《材料科学基础》名词解释

合集下载

材料科学基础名词解释

材料科学基础名词解释

1、晶体:本子按一定办法正在三维空间内周期性天准则沉复排列,有牢固熔面,各背同性.之阳早格格创

2、中间相:二组元A战B组成合金时,除了产死以A为基大概以B为基的固溶体中,还大概产死晶体结构与A、B 二组员均不相共的新相.由于它们正在二元相图上的位子经常位于中间,故常常把那些相称为中间相.

3、亚稳相:亚稳相指的是热力教上不克不迭宁静存留,但是正在赶快热却大概加热历程中,由于热力教能垒大概能源教的果素制成其已能转化成宁静相而姑且宁静存留的一种相.

4、配位数:晶体结构中任一本子周围迩去邻且等距离的本子数.

5、再结晶:热变形后的金属加热到一定温度之后,正在本变形构制中沉新爆收了无畸变的新晶粒,而本能也爆收了明隐的变更并回复到变形前的状态,那个历程称为再结晶(指出现无畸变的等轴新晶粒逐步与代变形晶粒的历程).

6、真共晶:正在非仄稳凝固条件下,某些亚共晶大概过共晶身分的合金也能得到局部的共晶构制,那种由非共晶身分的合金得到的共晶构制称为共晶构制.

7、接滑移:当某一螺型位错正在本滑移里上滑移受阻时,有大概从本滑移里变化到与之相接的另一滑移里上去继承

滑移,那一历程称为接滑移.

8、过真效:铝合金经固溶处理后,正在加热保温历程中将先后析出GP

时资料的硬度强度将下落,那种局里称为过真效.

9、形变加强:金属经热塑性变形后,其强度硬度降下,塑性战韧性下落,那种局里称为形变加强.

10、固溶加强:由于合金元素(杂量)的加进,引导的以金属为基体的强度得到加强的局里.

11、弥集加强:许多资料由二相大概多相形成,如果其中一相为细小的颗粒并弥集分集正在资料内,那种资料的强度往往会减少,称为弥集加强.

材料科学基础名词解释

材料科学基础名词解释

1、晶体:原子按一定方式在三维空间内周期性地规则重复排列,有固定熔点,各向异性.之迟辟智美创作

2、中间相:两组元A和B组成合金时,除形成以A为基或以B为基的固溶体外,还可能形成晶体结构与A、B两组员均不相同的新相.由于它们在二元相图上的位置总是位于中间,故通常把这些相称为中间相.

3、亚稳相:亚稳相指的是热力学上不能稳定存在,但在快速冷却或加热过程中,由于热力学能垒或动力学的因素造成其未能转酿成稳定相而暂时稳定存在的一种相.

4、配位数:晶体结构中任一原子周围最近邻且等距离的原子数.

5、再结晶:冷变形后的金属加热到一定温度之后,在原变形组织中重新发生了无畸变的新晶粒,而性能也发生了明显的变动并恢复到变形前的状态,这个过程称为再结晶(指呈现无畸变的等轴新晶粒逐步取代变形晶粒的过程).

6、伪共晶:在非平衡凝固条件下,某些亚共晶或过共晶成份的合金也能获得全部的共晶组织,这种由非共晶成份的合金获得的共晶组织称为共晶组织.

7、交滑移:当某一螺型位错在原滑移面上滑移受阻时,有可能从原滑移面转移到与之相交的另一滑移面上去继续滑移,这一过程称为交滑移.

8、过时效:铝合金经固溶处置后,在加热保温过程中将先

后析出GP

料的硬度强度将下降,这种现象称为过时效.

9、形变强化:金属经冷塑性变形后,其强度硬度上升,塑性和韧性下降,这种现象称为形变强化.

10、固溶强化:由于合金元素(杂质)的加入,招致的以金属为基体的强度获得加强的现象.

11、弥散强化:许多资料由两相或多相构成,如果其中一相为细小的颗粒并弥散分布在资料内,这种资料的强度往往会增加,称为弥散强化.

材料科学基础名词解释

材料科学基础名词解释

名词解释

1.单晶体:是指样品中所含分子(原子和离子)在三维空间中呈规则、周期排列的一种固体状态。

2.退火孪晶:退火后形成的孪晶就是退火孪晶或由于相变过程中原子重新排列时发生错排而产生的;孪晶是两个晶体(或一个晶体的两个部分)沿一个公共晶面(即特定取向关系)构成镜面对称的位向关系,这就叫孪晶。

3.肖特基空位:离开平衡位置的原子迁移到晶体表面或内表面的正常结点位置上,而使晶体内部留下的空位。

4.弗仑克尔缺陷:离开平衡位置的原子挤入点阵的间隙位置,而在晶体中同时形成数目相等的空位和间隙原子。

5.单位位错:通常把伯氏矢量等于单位点阵矢量的位错称为单位位错。

6.刃型位错:在金属晶体中,由于某种原因,晶体的一部分相对另一部分出现一个多余的半原子面。这个多余的半原子面有如切入晶体的刀片,刀片的刃口线即为位错线。这种线缺陷称为刃型位错。

