Investigation of stress-strain behavior of single walled carbon nanotube-rubber composites
第八届国际凝聚态理论与计算材料学会议

大会将请专家对以下领域作专题性的特邀报告:
(1). 凝聚态物理的最新进展:
A. 自旋电子学
B. 纳米材料
C. 固体量子信息和计算
D. 玻色-爱因斯坦凝聚
E. 强关联电子系统
F. 高温超导
G. 量子霍尔效应
H. 磁学
I 表面和界面
J. 半导体物理
K. 低维凝聚态物理
L. 介观物理
M. 软凝聚态物质
N. 生物物理
structure Metallic Phases in Solid Germane (GeH4) under Pressure 锗烷在
压力下的金属相
11:45 -12:15
12:15 -13:00
午餐
张振宇 橡树岭国家实验室
柳百新
清华大学
林海青 香港中文大学 牛谦 美国德克萨斯大学
7 月 16 日
凝聚态理论专题邀请报告 I 主持人:谢心澄 地点:芙蓉厅
14:30 -14:55 14:55 -15:20 15:20 -15:45 15:45 -16:10 16:10 -16:35 16:35 -16:50
7 月 16 日
Manipulating Magnetization States of Nanostructures Two-spin decoherence in semiconductor quantum dots
稀磁半导体(Al,Cr)N 中的氮空位与高温铁磁性的第一原理研究
蒋青 刘邦贵
吉林大学 中科院物理所
15:20 -15:45 15:45 -16:10 16:10 -16:35
Theoretical and experimental studies of semiconductor dilute nitrides and devices
人大考研-化学系研究生导师简介-金朝霞教授

爱考机构-人大考研-化学系研究生导师简介-金朝霞教授金朝霞教授金朝霞,1970年出生。
北京大学化学系理学学士(1991年);北京大学化学系助理工程师(1991年)、工程师(1996年);新加坡国立大学化学系哲学博士(2002年);韩国国立汉城大学物理系博士后研究(2001年-2002年)。
中国人民大学化学系副教授(2004年6月),教授(2011年7月)。
主要研究方向:a.限域条件下聚合物纳米结构的制备、性质与功能的研究 b.碳纳米材料与聚合物的复合材料的生物医学应用主要科研项目与课题在研课题:国家自然科学基金面上项目21074149(2011.1-2013.12),51173201(2012.1-2015.12)中国人民大学明德学者计划(2009.12-2012.12)北京分子科学国家实验室开放课题(2009.10-2011.12)已完成课题:国家自然科学基金青年项目(2005年,项目号50503025)其他科研项目:中国人民大学科研启动基金教育部归国留学人员启动基金已发表论文:1.S.L.Mei,L.Wang,X.D.Feng,Z.X.Jin*,Swellingofblockcopolymernanoparticles---apro cesscombiningdeformationandphaseseparation,Langmuir2013,29,4640-4646.2.S.L.Mei, Z.X.Jin*,Mesoporousblock-copolymernanospherespreparedbyselectiveswelling,Small2 013,9,322-329.3.S.L.Mei,X.D.Feng,Z.X.Jin*,Polymernanofibersbycontrollableinfilt rationofvapourswollenpolymersintocylindricalnanopores,SoftMatter,2013,9,945-951 .4.X.D.Feng,S.L.Mei,Z.X.Jin*,Wettabilitytransitioninducedtransformationandentra pmentofpolymernanostructuresincylindricalnanopores,Langmuir2011,27,14240-14247.5.S.L.Mei,X.D.Feng,Z.X.Jin*,FabricationofPolymerNanospheresBasedonRayleighInsta bilityinCapillaryChannels,Macromolecules2011,44,1615-1620.6.L.Zhang,D.A.Zha,T.T .Du.S.L.Mei,Z.J.Shi,Z.X.Jin*,Formationofsuperhydrophobicmicrospheresofpoly(viny lidenefluoride-hexafluoropropylene)/graphenecompositeviagelation,Langmuir2011,2 7,8943-8949.7.D.A.Zha,S.L.Mei,Z.Y.Wang,H.J.Li,Z.J.ShiandZ.X.Jin*,Superhydrophob icpolyvinylidenefluoride/grapheneporousmaterials,Carbon2011,49,5166-5172.8.K.K. Zhao,Z.Y.Wang,Z.J.Shi,Z.N.Gu,Z.X.Jin*,Fillingdouble-walledcarbonnanotubeswithWO 3andWnanowiresviaconfinedchemicalreactions,J.Nanosci.Nanotechnol.2011,11,2278-2 282.9.H.L.Fan,L.L.Wang,K.K.Zhao,N.Li,Z.J.Shi,Z.G.Ge,andZ.X.Jin*,Fabrication,Mec hanicalProperties,andBiocompatibilityofGraphene-ReinforcedChitosanComposites,Bi omacromolecules2010,11,2345-2351.10.Q.C.Zhao,J.Yin,X.D.Feng,Z.J.Shi,Z.G.GeandZ. X.Jin*,Abiocompatiblechitosancompositecontainingphosphotungsticacidmodifiedsing le-walledcarbonnanotubes,J.Nanosci.Nanotechno.2010,10,7126-7129.11.X.D.Feng,Z.X .Jin*,SpontaneousFormationofNanoscalePolymerSpheres,Capsules,orRodsbyEvaporatio nofPolymerSolutionsinCylindricalAluminaNanopores,Macromolecules2009,42,569-572.12.Q.C.Zhao,X.D.Feng,S.L.MeiandZ.X.Jin*,Carbonnanotubeassistedhighloadingandcon trolledreleaseofpolyoxometalatesinbiodegradablemultilayerthinfilm,Nanotechnolog y2009,20,105101.13.Z.G.Ge,Z.X.JinandT.Cao,Manufactureofdegradablepolymericscaff oldsforboneregeneration,Biomed.Mater.2008,3,22001.14.Z.X.Jin*,Z.YWang,Z.J.Shi,H .J.Lee,Y.W.ParkandK.Akagi,Thehierarchicalmicrostructureofhelicalpolyacetylenena nofibers,Curr.App.Phys.2007,7,367.15.H.J.Lee,Z.X.Jin,A.N.Aleshin,J.Y.Lee,M.J.Go h,K.Akagi,Y.S.Kim,D.W.Kim,Y.W.Park,"Dispersionandcurrent-voltagecharacteristics ofhelicalpolyacetylenesinglefiber",J.Am.Chem.Soc.2004,126,16722.16.Z.X.Jin,S.H. Goh,G.Q.Xu,Y.W.Park,Dynamicmechanicalpropertiesofmulti-walledcarbonnanotube/poly(acrylicacid)-surfactantcomplex,Synth.Met.2003,135(Sp.Iss.),735-736.17.Z.X.Jin ,K.PPramoda,G.Q.Xu,S.HGoh,Poly(vinylidenefluoride)-assistedmelt-blendingofmulti -walledcarbonnanotube/poly(methylmethacrylate)composites,Mater.Res.Bull.,2002,3 7,271-278.18.Z.X.Jin,L.Huang,S.H.Goh,G.Q.Xu,W.Ji,Size-dependentopticallimitingb ehaviorofmulti-walledcarbonnanotubes,Chem.Phys.Lett.,2002,352,328-333.19.Z.X.Ji n,K.PPramoda,G.Q.Xu,S.HGoh,Dynamicmechanicalbehaviorofmelt-processedmulti-walle dcarbonnanotube/poly(methylmethacrylate)composites,Chem.Phys.Lett.,2001,337,43-47.20.Z.X.Jin,L.Huang,S.H.Goh,G.Q.Xu,W.Ji,Characterizationandnonlinearpropertie sofapoly(acrylicacid)-surfactant-multi-walledcarbonnanotubecomplex,Chem.Phys.Le tt.,2000,332,461-466.21.Z.X.Jin,X.Sun,G.Q.Xu,S.H.Goh,Nonlinearopticalproperties ofsomepolymer/multi-walledcarbonnanotubecomposites,Chem.Phys.Lett.,2000,318,505 -510.22.Z.X.Jin,G.Q.Xu,S.H.Goh,Apreferentiallyorderedaccumulationofbromineonmul ti-wallcarbonnanotube,Carbon2000,38,1135-1139.。
覆盖层上面板堆石坝趾板与基础连接方式的研究

(a) 柔性连接
表 3 面板挠度与顺坡向应力 Table 3 Deflection and stress of concrete face
应用方便,模型参数确定简单,且可直接应用邓肯 模型参数进行计算[8]。各种筑坝材料的模型计算参 数如表 1 所示。混凝土面板、趾板(连接板)、防渗 墙应力应变关系采用线弹性模型模拟。混凝土面板 弹性模量 E = 24 GPa,泊松比ν = 0.167;趾板弹性 模量 E = 22 GPa,泊松比ν = 0.167;混凝土防渗墙 弹性模量 E = 18 GPa,泊松比ν = 0.167。
100
150
3
10
0.0
0.50
0.45
0.30
0.10
0.5
