324gT Rh Rπ=-【解析】(1)在地球表面重力与万有引力相等:2MmG mgR=,地球密度:343M MRVρπ==解得:34gGRρπ=(2)第一宇宙速度是近地卫星运行的速度,2vmg mR=v gR=(3)天宫一号的轨道半径r R h=+,据万有引力提供圆周运动向心力有:()()2224MmG m R hTR hπ=++,解得:22324gT Rh Rπ=-2.如图所示,假设某星球表面上有一倾角为θ=37°的固定斜面,一质量为m=2.0 kg的小物块从斜面底端以速度9 m/s沿斜面向上运动,小物块运动1.5 s时速度恰好为零.已知小物块和斜面间的动摩擦因数为0.25,该星球半径为R=1.2×103km.试求:(sin 37°=0.6,cos 37°=0.8)(1)该星球表面上的重力加速度g的大小.(2)该星球的第一宇宙速度.【答案】(1)g=7.5m/s2(2)3×103m/s【解析】 【分析】 【详解】(1)小物块沿斜面向上运动过程00v at =- 解得:26m/s a =又有:sin cos mg mg ma θμθ+= 解得:27.5m/s g =(2)设星球的第一宇宙速度为v ,根据万有引力等于重力,重力提供向心力,则有:2mv mg R=3310m/s v ==⨯3.设地球质量为M ,自转周期为T ,万有引力常量为G .将地球视为半径为R 、质量分布均匀的球体,不考虑空气的影响.若把一质量为m 的物体放在地球表面的不同位置,由于地球自转,它对地面的压力会有所不同.(1)若把物体放在北极的地表,求该物体对地表压力的大小F 1; (2)若把物体放在赤道的地表,求该物体对地表压力的大小F 2;(3)假设要发射一颗卫星,要求卫星定位于第(2)问所述物体的上方,且与物体间距离始终不变,请说明该卫星的轨道特点并求出卫星距地面的高度h .【答案】(1)2GMm R (2)22224Mm F G m R R T π=-(3)h R = 【解析】 【详解】(1) 物体放在北极的地表,根据万有引力等于重力可得:2MmG mg R = 物体相对地心是静止的则有:1F mg =,因此有:12MmF GR = (2)放在赤道表面的物体相对地心做圆周运动,根据牛顿第二定律:22224Mm GF mR RTπ-=解得: 22224Mm F G m R R Tπ=-(3)为满足题目要求,该卫星的轨道平面必须在赤道平面内,且做圆周运动的周期等于地球自转周期T以卫星为研究对象,根据牛顿第二定律:2224()()Mm GmR h R h Tπ=++解得卫星距地面的高度为:2324GMTh R π=-4.宇航员在某星球表面以初速度2.0m/s 水平抛出一小球,通过传感器得到如图所示的运动轨迹,图中O 为抛出点。
高中物理万有引力与航天常见题型及答题技巧及练习题(含答案)
高中物理万有引力与航天常见题型及答题技巧及练习题(含答案)一、高中物理精讲专题测试万有引力与航天1.如图所示,A 是地球的同步卫星,另一卫星B 的圆形轨道位于赤道平面内,离地面高度为h.已知地球半径为R ,地球自转角速度为ω0,地球表面的重力加速度为g ,O 为地球中心.(1)求卫星B 的运行周期.(2)如卫星B 绕行方向与地球自转方向相同,某时刻A 、B 两卫星相距最近(O 、B 、A 在同一直线上),则至少经过多长时间,它们再一次相距最近? 【答案】(1)32()2B R h T gR +=23()t gR R h ω=-+ 【解析】 【详解】(1)由万有引力定律和向心力公式得()()2224B MmGm R h T R h π=++①,2Mm G mg R =②联立①②解得:()322B R h T R g+=(2)由题意得()02B t ωωπ-=④,由③得()23B gR R h ω=+代入④得()203t R gR h ω=-+2.如图所示是一种测量重力加速度g 的装置。
在某星球上,将真空长直管沿竖直方向放置,管内小球以某一初速度自O 点竖直上抛,经t 时间上升到最高点,OP 间的距离为h ,已知引力常量为G ,星球的半径为R ;求:(1)该星球表面的重力加速度g ; (2)该星球的质量M ; (3)该星球的第一宇宙速度v 1。
【答案】(1)22hg t= (2)222hR Gt (32hR【解析】(1)由竖直上抛运动规律得:t 上=t 下=t由自由落体运动规律: 212h gt = 22h g t=(2)在地表附近: 2MmGmg R= 2222gR hR M G Gt== (3)由万有引力提供卫星圆周运动向心力得: 212v Mm G m R R=12GMhRv R t== 点睛:本题借助于竖直上抛求解重力加速度,并利用地球表面的重力与万有引力的关系求星球的质量。
