应用牛顿第二定律分量形式解题例析

合集下载

牛顿第二定律例子

牛顿第二定律例子

牛顿第二定律例子牛顿第二定律的例子包括:1.高空自由落体:一个物体在高空中自由落体,只受到重力作用。

根据牛顿第二定律,物体的加速度与它所受的合外力之间成正比。

在这个例子中,合外力就是物体所受的重力。

根据牛顿第二定律的公式F = ma,其中F表示合外力(即重力),m表示物体的质量,a表示物体的加速度。

2.斜劈A的例子:静止于粗糙的水平面上的斜劈A的斜面上,一物体B沿斜面向上做匀减速运动。

把A和B看作一个系统,在竖直方向受到向下的重力和竖直向上的支持力,在水平方向受到的摩擦力的方向未定。

劈A的加速度,物体B的加速度沿斜面向下,将分解成水平分量和竖直分量,,对A、B整体的水平方向运用牛顿第二定律有:与同方向。

而整体在水平方向的合外力只有受到的摩擦力,故的方向水平向左。

3.连接体问题:巧用牛顿第二定律解决连接体问题。

把研究对象看作一个整体,应用牛顿第二定律列式,然后对整体内的各个物体进行隔离分析,单独列出牛顿第二定律的方程。

4.跨过定滑轮的绳的一端挂一吊板:已知人的质量为70kg,吊板的质量为10kg,绳及定滑轮的质量、滑轮的摩擦均可不计。

取重力加速度g =lOm/s2.当人以440 N的力拉绳时,人与吊板的加速度 a和人对吊板的压力F分别为() A.a=1.0m/s,F=260N B.a=1.0m/s,F=330N C.a=3.0m/s,F=110N D.a=3.0m/s,F=50N5.气球的问题:科研人员乘气球进行科学考察,气球、座舱、压舱物和科研人员的总质量为990kg。

气球在空中停留一段时间后,发现气球漏气而下降,及时堵住。

堵住时气球下降速度为1m/s,且做匀加速运动,4s内下降了12m。

为使气球安全着陆,向舱外缓慢抛出一定的压舱物,此后发现气球做匀减速运动,下降速度在5分钟内减少了3m/s。

以上就是运用牛顿第二定律解决的一些实际例子,希望对您有帮助。

牛顿定律的应用-两类动力学问题与超重、失重

牛顿定律的应用-两类动力学问题与超重、失重

运动情况
超重、失重
视重
a=0
不超重也不失重
F=mg
a的方向竖直向上
超重
F=m(g+a)
a的方向竖直向下
失重
F=m(g-a)
a=g ,a的方向竖直 向下
完全失重
F=0
名师支招:
判断物体超重或失重,仅分析加速度的方向即可,只要加速度的竖直分量向
上就是超重,加速度的竖直分量向下就是失重。
*体验应用*
2.(双项选择)游乐园中,游客乘坐能做加速或减速运动的升
(2)处理连接体问题时,整体法与隔离法往往交叉使用,一般 的思路是先用整体法求加速度,再用隔离法求物体间的作用力。
(3)利用牛顿第二定律可以处理匀变速直线运动问题,也可以 定性分析非匀变速直线运动的规律,它常和力学、电磁学等有关 知识结合起来考查一些综合问题。
*体验应用*
1.[2009年高考安徽理综卷]在2008年北京残奥会开幕式上, 运动员手拉绳索向上攀登,最终点燃了主火炬,体现了残 疾运动员坚韧不拔的意志和自强不息的精神。为了探求上 升过程中运动员与绳索和吊椅间的作用,可将过程简化。 一根不可伸缩的轻绳跨过轻质的定滑轮,一端挂一吊椅, 另一端被坐在吊椅上的运动员拉住,如图3-2-1所示。设运 动员的质量为65 kg,吊椅的质量为15 kg,不计定滑轮与绳 子间的摩擦。重力加速度取g=10 m/s2。当运动员与吊椅一 起正以加速度a=1 m/s2上升时,试求: (1)运动员竖直向下拉绳的力; (2)运动员对吊椅的压力。
慢慢加速,再匀速运转。一顾客乘扶梯上楼,恰
好经历了这两个过程,如图3-2-8所示。那么下列
C 说法中正确的是(
)
A.顾客始终受到三个力的作用