沉渣
1.60
700 1 200
6
36ห้องสมุดไป่ตู้
0.0
0.70
0.50
0.36
0.10
1.2
• 2590 •
岩石力学与工程学报
2005 年
3.1 坝体变形 竣工时与蓄水至正常蓄水位时坝体最大剖面变
形计算结果如表 2 所示。由表 2 可见,不同趾板与 基础连接形式下,坝体、坝基的变形相近。
第 24 卷 第 14 期
沈 婷等. 覆盖层上面板堆石坝趾板与基础连接方式的研究
• 2591·
但防渗墙与连接板接缝相对沉陷较大,最大沉陷达 到 19.3 mm,连接板与趾板接缝也有少量的相对沉 陷,计算所得的最大值为 2.6 mm。
2010-CASTEP文章汇总

1.Alvin L.-S. Chua, Nicole A. Benedek, Lin Chen, Mike W. Finnis and Adrian P.Sutton,A genetic algorithm for predicting the structures of interfaces in multicomponentsystems,Nature Materials9 (2010) 418–422 ( abstract )2.Zhiguo Yi et al.,An orthophosphate semiconductor with photooxidation properties undervisible-light irradiation,Nature Materials9 (2010) 559–564 ( abstract )3.Chris J. Pickard and R. J. Needs,Aluminium at terapascal pressures,Nature Materials9 (2010) 624–627 ( abstract )4.Florian von Wrochem et al.,Efficient electronic coupling and improved stability with dithiocarbamate-based molecular junctions,Nature Nanotechnology5 (2010) 618–624 ( abstract )5.Wansheng Xiao, Dayong Tan, Xiaolin Xiong, Jing Liu, and Jian Xu,Large volume collapse observed in the phase transition in cubic PbCrO3perovskite,PNAS107 (2010) 14026–14029 ( abstract )6.G. Mercurio et al.,Structure and Energetics of Azobenzene on Ag(111): BenchmarkingSemiempirical Dispersion Correction Approaches,Physical Review Letters104 (2010) 036102 ( abstract )7.Xin-Zheng Li, Matthew I. J. Probert, Ali Alavi, and Angelos Michaelides,Quantum Nature of the Proton in Water-Hydroxyl Overlayers on Metal Surfaces, Physical Review Letters104 (2010) 066102 ( abstract )8.Albert P. Bartok, Mike C. Payne, Risi Kondor, Gabor Csanyi,Gaussian Approximation Potentials: The Accuracy of Quantum Mechanics,without the Electrons,Physical Review Letters104 (2010) 136403 ( abstract )9.Adem Tekin, Riccarda Caputo, and Andreas Zuttel,First-Principles Determination of the Ground-State Structure of LiBH4 ,Physical Review Letters104 (2010) 215501 ( abstract )10.Alexandra Friedrich et al.,Novel Rhenium Nitrides,Physical Review Letters105 (2010) 085504 ( abstract )11.M. K. Bradley et al.,Methoxy Species on Cu(110): Understanding the Local Structure of a KeyCatalytic Reaction Intermediate,Physical Review Letters105 (2010) 086101 ( abstract )12.G. Otero et al.,Ordered Vacancy Network Induced by the Growth of Epitaxial Graphene on Pt(111),Physical Review Letters105 (2010) 216102 ( abstract )13.D. Liu, S. Clark, and J. Robertson,Oxygen vacancy levels and electron transport in Al2O3,Applied Physics Letters96 (2010) 032905 ( abstract )14.Zhenkui Zhang, Ying Dai, Baibiao Huang, and Myung-Hwan Whangbo,Quantum confinement effect on the vacancy-induced spin polarization in carbon, silicon, and germanium nanoparticles: Density functional analysis,Applied Physics Letters96 (2010) 062505 ( abstract )15.Haowei Zhang et al.,Ionic doping effect in ZrO2 resistive switching memory,Applied Physics Letters96 (2010) 123502 ( abstract )16.Fu-Yang Tian, Yuan-Xu Wang, V. C. Lo, and Jiang Sheng,An ab initio investigation of boron nanotube in ringlike cluster form,Applied Physics Letters96 (2010) 131901 ( abstract )17.X. Wu et al.,Electrode material dependent breakdown and recovery in advanced high-kstacks,Applied Physics Letters96 (2010) 202903 ( abstract )18.C. Eames, M. I. J. Probert, and S. P. Tear,The structure and growth direction of rare earth silicide nanowires on Si(100), Applied Physics Letters96 (2010) 241903 ( abstract )19.Yi Sun et al.,Evidence for surface states in a single 3 nm diameter Co3O4 nanowire,Applied Physics Letters96 (2010) 262106 ( abstract )20.Jiangang He, Kechen Wu, Rongjian Sa, Qiaohong Li, and Yongqin Wei,Modulating the electronic structures and optical absorption spectra of BeOnanotubes by uniaxial strain,Applied Physics Letters97 (2010) 051901 ( abstract )21.Qi-Jun Liu et al.,Density functional theory study of 3R- and 2H-CuAlO2 under pressure,Applied Physics Letters97 (2010) 141917 ( abstract )22.R. E. Simpson et al.,Non-melting super-resolution near-field apertures in Sb-Te alloys,Applied Physics Letters97 (2010) 161906 ( abstract )23.Manny Gonzales, Jack Chessa, and C. V. Ramana,An ab initio study of the elastic behavior of single crystal group (IV) diborides at elevated temperatures,Applied Physics Letters97 (2010) 211908 ( abstract )24.Z. T. Chen, L. Wang, X. L. Yang, C. D. Wang, and G. Y. Zhang,Mechanism of ultrahigh Mn concentration in epitaxially grown wurtziteGa1-x Mn x N,Applied Physics Letters97 (2010) 222108 ( abstract )25.J. G. Guo et al.,The itinerant state of carriers in pnictide NaCu2P2: Role of distortion in CuP4 tetrahedra,Europhysics Letters92 (2010) 57002 ( abstract )26.Minoru Osada et al.,Robust High-k Response in Molecularly Thin Perovskite Nanosheets,ACS Nano4 (2010) 5225–5232 ( abstract )27.Michael Moseler, Felipe Cervantes-Sodi, Stephan Hofmann, Gabor Csanyi, andAndrea C. FerrariDynamic Catalyst Restructuring during Carbon Nanotube Growth,ACS Nano4 (2010) 7587–7595 ( abstract )28.C. Rohr et al.,Molecular Jigsaw: Pattern Diversity Encoded by Elementary GeometricalFeatures,Nano Letters10 (2010) 833–837 ( abstract )29.J. Wang, S. J. Xiong, X. L. Wu, T. H. Li, and