八年级下数学课件

合集下载

人教版八年级数学下册《平行四边形的性质》平行四边形PPT优质教学课件

人教版八年级数学下册《平行四边形的性质》平行四边形PPT优质教学课件

10 ●O
∴AC= AB2−BC2= 102−82=6
∵OA=OC,∴OA=12AC=3
B
C
∴S ABCD= BC×AC=8×6=48.
随堂检测
1.如图,在▱ABCD中,对角线AC、BD相交于点O,若 AC=14,BD=8,AB=10,则△OAB的周长为 21 .
2.如图,平行四边形ABCD中,AD=5cm,AB⊥BD, 点O是两条对角线的交点,OD=2cm,则AB= 3 cm.
叫做这两条平行线之间的距离.
如图,直线a∥b,A是直线a上的任意
A
a
一点,AB ⊥b ,B是垂足,线段AB的
b
长就是a、b之间的距离.
B
随堂检测
1.如图,在 ABCD中,
A
D
A:基础知识:
B
C
若∠A=130°,则∠B=_5_0_°___ 、∠C=_1_3_0_°__ 、∠D=__5_0_°__.
B:变式训练: (1)若∠A+ ∠C= 200°,则∠A=__1_0_0_°_ 、∠B=__8_0_°__; (2)若∠A:∠B= 5:4,则∠C=__1_0_0_°_ 、∠D=___8_0_°_.
随堂检测
C:拓展延伸:
A
D
如图,在 ABCD中,
B
C
(1)∠A:∠B : ∠C : ∠D的度数可能是( B )
A. 1 : 2 : 3 : 4
B.3 : 2 : 3 : 2
C.2 : 3 : 3 : 2
D.2 : 2 : 3 : 3
(2)连接AC, 若∠D=60°, ∠DAC=40°,则 ∠B=_6_0_°_,
一条直线的距离相等.
已知:如图,EF∥MN,A,D是直线

人教版八年级数学下册《勾股定理》PPT精品教学课件

人教版八年级数学下册《勾股定理》PPT精品教学课件
13 .由此,可以依照如下方法在
数轴上画出表示 13 的点.
如图,在数轴上找出表示3的点A, 则OA=3,过点A作直
线l垂直于OA,在l上取点B,使AB = 2,以原点O为圆心,以
OB为半径作弧,弧与数轴的交点C即为表示 13 的点.
0
1 2

3 4
新知导入
想一想:
2, 3, 5 …的线段(图1).
随堂练习
4.如图,在△ABC中,AB=AC,D点在CB 延长线上,
求证:AD2-AB2=BD·
CD.
A
证明:过A作AE⊥BC于E.
∵AB=AC,∴BE=CE.
在Rt △ADE中,AD2=AE2+DE2.
在Rt △ABE中,AB2=AE2+BE2.
AD2-AB2= DE2- BE2
= (DE+BE)·( DE- BE)
键是仔细观察所给图形,面积与边长、直径有平
方关系,就很容易联想到勾股定理.
课程讲授
2
勾股定理与图形面积
练一练:
如图,直线l上有三个正方形a,b,c,若a,c的面积分别为3和4,
则b的面积为( D )
A.16
B.12
C.9
D.7
随堂练习
64 cm²
1.图中阴影部分是一个正方形,则此正方形的面积为_________.
角形外作三个半圆,则这三个半圆形的面积之间的关系式
S1 S 2 S3
是_______________.(用图中字母表示)
课程讲授
2
勾股定理与图形面积
归纳:与直角三角形三边相连的正方形、半圆及
正多边形、圆都具有相同的结论:两直角边上图
形面积的和等于斜边上图形的面积.本例考查了