15第3章 第2讲 应用牛顿第二定律处理“四类”问题

15第3章 第2讲  应用牛顿第二定律处理“四类”问题

第2讲应用牛顿第二定律处理“四类”问题一、瞬时问题1.牛顿第二定律的表达式为:F合=ma,加速度由物体所受决定,加速度的方向与物体所受的方向一致.当物体所受合外力发生突变时,加速度也随着发生突变,而物体运动的不能发生突变.2.轻绳、轻杆和轻弹簧(橡皮条)的区别:(1)轻绳和轻杆:剪断轻绳或轻杆断开后,原有的弹力将.(2)轻弹簧和橡皮条:当轻弹簧和橡皮条两端与其他物体连接时,轻弹簧或橡皮条的弹力.自测1如图1,A、B、C三个小球质量均为m,A、B之间用一根没有弹性的轻质细绳连在一起,B、C之间用轻弹簧拴接,整个系统用细线悬挂在天花板上并且处于静止状态.现将A上面的细线剪断,使A的上端失去拉力,则在剪断细线的瞬间,A、B、C三个小球的加速度分别是()图1A.1.5g,1.5g,0B.g,2g,0C.g,g,gD.g,g,0二、超重和失重1.超重(1)定义:物体对支持物的压力(或对悬挂物的拉力) 物体所受重力的现象.(2)产生条件:物体具有的加速度.2.失重(1)定义:物体对支持物的压力(或对悬挂物的拉力) 物体所受重力的现象.(2)产生条件:物体具有的加速度.3.完全失重(1)定义:物体对支持物的压力(或对竖直悬挂物的拉力) 的现象称为完全失重现象.(2)产生条件:物体的加速度a=g,方向竖直向下.4.实重和视重(1)实重:物体实际所受的重力,它与物体的运动状态.(2)视重:当物体在竖直方向上有加速度时,物体对弹簧测力计的拉力或对台秤的压力将于物体的重力.此时弹簧测力计的示数或台秤的示数即为视重.自测2关于超重和失重的下列说法中,正确的是()A.超重就是物体所受的重力增大了,失重就是物体所受的重力减小了B.物体做自由落体运动时处于完全失重状态,所以做自由落体运动的物体不受重力作用C.物体具有向上的速度时处于超重状态,物体具有向下的速度时处于失重状态D.物体处于超重或失重状态时,物体的重力始终存在且不发生变化三、动力学图象1.类型(1)已知图象分析运动和情况;(2)已知运动和受力情况分析图象的形状.2.用到的相关知识通常要先对物体受力分析求合力,再根据求加速度,然后结合运动学公式分析.自测3(2016·海南单科·5)沿固定斜面下滑的物体受到与斜面平行向上的拉力F的作用,其下滑的速度—时间图线如图2所示.已知物体与斜面之间的动摩擦因数为常数,在0~5 s,5~10 s,10~15 s内F的大小分别为F1、F2和F3,则()图2A.F1<F2B.F2>F3C.F1>F3D.F1=F3命题点一超重与失重现象1.对超重和失重的理解(1)不论超重、失重或完全失重,物体的重力都不变,只是“视重”改变.(2)在完全失重的状态下,一切由重力产生的物理现象都会完全消失.(3)尽管物体的加速度不是竖直方向,但只要其加速度在竖直方向上有分量,物体就会处于超重或失重状态.(4)尽管整体没有竖直方向的加速度,但只要物体的一部分具有竖直方向的分加速度,整体也会出现超重或失重现象.2.判断超重和失重的方法从受力的角度判断当物体所受向上的拉力(或支持力)大于重力时,物体处于超重状态;小于重力时,物体处于失重状态;等于零时,物体处于完全失重状态从加速度的角度判断当物体具有向上的加速度时,物体处于超重状态;具有向下的加速度时,物体处于失重状态;向下的加速度等于重力加速度时,物体处于完全失重状态从速度变化的角度判断①物体向上加速或向下减速时,超重②物体向下加速或向上减速时,失重例1(2018·四川省乐山市第二次调研)图3甲是某人站在力传感器上做下蹲、起跳动作的示意图,中间的O表示人的重心.图乙是根据传感器采集到的数据画出的F-t图线,两图中a~g各点均对应,其中有几个点在图甲中没有画出.取重力加速度g=10 m/s2,根据图象分析可知()图3A.人的重力为1 500 NB.c点位置人处于失重状态C.e点位置人处于超重状态D.d点的加速度小于f点的加速度变式1广州塔,昵称小蛮腰,总高度达600米,游客乘坐观光电梯大约一分钟就可以到达观光平台.若电梯简化成只受重力与绳索拉力,已知电梯在t=0时由静止开始上升,a-t 图象如图4所示.则下列相关说法正确的是()图4A.t=4.5 s时,电梯处于失重状态B.5~55 s时间内,绳索拉力最小C.t=59.5 s时,电梯处于超重状态D.t=60 s时,电梯速度恰好为零变式2(2018·广东省深圳市三校模拟)如图5,将金属块用压缩的轻弹簧卡在一个箱子中,上顶板和下底板装有压力传感器.当箱子随电梯以a=4.0 m/s2的加速度竖直向上做匀减速运动时,上顶板的传感器显示的压力为4.0 N,下底板的传感器显示的压力为10.0 N.取g=10 m/s2,若下底板示数不变,上顶板示数是下底板示数的一半,则电梯的运动状态可能是()图5A.匀加速上升,a=5 m/s2 B.匀加速下降,a=5 m/s2C.匀速上升D.静止状态命题点二瞬时问题的两类模型1.两种模型加速度与合外力具有瞬时对应关系,二者总是同时产生、同时变化、同时消失,具体可简化为以下两种模型:2.解题思路分析瞬时变化前后物体的受力情况⇒列牛顿第二定律方程⇒求瞬时加速度3.两个易混问题(1)如图6甲、乙中小球m1、m2原来均静止,现如果均从图中A处剪断,则图甲中的轻质弹簧和图乙中的下段绳子的拉力将如何变化呢?(2)由(1)的分析可以得出什么结论?(2)绳的弹力可以突变而弹簧的弹力不能突变.图6例2(2019·河北省衡水中学第一次调研)如图7所示,一根弹簧一端固定在左侧竖直墙上,另一端连着A小球,同时水平细线一端连着A球,另一端固定在右侧竖直墙上,弹簧与竖直方向的夹角是60°,A、B两小球分别连在另一根竖直弹簧两端.开始时A、B两球都静止不动,A、B两小球的质量相等,重力加速度为g,若不计弹簧质量,在水平细线被剪断瞬间,A、B两球的加速度分别为()图7A.a A=a B=g B.a A=2g,a B=0C.a A=3g,a B=0 D.a A=23g,a B=0例3(多选)如图8所示,倾角为θ的斜面静置于地面上,斜面上表面光滑,A、B、C三球的质量分别为m、2m、3m,轻质弹簧一端固定在斜面顶端、另一端与A球相连,A、B间固定一个轻杆,B、C间由一轻质细线连接.弹簧、轻杆与细线均平行于斜面,初始系统处于静止状态,现突然剪断细线.下列判断正确的是()图8A.细线被剪断的瞬间,A、B、C三个小球的加速度均为零B.细线被剪断的瞬间,A、B之间杆的弹力大小为零C.细线被剪断的瞬间,A、B球的加速度沿斜面向上,大小为g sin θD.细线被剪断的瞬间,A、B之间杆的弹力大小为4mg sin θ变式3(2018·山西省吕梁市第一次模拟)如图9所示,A球质量为B球质量的3倍,光滑固定斜面的倾角为θ,图甲中,A、B两球用轻弹簧相连,图乙中A、B两球用轻质杆相连,系统静止时,挡板C与斜面垂直,弹簧、轻杆均与斜面平行,则在突然撤去挡板的瞬间有()图9A.图甲中A球的加速度为g sin θB.图甲中B球的加速度为2g sin θC.图乙中A、B两球的加速度均为g sin θD.图乙中轻杆的作用力一定不为零命题点三动力学图象问题1.常见的动力学图象v-t图象、a-t图象、F-t图象、F-a图象等.2.图象问题的类型(1)已知物体受的力随时间变化的图线,要求分析物体的运动情况.(2)已知物体的速度、加速度随时间变化的图线,要求分析物体的受力情况.(3)由已知条件确定某物理量的变化图象.3.解题策略(1)分清图象的类别:即分清横、纵坐标所代表的物理量,明确其物理意义,掌握物理图象所反映的物理过程,会分析临界点.(2)注意图线中的一些特殊点所表示的物理意义:图线与横、纵坐标的交点,图线的转折点,两图线的交点等.(3)明确能从图象中获得哪些信息:把图象与具体的题意、情景结合起来,应用物理规律列出与图象对应的函数方程式,进而明确“图象与公式”“图象与物体”间的关系,以便对有关物理问题作出准确判断.例4(2018·广东省湛江市第二次模拟)如图10甲所示,在光滑水平面上,静止放置一质量为M的足够长木板,质量为m的小滑块(可视为质点)放在长木板上.长木板受到水平拉力F 与加速度的关系如图乙所示,重力加速度大小g取10 m/s2,下列说法正确的是()图10A.长木板的质量M=2 kgB.小滑块与长木板之间的动摩擦因数为0.4C.当F=14 N时,长木板的加速度大小为3 m/s2D.当F增大时,小滑块的加速度一定增大变式4(多选)(2019·福建省三明市质检)水平地面上质量为1 kg的物块受到水平拉力F1、F2的作用,F1、F2随时间的变化如图11所示,已知物块在前2 s内以4 m/s的速度做匀速直线运动,取g=10 m/s2,则(最大静摩擦力等于滑动摩擦力)()图11A.物块与地面的动摩擦因数为0.2B.3 s末物块受到的摩擦力大小为3 NC.4 s末物块受到的摩擦力大小为1 ND.5 s末物块的加速度大小为3 m/s2变式5(2018·安徽省池州市上学期期末)如图12所示为质量m=75 kg的滑雪运动员在倾角θ=37°的直滑道上由静止开始向下滑行的v-t图象,图中的OA直线是t=0时刻速度图线的切线,速度图线末段BC平行于时间轴,运动员与滑道间的动摩擦因数为μ,所受空气阻力与速度成正比,比例系数为k.设最大静摩擦力等于滑动摩擦力,取重力加速度g=10 m/s2,sin 37°=0.6,cos 37°=0.8,则()图12A.滑雪运动员开始时做加速度增大的加速直线运动,最后做匀速运动B.t=0时刻运动员的加速度大小为2 m/s2C.动摩擦因数μ为0.25D.比例系数k为15 kg/s命题点四动力学中的连接体问题1.连接体的类型(1)弹簧连接体(2)物物叠放连接体(3)轻绳连接体(4)轻杆连接体2.连接体的运动特点轻绳——轻绳在伸直状态下,两端的连接体沿绳方向的速度总是相等.轻杆——轻杆平动时,连接体具有相同的平动速度;轻杆转动时,连接体具有相同的角速度,而线速度与转动半径成正比.轻弹簧——在弹簧发生形变的过程中,两端连接体的速度不一定相等;在弹簧形变最大时,两端连接体的速率相等.3.处理连接体问题的方法整体法的选取原则若连接体内各物体具有相同的加速度,且不需要求物体之间的作用力,可以把它们看成一个整体,分析整体受到的外力,应用牛顿第二定律求出加速度或其他未知量隔离法的选取原则若连接体内各物体的加速度不相同,或者要求出系统内两物体之间的作用力时,就需要把物体从系统中隔离出来,应用牛顿第二定律列方程求解整体法、隔离法的交替运用若连接体内各物体具有相同的加速度,且要求物体之间的作用力时,可以先用整体法求出加速度,然后再用隔离法选取合适的研究对象,应用牛顿第二定律求作用力.即“先整体求加速度,后隔离求内力”例5(多选)(2018·广东省湛江市第二次模拟)如图13所示,a、b、c 为三个质量均为m的物块,物块a、b通过水平轻绳相连后放在水平面上,物块c放在b上.现用水平拉力作用于a,使三个物块一起水平向右匀速运动.各接触面间的动摩擦因数均为μ,重力加速度大小为g.下列说法正确的是()图13A.该水平拉力大于轻绳的弹力B.物块c受到的摩擦力大小为μmgC.当该水平拉力增大为原来的1.5倍时,物块c受到的摩擦力大小为0.5μmgD.剪断轻绳后,在物块b向右运动的过程中,物块c受到的摩擦力大小为μmg变式6(多选)(2019·河南省郑州市质检)如图14所示,在粗糙的水平面上,质量分别为m 和M的物块A、B用轻弹簧相连,两物块与水平面间的动摩擦因数均为μ,当用水平力F作用于B上且两物块共同向右以加速度a1匀加速运动时,弹簧的伸长量为x1;当用同样大小的恒力F沿着倾角为θ的光滑斜面方向作用于B上且两物块共同以加速度a2匀加速沿斜面向上运动时,弹簧的伸长量为x2,则下列说法中正确的是()图14A.若m>M,有x1=x2B.若m<M,有x1=x2C.若μ>sin θ,有x1>x2D.若μ<sin θ,有x1<x2变式7(多选)如图15所示,倾角为θ的斜面放在粗糙的水平地面上,现有一带固定支架的滑块m正沿斜面加速下滑.支架上用细线悬挂的小球达到稳定(与滑块相对静止)后,悬线的方向与竖直方向的夹角也为θ,斜面体始终保持静止,则下列说法正确的是()图15A.斜面光滑B.斜面粗糙C.达到稳定状态后,地面对斜面体的摩擦力水平向左D.达到稳定状态后,地面对斜面体的摩擦力水平向右1.(多选)一人乘电梯上楼,在竖直上升过程中加速度a随时间t变化的图线如图1所示,以竖直向上为a的正方向,则人对地板的压力()图1A.t=2 s时最大B.t=2 s时最小C.t=8.5 s时最大D.t=8.5 s时最小2.(2018·湖北省黄冈市质检)如图2所示,电视剧拍摄时,要制造雨中场景,剧组工作人员用消防水枪向天空喷出水龙,降落时就成了一场“雨”.若忽略空气阻力,以下分析正确的是()图2A.水枪喷出的水在上升时超重B.水枪喷出的水在下降时超重C.水枪喷出的水在最高点时,速度方向斜向下D.水滴在下落时,越接近地面,速度方向越接近竖直方向3.(2019·广东省东莞市调研)为了让乘客乘车更为舒适,某探究小组设计了一种新的交通工具,乘客的座椅能随着坡度的变化而自动调整,使座椅始终保持水平,如图3所示.当此车匀减速上坡时,乘客(仅考虑乘客与水平面之间的作用)( )图3A .处于超重状态B .不受摩擦力的作用C .受到向后(水平向左)的摩擦力作用D .所受合力竖直向上4.(2019·安徽省淮北市质检)如图4甲所示,在光滑的水平面上,物体A 在水平方向的外力F 作用下做直线运动,其v -t 图象如图乙所示,规定向右为正方向.下列判断正确的是( )图4A .在3 s 末,物体处于出发点右方B .在1~2 s 内,物体正向左运动,且速度大小在减小C .在1~3 s 内,物体的加速度方向先向右后向左D .在0~1 s 内,外力F 不断增大5.如图5所示,物块1、2间用刚性轻质杆连接,物块3、4间用轻质弹簧相连,物块1、3质量均为m,2、4质量均为m 0,两个系统均置于水平放置的光滑木板上,并处于静止状态.现将两木板沿水平方向突然抽出,设抽出后的瞬间,物块1、2、3、4的加速度大小分别为a 1、a 2、a 3、a 4.重力加速度大小为g ,则有( )图5A .a 1=a 2=a 3=a 4=0B .a 1=a 2=a 3=a 4=gC .a 1=a 2=g ,a 3=0,a 4=m +m 0m 0g D .a 1=g ,a 2=m +m 0m 0g ,a 3=0,a 4=m +m 0m 0g6.(2018·福建省四地六校月考)如图6所示,A 、B 两物块质量均为m ,用一轻弹簧相连,将A 用长度适当的轻绳悬挂于天花板上,系统处于静止状态,B 物块恰好与水平桌面接触,此时轻弹簧的伸长量为x ,现将悬绳剪断,则( )图6A .悬绳剪断瞬间A 物块的加速度大小为gB .悬绳剪断瞬间B 物块的加速度大小为gC .悬绳剪断后A 物块向下运动距离2x 时速度最大D .悬绳剪断后A 物块向下运动距离x 时加速度最小7.(多选)(2018·河北省张家口市上学期期末)质量为2m 的物块A 和质量为m 的物块B 相互接触放在水平地面上,如图7所示,若对A 施加水平推力F ,两物块沿水平方向做匀加速运动,关于A 对B 的作用力,下列说法中正确的是( )图7A .若水平地面光滑,物块A 对B 的作用力大小为FB .若水平地面光滑,物块A 对B 的作用力大小为F 3C .若物块A 与地面间无摩擦,B 与地面间的动摩擦因数为μ,则物块A 对B 的作用力大小为μmgD .若物块A 与地面间无摩擦,B 与地面间的动摩擦因数为μ,则物块A 对B 的作用力大小为F +2μmg 38.(2018·河南省鹤壁市第二次段考)如图8所示,表面光滑的斜面体固定在匀速上升的升降机上,质量相等的A 、B 两物体用一轻质弹簧连接着,B 的上端用一平行斜面的细线拴接在斜面上的固定装置上,斜面的倾角为30°,当升降机突然处于完全失重状态时,则此瞬间A 、B 两物体的瞬时加速度大小分别为(重力加速度为g )( )图8A.12g 、g B .g 、12g C.32g 、0 D.32g 、g 9.(2018·江西省临川二中第五次训练)如图9甲所示,用一水平外力F 推物体,使其静止在倾角为θ的光滑斜面上.逐渐增大F ,物体开始做变加速运动,其加速度a 随F 变化的图象如图乙所示.取g =10 m/s 2.根据图中所提供的信息不能计算出的是( )图9A .物体的质量B .斜面的倾角C .使物体静止在斜面上时水平外力F 的大小D .加速度为6 m/s 2时物体的速度10.(多选)(2018·内蒙古赤峰二中月考)如图10甲所示,物块的质量m =1 kg ,初速度v 0=10 m /s ,在一水平向左的恒力F 作用下从O 点沿粗糙的水平面向右运动,某时刻后恒力F 突然反向,整个过程中物块速度的平方随位置坐标变化的关系图象如图乙所示,g =10 m/s 2.下列选项中正确的是( )图10A .2秒末~3秒末内物块做匀减速运动B .在t =1 s 时刻,恒力F 反向C .物块与水平面间的动摩擦因数为0.3D .恒力F 大小为10 N11.(2018·广东省深圳市高级中学月考)如图11所示,A 、B 两滑环分别套在间距为1 m 的光滑细杆上,A 和B 的质量之比为1∶3,用一自然长度为1 m 的轻弹簧将两环相连,在A 环上作用一沿杆方向的、大小为20 N 的拉力F ,当两环都沿杆以相同的加速度a 1运动时,弹簧与杆夹角为53°,已知sin 53°=0.8,cos 53°=0.6,求:图11(1)弹簧的劲度系数为多少?(2)若突然撤去拉力F,在撤去拉力F的瞬间,A的加速度为a2,则a1∶a2为多少?12.(2018·四川省攀枝花市第二次统考)如图12所示,质量m1=500 g的木板A静止放在水平平台上,木板的右端放一质量m2=200 g的小物块B.轻质细线一端与长木板连接,另一端通过定滑轮与物块C连接,长木板与滑轮间的细线水平.现将物块C的质量由0逐渐增加,当C的质量增加到70 g时,A、B恰好开始一起匀速运动;当C的质量增加到400 g时,A、B 开始发生相对滑动.已知平台足够长、足够高,接触面间的最大静摩擦力等于滑动摩擦力,滑轮质量及摩擦不计.求木板与平台间、木板与物块B间的动摩擦因数.图12。

论系统应用牛顿第二定律、动能定理、动量定理

论系统应用牛顿第二定律、动能定理、动量定理

论系统应用牛顿第二定律、动能定理、动量定理一、对一个系统应用牛顿第二定律对系统应用牛顿第二定律,首先应确定系统的外力,并求出合力,再折合出Ma的矢量和,列出物理方程。

或者把系统的合力投影到y轴和x轴上,求出y 轴和x轴上的分力,再把加速度分别投影到y轴和x轴,由牛顿第二定律分别列出两轴的分量式。

例1 在粗糙的水平面上有一个三角形木块,在它的粗糙斜面上分别放两个质量为m1和m2的木块,m1>m2,α1<α2,在斜面保持静止的情况下,m1、m2沿斜面下滑的加速度a1>a2,求地面对斜面的静摩擦力的大小和方向。

解:把两木块和斜面看成是一个整体,三体受力如图2(规定所有矢量向右为正),三体受力在水平方向的投影为f,加速度在水平方向的投影分别为-a1cos α1,a2cosα2,物理方程为f=m2a2cosα2-m1a1cosα1由数学知识可知,f为负,说明与规定的正方向相反。