7.滑移:晶体中相邻两部分在切应力作用下沿着一定的晶面和晶向相对滑动。

8.孪生:是塑性变形的另一种重要形式,它常作为滑移不易进行时的补充。

9.滑移系:一个滑移面和此面上的一个滑移方向合起来叫作一个滑移系。

10.晶格畸变:点缺陷出来破坏了原子间的平衡状态,使晶格发生扭曲,称为晶格畸变。

11.固溶强化:溶质原子与位错的弹性交互作用。

12.弥散强化:指一种通过在均匀材料中加入硬质颗粒的一种材料的强化手段。第二相强化,亚组织强化。

13.回复:是指新的无畸变晶粒出现之前所产生的亚结构和性能变化的阶段。

14.熔晶转变:是一个固相转变为另一个固相和一个液相的恒温转变。之所以熔晶转变,是因为固相在温度下降时可以部分熔化。

材料科学基础名词解释

材料科学基础名词解释

金属材料:以金属键结合为主的材料,如钢铁材料。

无机非金属材料:以离子键和共价键结合为主的材料,如陶瓷材料。

高分子材料:以共价键结合为主的材料,如塑料、橡胶。

复合材料:以界面特征结合为主的材料,如玻璃钢。

结构材料:利用它的力学性能,用于制造需承受一定载荷的设备、零部件、建筑结构等。功能材料:利用它的特殊物理性能(电、热、光、磁等),用于制造各种电子器件、光敏元件、绝缘材料等。

高聚物:是由一种或几种简单低分子化合物经聚合而组成的分子量很大的化合物。

复合材料:是由两种或两种以上化学性质或组织结构不同的材料组合而成。

晶体:物质的质点(分子、原子或离子)在三维空间呈规则的周期性重复排列的物质。

空间点阵:把质点看成空间的几何点,点所形成的空间阵列。

晶格:用假想的空间直线,把这些点连接起来,所构成的三维空间格架。

晶胞:从晶格中取出具有代表性的最小几何单元。

晶格参数:描述晶胞的六个参数a、b、c、

晶体中各种方位上的原子面叫晶面,表示晶面的符号叫晶面指数。

{hkl}代表原子排列完全相同,只是空间位向不同的各组晶面,称为晶面族。

晶体中各个方向上的原子列叫晶向,表示晶向的符号叫晶向指数。

代表原子排列完全相同,只是空间位向不同的各组晶向,称为晶向族

所有平行或相交于某一直线的这些晶面构成一个晶带,此直线称为晶带轴。属此晶带的晶面称为共带面。

晶胞原子数:指一个晶胞内所含的原子个数。

原子半径:指晶胞中原子密度最大方向上相邻两个原子之间距离的一半,与晶格常数有关。配位数:指晶格中任一原子周围所具有的最近且等距的原子数。

材料科学基础最全名词解释

材料科学基础最全名词解释

固相烧结:固态粉末在适当的温度,压力,气氛和时间条件下,通过物质与气孔之间的传质,变为坚硬、致密烧结体的过程。

液相烧结:有液相参加的烧结过程。

金属键:自由电子与原子核之间静电作用产生的键合力。

离子键:金属原子自己最外层的价电子给予非金属原子,使自己成为带正电的正离子,而非金属得到价电子后使自己成为带负电的负离子,这样正负离子靠它们之间的静电引力结合在一起。

共价键:由两个或多个电负性相差不大的原子间通过共用电子对而形成的化学键。

氢键:由氢原子同时与两个电负性相差很大而原子半径较小的原子(O,F,N等)相结合而产生的具有比一般次价键大的键力。

弗兰克缺陷:间隙空位对缺陷

肖脱基缺陷:正负离子空位对的

奥氏体:γ铁内固溶有碳和(或)其他元素的、晶体结构为面心立方的固溶体。

布拉菲点阵:除考虑晶胞外形外,还考虑阵点位置所构成的点阵。

不全位错:柏氏矢量不等于点阵矢量整数倍的位错称为不全位错。

玻璃化转变温度:过冷液体随着温度的继续下降,过冷液体的黏度迅速增大,原子间的相互运动变得更加困难,所以当温度降至某一临界温度以下时,即固化成玻璃。这个临界温度称为玻璃化温度Tg。

表面能:表面原子处于不均匀的力场之中,所以其能量大大升高,高出的能量称为表面自由能(或表面能)。

半共格相界:若两相邻晶体在相界面处的晶面间距相差较大,则在相界面上不可能做到完全的一一对应,于是在界面上将产生一些位错,以降低界面的弹性应变能,这时界面上两相原子部分地保持匹配,这样的界面称为半共格界面或部分共格界面。

柏氏矢量:描述位错特征的一个重要矢量,它集中反映了位错区域内畸变总量的大小和方向,也使位错扫过后晶体相对滑动的量。

材料科学基础名词解释大全

材料科学基础名词解释大全

名词解释一百单八将

1、晶体

2、原子按一定方式在三维空间内周期性地规则重复排列,有固定

熔点、各向异性。

3、2、中间相

4、两组元A 和B 组成合金时,除了形成以A 为基或以B 为基的

固溶体外,还可能形成晶体结构与A,B 两组元均不相同的新相。由于它们在二元相图上的位置总是位于中间,故通常把这些相称为中间相。

5、3、亚稳相

6、亚稳相指的是热力学上不能稳定存在,但在快速冷却成加热过

程中,由于热力学能垒或动力学的因素造成其未能转变为稳定相而暂时稳定存在的一种相。

7、4、配位数

8、晶体结构中任一原子周围最近邻且等距离的原子数。

9、5、再结晶

10、冷变形后的金属加热到一定温度之后,在原变形组织中重新产

生了无畸变的新晶粒,而性能也发生了明显的变化并恢复到变形前的状态,这个过程称为再结晶(指出现无畸变的等轴新晶粒逐步取代变形晶粒的过程)

