2016级(初二下)中期考试数学试题
2016-2017学年度下学期初二数学试卷
2016-2017学年下学期中段水平测试八年级数学试卷(所有答案做在答题卡上)一、选择题(每题3分,共30分)1.下列二次根式中,属于最简二次根式的是( ) A .21B .3.0C .8D .10 2.使式子5-x 有意义,则x 的取值范围是( ) A .x >5 B .x ≠ 5C .x ≥5D .x ≤53.下列几组数中,能作为直角三角形三边长度的是( )A. 2,3,4B. 4,5,6错误!未找到引用源。
C. 6,8,11D. 5,12,134.下列运算正确的是( ) A .()442= B .()442-=-C .94)9()4(-⨯-=-⨯-D .257=-5.如图,直角三角形的三边长分为m 、n 、t ,下列各式正确的是( ) A. 222m n t =+B .222m n t =-C . 222n m t =+ D .222t m n =-6.一个直角三角形的两边长分别为8cm 、10cm ,则第三条边长为( )A .6cmB .12cmC .412 cmD .6cm 或412cm 7.如图,在▱ABCD 中,已知AD=5cm ,AB=3cm ,AE 平分∠BAD 交BC 边于点E ,则EC 等于( ) A .1cmB .2cmC .3cmD .4cm8.两条对角线互相垂直平分且相等的四边形是( ) A .矩形 B .菱形 C .正方形 D .平行四边形9.已知菱形ABCD 中,对角线AC 与BD 交于点O ,∠BAD =120°,AC =4, 则该菱形的面积是( )A .16 3B .16C .8 3D .8 10.如图,在矩形ABCD 中,AB=8,BC=4,将矩形沿AC 折叠, 点D 落在点D′处,则重叠部分△AFC 的面积为( ) A .10 B .9C .8D .6二、填空题(每题4分,共24分)11.计算:12= .12.如图,△ABC 中,D 、E 分别是AB 、AC 边的中点,且DE=7cm , 则BC= cm . 13.计算:218-= . 14.如果22(7)0a b -+-=,则a b +的值为 .15.菱形的两条对角线长分别为6和8,则这个菱形的周长为 . 16.如图,在矩形ABCD 中,AD=4,AB=3,MN ∥BC 分别交 AB 、CD 于点M 、N ,在MN 上任取两点P 、Q , 那么图中阴影部分的面积是 .三、解答题(每题6分,共18分)17.计算:(278)(32)--+18.如图,在ABCD 中,E ,F 分别在AD ,BC 边上,且AE =CF.求证: 四边形BFDE 是平行四边形.OO19.如图,已知△ABC 中,AB =5 cm ,BC =12 cm ,AC =13 cm ,AC 边上的中线BD 求:BD 的长四、解答题(每题7分,共21分)20. 已知32x =+ ,32y =-.求:(1)222y xy x ++ (2)22y x -21. 某中学八年级学生想知道学校操场上旗杆的高度,已知旗杆上的绳子垂到地面还多1米,当他们把绳子的下端拉开5米后,发现下端刚好触地面,求旗杆的长度.22.如图,在菱形ABCD 中,AC , BD 相交于点O ,E 为AB 的中点,DE ⊥AB. (1)求∠ABC 的度数; (2)若AC=43,求DE 的长.五、解答题(每题9分,共27分)23.如图,在平行四边形ABCD 中,E 为BC 的中点, 连接AE 并延长交DC 的延长线于点F. (1)求证:AB =CF ;(2)当BC 与AF 满足什么数量关系时, 四边形ABFC 是矩形,并说明理由.24.如图,在正方形ABCD 中,P 是对角线AC 上的一点,点E 在BC 的延长线上,且PE=PB. (1)求证:△BCP ≌△DCP ; (2)求∠DPE 的度数;(3)把正方形ABCD 改为菱形,其他条件不变,如图(2),若∠ABC=58°,求∠DPE 的度数.25.如图,在Rt △ABC 中,∠B =90°,AC =60 cm ,∠A =60°,点D 从点C 出发沿CA 方向以4 cm/秒的速度向点A 匀速运动,同时点E 从点A 出发沿AB 方向以2 cm/秒的速度向点B 匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D ,E 运动的时间是t 秒(0<t ≤15).过点D 作DF ⊥BC 于点F ,连接DE ,EF. (1)求证:AE =DF ;(2)四边形AEFD 能够成为菱形吗?如果能,求出相应的t 值;如果不能,请说明理由; (3)当t 为何值时,∠FDE 为直角?请说明理由.ABCDEO。