八年级-人教版-数学-下册-[课件]第4课时 一次函数的图象与性质

八年级-人教版-数学-下册-[课件]第4课时  一次函数的图象与性质
当 k>0 时,y 随 x 的增大而增大; 当 k<0 时,y 随 x 的增大而减小.
直线 y=kx+b 的变化趋势和倾斜程度,都只由 k 决定.
思考
直线 y=2x+3 与直线 y=-x+3 有什
y
么共同点?一般地,你能从函数 y=kx+b
5
的图象上直接看出 b 的数值吗? y=-x+3 4
两条直线与 y 轴相交于同一
y=2x-1
(1,1) (1,0.5)
1
x
先画直线 y=2x 与 y=-0.5x,再分别平移它们,也能得到直
线 y=2x-1与 y=-0.5x+1.
y y=2x
y=-0.5x+1
y=2x-1
y=-0.5x
1
O1
x
-1
一次函数图象的两种画法
(1)两点法:当b≠0时,一般先选取(0,b)和
b k

y=kx+b (k≠0) b>0
k>0 b=0
b<0
b>0
k<0 b=0
b<0
图象
y Ox
y Ox
y Ox
y Ox
y Ox
y Ox
经过象限
第一、 二、三 象限
第一、 三象限
第一、 三、四 象限
第一、 第二、
二、四 四象限
象限
第二、 三、四 象限
例1 下列函数中,y 的值随 x 值的增大而增大的函数是( C ).
3
点(0,3).
y=-x
2
直线 y=kx+b与 y 轴交点的坐
1
标就是(0,b),一般能从函数
y=
-4-3-2-1O -1
kx+b的图象上直接看出 b 的数值.
-2

人教版八年级下册 课件 17.1 勾股定理(共46张PPT)

人教版八年级下册 课件 17.1 勾股定理(共46张PPT)

b c b c b cb c
a
a
a
a
勾股定理的证明方法很多,这里重点的介绍面积 证法。
勾股定理的证法(一)
∵( a+b)2=c2+4 ab a2+b2=c2
勾股定理的证法(二)
∵4× ab= c2-(b-a)2 a2+b2=c2
• 学习目标: 1.能运用勾股定理求线段的长度,并解决一些简单的实 际问题; 2.在利用勾股定理解决实际生活问题的过程中,能 从实际问题中抽象出直角三角形这一几何模型, 利用勾股定理建立已知边与未知边长度之间的联 系,并进一步求出未知边长.
以直角三角形的两条直角边a、b为边作两个正方形, 把两个正方形如图(左)连在一起,通过剪、拼把它拼成 图(右)的样子。你能做到吗?试试看。
b
a
练习1 求图中字母所代表的正方形的面积.
225 A
144
80 A
24 B
A 8
17
练习2 求下列直角三角形中未知边的长度.
C
A
4
x
5
A
10
C
6
B
x
B
通过这种方法,可以把一个正方形的面积分成若干 个小正方形的面积的和,不断地分下去,就可以得到一 棵美丽的勾股树.
通过解方程可得.
B
C
A
今有池方一丈,葭生其中央,出水一尺,引葭赴岸, 适与岸齐.问水深、葭长各几何?
利用勾股定理解决实际问题 的一般思路:
(1)重视对实际问题题意的 正确理解;
(2)建立对应的数学模型, 运用相应的数学知识;
(3)方程思想在本题中的运 用.
B
C
A
如图,一棵树被台风吹折断后,树顶端落在离底端 3米处,测得折断后长的一截比短的一截长1米,你能计 算树折断前的高度吗?

人教版八年级数学下册《17.1勾股定理》课件 (共13张PPT)

人教版八年级数学下册《17.1勾股定理》课件 (共13张PPT)