Paul K. Chu,Glycerol-Bonded 3C-SiC Nanocrystal Solid Films Exhibiting Broad and Stable Violet to Blue-Green Emission,Nano Letters10 (2010) 1466–1471 ( abstract )30.Jaeil Bai, Hideki Tanaka and Xiao Cheng Zeng,Graphene-like bilayer hexagonal silicon polymorph,Nano Research3 (2010) 694–700 ( abstract )31.Guoliang Chai, Chensheng Lin, Minyi Zhang, Jinyun Wang and Wendan Cheng,First-principles study of CN carbon nitride nanotubes,Nanotechnology21 (2010) 195702 ( abstract )32.Zenan Qi,A molecular simulation analysis of producing monatomic carbon chains bystretching ultranarrow graphene nanoribbons,Nanotechnology21 (2010) 265702 ( abstract )33.Faxian Xiu et al.,Voltage-controlled ferromagnetic order in MnGe quantum dots,Nanotechnology21 (2010) 375606 ( abstract )34.Xi Zhang, Jer-lai Kuo, Mingxia Gu, Ping Bai and Chang Q. Sun,Graphene nanoribbon band-gap expansion: Broken-bond-induced edge strain and quantum entrapment,Nanoscale2 (2010) 2160–2163 ( abstract )35.Matete G. Mashapa, Suprakas Sinha Ray,Effect of Oxygen Doping on Electrical Properties of Small Radius (2, 1)Single-Walled Carbon Nanotubes,Journal of Nanoscience and Nanotechnology10 (2010) 4234–4239 ( abstract ) 36.Fang-Ying Zhang, Z. Zeng, J. Q. You,,The Electronic and Optical Properties of Al2O3, MO, and MAl2O4 (M = Zn, Mg), Journal of Nanoscience and Nanotechnology10 (2010) 5475–5478 ( abstract ) 37.Guosheng Shao et al.,Molecular Design of TiO2 for Gigantic Red Shift via Sublattice Substitution,Journal of Nanoscience and Nanotechnology10 (2010) 7092–7096 ( abstract ) 38.Yong-Hui Zhang et al.,Effects of Stone-Wales Defect on the Interactions Between NH3, NO2 andGraphene,Journal of Nanoscience and Nanotechnology10 (2010) 7347–7350 ( abstract ) 39.Hongzhi Luo et al.,The structural and magnetic properties of Mn2-x Fe x NiGa Heusler alloys,Journal of Applied Physics107 (2010) 013905 ( abstract )40.De-ming Chen et al.,W-doped anatase TiO2 transparent conductive oxide films: Theory andexperiment,Journal of Applied Physics107 (2010) 063707 ( abstract )41.A. Chroneos,Dopant-vacancy cluster formation in germanium,Journal of Applied Physics107 (2010) 076101 ( abstract )42.Yanlu Li et al.,Structural, electronic, and optical properties of α, β, and γ-TeO2,Journal of Applied Physics107 (2010) 093506 ( abstract )43.A. Chroneos and C. A. Londos,Interaction of A-centers with isovalent impurities in silicon,Journal of Applied Physics107 (2010) 093518 ( abstract )44.Shao-Feng Ding et al.,Cu adhesion on tantalum and ruthenium surface: Density functional theory study, Journal of Applied Physics107 (2010) 103534 ( abstract )45.J. N. Yun, Z. Y. Zhang, J. F. Yan, and W. Zhao,First-principles study of structural stability and electronic structure of La-doped Sr1.9375La0.0625TiO3.968 75,Journal of Applied Physics107 (2010) 103711 ( abstract )46.N. Li, K. L. Yao, G. Y. Gao, L. Zhu, and Y. Y. Wu,Surface properties of the (001) surface of cubic BaMnO3: A density functional theory study,Journal of Applied Physics107 (2010) 123704 ( abstract )47.Honglei Wu, Ruisheng Zheng, Wen Liu, Shu Meng, and Junyi Huang,C and Si codoping method for p-type AlN,Journal of Applied Physics108 (2010) 053715 ( abstract )48.Aimin Hao et al.,First-principles investigations on electronic, elastic and optical properties of XC (X = Si, Ge, and Sn) under high pressure,Journal of Applied Physics108 (2010) 063531 ( abstract )49.J. C. Li et al.,Vibrational and thermal properties of small diameter silicon nanowires,Journal of Applied Physics108 (2010) 063702 ( abstract )50.Yuan Zhao, Theresa E. Feltes, John R. Regalbuto, Randall J. Meyer, and RobertF. Klie,In situ electron energy loss spectroscopy study of metallic Co and Co oxides, Journal of Applied Physics108 (2010) 063704 ( abstract )51.Yoshiki Iwazaki, Toshimasa Suzuki, and Shinji Tsuneyuki,Negatively charged hydrogen at oxygen-vacancy sites in BaTiO3:Density-functional calculation,Journal of Applied Physics108 (2010) 083705 ( abstract )52.Jihua Zhang et al.,Can we enhance two-dimensional electron gas from ferroelectric/GaNheterostructures?Journal of Applied Physics108 (2010) 084501 ( abstract )53.Liming Sun et al.,First-principles studies of electronic, optical, and vibrational properties ofLaVO4 polymorph,Journal of Applied Physics108 (2010) 093519 ( abstract )54.M. G. Brik, A. Kaminska, and A. Suchocki,Ab initio calculations of structural, electronic, optical, and elastic properties of pure and Yb-doped InP at varying pressure,Journal of Applied Physics108 (2010) 103520 ( abstract )55.Chris J. Pickard, R. J. Needs,Hypothetical low-energy chiral framework structure of group 14 elements,Physical Review B81 (2010) 014106 ( abstract )56.K. Y. Tse, D. Liu, and J. Robertson,Electronic and atomic structure of metal-HfO2 interfaces,Physical Review B81 (2010) 035325 ( abstract )57.Raphael Shirley, Markus Kraft, Oliver R. Inderwildi,Electronic and optical properties of aluminium-doped anatase and rutile TiO2 from ab initio calculations,Physical Review B81 (2010) 075111 ( abstract )58.J. A. Verges and P. L. de Andres,Trapping of electrons near chemisorbed hydrogen on graphene,Physical