二、对系统应用动能定理对系统应用动能定理,求出系统内所有物体内力与外力做功的代数和,再求出所有物体动能增量的代数和,最后由动能定理列方程.例2将细绳绕过定滑轮P、Q,绳的两端各挂一个质量为m的小球A和B,在PQ的中点E处也挂一个质量为m的小球C,已知PQ之间的距离为2L,绳子不可伸长,不计滑轮和绳子的质量及摩擦,系统处于静止时,开始将小球C拉下,使2==如图3所示,若此时突然释放球C,球C将向什么方向运动?PE QE L移动的最大位移是多少?解:由于挂C后平衡,将C球下拉,释放后C球应向上运动,达到新的最高点时C上升的位移最大,三球速度为零.将A,B,C三球看成是一个系统,系统受到三球的重力,还有两滑轮对绳的弹力,但弹力不做功.受力图如图4.设C上升最大位移为S时,A,B下降位移为22L L S L--+,C球重力2()对系统做负功,A,B球的重力对系统做正功,对系统应用动能定理,有如下方程22--+-=2(2())0mg L L S L mgS所以4(22)/3=-S L例3如图5所示,半径为R的光滑圆柱体由支架固定在一定高处,用一条轻绳将质量为m1和m2的两个物体相连接,跨在圆柱体土,且m1.m2和圆心0在同一水平面上.当m1和m2由静止放开后,试分析在什么条件下,其中一个物体能够通过圆柱体的最高点,并对圆柱体有压力?(设一个物体到达最高点时,另一物体尚未着地)解:把m1、m2看成一个系统,外力有m1、m2的重力和圆柱体对绳的弹力,但弹力不做功.如m2>m1时,由动能定理有m2gπR/2—m1gR=(m2+m1)v2/2,m1运动到最高点时,由牛顿第二定律m1g—N=m1v2/R.所以有N=m1g[3m1-(π-1)m2]/(m1+m2).因为N>0所以m1>(π-1)m2/3如果m1>m2时,由动能定理有m1gπR/2—m2gR=(m2+m1)v2/2m2运动到最高点时,由牛顿第二定律m2g—N=m2v2/R.所以有N=m2g[3m2-(π-1)m1]/(m2+m1).因为N>0,所以m2>(π-1)m1/3.三、对系统应用动t定理对一个系统应用动量定理,找出系统所受的合外力的冲量,应等于组成这个系统每个物体动量增量的矢量和.例4 如图6所示,一个质量为M内有半径为R的半圆形轨道的长方楷体放在光滑水平面上,左端紧靠一台阶,其半圆形轨道光滑,一可视为质点的物体质量为m,由离A高为R处自由下落,由A进入轨道,运动到B点时,求此过程中台阶左侧对槽的冲量.解:把小球和槽看成一个系统,水平方向应用动量定理,规定所有矢量向右为正,有I=mv.小球和地球组成的系统机械能守恒,B点所在的水平面为重力势能的零势面,有22/2.1==Rmg mv通过以上例题可知,对系统应用牛顿第二定律、动能定理、动量定理解题来得简单,望读者在解题中慢慢的体会.。

最新高中物理牛顿第二定律经典例题(精彩4篇)

最新高中物理牛顿第二定律经典例题(精彩4篇)

最新高中物理牛顿第二定律经典例题(精彩4篇)(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如总结报告、演讲发言、策划方案、合同协议、心得体会、计划规划、应急预案、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as summary reports, speeches, planning plans, contract agreements, insights, planning, emergency plans, teaching materials, essay summaries, and other sample essays. If you want to learn about different sample formats and writing methods, please pay attention!最新高中物理牛顿第二定律经典例题(精彩4篇)练习题从狭义上讲,练习题是以巩固学习效果为目的要求解答的问题;从广义上讲,练习题是指以反复学习、实践,以求熟练为目的的问题,包括生活中遇到的麻烦、难题等。

牛顿第二定律的运用策略

牛顿第二定律的运用策略

牛顿第二定律的运用策略作者:***来源:《中学生数理化·高考理化》2023年第09期牛顿第二定律是动力学的核心,它确立了运动和力的关系。

应用牛顿第二定律求解动力学问题需要在牢记其基本内容,深刻理解其蕴含意义的前提下,理顺解题思路和解题步骤。

下面具体阐述,希望对同学们的复习备考有所帮助。

一、牢记牛顿第二定律的基本内容1.牛顿第二定律的文字表述:物體加速度的大小跟它受到的作用力成正比,跟它的质量成反比,加速度的方向跟作用力的方向相同。

根据牛顿第二定律的文字表述可知,物体在做变速运动的过程中受到的力与质量、加速度的大小满足一定的数量关系,且物体的加速度的方向与受到的合外力的方向一致。

力是产生加速度的原因,加速度是力的作用效果。

加速度和力具有同时产生、同时变化、同时消失的特点。

2.牛顿第二定律的数学表达:a ∝Fm ,F=kma(k 为比例系数,且m 、a、F 的单位均取国际单位时,k =1),ΣF =ma,或者ΣFx =max ,ΣFy =may 。

牛顿第二定律的数学表达式均为矢量式,其中a ∝ Fm ,F =kma 描述了力的瞬时作用效果———产生加速度,表示的是物体的加速度与力的瞬时对应关系;ΣF= ma,ΣFx = max ,ΣFy = may 描述了物体受到多个力作用时各个力的作用效果的累积,表示的是物体的合加速度与合外力的对应关系,或者在某个坐标轴上物体的加速度分量与受到的分力的对应关系。

3.牛顿第二定律的适用范围:牛顿第二定律只适用于惯性参考系,以及宏观、低速运动物体。

例1 下列关于牛顿第二定律的说法中正确的是()。

A.在牛顿第二定律的数学表达式F =kma 中,k 作为比例系数恒等于1B.根据牛顿第二定律的公式F =ma 可知,物体受到的合外力与它获得的加速度成正比C.根据牛顿第二定律的变形式m =F/a可知,物体的质量与它获得的加速度成反比,与它受到的合外力成正比D.根据牛顿第二定律的变形式a=F/m 可知,物体获得的加速度与它受到的合外力成正比,与它自身的质量成反比解析:在牛顿第二定律的数学表达式F=kma 中,比例系数k 的取值由m 、a、F 的单位的选取决定,只有当m 的单位取kg,a的单位取m/s2,F 的单位取N 时,k 才等于1,选项A 错误。

高中物理必修一牛顿第二定律典型例题

高中物理必修一牛顿第二定律典型例题

高一物理牛顿第二定律典型例题讲解与错误分析【例1】在光滑水平面上的木块受到一个方向不变,大小从某一数值逐渐变小的外力作用时,木块将作 [ ]A.匀减速运动B.匀加速运动C.速度逐渐减小的变加速运动D.速度逐渐增大的变加速运动【分析】木块受到外力作用必有加速度,已知外力方向不变,数值变小,根据牛顿第二定律可知,木块加速度的方向不变,大小在逐渐变小,也就是木块每秒增加的速度在减少,由于加速度方向与速度方向一致,木块的速度大小仍在不断增加,即木块作的是加速度逐渐减小速度逐渐增大的变加速运动.【答】 D.【例2】一个质量m=2kg的木块,放在光滑水平桌面上,受到三个大小均为F=10N、与桌面平行、互成120°角的拉力作用,则物体的加速度多大?若把其中一个力反向,物体的加速度又为多少?【分析】物体的加速度由它所受的合外力决定.放在水平桌面上的木块共受到五个力作用:竖直方向的重力和桌面弹力,水平方向的三个拉力.由于木块在竖直方向处于力平衡状态,因此,只需由水平拉力算出合外力即可由牛顿第二定律得到加速度.(1)由于同一平面内、大小相等、互成120°角的三个力的合力等于零,所以木块的加速度a=0.(2)物体受到三个力作用平衡时,其中任何两个力的合力必与第三个力等值反向.如果把某一个力反向,则木块所受的合力F合=2F=20N,所以其加速度为:它的方向与反向后的这个力方向相同.【例3】沿光滑斜面下滑的物体受到的力是 [ ]A.力和斜面支持力B.重力、下滑力和斜面支持力C.重力、正压力和斜面支持力D.重力、正压力、下滑力和斜面支持力【误解一】选(B)。

【误解二】选(C)。

【正确解答】选(A)。

【错因分析与解题指导】 [误解一]依据物体沿斜面下滑的事实臆断物体受到了下滑力,不理解下滑力是重力的一个分力,犯了重复分析力的错误。

[误解二]中的“正压力”本是垂直于物体接触表面的力,要说物体受的,也就是斜面支持力。

高考热点:牛顿第二定律

高考热点:牛顿第二定律

高考热点:牛顿第二定律的典型应用——连接体问题、超重与失重牛顿第二定律的地位不用多说了,一定是高考必考内容,可能出现在一道选择题或第一道计算题中. 那么,会以何种方式来考查牛顿第二定律的应用呢?最大的可能一定是连接体问题和超重失重现象!所谓的“连接体”问题,就是在一道题中出现两个或两个以上相关联的物体,研究它们的运动与力的关系. 实际上在物体的平衡问题中我们已经遇到了不少,只是平衡问题中的物体是没有加速度的,而在“连接体”问题中,有的物体具有加速度,所以求解的时候必须用到牛顿第二定律. 可见,牛顿第二定律是用来解决“非平衡问题”的!而处理“非平衡问题”的程序与解决平衡问题时的程序并无太大的区别:确定研究对象→受力分析(整体或隔离,或整体隔离结合使用)→力的合成或分解(常用正交分解法)→列方程求解(平衡问题列平衡方程,“非平衡问题”列动力学方程,即牛顿第二定律方程)先整体分析加速度,后隔离分析各物体之间的相互作用力是解决连接体问题的最常用思维模式,你掌握了吗?千万要记住:整体法只能分析“整体”外面其它物体对“整体”的作用力,不能分析“整体”内部各物体间的相互作用力;如果要分析“整体”内部的相互作用力,一定要用隔离法!强调这一点,只是想告诉大家,任何情况下,一定要明确研究对象!这是进行正确受力分析的根本!!读完高中,即使不高考,也要知道什么是超重,什么是失重. 要能够辨别和运用牛顿第二定律解释超重和失重现象.这可以说是一个中学生应该具备的基本能力!所以,这是一个在备考中绝对不能忽略的问题!★1.超重、失重现象(1)超重:物体对支持物的压力(或对悬挂物的拉力)大于物体所受重力的情况称为超重现象.(2)失重:物体对支持物的压力(或对悬挂物的拉力)小于物体所受重力的情况称为失重现象.2.关于超重和失重的理解(1)当物体处于超重和失重状态时,物体所受的重力并没有变化.(2)物体处于超重还是失重状态,不在于物体向上运动还是向下运动,而是取决于加速度方向是向上还是向下.★①超重时物体的加速度方向竖直向上,但是物体不一定是竖直向上做加速运动,也可以是竖直向下做减速运动;②失重时物体的加速度方向竖直向下,但是物体既可以是向下做加速运动,也可以是向上做减速运动;③尽管物体不在竖直方向上运动,只要其加速度在竖直方向上有分量,即0≠y a ,则当y a 方向竖直向上时,物体处于超重状态,当y a 方向竖直向下时,物体处于失重状态.(3)当物体处于完全失重状态时,重力只产生使物体具有a =g 的加速度效果,不再产生其它效果.(4)处于超重和失重状态下的液体的浮力公式分别为)a g V F +(=排浮ρ和)a g V F -(=排浮ρ,处于完全失重状态下的液体F 浮=0即液体对浸在液体中的物体不再产生浮力.例题1解析:⑴当绳子突然断开,猫保持其相对斜面的位置不变,即相对地面位置不变,猫可视为静止状态,木板沿斜面下滑,取猫和木板整体为研究对象,如图3—31进行受力分析,由牛顿第二定律得3mgsin α=2ma ,a =23gsin α,所以C 选项正确.此解法运用了牛顿第二定律在整体法中的表达形式:当系统内各物体加速度不同时,可以整体分析系统的合外力(不能分析系统内力,即系统内部各物体之间的相互作用力),隔离分析系统内各物体的加速度,然后按照上面牛顿第二定律的表达式列方程求解!这是一个解决动力学问题的绝妙方法,好好的体会和掌握它吧!⑵此题也可以用常规方法求解,分别隔离猫和板进行受力分析,如图所示,猫相对于地面位置不变,其加速度为0,所以猫的合外力为0,有:f =mgsin α,N =mgcos α;板沿斜面向下滑动,由牛顿第二定律,有f ′+2mgsin α=2ma, 又f ′=f =mgsin α,所以a =23gsin α例题2解析:将人与吊板整体考虑,受力分析如图所示,据牛顿第二定律:2T-(m 人+m 板)g =(m 人+m 板)a,代人数据得a=1.0 m /s 2,选项C 、D 被排除.用隔离法研究人向上运动,设吊板对人的支持力为N ,则T +N - m 人g =m 人a,得N =330N ;据牛顿第三定律,人对吊板的压力N ′=N =330N ,选项B 正确.领悟:这是“先整体后隔离”思维模式的典型例子,整体分析的时候不考虑人和板之间的相互作用力,根据轻绳模型的特点:绳内张力处处相等,可知两段绳索对“整体”的拉力相等;求人对板的压力时,必须用隔离法“隔离”人或“隔离”板进行分析.例题3解析:此题是瞬间加速度的计算问题,关键是做好在这个“瞬间”研究对象受力情况的分析,然后运用牛顿第二定律列式求解.分别隔离小球和框架进行受力分析,如图所示,此“瞬间”框架对地面的压力为0,根据牛顿第三定律,地面对框架的支持力为0,故框架除了受到重力外,还应该受到弹簧提供的支持力!于是弹簧对小球的弹力应该是竖直向下的,如图所示,根据物体的平衡条件和牛顿第二定律,有N=Mg,N′+mg=ma,所以a=(M+m)g/m.领悟:受力分析的成败就是解决动力学问题的成败,所以受力分析一定要过关,要能够在任何情况下(“情况”指:静止或匀速,匀变速直线运动,匀速圆周运动,简谐运动等运动状态,即研究对象总是处于我们熟悉的运动模型中,于是掌握各种运动模型中物体受力特点是做好受力分析的必要条件!例如:匀速圆周运动需要向心力,简谐运动需要回复力.)把一个物体(即研究对象)的受力情况分析清楚!例题4解析:.容器抛出后,容器及其中的水均做加速度为g的匀变速运动,容器中的水处于失重状态,水对容器的压强为零,无论如何抛出,水都不会流出.故D项正确.领悟:本题考查对超重失重现象的理解,关键在于判断物体在竖直方向上是否具有加速度,然后根据“同失反超”确定失重还是超重!无论以何种方式抛出,容器和水抛出后都只受到重力的作用,都有竖直向下的加速度,都处于完全失重状态.超重、失重现象的解释,实际上就是牛顿第二定律的应用!关键:做好受力分析!解析:依题意,当重物的重力等于弹簧的弹力时,电压表的示数为零,飞船加速运动的过程中,重物也随之加速,则重物的和外力不为零,即当重物合外力不为零时,电压表有示数!飞船在竖直加速升空的过程中,弹簧上的重物与飞船有同样的加速度,对重物受力分析,如图所示,由牛顿第二定律,有:N-mg=ma,a竖直向上;若飞船在竖直方向上减速返回地面,则飞船的加速度方向仍是竖直向上的,故A选项的说法正确!当飞船在轨道上运动的时候,飞船处于完全失重状态,则弹簧对重物的弹力为零,地球对重物的万有引力产生一个使重物与飞船一起作圆周运动的向心加速度,当取重物受到的万有引力近似等于重物≈g.,的重力时(当忽略地球的自转时,可以认为地球表面附近物体的重力与万有引力近似相等),a向故D选项正确.。

