LM615IN中文资料

合集下载

61580中文手册

61580中文手册

特 征• 全集成MIL-STD-1553接口终端• 灵活的处理器/存储器接口 • 标准的4K ×16以及可选的 12K ×16或8K ×17RAM • 可选的RAM 奇偶产生/校验 • 自动BC 重试• 可编程的BC 间隔定时 • BC 帧自动重复• 灵活的RT 数据缓存 • 可编程的非法化 • 可任选的消息监控器 • 同时制RT/监控器模式通道A 通道B 参见命名信息以获得可用的存储器图1 ACE 模块图表1注:注1到注6适用于接收器差分电阻及差分电容的说明⑴该说明包括接收器及发送器(在内部是连在一起的)⑵阻抗的测试是直接在BU-65170/61580××混合器的管脚TX/RX A(B)及TX/RX A(B)之间进行的。

⑶假定混合器所有的电源及地输入端都被连接。

⑷该说明适用于上电及非上电两种情况⑸该说明假定是2V rms的平衡、差分、正旋输入的情况,适用频率范围是75KHz到1MHz。

⑹所给的最小电阻及最大电容参数在整个工作范围内都是满足要求的,但未经在整个工作范围内测试。

⑺假定共模电压的频率范围是直流到2MHz,在短截线一侧的隔离变压器的管脚上(直接耦合或变压器耦合)测得,以混合器的地为参考点。

使用的变压器必须是DDC推荐的或能提供相同的最小CMRR(共模抑制比)的其它变压器。

⑻对最小消息间间隔定时来说,其典型值在软件的控制下可以增加到(65535us 减去消息本身的时间),其单位增量是1us。

⑼是软件可编程的(4个选项),包括RT-to-RT暂停(发送指令的中间奇偶位到发送RT状态的中间同步位之间的时间)。

⑽是对+5V逻辑及收发器而言的,对通道A及通道B来说,是+5V。

⑾是从指令字的中间奇偶位过零点开始到RT状态字的中间同步位过零点为止进行测量的。

⑿对BU-65171、BU-61581、及BU-61586的说明与对BU-65170、BU-61580、及BU-61585的说明是分别完全相同的。

映翰通InRouter615-S系列增强型工业路由器说明书

映翰通InRouter615-S系列增强型工业路由器说明书

1InRouter615-S 系列支持3G/4G 、Wi-Fi 和链路备份的增强型工业路由器InRouter615-S(简称IR615-S)系列产品,是集3G/4G 网络、虚拟专用网等技术于一体的物联网无线路由器产品,是映翰通公司IR6x5系列路由器的增强版。

该设备凭借3G/4G 无线广域网以及Wi-Fi 无线局域网等技术,提供不间断的多种网络接入能力,以其全面的安全性和无线服务等特性,实现多达万级的设备联网,为真正意义上的设备信息化提供数据的高速通路。

该产品的设计完全满足了无人值守现场通信的需求,采用软硬件看门狗及多级链路检测机制保证通信的稳定性和可靠性,同时支持映翰通Device Manager “设备云”管理平台,方便用户远程管理,充分保证了设备管理的智能化。

多种VPN 技术保证了数据传输的安全性,防止数据被恶意访问或篡改。

人性化的WEB 配置界面设计,方便用户配置,极大地降低了用户使用难度。

多种网络接入、易于部署和完善的远程管理功能在物联网建设浪潮中熠熠生辉。

应用方案IR615-S 系列路由器特别适合大规模的设备联网,应用众多领域,例如快递柜终端分支机构联网商业联网市政供热、燃气阀室水处理安防刑侦智能交通智能电网智能制造光伏新能源工业自动化,等领域应用工业LTE 路由器2导轨安装示意图,可选壁挂和挂耳安装,请参照“快速安装手册”+ 支持4G LTE CAT4高速网络和LTECAT1、CATM 低速网络 + 支持WLAN+ 5个以太网口,WAN/LAN/VLAN + 支持多种VPN 功能+ 多种链路冗余设计,保障设备网络通信不间断+ 负载均衡,有效提升带宽 + 支持SNMP 及映翰通Device Manager 云平台,实现高效的远程集中网管+ 支持高效完成大规模设备网络部署 + 尺寸小巧紧凑,便于安装+ 全工业化设计,无惧恶劣条件的挑战 +● 提供不间断的多种网络接入能力提供快速的LTE 广域网链路,实现业务的连续性和广域网的多样性。