这个世界上,从来没有谁比谁更优秀,只有谁比谁更努力。
很多人都去了,回来的时候每人拎着一只鸡,大家都很高兴!
人生,是一本太仓促的书,越认真越深刻;
越是优秀的人,越是努力,因为优秀从来不是与生俱来,从来不是一蹴而就。
人到中年,突然间醒悟许多,总算明白:人生,只有将世间的路一一走遍,才能到尽头;
一个土豪,每次出门都担心家中被盗,想买只狼狗栓门前护院,但又不想雇人喂狗浪费银两。
3.(1)已知直角三角形的两直角边的长分别为3和4,则第三边
的长为___5____;
(2)已知直角三角形的两边的长分别为3和4,则第三边的长为
__________.
4.求图17-1-1中直角三角形中未知的长度:b=____1_2___, c=____3_0____.
知识清单
知识点1 勾股定理 勾股定理内容:直角三角形两直角边的平方和等于斜__边__的_平__方_. 勾股定理表示方法:如果直角三角形的两直角边分别为a,b ,斜边为c,那么a_2_+__b_2_=__c_2____. 勾股定理的由来:勾股定理也叫商高定理,在西方称为毕达 哥拉斯定理.我国古代把直角三角形中较短的直角边称为勾, 较长的直角边称为股,斜边称为弦.早在三千多年前,周朝数 学家商高就提出了“勾三,股四,弦五”形式的勾股定理, 后来人们进一步发现并证明了直角三角形的三边关系为:两 直角边的平方和等于斜边的平方.
生活,只有将尘世况味种种尝遍,才能熬出头。
勾股定理能够帮助我们解决直角三角形中的边长的计算或直角三角形中线段之间的关系的证明问题.
人到中年,突然间醒悟许多,总算明白:人生,只有将世间的路一一走遍,才能到尽头;
如图17-1-7,一棵大树被台风刮断,若树在离地面9 m处折断,树顶端落在离树底部12 m处,则大树折断之前的高度为

人教版八年级数学 下册 第二十章 20.1.1 平均数 第1课时 加权平均数 课件

人教版八年级数学 下册 第二十章 20.1.1 平均数 第1课时 加权平均数 课件
的各个数据同等重要,也就是权相等 时,计算平均数采用算术平均数;各 数据权不相等时,计算平均数时采用 加权平均数。
“权”能反映数据的重要程度, 数据的权重不一样,会形成不同的结 果。
某公司欲招聘一名公关人员.对甲、乙 两位应试者进行了面试和笔试,他们的成 绩(百分制)如下表所示。
应试者 甲 乙
面试 86 92
载客量/人 1≤x<21 21≤x<41 41≤x<61 61≤x<81 81≤x<101 101≤x<121
组中值 11 31 51 71 91 111
频数(班次) 3 5 20 22 18 15
注:(1)数据分组后,一个小组的组中值是 指这个小组的两个端点的数的 平均 数. (2)统计中常用各组的组中值代表各组的实 际数据,把各组的频数看作这组数据的 _权__.
人均耕地面积与哪些 人均耕 因素有关?它们之间 地面积
=
有何关系?
总耕地面积 人口总数
郊 人数 县 (万) A 15
B7 C 10
人均耕地面积 (公顷) 0.15
0.21 0.18
总耕
人均耕
地面积
地面积 =
人口总数
思考2:总耕地面积
三个郊县耕地面积之和
思考3:人口总数
三个郊县人数之和
解答:这个市郊县的人均耕地面积是: 0.15×15 +0.21×7 + 0.18×10 ≈ 0.17(公顷) 15+7+10
加权平均数公式
x1ω1+x2ω2+x3ω3 +…+xnωn ω1+ω2+ω3 +…+ωn
例1:如果公司想招一名笔译能力较强的翻译,用 算术平均数来衡量他们的成绩合理吗?
听、说、读、写的成绩按照2:1:3:4的比确定.
重要程度 不一样!

