【福州中考数学试题及答案】2006[1]

合集下载

【精选试卷】福州中考数学专项练习经典练习(含答案解析) (2)

【精选试卷】福州中考数学专项练习经典练习(含答案解析) (2)

一、选择题1.如图,长宽高分别为2,1,1的长方体木块上有一只小虫从顶点A出发沿着长方体的外表面爬到顶点B,则它爬行的最短路程是()A.10B.5C.22D.32.如图,斜面AC的坡度(CD与AD的比)为1:2,AC=35米,坡顶有旗杆BC,旗杆顶端B点与A点有一条彩带相连.若AB=10米,则旗杆BC的高度为()A.5米B.6米C.8米D.(3+5)米3.如图,已知⊙O的半径是2,点A、B、C在⊙O上,若四边形OABC为菱形,则图中阴影部分面积为()A.23π﹣23B.13π﹣3C.43π﹣23D.43π﹣34.若正比例函数y=mx(m≠0),y随x的增大而减小,则它和二次函数y=mx2+m的图象大致是()A.B.C .D .5.如图,P 为平行四边形ABCD 的边AD 上的一点,E ,F 分别为PB ,PC 的中点,△PEF ,△PDC ,△PAB 的面积分别为S ,1S ,2S .若S=3,则12S S +的值为( )A .24B .12C .6D .36.下列计算正确的是( ) A .()3473=a ba b B .()232482--=--b a bab bC .32242⋅+⋅=a a a a aD .22(5)25-=-a a7.如图是一个几何体的三视图(图中尺寸单位:cm ),根据图中所示数据求得这个几何体的侧面积是( )A .212cmB .()212πcm +C .26πcmD .28πcm8.矩形ABCD 与CEFG ,如图放置,点B ,C ,E 共线,点C ,D ,G 共线,连接AF ,取AF 的中点H ,连接GH .若BC=EF=2,CD=CE=1,则GH=( )A .1B .23C .22D .529.已知直线y =kx ﹣2经过点(3,1),则这条直线还经过下面哪个点( ) A .(2,0)B .(0,2)C .(1,3)D .(3,﹣1)10.分式方程()()31112x x x x -=--+的解为( )A .1x =B .2x =C .1x =-D .无解11.将一块直角三角板ABC 按如图方式放置,其中∠ABC =30°,A 、B 两点分别落在直线m 、n 上,∠1=20°,添加下列哪一个条件可使直线m ∥n( )A .∠2=20°B .∠2=30°C .∠2=45°D .∠2=50°12.若点P 1(x 1,y 1),P 2(x 2,y 2)在反比例函数ky x=(k >0)的图象上,且x 1=﹣x 2,则( ) A .y 1<y 2B .y 1=y 2C .y 1>y 2D .y 1=﹣y 213.如图,AB 为⊙O 直径,已知为∠DCB=20°,则∠DBA 为( )A .50°B .20°C .60°D .70°14.如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为10cm ,正方形A 的边长为6cm 、B 的边长为5cm 、C 的边长为5cm ,则正方形D 的边长为( )A.14cm B.4cm C.15cm D.3cm15.三张外观相同的卡片分别标有数字1,2,3,从中随机一次性抽出两张,则这两张卡片上的数字恰好都小于3的概率是()A.19B.16C.13D.2316.如图,若一次函数y=﹣2x+b的图象与两坐标轴分别交于A,B两点,点A的坐标为(0,3),则不等式﹣2x+b>0的解集为()A.x>32B.x<32C.x>3D.x<317.通过如下尺规作图,能确定点D是BC边中点的是()A.B.C.D.18.在下面的四个几何体中,左视图与主视图不相同的几何体是() A.B.C.D.19.在Rt△ABC中,∠C=90°,AB=4,AC=1,则cosB的值为()A 15B.14C15D41720.如图,菱形ABCD的两条对角线相交于O,若AC=6,BD=4,则菱形ABCD的周长是()A.24B.16C.413D.2321.一个正多边形的内角和为540°,则这个正多边形的每一个外角等于()A.108°B.90°C.72°D.60°22.下列四个实数中,比1-小的数是()A.2-B.0 C.1 D.223.如图的五个半圆,邻近的两半圆相切,两只小虫同时出发,以相同的速度从A点到B 点,甲虫沿大半圆弧ACB路线爬行,乙虫沿小半圆弧ADA1、A1EA2、A2FA3、A3GB路线爬行,则下列结论正确的是 ( )A.甲先到B点B.乙先到B点C.甲、乙同时到B点 D.无法确定24.肥皂泡的泡壁厚度大约是0.0007mm,0.0007用科学记数法表示为()A.0.7×10﹣3B.7×10﹣3C.7×10﹣4D.7×10﹣525.点 P(m + 3,m + 1)在x轴上,则P点坐标为()A.(0,﹣2)B.(0,﹣4)C.(4,0)D.(2,0)26.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,给出以下结论:①a+b+c<0;②a﹣b+c<0;③b+2a<0;④abc>0.其中所有正确结论的序号是( )A.③④B.②③C.①④D.①②③27.若一组数据2,3,,5,7的众数为7,则这组数据的中位数为( )A.2 B.3 C.5 D.728.如图,矩形ABCD中,O为AC中点,过点O的直线分别与AB、CD交于点E、F,连结BF交AC于点M,连结DE、BO.若∠COB=60°,FO=FC,则下列结论:①FB垂直平分OC;②△EOB≌△CMB;③DE=EF;④S△AOE:S△BCM=2:3.其中正确结论的个数是()A .4个B .3个C .2个D .1个29.黄金分割数512-是一个很奇妙的数,大量应用于艺术、建筑和统计决策等方面,请你估算5﹣1的值( ) A .在1.1和1.2之间 B .在1.2和1.3之间 C .在1.3和1.4之间D .在1.4和1.5之间30.已知实数a ,b ,若a >b ,则下列结论错误的是 A .a-7>b-7B .6+a >b+6C .55a b >D .-3a >-3b二、填空题31.如图,在△ABC 中E 是BC 上的一点,EC=2BE ,点D 是AC 的中点,设△ABC 、△ADF 、△BEF 的面积分别为S △ABC ,S △ADF ,S △BEF ,且S △ABC =12,则S △ADF -S △BEF =_________.32.正六边形的边长为8cm ,则它的面积为____cm 2. 33.当m =____________时,解分式方程533x mx x-=--会出现增根. 34.已知一组数据6,x ,3,3,5,1的众数是3和5,则这组数据的中位数是_____. 35.计算:82-=_______________.36.如图,在△ABC 中,BC 边上的垂直平分线DE 交边BC 于点D ,交边AB 于点E .若△EDC 的周长为24,△ABC 与四边形AEDC 的周长之差为12,则线段DE 的长为_____.37.若a ,b 互为相反数,则22a b ab +=________.38.甲、乙两人在1200米长的直线道路上跑步,甲、乙两人同起点、同方向出发,并分别以不同的速度匀速前进,已知,甲出发30秒后,乙出发,乙到终点后立即返回,并以原来的速度前进,最后与甲相遇,此时跑步结束.如图,y (米)表示甲、乙两人之间的距离,x (秒)表示甲出发的时间,图中折线及数据表示整个跑步过程中y 与x 函数关系,那么,乙到达终点后_____秒与甲相遇.39.从﹣2,﹣1,1,2四个数中,随机抽取两个数相乘,积为大于﹣4小于2的概率是_____.40.如图,是将菱形ABCD 以点O 为中心按顺时针方向分别旋转90°,180°,270°后形成的图形.若∠BAD=60°,AB=2,则图中阴影部分的面积为 .41.如图,直线l x ⊥轴于点P ,且与反比例函数11k y x=(0x >)及22ky x =(0x >)的图象分别交于A 、B 两点,连接OA 、OB ,已知OAB ∆的面积为4,则12k k =﹣________.42.某品牌旗舰店平日将某商品按进价提高40%后标价,在某次电商购物节中,为促销该商品,按标价8折销售,售价为2240元,则这种商品的进价是______元.43.当直线()223y k x k =-+-经过第二、三、四象限时,则k 的取值范围是_____. 44.如图,Rt AOB ∆中,90AOB ∠=︒,顶点A ,B 分别在反比例函数()10y x x=>与()50y x x-=<的图象上,则tan BAO ∠的值为_____.45.分解因式:x 3﹣4xy 2=_____.46.如图,在平面直角坐标系中,点O 为原点,菱形OABC 的对角线OB 在x 轴上,顶点A 在反比例函数y=2x的图像上,则菱形的面积为_______.47.如图,在平面直角坐标系中,菱形OABC 的面积为12,点B 在y 轴上,点C 在反比例函数y =kx的图象上,则k 的值为________.48.在一个不透明的袋子中有若千个小球,这些球除颜色外无其他差别,从袋中随机摸出一球,记下其颜色,这称为一次摸球试验,然后把它重新放回袋中并摇匀,不断重复上述过程.以下是利用计算机模拟的摸球试验统计表: 摸球实验次数 100 1000 5000 10000 50000 100000 “摸出黑球”的次数 36387201940091997040008“摸出黑球”的频率 (结果保留小数点后三位)0.3600.3870.4040.4010.3990.400根据试验所得数据,估计“摸出黑球”的概率是_______(结果保留小数点后一位). 49.已知a ,b ,c 是△ABC 的三边长,a ,b 满足|a ﹣7|+(b ﹣1)2=0,c 为奇数,则c=_____.50.一列数123,,,a a a ……n a ,其中1231211111,,,,111n n a a a a a a a -=-===---,则1232014a a a a ++++=__________.51.如图,在Rt△ABC 中,∠ACB=90°,∠ABC=30°,将△ABC 绕点C 顺时针旋转至△A′B′C,使得点A′恰好落在AB 上,则旋转角度为_____.52.如图,△ABC 的三个顶点均在正方形网格格点上,则tan ∠BAC =_____________.53.如图,在平面直角坐标系中,菱形OABC 的边OA 在x 轴上,AC 与OB 交于点D (8,4),反比例函数y=的图象经过点D .若将菱形OABC 向左平移n 个单位,使点C落在该反比例函数图象上,则n 的值为___.54.已知关于x 的一元二次方程mx 2+5x+m 2﹣2m=0有一个根为0,则m=_____. 55.我国倡导的“一带一路”建设将促进我国与世界各国的互利合作,“一带一路”地区覆盖总人口约为4400000000人,将数据4400000000用科学记数法表示为______. 56.如图①,在矩形 MNPQ 中,动点 R 从点 N 出发,沿 N→P→Q→M 方向运动至点 M 处停止,设点 R 运动的路程为 x ,△MNR 的面积为 y ,如果 y 关于 x 的函数图象如图②所示,则矩形 MNPQ 的面积是________.57.在一个不透明的口袋中,装有A ,B ,C ,D4个完全相同的小球,随机摸取一个小球然后放回,再随机摸取一个小球,两次摸到同一个小球的概率是___. 58.分式方程32x x 2--+22x-=1的解为________.59.在一次班级数学测试中,65分为及格分数线,全班的总平均分为66分,而所有成绩及格的学生的平均分为72分,所有成绩不及格的学生的平均分为58分,为了减少不及格的学生人数,老师给每位学生的成绩加上了5分,加分之后,所有成绩及格的学生的平均分变为75分,所有成绩不及格的学生的平均分变为59分,已知该班学生人数大于15人少于30人,该班共有_____位学生.60.若关于x的一元二次方程kx2+2(k+1)x+k-1=0有两个实数根,则k的取值范围是【参考答案】2016-2017年度第*次考试试卷参考答案**科目模拟测试一、选择题1.C2.A3.C4.A5.B6.C7.C8.C9.A10.D11.D12.D13.D14.A15.C16.B17.A18.B19.A20.C21.C22.A23.C24.C25.D26.C27.C28.A29.B30.D二、填空题31.2【解析】由D是AC的中点且S△ABC=12可得;同理EC=2BE即EC=可得又等量代换可知S△ADF-S△BEF=232.【解析】【分析】【详解】如图所示正六边形ABCD中连接OCOD过O作OE⊥CD;∵此多边形是正六边形∴∠COD=60°;∵OC=OD∴△COD是等边三角形∴OE=CE•tan60°=cm∴S△OCD33.2【解析】分析:分式方程的增根是分式方程转化为整式方程的根且使分式方程的分母为0的未知数的值详解:分式方程可化为:x-5=-m由分母可知分式方程的增根是3当x=3时3-5=-m解得m=2故答案为:234.4【解析】【分析】先根据众数的定义求出x=5再根据中位数的定义进行求解即可得【详解】∵数据6x3351的众数是3和5∴x=5则这组数据为133556∴这组数据的中位数为=4故答案为:4【点睛】本题主35.【解析】【分析】先把化简为2再合并同类二次根式即可得解【详解】2-=故答案为【点睛】本题考查了二次根式的运算正确对二次根式进行化简是关键36.6【解析】试题解析:∵DE是BC边上的垂直平分线∴BE=CE∵△EDC的周长为24∴ED+DC+EC=24①∵△ABC与四边形AEDC的周长之差为12∴(AB+AC+BC)-(AE+ED+DC+AC37.0【解析】【分析】先提公因式得ab(a+b)而a+b=0任何数乘以0结果都为0【详解】解:∵=ab(a+b)而a+b=0∴原式=0故答案为0【点睛】本题考查了因式分解和有理数的乘法运算注意掌握任何数38.30【解析】【分析】由图象可以V甲=9030=3m/sV追=90120-30=1m/s故V乙=1+3=4m/s由此可求得乙走完全程所用的时间为:12004=300s则可以求得此时乙与甲的距离即可求出39.【解析】【分析】列表得出所有等可能结果从中找到积为大于-4小于2的结果数根据概率公式计算可得【详解】列表如下:-2-112-22-2-4-12-1-21-2-40.12﹣4【解析】【分析】【详解】试题分析:如图所示:连接ACBD交于点E连接DFFMMNDN∵将菱形ABCD以点O为中心按顺时针方向分别旋转90°180°270°后形成的图形∠BAD=60°AB=241.【解析】【分析】根据反比例函数的几何意义可知:的面积为的面积为然后两个三角形面积作差即可求出结果【详解】解:根据反比例函数的几何意义可知:的面积为的面积为∴的面积为∴∴故答案为8【点睛】本题考查反比42.2000【解析】【分析】设这种商品的进价是x元根据提价之后打八折售价为2240元列方程解答即可【详解】设这种商品的进价是x元由题意得(1+40)x×08=2240解得:x=2000故答案为:200043.【解析】【分析】根据一次函数时图象经过第二三四象限可得即可求解;【详解】经过第二三四象限∴∴∴故答案为:【点睛】本题考查一次函数图象与系数的关系;掌握一次函数与对函数图象的影响是解题的关键44.【解析】【分析】过作轴过作轴于于是得到根据反比例函数的性质得到根据相似三角形的性质得到求得根据三角函数的定义即可得到结论【详解】过作轴过作轴于则∵顶点分别在反比例函数与的图象上∴∵∴∴∴∴∴∴故答案45.x(x+2y)(x﹣2y)【解析】分析:原式提取x再利用平方差公式分解即可详解:原式=x(x2-4y2)=x(x+2y)(x-2y)故答案为x(x+2y)(x-2y)点睛:此题考查了提公因式法与公式46.4【解析】【分析】【详解】解:连接AC交OB于D∵四边形OABC是菱形∴AC⊥OB∵点A在反比例函数y=的图象上∴△AOD的面积=×2=1∴菱形OABC的面积=4×△AOD的面积=4故答案为:447.-6【解析】因为四边形OABC是菱形所以对角线互相垂直平分则点A和点C关于y轴对称点C在反比例函数上设点C的坐标为(x)则点A的坐标为(-x)点B的坐标为(0)因此AC=-2xOB=根据菱形的面积等48.4【解析】【分析】大量重复试验下摸球的频率可以估计摸球的概率据此求解【详解】观察表格发现随着摸球次数的增多频率逐渐稳定在04附近故摸到白球的频率估计值为04;故答案为:04【点睛】本题考查了利用频率49.7【解析】【分析】根据非负数的性质列式求出ab的值再根据三角形的任意两边之和大于第三边两边之差小于第三边求出c的取值范围再根据c是奇数求出c的值【详解】∵ab满足|a﹣7|+(b﹣1)2=0∴a﹣750.【解析】【分析】分别求得a1a2a3…找出数字循环的规律进一步利用规律解决问题【详解】解:…由此可以看出三个数字一循环2014÷3=671…1则a1+a2+a3+…+a2014=671×(-1++251.60°【解析】试题解析:∵∠ACB=90°∠ABC=30°∴∠A=90°-30°=60°∵△ABC绕点C顺时针旋转至△A′B′C时点A′恰好落在AB上∴AC=A′C∴△A′AC是等边三角形∴∠ACA52.【解析】分析:在图形左侧添加正方形网格分别延长ABAC连接它们延长线所经过的格点可构成直角三角形利用正切的定义即可得出答案详解:如图所示由图形可知∴tan∠BAC=故答案为点睛:本题考查了锐角三角函53.【解析】试题分析根据菱形的性质得出CD=ADBC∥OA根据D(84)和反比例函数的图象经过点D求出k=32C点的纵坐标是2×4=8求出C的坐标即可得出答案∵四边形ABCO是菱形∴CD=ADBC∥OA54.2【解析】【分析】根据一元二次方程的定义以及一元二次方程的解的定义列出关于m的方程通过解关于m的方程求得m的值即可【详解】∵关于x的一元二次方程mx2+5x+m2﹣2m=0有一个根为0∴m2﹣2m=55.4×109【解析】【分析】科学记数法的表示形式为a×10n的形式其中1≤|a|<10n为整数确定n的值时要看把原数变成a时小数点移动了多少位n的绝对值与小数点移动的位数相同当原数绝对值>10时n是正56.20【解析】【分析】根据图象横坐标的变化问题可解【详解】由图象可知x=4时点R 到达Px=9时点R到Q点则PN=4QP=5∴矩形MNPQ的面积是20【点睛】本题为动点问题的函数图象探究题考查了动点到达57.【解析】【分析】【详解】试题分析:画树状图如下:∴P(两次摸到同一个小球)==故答案为考点:列表法与树状图法;概率公式58.【解析】【分析】根据解分式方程的步骤即可解答【详解】方程两边都乘以得:解得:检验:当时所以分式方程的解为故答案为【点睛】考查了解分式方程解分式方程的基本思想是转化思想把分式方程转化为整式方程求解解分59.28【解析】【分析】设加分前及格人数为x人不及格人数为y人原来不及格加分为及格的人数为n人所以72x+58y=66(x+y)75(x+n)+59(y-n)=(66+5)(x+y)用n分别表示xy得到60.k≥-13且k≠0【解析】试题解析:∵a=kb=2(k+1)c=k-1∴△=4(k+1)2-4×k×(k-1)=3k+1≥0解得:k≥-13∵原方程是一元二次方程∴k≠0考点:根的判别式2016-2017年度第*次考试试卷参考解析【参考解析】**科目模拟测试一、选择题1.C解析:C【解析】【分析】蚂蚁有两种爬法,就是把正视和俯视(或正视和侧视)二个面展平成一个长方形,然后求其对角线,比较大小即可求得最短路程.【详解】如图所示,路径一:AB22211()22;=++=路径二:AB22=++=().21110<,∴蚂蚁爬行的最短路程为22.∵2210故选C.【点睛】本题考查了立体图形中的最短路线问题;通常应把立体几何中的最短路线问题转化为平面几何中的求两点间距离的问题;注意长方体展开图形应分情况进行探讨.2.A【解析】试题分析:根据CD:AD=1:2,AC=35米可得:CD=3米,AD=6米,根据AB=10米,∠D=90°可得:BD=22AB AD-=8米,则BC=BD-CD=8-3=5米.考点:直角三角形的勾股定理3.C解析:C【解析】分析:连接OB和AC交于点D,根据菱形及直角三角形的性质先求出AC的长及∠AOC 的度数,然后求出菱形ABCO及扇形AOC的面积,则由S菱形ABCO﹣S扇形AOC可得答案.详解:连接OB和AC交于点D,如图所示:∵圆的半径为2,∴OB=OA=OC=2,又四边形OABC是菱形,∴OB⊥AC,OD=12OB=1,在Rt△COD中利用勾股定理可知:22213-=,3∵sin∠COD=32 CDOC=,∴∠COD=60°,∠AOC=2∠COD=120°,∴S菱形ABCO=12B×AC=12×2×33S扇形AOC=2120243603ππ⨯⨯=,则图中阴影部分面积为S菱形ABCO﹣S扇形AOC=423 3π-故选C.点睛:本题考查扇形面积的计算及菱形的性质,解题关键是熟练掌握菱形的面积=12 a•b(a、b是两条对角线的长度);扇形的面积=2360n rπ,有一定的难度.4.A 解析:A【分析】【详解】∵正比例函数y=mx (m≠0),y 随x 的增大而减小,∴该正比例函数图象经过第一、三象限,且m <0,∴二次函数y=mx 2+m 的图象开口方向向下,且与y 轴交于负半轴,综上所述,符合题意的只有A 选项,故选A.5.B解析:B【解析】【分析】【详解】过P 作PQ ∥DC 交BC 于点Q ,由DC ∥AB ,得到PQ ∥AB ,∴四边形PQCD 与四边形APQB 都为平行四边形,∴△PDC ≌△CQP ,△ABP ≌△QPB ,∴S △PDC =S △CQP ,S △ABP =S △QPB ,∵EF 为△PCB 的中位线,∴EF ∥BC ,EF=12BC , ∴△PEF ∽△PBC ,且相似比为1:2,∴S △PEF :S △PBC =1:4,S △PEF =3,∴S △PBC =S △CQP +S △QPB =S △PDC +S △ABP =12S S +=12.故选B .6.C解析:C【解析】【分析】根据幂的乘方、单项式乘以单项式、合并同类项的运算法则及完全平方公式对各选项逐一计算即可得答案.【详解】A.43123()a b a b =,故该选项计算错误,B.()232482b a b ab b --=-+,故该选项计算错误, C.32242⋅+⋅=a a a a a ,故该选项计算正确,D.22(5)1025a a a -=-+,故该选项计算错误,故选B.【点睛】本题考查幂的乘方、单项式乘以单项式、合并同类项的运算法则及完全平方公式,熟练掌握运算法则是解题关键.7.C解析:C【解析】【分析】根据三视图确定该几何体是圆柱体,再计算圆柱体的侧面积.【详解】先由三视图确定该几何体是圆柱体,底面半径是2÷2=1cm ,高是3cm . 所以该几何体的侧面积为2π×1×3=6π(cm 2).故选C .【点睛】此题主要考查了由三视图确定几何体和求圆柱体的侧面积,关键是根据三视图确定该几何体是圆柱体.8.C解析:C【解析】分析:延长GH 交AD 于点P ,先证△APH ≌△FGH 得AP=GF=1,GH=PH=12PG ,再利用勾股定理求得PG=2,从而得出答案.详解:如图,延长GH 交AD 于点P ,∵四边形ABCD 和四边形CEFG 都是矩形,∴∠ADC=∠ADG=∠CGF=90°,AD=BC=2、GF=CE=1,∴AD ∥GF ,∴∠GFH=∠PAH ,又∵H 是AF 的中点,∴AH=FH ,在△APH 和△FGH 中,∵PAH GFH AH FHAHP FHG∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△APH≌△FGH(ASA),∴AP=GF=1,GH=PH=12 PG,∴PD=AD﹣AP=1,∵CG=2、CD=1,∴DG=1,则GH=12PG=122,故选:C.点睛:本题主要考查矩形的性质,解题的关键是掌握全等三角形的判定与性质、矩形的性质、勾股定理等知识点.9.A解析:A【解析】【分析】把点(3,1)代入直线y=kx﹣2,得出k值,然后逐个点代入,找出满足条件的答案.【详解】把点(3,1)代入直线y=kx﹣2,得1=3k﹣2,解得k=1,∴y=x﹣2,把(2,0),(0,2),(1,3),(3,﹣1)代入y=x﹣2中,只有(2,0)满足条件.故选A.【点睛】本题考查了一次函数图象上点的坐标特点,熟悉一次函数图象上点的特点是解此题的关键.10.D解析:D【解析】分析:分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.详解:去分母得:x2+2x﹣x2﹣x+2=3,解得:x=1,经检验x=1是增根,分式方程无解.故选D.点睛:本题考查了分式方程的解,始终注意分母不为0这个条件.11.D解析:D【解析】【分析】根据平行线的性质即可得到∠2=∠ABC+∠1,即可得出结论.【详解】∵直线EF ∥GH ,∴∠2=∠ABC+∠1=30°+20°=50°,故选D .【点睛】本题考查了平行线的性质,熟练掌握平行线的性质是解题的关键.12.D解析:D【解析】 由题意得:1212k k y y x x ==-=- ,故选D. 13.D解析:D【解析】题解析:∵AB 为⊙O 直径,∴∠ACB =90°,∴∠ACD =90°-∠DCB =90°-20°=70°,∴∠DBA =∠ACD =70°.故选D .【点睛】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.14.A解析:A【解析】运用直角三角形的勾股定理,设正方形D 的边长为x ,则22222(65)(5)10x +++=,x =(负值已舍),故选A15.C解析:C【解析】【分析】画出树状图即可求解.【详解】解:画树状图得:∵共有6种等可能的结果,而两张卡片上的数字恰好都小于3有2种情况,∴两张卡片上的数字恰好都小于3概率=13;故选:C.【点睛】本题考查的是概率,熟练掌握树状图是解题的关键.16.B解析:B【解析】【分析】根据点A的坐标找出b值,令一次函数解析式中y=0求出x值,从而找出点B的坐标,观察函数图象,找出在x轴上方的函数图象,由此即可得出结论.【详解】解:∵一次函数y=﹣2x+b的图象交y轴于点A(0,3),∴b=3,令y=﹣2x+3中y=0,则﹣2x+3=0,解得:x=32,∴点B(32,0).观察函数图象,发现:当x<32时,一次函数图象在x轴上方,∴不等式﹣2x+b>0的解集为x<32.故选:B.【点睛】本题考查了一次函数与一元一次不等式,解题的关键是找出交点B的坐标.本题属于基础题,难度不大,解决该题型题目时,根据函数图象的上下位置关系解不等式是关键.17.A【解析】【分析】作线段BC 的垂直平分线可得线段BC 的中点.【详解】作线段BC 的垂直平分线可得线段BC 的中点.由此可知:选项A 符合条件,故选A .【点睛】本题考查作图﹣复杂作图,解题的关键是熟练掌握五种基本作图.18.B解析:B【解析】【分析】由几何体的三视图知识可知,主视图、左视图是分别从物体正面、左面看所得到的图形,细心观察即可求解.【详解】A 、正方体的左视图与主视图都是正方形,故A 选项不合题意;B 、长方体的左视图与主视图都是矩形,但是矩形的长宽不一样,故B 选项与题意相符;C 、球的左视图与主视图都是圆,故C 选项不合题意;D 、圆锥左视图与主视图都是等腰三角形,故D 选项不合题意;故选B .【点睛】本题主要考查了几何题的三视图,解题关键是能正确画出几何体的三视图.19.A解析:A【解析】∵在Rt △ABC 中,∠C =90°,AB =4,AC =1,∴BC ,则cos B =BC AB =4, 故选A 20.C解析:C【解析】【分析】由菱形ABCD 的两条对角线相交于O ,AC=6,BD=4,即可得AC ⊥BD ,求得OA 与OB 的长,然后利用勾股定理,求得AB 的长,继而求得答案.∵四边形ABCD是菱形,AC=6,BD=4,∴AC⊥BD,OA=12AC=3,OB=12BD=2,AB=BC=CD=AD,∴在Rt△AOB中,∴菱形的周长为故选C.21.C解析:C【解析】【分析】首先设此多边形为n边形,根据题意得:180(n-2)=540,即可求得n=5,再由多边形的外角和等于360°,即可求得答案.【详解】解:设此多边形为n边形,根据题意得:180(n-2)=540,解得:n=5,∴这个正多边形的每一个外角等于:3605=72°.故选C.【点睛】此题考查了多边形的内角和与外角和的知识.注意掌握多边形内角和定理:(n-2)•180°,外角和等于360°.22.A解析:A【解析】试题分析:A.﹣2<﹣1,故正确;B.0>﹣1,故本选项错误;C.1>﹣1,故本选项错误;D.2>﹣1,故本选项错误;故选A.考点:有理数大小比较.23.C解析:C1 2π(AA1+A1A2+A2A3+A3B)=12π×AB,因此甲虫走的四段半圆的弧长正好和乙虫走的大半圆的弧长相等,因此两个同时到B点。