高考物理解题方法讲与练3应用牛顿第二定律的常用方法(含解析)

高考物理解题方法讲与练3应用牛顿第二定律的常用方法(含解析)

应用牛顿第二定律的常用方法李仕才专题三:应用牛顿第二定律的常用方法1.应用牛顿第二定律的常用方法——合成法、分解法(一)合成法合成法需要首先确定研究对象,画出受力分析图,将各个力按照力的平行四边形定则在加速度方向上合成,直接求出合力,再根据牛顿第二定律列式求解,此方法被称为合成法,具有直观简便的特点.(二)分解法分解法需确定研究对象,画出受力分析图,根据力的实际作用效果,将某一个力分解成两个分力,然后根据牛顿第二定律列式求解,此方法被称为分解法.分解法是应用牛顿第二定律解题的常用方法,但此法要求对力的作用效果有着清楚的认识,要按照力的实际效果进行分解.例1如图所示,沿水平方向做匀变速直线运动的车厢中,悬挂小球的悬线偏离竖直方向37°角,球和车厢相对静止,球的质量为m=1 kg.(g=10 m/s2,sin37°=0.6,cos37°=0.8)求:(1)车厢运动的加速度并说明车厢的运动情况;(2)悬线对球的拉力.解析球和车厢相对静止,它们的运动情况相同,由于对球的受力情况知道的较多,故应以球为研究对象.通过对小球受力分析,可以确定小球的加速度,即车厢的加速度不确定,但车厢的运动情况还与初速度方向有关,因此车厢的运动性质具有不确定性.深入细致的审题是防止漏解和错解的基础.(1)解法一:合成法以球为研究对象,受力如图甲所示.球受两个力作用,重力mg和线的拉力F T,由球随车一起沿水平方向做匀变速直线运动,故其加速度沿水平方向,合外力沿水平方向.做出mg和F T合成的平行四边形如图甲所示,由数学知识得球所受的合力为F合=mg tan37°.由牛顿第二定律F合=ma得球的加速度为a=F合m=g tan37°=7.5m/s2,方向水平向右.故车厢可能向右做匀加速直线运动,也可能向左做匀减速直线运动.解法二:分解法以球为研究对象,画出受力图,如图乙所示.绳的拉力在竖直方向和水平方向上分别产生两个效果,一是其竖直分力F1和小球的重力平衡,二是其水平分力F2使小球产生向右的加速度,故F T cos37°=mg,F T sin37°=ma,解得a=g tan37°=7.5 m/s2,故车厢可能向右做匀加速直线运动,也可能向左做匀减速直线运动.(2)由受力图可得,线对球的拉力大小为F T=mgcos37°=12.5 N.答案(1)见解析(2)12.5 N2.正交分解法正交分解法需确定研究对象,画出受力分析图,建立直角坐标系,将相关作用力投影到相互垂直的两个坐标轴上,然后在两个坐标轴上分别求合力,再根据牛顿第二定律列式求解,此方法被称为正交分解法.直角坐标系的选取,原则上是任意的,但坐标系建立的不合适,会给解题带来很大的麻烦,如何快速准确地建立坐标系,要依据题目的具体情境而定,正交分解的最终目的是为了合成.当物体受到两个以上的力作用而产生加速度时,通常采用正交分解法解题.为减少矢量的分解,建立坐标系时,确定x轴的正方向常有以下两种选择.(1)分解力而不分解加速度分解力而不分解加速度,通常以加速度a的方向为x轴的正方向,建立直角坐标系,将物体所受的各个力分解在x轴和y轴上,分别求得x轴和y轴上的合力F x和F y.根据力的独立作用原理,各个方向上的力分别产生各自的加速度,得F x=ma,F y=0.例2如图所示,小车在水平面上以加速度a向左做匀加速直线运动,车厢内用OA、OB 两根细绳系住一个质量为m的物体,OA与竖直方向的夹角为θ,OB是水平的.求OA、OB 两绳的拉力F T1和F T2的大小.解析m的受力情况及直角坐标系的建立如图所示(这样建立只需分解一个力),注意到a y=0,则有F T1sinθ-F T2=ma,F T1cosθ-mg=0,解得F T1=mgcosθ,F T2=mg tanθ-ma.答案F T1=mgcosθF T2=mg tanθ-ma(2)分解加速度而不分解力物体受几个互相垂直的力的作用,应用牛顿运动定律求解时,若分解的力太多,则比较繁琐,所以在建立直角坐标系时,可根据物体的受力情况,使尽可能多的力位于两坐标轴上而分解加速度a,得a x和a y,根据牛顿第二定律得F x=ma x,F y=ma y,再求解.这种方法一般是以某个力的方向为x轴正方向时,其他的力都落在或大多数落在两个坐标轴上而不需要再分解的情况下应用.例3如图所示,倾角为θ的光滑斜面固定在水平地面上,质量为m的物块A叠放在物体B上,物体B的上表面水平.当A随B一起沿斜面下滑时,A、B保持相对静止.求B对A 的支持力和摩擦力.解析 当A 随B 一起沿斜面下滑时,物体A 受到竖直向下的重力mg 、B 对A 竖直向上的支持力F N 和水平向左的摩擦力F f 的作用而随B 一起做加速运动.设B 的质量为M ,以A 、B 为整体,根据牛顿第二定律有(m +M )g sin θ=(m +M )a ,得a =g sin θ.将加速度沿水平方向和竖直方向进行分解,如图所示.则a x =a cos θ=g sin θcos θ,a y =a sin θ=g sin 2θ,所以F f =ma x =mg sin θcos θ,由mg -F N =ma y =mg sin 2θ,得F N =mg cos 2θ.答案 mg sin θcos θ mg cos 2θ3.整体法和分隔法如果系统是由几个物体组成,它们有相同的加速度,在求它们之间的作用力时,往往是先用整体法求它们的共同加速度,再用分隔法求它们之间的作用力.例4如图所示,质量为2m 的物体A 与水平地面间的摩擦可忽略不计,质量为m 的物体B 与地面间的动摩擦因数为μ,在水平推力F 的作用下,A 、B 做匀加速直线运动,则A 对B 的作用力为多大?解析 以A 、B 整体为研究对象进行受力分析,受重力G 、支持力F N 、水平向右的推力F 、水平向左的摩擦力F f (F f =μmg ).设加速度为a ,根据牛顿第二定律得F -F f =3ma . 以B 为研究对象进行受力分析,受重力G B 、支持力F N B 、A 对B 水平向右的作用力F AB 、水平向左的摩擦力F fB (F fB =μmg ).根据牛顿第二定律得F AB -F fB =ma .联立以上各式得F AB =F +2μmg 3. 答案 F +2μmg34.极限分析法在处理临界问题时,一般用极限法,特别是当某些题目的条件比较隐蔽、物理过程又比较复杂时.例5如图所示,质量为M的木板上放着一质量为m的木块,木块与木板间的动摩擦因数为μ1,木板与水平地面间的动摩擦因数为μ2.若要将木板从木块下抽出,则加在木板上的力F至少为多大?解析木板与木块通过摩擦力联系,只要当两者发生相对滑动时,才有可能将木板从木块下抽出.此时对应的临界状态是:木板与木块间的摩擦力必定是最大静摩擦力F f m(F f m=μ1mg),且木块运动的加速度必定是两者共同运动时的最大加速度a m.以木块为研究对象,根据牛顿第二定律得F f m=ma m.①a m也就是系统在此临界状态下的加速度,设此时作用在木板上的力为F0,取木板、木块整体为研究对象,则有F0-μ2(M+m)g=(M+m)a m.②联立①、②式得F0=(M+m)(μ1+μ2)g.当F>F0时,必能将木板抽出,即F>(M+m)(μ1+μ2)g时,能将木板从木块下抽出.答案F>(M+m)(μ1+μ2)g5.假设法假设法是解物理问题的一种重要方法.用假设法解题,一般依题意从某一假设入手,然后用物理规律得出结果,再进行适当的讨论,从而得出正确答案.例6如图所示,火车车厢中有一个倾角为30°的斜面,当火车以10 m/s2的加速度沿水平方向向左运动时,斜面上质量为m的物体A保持与车厢相对静止,求物体所受到的静摩擦力.(取g=10 m/s2)解析物体受三个力作用:重力mg、支持力F N和静摩擦力F f,因静摩擦力的方向难以确定,且静摩擦力的方向一定与斜面平行,所以假设静摩擦力的方向沿斜面向上.根据牛顿第二定律,在水平方向上有F N sin30°-F f cos30°=ma.①在竖直方向上有F N cos30°+F f sin30°=mg.②由①、②式得F f=-5(3-1)m,负号说明摩擦力F f的方向与假设的方向相反,即沿斜面向下.答案-5(3-1)m6.传送带类问题的分析方法例7如图所示,传送带与地面倾角θ=37°,从A 到B 长度为16 m ,传送带以10 m/s 的速率逆时针转动.在传送带上端A 处无初速度地放一个质量为0.5 kg 的物体,它与传送带之间的动摩擦因数为0.5.求物体从A 运动到B 所需要时间是多少?(sin37°=0.6,co s37°=0.8,g =10 m/s 2)分析传送带逆时针转动,在物体加速到速度等于传送带速度之前,物体受到沿斜面方向向下的摩擦力,这一动力学条件是在审题过程中容易发现的,当物体的速度达到传送带速度之后,物体受到的摩擦力会发生怎样的变化呢?这是审题过程中要注意研究的问题.解析 物体放在传送带上后,开始的阶段,由于传送带的速度大于物体的速度,物体所受的摩擦力沿传送带向下,受力如图甲所示,物体由静止加速,由牛顿第二定律得mg sin θ+μmg cos θ=ma 1解得a 1=10 m/s 2物体加速至与传送带相同的速度需要的时间为t 1=v a 1=1010s =1 s 物体加速到与传送带相同的速度经过的位移为s =12a 1t 21=5 m由于μ<tan θ(μ=0.5,tan θ=0.75),物体在重力作用下将继续加速运动,当物体速度大于传送带的速度时,物体受到沿传送带向上的摩擦力,受力如 图乙所示由牛顿第二定律得mg sin θ-μmg cos θ=ma 2解得a 2=2 m/s 2设后一阶段物体滑至底端所用的时间为t 2,由L -s =vt 2+12a 2t 22 解得t 2=1 s(t 2=-11 s 舍去)所以,物体从A 运动到B 所用时间t =t 1+t 2=2 s.答案 2 s规律总结传送带类问题的求解思路和技巧解决传送带类问题的关键是找准临界情况,即物体与传送带速度相等时,此时物体受到的摩擦力会发生突变,有时是摩擦力的大小发生突变(传送带水平放置),有时是摩擦力的方向发生突变(传送带倾斜放置,如例7),然后正确运用运动学知识即可顺利求解.。

“牛顿第二定律”考点例析

“牛顿第二定律”考点例析

点评 运用牛顿第二定律解题时 , 要 注意F 、 m、 的同体关 系。本题恒力盼 别作用在m 、 m 及m. + m 上 ,产生的加速度各不相同 ,应由牛顿第二定律确 定, 因此解题时一定要 明确研究对象。 例2 一个物体 由长为f - 1 . 0 m,倾角 = 3 0 o 的斜 面顶点从静止开始下滑 ,已知物体和斜 面间动摩擦 因数 = 0 . 3 5 , 取g = l O m / s z , 求物体 滑到斜面底 端时所 需时间及速率。 解析 物 体受 力分 析 如 图所示 ; 设物体沿斜面下滑 的
于( )
B. 旦

A + m
C. 堕
D a

分析
m a,
设水平恒力为 由牛顿第二定律公式 =
得F = ml a l , F - m  ̄, ( ml + m 2 ) 0 。
1 . 控制 变量 法 : 为 了研究加速度和力 的关 系 , 以 及加速度 和质量 的关系 , 运用控制变量法进行 实验 。 即在实验 中先保持质量一定 ,研究加速度和力的关 系; 再保持力一定 , 研究加速度和质量 的关 系。控制 变量法是研究 多个物理量之间关 系常用 的重要实验
2 . 1 N的定义 : 使质量是 l k g 的物体 产生l m / s : 加 速
度 的 力 的大 小 为 1 N, 即I N = l k g ・ m / s : 。
考 点 二 对牛 顿 第 二 定 律 的理 解
上 。( 3 ) 建立正交坐标系, 通常取物体运动方 向或加 速度方 向作为 轴的正方 向来正交分解各物理量 , 当 题 中各量 的方向跟规定 的正方 向相同时取正值 ; 反 之, 取负值 。( 4 ) 根据 牛顿第二定律分别在 轴 和y 轴 上列 出方程 , 必要时还需列出其他辅助方程 。( 5 ) 统 单位制后 , 求解方程 , 并对计算结果进行检验或讨 论, 判 断是否符合物理实际。

牛顿第二定律的应用常见题型与解题方法(王老师原创)非常全面,经典..