初中数学人教版八年级下册《中位数的概念》课件

初中数学人教版八年级下册《中位数的概念》课件

134579 10 中位数
由小到大排序 数据个数为奇数
173495
10
中间位置
134579 10 中位数
由小到大排序 数据个数为奇数
1 3 4 5 6 7 9 10
173495
10
中间位置
134579 10 中位数
由小到大排序 数据个数为奇数
1 3 4 5 6 7 9 10 数据个数为偶数
173495
中位数的概念
将一组数据依照由小到大(或由大到小)的顺序排列, 若数据的个数为奇数,则称处于中间位置的数为这组数 据的中位数;
中位数的概念
将一组数据依照由小到大(或由大到小)的顺序排列, 若数据的个数为奇数,则称处于中间位置的数为这组数 据的中位数;若数据的个数为偶数,则称中间两个数据 的平均数为这组数据的中位数.
则这组数据的中位数是______.
20+30+40+m+35+10 =30 6
10 20 30 35 40 45
m=45 30+35 =32.5
2
练习
3.若一组数据 20,30,40,m,35,10的平均数是30,
则这组数据的中位数是__3_2__.5_.
20+30+40+m+35+10 =30 6
例2 学校展开线上防疫知识大赛,将八年级(1)班40名 学生的成绩数据(百分制)进行整理、描写和分析.下 面给出了部分信息.
a.比赛成绩的频数散布直方图如右:
例2 学校展开线上防疫知识大赛,将八年级(1)班40名 学生的成绩数据(百分制)进行整理、描写和分析.下 面给出了部分信息.
a.比赛成绩的频数散布直方图如右: b.比赛成绩在80≤x<90这一组的是:

人教版八年级数学下《勾股定理 第3课时:用勾股定理在数轴上表示无理数》精品教学课件

人教版八年级数学下《勾股定理 第3课时:用勾股定理在数轴上表示无理数》精品教学课件

能画出长为 13的线段,就能在数轴上画出表示 13的点.
创设情境 探究新知 应用新知 巩固新知 课堂小结 布置作业
探究
步骤:
1 在数轴上找到点A,使OA=3;
2 作直线l⊥OA,在l上取一点B,使AB=2;
3 以原点O为圆心,以OB为半径作弧,弧与
13 3
数轴交于C点,则点C即为表示 13的点.
l
正整数的角三角形的斜边; 2 以原点为圆心,以无理数斜边为半径画弧与数轴
存在交点,弧与数轴的交点即为表示无理数的点.
原点左边的点表示负无理数,原点右边的点表示 正无理数.
创设情境 探究新知 应用新知 巩固新知 课堂小结 布置作业
拓展
利用勾股定理可以作出这样一幅美丽的“海螺型” 图案,它被选为第七届国际数学教育大会的会徽.
创设情境 探究新知 应用新知 巩固新知 课堂小结 布置作业
复习回顾
勾股定理
如果直角三角形的两条直角边长分别 b
c
为a,b,斜边长为c,那么a²b²c². a
变 求斜边:c a2 b2 形 求直角边:a c2 b2 ,b c2 a2
已知两边可求第三边
利用勾股定理还能解决哪些问题呢?
创设情境 探究新知 应用新知 巩固新知 课堂小结 布置作业
随堂练习 2.如图,O为数轴原点,A、B两点分别对应3、3,作腰 长为4的等腰△ABC,连接OC,以O为圆心,OC长为半
径画弧交数轴于点M,则点M对应的实数为 7 .
3 2 1 O 1 2M3
创设情境 探究新知 应用新知 巩固新知 课堂小结 布置作业
随堂练习
3.如图,已知△ABC是腰长为1的等腰直角三角形, 以Rt△BAC的斜边AC为直角边,画第二个等腰 Rt△ACD,再以Rt△ACD的斜边AD为直角边, 画第三个等腰Rt△ADE.依此类推,则第2018个

人教版数学八年级下册《 平行四边形的判定一》ppt课件

人教版数学八年级下册《 平行四边形的判定一》ppt课件
证明:在平行四边形ABCD中,∠A=∠C,AD=BC, 又∵BF=DH,∴AH=CF. 又∵AE=CG, ∴△AEH≌△CGF(SAS). ∴EH=GF.同理得△BEF≌△DGH(SAS). ∴GH=EF. ∴四边形EFGH是平行四边形.
课堂检测
能力提升题
如图,五边形ABCDE是正五边形,连接BD , CE,交于点P.
D
110°
70° B
110°C
A