Review B81 (2010) 075423 ( abstract )59.Hayley McKay, David J. Wales, S. J. Jenkins, J. A. Verges, and P. L. de Andres,Hydrogen on graphene under stress: Molecular dissociation and gap opening, Physical Review B81 (2010) 075425 ( abstract )60.Payam Kaghazchi and Timo Jacob,Oxygen-induced reconstruction of Re(101-10) studied by density functional theory,Physical Review B81 (2010) 075431 ( abstract )61.D. Spagnoli, K. Refson, K. Wright, and J. D. GaleDensity functional theory study of the relative stability of the iron disulfide polymorphs pyrite and marcasite,Physical Review B81 (2010) 094106 ( abstract )62.S. J. Clark, J. Robertson, S. Lany, and A. Zunger,Intrinsic defects in ZnO calculated by screened exchange and hybrid density functionals,Physical Review B81 (2010) 115311 ( abstract )63.Shinta Watanabe, Kazuyoshi Ogasawara, Masahito Yoshino, and TakanoriNagasaki,First-principles and experimental analysis of f n-f n-1d1 absorption spectra and multiplet energy levels of Pr3+, Nd3+, and U3+ in LiYF4,Physical Review B81 (2010) 125128 ( abstract )64.J. Sanchez, J. Fullea, M. C. Andrade, and P. L. de Andres,Ab initio molecular dynamics simulation of hydrogen diffusion in α-iron,Physical Review B81 (2010) 132102 ( abstract )65.Pavlin D. Mitev, Kersti Hermansson, Barbara Montanari, and Keith Refson,Soft modes in strained and unstrained rutile TiO2,Physical Review B81 (2010) 134303 ( abstract )66.Yuki Nakamoto et al.,Ca-VI: A high-pressure phase of calcium above 158 GPa,Physical Review B81 (2010) 140106 ( abstract )67.Erlend R. M. Davidson, Ali Alavi, and Angelos Michaelides,Dynamics of quantum tunneling: Effects on the rate and transition path of OH on Cu(110),Physical Review B81 (2010) 153410 ( abstract )68.Hannes Guhl, Wolfram Miller, and Karsten Reuter,Water adsorption and dissociation on SrTiO3(001) revisited: A densityfunctional theory study,Physical Review B81 (2010) 155455 ( abstract )69.M. Blanco-Rey and G. Jones,Asymmetric relief of surface stress induced by a chiral adsorbate: Alaninate adsorption on Cu(110),Physical Review B81 (2010) 205428 ( abstract )70.Xiao-Lin Wang et al.,Enhancement of the in-field J c of MgB2 via SiCl4 doping,Physical Review B81 (2010) 224514 ( abstract )71.Nergiz Ozcan, Tommi Kortelainen, Vyacheslav Golovanov, Tapio T. Rantala,and Juha Vaara,Electron spin resonance parameters of bulk oxygen vacancy in semiconducting tin dioxide,Physical Review B81 (2010) 235202 ( abstract )72.M. Barbagallo et al.,Experimental and theoretical analysis of magnetic moment enhancement in oxygen-deficient EuO,Physical Review B81 (2010) 235216 ( abstract )73.Mikhail Kibalchenko, Jonathan R. Yates, Carlo Massobrio, and AlfredoPasquarello,Structural assignments of NMR chemical shifts in Ge x Se1-x glasses viafirst-principles calculations for GeSe2, Ge4Se9, and GeSe crystals,Physical Review B82 (2010) 020202 ( abstract )74.Z. S. Lin et al.,Eliminating ultraviolet optical absorption through Fe-impurity engineering: Ab initio study of the nonlinear optical crystal K2Al2B2O7,Physical Review B82 (2010) 035124 ( abstract )75.S. T. Murphy, A. Chroneos, C. Jiang, U. Schwingenschlogl, R. W. Grimes,Deviations from Vegard's law in ternary III-V alloys,Physical Review B82 (2010) 073201 ( abstract )76.Stewart J. Clark and John Robertson,Screened exchange density functional applied to solids,Physical Review B82 (2010) 085208 ( abstract )77.Henrik Gronbeck and Michael Odelius,Photoemission core-level shifts reveal the thiolate-Au(111) interface,Physical Review B82 (2010) 085416 ( abstract )78.Frederik Claeyssens, Neil L. Allan, Nicholas C. Norman, and Christopher A.Russell,Design of three-dimensional solid-state boron oxide networks: Ab initiocalculations using density functional theory,Physical Review B82 (2010) 094119 ( abstract )79.K. M. O.Donnell, T. L. Martin, N. A. Fox, and D. Cherns,Ab initio investigation of lithium on the diamond C(100) surface,Physical Review B82 (2010) 115303 ( abstract )80.Roland Gillen and John Robertson,Density functional theory screened-exchange approach for investigatingelectronical properties of graphene-related materials,Physical Review B82 (2010) 125406 ( abstract )81.H. L. Zhang et al.,Static equation of state of bcc iron,Physical Review B82 (2010) 132409 ( abstract )82.Xiang-Feng Zhou et al.,Ab initio study of the formation of transparent carbon under pressure,Physical Review B82 (2010) 134126 ( abstract )83.Jedo Kim and Massoud Kaviany,Phonon-coupling enhanced absorption of alloyed amorphous silicon for solar photovoltaics,Physical Review B82 (2010) 134205 ( abstract )84.Anthony E. Phillips, Jacqueline M. Cole, Thierry d'Almeida, and Kian Sing Low,Effects of the reaction cavity on metastable optical excitation inruthenium-sulfur dioxide complexes,Physical Review B82 (2010) 155118 ( abstract )85.A. V. Gavrilenko, C. S. McKinney, and V. I. Gavrilenko,Effects of molecular adsorption on optical losses of the Ag (111) surface,Physical Review B82 (2010) 155426 ( abstract )86.J. Abad, C. Gonzalez, P. L. de Andres, and E. Roman,Characterization of thin silicon overlayers on rutile TiO2(110)-(1x1),Physical