牛顿第二定律的应用常见题型与解题方法(王老师原创)非常全面,经典..

牛顿第二定律的应用第一讲一、两类动力学问题1.1.已知物体的受力情况求物体的运动情况:已知物体的受力情况求物体的运动情况:已知物体的受力情况求物体的运动情况:根据物体的受力情况求出物体受到的合外力,然后应用牛顿第二定律F=ma 求出物体的加速度,再根据初始条件由运动学公式就可以求出物体的运动情况––物体的速度、位移或运动时间。

件由运动学公式就可以求出物体的运动情况––物体的速度、位移或运动时间。

2.2.已知物体的运动情况求物体的受力情况:已知物体的运动情况求物体的受力情况:已知物体的运动情况求物体的受力情况:根据物体的运动情况,应用运动学公式求出物体的加速度,然后再应用牛顿第二定律求出物体所受的合外力,进而求出某些未知力。

进而求出某些未知力。

求解以上两类动力学问题的思路,可用如下所示的框图来表示:求解以上两类动力学问题的思路,可用如下所示的框图来表示:第一类第一类 第二类第二类典型例题: 例1、如图所示,用F =12 N 的水平拉力,使物体由静止开始沿水平地面做匀加速直线运动. 已知物体的质量m =2.0 kg ,物体与地面间的动摩擦因数μ=0.30. 求:求:(1)物体加速度a 的大小;的大小; (2)物体在t =2.0s 时速度v 的大小.例2、列车在机车的牵引下沿平直铁轨匀加速行驶,在100s 内速度由5.0m/s 增加到15.0m/s.(1)求列车的加速度大小.)求列车的加速度大小.(2)若列车的质量是1.01.0××106kg kg,机车对列车的牵引力是,机车对列车的牵引力是1.51.5××105N ,求列车在运动中所受的阻力大小.,求列车在运动中所受的阻力大小.二、正交分解法在牛顿第二定律中的应用例3、如图所示,质量为m 的人站在自动扶梯上,扶梯正以加速度a 向上减速运动,向上减速运动,a a 与水平方向的夹角为θ,求人所受到的支持力和摩擦力.求人所受到的支持力和摩擦力.三、整体法与隔离法在牛顿第二定律中的应用 物体的受力情况力情况 物体的加速度a 物体的运动情况动情况F 求内力:先整体后隔离求内力:先整体后隔离例4、如图所示,两个质量相同的物体1和2,紧靠在一起放在光滑的水平面上,如果它们分别受到水平推力F1和F2的作用,而且F1F1>>F2F2,则,则1施于2的作用力的大小为(的作用力的大小为( )A .F1B .F2C .(F1+F2F1+F2))/2D D..(F1-F2F1-F2))/2求外力:先隔离后整体求外力:先隔离后整体例5、如图所示,质量为m 的物块放在倾角为θ的斜面上,斜面的质量为M M ,斜面与物块无摩擦,地面光滑。

牛顿第二定律_例题详解

牛顿第二定律_例题详解

牛顿第二定律一、牛顿第二定律1.内容:物体的加速度与所受合外力成正比,与物体的质量成反比,加速度的方向与合外力的方向相同.2.公式:F=ma3、对牛顿第二定律理解:(1)F=ma中的F为物体所受到的合外力.(2)F=ma中的m,当对哪个物体受力分析,就是哪个物体的质量,当对一个系统做受力分析时,如果F是系统受到的合外力,则m是系统的合质量.(3)F=ma中的F与a有瞬时对应关系,F变a则变,F大小变,a则大小变,F方向变a也方向变.(4)F=ma中,F的单位是N,m的单位是kg,a的单位是m/s2.【例1】如图所示,轻绳跨过定滑轮(与滑轮问摩擦不计)一端系一质量为m的物体,一端用F的拉力,结果物体上升的加速度为a1,后来将F的力改为重力为F的物体,m向上的加速度为a2则()A.a1=a2 ;B.a1>a2 C.a1<a2 D.无法判断二、突变类问题(力的瞬时性)(1)物体运动的加速度a与其所受的合外力F有瞬时对应关系,每一瞬时的加速度只取决于这一瞬时的合外力,(2)中学物理中的“绳”和“线”,是理想化模型,具有如下几个特性:A.轻:即绳(或线)的质量和重力均可视为等于零,同一根绳(或线)的两端及其中间各点的张为大小相等。

B.不可伸长:即无论绳所受拉力多大,绳子的长度不变,绳子中的张力可以突变。

(3)中学物理中的“弹簧”和“橡皮绳”,也是理想化模型,具有如下几个特性:A.轻:即弹簧(或橡皮绳)的质量和重力均可视为等于零,同一弹簧的两端及其中间各点的弹力大小相等。

B.弹簧既能承受拉力,也能承受压力(沿着弹簧的轴线),橡皮绳只能承受拉力。

不能承受压力。

C、由于弹簧和橡皮绳受力时,要发生形变需要一段时间,所以弹簧和橡皮绳中的弹力不能发生突变。

【例2】如图(a)所示,一质量为m的物体系于长度分别为l1、12的两根细绳上,l1的一端悬挂在天花板上,与竖直方向夹角为θ,l2水平拉直,物体处于平衡状态,现将l2线剪断,求剪断瞬间物体的加速度。

12 牛顿第二定律

12 牛顿第二定律

§3.2 牛顿第二定律要点一、对牛顿第二定律的进一步理解牛顿第二定律明确了物体的受力情况和运动情况之间的定量关系.联系物体的受力情况和运动情况的桥梁或纽带就是加速度.可从以下几个方面理解牛顿第二定律:【例1】如图(1)所示,一质量为m的物体系于长度分别为L1、L2的两根细线上,L1的一端悬挂在天花板上,与竖直方向夹角为θ,L2水平拉直,物体处于平衡状态.现将L2线剪断,求剪断瞬间物体的加速度.(1)下面是某同学对该题的某种解法:解:设L1线上拉力为T1,L2线上拉力为T2,重力为mg,物体在三力作用下处于平衡状态,T1cos θ=mg,T1sin θ=T2,解得T2=mgtan θ,剪断L2线的瞬间,T2突然消失,物体在T2反方向上获得加速度,因此mgtan θ=ma,加速度a=gtan θ,方向与T2方向相反.你认为这个结果正确吗?说明理由.(2)若将图(1)中的细线L1改为长度相同、质量不计的轻弹簧,如图(2)所示,其他条件不变,求解的步骤和结果与(1)完全相同,即a=gtan θ,你认为这个结果正确吗?请说明理由.【针对训练11】(2011年甘肃省武威六中月考)如图所示,A、B两物块质量均为m,用一轻弹簧相连,将A用长度适当的轻绳悬挂于天花板上,系统处于静止状态,B物块恰好与水平桌面接触,此时轻弹簧的伸长量为x,现将悬绳剪断,则下列说法正确的是() A.悬绳剪断瞬间A物块的加速度大小为0B.悬绳剪断瞬间A物块的加速度大小为gC.悬绳剪断后A物块向下运动距离x时速度最大D.悬绳剪断后A物块向下运动距离2x时速度最大要点二、应用牛顿第二定律解题时的常用方法1.合成法根据牛顿第二定律知,物体的加速度由物体所受合外力决定,若物体只受两个力作用而产生加速度时,可直接应用平行四边形定则求合外力,合外力的方向即为加速度的方向.2.正交分解法:即把一个矢量分解在两个互相垂直的坐标轴上的方法.(1)正交分解法是解决动力学问题的最基本的方法,物体在受到三个或三个以上的不在同一直线上的力作用时,一般都采用正交分解法.(2)牛顿第二定律的分量式:F合x=ma x,F合y=ma y;(3)为了减少矢量的分解,建立坐标系时,确定x轴正方向主要有以下两种方法:①分解力而不分解加速度,此种方法一般规定加速度a的方向为x轴正方向;②分解加速度而不分解力,把加速度分解在x轴和y轴上.在建立坐标系时,不管选取哪个方向为x轴正方向,所得的最后结果都是一样的,但是为了方便解题,我们应考虑尽量减少矢量的分解,即要尽量使较多的矢量在坐标轴上.【例2】如图所示,传送带与地面的夹角θ=37°,从A到B长度为16 m,传送带以10 m/s的速率逆时针转动,在传送带上端A无初速度地放一个质量为m=0.5 kg的小物体,它与传送带之间的动摩擦因数为0.5.求物体从A运动到B所需时间是多少?(sin 37°=0.6,cos 37°=0.8,g 取10 m/s2)【针对训练21】(2010年福建省师大附中模拟)在一粗糙斜面上,斜面的倾斜角为θ,如图(甲)所示.现用沿斜面向上的力F拉弹簧的另一端,通过传感器得到物体A运动的加速度a与F的关系图象,如图(乙)所示,已知当拉力为3F1时,物体的加速度为a1.假设物体A与斜面间的最大静摩擦力等于滑动摩擦力,重力加速度为g,求:(1)物体A的质量;(2)物体A与斜面间的动摩擦因数.【针对训练22】(能力题)如图所示,质量为m 的人站在自动扶梯上,扶梯正以加速度a 向上减速运动,a 与水平方向的夹角为θ,求人受的支持力和摩擦力.【高考鉴赏】(2010年全国卷Ⅰ,15)如图,轻弹簧上端与一质量为m 的木块1相连,下端与另一质量为M 的木块2相连,整个系统置于水平放置的光滑木板上,并处于静止状态.现将木板沿水平方向突然抽出,设抽出后的瞬间,木块1、2的加速度大小分别为a 1、a 2.重力加速度大小为g ,则有( C )A .a 1=g ,a 2=gB .a 1=0,a 2=gC .a 1=0,a 2=m +M M gD .a 1=g ,a 2=m +M Mg 【课堂练习】1.如图所示,A 、B 质量均为m ,中间有一轻质弹簧相连,A 用绳悬于O 点,当突然剪断OA 绳时,关于A 物体的加速度,下列说法正确的是( C )A .0B .gC .2gD .无法确定2.搬运工人沿粗糙斜面把一个物体拉上卡车,当力沿斜面向上,大小为F时,物体的加速度为a 1;若保持力的方向不变,大小变为2F 时,物体的加速度为a 2,则( D )A .a 1=a 2B .a 1<a 2<2a 1C .a 2=2a 1D .a 2>2a 13.(2010年厦门质检)如图,一辆有动力驱动的小车上有一水平放置的弹簧,其左端固定在小车上,右端与一小球相连.设在某一段时间内小球与小车相对静止且弹簧处于压缩状态.若忽略小球与小车间的摩擦力,则在此段时间内小车可能是( D )①向右做加速运动 ②向右做减速运动 ③向左做加速运动 ④向左做减速运动A .①②B .③④C .①③D .①④4.(拓展探究题)如图所示是一种汽车安全带控制装置的示意图,当汽车处于静止或匀速直线运动时,摆锤竖直悬挂,锁棒水平,棘轮可以自由转动,安全带能被拉动.当汽车突然刹车时,摆锤由于惯性绕轴摆动,使得锁棒锁定棘轮的转动,安全带不能被拉动.若摆锤从图中实线位置摆到虚线位置,汽车的可能运动方向和运动状态是( B )A .向左行驶、突然刹车B .向右行驶、突然刹车C .向左行驶、匀速直线运动D .向右行驶、匀速直线运动5.如图所示,斜劈形物体A 的质量为M ,放在水平地面上,质量为m 的粗糙物块B 以某一初速度沿斜劈的斜面向上运动,至速度为零后又加速返回,而斜劈始终保持静止,则物块B 上、下滑动的整个过程中,以下说法不正确的是( A )A .地面对斜劈A 的摩擦力方向先向左后向右B .地面对斜劈A 的摩擦力方向没有改变C .地面对斜劈A 的支持力总小于(M +m)gD .物块B 上、下滑动时的加速度大小不同,方向相同6.(2009年全国卷Ⅱ)两物体甲和乙在同一直线上运动,它们在0~0.4 s 时间内的vt 图象如图所示.若仅在两物体之间存在相互作用,则物体甲与乙的质量之比和图中时间t 1分别为( B )A.13和0.30 s B .3和0.30 s C.13和0.28 s D .3和0.28 s 7.(原创题)在2010年广州亚运会上,我国运动员何雯娜在蹦床比赛中取得骄人的成绩.现将弹簧床对运动员的弹力F 的大小随时间t 的变化规律通过传感器用计算机绘制出来,如图所示.重力加速度g 取10 m/s 2,试结合图象求:运动员在运动过程中的最大加速度.8.(2011年济南模拟)如图所示,火车厢中有一个倾角为30°的斜面,当火车以10 m/s 2的加速度沿水平方向向左运动时,斜面上质量为m 的物体还是保持与车厢相对静止,求物体所受到的静摩擦力.(取g =10 m/s 2)。