LXT6155LE

LXT6155LE

LXT6155155Mbps SDH/SONET/ATM TransceiverDatasheetThe LXT6155is a high speed fully integrated transceiver designed for155Mbps SDH/SONET/ ATM transmission system applications.The LXT6155provides a LVPECL interface for fiber optics modules,and a CMI interface for coax cable drive.These circuits are implemented using Level One’s proven low power3.3V CMOS analog and digital circuits.The transmitter incorporates a parallel-to-serial converter,a frequency multiplier PLL,CMI line encoders,and line interfaces for both coax cable and optical fiber.The receiver incorporates an adaptive equalizer,a clock recovery PLL,Loss of Signal(LOS)detector,CMI and NRZ decoders,a serial-to-parallel converter,and an SDH/SONET frame byte detector/aligner.At the system interface,the LXT6155offers both parallel8-bit and serial differential interfaces.The LXT6155also operates in either Hardware stand-alone mode or Software mode.Software mode is controlled by a serial microprocessor(µP)to program formats and operating/test modes. Product FeaturesApplicationsOC3/STM1SDH/SONET Cross Connects OC3/STM1SDH/SONET Add/Drop Mux OC3/STM1Transmission SystemsOC3/STM1Short Haul Serial LinksOC3/STM1ATM/WAN Transmission SystemsOC3/STM1ATM/WAN Access Systems FeaturesComplies with:—Bellcore SONET GR-253—ITU-T G.703/813/958STM1Two line interface formats:—Fiber LVPECL NRZ—Coax CMITransmit synthesizer PLL Receive clock recovery PLLAdaptive CMI equalizerAnalog circuitry for transformer driveProgrammable LOS functionCMI encoder and decoderSerial/Parallel and Parallel/SerialconversionByte alignment for SDH/SONET framesTwo modes of operation:—Microprocessor controlled;softwaremode—Stand-alone;hardware modeNo external crystal required.A19.44MHz crystal is optionalLow power consumption(less than760 mW typical)Operates from a single3.3V supply64pin LQFP packageOrder Number:249612-001January2001Information in this document is provided in connection with Intel®products.No license,express or implied,by estoppel or otherwise,to any intellectual property rights is granted by this document.Except as provided in Intel's T erms and Conditions of Sale for such products,Intel assumes no liability whatsoever,and Intel disclaims any express or implied warranty,relating to sale and/or use of Intel products including liability or warranties relating to fitness for a particular purpose,merchantability,or infringement of any patent,copyright or other intellectual property right.Intel products are not intended for use in medical,life saving,or life sustaining applications.Intel may make changes to specifications and product descriptions at any time,without notice.Designers must not rely on the absence or characteristics of any features or instructions marked"reserved"or"undefined."Intel reserves these for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them.The NAME OF PRODUCT may contain design defects or errors known as errata which may cause the product to deviate from published specifications.Current characterized errata are available on request.Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.Copies of documents which have an ordering number and are referenced in this document,or other Intel literature may be obtained by calling1-800-548-4725or by visiting Intel's website at .Copyright©Intel Corporation,2001*Third-party brands and names are the property of their respective owners.155Mbps SDH/SONET/ATM Transceiver—LXT6155 Contents1.0Pin Assignments and Signal Descriptions (8)2.0Functional Description (13)2.1Transmitter (13)2.1.1Transmitted Signal (13)2.1.1.1Fiber Based G.957/GR-253Transmission Systems (13)2.1.2Coax Based G.703/GR-253Transmission Systems (13)2.1.2.1CMI Encoding (14)2.1.3Tx Clock Monitoring (14)2.2Receiver (14)2.2.1Analog Front End and Timing Recovery (14)2.2.1.1CMI Mode (14)2.2.1.2NRZ Mode (15)2.2.2Receive Frame Detect and Byte Alignment (15)2.2.2.1Loss of Signal(LOS) (16)2.2.2.2Coax Interface (16)2.2.2.3Fiber Interface (16)2.3Clocks (18)2.3.1Parallel Mode (18)2.3.1.1Transmit Parallel Input Clock(TPICLK) (18)2.3.1.2Receive Parallel Output Clock(RPOCLK) (18)2.3.2Serial Mode (18)2.3.2.1Transmit Serial Input Clock(TSICLKP/TSICLKN) (18)2.3.2.2Receive Serial Output Clock(RSOCLKP/RSOCLKN) (18)2.3.3Crystal Reference Clock(XTALIN/XTALOUT) (19)2.4Jitter (19)2.4.1Jitter Tolerance (19)2.4.2Jitter Generation(Intrinsic Jitter) (19)2.4.3Jitter Transfer (19)2.5Operational Modes (19)2.5.1Hardware Mode (20)2.5.1.1PLL Clock Reference(CIS pin) (20)2.5.1.2Loopback Test(RLIS and LLIS pins) (21)2.5.1.3Line Interface Selection(MODE Pin) (21)2.5.1.4Parallel/Serial Mode Selection(SP pin) (21)2.5.1.5Tx Amplitude Trim (21)2.5.2Software Mode (22)2.5.2.1Serial Input Clock(SCLK) (22)2.5.2.2Chip Select Input(CS) (22)2.5.2.3Serial Input Word(SDI) (22)2.5.2.4Serial Output Word(SDO) (22)2.6Serial System Interface (23)2.7Parallel System Interface (23)2.8Loopback Modes (24)2.8.1Local Loopback (24)2.8.2Remote Loopback (25)LXT6155—155Mbps SDH/SONET/ATM Transceiver3.0Register Definitions (26)4.0Application Information (33)4.1Fiber Optic Module Interface (33)4.2Coax Interface (33)5.0Test Specifications (37)6.0Mechanical Specifications (48)7.0Notes (49)Figures1LXT6155Pin Assignments (8)2LXT6155System Interface (14)3Framing State (16)4Criteria for LOS Output (16)5Receive Frame Synchronization and Frame Pulse Position (17)6Example of CMI Encoded Binary Signal (17)7Hardware Mode (20)8Software Mode (23)9Serial Data Output Word Structure(Read Cycle:R/W=High) (23)10Serial Data Input Word Structure(Write Cycle:R/W=Low) (23)11Serial Interface (24)12Parallel Interface (24)13Local Loopback (25)14Remote Loopback (25)15Rx Digital2,Register#13(Address A<3:0>=11001) (31)16 3.3V LVPECL to3.3V LVPECL Interface (34)1775W Coax Cable Interface (35)18Transmit Parallel Input Data Timing(See Table28) (38)19Transmit Serial Input Data Timing(See Table28) (38)20Receive Serial Output Data Timing(See Table30) (40)21Receive Parallel Output Data Timing(See Table30) (40)22Microprocessor Input Timing Diagram (42)23Microprocessor Output Timing Diagram (42)24CMI Encoded Zero per G.703and STS-3 (43)25CMI Encoded One per G.703and STS-3 (43)26Jitter Tolerance (44)27Generation Measurement Filter Characteristics (45)28Typical Coax Jitter Transfer (46)29Typical Fiber Jitter Transfer (47)30LXT6155LE Package Specification (48)Revision HistoryLXT6155—155Mbps SDH/SONET/ATM Transceiver155Mbps SDH/SONET/ATM Transceiver —LXT6155LXT6155—155Mbps SDH/SONET/ATM Transceiver1.0Pin Assignments and Signal DescriptionsFigure 1.LXT6155Pin AssignmentsVBIAS RAVCC LOS LOCKROFP/CMIERR RDGND RDVCC ATST RPOS RNEG PVCC RSOCLKN RSOCLKP GND RPOD0RPOD148474645444342414039383736353433LXT6155LET V C CT R I N G 1T T I P 0T R I N G 0T G N DW E L LS U BT T I P 1H W S E LA D D R 1/L L I SA D D R 0/R L I SR A G N DR T I PR R I N GR A G N D R X I S H64636261605958575655545352515049XTALIN TAGND TXISH TAVCC TDVCC TSICLKP TSICLKNXTALOUT TPOS TNEG TDGND CS/MODE SCLK/SP SDI/CIS SDO/RIFETPID712345678910111213141516R P O D 2R P O D 4R P O D 5R P O D 6R P O D 7R P O C L KV C CR P O D 3T P I C L KT P I D 0T P I D 1T P I D 2T P I D 3T P I D 4T P I D 5T P I D 632313029282726252423222120191817(top view)155Mbps SDH/SONET/ATM Transceiver—LXT6155=High).Registertransactions through theµP interface are initiated by the falling edge ofthis signal.Line Interface Mode,hardware mode(HWSEL=Low).Sets lineinterface mode to LVPECL(MODE=Low)or CMI(MODE=High).13SCLK/SP DI TTL Serial Clock Input,software mode(HWSEL=High).SerialMicroprocessor uses this pin to clock in/out data.SCLK can be from0to4.096MHz.Serial/Parallel Select,hardware mode(HWSEL=Low).WhenSP=Low,serial systems interface is used.When SP=High,8bitparallel system interface is used.14SDI/CIS DI TTL Serial Input Data,software mode(HWSEL=High).The serial data isapplied to this pin when the LXT6155operates in software mode.SDI issampled on the rising edge of SCLK.Clock Input Select,hardware mode(HWSEL=Low).CIS sets thereference clock for centering the Rx PLL.If CIS=Low,then the LXT6155uses the transmit input clock as the reference.If CIS=High,then theLXT6155uses the crystal clock input(XTALIN)as the reference.15SDO/RIFE DI/O TTL Serial Output Data,software mode(HWSEL=High).The serial datafrom the on-chip register is output on this pin in software mode.Dataoutput is valid on the rising edge of SCLK.This pin goes to a highimpedance state when the serial port is being written to or when CS isHigh.Receive Input Frame Enabler,hardware mode(HWSEL=Low).Theframe detection option is available only in parallel mode.If RIFE=Low,then the LXT6155disables the frame detection,and byte alignment.IfRIFE=High,then the LXT6155enables the frame detection,and outputsRPOD bytes aligned to the SONET/SDH framer.This feature,if used,must be enabled prior to applying data to Rtip/Rring.1.DI=Digital Input;DO=Digital Output;DI/O=Digital Input/Output;AI=Analog Input;AO=Analog Output;AI/O=Analog Input/Output;S=Supply.2.TTL=Transistor-to-Transistor Logic(5V tolerant);LVPECL=Low-Voltage positive ECL.LXT6155—155Mbps SDH/SONET/ATM Transceiver16171819TPID7/TXTRIM3TPID6/TXTRIM2TPID5/TXTRIM1TPID4/TXTRIM0DITTLTransmit Parallel Input Data .Transmit data from an OverheadTerminator at parallel speed 19.44MHz,clocked in by TPICLK.TPID7is the most significant bit,and is the first bit to be sent.These pins should be grounded or not connected when the LXT6155is used in serial mode.Transmit Trim Controls ,in serial,hardware,coax mode only.These pins trim the amplitude of the line driver output from (nom -21%)to (nom +24%)in 3%steps.This feature is only enabled when pin #20(TXTRIMENA)is High.20TPID3/TXTRIMENA DI TTLTransmit Parallel Input Data .Transmit data from an OverheadTerminator at parallel speed 19.44MHz,clocked in by TPICLK.TPID7is the most significant bit,and is the first bit to be sent.These pins should be grounded or not connected when the LXT6155is used in serial mode.Transmit Trim Enable ,in serial,hardware,coax mode only.This pin enables the trimming of the line driver output by pins 16-19when high.212223TPID2TPID1TPID0DI TTLTransmit Parallel Input Data .Transmit data from an OverheadTerminator at parallel speed 19.44MHz,clocked in by TPICLK.TPID7is the most significant bit,and is the first bit to be sent.These pins should be grounded or not connected when the LXT6155is used in serial mode.24TPICLKDI TTLTransmit Parallel Input Clock .Parallel transmit clock at 19.44MHz.This pin is disabled when serial mode is selected and should be grounded or not connected.25VCC S Power Supply .26RPOCLKDOTTLReceive Parallel Output Clock .Parallel receive clock as recovered from received data.The clock is nominally 19.44MHz,synchronized with RPOD<7:0>.2728293031323334RPOD7RPOD6RPOD5RPOD4RPOD3RPOD2RPOD1RPOD0DO TTLReceive Parallel Output Data .RPOD<7:0>output aligned 8-bit bytes at RPOCLK clock rate.These pins are to be left open when serial mode is selected.RPOD7is the most significant bit,and is the first to arrive.35GND S Ground .36RSOCLKP DOLVPECLReceive Serial Output Clock .Serial receive clock as recovered from received data.The clock is nominally 155.52MHz,synchronized with output serial data RPOS and RNEG.37RSOCLKN 38PVCC S PECL Buffers Power Supply .39RNEG DOLVPECLReceive Serial Output Data,positive and negative .These two pins provide recovered data synchronized to receive serial output clocks RSOCLKP and RSOCLKN.These pins are tristated and should be left open when parallel mode is selected.40RPOS 41RDVCC S Receive Digital Power Supply .42RDGNDSReceive Digital Ground .Table 1.LXT6155Pin Descriptions (Continued)Pin #SymbolI/O 1Type 2Description1.DI =Digital Input;DO =Digital Output;DI/O =Digital Input/Output;AI =Analog Input;AO =Analog Output;AI/O =Analog Input/Output;S=Supply.2.TTL =Transistor-to-Transistor Logic (5V tolerant);LVPECL =Low-Voltage positive ECL.=Low),thispin is asserted (High)on the last A2byte in the (A1.....A1,A2.. (2)sequence in the RPOD<7:0>traffic.A1=1111,0110and A2=0010,1000inbinary.In software mode (HWSEL =High),this position isprogrammable.During coax operation,when frame detection is disabled(RIFE =0in HW/Reg #12,bit3=0),or in serial mode,this pin indicatesCMI line code errors.These pulses are 50 ns wide (active high).One ormore errors in 16consecutive bits will causes a single pulse.44LOCK DO TTL Receive Output PLL Lock .A High indicates receive PLL has locked to incoming data.A Low indicates receive PLL is not locked.45LOS DO TTL Loss of Signal .An alarm output signal (high)indicating incoming signalvoltage is weak or incoming data does not contain enough transitions.Insoftware mode (HWSEL =1)this pin can be configured to combine LOSand LOCK alarms.46RAVCC S Receive Analog Power Supply .47ATST -Analog Test .For factory test purposes only;do not connect.48VBIAS AI Analog Bias Input Voltage.This pin requires a 15K (1%)pull-down resistor to RAGND.49RXISH A0Analog Rx PLL External Cap.Connecting a capacitor to RAGND from this pincontrols the Rx PLL transfer function.This pin requires a 330nF cap toRAGND.50RAGND S Receive Analog Ground .51RRING AI Analog Receive Input Data,positive (RTIP)and negative (RRING).Accepts incoming signals (LVPECL or CMI)from the line interface.52RTIP 53RAGND S Receive Analog Ground .54ADDR0/RLIS DI TTL Address 0,software mode (HWSEL =High).This pin together withADDR1sets the chip select address.Up to 4LXT6155chips can beaddressed by the µP interface.Remote Loopback Input Select,hardware mode (HWSEL =Low).Together with LLIS sets LXT6155in a loopback test mode.See T able 455ADDR1/LLIS DI TTL Address 1,software mode (HWSEL =High).This pin together withADDR0sets the chip select address.Up to 4LXT6155chips can beaddressed by the µP interface.Local Loopback Input Select,hardware mode (HWSEL =Low).Together with RLIS sets the LXT6155in remote loopback mode.SeeTable 456HWSEL DI TTL Hardware/Software Mode Select .When HWSEL =High,LXT6155enters software (host)mode,and is ready to communicate with a serialmicroprocessor.When HWSEL =Low,LXT6155operates in hardwarestandalone mode (without a serial µP).57SUB S Reserved .Must be connected to GND.58WELL S Reserved .Must be connected to VCC.59TGND S Transmit Analog Ground .60TRING0AOTransmit Output Data,positive (TTIP0)and negative (TRING0).Differential CMI driver outputs for coax interface.61TTIP0Table 1.LXT6155Pin Descriptions (Continued)Pin #Symbol I/O 1Type 2Description1.DI =Digital Input;DO =Digital Output;DI/O =Digital Input/Output;AI =Analog Input;AO =Analog Output;AI/O =Analog Input/Output;S=Supply.2.TTL =Transistor-to-Transistor Logic (5V tolerant);LVPECL =Low-Voltage positive ECL.62TRING1DO Transmit Output Data,positive (TTIP1)and negative (TRING1).Differential LVPECL NRZ driver outputs for a fiber optic transceiver.63TTIP164TVCC S Transmit Analog Power Supply .Table 1.LXT6155Pin Descriptions (Continued)Pin #Symbol I/O 1Type 2Description 1.DI =Digital Input;DO =Digital Output;DI/O =Digital Input/Output;AI =Analog Input;AO =Analog Output;AI/O =Analog Input/Output;S=Supply.2.TTL =Transistor-to-Transistor Logic (5V tolerant);LVPECL =Low-Voltage positive ECL.2.0Functional DescriptionThe LXT6155is a front-end transceiver designed for155Mbps OC3/STM1/ATM transmissionapplications.Table2lists the standards with which the LXT6155is compliant.The LXT6155interfaces to either a fiber transceiver or a coax cable on the line side,and on thesystem side,to an SDH/SONET Overhead Terminator or an ATM UNI.The LXT6155can functionin Hardware stand-alone mode,or in Software mode controlled through an industry standardMotorola compatible4-wire serial microprocessor interface.The LXT6155can be set to operate in either CMI mode for the75Ω coax interface or NRZ modefor the optical transceiver interface.The operating mode can be set in either hardware mode byusing the MODE pin,or software mode by using Primary Control Register,bit0.2.1TransmitterIn serial mode,the LXT6155accepts both data(TPOS,TNEG)and clock signals(TSICLKP,TSICLKN).Serial clock signals are required for the LXT6155to run internal logic,reshape theline transmit pulses and generate the low-jitter clocks for Tx data generation.In parallel mode,the LXT6155accepts data TPID<7:0>and clock TPICLK.TPICLK is internallymultiplied by8to yield the155.52MHz clock for Tx data generation.Both serial and parallel clocks(TSICLKP/TSICLKN and TPICLK)must conform to the SONET/SDH standard frequency accuracy requirements.Depending on whether the selected media interface is coax or fiber,the data is CMI or NRZencoded respectively,and passed to the appropriate line drivers.The LXT6155line drivers arehigh-speed buffers that meet the CMI templates and industry standard LVPECL signalrequirements.The CMI output pins are TTIP0and TRING0,and the NRZ LVPECL pins,TTIP1and TRING1.2.1.1Transmitted SignalTransmitted signals conform to the standard templates listed in Table2.2.1.1.1Fiber Based G.957/GR-253Transmission SystemsThe LXT6155provides3.3V LVPECL compatible signals for interfacing to a fiber optictransceiver.Please refer to Application Information for interface schematics.2.1.2Coax Based G.703/GR-253Transmission SystemsThe LXT6155encodes and decodes CMI signals that are transmitted onto a75Ωcoax cablecompliant with STM1/STS-3CMI templates.Please refer to the CMI templates shown in Figures24and25.2.1.2.1CMI EncodingCoded Mark Inversion(CMI)is an encoding scheme adopted by SONET STS-3and SDH STM1standards.CMI encoding guarantees at least one transition per bit,thereby enhancing the clockrecovery process.CMI encodes a“0”with a midpoint positive transition,and a“1”as Low orHigh,in opposite polarity to the previous encoded“1”.Refer to Figures6,24and25for encodingand pulse template information.2.1.3Tx Clock MonitoringThe LXT6155provides transmit clock monitoring for both serial and parallel operating modes.When using the crystal clock as a reference,the LXT6155monitors the TSICLKP/TSICLKN or theTPICLK input(s)for transitions.If no transition is seen within200ns,the tx_clk_alarm flag will beset(reg#15)and the transmitter outputs ttip1/tring1or ttip0/tring0will stop sending data to the line.This condition will remain until the LXT6155detects clock transitions at the transmitter input(s)TSICLKP/TSICLKN or TPICLK.Transmit clock monitoring can be disabled in software modeonly.In remote loopback,transmit clock monitoring is disabled in SW and HW mode.In SW mode,whenusing transmit clocks as the receive PLL reference,the user must disable transmit clock monitoringby setting reg#1bit<0>low.2.2Receiver2.2.1Analog Front End and Timing Recovery2.2.1.1CMI ModeReceived data on RTIP/RRING goes through an adaptive equalizer.An adaptive equalizer andfadaptive Automatic Gain Control(AGC)compensate the frequency-and-cable length dependentloss in data signal,and reshapes the signal to the optimal waveform.A Phase Locked Loop(PLL)=High)CMI coding errors are indicated via theµP interface interrupt register:Reg#15,mode05.2.2.1.2NRZ ModeThe on chip adaptive equalizer is bypassed.Data goes straight to the clock recovery phase lockedloop.The PLL then performs clock recovery operation,comparing the data phase against the clockphase.This clock can be derived from XTALIN,TPICLK or TSICLK(÷8).The receive PLLrequires an external reference(e.g.transmit input clock or XTAL clock)to start up the clockrecovery process.The recovered clock is used to retime the data signals.When the recovered clock is within488ppmof the reference clock,the LOCK signal asserts.This alarm is also accessible on theµP interface asa status bit(Reg#15,mode0)and as an interrupt(Reg#15,mode05).Once the recovered clockhas been obtained and the NRZ data has been recovered,the LXT6155performs frame-detect-and-byte-alignment,and serial-to-parallel conversion.The LXT6155optionally provides output dataRPOD<7:0>aligned to the SDH/SONET byte boundary.The user has the option to enable/disablethe frame-alignment function in both hardware and software mode.The frame detect/bytealignment function generates the receive output frame pulse(ROFP).In HW mode=Low)ROFP asserts(high)on the third A2byte.In SW mode(HWSEL=High)this position isprogrammable via register#13,bits<6:3>.When byte alignment is disabled and the LXT6155is inCMI mode,the ROFP pin indicates CMI coding errors including polarity errors for ones andinversion errors for zeroes.The clock recovery PLL’s center frequency comes from either the local crystal or a stable transmitinput clock(TSICLKP/TSICLKN or TPICLK).If operated in loop-timed mode or remote loopbackmode,an external reference clock must be used to center the internal PLL clock.In remoteloopback,the receive reference remains either XTALIN or TSICLK or TPICLK,depending on thecontrol selection.If an independent and stable transmit clock is available,the designer has theoption of applying this clock to pin XTALIN to center the PLL,without the external crystal.The user can also replace the crystal by connecting the TPICLK(19.44MHz)signal to the XTALINpin.However,a local crystal is recommended for“keep alive”purposes in case the clock becomesunavailable.2.2.2Receive Frame Detect and Byte AlignmentReceive Frame Detection only operates in parallel mode,if Frame Detection is enabled.TheLXT6155provides aligned bytes RPOD<7:0>following the distinct SONET OC3/STM1framemarker word,3x A1,followed by3x A2,where A1=F6h and A2=28h.The Receive Output FramePulse(ROFP)asserts during the third A2byte,and de-asserts after one complete RPOCLK clockperiod.If this feature is used,it can be enabled in register#12bit<3>in software mode1,or bysetting the RIFE(pin15)high in hardware mode prior to applying data to Rtip/Rring.Twoconsecutive frames with correct frame words(A1...A1A2...A2)are required to change from an out-of-frame state(OOF)to an in-frame state.The OOF alarm is accessible in SW mode(HWSEL=High)as a status or interrupt signal(Reg#15).To declare an OOF condition,four consecutive1.For further details see register#12description for usage.frames with incorrect frame words are required.Byte alignment occurs when entering the in-frame state.In case of an OOF event,the byte alignment and frame pulse position are frozen.The ROFP output continues unchanged until re-entering the in-frame state.Figure 3.Framing2.2.2.1Loss of Signal (LOS)Loss of Signal provides an alarm signal indicating incoming signal voltage is weak or incoming data does not contain enough transitions.This signal is available in HW mode on pin #45and in SW mode as status and interrupt (Reg #15,modes 00and 05).2.2.2.2Coax InterfaceLoss of Signal provides an alarm output that indicates weak line input signal.The LOS signal asserts when the incoming signals fall below a specified loss threshold,and de-asserts when the line signal rises nominally 2dB above the assert threshold.The threshold is adjustable in SW mode (HWSEL =High)via the µProcessor interface.2.2.2.3Fiber InterfaceIf no transition is detected during any 3112bit times (20µsec),LOS asserts.LOS is cleared when two consecutive frame words with no LOS events between then are received.In SW mode(HWSEL =High)the assertion window is programmable from 128bits to 4096bits in four steps.The deassertion criteria can also be configured to 12.5%transition density.The 12.5%density is determined by receipt of at least 4transitions during a 32bit sliding window.Figure 4.CriteriaTable 2.Standards ComplianceItemSDH/SONET (Fiber)SDH/SONET (Coax)STM1OC3STM1STS-3Line Rate (Mbps)155155155155Line Interface 50ΩLVPECL 50ΩLVPECL75Ωcoax 75Ωcoax Line Code NRZ NRZCMI CMI Signal T emplates G.957STM1Eye OC3OC3EyeG.703CMI T emplate.CMI Eye STSX-3CMI Template.CMI Eye JitterG.958G.825GR-253G.813G.825GR-2532.3Clocks2.3.1Parallel ModeThe LXT6155accepts TPICLK synchronized with transmit input parallel data TPID<7:0>.Thedata is serialized and transmitted at TTIP0/TRING0or TTIP1/TRING1depending on which lineencoding mode is selected.The LXT6155in turn produces the receive output parallel clockRPOCLK,that is recovered from incoming line data RTIP/RRING,and is synchronized withreceive output parallel data RPOD<7:0>.2.3.1.1Transmit Parallel Input Clock(TPICLK)TPICLK is the transmit parallel input clock provided by the systems interface.This clock must benominally19.44MHz,synchronized with parallel input data TPID<7:0>.This clock is theninternally multiplied by8to produce a serial clock,used for parallel-to-serial conversion,linedrivers,and pulse reshaping.In HW mode(HWSEL=Low),TPID data is sampled on the fallingedge of TPICLK.In SW mode(HWSEL=High),the clock polarity can be inverted(Reg#0,bit#3).2.3.1.2Receive Parallel Output Clock(RPOCLK)RPOCLK is the parallel output clock that is recovered from the line input data RTIP/RRING.Thisclock is at19.44MHz,synchronized with parallel output data RP0D<7:0>.In HW mode(HWSEL=Low),the RPOCLK clock rising edge is at the center of eye opening of RPOD<7:0>as shown inFigure21.In SW mode(HWSEL=High),the clock polarity can be inverted(Reg#0,bit#2).Under LOS(LOS=High)or Rx PLL loss of lock(LOCK=Low)conditions RPOCLK is switched tothe reference selected by the CIS control in HW mode,or Reg#0bit#5in SW mode.Also,theparallel output is forced to all zeros.This feature can be disabled in SW mode(HWSEL=High)via register#10,bit#7.2.3.2Serial ModeAt the transmit systems interface,the LXT6155accepts the transmit input clock TSICLKP/TSICLKN that is synchronized to incoming serial differential data TPOS/TNEG.At the lineinterface,the LXT6155accepts RTIP/RRING data and produces the clocks RSOCLKP/RSOCLKN synchronized to receive output data RPOS/RNEG.RSOCLKP/RSOCLKN clock edgesare at the center of RPOS/RNEG.2.3.2.1Transmit Serial Input Clock(TSICLKP/TSICLKN)TSICLKP/TSICLKN is the serial input clock from the overhead terminator.This155.52MHzclock is rising edge centered with input serial data on TPOS and TNEG.These clock pins should beleft open when the LXT6155operates in parallel mode.2.3.2.2Receive Serial Output Clock(RSOCLKP/RSOCLKN)RSOCLKP/RSOCLKN is the serial clock recovered from the line input data on RTIP/RRING.This155.52MHz clock is falling edge centered with receive serial output data on RPOS/RNEG.Theseclock pins should be left open when the LXT6155operates in parallel mode.Under LOS。