B 120°
C 60°
D
不是
能判定四边形ABCD是平行四边形的条件: ∠A:∠B:∠C:∠D的值为 ( )D
A. 1:2:3:4
B. 1:4:2:3
C. 1:2:2:1
D. 3:2:3:2
探究新知
知识点 3 平行四边形的判定定理3
如图,将两根木条AC,BD的中点重叠,用小钉绞合在一
人教版 数学 八年级 下册
18.1 平行四边形 18.1.2 平行四边形的判定
(第1课时)
导入新知
一天,八年级的李明同学在生物实验室做实验时,不小心碰碎 了实验室的一块平行四边形的实验用的玻璃片,只剩下如图所示 部分,他想去割一块赔给学校,带上玻璃剩下部分去玻璃店不安 全,于是他想把原来的平行四边形重新在纸上画出来,然后带 上图纸去就行了,可原来的平行四边形怎么画出来呢?
E
OF
B
C
∴ A∵BO=DO,
∴四边形BFDE是平行四边形.
巩固练习
根据下列条件,不能判定四边形为平行四边形的是( C )
A.两组对边分别相等 B.两条对角线互相平分
C.两条对角线相等
D.两组对边分别平行
如图,在四边形ABCD中,AC与BD交于点O.

人教版数学八年级下册课件 19.2一次函数的图像和性质 (共28张PPT)

人教版数学八年级下册课件 19.2一次函数的图像和性质 (共28张PPT)
(3)若直线y=(3-k)x-k经过 第二、三、四象限,求k的取值 范围:__________(4分)
课堂小结
说一说你在这节课上都收 获到了什么知识?
时间是一个常数,但对勤 奋者来说,是一个“变数”.
你在学业上的收获与你 平时的付出是成正比的
求出y=kx+b(k,b为常数,k≠0) 的图像与x轴、y轴的交点,你发现 了什么规律?
结论:
函数y=kx+b(k,b为
常数,k≠0)的图像
与x轴交于(-
b k
,0)
与y轴交于(0,b)
用你认为最简单的方法画出函 数y=2x-1与y=-2x+l的图象.
思考:一次函数解析式y=kx+b (k, b是常数,k≠0)中,k的正负对 函数图象有什么影响?(3分钟)
即它可以看作由直线
y=x向_上___平移 2 个
1 2 3 x 单位长度而得到.
函数y=x-2的图象与y轴 交于点(0,-2),即它可以看
作由直线y=x向下 平移_2_
个单位长度而得到.
一次函数y=3x-4的图象是 什么形状?它与直线y=3x有什 么关系?
函数y=-2x+3的图像是由 哪个正比例函数的图像平移 得到的? 需要平移几个单位 长度?
y=-2x+1
y
o·· x
y=-2x-1
k的取值范围 b的取值范围
的象限
一、三、二
k>0
b<0
一、三、四
k<0
b>0
二、四、一
k<0
b<0
二、四、三
比一比看谁记得快,你发现 什么规律了么?
直线y=2x-3与x轴交点坐标为_(_23__,0_)_, 与y轴交点坐标为_(__0_,_-_3_)__ 图象经过第__一_、__三_、__四__象限, y随x增大而__增__大_______.