历年福建省福州市中考数学试题(含答案)

历年福建省福州市中考数学试题(含答案)

2016 年福州市初中毕业会考、高级中等学校招生考试数学试题 (全卷共4页,三大题,27小题;满分150分;考试时间120分钟)友情提示:请把所有答案填写(涂)在答题卡上,请不要错位、越界答题! 毕业学校 姓名 考生号一、选择题(共12 小题,每题3分.满分36分;每小题只有一个正确选项)1.下列实数中的无理数是A .0.7B .21 C .π D .-8 2.如图是3个相同的小正方体组合而成的几何体,它的俯视图是A .B .C .D .3.如图,直线a 、b 被直线C 所截,∠1和∠2的位置关系是A .同位角B .内错角C .同旁内角D .对顶角4.下列算式中,结果等于a 6 的是A .a 4+a 2B .a 2+a 2+a 2C .a 4·a 2D .a 2·a 2·a 2 5.不等式组⎩⎨⎧>->+0301x x 的解集是 A .x >-1 B .x >3 C .-1<x <3 D .x <36.下列说法中,正确的是A .不可能事件发生的概率为0B .随机事件发生的概率为21 C .概率很小的事件不可能发生D .投掷一枚质地均匀的硬币100次,正面朝上的次数一定为50次7.A ,B 是数轴上两点,线段AB 上的点表示的数中,有互为相反数的是8.平面宜角坐标系中,已知□ABCD 的三个顶点坐标分别是A (m ,n ),B ( 2,-l ),C (-m ,-n ),则点D 的坐标是A .(-2 ,l )B .(-2,-l )C .(-1,-2 )D .(-1,2 )9.如图,以O 为圆心,半径为1 的弧交坐标轴于A ,B 两点,P 是⌒AB 上一点(不与A ,B 重合),连接OP ,设∠POB =α,则点P 的坐标是第2题A .(sin α,sin α)B .( cos α,cos α)C .(cos α,sin α)D .(sin α,cos α)10.下表是某校合唱团成员的年龄分布 年龄/岁 13 14 15 16 频数 5 15 x 10-x对于不同的x ,下列关于年龄的统计量不会发生改变的是A .平均数,中位数B .众数,中位数C .平均数,方差D .中位数,方差11.已知点A (-l ,m ),B ( l ,m ),C ( 2,m +l )在同一个函数图象上,这个函数图象可以是A B C D12.下列选项中,能使关于x 的一元二次方程ax 2-4x +c =0一定有实数根的是A .a >0B .a =0C .c >0D .c =0二、填空题(共6小题,每题4分,满分24分)13.分解因式:x 2-4= .14.若二次根式1-x 在实数范围内有意义,则x 的取值范围是 .15.已知四个点的坐标分别是(-1,1),(2,2),(32,23),(-5,-51),从中随机选一个点,在反比例函数y =x1图象上的概率是 . 16.如图所示的两段弧中,位于上方的弧半径为r 上,下方的弧半径为r 下,则r 上 r 下.(填“>“,”“=”“<”)17.若x +y =10,xy =1 ,则x 3y +xy 3= .18.如图,6个形状、大小完全相同的菱形组成网格,菱形的顶点称为格点.已知菱形的一个角(∠O )为60°,A ,B ,C 都在格点上,则tan ∠ABC 的值是 .三、解答题(共9 小题,满分90 分)19.(7分)计算:|-1|-38+(-2016)0 .20.(7分)化简:a -b -ba b a ++2)( 21.(8分)一个平分角的仪器如图所示,其中AB =AD ,BC =DC ,求证:∠BAC =∠DAC .x y O x yO x y O x y O22.(8分)列方程(组)解应用题:某班去看演出,甲种票每张24 元,乙种票每张18 元.如果35名学生购票恰好用去750元,甲乙两种票各买了多少张?23.(10分)福州市2011~2015年常住人口数统计如图所示.根据图中提供的信息,回答下列问题:(1)福州市常住人口数,2015年比2014年增加了 万人;(2)与上一年相比,福州市常住人口数增加最多的年份是 万人;(3)预测2016年福州市常住人口数大约为多少万人?请用所学的统计知识说明理由.24.(12分)如图,正方形ABCD 内接于⊙O ,M 为⌒AD 中点,连接BM ,CM .(1)求证:BM =CM ;(2)当⊙O 的半径为2 时,求⌒BM 的长.25.如图,在△ABC 中,AB =AC =1,BC =215 ,在AC 边上截取AD =BC ,连接BD . (1)通过计算,判断AD 2与AC ·CD 的大小关系;(2)求∠ABD 的度数.26.(13分)如图,矩形ABCD 中,AB =4,AD =3,M 是边CD 上一点,将△ADM 沿直线AM 对折,得到△ANM .(1)当AN 平分∠MAB 时,求DM 的长;(2)连接BN ,当DM =1时,求△ABN的面积;(3)当射线BN 交线段CD 于点F 时,求DF的最大值.27.(13分)已知,抛物线y=ax2+bx+c ( a≠0)经过原点,顶点为A ( h,k ) (h≠0).(1)当h=1,k=2时,求抛物线的解析式;(2)若抛物线y=tx2(t≠0)也经过A点,求a与t之间的关系式;(3)当点A在抛物线y=x2-x上,且-2≤h<1时,求a的取值范围.。

2005--2011年福建省福州市中考数学试题及答案(7套)

2005--2011年福建省福州市中考数学试题及答案(7套)

新世纪教育网精选资料 版权所有 @新世纪教育网深圳市 2007 年初中毕业生学业考试数学试卷说明: 1.全卷分二部分,第一部分为选择题,第二部分为非选择题,共 4 页.考试时间 90分钟,满分 100 分.2.本卷试题,考生一定在答题卡上按规定作答;凡在试卷、底稿纸上作答的,其答案一律无效.答题卡一定保持洁净,不可以折叠.3.答题前,请将姓名、考生号、考场、试室号和座位号用规定的笔写在答题卡指定的地点上,将条形码粘贴好.4.本卷选择题 1- 10,每题选出答案后,用2B 铅笔将答题卡选择题答题区内对应题目的答案标号涂黑,如需变动,用橡皮擦洁净后,再选涂其余答案;非选择题11- 23,答案(含作协助线)一定用规定的笔,按作答题目序号,写在答题卡非选择题答题区内.5.考试结束,请将本试卷和答题卡一并交回.第一部分 选择题(本部分共 10 小题,每题 3 分,共 30 分.每题给出4 个选项,此中只有一个是正确的)1. 2 的相反数是( )A.1 B. 21 D. 22C.2457302.今年参加我市初中毕业生学业考试的考生总数为人,这个数据用科学记数法表示为( )A. 0.4573 105B. 4.573 104C.4.573 104D. 4.573 1033.认真察看图 1 所示的两个物体,则它的俯视图是()正面A. B. C. D.图 14.以下图形中,不是 轴对称图形的是()..A.B. C. D.5.已知三角形的三边长分别是 3,8, x ;若 x 的值为偶数,则 x 的值有( )A. 6个 B. 5个C. 4个 D. 3个6.一件标价为 250 元的商品,若该商品按八折销售,则该商品的实质售价是()A. 180 元B. 200 元C. 240 元D. 250 元7.一数据2,1, 0 ,1, 2 的方差是()A. 1B. 2C. 3D. 48.若( a 2)2b30 , (a b)2007的是()AA. 0B. 1C. 1D. 2007D 31°a9.如 2,直a∥b,∠A的度数是()B70°b CA. 28B. 31C. 39D. 42210.在同向来角坐系中,函数y k(k0) 与 y kx k(k 0) 的象大概是()yxy yyx x x xA.B.C.D.第二部分非选择题填空(本共 5 小,每小 3 分,共 15分)11.一个口袋中有 4 个白球, 5 个球, 6 个黄球,每个球除色外都同样,匀后随机从袋中摸出一个球,个球是白球的概率是.12.分解因式:2x24x2.13.若式2x2y m与1x n y3是同,m n 的是.314.直角三角形斜是 6 ,以斜的中点心,斜上的中半径的的面是.15.老了一个算程序,入和出的数据以下表:入数据123456⋯出数据123456⋯2714233447那么,当入数据是7 ,出的数据是.解答(本共8 小,此中第16 5分,第 17 6分,第 18 6分,第 19 6分,第 20 7分,第 218 分,第 22 9 分,第 23 8 分,共 55 分)16.算:31 2 sin 452007π 032(x2) ≤ x 3 ①17.解不等式组,并把它的解集表示在数轴上:x x 1②3418.如图3,在梯形ABCD中,AD∥BC,EA⊥AD,M是 AE上一点,∠ BAE ∠ MCE ,∠MBE 45 .A D(1)求证:BE ME .M(2)若AB7,求 MC的长.B CE图 319.2007 年某市国际车展时期,某企业对观光本次车展嘉会的花费者进行了随机问卷检查,共发放1000 份检盘问卷,并所有回收.①依据检盘问卷的结果,将花费者年收入的状况整理后,制成表格以下:年收入(万元) 4.867.2910被检查的花费者人数(人)2005002007030②将花费者打算购置小车的状况整理后,作出频数散布直方图的一部分(如图4).注:每组包括最小值不包括最大值,且车价取整数.请你依据以上信息,回答以下问题.(1)依据①中信息可得,被检查花费者的年收入的众数是______万元.(2)请在图 4 中补全这个频数散布直方图.(3)打算购置价钱10万元以下小车的花费者人数占被检查花费者人数的百分比是______.人数 /人36020012040车价 /万元046810 12 1416图 420.如图 5,某货船以24海里/时的速度将一批重要物质从 A 处运往正东方向的M 处,在点 A 处测得某岛 C 在北偏东 60 的方向上.该货船航行30 分钟后抵达 B 处,此时再测得该岛在北偏东 30的方向上,已知在 C 岛四周 9 海里的地区内有暗礁.若持续向正东方向航行,该货船有无触礁危险?试说明原因.北C60°30°MA B图 521.A,B两地相距18公里,甲工程队要在A,B两地间铺设一条输送天然气管道,乙工程队要在 A, B 两地间铺设一条输油管道.已知甲工程队每周比乙工程队少铺设1公里,甲工程队提早 3 周动工,结果两队同时达成任务,求甲、乙两工程队每周各铺设多少公里管道?22.如图 6,在平面直角坐标系中,正方形AOCB 的边长为 1,点 D 在x轴的正半轴上,且OD OB,BD交OC于点 E.(1)求∠BEC的度数.(2)求点E的坐标.(3)求过B,O,D三点的抛物线的分析式.(计算结果要求分母有理化.参照资料:把分母中的根号化去,叫分母有理化.比如:①22525555;5②11(21) 2 1;③15 ( 55 3 5 3 等21 (21)(21)33)( 5 3)2运算都是分母有理化)yB CEA O D x图 6237y x6与直线y x订交于A, B 两点..如图,在平面直角坐标系中,抛物线12142(1)求线段AB的长.(2)若一个扇形的周长等于(1)中线段AB的长,当扇形的半径取何值时,扇形的面积最大,最大面积是多少?(3)如图 8,线段AB的垂直均分线分别交x轴、y轴于C,D两点,垂足为点M,分别求出 OM , OC , OD 的长,并考证等式1 1 12 能否建立.OC2OD 2OMyyBDMBOxOCxAA图 7图 8(4)如图 9,在 Rt △ ABC 中,∠ ACB 90 ,CD AB ,垂足为 D ,设 BC a ,ACb ,1 11AB c . CD b ,试说明: a 2 b 2h 2 .CbhaAcD B图 9深圳市 2007 年初中毕业生学业考试数学试卷参照答案第一部分 选择题(此题共10 小题,每题3 分,共 30 分)题号 1 2 3 4 5 6 7 8 9 10 答案DBAADBBCCC第二部分 非选择题填空题(此题共 5 小题,每题 3 分,共 15 分)题号11121314 154 2( x 1)257 答案15962解答题(此题共 7 小题,此中第 16题5分,第 17题6分,第 18 题6分,第 19题6分,第20题7分,第 21题 8分,第 22题 9分,第 23题 8分,共 55 分) 16.1317. 原不等式组的解集为x ≤ 118. (1) 证明略(2)∴MC=719. (1)6 (2)略(3)40 120 360 100% 52%100020.∵63 9因此货船持续向正东方向行驶无触礁危险.21.设甲工程队每周铺设管道x 公里,则乙工程队每周铺设管道( x1)公里依据题意 ,得18183 x x 1解得 x1 2 , x2 3 经查验 x1 2 , x2 3 都是原方程的根但 x23不切合题意 , 舍去∴x 1 3答 :甲工程队每周铺设管道 2 公里 , 则乙工程队每周铺设管道 3 公里.22. (1 )∴CBE114522.5 OBD OBC22∴ BEC90CBE 9022.567.5(2)点 E 的坐标是(0,2 2 )( 3)设过 B、O、D 三点的抛物线的分析式为y ax 2bx c∵B(-1 ,1),O(0,0),D(2, 0)a b c1∴ c 02a2b c0解得, a 1 2 ,b22,c0因此所求的抛物线的分析式为y (1 2 )x 2( 22)x23.( 1)∴ A( -4 , -2 ), B( 6, 3)分别过 A、 B 两点作AE x 轴, BF y 轴,垂足分别为E、 F ∴ AB=OA+OB422 2 6 232 5 5(2)设扇形的半径为x ,则弧长为 (5 52x),扇形的面积为y则 y1 (552 x )x255x 5 5 ) 2 1252 x2( x164∵ a1∴当 x55 y 最大125时,函数有最大值 164( 3)过点 A 作 AE ⊥ x 轴,垂足为点 E∵ CD 垂直均分 AB ,点 M 为垂足∴ OM1AB OA5 52 55222∵ AEOOMC , EOACOM∴△ AEO ∽△ CMO∴OEAO∴42 5 ∴ CO5 2 5 1 5 OMCO5 CO2 4 42同理可得OD 52∴1 1(4)2 ( 2)220 4OC 2OD 2 5525 514∴OM 25111 ∴2 OD 2OM 2 OC (4)等式 11 1a 2b 2h 2 建立.原因以下:∵ACB 90 , CD AB∴ 1 ab1AB hAB 2a 2b 222 ∴ ab c h∴ a 2 b 2 c 2 h 2∴ a 2 b 2( a 2 b 2 )h 2∴a 2b 2 (a 2 b 2 )h 22b 2 h 2a 2b 2 h 2a22∴1 a bh 22 b 2a∴111h2 a 2b2∴111a2 b 2h2。

中考数学试题分类分析汇编专题3:方程(组)和不定式(组)

中考数学试题分类分析汇编专题3:方程(组)和不定式(组)

中考数学试题分类分析汇编(12专题) 专题3:方程(组)和不定式(组)一.选择题1. (2001年福建福州4分)随着计算机技术的迅猛发展,电脑价格不断降低。

某品牌电脑按原售价降低m 元后,又降价20%,现售价为n 元,那么该电脑的原售价为【 】 A. 4(n m )5+元B. 5(n m )4+元 C. (5m n)+元D. (5n m)+元【答案】B 。

【考点】一元一次方程的应用。

【分析】设电脑的原售价为x 元,则()()x m 120%n --=,∴x=5n m 4+。

故选B 。

2. (2003年福建福州4分)不等式组2x 4x 30≥⎧⎨+>⎩的解集是【 】(A ) x>-3 (B )x≥2 (C )-3<x≤2 (D ) x<-3 【答案】B 。

【考点】解一元一次不等式组。

【分析】解一元一次不等式组,先求出不等式组中每一个不等式的解集,再利用口诀求出这些解集的公共部分:同大取大,同小取小,大小小大中间找,大大小小解不了(无解)。

因此,2x 4x 2x 2x 30x 2≥≥⎧⎧⇒⇒≥⎨⎨+>>-⎩⎩。

故选B 。

3.(2003年福建福州4分)已知α、β满足α+β=5,且αβ=6,则以α、β为两根的一元二次方程是【 】(A )2x 5x 60++= (B )2x 5x 60-+= (C )2x 5x 60--= (D )2x 5x 60+-=【答案】B 。

【考点】一元二次方程根与系数的关系。

【分析】∵所求一元二次方程的两根是α、β,且α、β满足α+β=5、αβ=6,∴这个方程的系数应满足两根之和是b 5a-=,两根之积是c 6a =。

当二次项系数a=1时,一次项系数b=-5,常数项c=6。

故选B 。

4. (2005年福建福州大纲卷3分)如图,射线OC 的端点O 在直线AB 上,∠AOC 的度数比∠BOC 的2倍多10度.设∠AOC 和∠BOC 的度数分别为x ,y ,则下列正确的方程组为【 】A 、x+y=180x=y+10⎧⎨⎩错误!未找到引用源。

99——2006福州市中考试题

99——2006福州市中考试题

二○○六年福州市初中毕业会考、高级中等学校招生考试(罗源、平潭)英语试卷(满分:150分;考试时间:120分钟)毕业学校姓名考生号友情提示:1. 请把所有答案填涂到答题卡上,请不要错位、越界答题;2. 听力理解第V大题21—30小题的答案应写在答题卡第二卷相应的横线上。

第一卷一、听力理解(共30分)I. 听句子,选择与句子内容相关的图,每小题念一遍。

(5分)II. 听句子,选择恰当的答语,每小题念一遍。

(5分)6. A. That’s all right. B. Fine, thank you. C. Glad to meet you, too.7. A. You are welcome. B. It doesn’t matter. C. That’s right.8. A. Certainly. B. No, thanks. C. It’s kind of you.9. A. Never mind. B. Good idea. C. Don’t be afraid.10.A. Well done. B. I hope so. C. Let me help you.III. 听对话,选择正确的答案,每小题念两遍。

(5分)11. A. Yellow. B. White. C. Black.12. A. No, he didn’t. B. Yes, he did. C. No, he wasn’t.13. A. On foot. B. By bus. C. By bike.15. A. Because he was ill.B. Because he had much work to do.C. Because his neighbor made too much noise.IV. 听短文,选择正确的答案,短文念两遍。

(5分)16. On Children’s Day, Mike went to the zoo with his .A.teacherB. motherC. father17. There were animals in the zoo.A. someB. manyC. few18. Mike was very and kept asking questions.A. excitedB. afraidC. worried19. Mike threw some to the lion.A. birdsB. eggsC. bread20. Mike was afraid .A. the lion would dieB. he couldn’t go home himselfC. Both A and B V. 听对话,填上所缺的单词,对话念两遍。

2005--2011年福建省福州市中考数学试题及答案(7套)

2005--2011年福建省福州市中考数学试题及答案(7套)