2016-2017学年度第二学期期中检测八年级数学试题(含答案)
2016-2017学年度第二学期期中检测八年级数学试题(全卷共120分,考试时间90分钟)一.选择题(本大题有8个小题,每小题3分,共24分,将正确选项填写在表格中相应位置)1.下列图形中,是中心对称图形的是(▲)A B C D2.下列调查中,适宜采用普查方式的是(▲)A.调查市场上某品牌老酸奶的质量情况B.调查某品牌圆珠笔芯的使用寿命C.调查乘坐飞机的旅客是否携带了危禁物品D.调查我市市民对《徐州夜新闻》的认可情况3.下列调查的样本选取方式,最具有代表性的是(▲)A.在青少年中调查年度最受欢迎的男歌手B.了解班上学生的睡眠时间.调查班上学号为双号的学生的睡眠时间C.为了了解你所在学校的学生每天的上网时间,向八年级的同学进行调查D.对某市的出租司机进行体检,以此反映该市市民的健康状况4.下列事件中,属于确定事件的是(▲)A.掷一枚硬币,着地时反面向上B.买一张福利彩票中奖了C.投掷3枚骰子,面朝上的三个数字之和为18D.五边形的内角和为540度5.如图,E、F、G、H分别是□ABCD各边的中点,按不同方式连接分别得到图○1、○2中两个不同的阴影部分甲、乙,关于甲、乙两个阴影部分,下列叙述正确的是( ▲ )A .甲和乙都是平行四边形B .甲和乙都不是平行四边形C .甲是平行四边形,乙不是平行四边形D .甲不是平行四边形,乙是平 行四边形6. 如图,在菱形ABCD 中,AC =6,BD =8,则菱形的周长是( ▲ )A .24B .48C .40D .207. 若依次连接四边形ABCD 各边的中点所得四边形是矩形,则四边形ABCD 一定是( ▲ )A .矩形B .菱形C .对角线互相垂直的四边形D .对角线相等的四边形 8. 如图,在□ABCD 中,AD =2AB ,F 是AD 的中点,作CE ⊥AB 于E ,在线段AB 上,连接EF 、CF .则下列结论:○1∠BCD =2∠DCF ;○2∠ECF =∠CEF ;○3S △BEC =2S △CEF ;○4∠DFE =3∠AEF ,其中一定正确的是( ▲ )A .○1○2○4B .○1○2○4C .○1○2○3○4D .○2○3○4图(1)图(2)GF E HCDGF E HCDABBA 第5题图CDAB第6题图EFCDBA 第8题图二. 填空题(本大题有8个小题,每小题3分,共24分)9. 如图是某校参加各兴趣小组的学生人数分布扇形统计图,其中“演艺”兴趣小组一项所对应的角度是 ▲ °.10. 一只不透明的袋子里装有1个白球,3个黄球,6个红球,这些球除了颜色外都相同,将球搅匀,从中任意摸出1个球,有下列事件:○1该球是红球,○2该球是黄球,○3该球是白球.它们发生的概率分别记为P 1,P 2,P 3.则P 1,P 2,P 3的大小关系 ▲ .11. 在一个不透明的袋子里,装有若干个小球.这些小球只有颜色上的区别.已知其中只有两个红球.每次摸球前都将袋子里的球搅匀.随机摸出一个小球,记下颜色并将球放回袋子里.通过大量重复试验后,发现摸出红球的频率稳定在0.2,那么据此估计,袋子里的球的总数大约是 ▲ 个. 12. 在□ABCD 的周长是32cm ,AB =5cm ,那么AD = ▲ cm .13. 如图,在□ABCD 中,∠ABC 的平分线交AD 于点E ,AB =4,BC =6,则DE = ▲ . 14. 如图,在□ABCD 中,AD =6,点E 、F 分别是BD 、CD 的中点,则EF = ▲ . 