牛顿第二定律的应用

牛顿第二定律的应用

牛顿第二定律的应用牛顿第二定律[先填空]1.牛顿第二定律:物体的加速度跟受到的成正比,跟物体的成反比.2.数学表达式:(1)等式:F=kma,F=ma(F=ma),k=1的条件:F、m、a的单位均选.合(2)公式的理解:①物体同时受到几个力的作用,公式中的F应为;②加速度a的方向始终与力F的方向;可以选取两个相互正交的方向,分别列出牛顿第二定律的分量形式,即:3.1N的定义:使质量是的物体产生加速度的力,规定为N.[后思考]为什么赛车的质量比一般的小汽车质量小的多,而且还安装一个功率很大的发动机?如图5­3­1所示,一质量为m的物体放在光滑的水平面上,在一水平向左的力F作用下弹簧被压缩,物体处于静止状态.探讨1:突然撤掉力F的瞬间,物体的速度为多少?有加速度吗?探讨2:加速度的方向如何?大小为多少?1.牛顿第二定律揭示了加速度与力和质量的定量关系,指明了加速度大小和方向的决定因素.2.牛顿第二定律的五点说明1.关于牛顿第二定律,下列说法中正确的是()A.牛顿第二定律的表达式F=ma在任何情况下都适用B.某一瞬时的加速度,不但与这一瞬时的外力有关,而且与这一瞬时之前或之后的外力有关C.在公式F=ma中,若F为合外力,则a等于作用在该物体上的每一个力产生的加速度的矢量和D.物体的运动方向一定与物体所受合外力的方向一致2.(多选)关于速度、加速度、合力的关系,下列说法正确的是()A.原来静止在光滑水平面上的物体,受到水平推力的瞬间,物体立刻获得加速度B.加速度的方向与合力的方向总是一致的,但与速度的方向可能相同,也可能不同C.在初速度为0的匀加速直线运动中,速度、加速度与合力的方向总是一致的D.合力变小,物体的速度一定变小3.(多选)一个质量为2kg的物体,放在光滑水平面上,受到两个水平方向的大小为5N和7N的共点力作用,则物体的加速度可能是()A.1m/s2B.4m/s2C.7m/s2D.10m/s211.力和运动的关系1.如图所示,轻弹簧下端固定在水平面上。