八年级数学下册课件(人教版)勾股定理

八年级数学下册课件(人教版)勾股定理

5 如图,将两个大小、形状完全相同的△ABC 和△A′B′C ′拼在一起,其 中点A′与点A重合,点C ′落在边AB上,连接B′C. 若∠ACB=∠AC′B ′ =90°,AC=BC=3,则B′C 的长为( A )
A.3 3 B.6 C.3 2 D. 21
知识点 2 勾股定理与面积的关系
在一张纸上画4个与图所示的全等的直角三边形,并把它们 剪下来.如图所示,用这四个直角三角形进行拼摆,将得到一个
17.1 勾股定理
第1课时
相传2500年前,一次毕达哥拉斯去朋友家作客, 发现朋友家用砖铺成的地 面反映直角三角形三边的 某种数量关系,同学们, 我们也来观察下面的图案, 看看你能发现什么?
A、B、C 的面积有什么关系?
直角三角形三边有什么关系?
A
B
C
让我们一起探索这个古老的定理吧!
知识点 1 勾股定理
正方形B的面积是 9 个单位面积.
正方形C的面积是 18 个单位面积.
C A
B
图2-1
C A
B
图2-2
(图中每个小方格代表一个单位面积)
分“割”成若干个 直角边为整数的三角形
S正方形c
= 4 133 2
=18(单位面积)
C A
B
图2-1
C A
B
图2-2
(图中每个小方格代表一个单位面积)
(2)在图2-2中,正方形A,B, C 中各含有多少个小方格?
A.3 B.4 C.5 D.7
4 如图,已知△ABC 为直角三角形,分别以直角边AC,BC 为直径 作半圆AmC 和BnC,以AB 为直径作半圆ACB,记两个月牙形阴 影部分的面积之和为S1,△ABC 的面积为S2,则S1与S2的大小关

最新版八年级数学下册课件:20.1.1平均数

最新版八年级数学下册课件:20.1.1平均数

3
3
课堂检测
20.1 数据的集中趋势/
能力提升题
(2)若三项测试得分按3:6:1的比例确定个人的测试成绩,此时 第一名是谁?
解: xA 723 85 6 67 1 =79.3 3 61
853 74 6 701
xB
=76.9
3 61
所以,此时第一名是选手A.
课堂检测
20.1 数据的集中趋势/
课堂检测
20.1 数据的集中趋势/
拓广探索题
(2)如果公司认为,作为公关人员面试的成绩应该比笔试更 重要,并分别赋予它们6和4的权,计算甲、乙两人各自的平均 成绩,看看谁将被录取.
解:
80 6 96 4
x甲
86.4
10
94 6 81 4
x乙
88.8
10
x乙 x甲 所以乙将被录取.
课堂小结
课堂检测
20.1 数据的集中趋势/
基础巩固题
5.下表是校女子排球队队员的年龄分布:
年龄 13 14 15 16
频数 1
4
5
2
求校女子排球队队员的平均年龄.
解: x 13114 4 155 16 2 14.7( 岁) 1 4 5 2
答:校女子排球队队员的平均年龄为14.7岁.
课堂检测
20.1 数据的集中趋势/
答:小桐这学期的体育成绩是88.5分.
课堂检测
20.1 数据的集中趋势/
能力提升题
某次歌唱比赛,两名选手的成绩如下:
测试
测试成绩
选手 创新 唱功 综合知识
A 72 85
67
B 85 74
70
(1)若按三项平均值取第一名,则___选__手__B___是第一名.

人教版数学八年级下册:17.1 勾股定理 课件(共35张PPT)

人教版数学八年级下册:17.1 勾股定理  课件(共35张PPT)

探究 如图,以Rt△ 的三边为边向外作正方形,
其面积分别为 S1 、S2、S3,请同学们想一想
S1 、S2、S3 之间有何关系呢?
S2 + S3 =a2+b2
S1=c2
B
S1c a S2
b
A S3 C
∵a2+b2=c2
S2 + S3 = S1
探究S1、S2、S3之间的关系
S2