15. 如图,G 为正方形ABCD 的边AD 上的一个动点,AE ⊥BG ,CF ⊥BG ,垂足分别为点E ,F ,已知AD =4,则AE 2+CF 2= ▲ .第9题图第13题图EABCD第14题图EF DABC第15题图FE CDABG16. 如图,在Rt △ABC 中,∠ACB =90,AC =3,BC =4,分别以AB 、AC 、BC 为边在AB 同侧作正方形ABEF ,ACPQ ,BDMC ,记四块阴影部分的面积分别为S 1、S 2、S 3、S 4,则1234S S S S +++= ▲ .三. 解答题(本大题共8小题,共72分)17. (本题8分)某自行车公司调查阳光中学学生对其产品的了解情况,随机抽取部分学生进行问卷,结果分“非常了解”、“比较了解”、“一般了解”、“不了解”四种类型,分别记为A 、B 、C 、D .根据调查结果绘制了如下尚不完整的统计图.根据所给数据,解答下列问题: (1)本次问卷共随机调查了名学生,扇形统计图中m = . (2)请根据数据信息补全条形统计图.(3)若该校有1000名学生,估计选择“非常了解”、“比较了解”共约有多少人?18. (本题8分)为了了解某中学初三年级650名学生升学考试的数学成绩,从中随机抽取了50名学生的数学成绩进行分析,并求得样本的平均成绩是93.5分.下面是根据抽取的学生数学成绩制作的统计表:分组频数累计频数 频率问卷情况条形统计图6168类型人数DCBA2468101214161820第16题图4321S S S S LMDMPQE F CAB60.5~70.5 正3 a70.5~80.5 正正6 0.1280.5~90.5 正正9 0.1890.5~100.5 正正正正17 0.34100.5~110.5 正正b 0.2110.5~120.5正5 0.1 合计501根据题中给出的条件回答下列问题: (1)表中的数据a = ,b = ;(2)在这次抽样调查中,样本是 ;(3)在这次升学考试中,该校初三年级数学成绩在90.5~100.5范围内的人数约为 人.19. (本题8分)在如图所示的网格纸中,建立了平面直角坐标系xOy ,点P (1,2),点A (2,5),B (-2,5),C (-2,3).(1) 以点P 为对称中心,画出△A ′B ′C ′,使△A ′B ′C ′与△ABC 关于点P对称,并写出下列点的坐标:B ′ ,C ′ ; yB A(2) 多边形ABCA ′B ′C ′的面积是 .20. (本题8分)如图,在□ABCD 中, AE ⊥BD ,CF ⊥BD ,垂足分别为E 、F .求证:(1)AE =CF ;(2)四边形AECF 是平行四边形. 证明:21. (本题8分)如图,已知矩形ABCD 中,E 是AD 上的一点,F 是AB 上的一点,EF ⊥EC ,且EF =EC ,DE =4cm ,矩形ABCD 的周长为32cm ,求AE 的长.解:22. (本题10分)如图,在平面直角坐标系xOy 中,点A (3,4),B (5,0),C (0,第20题图FEDABCBCA EDF 第22题图-2).在第一象限找一点D ,使四边形AOBD 成为平行四边形, (1) 点D 的坐标是 ;(2) 连接OD ,线段OD 、AB 的关系是 ;(3) 若点P 在线段OD 上,且使PC +PB 最小,求点P 的坐标. 解:23. (本题10分)将两张完全相同的矩形纸片ABCD 、FBED 按如图方式放置,BD 为重合的对角线.重叠部分为四边形DHBG ,(1) 试判断四边形DHBG 为何种特殊的四边形,并说明理由; (2) 若AB =8,AD =4,求四边形DHBG 的面积. 解:(1) (2)xyO AB CEGHFCDAB第23题图24. (本题12分)如图,正方形ABCO 的边OA 、OC 分别在x 、y 轴上,点B 坐标为(6,6),将正方形ABCO 绕点C 逆时针旋转角度a (0°<a <90°),得到正方形CDEF ,ED 交线段AB 于点G ,ED 的延长线交线段OA 于点H ,连CH 、CG . (1)求证:△CBG ≌△CDG ;(2)求∠HCG 的度数;并判断线段HG 、OH 、BG 之间的数量关系,说明理由;(3)连结BD 、DA 、AE 、EB 得到四边形AEBD ,在旋转过程中,四边形AEBD 能否为矩形?