PMAC615产品说明书及通讯协议V2.0

PMAC615产品说明书及通讯协议V2.0

PMAC615单相智能数显仪表说 明 书Installation & Operation ManualV2.0安全注意事项危险和警告■ 本设备只能由专业人士进行安装。

■ 对于因不遵守本手册的说明而引起的故障,厂家将不承担任何责任。

触电、燃烧或爆炸的危险■ 设备只能由取得资格的工作人员才能进行安装和维护。

■ 对设备进行任何操作前,应隔离电压输入和电源供应,并且短路所有电流互感器的二次绕组。

■ 要用一个合适的电压检测设备来确认电压已切断。

■ 在将设备通电前,应将所有的机械部件,门和盖子恢复原位。

■ 设备在使用中应提供正确的额定电压。

不注意这些预防措施可能会引起严重伤害。

目 录一、产品概述 (4)二、安装与接线 (6)三、测量性能 (10)四、操作 (12)五、输入/输出特性 (17)六、定值报警 (19)八、通讯协议 (20)九、维护和故障排除 (26)十、技术指标 (27)一、产品概述PMAC615单相智能数显仪表,集数据采集与控制功能于一身。

它可以代替多种仪表、继电器和其它元件,适用于各种低电压单相电力系统。

PMAC615具有RS485通讯接口,能够集成到任何电力监控系统中,通过配备的管理软件或者其他组态软件可以方便的进行设定操作。

PMAC615是一个真正的基于真实有效值的测量仪表,能对高度非线性负荷作精确的测量。

复杂的锁频采样技术使其能够精确测量多种电力参数,精度最高可达0.2级。

用户可以在显示屏或者利用软件从远程看到所有测量值。

PMAC615提供多种扩展功能,以满足不同现场的需求。

灵活的输入/输出配置,方便用户的设计。

PMAC615采用可拔插的端子连接方式,便于现场接线和维护。

【特性】PMAC615的主要参数特性如下:◆ 接受标准CT输入◆ 直接测量电压达400V◆ 满足计量精度IEC62053-21,1级◆ 高精度电流和电压测量(0.2%)◆ 高亮数码管,独有的浮屏滤光技术,显示更人性化 ◆ 可修改的定值报警及继电器功能◆ RS485通信,标准MODBUS协议◆ 运行温度范围:-40℃ - +70℃存储温度:-50℃ - +85℃湿度:5% - 90%RH,无冷凝◆ 可选择的两路开关量输入◆ 标准的可拔插连接端子,易于现场安装和维护二、安装与接线【环境】运行温度范围:-40℃ - +70℃存储温度:-50℃ - +85℃湿度:5% - 90%RH,无冷凝 【结构尺寸】【端子说明】序号 标识 定义1 N/- 电源零线2 L/+ 电源火线3 I- 电流负端4 I+ 电流正端5 V- 电压负端6 V+ 电压正端7 485+ RS485正端8 485- RS485负端9 S1+ S1正端10 S1- S1负端11 S2+ S2正端12 S2- S2负端13 RL+ 继电器输出正端14 RL- 继电器输出负端【测量接线】示例:一路RS485通讯、两路开关量输入、一路继电器输出,单相交流电流智能数显表三、订货信息完整的PMAC615的型号规格及各代码的意义如下表所示: 型号规格:PMAC615-①-②①的型号代码:U I P W Z 电压测量电流测量电流 + 电压 + 有功功率电流 + 电压 + 有功电度电流 + 电压 + 有功功率 + 无功功率 + 功率因数 + 频率 + 有功电度 (注:无功功率和功率因数不在面板上显示,可通过通讯上传)②的型号代码:S RC C 两路开关量输入(外部提供电源)一路继电器输出 + 一路RS485通讯 一路RS485通讯注意:默认额定输入电流为5A,如果特殊规格,订货时说明例:若订货型号为PMAC615-I-S即为PMAC615电流表,扩展两路开关量输入,额定测量5A。

LM715中文资料

LM715中文资料

TL H 10059LM715 High Speed Operational AmplifierOctober1989 LM715High Speed Operational AmplifierGeneral DescriptionThe LM715is a high speed high gain monolithic operation-al amplifier intended for use in a wide range of applicationswhere fast signal acquisition or wide bandwidth is requiredThe LM715features fast settling time high slew rate lowoffsets and high output swing for large signal applicationsIn addition the device displays excellent temperature stabil-ity and will operate over a wide range of supply voltagesFeaturesY High slew rate 100V m s(Inverting A V e1)typicallyY Fast settling time 800ns typicallyY Wide bandwidth 65MHz typicallyY Wide operating supply rangeY Wide input voltage rangesApplicationsY Video amplifiersY Active filtersY High speed data conversionConnection Diagrams10-Lead Metal PackageTL H 10059–1Top ViewLead5connected to case14-Lead DIPTL H 10059–2Top ViewOrdering InformationDevice Package PackageCode Code DescriptionLM715MH H10C MetalLM715CH H10C MetalLM715MJ J14A Ceramic DIPLM715CJ J14A Ceramic DIPC1995National Semiconductor Corporation RRD-B30M115 Printed in U S AAbsolute Maximum RatingsIf Military Aerospace specified devices are required please contact the National Semiconductor Sales Office Distributors for availability and specifications Storage Temperature Range b65 C to a175 C Operating Temperature RangeExtended(LM715M)b55 C to a125 C Commercial(LM715C)0 C to a70 C Lead TemperatureMetal Can and Ceramic DIP(Soldering 60sec )300 C Internal Power Dissipation(Notes1 2)10L-Metal Can1 07W 14L-Ceramic DIP1 36W Supply Voltage g18V Differential Input Voltage g5V Input Voltage(Note3)g15VLM715M and LM715CElectrical Characteristics T A e25 C V CC e g15V unless otherwise specifiedSymbol Parameter ConditionsLM715M LM715CUnits Min Typ Max Min Typ MaxV IO Input Offset Voltage R S s10k X2 05 02 07 5mV I IO Input Offset Current7025070250nA I IB Input Bias Current4007504001500nA Z I Input Impedance1 01 0M X R O Output Resistance7575X I CC Supply Current5 57 05 510mA P c Power Consumption165210165300mW V IR Input Voltage Range g10g12g10g12V A VS Large Signal Voltage Gain R L t2 0k X V O e g10V15301030V mV V Settling Time V O e g5 0V A V e1 0800800ns TR Transient Rise Time V I e400mV A V e1 030603075ns Response Overshoot25402550%SR Slew Rate A V e1007070A V e103838V m sA V e1 0(Non-Inverting)15181018A V e1 0(Inverting)100100The following specifications apply over the range of b55 C s T A s a125 C for the LM715M and0 C s T A s a70 C for the LM715CSymbol Parameter ConditionsLM715M LM715CUnits Min Typ Max Min Typ MaxV IO Input Offset Voltage R S s10k X7 510mV I IO Input Offset Current T A e T A Max250250nAT A e T A Min800750I IB Input Bias Current T A e T A Max0 751 5m AT A e T A Min4 07 5CMR Common Mode R S s10k X74927492dBRejection(Note4)(Note4)PSRR Power Supply R S s10k X4530045400m V VRejection Ratio(Note4)(Note4)A VS Large Signal R L t2 0k X108V mV Voltage Gain V O e g10VV OP Output Voltage Swing R L e2 0k X g10g13g10g13VNote1 T J Max e175 CNote2 Ratings apply to ambient temperature at25 C Above this temperature derate the10L-Metal Can at7 1mW C and the14L-Ceramic DIP at9 1mW C Note3 For supply voltages less than g15V the absolute maximum input voltage is equal to the supply voltageNote4 T A e25 C only2Typical Performance Characteristics for LM715M and LM715CTemperature (LM715)Voltage Gain vsvs Temperature (LM715)Supply Voltage Rejection Ratio Temperature (LM715)Slew Rate vsvs Temperature (LM715)Common Mode Rejection Ratio Temperature (LM715C)Voltage Gain vsvs Temperature (LM715C)Supply Voltage Rejection Ratio Temperature (LM715C)Slew Rate vsvs Temperature (LM715C)Common Mode Rejection Ratio Loop Gains (Note 1)Frequency Response for Open Closed Loop GainsFrequency Response for Voltage Gain vs Frequencyvs FrequencyOpen Loop Phase TL H 10059–4Note 1 See ‘‘Non-Inverting Compensation Components Value Table’’for Closed Loop Gain values3Typical Performance Characteristics for LM715M and LM715C (Continued)for Closed Loop GainsOutput Swing vs Frequency Ratio vs FrequencySupply Voltage Rejection Ratio vs FrequencyCommon Mode Rejection Pulse Response Unity Gain Large Signal Response for Gain 10Large Signal Pulse Response for Gain 100Large Signal PulseLoop Voltage Gain Slew Rate vs Closed Supply Voltage Slew Rate vs Transient ResponseVoltage Follower Signal Pulse Response Inverting Unity Gain Large Inverting Unity GainSmall Signal Pulse Response TL H 10059–54Typical Performance Characteristics for LM715M and LM715C (Continued)Voltage Follower (Note 2)TL H 10059–6Note 2 Lead numbers apply to metal packageVoltage Offset Null Circuit (Note 2)TL H 10059–7High Slew Rate Circuit (Note 2)TL H 10059–8Equivalent CircuitTL H 10059–35Applications InformationNon-Inverting CompensationComponents ValuesClosed LoopC1C2C3Gain100010pF10050pF250pF10(Note)100pF500pF1000pF1500pF2000pF1000pFNote For gain10 compensation may be simplified by removing C2 C3andadding a200pF capacitor(C4)between Lead7and10Frequency Compensation CircuitTL H 10059–9Suggested Values of Compensation Capacitors vsClosed Loop Voltage GainTL H 10059–10Layout InstructionsLayout The layout should be such that stray capacitanceis minimalSupplies The supplies should be adequately bypassedUsed of0 1m F high quality ceramic capacitors is recom-mendedRinging Excessive ringing(long acquisition time)may oc-cur with large capacitive loads This may be reduced byisolating the capacitive load with a resistance of100XLarge source resistances may also give rise to the sameproblem and this may be decreased by the addition of acapacitance across the feedback resistance A value ofaround50pF for unity gain configuration and around3 0pFfor gain10should be adequateLatch Up This may occur when the amplifier is used as avoltage follower The inclusion of a diode between leads6and2with the cathode toward lead2is the recommendedpreventive measureTypical ApplicationsTL H 10059–14High Speed IntegratorTL H 10059–13Note All lead numbers on this page apply to metal package6Typical Applications (Continued)TL H 10059–12Wide Band Video Amplifier Drive Capability with 75X Coax CableTL H 10059–11Note All lead numbers shown refer to metal packagePhysical Dimensions inches (millimeters)10-Lead Metal Can Package (H)Order Number LM715CH or LM715MHNS Package Number H10C7L M 715H i g h S p e e d O p e r a t i o n a l A m p l i f i e rPhysical Dimensions inches (millimeters)(Continued)14-Lead Ceramic Dual-In-Line Package (J)Order Number LM715CJ or LM715MJNS Package Number J14ALIFE SUPPORT POLICYNATIONAL’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMICONDUCTOR CORPORATION As used herein 1 Life support devices or systems are devices or 2 A critical component is any component of a life systems which (a)are intended for surgical implant support device or system whose failure to perform can into the body or (b)support or sustain life and whose be reasonably expected to cause the failure of the life failure to perform when properly used in accordance support device or system or to affect its safety or with instructions for use provided in the labeling can effectivenessbe reasonably expected to result in a significant injury to the userNational Semiconductor National Semiconductor National Semiconductor National Semiconductor CorporationEuropeHong Kong LtdJapan Ltd1111West Bardin RoadFax (a 49)0-180-530858613th Floor Straight Block Tel 81-043-299-2309。