湘潭市2006年初中毕业学业考试数 学 试 卷亲爱的同学,你好!今天是展示你的才能的时候了,请你仔细审题,认真答题,发挥自己的正常水平,轻松一点,相信自己的实力!注意:本试卷共八个版面,考试时间:120分钟;满分100分. 一、填空题(本题共10个小题,每小题2分,满分20分) 1. 的相反数是3-. 2.分解因式:21_______a -=.3.小明设计了一个关于实数的运算程序如下,当输入x 的值为2时,则输出的数值为 .4.六一儿童节期间,佳明眼镜店开展优惠学生配镜的活动,某款式眼镜的广告如图,请你为广告牌补上原价.5.如图,在Rt ABC △中,9010C BC ==∠,米,15A =∠, 用科学计算器算得AB 的长约为 米.(精确到0.1米)6.如图,菱形ABCD 的对角线AC BD ,交于点O ,若3cm AO =,4cm BO =,则菱形ABCD 的面积是 2cm .7.用同一种正多边形地板砖密铺地面,为铺满地面而不重叠,那么这种正多边形的地板砖可以是正 边形.(只需写出一种即可)8.由一个圆平均分成8个相等扇形的转盘,每个扇形内标有如图数字,固定指针,转动转盘,则指针指到负数的概率是 .9.如图,在半径为2的O 中,弦AB 的长为23,则_______AOB =∠.10.如果一组数据246x y ,,,,的平均数为4.8,那么x y ,的平均数为 . 输入x 2x 1- 输出原价: 元六一节8折优惠,现价:160元(第5题图)AB C15(第6题图)AB CDO(第8题图)1- 2- 54- 3 21 (第9题图)ABO二、选择题(本大题共10个小题,每小题2分,满分20分)下列每小题都给出了标号为A,B,C,D四个结论,其中只有一个是正确的.每小题选对得分;不选、选错或多选的不得分,请将所选答案的标号填写在下面的表格内.题号 11 12 13 14 15 16 17 18 19 20 答案11.保护耕地、惠及子孙,国家将18亿亩耕地定为“红色警示线”.2005年底,国家公布我国实有耕地面积为18.35亿亩,这意味着珍惜、保护耕地刻不容缓.请将2005年国家公布的我国实有耕地面积用科学记数法表示为( ) A.818.3510⨯亩 B.91.83510⨯亩 C.81.83510⨯亩D.100.183510⨯亩12.下列结论与式子正确的是( )A.()33a a -=B.不等式组5040x x >⎧⎨+⎩≥的解集为04x <≤C.平行四边形是轴对称图形D.三角形的中位线等于第三边的一半13.分式方程532x x =-的解是( ) A.3- B.3 C.2D.0 14.数学老师对小玲同学在参加高考前的5次数学模拟考试成绩进行统计分析,判断小玲的数学成绩是否稳定,于是数学老师需要知道小玲这5次数学成绩的( ) A.平均数 B.众数 C.频数 D.方差15.已知三角形的两边的长分别为2cm 和7cm ,第三边的长为cm c ,则c 的取值范围是( )A.27c << B.79c << C.57c << D.59c << 16.如右图是一组立方块,你从上面看到的视图是( )17.反比例函数的图象在第一象限内经过点A ,过点A分别向x 轴,y 轴引垂线,垂足分别为P Q ,,已知四边形APOQ的面积为4,那么这个反比例函数的解析式为() A.4yx=B.4x y =C.4y x = D.2y x=(第16题图)A. B. C. D. (第17题图)AQO Pxy18.下列命题中真命题的个数是( )①两个相似多边形面积之比等于相似比的平方;②两个相似三角形的对应高之比等于它们的相似比;③在ABC △与A B C '''△中,AB ACA A AB A C'=='''',∠∠,那么ABC A B C '''△∽△; ④已知ABC △及位似中心O ,能够作一个且只能作一个三角形,使位似比为0.5.A.1个 B.2个 C.3个 D.4个 19.下列说法正确的是( )A.一对农村育龄夫妇第一胎生女孩,四年后还允许生一胎,有人说第二胎必为男孩; B.事件发生的频率就是它的概率;C.质检部门在某超市的化妆品柜台任意抽取100件化妆品进行质量检测,发现有2件为不合格产品,我们就说这个柜台的产品合格率为98%;D.成语“万无一失”,从数学上看,就是指“失败”是一种不可能事件.20.在一幅长为80cm ,宽为50cm 的矩形风景画的四周镶一条相同的金色纸边,制成一幅矩形挂图,如图所示,如果要使整个挂图的面积是25400cm ,设金色纸边的宽为cm x ,那么x 满足的方程是( ) A.213014000x x +-= B.2653500x x +-= C.213014000x x --=D.2653500x x --=三、解答题(本题共8个小题,其中21~24题每小题6分,25题,26题每小题8分,27题,28题每小题10分,满分60分) 21.(本题满分6分)先化简,再求值:()()2221a b a b a +-+-,其中122a b =-=,.22.(本题满分6分)如图是一个等腰梯形状的水渠的横切面图,已知渠道底宽2BC =米,渠底与渠腰的夹角120BCD = ∠,渠腰5CD =米,求水渠的上口AD 的长.(第20题图)(第22题图)AB CD23.(本题满分6分)上面是用棋子摆成的“H”字.(1)摆成第一个“H”字需要 个棋子,第二个“H”字需要棋子 个; (2)按这样的规律摆下去,摆成第10个“H”字需要多少个棋子?第n 个呢?24.(本题满分6分)同学们在小学阶段做过这样的折纸游戏:把一个长方形纸片经过折叠可以得到新的四边形.如图(1),将长方形ABCD 沿DE 折叠,使点A 与点F 重合,再沿EF 剪开,即得图(2)中的四边形DAEF .求证:四边形DAEF 为正方形.25.(本题满分8分)小刚、小明一起去精品文具店买同种钢笔和同种练习本,根据下面的对话解答问题: 小刚:阿姨,我买3支钢笔,2个练习本,共需多少钱? 售货员:刚好19元.小明:阿姨,那我买1支钢笔,3个练习本,需多少钱呢? 售货员:正好需11元.(1)求出1支钢笔和1个练习本各需多少钱? (2)小明现有20元钱,需买1支钢笔,还想买一些练习本,那么他最多可买练习本多少个?图(1) A BCD E F图(2)A D E F ……① ② ③26.(本题满分8分)月群中学为了解2006届初中毕业学生体能素质情况,进行了抽样调查,下表是该校九年级(一)班在体能素质测试中的得分表.(分数以整分计,满分30分,18分以下为不合格,24~30分为优秀)分数段 18分以下 18~20分 21~23分 24~26 分 27~29分 30分 人数 4 7 18 12 8 1认真阅读,解答下列问题:(1)估计这个班的学生体能素质成绩的中位数落在哪个分数段内;(2)根据表中相关统计量及相应数据,结合你所学的统计知识,合理制作一种统计图; (3)根据统计图,你还得到了什么信息?并结合你所在班的实际情况,谈谈自己的感想.(字数30个字以内)27.(本题满分10分)某中学要印制期末考试卷,甲印刷厂提出:每套试卷收0.6元印刷费,另收400元制版费;乙印刷厂提出:每套试卷收1元印刷费,不再收取制版费.(1)分别写出两个厂的收费y (元)与印刷数量x (套)之间的函数关系式; (2)请在下面的直角坐标系中,分别作出(1)中两个函数所在点的直线;并根据图象回答:印800套试卷,选择哪家印刷厂合算?若学校有学生2000人,为保证每个学生均有试卷,那么学校至少要付出印刷费多少元? (3)从图象上你还获得了哪些信息.(写一条与(2)中不同的信息即可)精 品 文 具 店 400 800 1200 1600 2000 2400 2800 400800 1200 1600 2000 O ()x 套()y 元28.(本题满分10分) 已知:如图,抛物线2323333y x x =--+的图象与x 轴分别交于A B ,两点,与y 轴交于C 点,M 经过原点O 及点A C ,,点D 是劣弧 OA 上一动点(D 点与A O ,不重合).(1)求抛物线的顶点E 的坐标;(2)求M 的面积;(3)连CD 交AO 于点F ,延长CD 至G ,使2FG =,试探究当点D 运动到何处时,直线GA 与M 相切,并请说明理由.湘潭市2006年初中毕业学业考试数学参考答案及评分标准一、填空题(本题共10个小题,每小题2分,满分20分)1.3, 2.()()11a a +-, 3.1, 4.200, 5.38.6, 6.24, 7.三(或四,或六),(说明:填成正三角形,正方形不扣分), 8.38, 9.120, 10.6.二、选择题(本题共10个小题,每小题2分,满分20分)题号 11 12 13 14 15 16 17 18 19 20 答案 B D A D D C A C C B三、解答题(本题共8个小题,其中21~24题每小题6分,25题,26题每小题8分,27题,28题每小题10分,满分60分) 21.(本题满分6分)解:原式222222a ab b ab a a =++--- ··············································· 2分 22b a =- ············································································ 4分 将122a b =-=,代入得 原式21222⎛⎫=-⨯-⎪⎝⎭········································································· 5分 yE C MAFG D O x B5= ·························································································· 6分 22.(本题满分6分)解:过C 和B 分别作CE AD BF AD ⊥⊥, ·········· 1分120BCD =∠30ECD ∴= ∠ ··············································· 2分115 2.522ED CD ∴==⨯= ······························· 4分∴四边形ABCD 为等腰梯形 2.5AF ED ∴== ············································································· 5分 2EF BC ==2.52 2.57AD DE EF FA ∴=++=++=(米) ··································· 6分23.(本题满分6分) 解:(1)7,12 ·································································· 2分(每空1分) (2)第10个时,棋子个数为510252⨯+=(个) ·································· 4分 第n 个时,棋子个数为()52n +个 ························································· 6分 24.(本题满分6分)解: 矩形ABCD 沿图(1)中DE 折叠,使点A 与点F 重合 DAE ∴△关于直线DE 做了轴反射,得DFE △ DA DF DFE A ∴==,∠∠ ······························································· 2分 四边形ABCD 是矩形90ADF A DFE ∴=== ∠∠∠ ·························································· 4分∴四边形DAEF 为矩形 ······································································ 5分 DA DF =∴矩形DAEF 为正方形 ······································································ 6分 (其他证法参照计分)25.(本题满分8分)解:(1)设买一支钢笔要x 元,买一个练习本要y 元 ······························· 1分 依题意:3219311x y x y +=⎧⎨+=⎩······································································ 3分解之得52x y =⎧⎨=⎩ ·················································································· 4分(2)设买的练习本为z 个 则15220z ⨯+≤ ·············································································· 6分 得7.5z ≤.因为z 为非负整数,所以z 的最大值为7 ······························ 7分 答:(1)买1支钢笔需5元,1个练习本需2元.(2)小明最多可买7个练习本. ····················································· 8分 (注:(2)用2057.52-=,再分析说明取整数7也可.) AB C DE F26.(本题满分8分)解:(1)中位数落在21~23分数段内 ·················································· 2分 (2)··············································· 6分 (3)由条形统计图可知:①符合两头小、中间大的规律;②18分以下(或不合格)人数过多; ……或从扇形统计图可知:①不合格人数占8%,而满分只占2%; ②21~23分数段所占百分率最大; ……(说明:只要根据自己所绘制图形获得的有用信息,有进步意义即可.) ·················································· 7分 结合本班实际情况谈感想,只要合理即可. ············································ 8分 27.(本题满分10分)(1)4000.6y x =+甲;y x =乙(x 为非负整数——没有写不扣分) ·········· 2分 (2)··············································· 4分 由图象可知:印800套,选择乙厂, ····················································· 6分 印2000套至少要1600元. ··············································· 8分 (3)当印1000套时,不论哪个印刷厂都是一样的钱; 当超过1000套时,选甲厂印刷合算; 当小于1000套时,选乙厂印刷合算;24~26分24% 30分 2% 21~23分 36% 18~20分14% 27~29分 16% 18分以下 8% 或 400 800 1200 1600 2000 2400 2800 400 800 1200 16002000 O ()x 套()y 元y 乙y 甲 人数(个)0 2 4 68 1012 14 16 187 18 12 8 1 18分以下 18~20 21~23 24~26 27~29 30 分数(分)4或者y 乙是正比例函数上的点;……(所得信息只要符合图象即可) ··························································· 10分 28.(本题满分10分) 解:(1)抛物线2323333y x x =--+ ()23321333x x =-++++ ()2343133x =-++··············································· 1分 E ∴的坐标为4313⎛⎫- ⎪ ⎪⎝⎭, ···································································· 2分 (说明:用公式求E 点的坐标亦可).(2)连AC ;M 过90A O C AOC = ,,,∠AC ∴为O 的直径. ········································································ 3分而33OA OC ==, ······································································· 4分32ACr ∴== ················································································ 5分 23M S r ∴=π=π ············································································· 6分 (3)当点D 运动到 OA 的中点时,直线GA 与M 相切 ··························· 7分理由:在Rt ACO △中,33OA OC ==,3tan 33ACO == ∠.6030ACO CAO ∴== ∠,∠点D 是 OA的中点 AD DO∴= 30ACG DCO ∴== ∠∠tan 301OF OC ∴== ,60CFO = ∠ ················································ 8分y E C M AF GD O xB在GAF △中,22AF FG ==,60AFG CFO == ∠∠ AGF ∴△为等边三角形60GAF ∴= ∠90CAG GAF CAO ∴=+= ∠∠∠ ····················································· 9分又AC 为直径,∴当D 为 OA 的中点时,GA 为M 的切线 ······················ 10分(以上各题,其他解法均参照计分)。

福建省福州市中考数学真题试题(带解析)

福建省福州市中考数学真题试题(带解析)