11、6、伪共晶

12、非平衡凝固条件下,某些亚共晶或过共晶成分的合金也能得到

全部的共晶组织,这种由非共晶成分的合金得到的共晶组织称为伪共晶。

13、7、交滑移

14、当某一螺型位错在原滑移面上运动受阻时,有可能从原滑移面

转移到与之相交的另一滑移面上去继续滑移,这一过程称为交滑移。

15、8、过时效

16、铝合金经固溶处理后,在加热保温过程中将先后析出GP 区,

θ ”,θ ’,和θ。在开始保温阶段,随保温时间延长,硬度强度上升,当保温时间过长,将析出θ ’,这时材料的硬度强度将下降,这种现象称为过时效。

17、9、形变强化

18、金属经冷塑性变形后,其强度和硬度上升,塑性和韧性下降,

《材料科学基础》名词解释

《材料科学基础》名词解释

材料科学基础名词解释

1、晶体

原子按一定方式在三维空间内周期性地规则重复排列,有固定熔点、各向异性。

2、中间相

两组元A 和B 组成合金时,除了形成以A 为基或以B 为基的固溶体外,还可能形成晶体

结构与A,B 两组元均不相同的新相。由于它们在二元相图上的位置总是位于中间,故通常

把这些相称为中间相。

3、亚稳相

亚稳相指的是热力学上不能稳定存在,但在快速冷却成加热过程中,由于热力学能垒或

动力学的因素造成其未能转变为稳定相而暂时稳定存在的一种相。

4、配位数

晶体结构中任一原子周围最近邻且等距离的原子数。

5、再结晶

冷变形后的金属加热到一定温度之后,在原变形组织中重新产生了无畸变的新晶粒,而

性能也发生了明显的变化并恢复到变形前的状态,这个过程称为再结晶。(指出现无畸变的

等轴新晶粒逐步取代变形晶粒的过程)

6、伪共晶

非平衡凝固条件下,某些亚共晶或过共晶成分的合金也能得到全部的共晶组织,这种由

非共晶成分的合金得到的共晶组织称为伪共晶。

7、交滑移

当某一螺型位错在原滑移面上运动受阻时,有可能从原滑移面转移到与之相交的另一滑

移面上去继续滑移,这一过程称为交滑移。

8、过时效

铝合金经固溶处理后,在加热保温过程中将先后析出GP 区,θ”,θ’,和θ。在开始

保温阶段,随保温时间延长,硬度强度上升,当保温时间过长,将析出θ’,这时材料的硬

度强度将下降,这种现象称为过时效。

9、形变强化

金属经冷塑性变形后,其强度和硬度上升,塑性和韧性下降,这种现象称为形变

强化。

10、固溶强化

由于合金元素(杂质)的加入,导致的以金属为基体的合金的强度得到加强的现象。

材料科学基础-名词解释

材料科学基础-名词解释

资料科学基本名词说明(上海交大第二版)之羊若含玉创作

第一章原子构造

联合键联合键分为化学键和物理键两大类,化学键包含金属键、离子键和共价键;物理键即范德华力.

化学键是指晶体内相邻原子(或离子)间强烈的相互作用.

金属键金属中的自由电子与金属正离子相互作用所组成的键合称为金属键.

离子键阴阳离子之间通过静电作用形成的化学键叫作离子键共价键由两个或多个电负性相差不大的原子间通过共用电子对而形成的化学键.

范德华力是借助邻近原子的相互作用而形成的稳定的原子构造的原子或分子联合为一体的键合.

氢键氢与电负性大的原子(氟、氧、氮等)共价联合形成的键叫氢键.

近程构造高分子重复单元的化学构造和立体构造合称为高分子的近程构造.它是组成高分子聚合物最底层、最根本的构造.又称为高分子的一级构造

远程构造由若干个重复单元组成的大分子的长度和形状称为高分子的远程构造

第二章固体构造

1、晶体:原子在空间中呈有规矩的周期性重复分列的固体物质.晶体熔化时具固定的熔点,具有各向异性.

2、非晶体:原子是无规矩分列的固体物质.熔化时没有固定熔点,存在一个软化温度规模,为各向同性.

3、晶体构造:原子(或分子、离子)在三维空间呈周期性重复分列,即存在长程有序.

4、空间点阵:阵点在空间呈周期性规矩分列,并具有完全相同的周围情况,这种由它们在三维空间规矩分列的阵列称为空间点阵,简称点阵.

5、阵点:把实际晶体构造算作完整无缺的幻想晶体,并将其中的每个质点抽象为规矩分列于空间的几何点,称之为阵点.