VISHAY ILD615 ILQ615 数据手册

VISHAY ILD615 ILQ615 数据手册

Document Number Optocoupler, Phototransistor Output (Dual, Quad Channel)Features•Identical Channel to Channel Footprint •Dual and Quad Packages Feature: - Reduced Board Space - Lower Pin and Parts Count- Better Channel to Channel CTR Match - Improved Common Mode Rejection•Isolation Test Voltage from Double Molded Pack-age, 5300 V RMS•Lead-free component•Component in accordance to RoHS 2002/95/EC and WEEE 2002/96/ECAgency Approvals•UL1577, File No. E52744 System Code H or J, Double Protection •CSA 93751•BSI IEC60950 IEC60965•DIN EN 60747-5-2 (VDE0884)DIN EN 60747-5-5 pending Available with Option 1DescriptionThe ILD615/ ILQ615 are multi-channel phototransis-tor optocouplers that use GaAs IRLED emitters and high gain NPN phototransistors. These devices are constructed using over/under leadframe optical cou-pling and double molded insulation technology result-ing a withstand test voltage of 7500 VAC PEAK and a working voltage of 1700 V RMS .The binned min./max. and linear CTR characteristics make these devices well suited for DC or AC voltage detection. Eliminating the phototransistor base con-nection provides added electrical noise immunity from the transients found in many industrial control envi-ronments.Because of guaranteed maximum non-saturated and saturated switching characteristics, the ILD615/ILQ615 can be used in medium speed data I/O and control systems. The binned min./max. CTR specifi-cation allow easy worst case interface calculations forboth level detection and switching applications. Inter-facing with a CMOS logic is enhanced by the guaran-teed CTR at I F = 1.0 mA. Document Number 83652ILD615/ ILQ615Vishay Semiconductors Order InformationFor additional information on the available options refer to Option Information.PartRemarksILD615-1CTR 40 - 80 %, Dual Channel, DIP-8ILD615-2CTR 63 - 125 %, Dual Channel, DIP-8ILD615-3CTR 100 - 200 %, Dual Channel, DIP-8ILD615-4CTR 160 - 320 %, Dual Channel, DIP-8ILQ615-1CTR 40 - 80 %, Quad Channel, DIP-16ILQ615-2CTR 63 - 125 %, Quad Channel, DIP-16ILQ615-3CTR 100 - 200 %, Quad Channel, DIP-16ILQ615-4CTR 160 - 320 %, Quad Channel, DIP-16ILD615-1X007CTR 40 - 80 %, Dual Channel, SMD-8 (option 7)ILD615-2X006CTR 63 - 125 %, Dual Channel, DIP-8 400 mil (option 6)ILD615-2X009CTR 63 - 125 %, Dual Channel, SMD-8 (option 9)ILD615-3X006CTR 100 - 200 %, Dual Channel, DIP-8 400 mil (option 6)ILD615-3X007CTR 100 - 200 %, Dual Channel, SMD-8 (option 7)ILD615-3X009CTR 100 - 200 %, Dual Channel, SMD-8 (option 9)ILD615-4X006CTR 160 - 320 %, Dual Channel, DIP-8 400 mil (option 6)ILD615-4X009CTR 160 - 320 %, Dual Channel, SMD-8 (option 9)ILQ615-1X009CTR 40 - 80 %, Quad Channel, SMD-16 (option 9)ILQ615-2X007CTR 63 - 125 %, Quad Channel, SMD-16 (option 7)ILQ615-3X006CTR 100 - 200 %, Quad Channel, DIP-16 400 mil (option 6)ILQ615-3X009CTR 100 - 200 %, Quad Channel, SMD-16 (option 9)ILQ615-4X007CTR 160 - 320 %, Quad Channel, SMD-16 (option 7)ILQ615-4X009CTR 160 - 320 %, Quad Channel, SMD-16 (option 9)ILD615/ ILQ615Document Number 83652Vishay SemiconductorsAbsolute Maximum RatingsT amb = 25°C, unless otherwise specifiedStresses in excess of the absolute Maximum Ratings can cause permanent damage to the device. Functional operation of the device is not implied at these or any other conditions in excess of those given in the operational sections of this document. Exposure to absolute Maximum Rating for extended periods of the time can adversely affect reliability.InputOutputCouplerParameterTest conditionSymbol Value Unit Reverse voltage V R 6.0V Forward current I F 60mA Surge current I FSM 1.5A Power dissipation P diss100mW Derate linearly from 25°C1.33mW/°CParameterTest conditionSymbol Value Unit Collector-emitter breakdown voltageBV CEO 70V Emitter-collector breakdown voltageBV ECO 7.0V Collector currentI C 50mA t < 1.0 msI C 100mA Power dissipation P diss150mW Derate linearly from 25°C2.0mW/°CParameterTest conditionSymbol Value Unit Storage temperature T stg - 55 to + 150°C Operating temperature T amb - 55 to + 100°C Junction temperature T j 100°C Soldering temperature 2.0 mm distance from case bottomT sld260°C Package power dissipation, ILD615400mW Derate linearly from 25°C 5.33mW/°C Package power dissipation, ILQ615500mW Derate linearly from 25°C 6.67mW/°C Isolation test voltage t = 1.0 sec.V ISO5300V RMS Creepage ≥ 7.0mm Clearance≥ 7.0mm Isolation resistanceV IO = 500 V, T amb = 25°C R IO ≥ 1012ΩV IO = 500 V, T amb = 100°CR IO≥ 1011Ω Document Number 83652ILD615/ ILQ615Vishay Semiconductors Electrical CharacteristicsT amb = 25°C, unless otherwise specifiedMinimum and maximum values are testing requirements. Typical values are characteristics of the device and are the result of engineering evaluation. Typical values are for information only and are not part of the testing requirements.InputOutputCouplerCurrent Transfer RatioParameterTest conditionSymbol Min Typ.Max Unit Forward voltage I F = 10 mA V F 1.0 1.15 1.3V Breakdown voltage I R = 10 µA V BR 6.030V Reverse current V R = 6.0 VI R 0.0110µA CapacitanceV R = 0 V, f = 1.0 MHzC O 25pF Thermal resistance, junction to leadR THJL750K/WParameterTest conditionSymbol MinTyp.MaxUnit Collector-emitter capacitance V CE = 5.0 V, f = 1.0 MHz C CE 6.8pF Collector-emitter leakage current, -1, -2V CE = 10 V I CEO 2.050nA Collector-emitter leakage current, -3, -4V CE = 10 V I CEO 5.0100nA Collector-emitter breakdown voltageI CE = 0.5 mA BV CEO 70V Emitter-collector breakdown voltageI E = 0.1 mABV ECO 7.0V Thermal resistance, junction to leadR THJL500K/WPackage transfer characteristics Channel/Channel CTR matchI F = 10 mA, V CE = 5.0 VCTRX/CTRY1 to 12 to 1ParameterTest conditionSymbol MinTyp.MaxUnit Capacitance (input-output)V IO = 0 V, f = 1.0 MHz C IO 0.8pF Insulation resistance V IO = 500 V, T A = 25°CR S10121014ΩChannel to channel isolation500VACParameterTest conditionPart Symbol MinTyp.MaxUnit Current Transfer Ratio(collector-emitter saturated)I F = 10 mA, V CE = 0.4 VILD615-1 ILQ615-1CTR CEsat 25%ILD615-2 ILQ615-2CTR CEsat 40%ILD615-3 ILQ615-3CTR CEsat 60%ILD615-4 ILQ615-4CTR CEsat100%ILD615/ ILQ615Document Number 83652Vishay SemiconductorsSwitching Non-saturatedSwitching SaturatedCommon Mode Transient ImmunityCurrent Transfer Ratio (collector-emitter)I F = 10 mA, V CE = 5.0 V ILD615-1 ILQ615-1CTR CE 406080%I F = 1.0 mA, V CE = 5.0 V ILD615-2 ILQ615-2CTR CE 1330%I F = 10 mA, V CE = 5.0 V ILD615-3 ILQ615-3CTR CE 6380125%I F = 1.0 mA, V CE = 5.0 V ILD615-4 ILQ615-4CTR CE 2245%I F = 10 mA, V CE = 5.0 V ILD615-1 ILQ615-1CTR CE 100150200%I F = 1.0 mA, V CE = 5.0 V ILD615-2 ILQ615-2CTR CE 3470%I F = 10 mA, V CE = 5.0 V ILD615-3 ILQ615-3CTR CE 160200320%I F = 1.0 mA, V CE = 5.0 VILD615-4 ILQ615-4CTR CE5690%ParameterTest conditionPart Symbol Min Typ.Max Unit Parameter CurrentTurn-on timeRise timeTurn-off timeFall timePropagationH-LPropagationL-HTest condition V CC = 5.0 V, R L = 75 Ω, 50 % of V PP Symbol I F t on t r t off t f t PHL t PLH Unit mA µs µs µs µs µs µs ILD615-1103.02.02.32.01.12.5Parameter CurrentTurn-on timeRise timeTurn-off timeFall timePropagationH-LPropagationL-HTest condition V CC = 5.0 V, R L = 1.0 k Ω, V TH = 1.5 V Symbol I F t on t r t off t f t PHL t PLH Unit mA µs µs µs µs µs µs ILD615-1 ILQ615-120 3.0 2.01811 1.68.6ILD615-2 ILQ615-210 4.3 2.82514 2.67.2ILD615-3 ILQ615-310 4.3 2.82514 2.67.2ILD615-4 ILQ615-45.06.04.625155.47.4ParameterTest conditionSymbol MinTyp.MaxUnit Common mode rejection output high V CM = 50 V P-P , R L = 1.0 k Ω, I F = 0 mA CM H 5000V/µs Common mode rejection output low V CM = 50 V P-P , R L = 1.0 k Ω, I F = 10 mA CM L 5000V/µs Common mode coupling capacitanceC CM0.01pF Document Number 83652ILD615/ ILQ615Vishay SemiconductorsTypical Characteristics (Tamb = 25 °C unless otherwise specified)Figure 1. Non-saturated Switching Timing Figure 2. Saturated Switching Timing Figure 3. Non-saturated Switching Timing iild615_01O =5V75ΩF =DF I F =iild615_02O=5Viild615_03V I onoffFigure 4. Saturated Switching TimingFigure 5. Maximum LED Current vs. Ambient TemperatureFigure 6. Maximum LED Power Dissipationiild615_04IV O-60-40-20020406080100120100806040020Ta -Ambient Temperature -°CI F -M a x i m u m L E D C u r r e n t -m Aiild615_05iild615_06-60-40-2002040608010020010050Ta -Ambient Temperature -°CP L E D -L E D P o w e r -m W150ILD615/ ILQ615Document Number 83652Vishay SemiconductorsFigure 7. Forward Voltage vs. Forward Current Figure 8. Peak LED Current vs. Pulse Duration, TauFigure 9. Maximum Detector Power Dissipationiild615_07IF -Forward Current -mA100101.10.70.80.91.01.11.21.31.4V F -F o r w a r d V o l t a g e -Viild615_0810-610-510-410-310-210-110010110000100010010t -LED Pulse Duration -sI f (p k )-P e a k L E D C u r r e n t -m Aiild615_0950Ta -Ambient Temperature -°CP D E T -D e t e c t o r P o w e r -m WFigure 10. Maximum Collector Current vs. Collector VoltageFigure 11. Normalization Factor for Non-saturated and SaturatedCTR vs. I FFigure 12. Normalization Factor for Non-saturated and SaturatedCTR vs. I Fiild615_10.1101001000100101.1V CE -Collector-Emitter Voltage -VI C E -C o l l e c t o r C u r r e n t -m A1iild615_11C T R N F -N o r m a l i z e d C T R F ac t o r.11101002.01.51.00.50.0I F -LED Current -mAiild615_12C T R N F -N o r m a l i z e d C T R F a ct o r.11101002.01.51.00.50.0I F -LED Current -mA Document Number 83652ILD615/ ILQ615Vishay SemiconductorsFigure 13. Normalization Factor for Non-saturated and SaturatedCTR vs. I FFigure 14. Normalization Factor for Non-saturated and SaturatedCTR vs. I FFigure 15. Collector-Emitter Current vs. Temperature and LEDCurrentiild615_13C T R N F -N o r m a l i z e d C T R F a c t o r.11101002.01.51.00.50.0I F -LED Current -mAiild615_14C T R N F -N o r m a l i z e d C TR F a c t o r.11101002.01.51.00.50.0I F -LED Current -mAiild615_15605030201005101520253035I F -LED Current -mAI C E -C o l l e c t o r C u r r e n t -m A40Figure 16. Collector Emitter Leakage vs. TemperatureFigure 17. -1, Propagation Delay vs. Collector Load ResistorFigure 18. -2, -3, Propagation Delay vs. Collector Load Resistoriild615_161010101010101010-2-1012345T A -Ambient Temperature -°CI C E O -C o l l e c t o r -E m i t t e r -n Aiild615_17R L -Load Resistor -k Ω100101.111010010001.01.52.04.0t p L H -P r o p a g a t i o n L o w -H i g h µst p H L -P r o p a g a t i o n H i g h -L o w µs2.53.03.5iild615_18R L -Collector Load Resistor -k Ω100101.111010010001.01.52.02.5t p L H -P r o p a g a t i o n L o w -H i g h µst p H L -P r o p a g a t i o n H i g h -L o w µsILD615/ ILQ615Document Number 83652Vishay SemiconductorsPackage Dimensions in Inches (mm)iild615_19R L -Collector Load Resistor -k Ω100101.111010010001.01.52.02.5t p L H -P r o p a g a t i o n L o w -H i g h µst p H L -P r o p a g a t i o n H i g h -L o w µsFigure 19. -4, Propagation Delay vs. Collector Load Resistor Document Number 83652ILD615/ ILQ615Vishay SemiconductorsPackage Dimensions in Inches (mm)ILD615/ ILQ615Document Number 83652Rev. 1.3, 19-Apr-04Vishay Semiconductors 11Ozone Depleting Substances Policy StatementIt is the policy of Vishay Semiconductor GmbH to 1.Meet all present and future national and international statutory requirements.2.Regularly and continuously improve the performance of our products, processes, distribution andoperatingsystems with respect to their impact on the health and safety of our employees and the public, as well as their impact on the environment.It is particular concern to control or eliminate releases of those substances into the atmosphere which are known as ozone depleting substances (ODSs).The Montreal Protocol (1987) and its London Amendments (1990) intend to severely restrict the use of ODSs and forbid their use within the next ten years. Various national and international initiatives are pressing for an earlier ban on these substances.Vishay Semiconductor GmbH has been able to use its policy of continuous improvements to eliminate the use of ODSs listed in the following documents.1.Annex A, B and list of transitional substances of the Montreal Protocol and the London Amendments respectively2.Class I and II ozone depleting substances in the Clean Air Act Amendments of 1990 by the Environmental Protection Agency (EPA) in the USA3.Council Decision 88/540/EEC and 91/690/EEC Annex A, B and C (transitional substances) respectively.Vishay Semiconductor GmbH can certify that our semiconductors are not manufactured with ozone depleting substances and do not contain such substances.We reserve the right to make changes to improve technical designand may do so without further notice.Parameters can vary in different applications. All operating parameters must be validated for each customer application by the customer. Should the buyer use Vishay Semiconductors products for any unintended or unauthorized application, the buyer shall indemnify Vishay Semiconductors against all claims, costs, damages, and expenses, arising out of, directly or indirectly, any claim of personaldamage, injury or death associated with such unintended or unauthorized use.Vishay Semiconductor GmbH, P.O.B. 3535, D-74025 Heilbronn, GermanyTelephone: 49 (0)7131 67 2831, Fax number: 49 (0)7131 67 2423。

TS615资料

TS615资料

mV mV µA µA kΩ Ω pF dB dB
∆Vic = ±4.5V Tmin. < Tamb < Tmax. ∆Vcc=±2.5V to ±6V
58 72
Tmin. < Tamb < Tmax. 20 log (∆Vcc/∆Vio) ICC Total Supply Current per Operator No load DYNAMIC PERFORMANCE and OUTPUT CHARACTERISTIC Vout = 7Vp-p, RL = 25Ω ROL Open Loop Transimpedance Tmin. < Tamb. < Tmax. Small Signal Vout<20mVp -3dB Bandwidth AV = 12dB, RL = 25Ω Large Signal Vout=3Vp Full Power Bandwidth BW AV = 12dB, RL = 25Ω Small Signal Vout<20mVp Gain Flatness @ 0.1dB AV = 12dB, RL = 25Ω Vout = 6Vp-p, AV = 12dB, RL Tr Rise Time = 25Ω Vout = 6Vp-p, AV = 12dB, RL Tf Fall Time = 25Ω Vout = 6Vp-p, AV = 12dB, RL Ts Settling Time = 25Ω Vout = 6Vp-p, AV = 12dB, RL SR Slew Rate = 25Ω RL=25Ω Connected to GND VOH High Level Output Voltage RL=25Ω Connected to GND VOL Low Level Output Voltage Vout = -4Vp Output Sink Current Tmin. < Tamb < Tmax. Iout Vout = +4Vp Output Source Current Tmin. < Tamb < Tmax.

REF 615用户指南(2.0中文版)

REF 615用户指南(2.0中文版)

馈线保护测控装置REF615产品指南目 录1概述...............................................................12标准配置........................................................13保护功能........................................................34应用...............................................................75控制功能......................................................106测量.............................................................107故障录波......................................................108事件记录......................................................109故障数据记录...............................................1010断路器监视..................................................1011跳闸回路监视...............................................1112自检功能......................................................1113VT熔丝断线监视..........................................1114电流回路监视.. (1115)访问控制 (11)16输入和输出装置...........................................1217通信.............................................................1318技术数据......................................................1419显示选项......................................................3620安装方法......................................................3721外壳和插件单元...........................................3722选机及订货号...............................................3823配件及其订货号...........................................4224工具.............................................................4225ABB采用的解决方案....................................4426接线图..........................................................4527认证.............................................................4828参考资料 (4829)功能、代码和符号 (49)免责声明本文信息可能会更改,恕不另行通知。

01 REF615(宣传手册)

01 REF615(宣传手册)

ABB馈线保护测控装置REF615集保护、控制、测量、通信、监视和弧光保护功能于一体,完全根据国际标准IEC 61850平台研发和设计,从而使产品从根本上支持站内智能设备的互操作与水平通信等特性。

馈线保护测控装置REF615全新615系列配置灵活 应用广泛REF615可作为配电网中架空线和馈线的主保护,也可作为变压器等设备的后备保护。

主要用于电力变电站、电厂等电力行业以及水泥、冶金、石化、汽车、半导体、造纸、烟草等工业用户,也可用于市政、机场、港口、房地产等行业。

为满足用户需要,REF615可以提供7种标准配置的应用。

保护逻辑和相关功能均针对中国市场需求进行了特别优化。

保护控制功能齐全 集成弧光保护REF615提供带方向或无方向过流和接地故障保护,同时也支持过压、低电压、零序电压保护、热过负荷保护、灵敏接地保护及速断接地保护(包括间歇性接地保护)。