S3

1 2


a 2
2

1 2


b 2
2
1 a2 1 b2
8
8
S1

1 2


c 2
2

1
8
c2
由勾股定理得 a2+b2=c2
∴S2+S3=S1
S2
c
SS3 2
A
S1
S1
动手操作:例2如图,Rt△ABC中
,AC=8,BC=6,∠C=90°,分别 以AB、BC、AC为直径作三个半圆 ,那么阴影部分的面积为__24_ .
A
E
D
B
F
C
A
A =625
225
400
81
B =144
225
2、如图所示的图形中,所 有的四边形都是正方形,所 有的三角形都是直角三角形 ,其中最大的正方形的边长 是8厘米,则正方形A,B, C,D的面积之和是 __6_4_____平方厘米
利用勾股定理解决平面几何问题3——折叠中的计算问题
能算好算直接算,不能算不好算,设未知数,列方程(勾股定理、全等、相似等)
利用勾股定理解决平面几何问题1— —最短路径问题

人教版八年级下册数学精品教学课件 第十六章 二次根式 二次根式的乘除 第1课时 二次根式的乘法

人教版八年级下册数学精品教学课件 第十六章 二次根式 二次根式的乘除 第1课时 二次根式的乘法

5
2
=20,
3
3
2 =32
3 2 =27,
又∵20<27,
∴ 2 5 2 < 3 3 2,即 2 5<3 3 .
(2) 2 13与-3 6.
解:∵ 2 13= 22 13= 52,
3 6= 32 6= 54, 又∵52<54,
∴ 52< 54 ,
两个负数比较 大小,绝对值 大的反而小
讲授新课
一 二次根式的乘法 计算下列各式:
(1) 4 9 = __2_×_3__=__6__; 4 9 =___3_6___6__;
(2) 16 25 __4_×_5__=__2_0_; 16 25 =__4_0_0___2_0_; (3) 25 36= __5_×_6__=__3_0_; 25 36 =__9_0_0___30__.
( 2 ) 6 12 = __6__2___ ;
( 3 ) 32 2 __2_6__.
4. 比较下列两组数的大小(在横线上填“>”“<” 或“=”):
(1)5 4 > 4 5;(2) 4 2 < 2 7.
5.计算: ( 1 ) 2 3 5 21 ;
解: (1) 2 35 21
25 321 10 327 30 7;
3
解: (1) 3 5 15;
(2) 1 27 1 27 9 3.
3
3
可先用乘法结合 律,再运用二次 根式的乘法法则
(3) 2 3 5 ( 2 3) 5 6 5 30.
归纳 (3)只需其中两个结合就可实现转化进行计算, 说明二次根式乘法法则同样适合三个及三个以上的二
次根式相乘,即 a b k a b k(a 0,b 0,k 0) .
3.如果因式中有平方式(或平方数),应用关系式 a2 = a 把这个因式(或因数)开出来,将二次根 式化简 .
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

例 如图4-17,D,E分别是△ ABC边AB,AC上的 点,DE∥BC. 图中有哪些相等的角? A 找出图中的相似三角形,并说 明理由;
D E B CAED=∠C. ( 两直线平行,同位角相等. )
(2) △ ADE∽ △ABC.理 由是: ∠ADE=∠B ∠AED=∠C △ ADE∽ △ABC.
B A C D

三个角对应相等,三条边对应成比例的两个三角 形, 叫做相似三角形(similar trianglec) 如果 ∠A = ∠D,∠B = ∠E,∠C = ∠F.
D

AB AC BC DE DF EF
B
A
C
F
E
那么△ ABC∽ △DEF
演示相似

你认为判定两个三角形相似至少需要哪些条件?

判断题:

30°
1 有一个角相等的两个等腰三角形相似。
30°

2 所有的直角三角形都相似。 ∟
( )




三 解答题
1 已知:在RtΔABC中,∠ACB=90° CD是斜边 AB
上的高. 图中有哪些三角形相似,并说明为什么?
答: ΔACD ∽ ΔABC ∽ ΔCBD
理由 :∠A=∠A ∠ADC=∠ACB=90° ∠A=∠A ∠CDB=∠ACB=90° ΔACD∽ΔABC(两角对应 相等的两个三角形相似) C
( 两角对应相等的两个三角 形相似 )
如图 D,E分别是△ ABC边BA, CA的上的点,DE∥BC.