数学试卷答案解析一、选择题(共10小题,每题4分,满分40分;每小题只有一个正确的选项,请在答题卡的相应位置填涂) 1.3的相反数是A .-3B .13C .3D .-13考点:相反数.专题:存在型.分析:根据相反数的定义进行解答.解答:解:由相反数的定义可知,3的相反数是-3.故选A .点评:本题考查的是相反数的定义,即只有符号不同的两个数叫做互为相反数.2.今年参观“5·18”海交会的总人数约为489000人,将489000用科学记数法表示为A .48.9×104B .4.89×105C .4.89×104D .0.489×106考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a ×10n的形式,其中1≤|a |<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.解答:解:489000=4.89×105.故选B .点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a ×10n的形式,其中1≤|a |<10,n 为整数,表示时关键要正确确定a 的值以及n 的值. 3.如图是由4个大小相同的正方体组合而成的几何体,其主视图是考点:简单组合体的三视图.分析:从正面看到的图叫做主视图,从左面看到的图叫做左视图,从上面看到的图叫做俯视图.根据图中正方体摆放的位置判定则可.解答:解:从正面看,下面一行是横放3个正方体,上面一行中间是一个正方体.故选C .点评:本题考查了三种视图中的主视图,比较简单. 4.如图,直线a ∥b ,∠1=70°,那么∠2的度数是A .50°B .60°C .70°D .80°考点:平行线的性质.分析:根据两角的位置关系可知两角是同位角,利用两直线平行同位角相等即可求得结果. 解答:解:∵ a ∥b ,∴ ∠1=∠2, ∵ ∠1=70°, ∴ ∠2=70°.第3题图A B C D a 第4题图 1 2 b点评:本题考查了平行线的性质,根据两直线平行同位角相等即可得到答案,比较简单,属于基础题.5.下列计算正确的是A .a +a =2aB .b 3·b 3=2b 3C .a 3÷a =a 3D .(a 5)2=a 7考点:同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方. 专题:计算题.分析:分别根据合并同类项、同底数幂的除法与乘法、幂的乘方与积的乘方法则对各选项进行逐一计算即可.解答:解:A 、a +a =2a ,故本选项正确;B 、b 3•b 3=b 6,故本选项错误;C 、a 3÷a =a 2,故本选项错误;D 、(a 5)2=a 10,故本选项错误. 故选A .点评:本题考查的是合并同类项、同底数幂的除法与乘法、幂的乘方与积的乘方法则,熟知以上知识是解答此题的关键.6.式子x -1在实数范围内有意义,则x 的取值范围是A .x <1B .x ≤1C .x >1D .x ≥1 考点:二次根式有意义的条件.分析:根据二次根式有意义的条件列出关于x 的不等式,求出x 的取值范围即可. 解答:解:∵ 式子x -1在实数范围内有意义,∴ x -1≥0,解得x ≥1. 故选D .点评:本题考查的是二次根式有意义的条件,即被开方数大于等于0.7.某射击运动员在一次射击练习中,成绩(单位:环)记录如下:8,9,8,7,10.这组数据的平均数和中位数分别是A .8,8B .8.4,8C .8.4,8.4D .8,8.4 考点:中位数;算术平均数.分析:根据平均数公式求解即可,即用所有数据的和除以5即可;5个数据的中位数是排序后的第三个数.解答:解:8,9,8,7,10的平均数为:15×(8+9+8+7+10)=8.4.8,9,8,7,10排序后为7,8,8,9,10,故中位数为8. 故选B .点评:本题考查了中位数及算术平均数的求法,特别是中位数,首先应该排序,然后再根据数据的个数确定中位数.8.⊙O 1和⊙O 2的半径分别是3cm 和4cm ,如果O 1O 2=7cm ,则这两圆的位置关系是 A .内含 B .相交 C .外切 D .外离 考点:圆与圆的位置关系.分析:由⊙O 1、⊙O 2的半径分别是3cm 、4cm ,若O 1O 2=7cm ,根据两圆位置关系与圆心距d ,两圆半径R ,r 的数量关系间的联系即可得出⊙O 1和⊙O 2的位置关系. 解答:解:∵ ⊙O 1、⊙O 2的半径分别是3cm 、4cm ,O 1O 2=7cm ,又∵ 3+4=7,∴⊙O 1和⊙O 2的位置关系是外切.点评:此题考查了圆与圆的位置关系.解题的关键是掌握两圆位置关系与圆心距d ,两圆半径R ,r 的数量关系间的联系.圆和圆的位置与两圆的圆心距、半径的数量之间的关系:① 两圆外离⇔d >R +r ;② 两圆外切⇔d =R +r ;③ 两圆相交⇔R -r <d <R +r (R ≥r );④ 两圆内切⇔d =R -r (R >r );⑤ 两圆内含⇔d <R -r (R >r ).9.如图,从热气球C 处测得地面A 、B 两点的俯角分别为30°、45°,如果此时热气球C 处的高度CD 为100米,点A 、D 、B 在同一直线上,则AB 两点煌距离是 A .200米 B .2003米 C .2203米 D .100(3+1)米考点:解直角三角形的应用-仰角俯角问题.分析:图中两个直角三角形中,都是知道已知角和对边,根据正切函数求出邻边后,相加求和即可.解答:解:由已知,得∠A =30°,∠B =45°,CD =100,∵ CD ⊥AB 于点D .∴ 在Rt △ACD 中,∠CDA =90°,tan A =CD AD, ∴ AD =CDtan A =10033=100 3在Rt △BCD 中,∠CDB =90°,∠B =45°, ∴ DB =CD =100米,∴ AB =AD +DB =1003+100=100(3+1)米. 故选D .点评:本题考查了解直角三角形的应用,解决本题的关键是利用CD 为直角△ABC 斜边上的高,将三角形分成两个三角形,然后求解.分别在两三角形中求出AD 与BD 的长. 10.如图,过点C (1,2)分别作x 轴、y 轴的平行线,交直线y =-x +6于A 、B 两点,若反比例函数y =k x(x >0)的图像与△ABC 有公共点,则k 的取值范围是A .2≤k ≤9B .2≤k ≤8C .2≤k ≤5D .5≤k ≤8 考点:反比例函数综合题. 专题:综合题.分析:先求出点A 、B 的坐标,根据反比例函数系数的几何意义可知,当反比例函数图象与△ABC 相交于点C 时k 的取值最小,当与线段AB 相交时,k 能取到最大值,根据直线y =-x +6,设交点为(x ,-x +6)时k 值最大,然后列式利用二次函数的最值问题解答即可得解.解答:解:∵ 点C (1,2),BC ∥y 轴,AC ∥x 轴,∴ 当x =1时,y =-1+6=5,当y =2时,-x +6=2,解得x =4,∴ 点A 、B 的坐标分别为A (4,2),B (1,5),根据反比例函数系数的几何意义,当反比例函数与点C 相交时,k =1×2=2最小,设与线段AB 相交于点(x ,-x +6)时k 值最大,则k =x (-x +6)=-x 2+6x =-(x -3)2+9,第9题图AB CD 30° 45°第10题图∵ 1≤x ≤4,∴ 当x =3时,k 值最大, 此时交点坐标为(3,3),因此,k 的取值范围是2≤k ≤9. 故选A .点评:本题考查了反比例函数系数的几何意义,二次函数的最值问题,本题看似简单但不容易入手解答,判断出最大最小值的取值情况并考虑到用二次函数的最值问题解答是解题的关键.二、填空题(共5小题,每题4分,满分20分;请将正确答案填在答题卡相应位置)11.分解因式:x 2-16=_________________. 考点:因式分解——运用公式法.分析:运用平方差公式分解因式的式子特点:两项平方项,符号相反.直接运用平方差公式分解即可.a 2-b 2=(a +b )(a -b ).解答:解:x 2-16=(x +4)(x -4).点评:本题考查因式分解.当被分解的式子只有两项平方项;符号相反,且没有公因式时,应首要考虑用平方差公式进行分解.12.一个袋子中装有3个红球和2个绿球,这些球除了颜色外都相同,从袋子中随机摸出一个球,则摸到红球的概率为__________________. 考点:概率公式.分析:根据概率的求法,找准两点:① 全部情况的总数;② 符合条件的情况数目;二者的比值就是其发生的概率.解答:解;布袋中球的总数为:2+3=5,取到黄球的概率为:35.故答案为:35.点评:此题主要考查了概率的求法,如果一个事件有n 种可能,而且这些事件的可能性相同,其中事件A 出现m 种结果,那么事件A 的概率P (A )=mn.13.若20n 是整数,则正整数n 的最小值为________________. 考点:二次根式的定义. 专题:存在型.分析:20n 是正整数,则20n 一定是一个完全平方数,首先把20n 分解因数,确定20n 是完全平方数时,n 的最小值即可.解答:解:∵ 20n =22×5n .∴ 整数n 的最小值为5. 故答案是:5.点评:本题考查了二次根式的定义,理解20n 是正整数的条件是解题的关键.14.计算:x -1x +1x=______________.考点:分式的加减法. 专题:计算题.分析:直接根据同分母的分数相加减进行计算即可.解答:解:原式=x -1+1x=1. 故答案为:1.点评:本题考查的是分式的加减法,同分母的分式相加减,分母不变,把分子相加减. 15.如图,已知△ABC ,AB =AC =1,∠A =36°,∠ABC 的平分线BD 交AC 于点D ,则AD 的长是______,cos A 的值是______________.(结果保留根号) 考点:黄金分割;相似三角形的判定与性质;锐角三角函数的定义.分析:可以证明△ABC ∽△BDC ,设AD =x ,根据相似三角形的对应边的比相等,即可列出方程,求得x 的值;过点D 作DE ⊥AB 于点E ,则E 为AB 中点,由余弦定义可求出cos A 的值.解答:解:∵ △ABC ,AB =AC =1,∠A =36°,∴ ∠ABC =∠ACB =180°-∠A2=72°.∵ BD 是∠ABC 的平分线,∴ ∠ABD =∠DBC =12∠ABC =36°.∴ ∠A =∠DBC =36°, 又∵ ∠C =∠C , ∴ △ABC ∽△BDC , ∴ AC BC =BCCD, 设AD =x ,则BD =BC =x .则1x =x1-x ,解得:x =5+12(舍去)或5-12. 故x =5-12. 如右图,过点D 作DE ⊥AB 于点E , ∵ AD =BD ,∴E 为AB 中点,即AE =12AB =12.在Rt △AED 中,cos A =AE AD=125-12=5+14. 故答案是:5-12;5+14. 点评:△ABC 、△BCD 均为黄金三角形,利用相似关系可以求出线段之间的数量关系;在求cos A 时,注意构造直角三角形,从而可以利用三角函数定义求解.三、解答题(满分90分;请将正确答案及解答过程填在答题卡相应位置.作图或添辅助线用铅笔画完,再用黑色签字笔描黑) 16.(每小题7分,共14分)(1) 计算:|-3|+(π+1)0-4.(2) 化简:a (1-a )+(a +1)2-1.ABCD 第15题图ABCD E考点:整式的混合运算;实数的运算;零指数幂. 专题:计算题.分析:(1) 原式第一项根据绝对值的代数意义:负数的绝对值等于它的相反数进行化简,第二项利用零指数公式化简,第三项利用a 2=|a |化简,合并后即可得到结果; (2) 利用乘法分配律将原式第一项括号外边的a 乘到括号里边,第二项利用完全平方数展开,合并同类项后即可得到结果.解答:解:(1) 解:|-3|+(π+1)0-4=3+1-2=2.(2) 解:a (1-a )+(a +1)2-1=a -a 2+a 2+2a +1-1=3a .点评:此题考查了整式的混合运算,以及实数的运算,涉及的知识有:绝对值的代数意义,零指数公式,二次根式的化简,完全平方公式,以及合并同类项法则,熟练掌握公式及法则是解本题的关键. 17.(每小题7分,共14分)(1) 如图,点E 、F 在AC 上,AB ∥CD ,AB =CD ,AE =CF .求证:△ABF ≌△CDE . (2) 如图,方格纸中的每个小方格是边长为1个单位长度的正方形. ① 画出将Rt △ABC 向右平移5个单位长度后的Rt △A 1B 1C 1;② 再将Rt △A 1B 1C 1绕点C 1顺时针旋转90°,画出旋转后的Rt △A 2B 2C 1,并求出旋转过程中线段A 1C 1所扫过的面积(结果保留π).考点:作图——旋转变换;全等三角形的判定;扇形面积的计算;作图——平移变换. 分析:(1) 由AB ∥CD 可知∠A =∠C ,再根据AE =CF 可得出AF =CE ,由AB =CD 即可判断出△ABF ≌CDE ;(2) 根据图形平移的性质画出平移后的图形,再根据在旋转过程中,线段A 1C 1所扫过的面积等于以点C 1为圆心,以A 1C 1为半径,圆心角为90度的扇形的面积,再根据扇形的面积公式进行解答即可. 解答:证明:∵ AB ∥CD ,∴ ∠A =∠C . ∵ AE =CF ,∴ AE +EF =CF +EF , 即 AF =CE . 又∵ AB =CD , ∴ △ABF ≌△CDE .(2) 解:① 如图所示; ② 如图所示;在旋转过程中,线段A 1C 1所扫过的面积等于90·π·42360=4π.点评:本题考查的是作图-旋转变换、全等三角形的判定及扇形面积的计算,熟知图形平移及旋转不变性的性质是解答此题的关键.18.(满分12分)省教育厅决定在全省中小学开展“关注校车、关爱学生”为主题的交通安全教育宣传周活动.某中学为了了解本校学生的上学方式,在全校范围内随机抽查了部A B C D E F第17(1)题图 第17(2)题图A B C分学生,将收集的数据绘制成如下两幅不完整的统计图(如图所示),请根据图中提供的信息,解答下列问题.(1) m =_______%,这次共抽取__________名学生进行调查;并补全条形图; (2) 在这次抽样调查中,采用哪种上学方式的人最多?(3) 如果该校共有1500名学生,请你估计该校骑自行车上学的学生约有多少名? 考点:条形统计图;用样本估计总体;扇形统计图. 分析:(1) 用1减去其他各种情况所占的百分比即可求m 的值,用乘公交的人数除以其所占的百分比即可求得抽查的人数; (2) 从扇形统计图或条形统计图中直接可以得到结果;(3) 用学生总数乘以骑自行车所占的百分比即可.解答:解:(1) 1-14%-20%-40%=26%;20÷40%=50; 条形图如图所示;(2) 采用乘公交车上学的人数最多;(3) 该校骑自行车上学的人数约为: 150×20%=300(人).点评:本题考查了条形统计图、扇形统计图及用样本估计总数的知识,解题的关键是从统计图中整理出进一步解题的信息.19.(满分11分)某次知识竞赛共有20道题,每一题答对得5分,答错或不答都扣3分.(1) 小明考了68分,那么小明答对了多少道题?(2) 小亮获得二等奖(70~90分),请你算算小亮答对了几道题? 考点:一元一次不等式组的应用;一元一次方程的应用.分析:(1) 设小明答对了x 道题,则有20-x 道题答错或不答,根据答对题目的得分减去答错或不答题目的扣分是68分,即可得到一个关于x 的方程,解方程即可求解; (2) 小明答对了x 道题,则有20-x 道题答错或不答,根据答对题目的得分减去答错或不答题目的扣分,就是最后的得分,得分满足大于或等于70小于或等于90,据此即可得到关于x 的不等式组,从而求得x 的范围,再根据x 是非负整数即可求解. 解答:解:(1) 设小明答对了x 道题,依题意得:5x -3(20-x )=68. 解得:x =16.答:小明答对了16道题.(2) 设小亮答对了y 道题,学生上学方式扇形统计图步行 其他乘公交车 骑自行车 上学方式步行 其他乘公交车 骑自行车 上学方式依题意得:⎩⎨⎧5y -3(20-y )≥705y -3(20-y )≤90.因此不等式组的解集为1614≤y ≤1834.∵ y 是正整数,∴ y =17或18.答:小亮答对了17道题或18道题.点评:本题考查了列方程解应用题,以及列一元一次不等式解决问题,正确列式表示出最后的得分是关键.20.(满分12分)如图,AB 为⊙O 的直径,C 为⊙O 上一点,AD 和过C 点的切线互相垂直,垂足为D ,AD 交⊙O 于点E . (1) 求证:AC 平分∠DAB ;(2) 若∠B =60º,CD =23,求AE 的长.考点:切线的性质;圆周角定理;相似三角形的判定与性质;解直角三角形. 专题:几何综合题.分析:(1) 连接OC ,由CD 为⊙O 的切线,根据切线的性质得到OC 垂直于CD ,由AD 垂直于CD ,可得出OC 平行于AD ,根据两直线平行内错角相等可得出∠1=∠2,再由OA =OC ,利用等边对等角得到∠2=∠3,等量代换可得出∠1=∠3,即AC 为角平分线;(2) 法1:由AB 为圆O 的直径,根据直径所对的圆周角为直角可得出∠ACB 为直角,在直角三角形ABC 中,由∠B 的度数求出∠3的度数为30°,可得出∠1的度数为30°,在直角三角形ACD 中,根据30°角所对的直角边等于斜边的一半,由CD 的长求出AC 的长,在直角三角形ABC 中,根据cos30°及AC 的长,利用锐角三角函数定义求出AB 的长,进而得出半径OE 的长,由∠EAO 为60°,及OE =OA ,得到三角形AEO 为等边三角形,可得出AE =OA =OE ,即可确定出AE 的长;法2:连接EC ,由AB 为圆O 的直径,根据直径所对的圆周角为直角可得出∠ACB 为直角,在直角三角形ABC 中,由∠B 的度数求出∠3的度数为30°,可得出∠1的度数为30°,在直角三角形ADC 中,由CD 及tan30°,利用锐角三角函数定义求出AD 的长,由∠DEC 为圆内接四边形ABCE 的外角,利用圆内接四边形的外角等于它的内对角,得到∠DEC =∠B ,由∠B 的度数求出∠DEC 的度数为60°,在直角三角形DEC 中,由tan60°及DC 的长,求出DE 的长,最后由AD -ED 即可求出AE 的长. 解答:(1) 证明:如图1,连接OC ,∵ CD 为⊙O 的切线, ∴ OC ⊥CD ,∴ ∠OCD =90°. ∵ AD ⊥CD ,∴ ∠ADC =90°.∴ ∠OCD +∠ADC =180°, ∴ AD ∥OC , ∴ ∠1=∠2, ∵ OA =OC , ∴ ∠2=∠3, ∴ ∠1=∠3, 即AC 平分∠DAB .(2) 解法一:如图2,∵ AB 为⊙O 的直径, ∴ ∠ACB =90°. 又∵ ∠B =60°, ∴ ∠1=∠3=30°.在Rt △ACD 中,CD =23, ∴ AC =2CD =43.在Rt △ABC 中,AC =43,∴ AB =ACcos ∠CAB =43cos30°=8.连接OE ,∵ ∠EAO =2∠3=60°,OA =OE , ∴ △AOE 是等边三角形,∴ AE =OA =12AB =4.解法二:如图3,连接CE ∵ AB 为⊙O 的直径, ∴ ∠ACB =90°. 又∵ ∠B =60°, ∴ ∠1=∠3=30°.在Rt △ADC 中,CD =23, ∴ AD =CDtan ∠DAC =23tan30°=6.∵ 四边形ABCE 是⊙O 的内接四边形, ∴ ∠B +∠AEC =180°. 又∵ ∠AEC +∠DEC =180°, ∴ ∠DEC =∠B =60°. 在Rt △CDE 中,CD =23,∴ DE =CD tan ∠DEC =23tan60°=2.∴ AE =AD -DE =4.点评:此题考查了切线的性质,平行线的性质,等边三角形的判定与性质,锐角三角函数定义,圆内接四边形的性质,以及圆周角定理,利用了转化及数形结合的思想,遇到直线与圆相切,常常连接圆心与切点,利用切线的性质得到垂直,利用直角三角形的性质来解决问题.21.(满分13分)如图①,在Rt △ABC 中,∠C =90º,AC =6,BC =8,动点P 从点A 开始沿边AC 向点C 以每秒1个单位长度的速度运动,动点Q 从点C 开始沿边CB 向点B 以每秒2个单位长度的速度运动,过点P 作PD ∥BC ,交AB 于点D ,连接PQ .点P 、Q 分别从点A 、C 同时出发,当其中一点到达端点时,另一点也随之停止运动,设运动时间为t 秒(t ≥0).(1) 直接用含t 的代数式分别表示:QB =______,PD =______.(2) 是否存在t 的值,使四边形PDBQ 为菱形?若存在,求出t 的值;若不存在,说明理由.并探究如何改变点Q 的速度(匀速运动),使四边形PDBQ 在某一时刻为菱形,求点Q 的速度;(3) 如图②,在整个运动过程中,求出线段PQ 中点M 所经过的路径长.图2图3考点:相似三角形的判定与性质;一次函数综合题;勾股定理;菱形的判定与性质. 专题:代数几何综合题. 分析:(1) 根据题意得:CQ =2t ,PA =t ,由Rt△ABC 中,∠C =90°,AC =6,BC =8,PD ∥BC ,即可得tan A = PD PA =BC AC =43,则可求得QB 与PD 的值;(2) 易得△APD ∽△ACB ,即可求得AD 与BD 的长,由BQ ∥DP ,可得当BQ =DP 时,四边形PDBQ 是平行四边形,即可求得此时DP 与BD 的长,由DP ≠BD ,可判定▱PDBQ 不能为菱形;然后设点Q 的速度为每秒v 个单位长度,由要使四边形PDBQ 为菱形,则PD =BD =BQ ,列方程即可求得答案;(3) 设E 是AC 的中点,连接ME .当t =4时,点Q 与点B 重合,运动停止.设此时PQ 的中点为F ,连接EF ,由△PMN ∽△PQC .利用相似三角形的对应边成比例,即可求得答案.解答:解:(1) QB =8-2t ,PD =43t .(2) 不存在.在Rt △ABC 中,∠C =90°,AC =6,BC =8, ∴ AB =10. ∵ PD ∥BC ,∴ △APD ∽△ACB ,∴ AD AB =AP AC ,即:AD 10=t6, ∴ AD =53t ,∴ BD =AB -AD =10-53t .∵ BQ ∥DP ,∴ 当BQ =DP 时,四边形PDBQ 是平行四边形,即8-2t =43t ,解得:t =125.当t =125时,PD =43×125=165,BD =10-53×125=6,∴ DP ≠BD ,∴ □PDBQ 不能为菱形.第21题图①第21题图②图1设点Q 的速度为每秒v 个单位长度,则BQ =8-vt ,PD =43t ,BD =10-53t .要使四边形PDBQ 为菱形,则PD =BD =BQ , 当PD =BD 时,即43t =10-53t ,解得:t =103.当PD =BQ 时,t =103时,即43×103=8-103v ,解得:v =1615.(3) 解法一:如图2,以C 为原点,以AC 所在直线为x 轴,建立平面直角坐标系.依题意,可知0≤t ≤4,当t =0时,点M 1的坐标为(3,0); 当t =4时,点M 2的坐标为(1,4).设直线M 1M 2的解析式为y =kx +b ,∴ ⎩⎨⎧3k +b =0k +b =4,解得:⎩⎨⎧k =-2b =6. ∴ 直线M 1M 2的解析式为y =-2x +6. ∵ 点Q (0,2t ),P (6-t ,0),∴ 在运动过程中,线段PQ 中点M 3的坐标为(6-t2,t ).把x =6-t 2,代入y =-2x +6,得y =-2×6-t 2+6=t .∴ 点M 3在直线M 1M 2上.过点M 2作M 2N ⊥x 轴于点N ,则M 2N =4,M 1N =2. ∴ M 1M 2=25.∴ 线段PQ 中点M 所经过的路径长为25单位长度. 解法二:如图3,设E 是AC 的中点,连接ME . 当t =4时,点Q 与点B 重合,运动停止. 设此时PQ 的中点为F ,连接EF .过点M 作MN ⊥AC ,垂足为N ,则MN ∥BC . ∴ △PMN ∽△PDC . ∴ MN QC =PN PC =PM PQ ,即:MN 2t =PN 6-t =12. ∴ MN =t ,PN =3-12t ,∴ CN =PC -PN =(6-t )-(3-12t )=3-12t .∴ EN =CE -CN =3-(3-12t )= 12t .∴ tan ∠MEN =MN EN=2.∵ tan ∠MEN 的值不变,∴ 点M 在直线EF 上.过F 作FH ⊥AC ,垂足为H .则EH =2,FH =4. ∴ EF =25.∵ 当t =0时,点M 与点E 重合;当t =4时,点M 与点F 重合, ∴ 线段PQ 中点M 所经过的路径长为25单位长度.图2AC PN 图3E H点评:此题考查了相似三角形的判定与性质、平行四边形的判定与性质、菱形的判定与性质以及一次函数的应用.此题综合性很强,难度较大,解题的关键是注意数形结合思想的应用.22.(满分14分)如图①,已知抛物线y =ax 2+bx (a ≠0)经过A (3,0)、B (4,4)两点.(1) 求抛物线的解析式;(2) 将直线OB 向下平移m 个单位长度后,得到的直线与抛物线只有一个公共点D ,求m 的值及点D 的坐标;(3) 如图②,若点N 在抛物线上,且∠NBO =∠ABO ,则在(2)的条件下,求出所有满足△POD ∽△NOB 的点P 的坐标(点P 、O 、D 分别与点N 、O 、B 对应).考点:二次函数综合题.分析:(1) 利用待定系数法求出二次函数解析式即可;(2) 根据已知条件可求出OB 的解析式为y =x ,则向下平移m 个单位长度后的解析式为:y =x -m .由于抛物线与直线只有一个公共点,意味着联立解析式后得到的一元二次方程,其根的判别式等于0,由此可求出m 的值和D 点坐标; (3) 综合利用几何变换和相似关系求解. 方法一:翻折变换,将△NOB 沿x 轴翻折;方法二:旋转变换,将△NOB 绕原点顺时针旋转90°.特别注意求出P 点坐标之后,该点关于直线y =-x 的对称点也满足题意,即满足题意的P解答:解:(1) ∵ 抛物线y =ax 2+bx (a ≠0)经过点A (3,0)、B (4,4).∴ ⎩⎨⎧9a +3b =016a +4b =4,解得:⎩⎨⎧a =1b =-3. ∴ 抛物线的解析式是y =x 2-3x .(2) 设直线OB 的解析式为y =k 1x ,由点B (4,4),得:4=4k 1,解得k 1=1. ∴ 直线OB 的解析式为y =x .∴ 直线OB 向下平移m 个单位长度后的解析式为:y =x -m .∵ 点D 在抛物线y =x 2-3x 上.∴ 可设D (x ,x 2-3x ). 又点D 在直线y =x -m 上,∴ x 2-3x =x -m ,即x 2-4x +m =0.第22题图① 第22题图②∵ 抛物线与直线只有一个公共点, ∴ △=16-4m =0,解得:m =4.此时x 1=x 2=2,y =x 2-3x =-2, ∴ D 点坐标为(2,-2).(3) ∵ 直线OB 的解析式为y =x ,且A (3,0),∴ 点A 关于直线OB 的对称点A'的坐标是(0,3). 设直线A'B 的解析式为y =k 2x +3,过点B (4,4),∴ 4k 2+3=4,解得:k 2=14.∴ 直线A'B 的解析式是y =14x +3.∵ ∠NBO =∠ABO , ∴ 点N 在直线A'B 上,∴ 设点N (n ,14n +3),又点N 在抛物线y =x 2-3x 上,∴ 14n +3=n 2-3n , 解得:n 1=-34,n 2=4(不合题意,会去),∴ 点N 的坐标为(-34,4516).方法一:如图1,将△NOB 沿x 轴翻折,得到△N 1OB 1,则N 1(-34,-4516),B 1(4,-4),∴ O 、D 、B 1都在直线y =-x 上.∵ △P 1OD ∽△NOB , ∴ △P 1OD ∽△N 1OB 1, ∴ OP 1ON 1=OD OB 1=12, ∴ 点P 1的坐标为(-38,-4532).将△OP 1D 沿直线y =-x 翻折,可得另一个满足条件的点P 2(4532,38).综上所述,点P 的坐标是(-38,-4532)或(4532,38).方法二:如图2,将△NOB 绕原点顺时针旋转90°,得到△N 2OB 2则N 2(4516,34),B 2(4,-4),∴ O 、D 、B 2都在直线y =-x 上. ∵ △P 1OD ∽△NOB , ∴ △P 1OD ∽△N 2OB 2, ∴ OP 1ON 2=OD OB 2=12, 图1∴ 点P 1的坐标为(4532,38).将△OP 1D 沿直线y =-x 翻折,可得另一个满足条件的点P 2(-38,-4532).综上所述,点P 的坐标是(-38,-4532)或(4532,38).点评:本题是基于二次函数的代数几何综合题,综合考查了待定系数法求抛物线解析式、一次函数(直线)的平移、一元二次方程根的判别式、翻折变换、旋转变换以及相似三角形等重要知识点.本题将初中阶段重点代数、几何知识熔于一炉,难度很大,对学生能力要求极高,具有良好的区分度,是一道非常好的中考压轴题.本模板说明1、页眉21世纪教育网 21世纪教育网 黑体 小三号字 加粗 鲜红色 居中 2、背景专注初中教育,服务一线教师 隶书 鲜红色 3、页脚21世纪教育网期待您的投稿!zkzyw@ 宋体(正文) 小五号字 右对齐 鲜红色 4、页码 -1-数字,两遍加横 居中。