此外,该装置还集成了灵活配置的多轮次重合闸功能,可实现重合闸前、后加速和手合加速功能。

REF615加装可选配件,还可直接集成三个弧光保护通道。

用户无需另外购置和安装弧光保护装置即可实现对开关柜断路器、电缆和母线室的弧光检测和快速保护。

REF615支持当地和远方控制功能。

用户通过装置面板上的控制按钮或者后台监控系统(SCADA)即可实现对断路器的分、合闸操作。

为防止未授权用户误操作并保证用户按照相应权限操作,该装置定义了四个级别的操作权限:浏览者、操作员、工程师和管理员。

不同级别用户使用不同的账号和密码登陆。

这些权限设置适用于各种访问方式,包括装置面板操作,web访问及使用PCM600装置配置工具。

基于IEC 61850设计 支持水平通信REF615支持IEC 61850规约从而真正实现站内智能设备间的相互5-103。

REF615按照IEC 61850 规约设计,包括与后台监控系统的通信和保护装置之间的GOOSE水平通信并符合IEC 61850-8-1的各项规范。

常用稳压管型号

常用稳压管型号

常常使用稳压型号参数查询之袁州冬雪创作DZ是稳压管的电器编号,1N4148就是一个0.6V的稳压管,下面是稳压管上的编号对应的稳压值,有些小的稳压管也会在管体上直接标稳压电压,如5V6就是5.6V的稳压管.美标稳压二极管型号:HITACHI(日立):HITACHI(日立)0.5W稳压二极管型号参数稳压HZ3A1 2.5~2.7VHZ3A2 2.6~2.8VHZ3A3 2.6~2.9VHZ3B1 2.8~3.0VHZ3B2 2.9~3.1VHZ3B3 3.0~3.2V线性稳压器件(输入输出电流相等,压降3V以上)型号稳压(V) 最大输出电流可替代型号79L05 -5V 100mA79L06 -6V 100mA79L08 -8V 100mALM7805 5V 1A L7805,LM340T5LM7806 6V 1A L7806LM7808 8V 1A L7808LM7809 9V 1A L7809LM7812 12V 1A L7812,LM340T12LM7815 15V 1A L7815,LM340T15LM7818 18V 1A L7815LM7824 24V 1A L7824LM7905 -5V 1A L7905LM7906 -6V 1A L7906,KA7906LM7908 -8V 1A L7908LM7909 -9V 1A L7909LM7912 -12V 1A L7912LM7915 -15V 1A L7915LM7918 -18V 1A L7918LM7924 -24V 1A L792478L05 5V 100mA78L06 6V 100mA78L08 8V 100ma78L09 9V 100ma78L12 12V 100ma78L18 18V 100ma78L24 24V 100ma开关稳压器件(电压转换效率高)型号说明最大输出电流LM1575T-3.3 3.3V简易开关电源稳压器1ALM1575T-5.0 5V简易开关电源稳压器1ALM1575T-12 12V简易开关电源稳压器1ALM1575T-15 15V简易开关电源稳压器1ALM1575T-ADJ 简易开关电源稳压器(可调1.23V~37V) 1ALM1575HVT-3.3 3.3V简易开关电源稳压器1ALM1575HVT-5.0 5V简易开关电源稳压器1ALM1575HVT-12 12V简易开关电源稳压器1ALM1575HVT-15 15V简易开关电源稳压器1ALM1575HVT-ADJ 简易开关电源稳压器(可调1.23V~37V) 1ALM2575T-3.3 3.3V简易开关电源稳压器1ALM2575T-5.0 5V简易开关电源稳压器1ALM2575T-12 12V简易开关电源稳压器1ALM2575T-15 15V简易开关电源稳压器1ALM2575T-ADJ 简易开关电源稳压器(可调1.23V~ 37V) 1ALM2575HVT-3.3 3.3V简易开关电源稳压器1ALM2575HVT-5.0 5V简易开关电源稳压器1ALM2575HVT-12 12V简易开关电源稳压器1ALM2575HVT-15 15V简易开关电源稳压器1ALM2575HVT-ADJ 简易开关电源稳压器(可调1.23V~37V) 1ALM2576T-3.3 3.3V简易开关电源稳压器3A LM2576T-5.0 5.0V简易开关电源稳压器3A LM2576T-12 12V简易开关电源稳压器3A LM2576T-15 15V简易开关电源稳压器3A LM2576T-ADJ 简易开关电源稳压器(可调1.23V~37V) 3A LM2576HVT-3.3 3.3V简易开关电源稳压器3ALM2576HVT-5.0 5.0V简易开关电源稳压器3ALM2576HVT-12 12V简易开关电源稳压器3ALM2576HVT-15 15V简易开关电源稳压器3ALM2576HVT-ADJ 简易开关电源稳压器(可调1.23V~37V) 3A。

REM615_产品说明

REM615_产品说明

A
B
C
J
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y


y
y
y
5
电机保护测控装置
REM615 产品版本:3.0
1YZA000080 版本:C/2010.07.02
3. 保护功能
该保护测控装置提供管理电机启动和正常运行过程中所需 的所有功能,也包括异常状况下的告警及故障清除功能。该 保护测控装置主要包括热过负荷保护、电机启动时间监视、 转子堵转保护以及对电机频繁启动的保护功能。 此外,该 保护测控装置还包括无方向接地保护、负序电流保护、过流 保护、失载监视、反转保护等保护功能。
RelionR 615 ဣଚ
‫ۉ‬ऐԍࢺ֪੦ጎዃREM615 ׂ೗ኸళ
电机保护测控装置 REM615 产品版本:3.0
目录
1YZA000080 版本:C/2010.07.02
1. 概述 .............................................................3 2. 标准配置 ......................................................3 3. 保护功能 ......................................................6 4. 应用 .............................................................7 5. ABB 配网自动化解决方案 ............................9 6. 控制功能 ....................................................10 7. 测量功能 ....................................................10 8. 故障录波 ....................................................10 9. 事件记录 .................................................... 11 10. 故障数据记录 ............................................. 11 11. 断路器状态监视 ......................................... 11 12. 跳合闸回路监视 ......................................... 11 13. 自检功能 .................................................... 11 14. VT 熔丝断线监视 .......................................12 15. 电流回路监视 .............................................12

M61541FP中文资料

M61541FP中文资料

Features
• Electronic Volume • Gain Control • Tone Control 6 channel independent Electronic Volume with High Voltage Transistor. (0 to –99dB/1dBstep, –∞dB) 6 channel independent Gain Control (0, 6, 12, 18dB) Bass: –14 to + 14dB(2dB step), Treble: –14 to + 14dB(2dB step)
Logic “L” level Input Voltage VIL Note: AVEE≤DGND<DVDD≤AVCC
Rev.1.0 Sep 09, 2004 page 4 of 15
M61541FP
Preliminary
Relationship Between Data and Clock
Data signal is read at the rising edge of CLOCK. Make "H" at the timing which DATA of D0-D23 make latch.
(Ta=25°C, unless otherwise noted.)
Parameter Analog Supply Voltage (Positive) Analog Supply Voltage (Negative) Digital Supply Voltage Logic “H” level Input Voltage Symbol AVCC AVEE DVDD VIH Min 4.5 −7.5 3.0 DVDD×0.7 DGND Typ 7.0 −7.0 3.3 Max 7.5 −4.5 5.5 DVDD DVDD×0.2 Unit V V V V V DGND reference DGND reference Condition

施耐德 代断路器IC

施耐德 代断路器IC
● ●
II
20000 10000 IP20 IP40 30˚C
隧道式 25 35 5.1 5.6
● ●
上下均可
IEC/EN60947-2 GB14048.2 CCC,CE
1P,2P,3P,4P 1~63 500 440 12 50/60 6
15kA
100%Icu (1~4A); 50%Icu (6~63A) IV 3 -
● ● ●
● ●
II
20000 10000 IP20 IP40 30˚C
隧道式 25 35 5.1 5.6
● ●
上下均可
IEC/EN60898-1 GB10963.1 CCC,CE
1P,2P,3P,4P 6~32 500 440 12 50/60 4 6kA
III 3 -

-
II
20000 10000 IP20 IP40 30˚C
能效管理平台,为企业客户节省高达30%的投资成本和运营成本。
Acti 9
目录
Acti 9产品展示
产品号规则 .....................................................................................................................5
Acti 9 iC65系列小型断路器
创奇制胜 ● 跃领巅峰
产品目录 03-2011
施耐德电气
善用其效 尽享其能
全球能效管理专家施耐德电气为世界100多个国家提供整体解决方案,其中在能源与基 础设施、工业过程控制、楼宇自动化和数据中心与网络等市场处于世界领先地位,在 住宅应用领域也拥有强大的市场能力。致力于为客户提供安全、可靠、高效的能源, 施耐德电气2009年的销售额为158亿欧元,拥有超过100,000名员工。施耐德电气助 您——善用其效,尽享其能!

EM6151V55SO8B资料

EM6151V55SO8B资料

Low Power Windowed Watchdog with Reset,Sleep Mode FunctionsDescription The EM6151 offers a high level of integration by combining voltage monitoring and software monitoring using a windowed watchdog. A comparator monitors the voltage applied at the V IN inputcomparing it with an internal voltage reference V REF . Thepower-on reset function is initialized after V IN reaches V REF and takes the reset output inactive after a delay T POR depending on external resistance R OSC . The reset output goes active low when the V IN voltage is less than V REF . The RESand EN outputs are guaranteed to be in a correct state for asupply voltage as low as 1.2 V. The watchdog function monitors software cycle time and execution.If software clears the watchdog too quickly (incorrect cycletime) or too slowly (incorrect execution) it will cause thesystem to be reset. For enhanced security, the watchdogmust be serviced within an “open” time window. During the remaining time, the watchdog time window is “closed” and a reset will occur should a TCL pulse be received by the watchdog during this “closed” time window. The ratio of the open/closed window is either 33%/67% or 67%/33%. The system ENABLE output prevents critical control functions being activated until software has successfully cleared the watchdog three times. Such a security could be used to prevent motor controls being energized on repeated resets ofa faulty system.When the microcontroller goes in stand-by mode or stops working, no signal is received on the TCL input of theEM6151 (version 55) and it goes into a stand-by mode in order to save power (CAN-bus sleep detector).FeaturesLow quiescent current 35 μA-40°C to +125°C temperature range Windowed watchdog with an adjustable time windows,guaranteeing a minimum time and a maximum time between software clearing of the watchdog Time base accuracy ±8% (at 100ms) Voltage reference accuracy ±3% Sleep mode function (V55) Adjustable threshold voltage using external resistorsAdjustable power on reset (POR) delay using one externalresistor Open-drain active-low RESET outputReset output guaranteed for regulated output voltage downto 1.2 VSystem ENABLE output offers added security Qualified according to AEC-Q100Green SO-8 package (RoHS compliant)ApplicationsAutomotive systems Industrial Home security systemsTelecom / NetworkingComputers Set top boxesTypical Operating Configuration Selection TablePart NumberV REFClosed WindowOpen WindowCAN-bus sleepdetectorEM6151V30 1.17 V 67% 33% No EM6151V50 1.52 V 67% 33% No EM6151V53 1.52 V 33% 67% NoEM6151V55 1.275 V67%33%YesPlease refer to Fig. 4 for more information about the open/closed window of the watchdog.Ordering InformationNote: the “+” symbol at the end of the part number means that this product is RoHS compliant (green). For version V30, please contact EM Microelectronic.Pin Assignment and DescriptionBlock Diagram EM6151Fig. 2Part Number VersionV REF PackageDelivery Form Package Marking EM6151V30SO8A+ Stick, 97 pcsEM6151V30SO8B+ V30 1.17 V SO-8 Tape & Reel, 2500 pcs6151030 EM6151V50SO8A+ Stick, 97 pcsEM6151V50SO8B+ V50 1.52 V SO-8 Tape & Reel, 2500 pcs6151050 EM6151V53SO8A+ Stick, 97 pcsEM6151V53SO8B+ V53 1.52 V SO-8 Tape & Reel, 2500 pcs6151053 EM6151V55SO8A+ Stick, 97 pcsEM6151V55SO8B+V55 1.275 VSO-8Tape & Reel, 2500 pcs6151055V SSR OSC V DD NCRES EN TCLV IN SO8Absolute Maximum RatingsParameter Symbol Conditions Max. voltage at V DD V DDMAX V SS + 7.0VMax. voltage at any signal pin V MAX V DD + 0.3VMin. voltage at any signal pin V MIN V SS – 0.3V Storage temperatureT STO-65 to +150 °CESDAccording to MIL-STD-883C method 3015.7V Smax 2000VTable 1Stresses above these listed maximum ratings may cause permanent damages to the device. Exposure beyond specified operating conditions may affect device reliability or cause malfunction.Handling ProceduresThis device has built-in protection against high static voltages or electric fields; however, it is advised that normal precautions be taken as for any other CMOS component. Unless otherwise specified, proper operation can only occur when all terminal voltages are kept within the voltage range. At any time, all inputs must be tied to a defined logic voltage level. Operating ConditionsTable 2Electrical CharacteristicsV DD = 5.0V, T j = -40 to +125°C, unless otherwise specifiedTable 3Note 1: RES must be pulled up externally to V DD even if it is unused. (RES and EN are used as inputs by EM test)Note 2: the comparator reference is the power-down reset threshold. The power-on reset threshold equals the comparator reference voltageplus the comparator hysteresis (see Fig. 5).Timing CharacteristicsV DD = 5.0 V, T j = -40 to +125 °C, unless otherwise specifiedTable 4 For different values of T WD and R OSC, see figures 9 to 12.Timing WaveformsWatchdog Timeout PeriodVoltage MonitoringFig. 5 Timer ReactionCombined Voltage and Timer ReactionFunctional DescriptionV IN MonitoringThe power-on reset and the power-down reset are generated as a response to the external voltage level applied on the V IN input. The threshold voltage at which reset is asserted or released (V RESET) is determined by the external voltage divider between V DD and V SS, as shown on Fig. 8. A part of V DD is compared to the internal voltage reference. To determine the values of the divider, the leakage current at V IN must be taken into account as well as the current consumption of the divider itself. Low resistor values will need more current, but high resistor values will make the reset threshold less accurate at high temperature, due to a possible leakage current at the V IN input. The sum of the two resistors (R1 + R2) should stay below 500 kΩ. The formula is:V RESET = V REF x (1 + R1/R2).Example: choosing R1 = 200 kΩ and R2 = 100 kΩ gives V RESET =4.56 V (typical) for version V50 and V53.At power-up the reset output (RES) is held low (see Fig. 5). When V IN becomes greater than V REF, the RES output is held low for an additional power-on-reset (POR) delay T POR (defined with the external resistor connected at R OSC pin). The T POR delay prevents repeated toggling of RES even if V DD voltage drops out and recovers. The T POR delay allows the microprocessor’s crystal oscillator time to start and stabilize and ensures correct recognition of the reset signal to the microprocessor.The RES output goes active low generating the power-down reset whenever V IN falls below V REF. The sensitivity or reaction time of the internal comparator to the voltage level on V IN is typically 3 μs.Timer ProgrammingThe on-chip oscillator allows the user to adjust the power-on reset (POR) delay T POR and the watchdog time T WD by changing the resistor value of the external resistor R OSC connected between the pin R OSC and V SS (see Fig. 8). The closed and open window times (T CW and T OW) as well as the watchdog reset pulse width (T WDR), which are T TCL dependent, will vary accordingly. The watchdog time T WD can be obtained with figures 9 to 12 or with the Excel application EM6151ResCalc.xls available on EM website. T POR is equal to T WD with the minimum and maximum tolerances increased by 1% (For Version 53, T POR is one fourth of T WD).Note that the current consumption increases as the frequency increases.CAN-Bus Sleep Mode Detector (version 55)When the microcontroller goes into a standby mode, it implies that it does not send any pulses on the TCL input of the EM6151. After three reset pulse periods (T CW + T OW + T WDR) on the RES output, the circuit switches on an internal resistor of 1 MΩ, and it will have a reset pulse of typically 3 ms every 1 second on the RES output. When a TCL edge (rising or falling) appears on the TCL input or the power supply goes down and up, the circuit switches to the R OSC.Watchdog Timeout Period DescriptionThe watchdog timeout period is divided into two periods, a closed window period (T CW) and an open window period (T OW), see Fig. 4. If no pulse is applied on the TCL input during the open window period T OW, the RES output goes low for a time T WDR. When a pulse is applied on the TCL input, the cycle is restarted with a close window period.For example if T WD = T POR = 100ms, T CW = 80 ms, T OW = 40ms and T WDR = 2.5ms.When V IN recovers after a drop below V REF, the pad RES is set low for the time T POR during which any TCL activation is disabled.Timer Clearing and RES ActionThe watchdog circuit monitors the activity of the processor. If the user’s software does not send a pulse to the TCL input within the programmed open window timeout period a short watchdog RES pulse is generated which is equal to T WDR (see Fig. 6).With the open window constraint, new security is added to conventional watchdogs by monitoring both software cycle time and execution. Should software clear the watchdog too quickly (incorrect cycle time) or too slowly (incorrect execution) it will cause the system to be reset. If software is stuck in a loop which includes the routine to clear the watchdog then a conventional watchdog would not make a system reset even though the software is malfunctioning; the circuit would make a system reset because the watchdog would be cleared too quickly.If no TCL signal is applied before the closed and open windows expire, RES will start to generate square waves of period (T CW + T OW + T WDR). The watchdog will remain in this state until the next TCL falling edge appears during an open window, or until a fresh power-up sequence. The system enable output, EN, can be used to prevent critical control functions being activated in the event of the system going into this failure mode (see section “Enable-EN Output”).The RES output must be pulled up to V DD even if the output is not used by the system (see Fig 8).Combined Voltage and Timer ActionThe combination of voltage and timer actions is illustrated by the sequence of events shown in Fig. 6. On power-up, when the voltage at V IN reaches V REF, the power-on-reset, POR, delay is initialized and holds RES active for the time of the POR delay. A TCL pulse will have no effect until this power-on-reset delay is completed. When the risk exists that TCL temporarily floats, e.g. during T POR, a pull-up to V DD is required on that pin. After the POR delay has elapsed, RES goes inactive and the watchdog timer starts acting. If no TCL pulse occurs, RES goes active low for a short time T WDR after each closed and open window period. A TCL pulse coming during the open window clears the watchdog timer. When the TCL pulse occurs too early (during the closed window), RES goes active and a new timeout sequence starts. A voltage drop below the V REF level for longer than typically 3μs overrides the timer and immediately forces RES active and EN inactive. Any further TCL pulse has no effect until the next power-up sequence has completed.Enable - EN OutputThe system enable output, EN, is inactive always when RES is active and remains inactive after a RES pulse until the watchdog is serviced correctly 3 consecutive times (i.e. the TCL pulse must come in the open window). After three consecutive services of the watchdog with TCL during the open window, the EN goes active low.A malfunctioning system would be repeatedly reset by the watchdog. In a conventional system critical motor controls could be energized each time reset goes inactive (time allowed for the system to restart) and in this way the electrical motors driven by the system could function out of control. The circuit prevents the above failure mode by using the EN output to disable the motor controls until software has successfully cleared the watchdog three times (i.e. the system has correctly re-started after a reset condition).Typical ApplicationV30 R OSC Coefficient versus T WD at V DD = 5.0V and T j =-40 to +125°CFig. 9V50 R OSC Coefficient versus T WD at V DD = 5.0V and T j =-40 to +125°CFig. 100.961.021.081.141.201.261.321.381.44101001000Twd [ms]R o s c C o e f f i c i e n t [k O h m /m s ]TypMaxMin0.961.021.081.141.201.261.321.381.44101001000Twd [ms]R o s c C o e f f i c i e n t [k O h m /m s ]TypMaxMinV53 R OSC Coefficient versus T WD at V DD = 5.0V and T j =-40 to +125°CFig. 11V55 R OSC Coefficient versus T WD at V DD = 5.0V and T j =-40 to +125°CFig. 120.981.041.101.161.221.281.341.401.46101001000Twd [ms]R o s c C o e f f i c i e n t [k O h m /m s ]TypMaxMin0.860.920.981.041.101.161.221.281.34101001000Twd [ms]R o s c C o e f f i c i e n t [k O h m /m s ]TypMaxMinPackage Information13 Fig.EM Microelectronic-Marin SA (EM) makes no warranty for the use of its products, other than those expressly contained in the Company's standard warranty which is detailed in EM's General Terms of Sale located on the Company's web site. EM assumes no responsibility for any errors which may appear in this document, reserves the right to change devices or specifications detailed herein at any time without notice, and does not make any commitment to update the information contained herein. No licenses to patents or other intellectual property of EM are granted in connection with the sale of EM products, expressly or by implications. EM's products are not authorized for use as components in life support devices or systems.SUBJECT TO CHANGE WITHOUT NOTICE。