Review B82 (2010) 165420 ( abstract )87.Payam Kaghazchi and Timo Jacob,Nitrogen-induced roughening of Re surfaces on the atomic scale,Physical Review B82 (2010) 165448 ( abstract )88.B. A. Hermann et al.,Molecular self-organization: Predicting the pattern diversity and lowest energy state of competing ordering motifs,Physical Review B82 (2010) 165451 ( abstract )89.V. Badaut, P. Zeller, B. Dorado, and M. L. Schlegel,Influence of exchange correlation on the symmetry and properties of sideriteaccording to density-functional theory,Physical Review B82 (2010) 205121 ( abstract )90.Alexandra Friedrich, Bjoern Winkler, Keith Refson, Victor Milman,Vibrational properties of Re3N from experiment and theory,Physical Review B82 (2010) 224106 ( abstract )91.Jihua Zhang et al.,Probe pressure dependence of nanoscale capacitance-voltage characteristic for AlGaN/GaN heterostructures,Review of Scientific Instruments81 (2010) 103704 ( abstract )92.Elodie Salager et al.,Powder Crystallography by Combined Crystal Structure Prediction andHigh-Resolution 1H Solid-State NMR Spectroscopy,J. Am. Chem. Soc.132 (2010) 2564–2566 ( abstract )93.Lionel A. Truflandier et al.,DFT-NMR Investigation and 51V 3QMAS Experiments for Probing Surface OH Ligands and the Hydrogen-Bond Network in a Polyoxovanadate Cluster: The Case of Cs4[H2V10O28].4H2O,J. Am. Chem. Soc.132 (2010) 4653–4668 ( abstract )94.Itzam De Gortari et al.,Time Averaging of NMR Chemical Shifts in the MLF Peptide in the Solid State, J. Am. Chem. Soc.132 (2010) 5993–6000 ( abstract )95.Kirstin Brezesinski et al.,Pseudocapacitive Contributions to Charge Storage in Highly OrderedMesoporous Group V Transition Metal Oxides with Iso-Oriented LayeredNanocrystalline Domains,J. Am. Chem. Soc.132 (2010) 6982–6990 ( abstract )96.Karen E. Johnston et al.,The Polar Phase of NaNbO3: A Combined Study by Powder Diffraction,Solid-State NMR, and First-Principles Calculations,J. Am. Chem. Soc.132 (2010) 8732–8746 ( abstract )97.Zhiyong Wang et al.,Mixed Low-Dimensional Nanomaterial: 2D Ultranarrow MoS2 InorganicNanoribbons Encapsulated in Quasi-1D Carbon Nanotubes,J. Am. Chem. Soc.132 (2010) 13840–13847 ( abstract )98.John M. Griffin, Jonathan R. Yates, Andrew J. Berry, Stephen Wimperis, andSharon E. Ashbrook,High-Resolution 19F MAS NMR Spectroscopy: Structural Disorder and Unusual J Couplings in a Fluorinated Hydroxy-Silicate,J. Am. Chem. Soc.132 (2010) 15651–15660 ( abstract )99.Wang Gao, John A. Keith, Josef Anton, and Timo Jacob,Theoretical Elucidation of the Competitive Electro-oxidation Mechanisms of Formic Acid on Pt(111),J. Am. Chem. Soc.132 (2010) 18377–18385 ( abstract )100.A. Bouhemadou,Structural, elastic, electronic and thermal properties of M2SbP (M = Ti, Zr and Hf),Philosophical Magazine90 (2010) 1623–1638 ( abstract )101.Guangming Cheng, Haiyan Qian, Lianlong He, Hengqiang Ye, Characterization of a new Nb-silicide (δ-Nb11Si4) in Nb-Si binary systems,Philosophical Magazine90 (2010) 2557–2568 ( abstract )102.M. G. Brik, A. Majchrowski, L. Jaroszewicz, A. Wojciechowski, I. V. Kityk, Spectroscopy of YAl3(BO3)4:Cr3+ crystals following first principles and crystal field calculations,Philosophical Magazine90 (2010) 4569–4578 ( abstract )103.Zhongxia Han et al.,Novel Large-Pore Aluminophosphate Molecular Sieve STA-15 Prepared Using the Tetrapropylammonium Cation As a Structure Directing Agent,Chemistry of Materials22 (2010) 338–346 ( abstract )104.Bing-Ping Yang et al.,NaVO2(IO3)2(H2O): A Unique Layered Material Produces A Very Strong SHG Response,Chemistry of Materials22 (2010) 1545–1550 ( abstract )105.Dennis P. Butcher, Jr. and Andrew A. Gewirth,Photoelectrochemical Response of TlVO4 and InVO4:TlVO4 Composite,Chemistry of Materials22 (2010) 2555–2562 ( abstract )106.Jerome Deschamps et al.,Tuning Topochemical Polymerization of Diacetylenes: A Joint Synthetic,Structural, Photophysical, and Theoretical Study of a Series of Analogues of a Known Reactive Monomer, 1,6-Bis(diphenylamino)-2,4-hexadiyne (THD),Chemistry of Materials22 (2010) 3961–3982 ( abstract )107.Alfonso Pedone,Thibault Charpentier, Gianluca Malavasi, and Maria Cristina Menziani,New Insights into the Atomic Structure of 45S5 Bioglass by Means ofSolid-State NMR Spectroscopy and Accurate First-Principles Simulations,Chemistry of Materials22 (2010) 5644–5652 ( abstract )108.Igor Moudrakovski, Stephen Lang, Serguei Patchkovskii and John Ripmeester, High Field 33S Solid State NMR and First-Principles Calculations in Potassium Sulfates,J. Phys. Chem. A114 (2010) 309–316 ( abstract )109.Hong-Ling Cui et al.,First-Principles Study of High-Pressure Behavior of Solid β-HMX,J. Phys. Chem. A114 (2010) 1082–1092 ( abstract )110.Cory M. Widdifield and David L. Bryce,Solid-State 79/81Br NMR and Gauge-Including Projector-Augmented WaveStudy of Structure, Symmetry, and Hydration State in Alkaline Earth MetalBromides,J. Phys. Chem. A114 (2010) 2102–2116 ( abstract )111.B. J. Nagare, Sajeev Chacko, D. G. Kanhere,Ferromagnetism in Carbon-Doped Zinc Oxide Systems,J. Phys. Chem. A114 (2010) 2689–2696 ( abstract )112.Dawn L. Geatches, Stewart J. Clark, and