找出图中的相似三角形,并说明理由
D △ ADE∽ △ABC.理由是: A
E
DE∥BC
C
∠ADE=∠B ∠AED=∠C
B A D B E C
△ ADE∽ △ABC
(两角对应相等的两个三角形相似)
随堂练习 一 填空
我们探索了相似三角形的判定方法,即两角对应相 等的两个三角形相似,并且利用这个判定方法进行 有关证明和计算.
作业
习题4.7 P120 1 , 2
思考题
如图,已知D是△ABC的边AB上任一点,DF∥AC 交BC于E.AF交BC于M,且∠B=∠F, △AMC∽△BDE吗?请说明理由。
探索三角形相似的条件
十三中科利华分校 叶志红
情景引入
为了测量一个大峡谷的宽度,地质勘探人员在对面的岩石 上观察到一个特别明显的标志点O,再在他们所在的这一侧 选点A、B、D,使得AB⊥AO,DB⊥AB,然后确定DO和 AB的交点C,测得AC=120m,CB=60m,BD=50m,你能帮 助他们算出峡谷的宽度AO吗? O

如果两个三角形有若干个角对应相等会相似吗?
1 有一个角对应相等的两个三角形相似吗?
结论:只有一个角对应相等,不能判定两个三角形相似

2 两角对应相等的两个三角形相似吗? 与同伴合作,一人画△ ABC, 另一人画△ A′B′C′, 使得∠A和∠A′都有等于给定的∠α (如300), ∠B和 ∠B′都等于给定的∠β (如450),比较你们画的两个 三角形, ∠C与∠C′相等吗? C
C'
对应边的比 A AB AC BC , , 相等吗? AB AC BC

B A' B'
这样的两个三角形相似吗?

通过上面的活动,你猜出了什么结论?
判定三角形相似的方法之一

两角对应相等的两个三角形相似.
D A
B

C
E
F
如图,在△ ABC和△ DEF中 如果∠A=∠D, ∠B=∠E, 那么△ ABC∽ △DEF.
1 在△ ABC和△A′B′C′ 中,已知∠A=∠A′=70°, ∠B=50°,当 ∠C′= ° , 那么△ ABC∽ △A′B′C′. 60
2 如图点D在AB上,若∠ACD= ∠ B,则△ ACD ∽△ ABC A A D D B C
C O B
3 如图,AB、CD相交于点O,AC与BD不平行,则满足条件 ∠ A =∠ D ,或∠ C =∠ B 时, △ AOC∽ △DOB.
∠A=∠A ∠AED=∠B
△ AED∽ △ABC
3
为了测量一个大峡谷的宽度,地质勘探人员在对面的岩石 上观察到一个特别明显的标志点O,再在他们所在的这一侧 选点A、B、D,使得AB⊥AO,DB⊥AB,然后确定DO和 AB的交点C,测得AC=120m,CB=60m,BD=50m,你能帮 助他们算出峡谷的宽度AO吗? ∠A=∠B=90° ∠1=∠2
ΔCBD ∽ ΔABC
ΔACD ∽ ΔABC A D B
ΔABC∽ΔCBD∽ΔACD
2 如图,△ABC中,∠C>∠B,D为AB边上一点, 在AC上求作一点E,使△ADE和△ABC相似
A D E A
D
E C B 作DE,使∠AED=∠B
B
C 作DE,使∠AED=∠C
∠A=∠A ∠AED=∠C
△ ADE∽ △ABC
解:AB⊥AO,DB⊥AB △ACO∽△BCD(两角 对应相等的两个三角形相似 )
AO AC . BD BC
AO
120 50 60
(相似三角形 对应边成比例)
O
AC=120m,CB=60m,BD=50m AO=100m A
1
C 2
B
答 峡谷的宽度AO是100m.
D
小结
谈谈这节课你的收获和体会?
相关文档
最新文档