福州市中考数学试卷含答案解析

福州市中考数学试卷含答案解析

福建省福州市中考数学试卷一、(共12小题,每小题3分,满分36分,每小题只有一个正确选项)1.下列实数中的无理数是()A.0.7 B.C.πD.﹣82.如图是3个相同的小正方体组合而成的几何体,它的俯视图是()A.B. C.D.3.如图,直线a,b被直线c所截,∠1与∠2的位置关系是()A.同位角B.内错角C.同旁内角 D.对顶角4.下列算式中,结果等于a6的是()A.a4+a2B.a2+a2+a2C.a2•a3 D.a2•a2•a25.不等式组的解集是()A.x>﹣1 B.x>3 C.﹣1<x<3 D.x<36.下列说法中,正确的是()A.不可能事件发生的概率为0B.随机事件发生的概率为C.概率很小的事件不可能发生D.投掷一枚质地均匀的硬币100次,正面朝上的次数一定为50次7.A,B是数轴上两点,线段AB上的点表示的数中,有互为相反数的是()A.B.C.D.8.平面直角坐标系中,已知▱ABCD的三个顶点坐标分别是A(m,n),B(2,﹣1),C(﹣m,﹣n),则点D的坐标是()A.(﹣2,1)B.(﹣2,﹣1) C.(﹣1,﹣2) D.(﹣1,2)9.如图,以圆O为圆心,半径为1的弧交坐标轴于A,B两点,P是上一点(不与A,B重合),连接OP,设∠POB=α,则点P的坐标是()A.(sinα,sinα)B.(cosα,cosα)C.(cosα,sinα)D.(sinα,cosα)10.下表是某校合唱团成员的年龄分布年龄/岁13 14 15 16频数 5 15 x 10﹣x对于不同的x,下列关于年龄的统计量不会发生改变的是()A.平均数、中位数B.众数、中位数C.平均数、方差 D.中位数、方差11.已知点A(﹣1,m),B(1,m),C(2,m+1)在同一个函数图象上,这个函数图象可以是()A.B.C.D.12.下列选项中,能使关于x的一元二次方程ax2﹣4x+c=0一定有实数根的是()A.a>0 B.a=0 C.c>0 D.c=0二、填空题(共6小题,每小题4分,满分24分)13.分解因式:x2﹣4=.14.若二次根式在实数范围内有意义,则x的取值范围是.15.已知四个点的坐标分别是(﹣1,1),(2,2),(,),(﹣5,﹣),从中随机选取一个点,在反比例函数y=图象上的概率是.16.如图所示的两段弧中,位于上方的弧半径为r上,下方的弧半径为r下,则r上r下.(填“<”“=”“<”)17.若x+y=10,xy=1,则x3y+xy3的值是.18.如图,6个形状、大小完全相同的菱形组成网格,菱形的顶点称为格点.已知菱形的一个角(∠O)为60°,A,B,C都在格点上,则tan∠ABC的值是.三、解答题(共9小题,满分90分)19.计算:|﹣1|﹣+(﹣)0.20.化简:a﹣b﹣.21.一个平分角的仪器如图所示,其中AB=AD,BC=DC.求证:∠BAC=∠DAC.22.列方程(组)解应用题:某班去看演出,甲种票每张24元,乙种票每张18元.如果35名学生购票恰好用去750元,甲乙两种票各买了多少张?23.福州市﹣常住人口数统计如图所示.根据图中提供的信息,回答下列问题:(1)福州市常住人口数,比增加了万人;(2)与上一年相比,福州市常住人口数增加最多的年份是;(3)预测福州市常住人口数大约为多少万人?请用所学的统计知识说明理由.24.如图,正方形ABCD内接于⊙O,M为中点,连接BM,CM.(1)求证:BM=CM;(2)当⊙O的半径为2时,求的长.25.如图,在△ABC中,AB=AC=1,BC=,在AC边上截取AD=BC,连接BD.(1)通过计算,判断AD2与AC•CD的大小关系;(2)求∠ABD的度数.26.如图,矩形ABCD中,AB=4,AD=3,M是边CD上一点,将△ADM沿直线AM对折,得到△ANM.(1)当AN平分∠MAB时,求DM的长;(2)连接BN,当DM=1时,求△ABN的面积;(3)当射线BN交线段CD于点F时,求DF的最大值.27.已知,抛物线y=ax2+bx+c(a≠0)经过原点,顶点为A(h,k)(h≠0).(1)当h=1,k=2时,求抛物线的解析式;(2)若抛物线y=tx2(t≠0)也经过A点,求a与t之间的关系式;(3)当点A在抛物线y=x2﹣x上,且﹣2≤h<1时,求a的取值范围.福建省福州市中考数学试卷参考答案与试题解析一、(共12小题,每小题3分,满分36分,每小题只有一个正确选项)1.下列实数中的无理数是()A.0.7 B.C.πD.﹣8【考点】无理数.【专题】计算题.【分析】无理数就是无限不循环小数,最典型就是π,选出答案即可.【解答】解:∵无理数就是无限不循环小数,且0.7为有限小数,为有限小数,﹣8为正数,都属于有理数,π为无限不循环小数,∴π为无理数.故选:C.【点评】题目考查了无理数的定义,题目整体较简单,是要熟记无理数的性质,即可解决此类问题.2.如图是3个相同的小正方体组合而成的几何体,它的俯视图是()A.B. C.D.【考点】简单组合体的三视图.【分析】根据从上边看得到的图形是俯视图,可得答案.【解答】解:人站在几何体的正面,从上往下看,正方形个数从左到右依次为2,1,故选:C.【点评】本题考查了三视图的知识,主视图是从物体的正面看得到的视图.3.如图,直线a,b被直线c所截,∠1与∠2的位置关系是()A.同位角B.内错角C.同旁内角 D.对顶角【考点】同位角、内错角、同旁内角;对顶角、邻补角.【分析】根据内错角的定义求解.【解答】解:直线a,b被直线c所截,∠1与∠2是内错角.故选B.【点评】本题考查了同位角、内错角、同位角:三线八角中的某两个角是不是同位角、内错角或同旁内角,完全由那两个角在图形中的相对位置决定.在复杂的图形中判别三类角时,应从角的两边入手,具有上述关系的角必有两边在同一直线上,此直线即为截线,而另外不在同一直线上的两边,它们所在的直线即为被截的线.4.下列算式中,结果等于a6的是()A.a4+a2B.a2+a2+a2C.a2•a3 D.a2•a2•a2【考点】同底数幂的乘法;合并同类项.【专题】计算题;推理填空题.【分析】A:a4+a2≠a6,据此判断即可.B:根据合并同类项的方法,可得a2+a2+a2=3a2.C:根据同底数幂的乘法法则,可得a2•a3=a5.D:根据同底数幂的乘法法则,可得a2•a2•a2=a6.【解答】解:∵a4+a2≠a6,∴选项A的结果不等于a6;∵a2+a2+a2=3a2,∴选项B的结果不等于a6;∵a2•a3=a5,∴选项C的结果不等于a6;∵a2•a2•a2=a6,∴选项D的结果等于a6.故选:D.【点评】(1)此题主要考查了同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加,要熟练掌握,解答此题的关键是要明确:①底数必须相同;②按照运算性质,只有相乘时才是底数不变,指数相加.(2)此题还考查了合并同类项的方法,要熟练掌握.5.不等式组的解集是()A.x>﹣1 B.x>3 C.﹣1<x<3 D.x<3【考点】解一元一次不等式组.【专题】方程与不等式.【分析】根据解不等式组的方法可以求得原不等式组的解集.【解答】解:解不等式①,得x>﹣1,解不等式②,得x>3,由①②可得,x>3,故原不等式组的解集是x>3.故选B.【点评】本题考查解一元一次不等式组,解题的关键是明确解一元一次不等式组的方法.6.下列说法中,正确的是()A.不可能事件发生的概率为0B.随机事件发生的概率为C.概率很小的事件不可能发生D.投掷一枚质地均匀的硬币100次,正面朝上的次数一定为50次【考点】概率的意义.【分析】根据概率的意义和必然发生的事件的概率P(A)=1、不可能发生事件的概率P(A)=0对A、B、C进行判定;根据频率与概率的区别对D进行判定.【解答】解:A、不可能事件发生的概率为0,所以A选项正确;B、随机事件发生的概率在0与1之间,所以B选项错误;C、概率很小的事件不是不可能发生,而是发生的机会较小,所以C选项错误;D、投掷一枚质地均匀的硬币100次,正面朝上的次数可能为50次,所以D选项错误.故选A.【点评】本题考查了概率的意义:一般地,在大量重复实验中,如果事件A发生的频率mn会稳定在某个常数p附近,那么这个常数p就叫做事件A的概率,记为P(A)=p;概率是频率(多个)的波动稳定值,是对事件发生可能性大小的量的表现.必然发生的事件的概率P(A)=1;不可能发生事件的概率P(A)=0.7.A,B是数轴上两点,线段AB上的点表示的数中,有互为相反数的是()A.B.C.D.【考点】相反数;数轴.【专题】数形结合.【分析】数轴上互为相反数的点到原点的距离相等,通过观察线段AB上的点与原点的距离就可以做出判断.【解答】解:表示互为相反数的点,必须要满足在数轴原点0的左右两侧,从四个答案观察发现,只有B选项的线段AB符合,其余答案的线段都在原点0的同一侧,所以可以得出答案为B.故选:B【点评】本题考查了互为相反数的概念,解题关键是要熟悉互为相反数概念,数形结合观察线段AB 上的点与原点的距离.8.平面直角坐标系中,已知▱ABCD的三个顶点坐标分别是A(m,n),B(2,﹣1),C(﹣m,﹣n),则点D的坐标是()A.(﹣2,1)B.(﹣2,﹣1) C.(﹣1,﹣2) D.(﹣1,2)【考点】平行四边形的性质;坐标与图形性质.【分析】由点的坐标特征得出点A和点C关于原点对称,由平行四边形的性质得出D和B关于原点对称,即可得出点D的坐标.【解答】解:∵A(m,n),C(﹣m,﹣n),∴点A和点C关于原点对称,∵四边形ABCD是平行四边形,∴D和B关于原点对称,∵B(2,﹣1),∴点D的坐标是(﹣2,1).故选:A.【点评】本题考查了平行四边形的性质、关于原点对称的点的坐标特征;熟练掌握平行四边形的性质,得出D和B关于原点对称是解决问题的关键.9.如图,以圆O为圆心,半径为1的弧交坐标轴于A,B两点,P是上一点(不与A,B重合),连接OP,设∠POB=α,则点P的坐标是()A.(sinα,sinα)B.(cosα,cosα)C.(cosα,sinα)D.(sinα,cosα)【考点】解直角三角形;坐标与图形性质.【专题】计算题;三角形.【分析】过P作PQ⊥OB,交OB于点Q,在直角三角形OPQ中,利用锐角三角函数定义表示出OQ与PQ,即可确定出P的坐标.【解答】解:过P作PQ⊥OB,交OB于点Q,在Rt△OPQ中,OP=1,∠POQ=α,∴sinα=,cosα=,即PQ=sinα,OQ=cosα,则P的坐标为(cosα,sinα),故选C.【点评】此题考查了解直角三角形,以及坐标与图形性质,熟练掌握锐角三角函数定义是解本题的关键.10.下表是某校合唱团成员的年龄分布年龄/岁13 14 15 16频数 5 15 x 10﹣x对于不同的x,下列关于年龄的统计量不会发生改变的是()A.平均数、中位数B.众数、中位数C.平均数、方差 D.中位数、方差【考点】统计量的选择;频数(率)分布表.【分析】由频数分布表可知后两组的频数和为10,即可得知总人数,结合前两组的频数知出现次数最多的数据及第15、16个数据的平均数,可得答案.【解答】解:由表可知,年龄为15岁与年龄为16岁的频数和为x+10﹣x=10,则总人数为:5+15+10=30,故该组数据的众数为14岁,中位数为:=14岁,即对于不同的x,关于年龄的统计量不会发生改变的是众数和中位数,故选:B.【点评】本题主要考查频数分布表及统计量的选择,由表中数据得出数据的总数是根本,熟练掌握平均数、中位数、众数及方差的定义和计算方法是解题的关键.11.已知点A(﹣1,m),B(1,m),C(2,m+1)在同一个函数图象上,这个函数图象可以是()A.B.C.D.【考点】坐标确定位置;函数的图象.【分析】由点A(﹣1,m),B(1,m),C(2,m+1)在同一个函数图象上,可得A与B关于y 轴对称,当x>0时,y随x的增大而增大,继而求得答案.【解答】解:∵点A(﹣1,m),B(1,m),∴A与B关于y轴对称,故A,B错误;∵B(1,m),C(2,m+1),∴当x>0时,y随x的增大而增大,故C正确,D错误.故选C.【点评】此题考查了函数的图象.注意掌握排除法在选择题中的应用是解此题的关键.12.下列选项中,能使关于x的一元二次方程ax2﹣4x+c=0一定有实数根的是()A.a>0 B.a=0 C.c>0 D.c=0【考点】根的判别式.【分析】根据方程有实数根可得ac≤4,且a≠0,对每个选项逐一判断即可.【解答】解:∵一元二次方程有实数根,∴△=(﹣4)2﹣4ac=16﹣4ac≥0,且a≠0,∴ac≤4,且a≠0;A、若a>0,当a=1、c=5时,ac=5>4,此选项错误;B、a=0不符合一元二次方程的定义,此选项错误;C、若c>0,当a=1、c=5时,ac=5>4,此选项错误;D、若c=0,则ac=0≤4,此选项正确;故选:D.【点评】本题主要考查根的判别式,一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.二、填空题(共6小题,每小题4分,满分24分)13.分解因式:x2﹣4=(x+2)(x﹣2).【考点】因式分解-运用公式法.【专题】因式分解.【分析】直接利用平方差公式进行因式分解即可.【解答】解:x2﹣4=(x+2)(x﹣2).故答案为:(x+2)(x﹣2).【点评】本题考查了平方差公式因式分解.能用平方差公式进行因式分解的式子的特点是:两项平方项,符号相反.14.若二次根式在实数范围内有意义,则x的取值范围是x≥﹣1.【考点】二次根式有意义的条件.【专题】常规题型.【分析】根据二次根式的性质可求出x的取值范围.【解答】解:若二次根式在实数范围内有意义,则:x+1≥0,解得x≥﹣1.故答案为:x≥﹣1.【点评】主要考查了二次根式的意义和性质:概念:式子(a≥0)叫二次根式;性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.15.已知四个点的坐标分别是(﹣1,1),(2,2),(,),(﹣5,﹣),从中随机选取一个点,在反比例函数y=图象上的概率是.【考点】概率公式;反比例函数图象上点的坐标特征.【分析】先判断四个点的坐标是否在反比例函数y=图象上,再让在反比例函数y=图象上点的个数除以点的总数即为在反比例函数y=图象上的概率,依此即可求解.【解答】解:∵﹣1×1=﹣1,2×2=4,×=1,(﹣5)×(﹣)=1,∴2个点的坐标在反比例函数y=图象上,∴在反比例函数y=图象上的概率是2÷4=. 故答案为:.【点评】考查了概率公式,用到的知识点为:概率=所求情况数与总情况数之比.16.如图所示的两段弧中,位于上方的弧半径为r 上,下方的弧半径为r 下,则r 上 = r 下.(填“<”“=”“<”)【考点】弧长的计算.【分析】利用垂径定理,分别作出两段弧所在圆的圆心,然后比较两个圆的半径即可.【解答】解:如图,r 上=r 下.故答案为=.【点评】本题考查了弧长公式:圆周长公式:C=2πR (2)弧长公式:l=(弧长为l ,圆心角度数为n ,圆的半径为R );正确区分弧、弧的度数、弧长三个概念,度数相等的弧,弧长不一定相等,弧长相等的弧不一定是等弧,只有在同圆或等圆中,才有等弧的概念,才是三者的统一.17.若x+y=10,xy=1,则x 3y+xy 3的值是 98 .【考点】代数式求值.【分析】可将该多项式分解为xy (x 2+y 2),又因为x 2+y 2=(x+y )2﹣2xy ,然后将x+y 与xy 的值代入即可.【解答】解:x 3y+xy 3=xy (x 2+y 2)=xy[(x+y)2﹣2xy]=1×(102﹣2×1)=98.故答案为:98.【点评】本题考查了因式分解和代数式变形.解决本类问题的一般方法:若已知x+y与xy的值,则x2+y2=(x+y)2﹣2xy,再将x+y与xy的值代入即可.18.如图,6个形状、大小完全相同的菱形组成网格,菱形的顶点称为格点.已知菱形的一个角(∠O)为60°,A,B,C都在格点上,则tan∠ABC的值是.【考点】菱形的性质;解直角三角形.【专题】网格型.【分析】如图,连接EA、EB,先证明∠AEB=90°,根据tan∠ABC=,求出AE、EB即可解决问题.【解答】解:如图,连接EA,EC,设菱形的边长为a,由题意得∠AEF=30°,∠BEF=60°,AE=a,EB=2a∴∠AEB=90°,∴tan∠ABC===.故答案为.【点评】本题考查菱形的性质,三角函数、特殊三角形边角关系等知识,解题的关键是添加辅助线构造直角三角形解决问题,属于中考常考题型.三、解答题(共9小题,满分90分)19.计算:|﹣1|﹣+(﹣)0.【考点】有理数的混合运算;立方根;零指数幂.【分析】直接利用绝对值的性质以及立方根的定义和零指数幂的性质化简求出答案.【解答】解:|﹣1|﹣+(﹣)0=1﹣2+1=0.【点评】此题主要考查了有理数的混合运算,正确化简各数是解题关键.20.化简:a﹣b﹣.【考点】分式的加减法.【分析】先约分,再去括号,最后合并同类项即可.【解答】解:原式=a﹣b﹣(a+b)=a﹣b﹣a﹣b=﹣2b.【点评】此题考查了分式的加减法,熟练掌握运算法则是解本题的关键.21.一个平分角的仪器如图所示,其中AB=AD,BC=DC.求证:∠BAC=∠DAC.【考点】全等三角形的性质.【分析】在△ABC和△ADC中,由三组对边分别相等可通过全等三角形的判定定理(SSS)证得△ABC≌△ADC,再由全等三角形的性质即可得出结论.【解答】证明:在△ABC和△ADC中,有,∴△ABC≌△ADC(SSS),∴∠BAC=∠DAC.【点评】本题考查了全等三角形的判定及性质,解题的关键是证出△ABC≌△ADC.本题属于基础题,难度不大,解决该题型题目时,根据全等三角形的判定定理证出两三角形全等是关键.22.列方程(组)解应用题:某班去看演出,甲种票每张24元,乙种票每张18元.如果35名学生购票恰好用去750元,甲乙两种票各买了多少张?【考点】二元一次方程组的应用.【分析】设甲种票买了x张,乙种票买了y张.然后根据购票总张数为35张,总费用为750元列方程求解即可.【解答】解:设甲种票买了x张,乙种票买了y张.根据题意得:.解得:.答:甲种票买了20张,乙种票买了15张.【点评】本题主要考查的是二元一次方程组的应用,根据题意列出方程组是解题的关键.23.福州市﹣常住人口数统计如图所示.根据图中提供的信息,回答下列问题:(1)福州市常住人口数,比增加了7万人;(2)与上一年相比,福州市常住人口数增加最多的年份是;(3)预测福州市常住人口数大约为多少万人?请用所学的统计知识说明理由.【考点】折线统计图.【分析】(1)将人数减去人数即可;(2)计算出每年与上一年相比,增加的百分率即可得知;(3)可从每年人口增加的数量加以预测.【解答】解:(1)福州市常住人口数,比增加了750﹣743=7(万人);(2)由图可知增加:×100%≈0.98%,增加:×100%≈0.97%,增加:×100%≈1.2%,增加:×100%≈0.94%,故与上一年相比,福州市常住人口数增加最多的年份是;(3)预测福州市常住人口数大约为757万人,理由:从统计图可知,福州市常住人口每年增加的数量的众数是7万人,由此可以预测福州市常住人口数大约为757万人.故答案为:(1)7;(2).【点评】本题主要考查条形统计图,从条形图中读出每年人口的数量及增加的幅度是解题的关键.24.如图,正方形ABCD内接于⊙O,M为中点,连接BM,CM.(1)求证:BM=CM;(2)当⊙O的半径为2时,求的长.【考点】圆内接四边形的性质;正方形的性质.【分析】(1)根据圆心距、弦、弧之间的关系定理解答即可;(2)根据弧长公式计算.【解答】(1)证明:∵四边形ABCD是正方形,∴AB=CD,∴=,∵M为中点,∴=,∴+=+,即=,∴BM=CM;(2)解:∵⊙O的半径为2,∴⊙O的周长为4π,∴的长=×4π=π.【点评】本题考查的是正方形的性质、弧长的计算、圆心距、弦、弧之间的关系,掌握弧长的计算公式、圆心距、弦、弧之间的关系定理是解题的关键.25.如图,在△ABC中,AB=AC=1,BC=,在AC边上截取AD=BC,连接BD.(1)通过计算,判断AD2与AC•CD的大小关系;(2)求∠ABD的度数.【考点】相似三角形的判定.【分析】(1)先求得AD、CD的长,然后再计算出AD2与AC•CD的值,从而可得到AD2与AC•CD 的关系;(2)由(1)可得到BD2=AC•CD,然后依据对应边成比例且夹角相等的两三角形相似证明△BCD∽△ABC,依据相似三角形的性质可知∠DBC=∠A,DB=CB,然后结合等腰三角形的性质和三角形的内角和定理可求得∠ABD的度数.【解答】解:(1)∵AB=BC=1,BC=,∴AD=,DC=1﹣=.∴AD2==,AC•CD=1×=.∴AD2=AC•CD.(2)∵AD=BD,AD2=AC•CD,∴BD2=AC•CD,即.又∵∠C=∠C,∴△BCD∽△ABC.∴,∠DBC=∠A.∴DB=CB=AD.∴∠A=∠ABD,∠C=∠D.设∠A=x,则∠ABD=x,∠DBC=x,∠C=2x.∵∠A+∠ABC+∠C=180°,∴x+2x+2x=180°.解得:x=36°.∴∠ABD=36°.【点评】本题主要考查的是相似三角形的性质和判定、等腰三角形的性质、三角形内角和定理的应用,证得△BCD∽△ABC是解题的关键.26.如图,矩形ABCD中,AB=4,AD=3,M是边CD上一点,将△ADM沿直线AM对折,得到△ANM.(1)当AN平分∠MAB时,求DM的长;(2)连接BN,当DM=1时,求△ABN的面积;(3)当射线BN交线段CD于点F时,求DF的最大值.【考点】矩形的性质;角平分线的性质.【分析】(1)由折叠性质得∠MAN=∠DAM,证出∠DAM=∠MAN=∠NAB,由三角函数得出DM=AD•tan∠DAM=即可;(2)延长MN交AB延长线于点Q,由矩形的性质得出∠DMA=∠MAQ,由折叠性质得出∠DMA=∠AMQ,AN=AD=3,MN=MD=1,得出∠MAQ=∠AMQ,证出MQ=AQ,设NQ=x,则AQ=MQ=1+x,证出∠ANQ=90°,在Rt△ANQ中,由勾股定理得出方程,解方程求出NQ=4,AQ=5,即可求出△ABN的面积;(3)过点A作AH⊥BF于点H,证明△ABH∽△BFC,得出对应边成比例=,得出当点N、H 重合(即AH=AN)时,AH最大,BH最小,CF最小,DF最大,此时点M、F重合,B、N、M三点共线,由折叠性质得:AD=AH,由AAS证明△ABH≌△BFC,得出CF=BH,由勾股定理求出BH,得出CF,即可得出结果.【解答】解:(1)由折叠性质得:△ANM≌△ADM,∴∠MAN=∠DAM,∵AN平分∠MAB,∠MAN=∠NAB,∴∠DAM=∠MAN=∠NAB,∵四边形ABCD是矩形,∴∠DAB=90°,∴∠DAM=30°,∴DM=AD•tan∠DAM=3×tan30°=3×=;(2)延长MN交AB延长线于点Q,如图1所示:∵四边形ABCD是矩形,∴AB∥DC,∴∠DMA=∠MAQ,由折叠性质得:△ANM≌△ADM,∴∠DMA=∠AMQ,AN=AD=3,MN=MD=1,∴∠MAQ=∠AMQ,∴MQ=AQ,设NQ=x,则AQ=MQ=1+x,∵∠ANM=90°,∴∠ANQ=90°,在Rt△ANQ中,由勾股定理得:AQ2=AN2+NQ2,∴(x+1)2=32+x2,解得:x=4,∴NQ=4,AQ=5,∵AB=4,AQ=5,∴S△NAB=S△NAQ=×AN•NQ=××3×4=;(3)过点A作AH⊥BF于点H,如图2所示:∵四边形ABCD是矩形,∴AB∥DC,∴∠HBA=∠BFC,∵∠AHB=∠BCF=90°,∴△ABH∽△BFC,∴=,∵AH≤AN=3,AB=4,∴当点N、H重合(即AH=AN)时,AH最大,BH最小,CF最小,DF最大,此时点M、F重合,B、N、M三点共线,如图3所示:由折叠性质得:AD=AH,∵AD=BC,∴AH=BC,在△ABH和△BFC中,,∴△ABH≌△BFC(AAS),∴CF=BH,由勾股定理得:BH===,∴CF=,∴DF的最大值=DC﹣CF=4﹣.【点评】本题考查了矩形的性质、折叠的性质、相似三角形的判定与性质、全等三角形的判定与性质、勾股定理等知识;本题综合性强,难度较大,熟练掌握矩形和折叠的性质,证明三角形相似和三角形全等是解决问题的关键.27.已知,抛物线y=ax2+bx+c(a≠0)经过原点,顶点为A(h,k)(h≠0).(1)当h=1,k=2时,求抛物线的解析式;(2)若抛物线y=tx2(t≠0)也经过A点,求a与t之间的关系式;(3)当点A在抛物线y=x2﹣x上,且﹣2≤h<1时,求a的取值范围.【考点】二次函数综合题.【分析】(1)用顶点式解决这个问题,设抛物线为y=a(x﹣1)2+2,原点代入即可.(2)设抛物线为y=ax2+bx,则h=﹣,b=﹣2ah代入抛物线解析式,求出k(用a、h表示),又抛物线y=tx2也经过A(h,k),求出k,列出方程即可解决.(3)根据条件列出关于a的不等式即可解决问题.【解答】解:(1)∵顶点为A(1,2),设抛物线为y=a(x﹣1)2+2,∵抛物线经过原点,∴0=a(0﹣1)2+2,∴a=﹣2,∴抛物线解析式为y=﹣2x2+4x.(2)∵抛物线经过原点,∴设抛物线为y=ax2+bx,∵h=﹣,∴b=﹣2ah,∴y=ax2﹣2ahx,∵顶点A(h,k),∴k=ah2﹣2ah,抛物线y=tx2也经过A(h,k),∴k=th2,∴th2=ah2﹣2ah2,∴t=﹣a,(3)∵点A在抛物线y=x2﹣x上,∴k=h2﹣h,又k=ah2﹣2ah2,∴h=,∵﹣2≤h<1,∴﹣2≤<1,①当1+a>0时,即a>﹣1时,,解得a>0,②当1+a<0时,即a<﹣1时,解得a≤﹣,综上所述,a的取值范围a>0或a≤﹣.【点评】本题考查二次函数综合题、不等式等知识,解题的关键是学会用参数解决问题,题目比较难参数比较多,第三个问题解不等式要注意讨论,属于中考压轴题.。