3.2018年11月,我国成功发射第41颗北斗导航卫星,被称为“最强北斗”。
(完整word版)万有引力与航天重点知识归纳及经典例题练习(2),推荐文档
第五讲 万有引力定律重点归纳讲练知识梳理考点一、万有引力定律 1. 开普勒行星运动定律 (1) 第一定律(轨道定律):所有的行星围绕太阳运动的轨道都是椭圆,太阳处在椭圆的一个焦点上。
(2) 第二定律(面积定律):对任意一个行星来说,它与太阳的连线在相等时间内扫过相等的面积。
(3) 第三定律(周期定律):所有行星的轨道的半长轴的三次方跟公转周期二次方的比值都相等,表达式:k Ta =23。
其中k 值与太阳有关,与行星无关。
(4) 推广:开普勒行星运动定律不仅适用于行星绕太阳运转,也适用于卫星绕地球运转。
当卫星绕行星旋转时,k Ta =23,但k 值不同,k 与行星有关,与卫星无关。
(5) 中学阶段对天体运动的处理办法:①把椭圆近似为园,太阳在圆心;②认为v 与ω不变,行星或卫星做匀速圆周运动; ③k TR =23,R ——轨道半径。
2. 万有引力定律 (1) 内容:万有引力F 与m 1m 2成正比,与r 2成反比。
(2) 公式:221rm m G F =,G 叫万有引力常量,2211/1067.6kg m N G ⋅⨯=-。
(3) 适用条件:①严格条件为两个质点;②两个质量分布均匀的球体,r 指两球心间的距离;③一个均匀球体和球外一个质点,r 指质点到球心间的距离。
(4) 两个物体间的万有引力也遵循牛顿第三定律。
3. 万有引力与重力的关系(1) 万有引力对物体的作用效果可以等效为两个力的作用,一个是重力mg ,另一个是物体随地球自转所需的向心力f ,如图所示。
①在赤道上,F=F 向+mg ,即R m R Mm G mg 22ω-=;②在两极F=mg ,即mg R Mm G =2;故纬度越大,重力加速度越大。
由以上分析可知,重力和重力加速度都随纬度的增加而增大。
(2) 物体受到的重力随地面高度的变化而变化。
在地面上,22R GM g mg R Mm G =⇒=;在地球表面高度为h 处:22)()(h R GM g mg h R Mm Gh h +=⇒=+,所以g h R R g h 22)(+=,随高度的增加,重力加速度减小。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
万有引力与航天基本题型
姓名_______
1.宇宙飞船进人一个围绕太阳运行的近乎圆形轨道上运动,如果轨道半径是地球轨道半径的9倍,那么宇宙飞船绕太阳运行的周期是 ( ) (A )3年 (B )9年 (C )27年 (D )81年
2.关于开普勒行星运动的公式2
3T
R =k ,以下理解正确的是 ( )
A .k 是一个与行星无关的常量
B .若地球绕太阳运转轨道的半长轴为R 地,周期为T 地;月球绕地球运转轨道的长半轴为R 月,周期为T 月,则
2
3
2
3月
月地
地T R T R =
C .T 表示行星运动的自转周期
D .T 表示行星运动的公转周期
3.某一颗人造卫星(同步)距地面高度为h ,设地球半径为R ,自转周期为T ,地面处
的重力加速度为g ,则该同步卫星线速度大小为 ( ) (A ) g h R )(+ (B ) 2π(h +R )/T
(C )
)/(2
h R g R + (D )
Rh
4.两颗人造地球卫星质量之比是1∶2,轨道半径之比是3∶1,则下述说法中,正确的是( )
(A )它们的周期之比是3∶1 (B )它们的线速度之比是1∶3 (C )它们的向心加速度之比是1∶9 (D )它们的向心力之比是1∶9
5.人造地球卫星的轨道半径增大到原来的2倍,仍做圆周运动,则( )
(A )根据公式v =ωr ,可知卫星运动的线速度将增大到原来的2倍 (B )根据公式F= mv 2/r ,可知卫星所需的向心力减小到原来的1/2 (C )根据公式F =GMm/r 2,可知地球提供的向心力将减小到原来的1/4
(D )根据上述B 和C 中给出的公式,可知卫星运动的线速度减小到原来的2/2
6、宇航员在月球上做自由落体实验,将某物体由距月球表面高h 处释放,经时间t 后落
到月球表面(设月球半径为R )。
据上述信息推断,飞船在月球表面附近绕月球做匀
速圆周运动所必须具有的速率为 ( ) A .