Hugh C. Greenwell,Role of Clay Minerals in Oil-Forming Reactions,J. Phys. Chem. A114 (2010) 3569–3575 ( abstract )113.Hong Yan, Min Wei, Jing Ma, David G. Evans, and Xue Duan, Plane-Wave Density Functional Theory Study on the Structural and Energetic Properties of Cation-Disordered Mg-Al Layered Double Hydroxides,J. Phys. Chem. A114 (2010) 7369–7376 ( abstract )114.Francesca Bleken et al.,Thermochemistry of Organic Reactions in Microporous Oxides by Atomistic Simulations: Benchmarking against Periodic B3LYP,J. Phys. Chem. A114 (2010) 7391–7397 ( abstract )115.Amy L. Webber, Lyndon Emsley, Rosa M. Claramunt, and Steven P. Brown, NMR Crystallography of Campho[2,3-c]pyrazole (Z' = 6): CombiningHigh-Resolution 1H-13C Solid-State MAS NMR Spectroscopy and GIPAW Chemical-Shift Calculations,J. Phys. Chem. A114 (2010) 10435–10442 ( abstract )116.Cory M. Widdifield and David L. Bryce,Solid-State 127I NMR and GIPAW DFT Study of Metal Iodides and TheirHydrates: Structure, Symmetry, and Higher-Order Quadrupole-Induced Effects, J. Phys. Chem. A114 (2010) 10810–10823 ( abstract )117.Tingting Lin, Xiang-Yang Liu and Chaobin He,Ab Initio Elasticity of Poly(lactic acid) Crystals,J. Phys. Chem. B114 (2010) 3133–3139 ( abstract )118.Hiyam Hamaed, Eric Ye, Konstantin Udachin and Robert W. Schurko, Solid-State 137Ba NMR Spectroscopy: An Experimental and TheoreticalInvestigation of 137Ba Electric Field Gradient Tensors and Their Relation toStructure and Symmetry,J. Phys. Chem. B114 (2010) 6014–6022 ( abstract )119.Jianfeng Zhu, Justin Y. C. Lau and Gang Wu,A Solid-State 17O NMR Study of L-Tyrosine in Different Ionization States:Implications for Probing Tyrosine Side Chains in Proteins,J. Phys. Chem. B114 (2010) 11681–11688 ( abstract )120.Shigeaki Obata, Satoshi Takeya, Hiroshi Fujihisa, Kazumasa Honda, Yoshito Gotoh,Phase Transition Analysis of 5-Aminotetrazole from Room Temperature to the Melting Point,J. Phys. Chem. B114 (2010) 12572–12576 ( abstract )121.Gang Bao et al.,A New High-Pressure Polar Phase of Crystalline Bromoform: A First-PrinciplesStudy,J. Phys. Chem. B114 (2010) 13933–13939 ( abstract )122.Joanna S. Stevens, Stephen J. Byard, Christopher A. Muryn, and Sven L. M.Schroeder,Identification of Protonation State by XPS, Solid-State NMR, and DFT:Characterization of the Nature of a New Theophylline Complex by Experimental and Computational Methods,J. Phys. Chem. B114 (2010) 13961–13969 ( abstract )123.Menghao Wu, Xiaojun Wu, Yi Gao, and Xiao Cheng Zeng,Patterned Hydrogenation of Graphene: Magnetic Quantum Dot Array,J. Phys. Chem. C114 (2010) 139–142 ( abstract )124.Yanlu Li et al.,First-Principles Study of the Electronic Structure, Optical Properties, and Lattice Dynamics of BC2N,J. Phys. Chem. C114 (2010) 2783–2791 ( abstract )125.Claudio Melis, Alessandro Mattoni and Luciano Colombo,Atomistic Investigation of Poly(3-hexylthiophene) Adhesion on Nanostructured Titania,J. Phys. Chem. C114 (2010) 3401–3406 ( abstract )126.Eric van Steen and Pieter van Helden,A DFT Study of Hydrogen Dissociation on CO- and C-Precovered Fe(100)Surfaces,J. Phys. Chem. C114 (2010) 5932–5940 ( abstract )127.Rui Shi, Jie Lin, Yajun Wang, Jing Xu and Yongfa Zhu,Visible-Light Photocatalytic Degradation of BiTaO4 Photocatalyst andMechanism of Photocorrosion Suppression,J. Phys. Chem. C114 (2010) 6472–6477 ( abstract )128.Pascal Martelli et al.,Stability and Decomposition of NaBH4,J. Phys. Chem. C114 (2010) 7173–7177 ( abstract )129.Shaohua Chen et al.,Experimental and Theoretical Studies on the Enhanced Photocatalytic Activity of ZnWO4 Nanorods by Fluorine Doping,J. Phys. Chem. C114 (2010) 7680–7688 ( abstract )130.Gopi Krishna Phani Dathar and Daniela Silvia Mainardi,Kinetics of Hydrogen Desorption in NaAlH4 and Ti-Containing NaAlH4,J. Phys. Chem. C114 (2010) 8026–8031 ( abstract )131.Hongbo Wang et al.,Design of Superhard Ternary Compounds under High Pressure: SiC2N4 and Si2CN4,J. Phys. Chem. C114 (2010) 8609–8613 ( abstract )132.Piotr Zarzycki, Sebastien Kerisit and Kevin M. Rosso,Molecular Dynamics Study of the Electrical Double Layer at SilverChloride-Electrolyte Interfaces,J. Phys. Chem. C114 (2010) 8905–8916 ( abstract )133.Su-Qin Zhou, Feng-Qi Zhao, Xue-Hai Ju, Xiao-Chun Cheng and Jian-Hua Yi,A Density Functional Theory Study of Adsorption and Decomposition ofNitroamine Molecules on the Al(111) Surface,J. Phys. Chem. C114 (2010) 9390–9397 ( abstract )134.Yihan Zhu et al.,Chemistry-Controlled Structural Relaxation and Enhanced Redox Abilities inVanadium-Doped Two-Dimensional Semiconductive TeMo5O16 Catalyst,J. Phys. Chem. C114 (2010) 13277–13286 ( abstract )135.Stewart F. Parker et al.,Characterization of Hydrous Palladium Oxide: Implications forLow-Temperature Carbon Monoxide Oxidation,J. Phys. Chem. C114 (2010) 14164–14172 ( abstract )136.Bao Liu et al.,Pressure Induced Semiconductor-Semimetal Transition in WSe2,J. Phys. Chem. C114 (2010) 14251–14254 ( abstract )137.Jing Zhou et al.,Structural, Electronic, and Transport Properties of Gd/Eu Atomic ChainsEncapsulated in Single-Walled Carbon Nanotubes,J. Phys. Chem. C114 (2010) 15347–15353 ( abstract )138.D. C. Jackson et al.,Structure of Cytosine on Cu(110): a Scanned-Energy Mode PhotoelectronDiffraction Studys,J. Phys. Chem. C114 (2010) 15454–14563 ( abstract )139.Masaaki Yoshida et al.,Photoluminescence Spectroscopic and Computational Investigation of the Origin of the Visible Light Response of (Ga1-x Zn x)(N1-x O x) Photocatalyst for Overall Water Splitting,J. Phys. Chem. C114 (2010) 15510–15515 ( abstract )140.Shuhui Lv et al.,A New Half-Metallic Ferromagnet La2NiFeO6: Predicted from First-PrinciplesCalculations,J. Phys. Chem. C114 (2010) 16710–16715 ( abstract )141.Xiaoguang Luo et al.,Compressive Strength of Diamond from First-Principles Calculation,J. Phys. Chem. C114 (2010) 17851–17853 ( abstract )142.Hailei Zhao et al.,Investigation of Mixed Conductor BaCo0.7Fe0.3-x Y x O3-δ with High OxygenPermeability,J. Phys. Chem. C114 (2010) 17975–17981 ( abstract )143.Xi Zhang and Lizhi Zhang,Electronic and Band Structure Tuning of Ternary Semiconductor Photocatalysts。
氨基化功能化碳纳米管

Department of Materials Science, Fudan University, The Key Laboratory of Molecular Engineering of Polymers, Ministry of Education, Shanghai 200433, China
However, the realization of nanotube-reinforced epoxy resin can only be achieved by solving following main problems: one is the lack of interfacial adhesion, which is critical for load transfer in composites – since the atomically smooth non-reactive surface of nanotubes built of rolled graphene sheets, lacking in interfacial bonding inhibits load transfer from the matrix to nanotubes across the nanotube/ polymer interface. Another problem is the poor dispersion of nanotubes in the epoxy matrix, which is also significant for the fabrication of reinforced composites. Because of the
拉曼光谱应用介绍

The world leader in serving science
拉曼应用
characteristic Raman frequencies
拉曼频率的确认
composition of material
物质的组成
同分异性体, 同分异构体 相同元素不同 结构
changes in frequency of Raman peak width of Raman peak
4
应用市场分析
Automotive 2% Art and Archaeology 2% Steel 1% Fiberglass 1% Polymers 1%
Semiconductor 2% Paper 3% Contract Research 1%
Tobacco 1% Gems 1%
Agricultural Chemicals 1% Rubber 2% Glass 1% Agriculture 2% Nuclear Pow er 2% Personal Care Products 2% Food and Beverage 2% Petroleum 1% Printing 1% Environmental 1% Paint and Coatings 1% Chemical 8% Medical Diagnostics 2% Forensics 11%
• More accurately allotropes
23
碳材料
Graphene
• Single layers from Graphite structure • Graphene nanoribbons (GNR) roll up to form nanotubes
碳纳米管限域效应及其催化应用研究进展_杨红晓

Abstract: Carbon nanotubes ( CNTs ) are considered to be a promising catalyst support and / or promoter due to their unique properties and special nanostructures. Many studies have shown the improved activity and / or product selectivity in catalytic reaction using CNTs as supports to disperse catalyst inside or outside of it. Especially, the welldefined nanochannels of CNTs draw more attention to investigate the confinement effect of the active phase on the catalytic activity and selectivity. In this minireview,the different strategies for the preparation of such confined nanocatalyst,and the changes of their redox property,phase transition,electronic property as well as the catalytic property that could be expected from the resultant confinement effects are presented,with the aim of highlighting their potential use in catalysis. Key words: carbon nanotubes,filling,confinement,catalytic application
4-酸氧化处理对多壁碳纳米管表面基团的影响

第35卷第7期2007年7月化 工 新 型 材 料N EW CH EMICAL MA TERIAL S Vol 135No 17・37・基金项目:广东省自然科学基金(No.04300148)作者简介:周爱林(1980-),男,硕士研究生,主要研究方向:纳米材料的应用。
酸氧化处理对多壁碳纳米管表面基团的影响周爱林 王红娟3 傅小波 彭 峰 余 皓(华南理工大学化工与能源学院,广州510640)摘 要 120℃下用浓硝酸对多壁碳纳米管(MWCN Ts )进行不同时间的酸氧化处理,考察处理前后碳纳米管的形貌和元素变化,分析酸氧化处理MWCN Ts 表面功能基团的种类和含量。
结果表明:浓硝酸处理,可在MWCN Ts 表面产生不同数量的羧基、羟基和羰基含氧基团;在最初2h 内,羧基含量增加,羟基和羰基含量先增后减,含氧基团总量迅速增加;处理时间继续增加,羧基含量逐渐减少,羟基和羰基含量发生不规则变化,含氧基团总量趋于稳定;MWC 2N Ts 表面首先形成羟基和羰基,这些基团继续被氧化生成羧基,并且它们被氧化生成羧基的能力不同,生成的羧基可进一步氧化最终以CO 2释放出来;可通过控制浓硝酸处理的时间来控制MWCN Ts 表面含氧基团的种类和数量.关键词 多壁碳纳米管,功能基团,基团含量The influence of acid oxidation on the f unctional groups ofthe surface of multi 2w alled carbon nanotubesZhou Ailin Wang Hongjuang Fu Xiao bo Peng Feng Yu Hao (The School of Chemical and Energy Engineering ,Sout h China U niversty ofTechnology ,Guangzhou 510640)Abstract The multi 2walled carbon nanotubes (MWCN Ts )were refluxed by concentrated nitric acid at 120℃withdifferent time.The morphology and elemental component of concentrated nitric acid treated MWCN Ts were characterized.The f unctional group s and their amounts which were formed on the surface of the treated MWCN Ts were analyzed.The results indicated that oxygeneous f unctional groups ,such as carboxyl ,hydroxyl and carbonyl ,can been formed on the sur 2face of MWCN Ts treated by concentrated nitric acid.In the first 2h ,the amount of the carboxyl increasesd and the a 2mounts of hydroxyl and carbonyl increased first and then decreased and the total amount of f unctional group s increased quickly with the increased of the treatment time.With the treatment continue ,the amount of the carboxyl decreases and the amounts of hydroxyl and carbonyl vary irregularly and the total amount of f unctional group s almost arrived stable.The hydroxyl and carbonyl group s were firstly formed on the surface of the concentrated nitric acid treated MWCN Ts and then were oxidized into carboxyl groups.The ability of the hydroxyl and carbonyl groups being oxidized are different.The formed carboxyl group s can been f urther oxidized into carbon dioxide which was released.Thus ,the required oxygenous functional groups can been obtained by controlling the treatment time properly.K ey w ords multi 2walled carbon nanotube ,functional group ,the amount of group 碳纳米管(CN Ts )作为新型的纳米碳素材料,以其优异的物理、化学性能和独特的结构,在许多领域具有潜在的应用,但,因CN Ts 不溶于水和常见的有机溶剂,使其应用受到了很大的限制,因此,许多研究者对CN Ts 进行修饰以改善其溶解性能开展了大量研究工作[1]。