6、晶胞:为了说明点阵分列的纪律和特点,在点阵中取出一个具有代表性的单根本元(最小平行六面体)作为点阵的组成单元,称为晶胞.

材料科学基础名词解释

材料科学基础名词解释

一名词解释

正反尖晶石、正尖晶石;在AB2O4尖晶石结构中,二价阳离子A占据四面体空隙,三价阳离子B占据八面体空隙的。

反尖晶石:如果二价阳离子A分布在八面体空隙中,而三价阳离子B一半填充于四面体空隙,;另一半在八面体空隙中称反尖晶石型。

正反萤石型结构、萤石型:CaF2型结构中,Ca2+按面心立方紧密排列,F-占据晶胞中全部四面体空隙。

反萤石型:阳离子和阴离子的位置与CaF2型结构完全相反,即碱金属离子占据F-的位置,O2-占据Ca2+的位置。

配位数、晶体结构中,一个原子或离子周围与其直接相邻的原子或异号离子的个数。

弗仑克尔缺陷、在晶格内原子热振动时,一些能量足够大的原子离开平衡位置后,进入晶格点的间隙中,形成间隙原子,而在原来位置上形成空位。

肖特基缺陷、如果正常格点上的原子,热起伏过程中获得能量离开平衡位置,跃迁到晶体的表面,在原正常格点上留下空位。

本征扩散:不含有任何杂质的物质中由于热起伏引起的扩散

非本征扩散、由于杂质引入引起的扩散

热缺陷、在没有外来原子时,当晶体热力学温度高于oK时,由于晶格内原子热振动,使一部分能量较大的原子离开正常的平衡位置,造成缺陷。

非化学计量结构缺陷、由于化学组成明显地随着周围气氛的性质和压力的大小的变化而变化,使组成偏离化学计量而产生的缺陷

固溶体、杂质进入晶体可以看做是一个溶解的过程,原晶体看做溶剂,杂质看做溶质,把这种溶解了杂质原子的晶体称为固溶体。

置换型固溶体;杂质原子进入晶体中正常格点位置所生成的固溶体

间隙型固溶体;杂质原子进入溶剂晶格中的间隙位置所生成的固溶体

材科基名词解释

材科基名词解释

《材料科学基础》名词解释

晶体原子、分子或离子按照一定的规律周期性排列组成的固体。非晶体原子没有长程的周期排列,无固定的熔点,各向同性等。

空间点阵指几何点在三维空间作周期性的规则排列所形成的三维阵列,是人为的对晶体结构的抽象。

晶族依据晶体结构中高次轴(n >2)的数目,将晶体划分为低级(无高次轴)、中级(一

个高次轴)和高

级(多于一个高次轴)晶族。

晶带轴定律所有平行于同一方向的晶面(hkl )构成的一个晶带,该方向[uvw] 就称为晶带

轴,则有hu+kv+lw=0 ,这就是晶带轴定律。

空间群晶体结构中所有对称要素(含微观对称要素)的组合所构成的对称群。布拉菲点阵除考虑晶胞外形外,还考虑阵点位置所构成的点阵。

晶胞在点阵中取出一个具有代表性的基本单元(最小平行六面体)作为点阵的组成单元,称为晶胞。

中间相两组元A和B组成合金时,除了形成以A为基或以B为基的固溶体外,还可能形成晶体结构与A,B两组元均不相同的新相。由于它们在二元相图上的位置总是位于中间,故通常把

这些相称为中间相。

配位数晶体结构中任一原子周围最近邻且等距离的原子数。

致密度晶体结构中原子体积占总体积的百分数。

金属键自由电子与原子核之间静电作用产生的键合力。

共价键相邻原子由于共享电子对所形成的价键,具有饱和性和方向性。

固溶体是以某一组元为溶剂,在其晶体点阵中溶入其他组元原子(溶剂原子)所形成的均匀混合的固态溶体,它保持溶剂的晶体结构类型。

间隙相当非金属(X)和金属(M)原子半径的比值rX/rM<0.59 时,形成的具有简单晶体结构的相,称为间隙相。

材料科学基础 名词解释

材料科学基础 名词解释

1、化学键:组成物质整体的质点(原子、分子或离子)间的相互作用力叫做化学键。

共价键:有些同类原子,例如周期表IV A、V A、VIA族中大多数元素或电负性相差不大的原子相互接近时,原子之间不产生电子的转移,此时借共用电子对所产生的

力结合,形成共价键。

离子键:当两种电负性相差大的原子相互靠近时,其中电负性小的原子失去电子,成为正离子,电负性大的原子获得电子成为负离子,两种离子靠静电引力结合在一

起形成离子键。

范德瓦尔键(分子键):分子的一部分往往带正电荷,而另一部分往往带负电荷,一个分

子的正电荷部位和另一分子的负电荷部位间,以微弱静电力相吸

引,使之结合在一起,称为范德瓦尔键,也叫分子键。

金属键:由金属正离子和自由电子之间互相作用而结合称为金属键。

2、晶体:物质的质点(分子、原子或离子)在三维空间作有规律的周期性重复排列所形

成的物质叫晶体。

单晶体:由一个晶粒组成的晶体。

准晶:原子在晶体内部是长程有序的具有准周期性的具有五次对称轴的介于晶体与非晶体之间的一类晶体,叫做准晶。

玻璃体:液体冷却时,尚未转变为晶体就凝固了,它实质是一种过冷的液体结构,称为玻璃体。

非晶态金属(金属玻璃):在特殊的冷却条件下金属可能不经过结晶过程而凝固成保留液

体短程有序结构的非晶态金属。非晶态金属又称作金属玻璃。

微晶合金:晶粒尺寸达微米(μm)的超细晶粒合金材料,称为微晶合金。

纳晶合金:晶粒尺寸达纳米(nm)的超细晶粒合金材料,称为纳晶合金。

3、空间点阵(点阵):代表原子(分子或离子)中心的点的空间排列,称为空间点阵,简称

材料科学基础名词解释(全)