如果能,请求出点H 的坐标;如果不能,请说明理由. (1) 证明:(2)解:(3)解:x yOGHFEDACB第24题图2016-2017学年度第二学期第一次质量抽测八年级数学试题答案四.选择题(本大题有8个小题,每小题3分,共24分)题号 1 2 3 4 5 6 7 8答案 A C B D A D C B五.填空题(本大题有8个小题,每小题3分,共24分)9.108.10.P1>P2>P3.11.10.12.11.13.2.14.3.15.16.16.18.六.解答题(本大题共10小题,共72分)17.答案:(1)50,m=32;……4分(2)图略;……6分(3)1000(16%40%)100056%560⨯+=⨯=.答约有560人.……8分18.答案:(1)a=0.06,b=10;……4分(2)50名学生的数学成绩;……6分(3)221.……8分19.解:(1)B′(4,-1),C′(4,1),图, (4)分(其中图2分)(2)28.……8分xyB'C'CA'OB AP20. (本题8分)证明:(1)因为四边形ABCD 是平行四边形,所以AD =BC ,…1分因为AD ∥BC ,所以∠ADE =∠CBF ,……2分 因为AE ⊥BD ,CF ⊥BD ,所以∠AED =∠CFB =90°,…3分所以△ADE ≌△CBF ,……4分 所以AE =CF .……5分(2)因为AE ⊥BD ,CF ⊥BD ,所以∠AEF =∠CFE =90°,…6分 所以AE ∥CF ,……7分由(1)得AE =CF ,所以四边形AECF 是平行四边形.……8分 21. 解:因为EF ⊥EC ,所以∠CEF =90°,………………1分 所以∠AEF +∠DEC =90°,………………2分因为四边形ABCD 是矩形,所以∠A =∠D =90°,………………3分 所以∠AFE +∠AEF =90°,所以∠AFE =∠DEC ,………………4分又EF =EC ,所以△AEF ≌△DCE ,………………5分 所以AE =DC ,………………6分因为2(AD +DC )=32,所以2(AE +DE +AE )=32,………………7分 因为DE =4cm ,所以AE =6cm .………………8分第20题图FEDABC22. 解答:(1)(8,4),图.…………2分 (2)OD 与AB 互相垂直平分.图…………4分(3)连接AC 交OD 于点P ,点P 即是所求点.…………5分(有图也可以)设经过点O 、D 的函数表达式为1y k x =,则有方程148k =,所以112k =,所以直线OD 的函数表达式为12y x =.………………6分设过点C 、A 的一次函数表达式为2y k x b =+,则有方程组22,3 4.b k b =-⎧⎨+=⎩解得22,2.b k =-⎧⎨=⎩所以过点C 、A 的一次函数表达式为22y x =-,………………8分解方程组1,22 2.y y x ⎧=⎪⎨⎪=-⎩得4,32.3x y ⎧=⎪⎪⎨⎪=⎪⎩,所以点P (43,23).………………10分xyEPO ADBCEGCD23. (本题10分)解:(1)四边形DHBG 是菱形.………………1分 理由如下:因为四边形ABCD 、FBED 是完全相同的矩形, 所以∠A =∠E =90°,AD =ED , …………2分 所以DA ⊥AB ,DE ⊥BE ,所以∠ABD =∠EBD ,………………3分 因为AB ∥CD ,DF ∥BE ,所以四边形DHBG 是平行四边形,∠HDB =∠EBD ,………………5分 所以∠HDB =∠ABD , 所以DH =BH , 所以□DHBG 是菱形.