Relion 615系列线差保护与控制设备说明书

Relion 615系列线差保护与控制设备说明书

Line differential protection and control RED615Compact and versatile solution for utility and industrial power distribution systemsRelion ®615 seriesIdeal selectivity for two-end line differential protectionRED615 is a phase-segregated, two-end line differential protection and control relay for protection, control, measurement and supervision in utility and industrial power distribution systems, including radial, looped and meshed distribution networks, with or without distributed power generation. RED615 is also ideal for line differential applications with an in-zone transformer. RED615 relays communicate between substations either over a fiber-optic link or a galvanic pilot wire connection.ApplicationRED615 has been designed to be the main protectionfor overhead line and cable feeders, in either isolated neutral, resistance-earthed, compensated or effectively earthed distribution networks, depending on the standard configuration.RED615 is available in five standard configurations, one of which is a plain line differential protection with overcurrent backup protection two with added earth-fault protection functionality in particular, and another two further extended with directional overcurrent as well as phase-voltage and frequency-based protection. Switch on to fault is now introduced in all standard configurations and voltage unbalance in the two extended ones. They both also include a fault locator which locates short circuits in radial distribution networks and earth faults in effectively and low-resistance earthed ones. If the fault current is as high as or higher than the load current, earth faults in isolated neutral distribution networks will also be located. In addition, one of the two extended standard configurations includes support for three combi-sensor inputs for phase currents (Rogowski coil)and voltages (voltage divider), whereas the other supports conventional current and voltage instrument transformers as the rest of the standard configurations.Two RED615 relays interconnected over a communication link form an entirely selective unit protection scheme. Protection of ring-type and meshed distribution networks generally requires unit protection solutions, also applied in radial networks containing distributed power generation.The standard configurations can be tailored to meet application-specific requirements using the IEC 61850-compliant Protection and Control IED Manager PCM600. Human-machine interfaceAs a member of the Relion® product family, RED615 shares the same human-machine interface (HMI) look and feel as the other Relion protection and control relays and IEDs. The same look and feel includes the location of a push button with a certain function and the menu structure.RED615 is equipped with a large graphical display whichcan show customizable single-line diagrams (SLD) with position indication for the circuit breaker, disconnectors and the earthing switch. Also measured values provided by the chosen standard configuration can be displayed. The SLDs are customized using PCM600 and can have multiple pages for easy access to selected information. The SLDs can be accessed not only locally but also via the web browser-based HMI that has now been enriched with a number of usability enhancing features.Standardized communicationRED615 fully supports the IEC 61850 standard for communication and interoperability of substation automation devices, including fast GOOSE messaging and now alsoIEC 61850-9-2 LE and Edition 2, offering substantial benefits in terms of extended interoperability. The line differential relay further supports the DNP3, IEC 60870-5-103 and Modbus®protocols, now introducing also the parallel redundancy protocol (PRP) and the high-availability seamless redundancy (HSR) protocol. With the protocol adapter SPA-ZC 302, Profibus DVP1 can also be used. RED615 is able to use two communication protocols simultaneously.For redundant Ethernet communication, RED615 offers two optical Ethernet network interfaces. The redundant Ethernet solution can be built on the Ethernet-based IEC 61850, Modbus® and DNP3 protocols.The implementation of the IEC 61850 standard in RED615 covers both vertical and horizontal communication, including GOOSE messaging with both binary and analog signalsas well as parameter setting according to IEC 61850-8-1.In addition, IEC 61850-9-2 LE process bus with sending sampled values of both analog voltages and currents and receiving sampled values of voltages is introduced. The sampled values can also be used for synchro-check, bothin conventional instrument transformer and sensor-based applications, to ensure safe interconnection of two networks. For process bus applications, which require high-accuracy time synchronization, IEEE 1588 V2 is used, with a time stamp resolution of not more than four microseconds.IEEE 1588 V2 is supported in all variants with a redundant Ethernet communication module. In addition, RED615 supports synchronization over Ethernet using SNTP or over a separate bus using IRIG-B.Main benefits−Withdrawable plug-in unit design for swift installation and testing−Selective unit protection as phase-segregated two-end line differential protection, either with sensors or conventional2 Line-differential protection and control | RED615Protection function overview of the E configuration of RED615.instrument transformers−Ready-made standard configurations, including line differ-ential communication, for fast and easy setup with tailoring capabilities−Line differential communication between substations either over a fiber-optic link or a galvanic pilot wire connection−Ideal for line differential applications with an in-zone trans-former−IEC 61850 Edition 2 and Edition 1 support, including HSR and PRP, GOOSE messaging and IEC 61850-9-2 LE for less wiring and supervised communication−IEEE 1588 V2 for high-accuracy time synchronization and maximum benefit of substation-level Ethernet communica-tion−Large graphical display for showing customizable SLDs, accessible either locally or through a web browser-based HMI 615 seriesRED615 is a member of ABB’s Relion product family and part of its 615 protection and control series of relays, characterized by compactness and withdrawable plug-in unit design. In addition to RED615, the 615 series includes the following relays:−REF615 Feeder protection and control−RET615 Transformer protection and control−REU615 Voltage protection and control−REM615 Motor protection and control−REV615 Capacitor bank protection and controlLife cycle servicesLife cycle services ABB offers full support for all protection and control relays throughout their entire lifecycle. Our extensive life cycle services include training, customer support, maintenance and modernization.RED615 | Line-differential protection and control 34 Line-differential protection and control | RED615Supported functions, codes and symbols Functionality ProtectionThree-phase non-directional overcurrent protection, low stage Three-phase non-directional overcurrent protection, high stageThree-phase non-directional overcurrent protection, instantaneous stage Three-phase directional overcurrent protection, low stage Three-phase directional overcurrent protection, high stage Non-directional earth-fault protection, low stage Non-directional earth-fault protection, high stageNon-directional earth-fault protection, instantaneous stage Directional earth-fault protection, low stage Directional earth-fault protection, high stage Admittance based earth-fault protection Wattmetric based earth-fault protection Transient / intermittent earth-fault protection Harmonics based earth-fault protectionNon-directional (cross-country) earth fault protection, using calculated Io Negative-sequence overcurrent protection Phase discontinuity protection Residual overvoltage protection Three-phase undervoltage protection Three-phase overvoltage protection Positive-sequence undervoltage protection Negative-sequence overvoltage protection Frequency protectionThree-phase thermal protection for feeders, cables and distribution transformers Three-phase thermal overload protection for power transformers, two time constants Binary signal transferCircuit breaker failure protection Three-phase inrush detector Switch onto fault Master tripMulti-purpose protection Fault locatorLine differential protection with in zone power transformer High impedance fault detectionStandard configurations DescriptionLine differential protectionLine differential protection with directional earth-fault protection and circuit breaker condition monitoring Line differential protection with non-directional earth-fault protection and circuit breaker condition monitoring Line differential protection with directional overcurrent and earth-fault protection, voltage and frequency based protection and measurements, synchro-check and circuit-breaker condition monitoring (RTD option, optional power quality and fault locator)Line differential protection with directional overcurrent and earth-fault protection, voltage and frequency based protection and measurements, circuit-breaker condition monitoring (sensor inputs, optional power quality, fault locator and synchro-check with IEC 61850-9-2LE)Standard configurationA B CD E Standard configurationsRED615 | Line-differential protection and control 5B 121-----21)1 1)(3) 1) 3)(3) 1) 3)1 4)(1) 3) 4) 1213 1)- - --- 111111218 -11E - -121 - - -2 2)1 2)(3) 2) 3)(3) 2) 3)1 2) 4)(1) 3) 4) 1213 2)33114111111218(1)1-A 121-----------2---------11 5)11218-11D - - 121-- - 21(3) 3)(3) 3)1 4)(1) 3) 4) 121333114111111218(1)11IEC-ANSI 51P-151P-250P/51P 67-167-251N-151N-2 50N/51N 67N-167N-221YN 32N 67NIEF 51NHA 51N-24646PD 59G 275947U+47O-8149F 49T/G/C BST51BF/51NBF 68SOTF 94/86MAP 21FL 87L HIZC 121--211-----(1) 3) 4) -21- -- -- - 111111218 -11IEC 606173I>3I>> 3I>>>3I> ->3I>> -> Io>Io>> Io>>>Io> ->Io>> ->Yo> ->Po> ->Io> -> IEF Io>HA Io>>I2>I2/I1>Uo>3U<3U>U1<U2>f>/f<,df/dt 3Ith>F 3Ith>T/G/C BST 3I>/Io>BF 3I2f>SOTF Master Trip MAP FLOC 3Id/I>HIFIEC 61850PHLPTOC PHHPTOC PHIPTOC DPHLPDOC DPHHPDOC EFLPTOC EFHPTOC EFIPTOC DEFLPDEF DEFHPDEF EFPADM WPWDE INTRPTEF HAEFPTOC EFHPTOC NSPTOC PDNSPTOC ROVPTOV PHPTUV PHPTOV PSPTUV NSPTOV FRPFRQ T1PTTR T2PTTR BSTGGIO CCBRBRF INRPHAR CBPSOF TRPPTRC MAPGAPC SCEFRFLO LNPLDF PHIZ1, 2,... = number of included instances / I/Os( ) = optionalSupported functions, codes and symbolsFunctionalityPower QualityCurrent total demand distortionVoltage total harmonic distortionVoltage variationVoltage unbalanceControlCircuit-breaker controlDisconnector controlEarthing switch controlDisconnector position indicationEarthing switch indicationAuto-reclosingSynchronism and energizing checkCondition MonitoringCircuit-breaker condition monitoringTrip circuit supervisionCurrent circuit supervisionFuse failure supervisionProtection communication supervisionRuntime counter for machines and devicesMeasurementDisturbance recorderLoad profile recordFault recordThree-phase current measurementSequence current measurementResidual current measurementThree-phase voltage measurementResidual voltage measurementSequence voltage measurementThree-phase power and energy measurementRTD/mA measurementFrequency measurementIEC 61850-9-2 LE sampled value sending 7) 8)IEC 61850-9-2 LE sampled value receiving (voltage sharing) 7) 8) 6 Line-differential protection and control | RED615RED615 | Line-differential protection and control 7B ----12132(1)121-11111111-1------D (1) 6)(1) 6)(1) 6)(1) 6)12132(1)11211111111112111(1)1(1)(1)A ----12132--21-1111111---------IEC 61850CMHAI VMHAI PHQVVR VSQVUB CBXCBR DCXSWI ESXSWI DCSXSWI ESSXSWI DARREC SECRSYN SSCBR TCSSCBR CCRDIF SEQRFUF PCSRTPC MDSOPT RDRE LDPMSTA FLTRFRC CMMXU CSMSQI RESCMMXU VMMXU RESVMMXU VSMSQI PEMMXU XRGGIO130FMMXU SMVSENDER SMVRCVIEC-ANSI PQM3I PQM3V PQMV PQMUBV I ↔ O CB I ↔ O DCC I ↔ O ESC I ↔ O DC I ↔ O ES 7925CBCM TCM MCS 3I 60PCS OPTM DFR LOADPROF FAULTREC 3I I1, I2, I0In 3V Vn V1, V2, V0P , E X130 (RTD)fSMVSENDER SMVRCVIEC 60617PQM3I PQM3U PQMU PQMUBU I ↔ O CB I ↔ O DCC I ↔ O ESC I ↔ O DC I ↔ O ES O → I SYNC CBCM TCS MCS 3I FUSEF PCS OPTS DR LOADPROF FAULTREC 3I I1, I2, I0Io 3U Uo U1, U2, U0P , E X130 (RTD)fSMVSENDER SMVRCVC ----12132(1)121-11111111--------E (1) 6)(1) 6)(1) 6)(1) 6)12132(1)(1) 7)1211111111211 (2) 7)-11-1(1)(1)1) “Uo measured” is always used.2)“Uo calculated” is always used.3)One of the following can be ordered as an option: admittance-based E/F, wattmetric-based E/F or harmonics-based E/F.4)“Io measured” is always used.5)“Io calculated” is always used.6)Power quality option includes current total demand distortion, voltage total harmonic distortion, voltage variation and voltage unbalance.7)Available only with IEC 61850-9-28)Available only with COM0031-00371, 2,... = number of included instances / I/Os( ) = optionalContact us1M R S 756489 H , 5.0 F P 1 © C o p y r i g h t 2015 A B B . A l l r i g h t s r e s e r v e d .For more information, please refer to RED615 Product Guide, or contact us:ABB Oy, Medium Voltage Products Distribution Automation P .O. Box 699FI-65101 VAASA, Finland Phone: +358 10 22 11Fax: +358 10 22 41094ABB India Limited, Distribution Automation Maneja WorksVadodara – 390013, India Phone: +91 265 272 4402Fax: +91 265 263 8922/mediumvoltage/substationautomation。