t
Rh 2 B .t
Rh 2 C .t
Rh D .t
Rh 2
7、已知地球的质量为M ,月球的质量为m ,月球绕地球的轨道半径为r ,周期为T ,引
力常量为G ,则月球绕地球运行轨道处的重力加速度等于 ( )
A .2r
m G
B .2
r M G C .G 2
24T
π D .2
24T
r π
8、一个行星,其半径是地球的半径的3倍,质量是地球的25倍,则它表面的重力加速
度是地球表面重力加速度的 ( )
A .6倍
B .4倍
C .25/9倍
D .12倍
9、人造地球卫星绕地球表面附近做匀速圆周运动,设地球半径为R ,地面处的重力加速度为g ,则人造地球卫星 ( ) A .绕行的线速度最大为Rg B .绕行的周期小于g R /2π
C .在距地面高为R 处的绕行速度为2/Rg
D .在距地面高为R 处的周期为g R /22π
10.某行星质量为地球质量的1/3,半径为地球半径的3倍,则此行星的第一宇宙速度约
为地球第一宇宙速度的 ( ) A .9倍 B .1/3 C .3倍 D .1/9 11、如图,a 、b 、c 是在地球大气层外圆轨道上运动的3颗卫星,下列说法正确的是( ) A .b 、c 的线速度大小相等,且大于a 的线速度
B .b 、c 的向心加速度大小相等,且大于a 的向心加速度
C .c 加速可追上同一轨道上的b ,b 减速可等候同一轨道上的c
D .a 卫星由于某原因,轨道半径缓慢减小,其线速度将增大
12、某星球的质量约为地球的9倍,半径约为地球的一半,若从地球上高h处平抛一物
体,射程为60 m,则在该星球上,从同样高度,以同样的初速度平抛同一物体,射程应为()
A.10m
B.15m
C.90m
D.360m
13、下列几组数据中能算出地球质量的是(万有引力常量G是已知的)()
A.地球绕太阳运行的周期T和地球中心离太阳中心的距离r
B.月球绕地球运行的周期T和地球的半径r
C.月球绕地球运动的角速度和月球中心离地球中心的距离r
D.月球绕地球运动的周期T和轨道半径r
14.若已知某行星绕太阳公转的半径为r,公转周期为T,万有引力常量为G,则由此可
求出()
A. 某行星的质量
B.太阳的质量
C. 某行星的密度
D.太阳的密度15.一艘宇宙飞船贴近一恒星表面飞行,测得它匀速圆周运动的周期为T,设万有引力
常数G,则此恒星的平均密度为:()A.GT2/3πB.3π/GT2 C.GT2/4πD.4π/ GT2
16.为了计算某一个天体的质量,需要知道绕该天体作匀速圆周运动的另一个星球的条件是
A、质量和周期
B、运转周期和轨道半径 ( )
C、轨道半径和线速度
D、转速和质量
17、经长期观测人们在宇宙中已经发现了“双星系统”。
“双星系统”由两颗相距较近的
恒星组成,每个恒星的线度远小于两个星体之间的距离,而且双星系统一般远离其他天体。
如图,两颗星球组成的双星,在相互之间的万有引力作用下,绕连线上的O点做周期相同的匀速圆周运动。
现测得两颗星之间的距离为L,质量之比为m1∶m2 =3∶2,则可知()
A.m1、m2做圆周运动的线速度之比为3∶2
B.m1、m2做圆周运动的角速度之比为3∶2
2L
C.m1做圆周运动的半径为
5
2L
D.m2做圆周运动的半径为
5
18、两颗靠得较近的天体称为双星,它们以两者连线上某点为圆心做匀速圆周运动,因
而不致于由于万有引力作用而吸引在一起,下列说法中正确的是()
A.它们所受向心力之比与其质量成正比
B.它们做匀速圆周运动的角速度之比是1∶1
C.它们做匀速圆周运动的轨道半径之比与其质量成反比
D.它们做匀速圆周运动的线速度大小与其质量成反比。