2023-2024学年福建省福州市九年级上学期数学月考试题及答案

2023-2024学年福建省福州市九年级上学期数学月考试题及答案

2023-2024学年福建省福州市九年级上学期数学月考试题及答案一、选择题(本题共10小题,每小题4分,共40分.在每小题给出四个选项中,只有一项是符合要求的)1. 如图,A ,B ,C 是⊙O 上三点,且∠ABC=70°,则∠AOC 的度数是( )A. 35°B. 140°C. 70°D. 110°【答案】B【解析】【分析】根据同弧所对的圆心角与圆周角之间的关系定理即可解决.【详解】解:∵∠ABC 是圆周角,所对的弧是 AC ,∠AOC 是圆心角,所对的弧是 AC ,∴∠AOC=2∠ABC=2×70°=140°.故选:B .【点睛】本题考查同弧所对的圆周角、圆心角之间的关系定理,记住同弧所对圆心角是圆周角的两倍,属于中考常考题型.2. 如图,⊙O 的直径AB =4,点C 在⊙O 上,∠ABC=30°,则AC 的长是( )A. 1D. 2【答案】D【解析】【详解】解:∵AB 是⊙O 直径,∴∠ACB=90°;的的Rt△ABC 中,∠ABC=30°,AB=4;∴AC=12AB=2.故选D .考点:圆周角定理.3. 已知O 的半径为3,点P 到圆心O 的距离为4,则点P 与O 的位置关系是( )A. 点P 在O 外B. 点P 在O 上C. 点P 在O 内D. 无法确定【答案】A【解析】【分析】根据点与圆的位置关系进行判断即可得到答案.【详解】解:O 的半径分别是3,点P 到圆心O 的距离为4,d r ∴>,∴点P 与O 的位置关系是:点在圆外,故选:A .【点睛】本题主要考查了点与圆的位置关系,设点到圆心的距离为d ,半径为r ,当d r =时,点在圆上,当d r <时,点在圆内,当d r >时,点在圆外.4. A ,B 是切点,若70P ∠=︒,则ABO ∠=( )A. 30°B. 35°C. 45°D. 55°【答案】B【解析】【分析】连接OA ,根据切线的性质和四边形的内角和为360︒,求出AOB ∠的度数,等边对等角求出ABO ∠的度数即可.【详解】解:连接OA ,则:OA OB =,∵A,B 是切点,∴,OA PA OB PB ⊥⊥,∴90OBP OAP ∠=∠=︒,∴360110AOB APB OBP OAP ∠=︒-∠-∠-∠=︒,∵OA OB =,∴()1180352ABO AOB ∠=︒-∠=︒;故选B .【点睛】本题考查切线的性质.熟练掌握切线垂直于过切点的半径,是解题的关键.5. 如图,AB 是O 的直径,点C 是O 上的一点,若6BC =,10AB =,OD BC ⊥于点D ,则OD 长为( )A. 1B. 2C. 3D. 4【答案】D【解析】【分析】利用圆周角定理和勾股定理求出AC 的长,再利用垂径定理和三角形的中位线定理求出OD 的长即可.【详解】解:∵AB 是O 的直径,∴90BCA ∠=︒,∵6BC =,10AB =,∴8AC ==,∵OD BC ⊥,∴BD CD =,∵OA OB =,∴OD 是三角形ABC 的中位线,∴142OD AC ==;故选D .【点睛】本题考查圆周角定理,垂径定理和三角形的中位线定理,解题的关键是熟练掌握相关定理,正确的计算.6. 正n 边形的中心角是30°,n =( )A 6 B. 8 C. 10 D. 12【答案】D【解析】【分析】根据正n 边形的中心角是360n ︒,进行求解即可.【详解】解:由题意,得:36030n ︒=︒,∴12n =;故选D .【点睛】本题考查正多边形的中心角.熟练掌握正n 边形的中心角是360n︒,是解题的关键.7. 如图,⊙O 的弦AB=6,M 是AB 上任意一点,且OM 最小值为4,⊙O 的半径为( )A. 5B. 4C. 3D. 2【答案】A【解析】分析】当OM⊥AB 时值最小.根据垂径定理和勾股定理求解..【【详解】解:根据直线外一点到直线的线段中,垂线段最短,知:当OM⊥AB时,为最小值4,连接OA,AB=3,根据垂径定理,得:BM=12根据勾股定理,得:=5,即⊙O的半径为5.故选:A.【点睛】本题考查了垂径定理,主要运用了垂径定理、勾股定理求得半径.特别注意能够分析出OM的最小值.8. 如图,点A、B、C在⊙O上,且∠ACB=100o,则∠α度数为()A. 160oB. 120oC. 100oD. 80o 【答案】A【解析】AD BD利用圆的内接四边形的性质与一条弧所对的圆心角【分析】在⊙O取点D,连接,.是它所对的圆周角的2倍,可得答案.AD BD【详解】解:如图,在⊙O取点D,连接,.四边形ACBD为⊙O的内接四边形,180,∴∠+∠=︒ACB ADB∠=︒100,ACB80,D ∴∠=︒160.AOB ∴∠=︒ .故选A【点睛】本题考查的是圆的内接四边形的性质,同弧所对的圆心角是它所对的圆周角的2倍,掌握相关知识点是解题的关键.9. 圆锥底面圆的半径为3cm ,其侧面展开图是半圆,则圆锥母线长为( )A. 3cmB. 6cmC. 9cmD. 12cm 【答案】B【解析】【详解】试题分析:首先根据圆的周长公式求得圆锥的底面周长=6π,然后根据圆锥的侧面展开图(扇形)的弧长等于底面周长,根据弧长公式180n r l π=即可求得母线长6l ππ=,可得母线长为6.故选B .考点:圆锥的计算10. 如图,ABC 内接于O ,120BAC ∠=︒,AB AC =,BD 为O 的直径,6AD =,则BC 长为( )A. 4B.C. 6D. 【答案】C【解析】【分析】等边对等角,得到30ABC ACB ∠=∠=︒,圆周角定理,得到30ADB ∠=︒,90BAD BCD ∠=∠=︒,利用含30 度角的直角三角形的性质,求出BD 的长,再根据含30 度角的直角三角形的性质,求出BC 的长即可.【详解】解:∵120BAC ∠=︒,AB AC =,∴30ABC ACB ∠=∠=︒,∴30ADB ACB ∠=∠=︒连接CD ,则:18060BDC BAC ∠=︒-∠=︒,∵BD 为O 的直径,∴90BAD BCD ∠=∠=︒,在Rt BAD 中,30ADB ∠=︒,∴2,6BD AB AD ===,∴AB =BD =,在Rt BCD 中,BD =,60BDC ∠=︒,∴30CBD ∠=︒,12CD BD ==,∴6BC ==;故选C .【点睛】本题考查圆周角定理,等边对等角,含30度角的直角三角形.熟练掌握圆周角定理,是解题的关键.二、填空题(本大题共6小题,每小题4分,共24分)11. 如图,已知点A ,B ,C 在O 上,AC OB ∥,40BOC ∠=︒,则ABO ∠=________.【答案】20︒##20度【解析】【分析】先根据圆周角定理求出20BAC =︒∠,再根据平行线的性质可证20ABO BAC ∠=∠=︒.【详解】解:∵40BOC ∠=︒,∴20BAC =︒∠,∵AC OB ∥,∴20ABO BAC ∠=∠=︒.故答案为:20︒【点睛】本题考查的是圆周角定理的应用,平行线的性质,熟记圆周角定理的含义是解本题的关键.12. 用反证法证明:“a 与b 不平行”,第一步假设为________.【答案】a 与b 平行【解析】【分析】反证法的第一步假设结论的对立面成立,作答即可.【详解】解:用反证法证明:“a 与b 不平行”,第一步假设为a 与b 平行;故答案为:a 与b 平行.【点睛】本题考查反证法,熟练掌握反证法的第一步为假设结论的对立面成立,是解题的关键.13. 在半径为3的圆中,150°的圆心角所对扇形的面积是________.【答案】154π【解析】【分析】根据扇形的面积公式进行计算即可.【详解】解:由题意,得:150°的圆心角所对的扇形的面积是21501533604ππ⨯=;故答案为:154π.【点睛】本题考查求扇形面积.熟练掌握扇形的面积公式,是解题的关键.14. 如图,点A ,B ,C ,D 都在⊙O 上,∠ABC=90°,AD =3,CD =2,则⊙O 的直径的长是________.【解析】【详解】连接AC ,根据∠ABC=90°可得AC 为直径,则∠ADC=90°,根据Rt△ACD 的勾股定理可得:=15. 如图,AB 为⊙O 的直径,弦CD AB ⊥于点E ,已知6,1CD EB ==,则⊙O 的半径为__________.【答案】5【解析】【详解】解:设圆的半径为r ,连接OC ,根据垂径定理可知CE=3,OE=r-1,()22231r r \+-=,解得r=5.故答案为5.16. 平面直角坐标系内,A(-1,0),B(1,0),C(4,﹣3),P 在以 C 为圆心 1 为 半径的圆上运动,连接 PA ,PB ,则22PA PB +的最小值是_______ .【答案】34【解析】【分析】设点P (x, y ),表示出22PA PB +的值,从而转化为求OP 的最值,画出图形后可直观得出OP 的最值,代入求解即可.【详解】解:设P (x ,y)∴222,OP x y =+∵A(-1,0),B(1,0),∴()()2222221, 1,PA x y PB x y =++=-+∴()22222222222PA PB x y x y+=++=++ ,∴22222,PA PB OP +=+当点P 处于OC 与圆的交点上时,OP 取得最值,∴OP 的最小值为OC-PC=5-1=4.∴22PA PB +最小值为22222224234,PA PB OP +=+=⨯+=.故答案为: 34.【点睛】本题考查了点与圆的位置关系,解答本题的关键是设出点P 坐标,将所求代数式的值转化为求解OP 的最小值,难度较大.三、解答题(共86分)17. 如图,在O 中,弦AC ∥半径OB ,40BOC ∠=︒,求AOC ∠的度数.【答案】100︒.【解析】【分析】先根据平行线的性质得到40OCA BOC ∠=∠=︒,然后根据等腰三角形的性质和三角形内角和定理计算AOC ∠的度数.【详解】解:AC ∥半径OB ,40OCA BOC ∴∠=∠=︒,OA OC = ,40A OCA ∴∠=∠=︒,1801804040100AOC A OCA ∴∠=︒-∠-∠=︒-︒-︒=︒.【点睛】本题考查了三角形内角和:三角形内角和是180︒.也考查了等腰三角形的性质和圆的认识.18. 如图,5OA OB ==,8AB =,O 的直径为6.求证:直线AB 是O 的切线.【答案】见解析【解析】【分析】过点O 作OD AB ⊥于点D ,根据三线合一和勾股定理求出OD 的长,即可.【详解】解:过点O 作OD AB ⊥于点D ,∵5OA OB ==,8AB =,∴4AD BD ==,∴3OD ==,∵O 的直径为6,∴OD 为O 的半径,又OD AB ⊥,∴直线AB 是O 的切线.【点睛】本题考查切线的判定.熟练掌握切线的判定方法,是解题的关键.19. 如图,A 、B 、C 、D 为⊙O 上四点,若AC⊥OD 于E ,且 =2AB AD .请说明AB =2AE .【答案】证明见解析【解析】【分析】根据垂径定理得到 2AC AD =,AC =2AE ,从而得到 AC AB =,得到AC=AB ,故可求解.【详解】解:∵AC⊥OD,∴AC AD=,AC=2AE,2∵=,2AB AD∴AC AB=,∴ AC=AB,∴ AB=2AE.【点睛】此题主要考查垂径定理,弧、弦、圆心角的关系,解题的关键是熟练掌握相关知识并能灵活运用.20. 如图,AB是⊙O的切线.A为切点,AC是⊙O的弦,过O作OH⊥AC于点H.若OH=2,AB=12,BO=13,求⊙O的半径和AC的值【答案】5,.【解析】【分析】根据切线的性质可得△AOB是直角三角形,由勾股定理可求得OA的长,即⊙O的半径;在Rt△OAH中,由勾股定理可得AH的值,进而由垂径定理求得AC的长.【详解】解:①∵AB是⊙O的切线,A为切点,∴OA⊥AB,在Rt△AOB中,=5,∴⊙O的半径为5;②∵OH⊥AC,∴在Rt△AOH中,,又∵OH⊥AC,.【点睛】本题考查:切线的性质、勾股定理及垂径定理的综合运用等知识,解题关键是勾股定理的应用.21. 如图,AD是⊙O的弦,AB经过圆心O,交⊙O于点C.∠DAB=∠B=30°.(1)直线BD是否与⊙O相切?为什么?(2)连接CD,若CD=5,求AB的长.【答案】(1)相切,理由见解析;(2)AB=15.【解析】【分析】(1)连接OD,通过计算得到∠ODB=90°,证明BD与⊙O相切.(2)△OCD是边长为5的等边三角形,得到圆的半径的长,然后求出AB的长【详解】解:(1)直线BD与⊙O相切.如图连接OD,CD,∵∠DAB=∠B=30°,∴∠ADB=120°,∵OA=OD,∴∠ODA=∠OAD=30°,∴∠ODB=∠ADB﹣∠ODA=120°﹣30°=90°.所以直线BD与⊙O相切;(2)连接CD,∠COD=∠OAD+∠ODA=30°+30°=60°,又OC=OD∴△OCD是等边三角形,即:OC=OD=CD=5=OA,∵∠ODB=90°,∠B=30°,∴OB=10,∴AB=AO+OB=5+10=15.22. 如图,已知AB是⊙O的直径,BC与⊙O相切于点B,连接OC,交⊙O于点E,弦AD∥OC.(1)求证:点E是弧BD的中点;(2)求证:CD是⊙O的切线.【答案】(1)见解析;(2)见解析【解析】【分析】(1)连接OD.根据相等的圆心角所对的弧相等,证明∠COD=∠COB后得证;(2)证明OD⊥CD即可.通过证明△COD≌△COB得∠ODC=∠OBC=90°得证.【详解】证明:(1)连接OD.∵AD∥OC,∴∠ADO=∠COD,∠A=∠COB.∵OA=OD,∴∠A=∠ADO.∴∠COD=∠COB.∴弧BE=弧DE,即点E是弧BD的中点.(2)由(1)可知∠COD=∠COB,在△COD 和△COB 中,0OD OB COD COB OC C =⎧⎪∠=∠⎨⎪=⎩,∴△COD≌△COB,∴∠CDO=∠CBO.∵BC 与⊙O 相切于点B ,∴BC⊥OB,即∠CBO=90°.∴∠CDO=90°,即DC⊥OD.∴CD 是⊙O 的切线.【点睛】此题考查了圆的有关性质及切线的判定方法等知识点.①相等的圆心角所对的弧相等,必须在同圆或等圆中成立;②要证某线是圆的切线,已知此线过圆上某点,连接圆心与这点(即为半径),再证垂直即可.23. 如图,以等边三角形ABC 一边AB 为直径的⊙O 与边AC ,BC 分别交于点D ,E ,过点D 作DF⊥BC,垂足为点F.(1)求证:DF 为⊙O 的切线;(2)若等边三角形ABC 的边长为4,求DF 的长;(3)求图中阴影部分面积.【答案】(1)证明见解析;(2;(323π-. 【解析】【分析】(1)连接DO ,要证明DF 为⊙O 的切线只要证明∠FDP=90°即可;(2)由已知可得到CD ,CF 的长,从而利用勾股定理可求得DF 的长;(3)连接OE ,求得CF ,EF 的长,从而利用S 直角梯形FDOE -S 扇形OED 求得阴影部分的面积.的【详解】(1)连接DO.∵△ABC是等边三角形,∴∠A=∠C=60°.∵OA=OD,∴△OAD是等边三角形,∴∠ADO=60°,∵DF⊥BC,∴∠CDF=90°-∠C=30°,∴∠FDO=180°-∠ADO-∠CDF=90°,∴DF为⊙O的切线;(2)∵△OAD是等边三角形,∴AD=AO=12AB=2,∴CD=AC-AD=2.在Rt△CDF中,∵∠CDF=30°,∴CF=12CD=1,;(3)连接OE.由(2)同理可知CE=2,∴CF=1,∴EF=1,∴S 直角梯形FDOE =12 ∴S 扇形OED =26022=3603ππ⨯∴S 阴影=S 直角梯形FDOE -S 扇形OED 23π-24. 已知二次函数22y ax ax c =-+图象与x 轴交于坐标原点O 和点A ,顶点为点P .(1)求点P 的坐标(用含a 的式子表示);(2)已知点P 纵坐标与点A 横坐标相同,直线6y kx =-与抛物线交于M ,N 两点(点M 在点N 左侧),连接AM AN ,设直线AM 为11y k x m =+,直线AN 为22y k x n =+;①求P 点坐标.②求证:当3k ≠时,12k k 的值不变.【答案】(1)()1,a -(2)①点P 坐标为()1,2;②1212k k ⋅=-.【解析】【分析】(1)由抛物线经过原点可得0c =,将抛物线解析式化为顶点式求解.(2)①由点P 纵坐标与点A 横坐标相同可求出A ,P 坐标;②由直线AM ,AN 经过点A 可得m ,n 与1k ,2k 的关系,设点M ,N 横坐标分别为1x ,2x ,令2624kx x x -=-+可得1242k x x -+=,213x x ⋅=-,用含1x ,2x 及k 的代数式分别表示1k ,2k ,进而求解.【小问1详解】抛物线经过原点,0c ∴=,()2221y ax ax a x a ∴=-=--,∴点P 坐标为()1,a -.【小问2详解】① 抛物线对称轴为直线1x =,∴点A 坐标为()2,0,点P 纵坐标与点A 横坐标相同,2a ∴-=,2a ∴=-,∴点P 坐标为()1,2.②令2624kx x x -=-+,整理得()22460x k x +--=,设点M 横坐标为1x ,点N 横坐标为2x ,1242k x x -∴+=,213x x ⋅=-, 点M 在直线6y kx =-与直线AM 上,把(2,0)代入11y k x m =+得12m k =-,1112y k x k ∴=-,令111162kx k x k -=-,可得11162kx k x -=-, 点N 在直线6y kx =-与直线AN 上,把(2,0)代入22y k x n =+得22n k =-,2222y k x k ∴=-,令222262kx k x k -=-,可得22262kx k x -=-,()()212121212121212636662224k x x k x x kx kx k k x x x x x x -++--∴⋅=⋅=---++,把1242k x x -+=,213x x ⋅=-代入()()21212121263624k x x k x x x x x x -++-++得1236123k k k k-⋅=-+,3k ∴≠时,1212k k ⋅=-.【点睛】本题考查二次函数的综合应用,解题关键是掌握二次函数的性质,掌握二次函数和方程的关系,掌握一元二次方程根与系数的关系.25. ABC 内接于O ,点D 在BC 边上,射线AD 交O 于点E ,点F 在弧BE 上,连接AF ,ADB AFE ∠=∠.(1)如图1,求证:AB AC =;(2)如图2,BE 交弦AF 于点G ,BC 经过O 点,2AGE EAF ∠=∠,求证:AF BE =;(3)如图3,在(2)的条件下,H 为EG 的中点,连接OH 、CH ,若2180ACH ABE ∠+∠=︒,AB =,求线段OH 的长.【答案】(1)证明见解析(2)证明见解析 (3【解析】【分析】(1)连接CF ,得到CFE CAE ∠=∠,AFC ABC ∠=∠,即AEF ABC CAE ∠=∠+∠,然后根据ADB CAE ACB ADB AFE ∠=∠+∠∠=∠,,可得到结果;(2)连接BF ,找到角度之间的关系,结合(1)中的结论,可得到AG EG =,通过同弧所对的圆周角相等,可得到AFB EBF ∠=∠,进而得到BG GF =,即可求得结果;(3)延长CH 交FG 于点K ,过O 作OM BE ⊥于点M ,过A 作AN CE ⊥于点N ,则90N AGB ∠=︒=∠,然后根据(1)(2)中的条件判断出四边形CKFE 是平行四边形,四边形ANEG 是矩形,得到MH =【小问1详解】证明:连接CF ,,∵ CECE =,∴CFE CAE ∠=∠,∵ AC AC =,∴AFC ABC ∠=∠,∴AEF AFC CFE ABC CAE ∠=∠+∠=∠+∠,∵ADB CAE ACB ADB AFE ∠=∠+∠∠=∠,,∴A ABC CB =∠∠,∴AB AC =;【小问2详解】证明:连接BF ,,∵BC 是直径,∴90BAC ∠=︒,∵AB AC =,∴45ABC ACB ∠==︒,∴18045135AGE EAF ∠+∠=︒-︒=︒,∵2AGE EAF ∠=∠,∴90AGE ∠=︒,45EAF ∠=︒,∴AG EG =,∵ AB AB =, EFEF =,∴45AFB AEB ∠=∠=︒,45EBF EAF ∠=∠=︒,∴AFB EBF ∠=∠,∴BG GF =,∴AG GF EG GB +=+,∴AF BE =;【小问3详解】解:延长CH 交FG 于点K ,过O 作OM BE ⊥于点M ,过A 作AN CE ⊥于点N ,则90N AGB ∠=︒=∠,,∵»»AE AE =,∴45AFE ABE ABC CBE CBE ∠=∠=∠+∠=︒+∠,∵45ACH ACB BCH BCH ∠=∠+∠=︒+∠,∴()245245ACH ABE BCH CBE ∠+∠=︒+∠+︒+∠1352180BCH CBE =︒+∠+∠=︒,∴245BCH CBE ∠+∠=︒,∴45CHE CBE ∠+∠=︒,∵45BEF CBE BAF CAE ∠+∠=∠+∠=︒,∴CHE BEF ∠=∠,∴CK EF =,∵BC 是直径,∴90CEB AGB ∠=︒=∠,∴AF CE ∥,∴四边形CKFE 是平行四边形,∴CK KF =,∵H 是GE 的中点,∴CH KH =,∵90CEG KGH ∠=∠=︒,∴CHE KHG ∠=∠,∴CHE KHG ≌△△,∴CE KG KF ==,设CE x =,则2FG x =,由(2)得2BG x =,∵90N CEG AGE ∠=∠=∠=︒,∴四边形ANEG 是矩形,∵AG EG =,∴四边形ANEG 是正方形,∴AG AN EN EG ===,∵AB AC =,∴Rt AGB Rt ANC △≌△,∴2BG CN x ==,∴3AN EN x ==,∵AB AC ==,∴在Rt ACN V 中,由勾股定理可得()()22232x x +=,∴x =(舍)或x ,∴CE =EG =,则BE BG EG =+=,∴GH HG ==,∵OM BE ⊥,∴BM ME ==∴MH ==,∵OB OC =,∴OM 是BCE 的中位线,∴12OM CE ==,在Rt OMH 中,OH ===【点睛】本题考查了圆与三角形的综合问题,其中有同弧所对的圆周角相等,垂线定理,等腰三角形的性质,勾股定理等知识点,解题的关键是找到各个角度、边长之间的关系.。

历年(2005年~2014年)福州市初中毕业班质量检查数学试卷及参考答案

历年(2005年~2014年)福州市初中毕业班质量检查数学试卷及参考答案

福州市中考改革简介2005年是福州市市区中考改革的第一年,当年,福州市区和八县(市)使用两套不同的中考试卷,其中福州市区中考试卷为课改卷,八县为非课改卷;2006年,永泰、闽侯、闽清、长乐、福清、连江6个县也进入中考改革,与福州五区一起使用课改卷,罗源、平潭2个县仍采用非课改卷;2007年,全市(五区八县)全面进入中考改革,全市采用统一试卷。

历年中考总分变化情况:2005年之前,中考总分为780分,其中语文、数学、英语各150分,政治、物理、化学各100分,体育30分;2005年福州市实施中考改革后,连续6年(2005年至2010年),中考总分为450分,其中语文、数学、英语各150分,其他学科以等级记载,不计入中考总分;2011年,自2005年福州中招改革以来,时隔6年,物理、化学“重返”中考总分。