材料科学基础名词解释(全)

材料科学基础名词解释(全)

晶体:即内部质点在三维空间呈周期性重复排列的固体。

非晶体:原子没有长程的排列,无固定熔点、各向同性等。

晶体结构:指晶体中原子或分子的排列情况,由空间点阵和结构基元构成。

空间点整:指几何点在三维空间作周期性的规则排列所形成的三维阵列,是人为的对晶体结

构的抽象。

晶面指数:结晶学中用来表示一组平行晶面的指数。

晶胞:从晶体结构中取出来的反映晶体周期性和对称性的重复单元。

晶胞参数:晶胞的形状和大小可用六个参数来表示,即晶胞参数。

离子晶体晶格能:1mol离子晶体中的正负离子,由相互远离的气态结合成离子晶体时所释

放的能量。

原子半径:从原子核中心到核外电子的几率分布趋向于零的位置间的距离。

配位数:一个原子或离子周围同种原子或异号离子的数目。

极化:离子紧密堆积时,带电荷的离子所产生的电厂必然要对另一个离子的电子云产生吸引

或排斥作用,使之发生变形,这种征象称为极化。

同质多晶:化学组成相同的物质在不同的热力学条件下形成结构不同的晶体的现象。类质同晶:化学组成相似或相近的物质在相同的热力学条件下形成具有相同结构晶体的现象。铁电体:指具有自发极化且在外电场作用下具有电滞回线的晶体。

正、反尖晶石:在尖晶石结构中,如果A离子占据四面体空隙,B离子占据八面体空隙,称

为正尖晶石。如果半数的B离子占据四面体空隙,A离子和另外半数的B离子占

据八面体空隙则称为反尖晶石。

反萤石结构:正负离子位置刚好与萤石结构中的相反。

压电效应:由于晶体在外力作用下变形,正负电荷中心产生相对位移使晶体总电矩发生变化。结构缺陷:通常把晶体点阵结构中周期性势场的畸变称为结构缺陷。

材料科学基础名词解释

材料科学基础名词解释

材料科学基础名词解释

材料科学基础名词解释

第一章固体结构

1、晶体:原子按一定方式在三维空间内周期性地规则重复排列,有固定熔点、各向异性。

非晶体 :原子没有长程的周期排列,无固定的熔点,各向同性等。

2、中间相 : 两组元 A 和 B 组成合金时,除了形成以 A 为基或以

B 为基的固溶体外,还可能形成晶体结构与 A,B 两组元均不相同的新相。由于它们在二元相图上的位置总是位于中间,故通常把这些相称为中间相。

3、晶体点阵:由实际原子、离子、分子或各种原子集团,按一定几何规律的具体排

列方式称为晶体结构或晶体点阵。

4、配位数 :晶体结构中任一原子周围最近邻且等距离的原子数。

5、晶格:描述晶体中原子排列规律的空间格架称之为晶格。

6、晶胞:在点阵中取出一个具有代表性的基本单元(最小平行六面体)作为点阵的组成单元,称为晶胞。

7、空间点阵:由周围环境相同的阵点在空间排列的三维列阵成为空间点阵。

8、晶向:在晶格中,穿过两个以节点的任一直线,都代表晶体中一个原子列在空间的位

向,称为晶向。

9、晶面:由节点组成的任一平面都代表晶体的原子平面,称为晶面。

10、晶向指数(晶面指数):为了确定晶面、晶向在晶体中的相对取向、就需要一种

符号,这种符号称为晶面指数和晶向指数。国际上通用的是密勒指数。

一个晶向指数并不是代表一个晶向,二十代表一组互相平行、位

向相同的晶向。

11、晶向族:原子排列相同但空间位向不同的所有晶向称为晶向族,以表示。

12、晶面间距:相邻两个平行晶面之间的垂直距离。低指数晶面的面间距较大,而高指数晶面的面间距较小。晶面间距越大,则该晶面上原子排列越紧密,该原子密度越大。

材料科学基础-名词解释

材料科学基础-名词解释

第六章

组元:组元通常是指系统中每一个可以单独分离出来,并能独立存在的化学纯物质,在一个给定的系统中,组元就是构成系统的各种化学元素或化合物.