美菱冰箱 BCD-615WPUBX 使用说明书

美菱冰箱 BCD-615WPUBX 使用说明书

美菱微信美菱微博使用说明书BCD-615WPUBX产品概述产品特点................................................................................... 各部分构件名称........................................................................使用须知安全注意事项....................................................................... 使用准备.............................................................................使用说明功能介绍.......................................................................... 食物储藏.......................................................................... 食物储藏小常识......................................................................保养与服务保养与清洁....................................................................... 冰箱工作时的非故障现象、简单故障分析与排除.............主要技术参数、装箱单产品中有害物质的名称及含量表保修凭证技术参数................................................................................. .........................................产品中有害物质的名称及含量表 保修凭证...............................................................................装箱单....................................................................................目录123~67~910~1415~171819~2021~2223252624尊敬的用户:感谢您选择、使用美菱冰箱!★ 为了您安全、方便地使用及合理地维护,请在使用前仔细阅读本 使用说明书,并妥善保存以备查看。

LM6152资料

LM6152资料

Conditions
±4V Step @ VS = ±6V, RS < 1 kΩ f = 100 kHz RL = 10kΩ f = 1 kHz
Typ (Note 5)
30 75 125 9
Sourcing
3 2.5 6.2 27 17
3
mA
2.5
min
27
mA
17
max
Sinking
7 5 16.9 40
7
mA
5
min
mA
40
max
3

元器件交易网
5.0V DC Electrical Characteristics (Continued)
Symbol
Parameter
IS
Supply Current
Conditions Per Amplifier
Typ (Note 5)
1.4
LM6154AC LM6152AC
Limit (Note 6)
2
2.25
LM6154BC LM6152BC
Limt (Note 6)
2
2.25
Units
mA max
Supply Voltage Junction Temperature Range
LM6152,LM6154 Thermal Resistance (θJA)
N Pkg, 8-pin Molded Dip M Pkg, 8-pin Surface Mount N Pkg, 14-pin Molded Dip M Pkg, 14-pin Surface Mount
LM6152/LM6154Dual and Quad High Speed/Low Power 75 MHz GBW Rail-to-Rail I/O Operational Amplifiers

DSEv3 可选表面安装 LED 下沉式灯光技术手册 - 中文说明书

DSEv3 可选表面安装 LED 下沉式灯光技术手册 - 中文说明书

DSEEdge Lit Surface Mount LED Downlight Type DateCatalog Project The DSEv3 Selectable Surface Mount Downlight offers a slim profile in both round and square apertures with CCT selectability. The edge-lit technology uses a reflective light guide panel that disperses light through a diffused lens, making it a practical and economical solution with high performance. Available in a variety of diameters, the DSEv3 brings flexible option with a clean aesthetic and excellent performance to any area of the home.Construction• Aluminum backplate with integral mounting tabs • Injection molded polymer trim• CCT Selection switch on back of fixture • Available in round or square configurationsOptical System• Precision engineered optical stack creates uniform light distribution that maximizes lumen output• Dual emitter array enables CCT selection of 2700, 3000, 3500, 4000, or 5000K• Utilizes high performing LEDs with a greater than 90 CRI and an R9 greater than 50Electrical• Input voltage of 120VAC, 50/60Hz• Dimmable to less than 5% with compatible TRIAC or ELV dimmers • Operating temperature of -4°F to 104°F (-20°C to 40°C)Finish• Matte White• Accessory color trims available in Black, Nickel and Oil-Rubbed Bronze Mounting and Installation• Driverless design minimizes installation height• Surface mounts with to most 4” junction boxes using included mounting plate • Mounting plate includes features to allow fixture alignmentListings• LM-79, LM-80 testing performed in accordance with IESNA standards • cETLus 1598 Listed for wet locations • ENERGYSTAR listed• CA Title 24 (JA8) Compliant• Compliant with NFPA® 70, NEC® Section 410.16 (A)(3) and 410.16 (C)(5) for closet use • RoHS Compliant• Meets FCC Part 15, Subpart B, Class B standards for conducted and radiated emissions per ANSI C63.4:2014• LED lumen maintenance: L70(9k)>54,000 hrsWarranty• 5-year limited system warranty standard• Warranty does not cover product failure due to an overvoltage event (power surge)• For installations where power surge may be possible, NICOR recommends installingadditional surge protection at the electrical distribution panelT24Excludes 5000KDimensionsDImensionsSquare DiameterWidth/Length Height Height (w/ switch)DSE4-SQ - 4.35in (110mm)0.67in (17mm)1.00in (25mm)DSE6-SQ - 6.25in (159mm)DSE9-SQ -9.00in (229mm)Round DSE5-RD 5.35in (136mm)- 1.00in (25mm)DSE8-RD 7.50in (191mm)-0.67in (17mm)DSE9-RD9.00in (229mm)-Specifications and dimensions subject to change without noticeRound FixturesSquare Fixtures5” Round Black TrimDSE5-1-TR-RD-BK 4” Square Black TrimDSE4-1-TR-SQ-BK 5” Round Oil Rubbed Bronze Trim DSE5-1-TR-RD-OB 4” Square Oil Rubbed Bronze Trim DSE4-1-TR-SQ-OB 5” Round Nickel Trim DSE5-1-TR-RD-NK 4” Square Nickel Trim DSE4-1-TR-SQ-NK 8” Round Black TrimDSE8-1-TR-RD-BK 6” Square Black TrimDSE6-1-TR-SQ-BK 8” Round Oil Rubbed Bronze Trim DSE8-1-TR-RD-OB 6” Square Oil Rubbed Bronze Trim DSE6-1-TR-SQ-OB 8” Round Nickel Trim DSE8-1-TR-RD-NK 6” Square Nickel Trim DSE6-1-TR-SQ-NK 9” Round Black TrimDSE9-1-TR-RD-BK 9” Square Black TrimDSE9-1-TR-SQ-BK 9” Round Oil Rubbed Bronze Trim DSE9-1-TR-RD-OB 9” Square Oil Rubbed Bronze Trim DSE9-1-TR-SQ-OB 9” Round Nickel TrimDSE9-1-TR-RD-NK9” Square Nickel TrimDSE9-1-TR-SQ-NKInput Voltage (VAC)120V System Level Power (W)10.4Delivered Lumens (Lm)615System Efficacy (Lm/W)59.1Correlated Color Temp (K)2697Color Rendering Index (CRI)94 R9=63Beam Angle 116Spacing Criteria1.30Zonal Lumen SummaryZone Lumens % of Luminaire 0-3016326.5%0-4026943.8%0-6048178.3%0-90615100%90-18000%0-180615100%(Feet)Beam Center(Feet)412.912.76 5.819.08 3.225.410 2.131.7AngleMean CP020752061520125189351704514555113657875418599003000K 1.0193500K 1.0304000K 1.0515000K1.043Fixture tested per LM-79-08. Photometric data is of the performance of a representative fixture. Results may vary in the field.DSE8-RD(2700K Setting)Input Voltage (VAC)120System Level Power (W)15.6Delivered Lumens (Lm)948System Efficacy (Lm/W)60.8Correlated Color Temp (K)2781Color Rendering Index (CRI)92 R9=53Beam Angle 115Spacing Criteria1.290-3025426.7%0-4041844.1%0-6074478.5%0-90948100%90-18000%0-180948100%Cone of Light TabulationMounted height(Feet)Footcandles Beam CenterDiameter (Feet)420.212.469.018.78 5.024.910 3.231.1Intensity Summary (Candle Power)AngleMean CP03235322153122529235261452215517365118756285149003000K 1.0193500K 1.0304000K 1.0515000K1.043DSE9-RD(2700K Setting)Input Voltage (VAC)120System Level Power (W)18.1Delivered Lumens (Lm)1261System Efficacy (Lm/W)69.7Correlated Color Temp (K)2784Color Rendering Index (CRI)92 R9=54Beam Angle 114Spacing Criteria1.28Zonal Lumen SummaryZone Lumens % of Luminaire 0-3033826.8%0-4055644.1%0-6099078.5%0-901261100%90-18000%0-1801261100%Cone of Light TabulationMounted height(Feet)Footcandles Beam CenterDiameter (Feet)426.912.4612.018.68 6.724.810 4.331.0Intensity Summary (Candle Power)AngleMean CP04305428154152538835347452935522865155758185199003000K 1.0193500K 1.0304000K 1.0515000K1.043Input Voltage (VAC)120System Level Power (W)10.7Delivered Lumens (Lm)617System Efficacy (Lm/W)57.7Correlated Color Temp (K)2787Color Rendering Index (CRI)92 R9=57Beam Angle 116Spacing Criteria1.29Zonal Lumen SummaryZone Lumens % of Luminaire 0-3016426.6%0-4027043.8%0-6048378.4%0-90617100%90-18000%0-180617100%(Feet)Beam Center(Feet)413.012.86 5.819.28 3.325.610 2.132.0AngleMean CP020852071520125188351694514355112657775408599003000K 1.0193500K 1.0304000K 1.0515000K1.043DSE6-SQ(2700K Setting)Input Voltage (VAC)120System Level Power (W)15.6Delivered Lumens (Lm)944System Efficacy (Lm/W)60.5Correlated Color Temp (K)2784Color Rendering Index (CRI)90 R9=57Beam Angle 115Spacing Criteria1.300-3025126.6%0-4041443.9%0-6074178.4%0-90944100%90-18000%0-180944100%Cone of Light TabulationMounted height(Feet)Footcandles Beam CenterDiameter (Feet)420.012.668.918.98 5.025.210 3.231.5Intensity Summary (Candle Power)AngleMean CP03195318153092529035260452215517365118756285149003000K 1.0193500K 1.0304000K 1.0515000K1.043DSE9-SQ(2700K Setting)Input Voltage (VAC)120System Level Power (W)18.6Delivered Lumens (Lm)1219System Efficacy (Lm/W)65.5Correlated Color Temp (K)2768Color Rendering Index (CRI)92 R9=56Beam Angle 114Spacing Criteria1.28Zonal Lumen SummaryZone Lumens % of Luminaire 0-3032626.8%0-4053744.1%0-6095778.5%0-901218100%90-18000%0-1801219100%Cone of Light TabulationMounted height(Feet)Footcandles Beam CenterDiameter (Feet)426.012.4611.518.78 6.524.910 4.131.1Intensity Summary (Candle Power)AngleMean CP04155413154012537535336452845522165150757885189003000K 1.0193500K 1.0304000K 1.0515000K1.043Fixture tested per LM-79-08. Photometric data is of the performance of a representative fixture. Results may vary in the field.Model Number Lumens Watts Lumens/WattDSE53 (2700K)61510.459.1DSE53 (3000K)62760.3 DSE53 (3500K)63360.9 DSE53 (4000K)64662.1 DSE53 (5000K)64161.6DSE83 (2700K)94815.660.8DSE83 (3000K)96661.9 DSE83 (3500K)97662.6 DSE83 (4000K)99663.8 DSE83 (5000K)98963.4DSE93 (2700K)126118.169.7DSE93 (3000K)128571.0 DSE93 (3500K)129871.7 DSE93 (4000K)132573.2 DSE93 (5000K)131572.7*Not a complete list.Check compatibility before installation. Model Number Lumens Watts Lumens/WattDSE43 (2700K)61710.757.7DSE43 (3000K)62958.8DSE43 (3500K)63559.3DSE43 (4000K)64860.6DSE43 (5000K)64360.1DSE63 (2700K)94415.660.5DSE63 (3000K)96261.7DSE63 (3500K)97262.3DSE63 (4000K)99263.6DSE63 (5000K)98463.1DSE93 (2700K)121918.665.5DSE93 (3000K)124366.8DSE93 (3500K)125567.5DSE93 (4000K)128168.9DSE93 (5000K)127168.3Lutron Diva DVCL-153PLutron DIVA DVELV-300PLutron Skylark SELV-300PLutron Maestro MAELV-600This device complies with part 15 of the FCC Rules. Operation is subject to the following two conditions: (1) This device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation.NOTE: This equipment has been tested and found to comply with the limits for a Class A digital device, pursuant to part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference when the equipment is operated in a commercial environment. This equipment generates, uses, and can radiate radio frequency energy and, if not installed and used in accordance with the instruction manual, may cause harmful interference to radio communications. Operation of this equipment in a residential area is likely to cause harmful interference in which case the user will be required to correct the interference at his own expense.。

《微型机器人设计》课件4.2 嵌入式微型机器人硬件结构与软件环境

《微型机器人设计》课件4.2  嵌入式微型机器人硬件结构与软件环境

④ 右侧45度红外传感器调节:将嵌入式微型机器人车体 靠近右侧挡板约20mm,调节W4电位器,直到LED显示 模块的左侧第四个LED灯处于由灭到亮的闪烁状态,此 时的传感器为最佳状态。
20mm
⑤ 右侧90度红外传感器调节:将嵌入式微型机器人车体 靠近左侧挡板约10mm,调节W5电位器,直到LED显示 模块的左侧第五个LED灯处于由灭到亮的闪烁状态,此 时的传感器为最佳状态。
我们写好程序后,要将程序进行编译,我们需要按下面的 步骤进行编译链接操作。 ( 1 ) 选 择 主 菜 单 Projece>Make, 或 选 中 工 作 区 中 的 项 目 名 demo-Debug,按鼠标右键在弹出菜单中选择Make。如果你 想重新编译所有的文件,选择主菜单Project>Rebuild All, 或选中工作区中的项目名demo-Debug,按鼠标右键在弹出 菜单中选择Rebuild All。
10mm
3 认识IAR EWARM集成开发环境 IAR Embedded Workbench for ARM( 下 面 简 称 IAR EWARM)是一个针对ARM处理器的集成开发环境,它 包含项目管理器、编辑器、C/C++编译器和ARM汇编器、 连 接 器 XLINK 和 支 持 RTOS 的 调 试 工 具 C-SPY 。 在 EWARM环境下可以使用C/C++和汇编语言方便地开发 嵌 入 式 应 用 程 序 。 比 较 其 它 的 ARM 开 发 环 境 , IAR EWARM具有入门容易、使用方便和代码紧凑等特点。
(3)传感器供电 MicroMouse615-1型嵌入式微型机器人使用的红外线 传感器的工作电压为5V,在一般情况下可以把外接电 池的输出电压稳压到5V。但若电池电压较低或瞬间被 拉低时,系统就不能为传感器提供稳定的电源,这将严 重影响传感器的灵敏度。
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