………………6分 (2)由(1),设DH =BH =x ,则AH =8-x ,在Rt △ADH 中,222AD AH DH +=,即得2224(8)x x +-=, 解得5x =,即BH =5,………………9分所以菱形DHBG 的面积为5420HB AD ??. (10)分24. (本题12分) 解:(1)证明:∵正方形ABCO 绕点C 旋转得到正方形yGFECBCDEF ,∴CD =CB ,∠CDG =∠CBG =90°.………2分在Rt △CDG 和Rt △CBG 中,CD =CB ,CG =CG ,∴△CDG ≌△CBG (HL ).………………3分(2)解:∵△CDG ≌△CBG ,∴∠DCG =∠BCG 12DCB =∠,DG =BG .……………4分在Rt △CHO 和Rt △CHD 中,CH =CH ,CO =CD ,∴△CHO ≌△CHD (HL ).……………5分∴∠OCH =∠DCH 12OCD =∠,OH =DH ,…6分∴∠HCG =∠HCD +∠GCD 11145222OCD DCB OCB =∠+∠=∠=︒,…7分HG =HD +DG =HO +BG .………………8分(3)解:四边形AEBD 可为矩形. 如图,连接BD 、DA 、AE 、EB ,因为四边形AEBD 若为矩形,则四边形AEBD 为平行四边形,且AB =ED ,则有AB 、ED 互相平分,即G 为AB 中点的时候.因为DG =BG ,所以此时同时满足DG =AG =EG =BG ,即平行四边形AEBD 对角线相等,则其为矩形.所以当G 点为AB 中点时,四边形AEBD 为矩形.………………10分 ∵四边形DAEB 为矩形,∴AG =EG =BG =DG . ∵AB =6,∴AG =BG =3.………………11分 设H 点的坐标为(x ,0),则HO =x , ∵OH =DH ,BG =DG ,∴HD =x ,DG =3.在Rt △HGA 中,∵HG =x +3,GA =3,HA =6-x ,∴(x +3)2=32+(6-x )2,∴x =2. ∴H 点的坐标为(2,0).………………12分。
2016年第二学期八年级期中考试数学试题及答案1
2015学年第二学期八年级期中考试数学试题班别: 姓名: 座号: 分数:一、 填空题:(每小题4分,共48分)1、下列二次根式是最简二次根式的是 ( )。
A 、21B 、4C 、3D 、82、25)(-等于( )。
A 、-5B 、5C 、25D 、-253、已知三组数据:①2,3,4; ②3,4,5 ;③1,3,2。
分别以每组数据中的三个数据为三角形的三边长,构成直角三角形的有 ( )。
A 、①② B 、②③ C 、①③ D 、①②③4、在Rt △ABC 中,∠C =90°,a =12,b =16,则c 的长为 ( )。
A 、26 B 、18 C 、20 D 、215、菱形和矩形一定都具有的性质是 ( )。
A 、对角线相等 B 、对角线互相平分 C 、对角线互相平分且相等 D 、对角线互相垂直6、下列计算错误的是 ( )。
A 、14772⨯=B 、60302÷=C 、9258a a a +=D 、3223-= 7、已知四边形ABCD 是平行四边形,则下列各图中∠1与∠2一定不相等的是 ( )。
8.已知菱形的边长和一条对角线的长均为4cm ,则菱形的面积为( ) A.16cm 2B.223cmC.423cmD.823cm9、下列二次根式中能与2合并的二次根式的是( )。
A 、12B 、23C 、32D 、1810、在矩形ABCD 中,AB=3,BC=4,则点A 到对角线BD 的距离为 ( )。
A 、513 B 、5 C 、 2.5 D 、51211、若75n 是整数,则正整数n 的最小值是( )。
A 、2B 、3C 、4D 、512、已知a 、b 、c 是三角形的三边长,如果满足(a -6)2+8-b +10-c =0,则三角形的形状是( )A 、底与边不相等的等腰三角形B 、等边三角形C 、钝角三角形D 、直角三角形 二、填空题:(每小题4分,共32分)。
13、已知x x -=-3)32(,则x 的取值范围是: 。
2015-2016学年八年级下学期数学期中综合检测(含答案)