牛顿第二定律及应用(一)牛顿第二定律的理解及动力学两类基本问题

牛顿第二定律及应用(一)牛顿第二定律的理解及动力学两类基本问题

学案12 牛顿第二定律及应用(一)牛顿第二定律的理解及动力学两类基本问题一、概念规律题组1.下列对牛顿第二定律的表达式F =ma 及其变形公式的理解,正确的是( ) A.由F =ma 可知,物体所受的合力与物体的质量成正比,与物体的加速度成反比B.由m =Fa 可知,物体的质量与其所受的合力成正比,与其运动的速度成反比C.由a =Fm 可知,物体的加速度与其所受的合力成正比,与其质量成反比D.由m =Fa可知,物体的质量可以通过测量经的加速度和它所受的合力而求出2.下列说法正确的是( )A .物体所受合力为零时,物体的加速度可以不为零B .物体所受合力越大,速度越大C .速度方向、加速度方向、合力方向总是相同的D .速度方向可与加速度方向成任何夹角,但加速度方向总是与合力方向相同图13.如图1所示,质量为20 kg 的物体,沿水平面向右运动,它与水平面间的动摩擦因数为0.1,同时还受到大小为10 N 的水平向右的力的作用,则该物体(g 取10 m /s 2)( ) A .受到的摩擦力大小为20 N ,方向向左 B .受到的摩擦力大小为20 N ,方向向右 C .运动的加速度大小为1.5 m /s 2,方向向左 D .运动的加速度大小为0.5 m /s 2,方向向右 4.关于国秒单位制,下列说法正确的是( ) A .kg ,m /s ,N 是导出单位 B .kg ,m ,h 是基本单位C .在国际单位制中,质量的单位可以是kg ,也可以是gD .只有在国际单位制中,牛顿第二定律的表达式才是F =ma二、思想方法题组图25.(2011·淮南模拟)如图2所示,两个质量相同的物体1和2紧靠在一起,放在光滑水平面上,如果它们分别受到水平推力F 1和F 2的作用,而且F 1>F 2,则1施于2的作用力大小为( ) A .F 1 B .F 2 C .12(F 1+F 2) D .12(F 1-F 2)图36.如图3所示,在光滑水平面上,质量分别为m 1和m 2的木块A 和B 之下,以加速度a 做匀速直线运动,某时刻空然撤去拉力F ,此瞬时A 和B 的加速度a 1和a 2,则( ) A .a 1=a 2=0 B .a 1=a ,a 2=0C .a 1=m 1m 1+m 2a ,a 2=m 2m 1+m 2aD .a 1=a ,a 2=-m 1m 2a一、对牛顿第二定律的理解矢量性公式F=ma是矢量式,任一时刻,F与a总同向瞬时性a与F对应同一时刻,即a为某时刻的加速度时,F为该时刻物体所受的合外力因果性F是产生加速度a的原因,加速度a是F作用的结果同一性有三层意思:(1)加速度a是相对同一个惯性系的(一般指地面);(2)F=ma中,F、m、a对应同一个物体或同一个系统;(3)F=ma中,各量统一使用国际单位独立性(1)作用于物体上的每一个力各自产生的加速度都满足F=ma(2)物体的实际加速度等于每个力产生的加速度的矢量和(3)力和加速度在各个方向上的分量也满足F=ma即F x=ma x,F y=ma y【例1】(2010·上海·11)将一个物体以某一速度从地面竖直向上抛出,设物体在运动过程中所受空气阻力大小不变,则物体()A.刚抛出时的速度最大B.在最高点的加速度为零C.上升时间大于下落时间D.上升时的加速度等于下落时的加速度[规范思维]【例2】(2009·宁夏理综·20)如图4所示,一足够长的木板静止在光滑水平面上,一物块静止在木板上,木板和物块间有摩擦.现用水平力向右拉木板,当物块相对木板滑动了一段距离但仍有相对运动时,撤掉拉力,此后木板和物块相对于水平面的运动情况为()图4A.物块先向左运动,再向右运动B.物块向左运动,速度逐渐增大,直到做匀速运动C.木板向右运动,速度逐渐变小,直到做匀速运动D.木板和物块的速度都逐渐变小,直到为零[规范思维][针对训练1] (2009·上海综合·7)图5如图5所示为蹦极运动的示意图.弹性绳的一端固定在O点,另一端和运动员相连.运动员从O点自由下落,至B点弹性绳自然伸直,经过合力为零的C点到达最低点D,然后弹起.整个过程中忽略空气阻力.分析这一过程,下列表述正确的是()①经过B点时,运动员的速率最大②经过C点时,运动员的速率最大③从C点到D点,运动员的加速度增大④从C点到D点,运动员的加速度不变A.①③B.②③C.①④D.②④二、动力学两类基本问题1.分析流程图2.应用牛顿第二定律的解题步骤(1)明确研究对象.根据问题的需要和解题的方便,选出被研究的物体.(2)分析物体的受力情况和运动情况.画好受力分析图,明确物体的运动性质和运动过程.(3)选取正方向或建立坐标系.通常以加速度的方向为正方向或以加速度方向为某一坐标轴的正方向.(4)求合外力F合.(5)根据牛顿第二定律F合=ma列方程求解,必要时还要对结果进行讨论.特别提醒(1)物体的运动情况是由所受的力及物体运动的初始状态共同决定的.(2)无论是哪种情况,加速度都是联系力和运动的“桥梁”.(3)如果只受两个力,可以用平行四边形定则求其合力;如果物体受力较多,一般用正交分解法求其合力.如果物体做直线运动,一般把力分解到沿运动方向和垂直于运动方向;当求加速度时,要沿着加速度的方向处理力即一般情况不分解加速度;特殊情况下当求某一个力时,可沿该力的方向分解加速度.【例3】如图6图6所示,一质量为m的物块放在水平地面上.现在对物块施加一个大小为F的水平恒力,使物块从静止开始向右移动距离x后立即撤去F,物块与水平地面间的动摩擦因数为μ,求:(1)撤去F时,物块的速度大小;(2)撤去F后,物块还能滑行多远.【例4】(2010·安徽理综·22)图7质量为2 kg的物体在水平推力F的作用下沿水平面做直线运动,一段时间后撤去F,其运动的v-t图象如图7所示.g取10 m/s2,求:(1)物体与水平面间的动摩擦因数μ;(2)水平推力F的大小;(3)0~10 s内物体运动位移的大小.[规范思维][针对训练2] (2009·江苏·13)航模兴趣小组设计出一架遥控飞行器,其质量m=2 kg,动力系统提供的恒定升力F=28 N.试飞时,飞行器从地面由静止开始竖直上升.设飞行器飞行时所受的阻力大小不变,g取10 m/s2.(1)第一次试飞,飞行器飞行t1=8 s时到达高度H=64 m,求飞行器所受阻力f的大小.(2)第二次试飞,飞行器飞行t2=6 s时遥控器出现故障,飞行器立即失去升力.求飞行器能达到的最大高度h.(3)为了使飞行器不致坠落到地面,求飞行器从开始下落到恢复升力的最长时间t3.【基础演练】1.(2011·海南华侨中学月考)在交通事故的分析中,刹车线的长度是很重要的依据,刹车线是汽车刹车后,停止转动的轮胎在地面上发生滑动时留下来的痕迹.在某次交通事故中,汽车的刹车线的长度是14 m,假设汽车轮胎与地面间的动摩擦因数恒为0.7,g取10 m/s2,则汽车开始刹车时的速度为()A.7 m/s B.10 m/s C.14 m/s D.20 m/s2.(2011·吉林长春调研)竖直向上飞行的子弹,达到最高点后又返回原处,假设整个运动过程中,子弹受到的阻力与速度的大小成正比,则子弹在整个运动过程中,加速度大小的变化是()A.始终变大B.始终变小C.先变大后变小D.先变小后变大3.如图8甲所示,在粗糙水平面上,物体A在水平向右的外力F的作用下做直线运动,其速度—时间图象如图乙所示,下列判断正确的是()图8A.在0~1 s内,外力F不断增大B.在1~3 s内,外力F的大小恒定C.在3~4 s内,外力F不断增大D.在3~4 s内,外力F的大小恒定图94.(2009·广东理基·4)建筑工人用图9所示的定滑轮装置运送建筑材料,质量为70.0 kg的工人站在地面上,通过定滑轮将20.0 kg的建筑材料以0.500 m/s2的加速度拉升,忽略绳子和定滑轮的质量及定滑轮的摩擦,则工人对地面的压力大小为(g取10 m/s2)()A.510 N B.490 NC.890 N D.910 N图105.如图10所示,足够长的传送带与水平面间夹角为θ,以速度v0逆时针匀速转动.在传送带的上端轻轻放置一个质量为m的小木块,小木块与传送带间的动摩擦因数μ<tanθ.则图中能客观地反映小木块的速度随时间变化关系的是()图116.(2011·福建福州质检)商场搬运工要把一箱苹果沿倾角为θ的光滑斜面推上水平台,如图11所示.他由斜面底端以初速度v0开始将箱推出(箱与手分离),这箱苹果刚好能滑上平台.箱子的正中间是一个质量为m的苹果,在上滑过程中其他苹果对它的作用力大小是()A.mg B.mg sinθC.mg cosθ D.0题号 1 2 3 4 5 6答案7.在某一旅游景区,建有一山坡滑草运动项目.该山坡可看成倾角θ=30°的斜面,一名游客连同滑草装置总质量m=80 kg,他从静止开始匀加速下滑,在时间t=5 s内沿斜面滑下的位移x=50 m.(不计空气阻力,取g=10 m/s2).问:(1)游客连同滑草装置在下滑过程中受到的摩擦力F f为多大?(2)滑草装置与草皮之间的动摩擦因数μ为多大?(3)设游客滑下50 m后进入水平草坪,试求游客在水平面上滑动的最大距离.【能力提升】图128.如图12所示,有一长度x=1 m、质量M=10 kg的平板小车静止在光滑的水平面上,在小车一端放置一质量m=4 kg的小物块,物块与小车间的动摩擦因数μ=0.25,要使物块在2 s内运动到小车的另一端,求作用在物块上的水平力F是多少?(g取10 m/s2)图139.质量为10 kg的物体在F=200 N的水平推力作用下,从粗糙斜面的底端由静止开始沿斜面运动,斜面固定不动,与水平地面的夹角θ=37°,如图13所示.力F作用2 s后撤去,物体在斜面上继续上滑了1.25 s后,速度减为零.求:物体与斜面间的动摩擦因数μ和物体的总位移x.(已知sin 37°=0.6,cos 37°=0.8,g=10 m/s2)10.(2010.天星调研)图14如图14所示,长为L的薄木板放在长为L的正方形水平桌面上,木板的两端与桌面的两端对齐,一小木块放在木板的中点,木块、木板质量均为m,木块与木板之间、木板与桌面之间的动摩擦因数都为μ.现突然施加水平外力F在薄木板上将薄木板抽出,最后小木块恰好停在桌面边上,没从桌面上掉下.假设薄木板在被抽出的过程中始终保持水平,且在竖直方向上的压力全部作用在水平桌面上.求水平外力F的大小.学案12牛顿第二定律及应用(一)牛顿第二定律的理解及动力学两类基本问题【课前双基回扣】1.CD[牛顿第二定律的表达式F=ma表明了各物理量之间的数量关系,即已知两个量,可求第三个量,但物体的质量是由物体本身决定的,与受力无关;作用在物体上的合力,是由和它相互作用的物体作用产生的,与物体的质量和加速度无关.故排除A、B,选C、D.]2.D [由牛顿第二定律F =ma 知,F 合为零,加速度为零,由惯性定律知速度不一定为零;对某一物体,F 合越大,a 越大,由a =ΔvΔt知,a 大只能说明速度变化率大,速度不一定大,故A 、B 项错误;F 合、a 、Δv 三者方向一定相同,而速度方向与这三者方向不一定相同,故C 项错误,D 项正确.] 3.AD4.BD [所谓导出单位,是利用物理公式和基本单位推导出来的,力学中的基本单位只有三个,即kg 、m 、s ,其他单位都是由这三个基本单位衍生(推导)出来的,如“牛顿”(N)是导出单位,即1 N =1 kg·m/s 2(F =ma ),所以题中A 项错误,B 项正确.在国际单位制中,质量的单位只能是kg ,C 错误.在牛顿第二定律的表达式中,F =ma (k =1)只有在所有物理量都采用国际单位制时才能成立,D 项正确.]5.C [将物体1、2看做一个整体,其所受合力为:F 合=F 1-F 2,设质量均为m ,由第二定律得F 1-F 2=2ma ,所以a =F 1-F 22m以物体2为研究对象,受力情况如右图所示..由牛顿第二定律得F 12-F 2=ma ,所以F 12=F 2+ma =F 1+F 22.] 6.D [两物体在光滑的水平面上一起以加速度a 向右匀速运动时,弹簧的弹力F 弹=m 1a ,在力F 撤去的瞬间,弹簧的弹力来不及改变,大小仍为m 1a ,因此对A 来讲,加速度此时仍为a ;对B 物体,取向右为正方向,-m 1a =m 2a 2,a 2=-m 1m 2a ,所以只有D 项正确.]思维提升1.牛顿第二定律是一个实验定律,其公式也就不能像数学公式那样随意变换成不同的表达式.2.a =Δv Δt 是a 的定义式,a =Fm 是a 的决定式,a 虽可由a =Δv Δt进行计算,但a 决定于合外力F 与质量m .3.在牛顿运动定律的应用中,整体法与隔离法的结合使用是常用的一种方法. 4.对于弹簧弹力和细绳弹力要区别开.5.在牛顿运动定律的应用中,整体法与隔离法的结合使用是常用的一种方法,其常用的一种思路是:利用整体法求出物体的加速度,再利用隔离法求出物体间的相互作用力. 【核心考点突破】例1 A [最高点速度为零,物体受重力,合力不可能为零,加速度不为零,故B 项错.上升时做匀减速运动,h =12a 1t 21,下落时做匀加速运动,h =12a 2t 22,又因为a 1=mg +f m ,a 2=mg -f m,所以t 1<t 2,故C 、D 错误.根据能量守恒,开始时只有动能,因此开始时动能最大,速度最大,故A 项正确.][规范思维] 物体的加速度与合外力存在瞬时对应关系;加速度由合外力决定,合外力变化,加速度就变化. 例2 BC [由题意可知,当撤去外力,物块与木板都有向右的速度,但物块速度小于木板的速度,因此,木板给物块的动摩擦力向右,使物块向右加速,反过来,物块给木板的动摩擦力向左,使木板向右减速运动,直到它们速度相等,没有了动摩擦力,二者以共同速度做匀速运动,综上所述,选项B 、C 正确.][规范思维] 正确建立两物体的运动情景,明确物体的受力情况,进而确定加速度的大小方向,再进行运动状态分析.例3 (1) 2(F -μmg )x m (2)(Fμmg-1)x解析 (1)设撤去F 时物块的速度大小为v ,根据牛顿第二定律,物块的加速度 a =F -μmg m又由运动学公式v 2=2ax ,解得v = 2(F -μmg )xm(2)撤去F 后物块只受摩擦力,做匀减速运动至停止,根据牛顿第二定律,物块的加速度a ′=-μmg m =-μg 由运动学公式v ′2-v 2=2a ′x ′,且v ′=0解得x ′=(Fμmg-1)x[规范思维] 本题是已知物体的受力情况,求解运动情况,受力分析是求解的关键.如果物体的加速度或受力情况发生变化,则要分段处理,受力情况改变时的瞬时速度即是前后过程的联系量.多过程问题画出草图有助于解题.例4 (1)0.2 (2)6 N (3)46 m解析 (1)设物体做匀减速直线运动的时间为Δt 2、初速度为v 20、末速度为v 2t 、加速度为a 2,则a 2=v 2t -v 20Δt 2=-2 m/s 2①设物体所受的摩擦力为F f ,根据牛顿第二定律,有 F f =ma 2② F f =-μmg ③联立②③得μ=-a 2g=0.2④(2)设物体做匀加速直线运动的时间为Δt 1、初速度为v 10、末速度为v 1t 、加速度为a 1,则a 1=v 1t -v 10Δt 1=1 m/s 2⑤根据牛顿第二定律,有F +F f =ma 1⑥ 联立③⑥得F =μmg +ma 1=6 N(3)解法一 由匀变速直线运动位移公式,得x =x 1+x 2=v 10Δt 1+12a 1Δt 21+v 20Δt 2+12a 2Δt 22=46 m 解法二 根据v -t 图象围成的面积,得x =(v 10+v 1t 2×Δt 1+12×v 20×Δt 2)=46 m[规范思维] 本题是牛顿第二定律和运动图象的综合应用.本题是已知运动情况(由v -t 图象告知运动信息)求受力情况.在求解两类动力学问题时,加速度是联系力和运动的桥梁,受力分析和运动过程分析是两大关键,一般需列两类方程(牛顿第二定律,运动学公式)联立求解. [针对训练]1.B 2.(1)4 N (2)42 m (3)322s(或2.1 s)【课时效果检测】1.C 2.B 3.BC 4.B 5.D [m 刚放上时,mg sin θ+μmg cos θ=ma 1.当m 与带同速后,因带足够长,且μ<tan θ,故m 要继续匀加速.此时,mg sin θ-μmg cos θ=ma 2,a 2<a 1,故D 正确.]6.C [以箱子和里面所有苹果作为整体来研究,受力分析得,Mg sin θ=Ma ,则a =g sin θ,方向沿斜面向下;再以质量为m 的苹果为研究对象,受力分析得,合外力F =ma =mg sin θ,与苹果重力沿斜面的分力相同,由此可知,其他苹果给它的力的合力应与重力垂直于斜面的分力相等,即mg cos θ,故C 正确.]7.(1)80 N (2)315(3)100 3 m8.16 N解析 由下图中的受力分析,根据牛顿第二定律有F -F f =ma 物① F f ′=Ma 车②其中F f =F f ′=μmg ③由分析图结合运动学公式有x 1=12a 车t 2④x 2=12a 物t 2⑤x 2-x 1=x ⑥由②③解得a 车=1 m/s 2⑦ 由④⑤⑥⑦解得a 物=1.5 m/s 2所以F =F f +ma 物=m (μg +a 物)=4×(0.25×10+1.5) N =16 N. 9.0.25 16.25 m解析 设力F 作用时物体沿斜面上升的加速度大小为a 1撤去力F 后其加速度大小变为a 2,则: a 1t 1=a 2t 2①有力F 作用时,物体受力为:重力mg 、推力F 、支持力F N1、摩擦力F f1,如图所示.在沿斜面方向上,由牛顿第二定律可得: F cos θ-mg sin θ-F f1=ma 1②F f1=μF N1′=μ(mg cos θ+F sin θ)③撤去力F 后,物体受重力mg 、支持力F N2、摩擦力F f2,在沿斜面方向上,由牛顿第二定律得: mg sin θ+F f2=ma 2④F f2=μF N2′=μmg cos θ⑤联立①②③④⑤式,代入数据得:a 2=8 m/s 2 a 1=5 m/s 2 μ=0.25物体运动的总位移x =12a 1t 21+12a 2t 22=⎝⎛⎭⎫12×5×22+12×8×1.252 m =16.25 m 10.6μmg解析 设小木块离开薄木板之前的过程,所用时间为t ,小木块的加速度大小为a 1,移动的距离为x 1,薄木板被抽出后,小木块在桌面上做匀减速直线运动,所用时间为t ′,设其加速度大小为a 2,移动的距离为x 2,有 μmg =ma 1① μmg =ma 2②即有a 1=a 2=μg ③根据运动学规律有x 1=x 2,t =t ′④所以x 1=12μgt 2⑤x 2=12μgt 2⑥根据题意有x 1+x 2=12L ⑦解得t 2=L2μg⑧设小木块没有离开薄木板的过程中,薄木板的加速度为a ,移动的距离为x ,有 x =12at 2⑨ 根据题意有x =x 1+12L ⑩联立⑤⑧⑨⑩得a =3μg ⑪对薄木板,根据牛顿第二定律得F -3μmg =ma , 解得F =6μmg . 易错点评1.应用牛顿第二定律时,要注重对定律“四性”的理解.特别是“瞬时性”是常考要点之一;此外“独立性”也是解题中经常用到的.2.解决动力学两类基本问题的关键是找到加速度这一桥梁,除此之外,还应注意受力分析和运动过程分析,最好能画出受力分析图和运动过程草图.。

牛顿第二定律必须掌握的几个问题

牛顿第二定律必须掌握的几个问题

牛顿第二定律的应用举例问题1:必须弄清牛顿第二定律的矢量性。

牛顿第二定律F=ma 是矢量式,加速度的方向与物体所受合外力的方向相同。

在解题时,可以利用正交分解法进行求解。

例1、如图1所示,电梯与水平面夹角为300,当电梯加速向上运动时,人对梯面压力是其重力的6/5,则人与梯面间的摩擦力是其重力的多少倍?分析与解:对人受力分析,他受到重力mg 、支持力F N 和摩擦力F f 作用,如图1所示.取水平向右为x 轴正向,竖直向上为y 轴正向,此时只需分解加速度,据牛顿第二定律可得:F f =macos300, F N -mg=masin300 因为56=mgF N ,解得53=mgF f .另例: 如图所示,在箱内倾角为α的固定光滑斜面上用平行于斜面的细线固定一质量为m 的木块。

求:⑴箱以加速度a 匀加速上升,⑵箱以加速度a 向左匀加速运动时,线对木块的拉力F 1和斜面对箱的压力F 2各多大?解:⑴a 向上时,由于箱受的合外力竖直向上,重力竖直向下,所以F 1、F 2的合力F 必然竖直向上。

可先求F ,再由F 1=Fsin α和F 2=F cos α求解,得到:F 1=m(g+a)sin α,F 2=m(g+a)cos α显然这种方法比正交分解法简单。