相:在一个系统中,成分、结构相同,性能一致的均匀的组成部分叫做相,不同相之间有明显的界面分开,该界面称为相界面。

相平衡:在某一温度下,系统中各个相经过很长时间也不互相转变,处于平衡状态,这种平衡称为相平衡.各组元在各相中的化学势相同。

相图:表示合金系中合金的状态与温度、成分之间的关系的图形,又称为平衡图或状态图。

相变:从一种相转变为另一种相的过程称为相变。若转变前后均为固相,则称为固态相变。凝固:物质由液态到固态的转变过程称为凝固

结晶:如果液态转变为结晶态的固体这个过程称为结晶

过冷:纯金属的实际凝固温度Tn总比其熔点Tm低的现象

过冷度:Tm与Tn的差值△T叫做过冷度

均匀形核:在液态金属中,存在大量尺寸不同的短程有序的原子集团.当温度降到结晶温度以下时,短程有序的原子集团变得稳定,不再消失,成为结晶核心。这个过程叫自发形核。

非均匀形核:实际金属内部往往含有许多其他杂质。当液态金属降到一定温度后,有些杂质可附着金属原子,成为结晶核性,这个过程叫非自发形核.

临界晶核:半径恰为r*的晶核称为临界晶核

临界半径:r*称为晶核的临界晶核半径

临界形核功:形成临界晶核时自由能的变化△G*>0,这说明形成临界晶核是需要能量的.形成临界晶核所需的能量△G*称为临界形核功。

能量起伏:形成临界晶核时,液、固两相之间的自由能差只提供所需要的表面能的三分之二,另外的三分之一则由液体中的能量起伏来提供

材料科学基础名词解释大全

材料科学基础名词解释大全

名词解释一百单八将

1、晶体

原子按一定方式在三维空间内周期性地规则重复排列,有固定熔点、各向异性。

2、中间相

两组元A 和B 组成合金时,除了形成以A 为基或以B 为基的固溶体外,还可能形成晶体结构与A,B 两组元均不相同的新相。由于它们在二元相图上的位置总是位于中间,故通常把这些相称为中间相。

3、亚稳相

亚稳相指的是热力学上不能稳定存在,但在快速冷却成加热过程中,由于热力学能垒或动力学的因素造成其未能转变为稳定相而暂时稳定存在的一种相。

4、配位数

晶体结构中任一原子周围最近邻且等距离的原子数。

5、再结晶

冷变形后的金属加热到一定温度之后,在原变形组织中重新产生了无畸变的新晶粒,而性能也发生了明显的变化并恢复到变形前的状态,这个过程称为再结晶(指出现无畸变的等轴新晶粒逐步取代变形晶粒的过程)

6、伪共晶

非平衡凝固条件下,某些亚共晶或过共晶成分的合金也能得到全部的共晶组织,这种由非共晶成分的合金得到的共晶组织称为伪共晶。

7、交滑移

当某一螺型位错在原滑移面上运动受阻时,有可能从原滑移面转移到与之相交的另一滑移面上去继续滑移,这一过程称为交滑移。

8、过时效

铝合金经固溶处理后,在加热保温过程中将先后析出GP 区,θ”,θ’,和θ。在开始保温阶段,随保温时间延长,硬度强度上升,当保温时间过长,将析出θ’,这时材料的硬度强度将下降,这种现象称为过时效。

9、形变强化

金属经冷塑性变形后,其强度和硬度上升,塑性和韧性下降,这种现象称为形变强化。

10、固溶强化

由于合金元素(杂质)的加入,导致的以金属为基体的合金的强度得到加强的现象。11、弥散强化

材科基名词解释

材科基名词解释

《材料科学基础》名词解释

晶体原子、分子或离子按照一定的规律周期性排列组成的固体。

非晶体原子没有长程的周期排列,无固定的熔点,各向同性等。

空间点阵指几何点在三维空间作周期性的规则排列所形成的三维阵列,是人为的对晶体结构的抽象。

晶族依据晶体结构中高次轴(n>2)的数目,将晶体划分为低级(无高次轴)、中级(一个高次轴)和高

级(多于一个高次轴)晶族。

晶带轴定律所有平行于同一方向的晶面(hkl)构成的一个晶带,该方向[uvw]就称为晶带轴,则有hu+kv+lw=0,这就是晶带轴定律。

空间群晶体结构中所有对称要素(含微观对称要素)的组合所构成的对称群。

布拉菲点阵除考虑晶胞外形外,还考虑阵点位置所构成的点阵。

晶胞在点阵中取出一个具有代表性的基本单元(最小平行六面体)作为点阵的组成单元,称为晶胞。

中间相两组元A和B组成合金时,除了形成以A为基或以B为基的固溶体外,还可能形成晶体结构与A,B两组元均不相同的新相。由于它们在二元相图上的位置总是位于中间,故通常把这些相称为中间相。

配位数晶体结构中任一原子周围最近邻且等距离的原子数。

致密度晶体结构中原子体积占总体积的百分数。

金属键自由电子与原子核之间静电作用产生的键合力。

共价键相邻原子由于共享电子对所形成的价键,具有饱和性和方向性。

固溶体是以某一组元为溶剂,在其晶体点阵中溶入其他组元原子(溶剂原子)所形成的均匀混合的固态溶体,它保持溶剂的晶体结构类型。

间隙相当非金属(X)和金属(M)原子半径的比值rX/rM<0.59 时,形成的具有简单晶体结构的相,称为间隙相。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二章固体结构