2015~2016学年下期八年级半期数学试题(含答案)(90分钟 100分)一、选择题(每小题3分,共24分)1.在代数式-,,x+y,,中,分式有( )A.2个B.3个C.4个D.5个2.(2013·兰州中考)当x>0时,函数y=-的图象在( )A.第四象限B.第三象限C.第二象限D.第一象限3.若分式的值为零,则a的值为( )A.4B.2C.〒2D.-24.函数y=的自变量x的取值范围是( )A.x>3B.x≥3C.x≠3D.x<-35.某闭合电路中,电源的电压为定值,电流I(A)与电阻R(Ω)成反比例.如图表示的是该电路中电流I与电阻R之间函数关系的图象,则用电阻R表示电流I的函数关系式为( )A.I=B.I=C.I=D.I=-6.在物理实验课上,小明用弹簧秤将铁块悬于盛有水的水槽中,然后匀速向上提起(不考虑水的阻力),直至铁块完全露出水面一定高度.下图能反映弹簧秤的读数y(单位:N)与铁块被提起的高度x(单位:cm)之间的函数关系的大致图象是( )7.方程+=1的解是( )A.x=-3B.x=-2C.x=-1D.x=08.(2013·南充中考)如图,函数y1=与y2=k2x的图象相交于点A(1,2)和点B.当y1<y2时,自变量x 的取值范围是( )A.x>1B.-1<x<0C.-1<x<0或x>1D.x<-1或0<x<1二、填空题(每小题4分,共24分)9.当x= 时,分式没有意义.10.反比例函数y=的图象与一次函数y=2x+1的图象的一个交点是(1,k),则反比例函数的关系式是.11.已知点P(3,-1),则点P关于x轴对称的点Q是.12.分式方程=的解是.13.点P1(x1,y1),点P2(x2,y2)是直线y=-4x+3上的两个点,且x1<x2,则y1与y2的大小关系是.14.李老师开车从甲地到相距240km的乙地,如果油箱剩余油量y(L)与行驶里程x(km)之间是一次函数关系,其图象如图所示,那么到达乙地时油箱剩余油量是L.三、解答题(共52分)15.(10分)先化简〔,然后选择一个你最喜欢的合适的x的值,代入求值.16.(10分)李明到离家2.1千米的学校参加初三联欢会,到学校时发现演出道具还放在家中,此时距联欢会开始还有42分钟,于是他立即步行(匀速)回家,在家拿道具用了1分钟,然后立即骑自行车(匀速)返回学校,已知李明骑自行车到学校比他从学校步行到家用时少20分钟,且骑自行车的速度是步行速度的3倍.(1)李明步行的速度(单位:米/分)是多少?(2)李明能否在联欢会开始前赶到学校?17.(10分)已知一次函数y=kx+b(k≠0)的图象过点(0,2),且与两坐标轴围成的三角形的面积为2,求此一次函数的关系式.18.(10分)如图,直线y=k1x+b与双曲线y=相交于A(1,2),B(m,-1)两点.(1)求直线和双曲线的关系式.(2)若A1(x1,y1),A2(x2,y2),A3(x3,y3)为双曲线上的三点,且x1<x2<0<x3,请直接写出y1,y2,y3的大小关系式.(3)观察图象,请直接写出不等式k1x+b>的解集.19.(12分)荆门市是著名的“鱼米之乡”.某水产经销商在荆门市长湖养殖场批发购进草鱼和乌鱼(俗称黑鱼)共75千克,且乌鱼的进货量大于40千克.已知草鱼的批发单价为8元/千克,乌鱼的批发单价与进货量的函数关系如图所示.(1)请直接写出批发购进乌鱼所需总金额y(元)与进货量x(千克)之间的函数关系式.(2)若经销商将购进的这批鱼当日零售,草鱼和乌鱼分别可卖出89%,95%,要使总零售量不低于进货量的93%,问该经销商应怎样安排进货,才能使进货费用最低?最低费用是多少?答案解析1.【解析】选A.根据分式的概念含有分母且分母中含有字母,故,是分式.2.【解析】选A.函数y=-的图象在第二、四象限,当x>0时,图象在第四象限.3.【解析】选D.根据题意得,解得a=-2.4.【解析】选A.由题意得x-3>0,所以x>3.5.【解析】选C.设用电阻R表示电流I的函数关系式为I=,观察图象知,图象过(3,2),所以k=6,其关系式为I=.21教育名师原创作品6.【解析】选C.