⑵a 向左时,箱受的三个力都不和加速度在一条直线上,必须用正交分解法。

可选择沿斜面方向和垂直于斜面方向进行正交分解,(同时正交分解a ),然后分别沿x 、y 轴列方程求F 1、F 2: F 1=m (g sin α-a cos α),F 2=m (g cos α+a sin α)还应该注意到F 1的表达式F 1=m (g sin α-a cos α)显示其有可能得负值,这意味这绳对木块的力是推力,这是不可能的。

这里又有一个临界值的问题:当向左的加速度a ≤g tan α时F 1=m (g sin α-a cos α)沿绳向斜上方;当a >g tan α时木块和斜面不再保持相对静止,而是相对于斜面向上滑动,绳子松弛,拉力为零。

牛顿第二定律专题(含经典例题)

牛顿第二定律专题(含经典例题)

牛顿第二定律专题1.考纲解读2.考点整合考点一牛顿第二定律1.定律内容:物体的加速度跟物体成正比,跟物体的成反比,加速度的方向跟合外力的方向 .2.牛顿第二定律的矢量性、瞬时性、独立性.“矢量性”是指加速度的方向取决,“瞬时性”是指加速度和合外力存在着关系,合外力改变,加速度相应改变,“独立性”是指作用在物体上的每个力都独立的产生各自的加速度,合外力的加速度即是这些加速度的矢量和.3.牛顿第二定律的分量式:ΣFx=max,ΣFy=may[特别提醒]:F是指物体所受到的合外力,即物体所有受力的合力.加速度与合外力是瞬时对应关系,即有合外力就有加速度,没有合外力就没有加速度.【例1】如图所示,小车上固定着三角硬杆,杆的端点固定着一个质量为m的小球.当小车水平向右的加速度逐渐增大时,杆对小球的作用力的变化(用F1至F4变化表示)可能是下图中的(OO'沿杆方向)【解析】对小球进行受力分析,小球受重力和杆对小球的弹力,弹力在竖直方向的分量和重力平衡,小球在水平方向的分力提供加速度,故C正确.【答案】C【方法点评】本题考查牛顿第二定律,只要能明确研究对象,进行受力分析,根据牛顿第二定律列方程即可.考点二力、加速度和速度的关系在直线运动中当物体的合外力(加速度)与速度的方向时,物体做加速运动,若合外力(加速度)恒定,物体做运动,若合外力(加速度)变化,则物体做运动,当物体的合外力(加速度)方向与速度的方向时,物体做减速运动.若合外力(加速度)恒定,物体做运动,若合外力(加速度)变化,则物体做运动.[特别提醒]:要分析清楚物体的运动情况,必须从受力着手,因为力是改变运动状态的原因,求解物理问题,关键在于建立正确的运动情景,而这一切都必须从受力分析开始.[例2] 如图3-12-1所示,自由下落的小球下落一段时间后,与弹簧接触,从它接触弹簧开始,到弹簧压缩到最短的过程中,小球的速度、加速度的变化情况如何?最低点的加速度是否比g大?(实际平衡位置,等效成简谐运动)图3-12-1[解析]小球接触弹簧后受两个力,向下的重力mg和向上的弹力.(如图3-12-2(a)所示刚开始时,当<mg时,小球合力向下,,合力不断变小,因而加速度减小,由于a方向与v0同向,因此速度继续变大.当=mg时,如图3-12-2(b)所示,合力为零,加速度为零,速度达到最大值.之后小球由于惯性仍向下运动,继续压缩弹簧,但>mg,合力向上,由于加速度的方向和速度方向相反,小球做加速度增大的减速运动,因此速度减小到零弹簧被压缩到最短.如图3-12-2(c)所示[答案]小球压缩弹簧的过程,合外力的方向先向下后向上,大小是先变小至零后变大,加速度的方向也是先向下后向上,大小是先变小后变大,速度的方向始终向下,大小是先变大后变小. (还可以讨论小球在最低点的加速度和重力加速度的关系)[方法技巧]要分析物体的运动情况一定要从受力分析着手,再结合牛顿第二定律进行讨论、分析.对于弹簧类问题的求解,最好是画出弹簧的原长,现在的长度,这样弹簧的形变长度就一目了然,使得求解变得非常的简单明了.考点三瞬时问题瞬时问题主要是讨论细绳(或细线)、轻弹簧(或橡皮条)这两种模型.细绳模型的特点:细绳不可伸长,形变,故其张力可以,弹簧(或橡皮条)模型的特点:形变比较,形变的恢复需要时间,故弹力 .[特别提醒]求解瞬时问题,首先一定要分清类型,然后分析变化之前的受力,再分析变化瞬间的受力,这样就可以很快求解.[例3]如图5所示,质量为m的小球被水平绳AO和与竖直方向成θ角的轻弹簧系着处于静止状态,现用火将绳AO烧断,在绳AO烧断的瞬间,下列说法正确的是()A.弹簧的拉力B.弹簧的拉力C.小球的加速度为零D.小球的加速度[解析]烧断OA之前,小球受3个力,如图所示,烧断细绳的瞬间,绳子的张力没有了,但由于轻弹簧的形变的恢复需要时间,故弹簧的弹力不变,A正确。

力的合成与分解牛顿第二定律的推导

力的合成与分解牛顿第二定律的推导

力的合成与分解牛顿第二定律的推导牛顿第二定律是经典力学中的重要定律,描述了物体受力时的运动情况。

在解释力的合成与分解时,可以运用牛顿第二定律的推导过程。

本文将通过推导牛顿第二定律,讨论力的合成与分解的原理及应用。

首先,让我们回顾一下牛顿第二定律的表达式:F = ma其中,F代表物体所受合力的大小,m是物体的质量,a是物体的加速度。

根据这个公式,我们可以推导出力的合成与分解的原理。

一、力的合成当一个物体受到多个力的作用时,这些力可以合成为一个合力。

合力的大小和方向取决于原力的大小和方向。

假设有两个力作用于物体上,分别是F1和F2,它们的大小分别是F1和F2,方向可以表示为θ1和θ2。

根据三角形法则,我们可以将两个力的合力表示为:F = √(F1² + F2² + 2F1F2cos(θ1-θ2))在上述公式中,F代表合力的大小,F1和F2为原力的大小,θ1和θ2为原力的方向。

这个公式可以应用于多个力的合成,只需要不断迭代计算即可得到最终的合力。

二、力的分解与合成相反,力的分解是将一个力拆解为多个力的过程。

这个方法常被用于研究物体在斜面上的运动,或者寻找物体在不同方向上受力的分量。

假设有一个力F作用于物体上,它的大小为F,方向为θ。

我们可以将这个力分解为两个力F₁和F₂,它们的大小和方向分别为:F₁ = FcosθF₂ = Fsinθ这里,F₁和F₂分别表示力F在水平方向上和垂直方向上的分量。

通过分解一个力,我们可以更好地理解物体在不同方向上所受到的力的作用效果。

三、示例应用现在,让我们通过一个具体的例子来说明力的合成与分解的应用。

假设有一块质量为m的物体沿着水平方向受到一个力F₁的作用,同时受到一个与地面成θ角的力F₂的作用。

根据牛顿第二定律,我们可以得到物体的加速度a:F = F₁ + F₂ = ma在这个例子中,我们可以看到F₂是F的分力,它使物体具有沿斜面运动的趋势。

将F分解为垂直和水平方向上的分力F₁和F₂,我们可以更清楚地分析物体在这两个方向上的受力情况。

牛顿第二定律的拓展公式及应用

牛顿第二定律的拓展公式及应用

牛顿第二定律的拓展公式及应用广西宾阳中学(530400) 王爱明 在运用牛顿第二定律解题时,通常是在系统内的物体加速度相同时采用整体法,如果系统内的物体加速度不同时,则采用隔离法,笔者对牛顿第二定律作分析,导出其拓展公式,运用该拓展公式,则不论系统内各物体的加速度是否相同都能用整体法求解.1.拓展公式的推导设有两个质量为m1、m2的物体,分别受到外力F1、F2的作用,相互间的作用力为F21和F12,加速度为a1、a2,则:对m1有F1+F21=m1a1对m2有F2+F12=m2a2∴F1+F2+F12+F21=m1a1+m2a2式中F1+F2是两物体所受外力的矢量和,记为∑F.由牛顿第三定律得:F21=-F12.故有∑F=m1a1+m2a2,可以证明此式可以推广到有多个物体的情形,于是得出结论:∑F=m1a1+m2a2+…其分量形式为∑F x=m1a1x+m2a2x+…∑F y=m1a1y+m2a2y+…这就是牛顿第二定律的拓展公式.2.拓展公式的应用牛顿第二定律的拓展公式,由于不涉及系统的内力,因而可以很方便地用来处理不涉及内力的多个物体运动问题.(1)求解物体的受力情况【例1】 如图1所示,倾角为θ的斜面体置于粗糙的水平面上,已知斜面体的质量为M,一质量为m的木块正沿斜面加速下滑,且下滑过程中斜面体保持静止,若木块与斜面体间的动摩擦因数为μ,则木块下滑过程中,地面对斜面的支持力多大?斜面体受地面的摩擦力多大? 分析与解:把M、m看作一个整体,对它们进行受力分析,如图2所示,由牛顿第二定律的拓展公式得:在水平方向f=m a x在竖直方向(M+m)g-N=ma y而a x=a・cosθ a y=a・sinθ 又a=g sinθ-gμcosθ∴N=(M+m)g-m sinθ(g sinθ-gμcosθ)f=m cosθ(g sinθ-gμcosθ)(2)求解物体的运动情况【例2】 如图3,大圆环质量为M.经过环心的竖直钢丝上套有一个质量为m的小球,将小球以初速v竖直向上抛出,欲使大圆环对地无压力,求小球上升的加速度和上升所能达到的最大高度(设大环直径足够大).分析与解:把小球和环看作一个整体,其受力情况如图4所示,由牛顿第二定律的拓展公式得(M+m)g-N=m a当大圆环对地无压力时,即N=0时,则a=m+Mmg,方向竖直向下.小球上升所能达到的最大高度为H=v22a =v2m2(m+M)g.以上例题,若用隔离法,解题过程显得复杂且混乱、费时,容易出差错,但用整体法———牛顿第二定律的拓展公式,由于不必考虑物体间的相互作用,所以显得巧妙、简捷.・2・★疑难点击。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

应用牛顿第二定律分量形式解题例析
F合=ma是牛顿第二定律的矢量形式,它体现了加速度方向与合外力方向的一致性,在具体应用到两个相互垂直的方向时,可得到牛顿第二定律的平面直角坐标形式:Fx=max,Fy=may。

下面举两例牛顿第二定律的分量形式在求解高考题中的具体应用:
例1:(2013?安徽高考)如图所示,细线的一端系一质量为m的小球,另一端固定在倾角为θ的光滑斜面体顶端,细线与斜面平行。

在斜面体以加速度a 水平向右做匀加速直线运动的过程中,小球始终静止在斜面上,小球受到细线的拉力T和斜面的支持力FN 分别为(重力加速度为g)()
A.T=m(gsinθ+acosθ)FN=m(gcosθ-asinθ)
B.T=m(gcosθ+asinθ)FN=m(gsinθ-acosθ)
C.T=m(acosθ-gsinθ)FN=m(gcosθ+asinθ)
D.T=m(asinθ-gcosθ)FN=m(gsinθ+acosθ)
解析:如图,沿斜面方向与垂直斜面方向建立直角坐标系,正交分解力与加速度:
根据牛顿第二定律分量式得:T-mgsinθ=macos
θ,mgcosθ-FN=masinθ,
解得:T=m(gsinθ+acosθ),FN=m(gcosθ-asin θ),答案选A。

当研究对象具有多个物体时,可应用系统牛顿第二定律的平面直角坐标形式:
Fx=m1a1x+m2a2x+m3a3x+…
Fy=m1a1y+m2a2y+m3a3y+…
式中Fx等于系统中各物体质量与其加速度沿x 轴的分量乘积之和,Fy等于系统中各物体质理与其加速度沿y轴的分量乘积之和。

例2:(2010年上海高考)倾角θ=37°,质量M=5kg的粗糙斜面位于水平地面上,质量m=2kg的木块置于斜面顶端,从静止开始匀加速下滑,经t=2s到达底端,运动路程L=4m,在此过程中斜面保持静止(sin37°=0.6、cos37°=0.8、g取10m/s2),求:(1)地面对斜面的摩擦力大小与方向;
(2)地面对斜面的支持力大小。

解析:木块沿斜面做匀加速直线运动,设加速度为a,由位移时间关系:
L=at2
得:a==2m/s2
以斜面和物体组成的系统为研究对象进行受力分
析,把物块加速度沿水平方向和竖直方向进行分解,斜面的加速度为零,根据系统牛顿第二定律的分量式:f=macosθ+M×0
(M+m)g-N=masinθ+M×0
代入数据得:N=67.6N,f=3.2N
应用牛顿第二定律的分量形式,以某一物体或系统为研究对象,通过分解加速度而减少力的分解个数,对整体分析避免隔离法的琐碎,减少了繁复的演算,提高了解题的效率与准确性。

(作者单位:黑龙江省肇源县第一中学)。

相关文档
最新文档