1、晶体:原子按一定方式在三维空间内周期性地规则重复排列,有固定熔点、各向异性。

2、中间相:两组元A 和B 组成合金时,除了形成以A 为基或以B 为基的固溶体外,还可能形成晶体结构与A,B 两组元均不相同的新相。由于它们在二元相图上的位置总是位于中间,故通常把这些相称为中间相。

4、配位数:晶体结构中任一原子周围最近邻且等距离的原子数。

28、有序固溶体:当一种组元溶解在另一组元中时,各组元原子分别占据各自的布拉维点阵的一种固溶体,形成一种各组元原子有序排列的固溶体,溶质在晶格完全有序排列。

36、非晶体:原子没有长程的周期排列,无固定的熔点,各向同性等。

37、致密度:晶体结构中原子体积占总体积的百分数。

40、间隙相:当非金属(X)和金属(M)原子半径的比值rX/rM<0.59 时,形成的具有简单晶体结构的相,称为间隙相。

53、点阵畸变:在局部范围内,原子偏离其正常的点阵平衡位置,造成点阵畸变。

57、置换固溶体:当溶质原子溶入溶剂中形成固溶体时,溶质原子占据溶剂点阵的阵点,或者说溶质原子置换了溶剂点阵的部分溶剂原子,这种固溶体就称为置换固溶体。

58、间隙固溶体:溶质原子分布于溶剂晶格间隙而形成的固溶体称为间隙固溶体。

72、晶胞:在点阵中取出一个具有代表性的基本单元(最小平行六面体)作为点阵的组成单元,称为晶胞。

75、金属键:自由电子与原子核之间静电作用产生的键合力。

76、固溶体:是以某一组元为溶剂,在其晶体点阵中溶入其他组元原子(溶剂原子)所形成的均匀混合的固态溶体,它保持溶剂的晶体结构类型。

89、空间点阵:指几何点在三维空间作周期性的规则排列所形成的三维阵列,是人为的对晶体结构的抽象。

90、范德华键:由瞬间偶极矩和诱导偶极矩产生的分子间引力所构成的物理键。

99、同质异构体:化学组成相同由于热力学条件不同而形成的不同晶体结构。

101、布拉菲点阵:除考虑晶胞外形外,还考虑阵点位置所构成的点阵。

102、配位多面体:原子或离子周围与它直接相邻结合的原子或离子的中心连线所构成的多面体,称为原子或离子的配位多面体。

104、拓扑密堆相:由两种大小不同的金属原子所构成的一类中间相,其中大小原子通过适当的配合构成空间利用率和配位数都很高的复杂结构。由于这类结构具有拓扑特征,故称这些相为拓扑密堆相。

105、间隙化合物:当非金属(X)和金属(M)原子半径的比值rX/rM>0.59 时,形成具有复杂晶体结构的相, 106、大角度晶界:多晶材料中各晶粒之间的晶界称为大角度晶界,即相邻晶粒的位相差大于10º的晶界。

10、固溶强化:由于合金元素(杂质)的加入,导致的以金属为基体的合金的强度得到加强的现象。

98、电子化合物:电子化合物是指由主要电子浓度决定其晶体结构的一类化合物,又称休姆-罗塞里相。凡具有相同的电子浓度,则相的晶体结构类型相同。

第三章晶体缺陷

7、交滑移:当某一螺型位错在原滑移面上运动受阻时,有可能从原滑移面转移到与之相交的另一滑移面上去继续滑移,这一过程称为交滑移。

11、弥散强化:许多材料由两相或多相构成,如果其中一相为细小的颗粒并弥散分布在材料内,则这种材料的强度往往会增加,称为弥散强化。

12、不全位错:柏氏矢量不等于点阵矢量整数倍的位错称为不全位错。

13、扩展位错:通常指一个全位错分解为两个不全位错,中间夹着一个堆垛层错的整个位错形态。

14、螺型位错:位错线附近的原子按螺旋形排列的位错称为螺型位错。

38、多滑移:当外力在几个滑移系上的分切应力相等并同时达到了临界分切应力时,产生同时滑移的现象。

41、全位错:把柏氏矢量等于点阵矢量或其整数倍的位错称为全位错。

42、滑移系:晶体中一个滑移面及该面上一个滑移方向的组合称一个滑移系。

45、刃型位错:晶体中的某一晶面,在其上半部有多余的半排原子面,好像一把刀刃插入晶体中,使这一晶面上下两部分晶体之间产生了原子错排,称为刃型位错。

46、细晶强化:晶粒愈细小,晶界总长度愈长,对位错滑移的阻碍愈大,材料的屈服强度愈高。晶粒细化导致晶界的增加,位错的滑移受阻,因此提高了材料的强度。

47、双交滑移:如果交滑移后的位错再转回和原滑移面平行的滑移面上继续运动,则称为双交滑移。

48、单位位错:把柏氏矢量等于单位点阵矢量的位错称为单位位错。

50、晶界偏聚:由于晶内与晶界上的畸变能差别或由于空位的存在使得溶质原子或杂质原子在晶界上的富集现象。

68、孪晶:孪晶是指两个晶体(或一个晶体的两部分)沿一个公共晶面构成镜面对称的位向关系,这两个晶体就称为孪晶,此公共晶面就称孪晶面。

71、晶界:晶界是成分结构相同的同种晶粒间的界面。

73、位错:是晶体内的一种线缺陷,其特点是沿一条线方向原子有规律地发生错排;这种缺陷用一线方向和一个柏氏矢量共同描述。

77、亚晶粒:一个晶粒中若干个位相稍有差异的晶粒称为亚晶粒。

78、亚晶界:相邻亚晶粒间的界面称为亚晶界。

79、晶界能:不论是小角度晶界或大角度晶界,这里的原子或多或少地偏离了平衡位置,所以相对于晶体内部,晶界处于较高的能量状态,高出的那部分能量称为晶界能,或称晶界自由能。