当年,物理和化学学科除了以等级方式记载外,还分别以卷面成绩的20%和10%作为奖励分计入总分。

这样,中考总分变为480分,其中语文、数学、英语各150分,物理20分,化学10分。

2012年起,物理、化学除了以等级方式记载外,还分别以卷面成绩的60%和40%作为奖励分计入总分。

这样,中考总分为550分,其中语数英各150分,物理60分,化学40分。

为了给各位即将迎来中考的初三学子,提供更有效的备考,洞悉命卷教师的命题方向,以便在中考备考过程中,更有针对性的做题,特组织中考教研团队共同汇编了福州市中考改革以来的十年质检以及中考试卷,帮助各位考生,亦可作为新教师的参考。

以下为《历年(2005年~2014年)福州市初中毕业班质量检查数学试卷及参考答案》2014年福州市初中毕业班质量检测数 学 试 卷(全卷共4页,三大题,共22小题;满分150分;考试时间120分钟)友情提示:所有答案都必须填涂在答题卡相应的位置上,答在本试卷上一律无效一、选择题(共10小题,每小题4分,满分40分;每小题只有一个正确的选项,请在答题卡的相应位置填涂)1.-3的相反数是A .3B .-3C . 1 3D .- 1 3 2.今年参加福州市中考的总人数约为78000人,将78000用科学记数法表示为 A .78.0×104 B .7.8×104 C .7.8×105 D .0.78×1053.某几何体的三种视图如图所示,则该几何体是A .三棱柱B .长方体C .圆柱D .圆锥4.下列各图中,∠1与∠2是对顶角的是5.下列计算正确的是A .3a -a =2B .2b 3·3b 3=6b 3C .3a 3÷a =3a 2D .(a 3)4=a 7 6.若2-a +3+b =0,则a +b 的值是A .2B .0C .1D .-17.某班体育委员对七位同学定点投篮进行数据统计,每人投十个,投进篮筐的个数依次为:5,6,5,3,6,8,9.则这组数据的平均数和中位数分别是A .6,6B .6,8C .7,6D .7,88.甲队修路120m 与乙队修路100m 所用天数相同,已知甲队比乙队每天多修10m ,设甲队每天修路x m .依题意,下面所列方程正确的是A .120 x =100 x +10B .120 x =100 x -10C .120 x -10 = 100 xD .120 x +10 =100 x9.如图,△ABC 的中线BD 、CE 交于点O ,连接OA ,点G 、F 分别为OC 、OB 的中点,BC =4,AO =3,则四边形DEFG 的周长为A .6B .7C .8D .12A B C D 1 2 1 2 1 2 12 主视图 左视图 俯视图第3题图 A D E O F G10.如图,抛物线y =ax 2+bx +c 与x 轴交于点A (-1,0),顶点坐标为C (1,k ),与y 轴的交点在(0,2)、(0,3)之间(不包含端点),则k 的取值范围是A .2<k <3B . 5 2<k <4C . 8 3<k <4D .3<k <4二、填空题(共5小题,每小题4分.满分20分;请将正确答案填在答题卡相应位置)11.分解因式:xy 2+xy =______________.12.“任意打开一本200页的数学书,正好是第50页”,这是_______事件(选填“随机”,“必然”或“不可能”).13.已知反比例函数y = k x的图象经过点A (1,-2).则k =_________. 14.不等式4x -3<2x +5的解集是_______________.15.如图,已知∠AOB =60°,在OA 上取OA 1=1,过点A 1作A 1B 1⊥OA 交OB 于点B 1,过点B 1作B 1A 2⊥OB 交OA 于点A 2,过点A 2作A 2B 2⊥OA 交OB 于点B 2,过点B 2作B 2A 3⊥OB 交OA 于点A 3,…,按此作法继续下去,则OA 10的值是____________.三、解答题(满分90分;请将正确答案及解答过程填在答题卡相应位置,作图或添辅助线用铅笔画完,再用黑色签字笔描黑)16.(每小题7分,共14分)(1) 计算:16-( 1 3)-1+(-1)2014;(2) 先化简,再求值:(1+a )(1-a )+(a -2)2,其中a = 1 2.17.(每小题7分,共14分)(1) 如图,CA =CD ,∠1=∠2,BC =EC .求证:AB =DE .x =1Ox y 第10题图AB O A 1 B 1A 2B 2第15题图 A 3 A B C D E 1 2(2) 如图,已知点A (-3,4),B (-3,0),将△OAB 绕原点O 顺时针旋转90°,得到△OA 1B 1. ① 画出△OA 1B 1,并直接写出点A 1、B 1的坐标;② 求出旋转过程中点A 所经过的路径长(结果保留π).18.(满分12分)为了了解全校1500名学生对学校设置的篮球、羽毛球、乒乓球、踢毽子、跳绳共5项体育活动的喜爱情况,在全校范围内随机抽查部分学生,对他们喜爱的体育项目(每人只选一项)进行了问卷调查,将统计数据绘制成如下两幅不完整统计图,请根据图中提供的信息解答下列各题.(1) m =_______%,这次共抽取了_________名学生进行调查;并补全条形图;(2) 请你估计该校约有_________名学生喜爱打篮球;(3) 现学校准备从喜欢跳绳活动的4人(三男一女)中随机选取2人进行体能测试,请利用列表或画树状图的方法,求抽到一男一女学生的概率是多少?A B O x y 第17(2)题图 篮球 24% 羽毛球 34%乒乓球 m 踢毽子 14% 跳绳 8% 学生体育活动扇形统计图学生体育活动条形统计图 羽毛球 乒乓球 踢毽子 跳绳 篮球 项目 人数 20 10 15 4 5 7 171219.(满分11分)某商店决定购进一批某种衣服.若商店以每件60元卖出,盈利率为20%(盈利率= 售价-进价 进价×100%). (1) 求这种衣服每件进价是多少元?(2) 商店决定试销售这种衣服时,每件售价不低于进价,又不高于70元,若试销售中销售量y (件)与每件售价x (元)的关系是一次函数(如图).问当每件售价为多少元时,商店销售这种衣服的利润最大?20.(满分12分)如图,在⊙O 中,点P 为直径BA 延长线上一点,直线PD 切⊙O 于点D ,过点B 作BH ⊥PD ,垂足为H ,BH 交⊙O 于点C ,连接BD .(1) 求证:BD 平分∠ABH ; (2) 如果AB =10,BC =6,求BD 的长;(3) 在(2)的条件下,当E 是⌒AB 的中点,DE 交AB 于点F ,求DE ·DF的值.O x y3060 40 70 第19题图 A B C D E O P F H 第20题图21.(满分13分)如图,直角梯形ABCD 中,AB ∥CD ,∠DAB =90°,AB =7,AD =4,CA =5,动点M 以每秒1个单位长的速度,从点A 沿线段AB 向点B 运动;同时点P 以相同的速度,从点C 沿折线C →D →A 向点A 运动.当点M 到达点B 时,两点同时停止运动.过点M 作直线l ∥AD ,与线段CD 交于点E ,与折线A -C -B 的交点为Q ,设点M 的运动时间为t . (1) 当点P 在线段CD 上时,CE =_________,CQ =_________;(用含t 的代数式表示) (2) 在(1)的条件下,如果以C 、P 、Q 为顶点的三角形为等腰三角形,求t 的值; (3) 当点P 运动到线段AD 上时,PQ 与AC 交于点G ,若S △PCG ∶S △CQG =1∶3,求t 的值.22.(满分14分)已知抛物线y =ax 2+bx +c (a ≠0)经过点A (1,0)、B (3,0)、C (0,3),顶点为D .(1) 求抛物线的解析式;(2) 在x 轴下方的抛物线y =ax 2+bx +c 上有一点G ,使得∠GAB =∠BCD ,求点G 的坐标;(3) 设△ABD 的外接圆为⊙E ,直线l 经过点B 且垂直于x 轴,点P 是⊙E 上异于A 、B 的任意一点,直线AP 交l 于点M ,连接EM 、PB .求tan ∠MEB ·tan ∠PBA 的值.A B C D E M P Q l 第21题图 AB C D 备用图 A B C D 备用图 A B C D O x y 第22题图 备用图 A BC D O x y∠2013年福州市初中毕业班质量检查数 学 试 卷(本卷共4页,三大题,共22小题;满分150分,考试时间120分钟) 友情提示:所有答案都必须填涂在答题卡的相应位置上,答在本试卷一律无效. 一、选择题(共10小题,每题4分,满分40分;每小题只有一个正确的选项,请在答题卡的相应位置填涂)1.计算-3+3的结果是A .0B .-6C .9D .-92.如图,AB ∥CD ,∠BAC =120°,则∠C 的度数是A .30°B .60°C .70°D .80°3.节约是一种美德,节约是一种智慧.据不完全统计,全国每年浪费食物总量折合粮食可养活约3亿5千万人.350 000 000用科学记数法表示为A .3.5×107B .3.5×108C .3.5×109D .3.5×10104.下列学习用具中,不是轴对称图形的是5.已知b <0,关于x 的一元二次方程(x -1)2=b 的根的情况是A .有两个不相等的实数根B .有两个相等的实数根C .没有实数根D .有两个实数根6.一个不等式组的解集在数轴上表示如图,则这个不等式组可能是A .⎩⎨⎧x ≥-1x <2B .⎩⎨⎧x ≤-1x >2C .⎩⎨⎧x <-1x ≥2D .⎩⎨⎧x >-1x ≤2A B CD 第2题图 1 2 3 4 0 1 2 3 4 0 1 2 3 4 0 5 6A BC D -3 -2 -1 1 2 37.“赵爽弦图”是由四个全等的直角三角形与中间的一个小正方形拼成的一个大正方形(如图所示).随机在大正方形及其内部区域投针,若针扎到小正方形(阴影部分)的概率是19,则大、小两个正方形的边长之比是A .3∶1B .8∶1C .9∶1D .22∶18.如图,已知△ABC ,以点B 为圆心,AC 长为半径画弧;以点C 为圆心,AB 长为半径画弧,两弧交于点D ,且A 、D 在BC 同侧,连接AD ,量一量线段AD 的长,约为A .1.0cmB .1.4cmC .1.8cmD .2.2cm9.有一种公益叫“光盘”.所谓“光盘”,就是吃光你盘子中的食物,杜绝“舌尖上的浪费”.某校九年级开展“光盘行动”宣传活动,根据各班级参加该活动的总人次拆线统计图,下列说法正确的是A .极差是40B .中位数是58C .平均数大于58D .众数是510.已知一个函数中,两个变量x 与y 的部分对应值如下表: x… -2- 3 … -2+ 3 … 2-1 … 2+1 …y … -2+ 3 … -2- 3 … 2+1 … 2-1 …如果这个函数图象是轴对称图形,那么对称轴可能是A .x 轴B .y 轴C .直线x =1D .直线y =x二、填空题(共5小题,每题4分,满分20分;请将正确答案填在答题卡的相应位置)第7题图 A B C 第8题图 第9题图 1班 2班 3班 4班 5班 6班 班级 总人次 20 30 10 0 50 60 40 70 80 50 805945 62 58九年级宣传“光盘行动” 总人次拆线统计图11.分解因式:m 2-10m =________________.12.如图,∠A +∠B +∠C +∠D =____________度.13.在一次函数y =kx +2中,若y 随x 的增大而增大,则它的图象不经过第______象限.14.若方程组⎩⎨⎧x +y =73x -5y =-3,则3(x +y)-(3x -5y)的值是__________. 15.如图,边长为6的等边三角形ABC 中,E 是对称轴AD 上的一个动点,连接EC ,将线段EC 绕点C 逆时针旋转60°得到FC ,连接DF .则在点E 运动过程中,DF 的最小值是____________.二、解答题(满分90分;请将正确答案及解答过程填在答题卡的相应位置.作图或添轴助线用铅笔画完,再用黑色签字笔描黑)16.(每小题7分,共14分)(1) 计算:(π+3)0―|―2013|+64×18(2) 已知a 2+2a =-1,求2a(a +1)-(a +2)(a -2)的值.A BC D 第12题图 AB CD EF 第15题图17.(每小题8分,共16分)(1) 如图,在△ABC 中,AB =AC ,点D 、E 、F 分别是△ABC 三边的中点.求证:四边形ADEF 是菱形.(2) 一艘轮船在静水中的最大航速为20千米/时,它沿江以最大航速顺流航行100千米所用时间与以最大航速逆流航行60千米所用时间相等,江水的流速为多少?18.(10分)有一个袋中摸球的游戏.设置了甲、乙两种不同的游戏规则:甲规则:乙规则: 第一次第二次红1红2 黄1 黄2 红1(红1,红1) (红2,红1) (黄1,红1) ②红2(红1,红2) (红2,红2) (黄1,红2) (黄2,红2) 黄1(红1,黄1) ① (黄1,黄1) (黄2,黄1) 黄2 (红1,黄2) (红2,黄2) (黄1,黄2) (黄2,黄2) 请根据以上信息回答下列问题:(1) 袋中共有小球_______个,在乙规则的表格中①表示_______,②表示_______;(2) 甲的游戏规则是:随机摸出一个小球后______(填“放回”或“不放回”),再随机摸出一个小球;(3) 根据甲、乙两种游戏规则,要摸到颜色相同的小球,哪一种可能性要大,请说明理由.C A BD EF 第17(1)题图红1 红2 黄1 黄2 红2 红1 黄1 黄2 黄1 红1 红2 黄2 黄2红1 红2 黄1 第一次 第二次19.(10分)如图,由6个形状、大小完全相同的小矩形组成矩形网格.小矩形的顶点称为这个矩形网格的格点.已知小矩形较短边长为1,△ABC 的顶点都在格点上.(1) 格点E 、F 在BC 边上,BE AF的值是_________; (2) 按要求画图:找出格点D ,连接CD ,使∠ACD =90°;(3) 在(2)的条件下,连接AD ,求tan ∠BAD 的值.20.(12分)如图,半径为2的⊙E 交x 轴于A 、B ,交y 轴于点C 、D ,直线CF 交x 轴负半轴于点F ,连接EB 、EC .已知点E 的坐标为(1,1),∠OFC =30°.(1) 求证:直线CF 是⊙E 的切线;(2) 求证:AB =CD ;(3) 求图中阴影部分的面积.A B C E F 第19题图 A B C D E O xyF 第20题图21.(12分)如图,Rt △ABC 中,∠C =90°,AC =BC =8,DE =2,线段DE 在AC 边上运动(端点D 从点A 开始),速度为每秒1个单位,当端点E 到达点C 时运动停止.F 为DE 中点,MF ⊥DE 交AB 于点M ,MN ∥AC 交BC 于点N ,连接DM 、ME 、EN .设运动时间为t 秒.(1) 求证:四边形MFCN 是矩形;(2) 设四边形DENM 的面积为S ,求S 关于t 的函数解析式;当S 取最大值时,求t 的值;(3) 在运动过程中,若以E 、M 、N 为顶点的三角形与△DEM 相似,求t 的值.22.(14分)如图,已知抛物线y =ax 2+bx +c(a ≠0)与x 轴交于A(1,0)、B(4,0)两点,与y 轴交于C(0,2),连接AC 、BC .(1) 求抛物线解析式;(2) BC 的垂直平分线交抛物线于D 、E 两点,求直线DE 的解析式;(3) 若点P 在抛物线的对称轴上,且∠CPB =∠CAB ,求出所有满足条件的P 点坐标.A B C A B C D E M F N 第21题图 备用图 A B C O x y 第22题图 A B C O x y 备用图2013年福州市初中毕业班质量检查数学试卷参考答案一、选择题(每题4分,满分40分)1.A 2.B 3.B 4.C 5.C 6.D 7.A 8.B 9.C 10.D二、填空题(每题4分,满分20分)11.m(m -10) 12.360 13.四 14.24 15.1.5 三、解答题16.(每题7分,共14分)(1) 解:原式=1-2013+8×18 ……3分=1-2013+1 ……4分=-2011 ……7分(2) 解:原式=2a 2+2a -a 2+4 ……3分= a 2+2a +4 ……4分∵a 2+2a =-1∴原式=-1+4=3 ……7分另解:∵a 2+2a =-1∴a 2+2a +1=0∴(a +1)2=0∴a=-1 ……3分原式=2×(-1)×(-1+1)-(-1+2)×(-1-2)=3 ……7分17.(每小题8分,共16分)(1) 证明:∵D、E 、F 分别是△ABC 三边的中点,∴DE ∥=12AC ,EF ∥=12AB , …………2分∴四边形ADEF 为平行四边形. …………4分又∵AC=AB ,∴DE =EF . …………6分(2) 解:设江水的流速为x 千米/时,依题意,得: …………1分10020+x =6020-x, ………………4分 解得:x =5. ………………6分经检验:x =5是原方程的解. …………7分答:江水的流速为5千米/时. …………8分18.(10分)(1) 4 ……1分; (红2,黄1) ……2分; (黄2,红1) ……3分(2) 不放回 ………5分(3) 乙游戏规则摸到颜色相同的小球的可能性更大.理由:在甲游戏规则中,从树形图看出,所有可能出现的结果共有12种,这些结果出现的可能性相同,而颜色相同的两个小球共有4种. …………6分∴P(颜色相同)=412=13. …………7分 在乙游戏规则中,从列表看出,所有可能出现的结果共有16种,这些结果出现的可能性相同,而颜色相同的两个小球共有8种. ……………8分∴P(颜色相同) =816=12. ……………9分 ∵13<12, ∴乙游戏规则摸到颜色相同的小球的可能性更大. ……………10分19.(12分)(1) 12………3分 (2) 标出点D , ………5分连接CD . ………7分(3) 解:连接BD , ………8分∵∠BED =90°,BE =DE =1,∴∠EBD =∠EDB =45°,BD =BE 2+DE 2=12+12=2. ……9分由(1)可知BF =AF =2,且∠BFA =90°,∴∠ABF =∠BAF =45°,AB =BF 2+AF 2=22+22=22. ……10分 D A B CE F∴∠ABD =∠ABF +∠FBD =45°+45°=90°. ……11分∴tan ∠BAD =BD AB =222=12. ……12分20.(12分)解:(1) 过点E 作EG ⊥y 轴于点G ,∵点E 的坐标为(1,1),∴EG =1.在Rt △CEG 中,sin ∠ECG =EG CE =12, ∴∠ECG =30°. ………………1分∵∠OFC =30°,∠FOC =90°,∴∠OCF =180°-∠FOC -∠OFC =60°. ………………2分∴∠FCE =∠OCF +∠ECG =90°.即CF ⊥CE .∴直线CF 是⊙E 的切线. ………………3分(2) 过点E 作EH ⊥x 轴于点H ,∵点E 的坐标为(1,1),∴EG =EH =1. ………………4分在Rt △CEG 与Rt △BEH 中,∵⎩⎨⎧CE =BE EG =EH,∴Rt △CEG ≌Rt △BEH . ∴CG =BH . ………………6分∵EH ⊥AB ,EG ⊥CD ,∴AB =2BH ,CD =2CG .∴AB =CD . ………………7分(3) 连接OE ,在Rt △CEG 中,CG =CE 2-EG 2=3,∴OC =3+1. ………………8分同理:OB =3+1. ………………9分∵OG =EG ,∠OGE =90°,∴∠EOG =∠OEG =45°.又∵∠OCE =30°,∴∠OEC =180°-∠EOG -∠OCE =105°. A B C D E x yF OG H同理:∠OEB =105°. ………………10分∴∠OEB +∠OEC =210°.∴S 阴影=210×π×22360-12×(3+1)×1×2=7π3-3-1. ………………12分21.(12分)(1) 证明:∵MF ⊥AC ,∴∠MFC =90°. …………1分∵MN ∥AC ,∴∠MFC +∠FMN =180°.∴∠FMN =90°. …………2分∵∠C =90°,∴四边形MFCN 是矩形. …………3分(若先证明四边形MFCN 是平行四边形,得2分,再证明它是矩形,得3分)(2) 解:当运动时间为t 秒时,AD =t ,∵F 为DE 的中点,DE =2,∴DF =EF =12DE =1. ∴AF =t +1,FC =8-(t +1)=7-t .∵四边形MFCN 是矩形,∴MN =FC =7-t . …………4分又∵AC =BC ,∠C =90°,∴∠A =45°.∴在Rt △AMF 中,MF =AF =t +1, …………5分∴S =S △MDE + S △MNE =12DE ·MF +12MN ·MF =12×2(t +1)+ 12(7-t)(t +1)=-12t 2+4t +92…………6分 ∵S =-12t 2+4t +92=-12(t -4)2+252∴当t =4时,S 有最大值. …………7分(若面积S 用梯形面积公式求不扣分)(3) 解:∵MN ∥AC ,∴∠NME =∠DEM . …………8分① 当△NME ∽△DEM 时,∴NM DE =EM ME. …………9分 A B CD E M F N∴7-t 2=1,解得:t =5. …………10分 ② 当△EMN ∽△DEM 时,∴NM EM =EM DE. …………11分 ∴EM 2=NM ·DE .在Rt △MEF 中,ME 2=EF 2+MF 2=1+(t +1)2,∴1+(t +1)2=2(7-t).解得:t 1=2,t 2=-6(不合题意,舍去)综上所述,当t 为2秒或5秒时,以E 、M 、N 为顶点的三角形与△DEM 相似. ……12分22.(14分) 解:(1) 由题意,得:⎩⎪⎨⎪⎧a +b +c =116a +4b +c =0c =2 …………1分 解得:⎩⎪⎨⎪⎧a =12b =-52c =2. …………3分 ∴这个抛物线的解析式为y =12x 2-52x +2. …………4分 (2) 解法一:如图1,设BC 的垂直平分线DE 交BC 于M ,交x 轴于N ,连接CN ,过点M 作MF ⊥x 轴于F .∴△BMF ∽△BCO ,∴MF CO =BF BO =BM BC =12. ∵B(4,0),C(0,2), ∴CO =2,BO =4,∴MF =1,BF =2,∴M(2,1) ………………5分∵MN 是BC 的垂直平分线,∴CN =BN ,设ON =x ,则CN =BN =4-x ,在Rt △OCN 中,CN 2=OC 2+ON 2,∴(4-x)2=22+x 2,解得:x =32,∴N(32,0). ………………6分 设直线DE 的解析式为y =kx +b ,依题意,得:x O y A B C M N F 图1⎩⎪⎨⎪⎧2k +b =132k +b =0,解得:⎩⎨⎧k =2b =-3. ∴直线DE 的解析式为y =2x -3. ………………8分解法二:如图2,设BC 的垂直平分线DE 交BC 于M ,交x 轴于N ,连接CN ,过点C 作CF ∥x 轴交DE 于F . ∵MN 是BC 的垂直平分线,∴CN =BN ,CM =BM .设ON =x ,则CN =BN =4-x ,在Rt △OCN 中,CN 2=OC 2+ON 2, ∴(4-x)2=22+x 2,解得:x =32,∴N(32,0). ………………5分 ∴BN =4-32=52. ∵CF ∥x 轴,∴∠CFM =∠BNM .∵∠CMF =∠BMN ,∴△CMF ≌△BMN .∴CF =BN .∴F(52,2). …………………6分 设直线DE 的解析式为y =kx +b ,依题意,得: ⎩⎨⎧52k +b =232k +b =0,解得:⎩⎨⎧k =2b =-3. ∴直线DE 的解析式为y =2x -3. ………………8分(3) 由(1)得抛物线解析式为y =12x 2-52x +2,∴它的对称轴为直线x =52. ① 如图3,设直线DE 交抛物线对称轴于点G ,则点G(52,2), 以G 为圆心,GA 长为半径画圆交对称轴于点P 1,则∠CP 1B =∠CAB . …………9分GA =(52-1)2+22=52, ∴点P 1的坐标为(52,-12). …………10分 ② 如图4,由(2)得:BN =52,∴BN =BG , ∴G 、N 关于直线BC 对称. …………11分 ∴以N 为圆心,NB 长为半径的⊙N 与⊙G 关于直线BC 对称. …………12分⊙N 交抛物线对称轴于点P 2,则∠CP 2B =∠CAB . …………13分x O y A B C 图3 G 1P xO y A B C 图4G 2P N gH x O yA B CF N图2M设对称轴与x 轴交于点H ,则NH =52-32=1. ∴HP 2=(52)2-12=212, ∴点P 2的坐标为(52,212). 综上所述,当P 点的坐标为(52,-12)或(52,212)时,∠CPB =∠CAB . ………14分2011年福州市初中毕业班质量检查数 学 试 卷(完卷时间:120分钟 满分:150分)一、选择题(每小题4分,满分40分;请在答题卡的相应位置填涂)1、2的倒数是( )A 、12B 、-2C 、12-D 、212、如图所示的一个三角尺中,两个锐角度数的和是( )A 、45︒B 、60︒C 、75︒D 、90︒3、用科学记数法表示我国九百六十万平方公里国土面积,正确的结果是( )A 、49610⨯平方公里B 、59.610⨯平方公里C 、69.610⨯平方公里D 、79.610⨯平方公里4、如果10、10、20和m 的平均数为20,那么m 的值是( )A 、20B 、40C 、60D 、805、不等式组{2139x x -≥->的解集在数轴上可表示为( ) A 、 B 、C 、D 、6、下面四个几何体中,左视图是四边形的几何体共有( )A 、1个B 、2个C 、3个D 、4个7、如图,圆心角为60︒的扇形中,弦6AB =,则扇形面积为( )A 、πB 、3πC 、6πD 、12π 8、△ABC 中,a 、b 、c 分别是∠A ,∠B ,∠C 的对边,如果222a b c +=,那么下列结论正确的是( )A 、cos bB c = B 、sin c A a =C 、tan a A b =D 、tan b B c =9、已知函数2y x b =+,当b 取不同的数值时,可以得到许多不同的直线,这些直线必定( )A 、交于同一个交点B 、有无数个交点C 、互相平行D 、互相垂直10、人民币一元硬币如图所示,要在这枚硬币的周围摆放几枚与它完全相同的一元硬币,使得周围的硬币和这枚硬币外切,且相邻的硬币也外切,则这枚硬币周围最多可摆放( )A 、4枚硬币B 、5枚硬币C 、6枚硬币D 、8枚硬币0 1 2 3 4 0 1 2 3 40 1 2 3 4 0 1 2 3 4 第2题图 60︒ ABC第7题图 第10题图二、填空题(每小题4分,满分20分,请将答案填入答题卡的相应位置)11、请写出一个负数____________12、因式分解:222m m -=_____________。