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Investigationofstress–strainbehaviorofsinglewalledcarbonnanotube/rubbercompositesbyamulti-scalefiniteelementmethod
S.K.Georgantzinos,G.I.Giannopoulos,N.K.Anifantis*
MechanicalandAeronauticsEngineeringDepartment,UniversityofPatras,2500Rio,Patras,Greece
articleinfoArticlehistory:Availableonline12October2009
Keywords:NanotubeRubberNanocompositeFractureFiniteelement
abstractTheexcellentpropertiesofcarbonnanotubeshavegeneratedtechnologicalinterestsinthedevelopmentofnanotube/rubbercomposites.Thispaperdescribesafiniteelementformulationthatisappropriateforthenumericalpredictionofthemechanicalbehaviorofrubber-likematerialswhicharereinforcedwithsinglewalledcarbonnanotubes.Theconsideredcompositematerialconsistsofcontinuousalignedsinglewalledcarbonnanotubeswhichareuniformlydistributedwithintherubbermaterial.Itisassumedthatthecarbonnanotubesareimperfectlybondedwiththematrix.Basedonthemicromechanicaltheory,themechanicalbehaviorofthecompositemaybepredictedbyutilizingarepresentativevolumeelement.Withintherepresentativevolumeelement,thereinforcementismodeledaccordingtoitsatomisticmicrostructure.Therefore,non-linearspring-basedlineelementsareemployedtosimulatethediscretegeometricalstructureandbehaviorofthesingle-walledcarbonnanotube.Ontheotherhand,thematrixismodeledasacontinuummediumbyutilizingsolidelements.Inordertodescribeitsbehavioranappropriateconstitutivematerialmodelisadopted.Finally,theinterfacialregionissimulatedviatheuseofspecialjointelementsofvariablestiffnesswhichinterconnectthetwomaterialsinadiscreteman-ner.Usingtheproposedmulti-scalemodel,thestress–strainbehaviorforvariousvaluesofreinforcementvolumefractionandinterfacialstiffnessisextracted.Theinfluenceofthesinglewalledcarbonnanotubeadditionwithintherubberisclearlyillustratedanddiscussed.Ó2009ElsevierLtd.Allrightsreserved.
1.IntroductionRubbercompositescanbeclassifiedasparticulate,laminated,orfibrousdependingontheirconstruction.Themostcommonlyavailableelastomericcompositesarereinforcedwithcarbonblackparticles[1]whichrangeinsizefromafewhundredtothousandofangstroms.Fillersareaddedtorubberproductsascartiresandshockmountstoenhancetheirstiffnessandtoughnessproperties.Theuniquebehaviorofcarbonblack-filledelastomersresultsduetoarigid,particulatephaseandtheinteractionoftheelastomerchainswiththisphase[2].Itiswellknownthatsuchcompositesusuallyexhibithighlyanisotropicresponseduetodirectionalityinmaterialproperties.Unfortunately,amongtheexistingstrainenergyfunctions,boththepolynomialaswellasOgdenmodelsareunabletocapturethesharpdecreaseinstiffnessforfilledrub-bersatsmallstrains.Asthereisademandinmoderntechnologicalapplicationsforsuperiorelastomericcomposites,innovativereinforcementshav-ingsuperiorpropertiesshouldbeintroduced.Suchreinforcementscouldbefoundinthefieldofnanotechnology.Singlewalledcarbon
nanotubes(SWCNTs)arethestiffestandstrongestknownfibbers,havingalsoremarkableelectronicandconductivepropertiesandmanyotheruniquecharacteristics[3].However,thesepropertiesareobviouslyoflimitedvalueinindividualtubes.Thedevelop-mentofSWCNTbasedelastomericcomposites[4]coulddemon-strateboththeexcellentenergyabsorptioncharacteristicsoftherubbercomponentaswellastheadvancedstructuralpropertiesofthenanotubes.Recentexperimentalobservationshaveshownthatsignificantimprovementsinthemechanicalpropertiesofpolymericmaterialscanbeachievedbyusingevensmallvolumefractionsofcarbonnanotubesasreinforcement[5–7].Moleculardynamics(MD)[8–10]andcontinuummechanics[11–14]basedapproacheshavebeenadoptedtosimulatecarbonnanotube(CNT)compositebehavior.TheperformanceofCNT-basedcompositesisgreatlyinfluencedbytheinterfacewhichhasdifferentpropertiesfromthoseofthematrixandtheCNT.Gener-ally,thethreemainmechanismsofinterfacialloadtransferaremicromechanicalinterlocking,chemicalbonding,andthevanderWaalsinteractionsbetweenthematrixandthereinforcements.Al-Ostazetal.[15]investigatedSWCNT-polymerinterfaceinterac-tionsinnanoscaleviaMD.TorepresenttheCNT-polymerloadtransfercharacteristicsandconsequentlytheinterfacebetweentheCNTsandthepolymer,Franklandetal.[16]employedjust
0167-8442/$-seefrontmatterÓ2009ElsevierLtd.Allrightsreserved.doi:10.1016/j.tafmec.2009.09.005
*Correspondingauthor.E-mailaddress:nanif@mech.upatras.gr(N.K.Anifantis).
TheoreticalandAppliedFractureMechanics52(2009)158–164ContentslistsavailableatScienceDirectTheoreticalandAppliedFractureMechanics
journalhomepage:www.elsevier.com/locate/tafmec