80、表面能:表面原子处于不均匀的力场之中,所以其能量大大升高,高出的能量称为表面自由能(或表面能)。

81、界面能:界面上的原子处在断键状态,具有超额能量。平均在界面单位面积上的超额能量叫界面能。

88、柏氏矢量:描述位错特征的一个重要矢量,它集中反映了位错区域内畸变总量的大小和方向,也使位错扫过后晶体相对滑动的量。

91、位错滑移:在一定应力作用下,位错线沿滑移面移动的位错运动。

107、小角度晶界:相邻亚晶粒之间的位相差小于10º,这种亚晶粒间的晶界称为小角度晶界,一般小于2º,可分为倾斜晶界、扭转晶界、重合晶界等。

70、孪生:晶体受力后,以产生孪晶的方式进行的切变过程叫孪生。

61、肖脱基空位:在个体中晶体中,当某一原子具有足够大的振动能而使振幅增大到一定程度时,就可能克服周围原子对它的制约作用,跳离其原来位置,迁移到晶体表面或内表面的正常结点位置上而使晶体内部留下空位,称为肖脱基空位。

62、弗兰克尔空位:离开平衡位置的原子挤入点阵中的间隙位置,而在晶体中同时形成相等数目的空位和间隙原子。

第四章扩散

18、上坡扩散;溶质原子从低浓度向高浓度处扩散的过程称为上坡扩散。表明扩散的驱动力是化学位梯度而非浓度梯度。

19、间隙扩散:这是原子扩散的一种机制,对于间隙原子来说,由于其尺寸较小,处于晶格间隙中,在扩散时,间隙原子从一个间隙位置跳到相邻的另一个间隙位置,形成原子的移动。

34、柯肯达尔效应:反映了置换原子的扩散机制,两个纯组元构成扩散偶,在扩散的过程中,界面将向扩散速率快的组元一侧移动。

49、反应扩散:伴随有化学反应而形成新相的扩散称为反应扩散。

54、稳态扩散:在稳态扩散过程中,扩散组元的浓度只随距离变化,而不随时间变化。

56、非共格晶界:当两相在相界处的原子排列相差很大时,即错配度δ很大时形成非共格晶界。同大角度晶界相似,可看成由原子不规则排列的很薄的过渡层构成。

63、非稳态扩散:扩散组元的浓度不仅随距离x 变化,也随时间变化的扩散称为非稳态扩散。

23、共格相界:如果两相界面上的所有原子均成一一对应的完全匹配关系,即界面上的原子同时处于两相晶格的结点上,为相邻两晶体所共有,这种相界就称为共格相界。

第五章塑性变形与再结晶

3、亚稳相:亚稳相指的是热力学上不能稳定存在,但在快速冷却成加热过程中,由于热力学能垒或动力学的因素造成其未能转变为稳定相而暂时稳定存在的一种相。

5、再结晶:冷变形后的金属加热到一定温度之后,在原变形组织中重新产生了无畸变的新晶粒,而性能也发生了明显的变化并恢复到变形前的状态,这个过程称为再结晶。(指出现无畸变的等轴新晶粒逐步取代变形晶粒的过程)

9加工硬化:金属经冷塑性变形后,其强度和硬度上升,塑性和韧性下降,这种现象称为加工硬化。

26、再结晶退火:所谓再结晶退火工艺,一般是指将冷变形后的金属加热到再结晶温度以上,保温一段时间后,缓慢冷却至室温的过程。

51、柯氏气团:通常把溶质原子与位错交互作用后,在位错周围偏聚的现象称为气团,是由柯垂尔首先提出,又称柯氏气团。

52、形变织构:多晶体形变过程中出现的晶体学取向择优的现象叫形变织构。

59、二次再结晶:再结晶结束后正常长大被抑制而发生的少数晶粒异常长大的现象。

64、时效:过饱和固溶体后续在室温或高于室温的溶质原子脱溶过程。

65、回复:指新的无畸变晶粒出现之前所产生的亚结构和性能变化的阶段。

95、应变时效:第一次拉伸后,再立即进行第二次拉伸,拉伸曲线上不出现屈服阶段。但第一次拉伸后的低碳钢试样在室温下放置一段时间后,再进行第二次拉伸,则拉伸曲线上又会出现屈服阶段。不过,再次屈服的强度要高于初次屈服的强度。这个试验现象就称为应变时效。

97、临界变形度:给定温度下金属发生再结晶所需的最小预先冷变形量。

相关文档
最新文档