福建省中考数学试题分类解析汇编 专题8:平面几何基础

福建省中考数学试题分类解析汇编 专题8:平面几何基础

专题8:平面几何基础一、选择题1.(福建福州4分)下列四个角中,最有可能与70°角互补的角是A、B、C、D、【答案】D。

【考点】补角。

【分析】根据互补的性质,与70°角互补的角等于180°﹣70°=110°,是个钝角,而选项D是钝角。

故选D。

2.(福建漳州3分)下列命题中,假命题是A.经过两点有且只有一条直线B.平行四边形的对角线相等C.两腰相等的梯形叫做等腰梯形D.圆的切线垂直于经过切点的半径【答案】B。

【考点】命题与定理,直线的性质:两点确定一条直线,平行四边形的性质,等腰梯形的定义,切线的性质。

【分析】解:A、经过两点有且只有一条直线,故本选项正确;B、平行四边形的对角线不一定相等,故本选项错误;C、两腰相等的梯形叫做等腰梯形,故本选项正确;D、圆的切线垂直于经过切点的半径,故本选项正确。

故选B。

3.(福建龙岩4分)如图.若乙、丙都在甲的北偏东70°方向上.乙在丁的正北方向上,且乙到丙、丁的距离相同.则α的度数是A.25°B.30° C.35° D.40°【答案】C。

【考点】平行线的判定和性质,三角形外角定理,等腰三角形的性质。

【分析】利用方位得到平行,再利用三角形外角定理及等腰三角形等边对等角的性质即可求解:如图,由方位和平行线同位角相等的性质,得∠2=∠1=70°。

由乙到丙、丁的距离相同,根据等腰三角形等边对等角的性质,得∠3=∠α。

由三角形外角定理,∠2=∠3+∠α,∴∠α=12∠2=35°。

故选C。

4.(福建莆田4分)等腰三角形的两条边长分别为3,6,那么它的周长为A.15 B.12 C.12或15 D.不能确定【答案】A。

【考点】等腰三角形的性质,三角形三边关系。

【分析】根据等腰三角形的性质和三角形的三边关系,可求出第三条边长,即可求得周长:∵当腰长为3时,3+3=6,显然不成立,∴腰长为6。

06年福州中考试题及答案

06年福州中考试题及答案

二00六年福州市初中毕业会考、高级中等学校招生考试数 学 试 卷(非课改)(全卷共4页,三大题.共23小题.满分150分.考试时间120分钟)友情提示:所有答案都必须写在答题卡上,答在本试卷上无效.毕业学校 姓名 考生号一、选择题(共10小题.每题3分.满分30分每小题只有一个正确的选项.请在答题卡的相应位置填涂)1.-2的相反效是A.2B.-2C.12D.-122.用科学记数法表示180 000的结果是A. 18×104B.1.8×105C.0.18×105D. 1.8×1063.如图1.射线BA 、CA 交于点A .连接BC ,己知AB=AC, ∠B=400 .那么x 的值是A.80B.60C.40D.1004.下列运算中,正确的是A.x 3+x 2=x 5B.x 3-x 2=xC.(x 3)3=x 6D.x 3·x 2=x 55.如图2是反比例函数k y x=图象的一支,则k 的取位范围是 A.k>1 B.k<1 C.k>0 D.k<06.方程组251x y x y -=⎧⎨+=⎩的解是A.31x y =⎧⎨=⎩ B.01x y =⎧⎨=⎩ C.21x y =⎧⎨=-⎩ D.21x y =-⎧⎨=⎩ 7.如图3,已知AB 为⊙O 的弦,OC ⊥AB,垂足为C,若OA= 10,AB=16,则弦心距OC 的长为A.12B.10C.6D.88.小红记录了连续5天最低气温,并整理如下表:由于不小心被墨迹污染了一个数据,请你算一算这个数据是A.21B.18.2C.19D.209.如图4,正方形ABCD边长为3,以直线AB为轴,将正方形旋转一周.所得圆柱的侧面积是A.36лB.18лC.12лD.9л10.如图5,在7×12的正方形网格中有一只可爱的小狐狸,算算看画面中由实线组成的相似三角形有A.4对B.3对C.2对D.1对二、填空题(共5小题,每题4分.满分20分;请将答案填入答题卡的相应位置)11.分解因式:a2+ab= .12.请在下面“、”中分别填入适当的代数式,使等式成立:+=1x13.顺次连接四边形各边中点所得的四边形是.14.如图6. ⊙O的两条弦AF、BE的廷长线交于C点,∠ACB的平分线CD过点O,请直接写出图中一对相等的线段: .15.如图7.点B 是线段AC 上一点,分别以AB 、BC 为边作等边△ABE 、△BCD ,连接DE ,已知△BDE 的面积是334, AC =4,如果AB <BC 那么AB 的值是 .三、解答题(满分l00分;请将答案填入答题卡的相应位置)16.(每小题8分,共16分)(1)计算:11||1222--+- (2)一串有趣的图案按一定规律排列.请仔细观察,按此规律画出的第10个图案是 ;在前16个图案中有_个.第2008个图案是 .17.(每小题8分.共16分)(1)解不等式:112x x -+≥,并将解集表示在数轴上. (2)先化简,后求值:22444x x x -+-,其中22x =- 18.(满分10分)关x 的一元二次方程(x-2)(x-3)=m 有两个不相等的实数根x 1、x 2,则m 的取值范围是 ;若x 1、x 2满足等式x 1x 2-x 1-x 2+1=0,求m 的值.19.(满分10分)定理证明:“等腰梯形的两条对角线相等”.2O.(满分10分)小明去文具店购买2B 铅笔,店主说:“如果多买一些,给你打8折“,小明测算了一下。

2006年福卅市初中毕业班质量检查数学试卷(课改区)

2006年福卅市初中毕业班质量检查数学试卷(课改区)

2006年福卅市初中毕业班质量检查(课改区) 数 学 试 卷 (考试时间:120分钟;试卷满分150分) 一、选择题(下列各题的备选答案中,只有一个答案是正确的。

将正确答案的序号填入题后的括号内.每小题3分,共30分)县(区 学校 班级 姓名 座号 …………………密……………封……………线………………内………………不……………准……………答……………题…………19.(8分)定理证明:一组对边平行且相等的四边形是平行四边形.20.(10分)某市九年级期末市质检数学总平均成绩是90.85分,数学成绩统计如图8,请认真阅读图表,解答下列问题:(1)全市共有名考生参加市质检数学考试;数学成绩的中位数落在分数段内.(2)如果不及格(90分以下)考生经过下阶段的努力,每人的成绩能增加10分,90~119分的学生每人能增加5分,其他学生的成绩保持不变,则数学总平均成绩可达到分(结果精确到0.01).那么在该市所有参加市质检考生中进行民意测验,认为数学试题太难的概率是 (结果保留四个有效数字).就此请你对命题老师或对你的同学说一句话:21.(10分)某中学新建了一栋7层的教学大楼,每层楼有8问教室,进出这栋大楼共有8道门,其中四道正门大小相同,四道侧门大小也相同。

安全检查中,对8道门进行了测试:当间时开启一道正门和两道侧门时,2分钟内可以通过560名学生;当同时开启一道正门和一道侧门时,4分钟内可以通过800名学生.(1)求平均每分钟一道正门和一道侧门各可以通过多少名学生?(2)检查中发现,紧急情况时因学生拥挤,出门的效率将降低30%。

安全检查规定:在紧急情况下全大楼的学生应在5分钟内通过这8道门安全撤离。

假设这栋教学大楼每问教室最多有45名学生,问:建造的这8道门是否符合安全规定?请说明理由。

附加题(共10分) 。

友情提示:请同学们做完上面考题后,再认真检查一遍,估计一下你的得分情况,如果你全卷得分低于90分(及格线),则本题的得分将计入全卷总分,但计入后全卷总分最多不超过90分;如果你全卷得分已经达到或超过90分,则本题的得分不计人全卷总分.1.(5分)写出一个答案是100的计算题.2.(5分)画出一个你熟悉的轴对称图形,并写出它的名称.。

2006年福建省厦门市初中毕业和高中各类学校招生统一考试数学考试及答案(新课标B卷)

2006年福建省厦门市初中毕业和高中各类学校招生统一考试数学考试及答案(新课标B卷)

厦门市2006年初中毕业和高中各类学校招生统一考试数学考试(新课标B 卷)(满分150分,考试时间120分钟)考生须知:1.答案一律填在答题卡上,否则以0分计算,交卷只交答题卡,本卷由考场统一处理,考生不得擅自带走;2.作图或画辅助线要用0.5毫米的黑色签字笔画好。

3.沉着冷静,不怕困难,展现自我,努力展示你的成果!第Ⅰ卷(共76分)一、选择题(本大题共12小题,每小题5分,共60分。

注:在每道题所给的四个选项中,只有一个选项符合题意)1.现定义某种运算()a b a a b ⊗=>,若2(2)2x x x +⊗=+,那么x 的取值范围是 (A )12x -<< (B )2x >或1x <- (C )2x > (D )1x <- 2.如图2(甲)为某物体的三视图:友情提醒:在三视图中,AB=BC=CD=DA=EI=IG=NZ=MZ=KY=YL ,60θ=,EF=GH=KN=LM=YZ现搬运工人小明要搬运此物块边长为a cm 物块ABCD 在地面上由起始位置沿直线l 不滑行地翻滚,翻滚一周后,原来与地面接触的面ABCD 又落回到地面,则此时点B 起始(A )13a π (B )3a (C )3a π (D )a π数学试题 第1页(共7页)D 正视图 左视图 F H I俯视图L M图2(甲) 图2(乙) l3.在平面直角坐标系内存在A ,(,0)A b ,A 交x 轴于(0,0)O 、(20B b ,),在y 轴上存在一动点C (C 不与原点O 重合),直线l 始终过A 、C ,直线l 交A 于E 、F ,在半圆EF 上存在一点动点D 且D 不与E 、F 重合,则DEA S ∆的最大值为(A )22b (B )24b (C )2b (D )无法判断4.据悉,北京奥运会吉祥物已确定,为象征“文化味浓、吉祥如意”的五福娃(如下图):当“五福娃”在距离北京2008奥运会整整1000天的时刻訇然问世后,不仅售出的奥运会吉祥物的数目的纪录被改写,初步推算出的超过3亿美元的效益也宣告:2008北京奥运会,已经提前打赢了第一仗!奥运爱好者小明十分喜爱福娃,于是他各买了一只福娃,已知福娃的出售价为平均每只56元,福娃的进价y 与进货个数x之间的函数关系为y =(一般店家每次的进货个数最多为1399只),北京初步获得了3亿美元的效益,那么至少卖出了多少只福娃? 友情提醒:1美元相当于8元人民币(A )大于12万只小于13万只 (B )大于10万只小于12万只 (C )大于13万只小于14万只 (D )大于9万只小于10万只 5.天气台预报明天下雨的概率为70%,则下列理解正确的是(A )明天30%的地区会下雨 (B )明天30%的时间会下雨(C )明天出行不带雨伞一定会被淋湿 (D )明天出行不带雨伞被淋湿的可能性很大 6. 如图3,在水平面上放置一圆锥,在圆锥顶端斜靠着一根木棒(木棒的厚度可忽略不计)数学试题 第2页(共7页)图3小明为了探究这个问题,将此情景画在了草稿纸上(如图4): 友情提醒:小明所绘制的草图均为正视图运动过程:木棒顶端重A 点开始严圆锥的法线下滑(木棒下滑为匀速)已知木棒与水平地面的夹角为θ的下滑而不断减小.θ的最大值为30°,若木棒长为问:当木棒顶端重A 滑到B 这个过程中,木棒末端 的速度'v 为(A)v (B (C (D 7.甲、乙两班举行电脑汉字输入速度比赛,各选10名学生参加,各班参赛学生每分钟输入汉字个数统计如下表:请你填写上表中乙同学的相关数据: (A )(C ) 8.下图形是轴对称图形的是(A ) (B ) (C ) (D ) 9.Rt △ABC 中,∠C=90°,a 、b 、c 分别是∠A 、∠B 、∠C 的对边.那么c 等于 (A )cos sin a A b B + (B )sin sin a A b B + (C )sin sin a b A B + (D )cos sin a bA B+ 10.我们知道沿直线前进的自行车车轮上的点既随着自行车作向前的直线运动,又以车轴为圆心作圆周运动,如果我们仔细观察这个点的运动轨迹,会发现这个点在我们眼前划出了一道道优美的弧线。

2006年福建省南平市初中毕业、升学考试(新课程)数学试卷

2006年福建省南平市初中毕业、升学考试(新课程)数学试卷

甲说:“七年级的体育达标率最高。”乙说:“八年级共有学生 264 人。”丙说:“九年级的体
育达标率最高。”甲、乙、丙三个同学中,说法正确的是…………………………………………
()
A.甲和乙 B.乙和丙
C.甲和丙
三、解答题(本大题共 10 小题,共 96 分)
17.(7 分)化简: 2a(a − b) − 2a 2 + 3ab
23.(10 分)李明、王鹏、齐轩三位同学对本校八年级 500 名学生进行一次每周课余的“上
网”时间抽样调查,结果如下图( t 为上网时间)。根据图中提供的信息,解答下列问题:
(1)本次抽样调查的学生人数是


(2)每周上网时间在 2 ≤ t p 3 小时
这组的频率是

(3)每周上网时间的中位数落在哪
1. 2
2. ≠ −1
3. a(a + 1)(a − 1)
4.三棱柱
5. 30π
6. 对角线互相平分的四边形是平行四边形
7. 1 或 0.002 500
9.△ABF≌△CDE,或△ADF≌△CBE 或△ABD≌△CBD
10. 2
二、选择题(本大题共 6 小题,每小题 4 分,共 24 分)
11. D 12.C 13.D 14.C 15.B 16.B
每天销量(千克)
50
52
54
56

86
设当单价从 38 元/千克下调了 x 元时,销售量为 y 千克;
(1)写出 y 与 x 间的函数关系式;
(2)如果凤梨的进价是 20 元/千克,某天的销售价定为 30 元/千克,问这天的销售利润是
多少?
(3)目前两岸还未直接通航,运输要绕行,需耗时一周(七天),凤梨最长的保存期为一个

2006年福建省宁德市中考数学试题(课改)

2006年福建省宁德市中考数学试题(课改)

2006年福建省宁德市初中毕业、升学考试数学试题(考试时间:120分钟; 满分:150分)一.填空题:(本大题共有10小题每小题3分,共30分)1.(06课改)-2的相反数是_____。

2.(06课改)分解因式:x 2-9=_____。

3.(06课改)第五次人口普查结果显示,我国接受大学教育的人口数约为人,用科学记数法表示约为_____人。

4.(06课改)如图,点P 是⊙O 外一点,PA 切⊙O 于点A ,若∠P =40º,则∠AOP =___度。

5.(06课改)一个学习小组五位同学某次数学考试的成绩(单位:分)分别是:148、142、127、107、138。

这组数据的极差是____分。

6.(06课改)某闭合电路中,电源的电压为定值,电流I (A )与电阻R (Ω)成反比例,其图像如右图所示,电流I 与电阻R 的函数关系式_____。

7.(06课改)如图,在“扫雷”游戏中,“3”相邻的8个空格中隐含有3个“雷”,那么随机点击其中一个空格,恰好点击到“雷”的概率为_____。

8.(06课改)如图,在太阳光下,身高1.5m 的小颖同学影子的顶端正好与大树影子的顶端重合,此时测得AC =2m ,CE =18m ,则树高DE =____m 。

9.(06课改)下图是用大小相等的小正方形拼成的一组图案,观察并探索:第10个图案中共有____个小正方形。

10.(06课改)请你将右图坐标系中的图形进行平移,使A点移到点(-6,4)处,在坐标系中画出平移后的图形。

二.选择题:(本大题共有6小题,每小题4分,共24分。

在每小题给出的四个选项中,只有一个选项是正确的,请把你认为正确选项的代号填写在题中的号内)11.(06课改)下列计算正确的是( )A .a 2+a 2=a 4 B.a 6÷a 3=a 2C.a 2·a 3=a 5D.3a +2b =5ab12.(06课改)初三(1)班进行一次“你心目中最喜欢的一个体育明星”问卷调查,将数据整理后绘制成统计图,如右图。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数 学 试 卷
毕业学校 姓名 考生号
一、选择题(共8小题.每题3分.满分24分每小题只有一个正确的选项.) 1.-(-2)的相反数是( ) A.2 B.-2 C.
12 D.-1
2
2.用科学记数法表示180 亿的结果是( )
A. 1.8×1011
B.1.8×1010
C.0.18×1010
D. 18×1010 3.如图,已知AB ∥CD ,点E 在CD 上,BC 平分∠ABE , 若∠C =25°,则∠BED 的度数是 ( ) A .12.5° B .25°
C .50°
D .60° 4.下列运算中,正确的是( )
A .642a a a =+
B .246
a a a ⋅=
C .426
()a a = D .6
2
3
a a a ÷=
5. .函数1
1
y x =
-的自变量x 的取值范围是( ) A .x ≠0 B .x ≠1 C .x ≥1 D .x ≤1 6. 如图3,已知EF 是O 的直径,把A ∠为60
的直角三 角板ABC 的一条直角边BC 放在直线EF 上,斜边AB 与 O 交于点P ,点B 与点O 重合.将三角板ABC 沿OE 方 向平移,使得点B 与点E 重合为止.设POF x ∠=
,则x
的取值范围是( ) A .3060x ≤≤ B .3090x ≤≤ C .30120x ≤≤ D .60120x ≤≤
7. 方程组25
1
x y x y -=⎧⎨
+=⎩的解是( )
A
B
C D
A
图3
A.31x y =⎧⎨
=⎩ B.01x y =⎧⎨=⎩ C.21x y =⎧⎨=-⎩ D.2
1
x y =-⎧⎨=⎩ 8.如图,已知A 、B 两点的坐标分别为(2,0)、(0,2),⊙C 的圆心坐标为(-1,0),若D 是⊙C 上的一个动点,线段DA 与y 轴交于点E ,则△ABE 面积的最小值是( )
A .2
B .1
C .22
- D .2
.
二、填空题(共5小题,每题4分.满分20分) 9.分解因式:32
a a
b -=
10..若关于x 的一元二次方程2
20x x k +-=没有实数根,则k 的取值范围是 .
11.已知实数a ,b 同时满足a 2
+b 2
-11=0,a 2
-5b -5=0,则b = .12.如图,四边形ABCD 是正方形,延长AB 到E ,使AE=AC ,则∠BCE 的度
数是
13. 17.如图,将矩形纸片ABCD 沿AE 折叠,使点B 落在直角梯形AECD 的
中位线FG 上,若AB=3cm ,则AE 的长为 cm .
三、解答题
14.(每小题8分,共16分)
(1)
计算:1
0120096-⎛⎫
-+- ⎪⎝⎭
(2) 解不等式组:()20213 1.x x x ->⎧⎪⎨+≥-⎪⎩

并把解集在数轴上表示出来.
15.(本小题满分12分)如图,方格纸上的每个小方格都是边长为1的正方形,我们把格点间连线为边的三角形称为“格点三角形”,图中的△ABC 就是一个格点三角形.
(1)在△ABC中,BC= ,tanB= ;
(2)请在方格中画出一个格点三角形DEF,使
△DEF∽△ABC,并且△DEF与△ABC的相似比为2.
.
16. (本小题满分12分)
“农民也能报销医疗费了!”这是国家推行新型农村医疗合作的成果.村民只要每人每年交10元钱,就可以加入合作医疗,每年先由自己支付医疗费,年终时可得到按一定比例返回的返回款,这一举措极大地增强了农民抵御大病风险的能力.小华与同学随机调查了他们乡的一些农民,根据收集到的数据绘制了以下的统计图.
第23题图
根据以上信息,解答以下问题:
(1)本次调查了名村民,被调查的村民中,有人参加合作医疗得到了返回款?
(2)若该乡有10000名村民,请你估计有多少人参加了合作医疗?要使两年后参加合作医疗的人数增加到9680人,假设这两年的年平均增长率相
同,求年平均增长率.
17(满分16分)正方形OCED与扇形OAB有公共顶点0,分别以OA,0B 所在直线为x轴,y轴建立平面直角坐标系.如图9所示.正方形两个顶点C、D分别在x轴、y轴正半轴上
移动.设OC=x,OA=3
(1)当x=1时,正方形与扇形不重合
...的面积是;
此时直线CD对应的函数关系式是;
(2)当直线CD与扇形OAB相切时.求直线CD对应的
函数关系式;
(3)当正方形有顶点恰好落在 AB
上时.求正方形与扇形
不重合...的面积.。

相关文档
最新文档