TL H 11057LM615 Quad Comparator and Adjustable ReferenceDecember1994LM615Quad Comparator and Adjustable Reference General DescriptionThe comparators have an input range which extends to thenegative supply and have open-collector outputs Improvedover the LM139series the input stages of the comparatorshave lateral PNP input transistors which enable low inputcurrents for large differential input voltages and swingsabove V aThe voltage reference is a three-terminal shunt-type band-gap and is referred to the V b terminal Two resistors pro-gram the reference from1 24V to6 3V with accuracy ofg0 6%available The reference features operation over ashunt current range of17m A to20mA low dynamic imped-ance broad capacitive load range and cathode terminalvoltage ranging from a diode-drop below V b to above V aAs a member of National’s Super-Block TM family theLM615is a space-saving monolithic alternative to a multi-chip solution offering a high level of integration without sac-rificing performanceFeaturesCOMPARATORSY Low operating current600m AY Wide supply voltage range4V to36VY Open-collector outputsY Input common-mode range V b to(V a b1 8V)Y Wide differential input voltage g36VREFERENCEY Adjustable output voltage1 24V to6 3VY Tight initial tolerance available g0 6%(25 C)Y Wide operating current range17m A to20mAY Tolerant of load capacitanceApplicationsY Adjustable threshold detectorY Time-delay generatorY Voltage window comparatorY Power supply monitorY RGB level detectorConnection DiagramM PackageTL H 11057–24Top ViewN PackageTL H 11057–1Top ViewOrdering InformationFor information about surface-mount packaging of this device please contact theAnalog Product Marketing group at National Semiconductor Corp headquarters ReferenceTemperature RangeNSC Tolerances Military Industrial Package Package Number b55 C s T J s a125 C b40 C s T J s a85 Cg0 6%at25 C LM615AMN LM615AIN16-Pin N16A80ppm C max Molded DIPLM615AMJ 88316-Pin J16A(Note13)Ceramic DIPg2 0%at25 C LM615MN LM615IN16-Pin N16A150ppm C max Molded DIPLM615IM16-Pin Narrow M16ASurface MountSuper-Block TM is a trademark of National Semiconductor CorporationC1995National Semiconductor Corporation RRD-B30M115 Printed in U S AAbsolute Maximum Ratings(Note1)If Military Aerospace specified devices are required please contact the National Semiconductor Sales Office Distributors for availability and specifications Voltage on Any Pin Except V RO(referred to V b pin)(Note2)36V(Max) (Note3)b0 3V(Min) Current through Any Input Pinand V RO Pin g20mA Differential Input Voltage g36V Output Short-Circuit Duration(Note4) Storage Temperature Range b65 C s T J s a150 C Maximum Junction Temperature150 C Thermal Resistance Junction-to-Ambient(Note5)N Package95 C W Soldering InformationN Package Soldering(10seconds)260 C ESD Tolerance(Note6)g1kVOperating Temperature RangeLM615AI LM615I b40 C s T J s a85 C LM615A LM615M b55 C s T J s a125 CElectrical CharacteristicsThese specifications apply for V b e GND e0V V a e5V V CM e V OUT e V a 2 I R e100m A FEEDBACK pin shorted to GND unless otherwise specified Limits in standard typeface are for T J e25 C limits in boldface type apply over the Operating Temperature RangeLM615AM LM615MSymbol Parameter Conditions Typical LM615AI LM615IUnits (Note7)Limits Limits(Note8)(Note8)COMPARATORSI S Total Supply Current V a Current R LOAD e% 250550600m A max3V s V a s36V350600650m A maxV OS Offset Voltage over4V s V a s36V R L e15k X1 03 05 0mV max V a Range2 06 07 0mV maxV OS Offset Voltage over0V s V CM s(V a b1 8V)1 03 05 0mV max V CM Range V a e30V R L e15k X1 56 07 0mV maxD V OS D T Average Offset15m V C Voltage DriftI B Input Bias Current b52535nA maxb83040nA maxI OS Input Offset Current0 244nA max0 355nA maxA V Voltage Gain R L e10k X to36V 5005050V mV2V s V OUT s27V min100V mVt R Large Signal V a IN e1 4V V b IN e TTL1 5m s Response Time Swing R L e5 1k X2 0m sI SINK Output Sink Current V a IN e0V V b IN e1V 201010mA minV OUT e1 5V1388mA minV OUT e0 4V2 81 00 8mA min2 40 50 5mA minI L Output Leakage V a IN e1V V b IN e0V 0 11010m A maxCurrent V OUT e36V0 2m A2Electrical CharacteristicsThese specifications apply for V b e GND e0V V a e5V V CM e V OUT e V a 2 I R e100m A FEEDBACK pin shorted to GND unless otherwise specified Limits in standard typeface are for T J e25 C limits in boldface type apply over the Operating Temperature Range (Continued)LM615AM LM615MSymbol Parameter Conditions Typical LM615AI LM615IUnits (Note7)Limits Limits(Note8)(Note8)VOLTAGE REFERENCE(Note9)V R Reference1 2441 23651 2191V min Voltage1 25151 2689V max(g0 6%)(g2%)D V R D T Average Drift(Note10)1880150ppm C with Temperature maxD V R kH Average Drift T J e40 C400ppm kH with Time T J e150 C1000ppm kHD V R D T J Hysteresis(Note11)3 2m V CD V R D I R V R Change V R 100m A b V R 17m A 0 0511mV max with Current0 11 11 1mV maxV R 10mA b V R 100m A 1 555mV max(Note12)2 05 55 5mV maxR Resistance D V R 10mA to0 1mA 9 9mA0 20 560 56X maxD V R 100m A to17m A 83m A0 61313X maxD V R D V RO V R Change V R VRO e V Rb V R VRO e6 3V2 555mV max with V RO2 81010mV maxD V R D V a V R Change V R V a e5V b V R V a e36V 0 11 21 2mV max with V a Change0 11 31 3mV maxV R V a e5V b V R V a e3V 0 0111mV max0 011 51 5mV maxI FB FEEDBACK V b s V FB s5 06V223550nA maxBias Current294055nA max e n Voltage Noise BW e10Hz to10kHz30m V RMS Note1 Absolute maximum ratings indicate limits beyond which damage to the component may occur Electrical specifications do not apply when operating the device beyond its rated operating conditionsNote2 Input voltage above V a is allowed As long as one input pin voltage remains inside the common-mode range the comparator will deliver the correct output Note3 More accurately it is excessive current flow with resulting excess heating that limits the voltages on all pins When any pin is pulled a diode drop below V b a parasitic NPN transistor turns ON No latch-up will occur as long as the current through that pin remains below the Maximum Rating Operation is undefined and unpredictable when any parasitic diode or transistor is conductingNote4 Shorting an Output to V b will not cause power dissipation so it may be continuous However shorting an Output to any more positive voltage(including V a) will cause80mA(typ )to be drawn through the output transistor This current multiplied by the applied voltage is the power dissipation in the output transistor If the total power from all shorted outputs causes the junction temperature to exceed150 C degraded reliability or destruction of the device may occur To determine junction temperature see Note5Note5 Junction temperature may be calculated using T J e T A a P D i JA The given thermal resistance is worst-case for packages in sockets in still air For packages soldered to copper-clad board with dissipation from one comparator or reference output transistor nominal i JA is80 C W for the N packageNote6 Human body model 100pF discharge through a1 5k X resistorNote7 Typical values in standard typeface are for T J e25 C values in boldface type apply for the full operating temperature range These values represent the most likely parametric normNote8 All limits are guaranteed for T J e a25 C(standard type face)or over the full operating temperature range(bold type face)Note9 V RO is the reference output voltage which may be set for1 2V to6 3V(see Application Information) V R is the V RO-to-FEEDBACK voltage(nominally 1 244V)Note10 Average reference drift is calculated from the measurement of the reference voltage at25 C and at the temperature extremes The drift in ppm C is 106 D V R V R 25 C D T J where D V R is the lowest value subtracted from the highest V R 25 C is the value at25 C and D T J is the temperature range This parameter is guaranteed by design and sample testingNote11 Hysteresis is the change in V RO caused by a change in T J after the reference has been‘‘dehysterized ’’To dehysterize the reference that is minimize the hysteresis to the typical value its junction temperature should be cycled in the following pattern spiraling in toward25 C 25 C 85 C b40 C 70 C 0 C 25 C Note12 Low contact resistance is required for accurate measurementNote13 A military RETS electrical test specification is available on request The LM615AMJ 883may also be procured as a Standard Military Drawing3Simplified Schematic DiagramsComparatorTL H 11057–2 Reference BiasTL H 11057–34Typical Performance Characteristics (Reference)T J e 25 C FEEDBACK pin shorted to V b e 0V unless otherwise notedvs Temperature Reference Voltage Drift vs Time Reference Voltage Voltage Drift vs TimeAccelerated Reference and Temperature vs CurrentReference Voltage and Temperaturevs CurrentReference Voltage vs Reference CurrentReference Voltage vs Reference Current Reference Voltage Stability RangeReference AC Voltagevs FEEDBACK-to-V b FEEDBACK Current Voltagevs FEEDBACK-to-V b FEEDBACK Current Voltage vs Frequency Reference NoiseResistance vs FrequencyReference Small-Signal TL H 11057–45Typical Performance Characteristics (Reference)(Continued)T J e 25 C FEEDBACK pin shorted to V b e 0V unless otherwise notedPower-Up TimeReferenceVoltage Stepwith FEEDBACK Reference Voltage Current Stepwith 100E 12m A Reference Voltage Current Step for 100m E 10mA Reference Step Response Voltage StepChange with Supply Reference Voltage TL H 11057–5Typical Performance Characteristics (Comparators)T J e 25 C V a e 5V V b e 0V unless otherwise notedvs Supply Voltage Supply Current VoltageCurrent vs Common-Mode Input-BiasDifferential Input VoltageInput Current vsTL H 11057–66Typical Performance Characteristics (Comparators)(Continued)Voltage vs Sink CurrentOutput SaturationNegative TransitionTimes Inverting Input Small-Signal Response Positive TransitionTimes Inverting Input Small-Signal Response Positive Transition Times Non-Inverting Input Small-Signal Response Negative Transition Times Non-Inverting Input Small-Signal ResponsePositive TransitionTimes Inverting Input Large-Signal Response Negative Transition Times-Inverting Input Large-Signal Response Positive Transition Times Non-Inverting Input Large-Signal ResponseNegative TransitionTimes Non-Inverting Input Large-Signal ResponseTL H 11057–87Application InformationVOLTAGE REFERENCEReference BiasingThe voltage reference is of a shunt regulator topology that models as a simple zener diode With current I r flowing in the‘‘forward’’direction there is the familiar diode transfer function I r flowing in the reverse direction forces the refer-ence voltage to be developed from cathode to anode The cathode may swing from a diode drop below V b to the ref-erence voltage or to the avalanche voltage of the parallel protection diode nominally7V A6 3V reference with V a e 3V is allowedTL H 11057–9 FIGURE1 Voltage Associated with Reference(Current Source I r is External)The reference equivalent circuit reveals how V r is held at the constant1 2V by feedback and how the FEEDBACK pin passes little currentTo generate the required reverse current typically a resistor is connected from a supply voltage higher than the refer-ence voltage Varying that voltage and so varying I r has small effect with the equivalent series resistance of less than an ohm at the higher currents Alternatively an active current source such as the LM134series may generate I rTL H 11057–10 FIGURE2 Reference Equivalent CircuitTL H 11057–11FIGURE3 1 2V ReferenceCapacitors in parallel with the reference are allowed See the Reference AC Stability Range typical curve for capaci-tance values from20m A to3mA any capacitor value is stable With the reference’s wide stability range with resis-tive and capacitive loads a wide range of RC filter values will perform noise filteringAdjustable ReferenceThe FEEDBACK pin allows the reference output voltage V ro to vary from1 24V to6 3V The reference attempts to hold V r at1 24V If V r is above1 24V the reference will conduct current from Cathode to Anode FEEDBACK cur-rent always remains low If FEEDBACK is connected to An-ode then V ro e V r e1 24V For higher voltages FEED-BACK is held at a constant voltage above Anode say3 76V for V ro e5V Connecting a resistor across the con-stant V r generates a current I e R1 V r flowing from Cath-ode into FEEDBACK node A Thevenin equivalent3 76V is generated from FEEDBACK to Anode with R2e3 76 I Keep I greater than one thousand times larger than FEED-BACK bias current for k0 1%error I t32m A for the mili-tary grade over the military temperature range(I t5 5m A for a1%untrimmed error for an industrial temperature range part)TL H 11057–12FIGURE4 Thevenin Equivalent ofReference with5V OutputTL H 11057–13 R1e V r I e1 24 32m e39kR2e R1 (V ro V r)b1 e39k (5 1 24)b1 e118kFIGURE5 Resistors R1and R2ProgramReference Output Voltage to be5V8Application Information (Continued)Understanding that V r is fixed and that voltage sources re-sistors and capacitors may be tied to the FEEDBACK pin a range of V r temperature coefficients may be synthesizedTL H 11057–14FIGURE 6 Output Voltage has Negative TemperatureCoefficient (TC)if R2has Negative TCTL H 11057–15FIGURE 7 Output Voltage has Positive TCif R1has Negative TCTL H 11057–16FIGURE 8 Diode in Series with R1Causes Voltage Across R1and R2to be Proportional to AbsoluteTemperature (PTAT)Connecting a resistor across V RO -to-FEEDBACK creates a 0TC current source but a range of TCs may be synthe-sizedTL H 11057–17I e V r R1e 1 24 R1FIGURE 9 Current Source is Programmed by R1TL H 11057–18FIGURE 10 Proportional-to-Absolute-TemperatureCurrent SourceTL H 11057–19FIGURE 11 Negative-TC Current SourceReference HysteresisThe reference voltage depends slightly on the thermal his-tory of the die Competitive micro-power products vary al-ways check the data sheet for any given device Do not assume that no specification means no hysteresis9Application Information(Continued) COMPARATORSAny of the comparators or the reference may be biased in any way with no effect on the other sections of the LM615 except when a substrate diode conducts(see Electrical Characteristics Note3) For example one or both inputs of one comparator may be outside the input voltage range lim-its the reference may be unpowered and the other compar-ators will still operate correctly Unused comparators should have inverting input and output tied to V b and non-inverting input tied to V aHysteresisAny comparator may oscillate or produce a noisy output if the applied differential input voltage is near the compara-tor’s offset voltage This usually happens when the input signal is moving very slowly across the comparator’s switch-ing threshold This problem can be prevented by the addi-tion of hysteresis or positive feedback as shown in Figure 12TL H 11057–20 FIGURE12 R S and R F Add Hysteresis to Comparator The amount of hysteresis added in Figure12isV H e V a xR S (R F a R S)V a x R SR Ffor R F n R SA good rule of thumb is to add hysteresis of at least the maximum specified offset voltage More than about50mV of hysteresis can substantially reduce the accuracy of the comparator since the offset voltage is effectively being in-creased by the hysteresis when the comparator output is highIt is often a good idea to decrease the amount of hysteresis until oscillations are observed then use three times that minimum hysteresis in the final circuit Note that the amount of hysteresis needed is greatly affected by layout The amount of hysteresis should be rechecked each time the layout is changed such as changing from a breadboard to a P C boardInput StageThe input stage uses lateral PNP input transistors which unlike those of many op amps have breakdown voltage BV EBO equal to the absolute maximum supply voltage Also they have no diode clamps to the positive supply nor across the inputs These features make the inputs look like high impedances to input sources producing large differential and common-mode voltagesThe guaranteed common-mode input voltage range for an LM615is V b s V CM s(V a b1 8V) over temperature This is the voltage range in which the comparisons must be made If both inputs are within this range the output will be at the correct state If one input is within this range and the other input is less than(V b a32V) even if this is greater than V a the output will be at the correct state If however either or both inputs are driven below V b and either input current exceeds10m A the output state is not guaranteed to be correct If both inputs are above(V a b1 8V) the output state is also not guaranteed to be correctOutput StageThe comparators have open-collector output stages which require a pull-up resistor from each output pin to a positive supply voltage of the output to switch properly When the internal output transistor is off the output(HIGH)voltage will be pulled up to this external positive voltageTo ensure that the LOW output voltage is under the TTL-low threshold the output transistor’s load current must be less than0 8mA(over temperature)when it turns on This im-pacts the minimum value of the pull-up resistor10Typical ApplicationsPower Supply MonitorTL H 11057–21V OUT1and V OUT2are optional digital outputs and are LOW when the corresponding LED is ON All resistors 1%tolerance or betterTracking Comparator TL H 11057–22R1–C1removes the low-frequency signal component so that through R2–C2the higher-frequency component is detected4-Threshold Level DetectorTL H 11057–231112Physical Dimensions inches(millimeters)Ceramic Dual-In-Line Package(J)Order Number LM615AMJ 883NS Package Number J16A16-Pin Narrow Surface Mount Package(M)Order Number LM615IMNS Package Number M16A13L M 615Q u a d C o m p a r a t o r a n d A d j u s t a b l e R e f e r e n c ePhysical Dimensions inches (millimeters)(Continued)16-Pin Molded Dual-In-Line Package (N)Order Number LM615IN or LM615MNNS Package Number N16ALIFE SUPPORT POLICYNATIONAL’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMICONDUCTOR CORPORATION As used herein 1 Life support devices or systems are devices or 2 A critical component is any component of a life systems which (a)are intended for surgical implant support device or system whose failure to perform can into the body or (b)support or sustain life and whose be reasonably expected to cause the failure of the life failure to perform when properly used in accordance support device or system or to affect its safety or with instructions for use provided in the labeling can effectivenessbe reasonably expected to result in a significant injury to the userNational Semiconductor National Semiconductor National Semiconductor National Semiconductor CorporationEuropeHong Kong LtdJapan Ltd1111West Bardin RoadFax (a 49)0-180-530858613th Floor Straight Block Tel 81-043-299-2309。

相关文档
最新文档