铁块完全在水里时,弹簧秤的读数不变,慢慢露出水面时,弹簧秤的读数逐渐增加,完全露出水面时,弹簧秤的读数又是定值.7.【解析】选D.解分式方程+=1,去分母,得x-5=2x-5,解得x=0,检验得x=0是原分式方程的解.21教育网8.【解析】选C.根据反比例函数和正比例函数的对称性,另一个交点的坐标为(-1,-2),当y1<y2时,反比例函数的图象位于正比例函数的图象的下方,此时,-1<x<0或x>1.9.【解析】∵分式没有意义,∴x-4=0,解得x=4.答案:410.【解析】把(1,k)代入y=2x+1,解得k=3,所以反比例函数的关系式是y=.答案:y=11.【解析】∵点P与点Q关于x轴对称,∴点P与点Q的坐标关系是横坐标不变,纵坐标互为相反数,即点Q的坐标(3,1).答案:(3,1)12.【解析】去分母,方程的两边同乘2(x+4),得2(x-2)=x+4,去括号,得2x-4=x+4,移项,得2x-x=4+4,合并同类项,得x=8,检验:把x=8代入2(x+4)=24≠0,∴原方程的解为x=8.答案:x=813.【解析】∵直线y=-4x+3中,k=-4<0,∴函数值y随x的增大而减小,又∵x1<x2,y1到y2逐渐减小,∴y1>y2.答案:y1>y214.【解析】设y与x之间的函数关系式为y=kx+b,由函数图象,得解得则y=-x+3.5.当x=240时,y=-〓240+3.5=2(L).答案:215.【解析】原式=〔=·=x+1.当x=2时,原式=2+1=3(为保证分式有意义,所选择的数不能为〒1和0).16.【解析】(1)设步行速度为x米/分,则自行车的速度为3x米/分.根据题意得=+20,得x=70.经检验x=70是原方程的解,答:李明步行的速度是70米/分.(2)根据题意得++1=41<42,∴李明能在联欢会开始前赶到.17.【解析】设一次函数y=kx+b(k≠0)的图象与x轴的交点为(a,0),所以〓2〓|a|=2,解得a=〒2,所以一次函数y=kx+b(k≠0)图象与x轴的交点为(2,0)或(-2,0),把点的坐标代入函数关系式,得或解得k=〒1,所以一次函数的关系式为y=x+2或y=-x+2.18.【解析】(1)∵双曲线y=经过点A(1,2),∴k2=2.∴双曲线的关系式为y=.∵点B(m,-1)在双曲线y=上,∴m=-2,则B(-2,-1).由点A(1,2),B(-2,-1)在直线y=k1x+b上,得解得∴直线的关系式为y=x+1.(2)y2<y1<y3.(3)x>1或-2<x<0.19.【解析】(1)y=(2)设该经销商购进乌鱼x千克,则购进草鱼(75-x)千克,所需进货费用为W元.由题意得解得x≥50.由题意得W=8(75-x)+24x=16x+600.∵16>0,∴W的值随x的增大而增大,∴当x=50时,75-x=25,W最小=1400元.答:该经销商应购进草鱼25千克,乌鱼50千克,才能使进货费用最低,最低费用为1400元.。
2015--2016八年级下册数学期中测试卷及答案
AD2015—2016学年度第二学期期中考试初二数学试题 (I 卷)一、选择答案:(每题3分,共30分)1、下列二次根式中,属于最简二次根式的是( ) A .21B . 8.0C . 4D . 52、有意义的条件是二次根式3 x ( ) A .x>3 B. x>-3 C. x ≥-3 D.x ≥33、正方形面积为36,则对角线的长为( ) A .6 B .62 C .9 D .924、矩形的两条对角线的夹角为60度,对角线长为15,则矩形的较短边长为( )A. 12B. 10C. 7.5D. 55、如图,把矩形ABCD 沿EF 翻折,点B 恰好落在AD 边的B′处,若AE=2,DE=6,∠EFB=60°,则矩形ABCD 的面积是( ) A.12 B. 24 C. 312 D. 3166、下列条件中 能判断四边形是平行四边形的是( )(A ) 对角线互相垂直(B )对角线相等(C )对角线互相垂直且相等(D )对角线互相平分7、如图,在□ABCD 中,已知AD =5cm ,AB =3cm ,AE 平分∠BAD 交BC 边于点E ,则EC 等于( )(A)1cm (B)2cm (C)3cm (D)4cm8、如图,菱形ABCD 中,E 、F 分别是AB 、AC的中点,若EF =3,则菱形ABCD 的周长是( )A .12B .16C .20D .249、如图,在矩形ABCD 中,AB =8,BC =4,将矩形沿AC 折叠,点D 落在点D’处,则重叠部分△AFC 的面积为( ). A .6 B .8 C .10 D .1210、如图,正方形ABCD 中,AE =AB ,直线DE 交 BC 于点F ,则∠BEF =( ) A .45° B .30° C .60° D .55°A B CD F D ’O E F D A BC 2015—2016学年度第二学期期中考试初二数学试题 (II 卷)题号1 2 3 4 5 6 7 8 9 10 答案11、ABCD 中一条对角线分∠A 为35°和45°,则∠B= __ 度。
八年级数学2016第二学期期中考试卷(有答案)有一定的难度
一、选择题(每题3分,共30分)1.下列二次根式中,属于最简二次根式的是()2.下列各组数中,以它们为边长的线段能构成直角三角形的是()A.13,14,15B.3,4,5 C.2,3,4 D.1,13. 已知四边形ABCD是平行四边形,下列结论中不正确...的是()A.当AB=BC时,它是菱形B.当AC⊥BD时,它是菱形C.当∠ABC=90°时,它是矩形D.当AC=BD时,它是正方形4. 下列计算正确的是 ( )A.=B=C3=D.24=5. 如图,在△ABC中,AB=6,AC=10,点D,E,F分别是AB,BC,AC的中点,则四边形ADEF的周长为()A.16 B.12 C.10 D.86.已知平行四边形ABCD的两条对角线AC、BD交于平面直角坐标系的原点,点A的坐标为(-2,3),则点C的坐标为()A. (3,-2)B. (2,-3)C. (-3,2)D. (-2,-3)7.若一个直角三角形的两边长分别是5和12,则第三边长为()A.13B.119C.13或119D.无法确定8.如图,平行四边形ABCD的两条对角线相交于点O,点E是AB边的中点,图中与△ADE面积相等的三角形(不包括...△.ADE...)共有()A. 3个B. 4个C. 5个D. 6个AB CD F第10题ADE PCBF第9题OA BCDE第8题9. 将矩形纸片ABCD按如图所示的方式折叠,AE、EF为折痕,∠BAE=30°,AB=折叠后,点C落在AD边上的C1处,并且点B落在EC1边上的B1处.则BC的长为()10. 如图,在菱形ABCD中,∠A=110°,E,F分别是边AB和BC的中点,EP ⊥CD于点P,则∠FPC=()A.35° B.45° C.50° D.55°二、填空题(每题3分,共30分)11.有意义,那么x的取值范围是.12.如图,直线l上有三个正方形a,b,c,若a,c的面积分别为4和10,则b 的面积为.第12题第16题13.已知a,b,则a- b=_____ __.14.在□ABCD中,如果∠A+∠C=140°,那么∠D=.1516.如图,在△ABC中,∠ACB=90︒,∠B=40︒,D为线段AB的中点,则∠ACD =.17.在△ABC中,∠A,∠B和∠C所对的边分别为a, b,c,如果三边长满足b2-a2=c2,那么△ABC中互余的一对角是.2690b b-+=18.菱形ABCD 的周长是20,对角线AC ,BD 相交于点O ,若BD =6,则菱形ABCD 的面积是.19.如图,在平行四边形ABCD 中,∠C =90°,沿着直线BD 折叠,使点C 落在C′处,BC′交AD 于E ,AD =16,AB =8,则DE 的长为.第19题图 第20题图 20.如图在由24个边长为1的正三角形组成的网格中,P 为一个格点,以P 为直角顶点作格点三角形(顶点均在格点上),请你写出所有可能的直角三角形的斜边长为_______. 三、解答题(共60分) 21.(6分)计算: (1);(2)((2211.22.(7分)如图,在□ABCD 中,已知AD =16cm ,AB =12cm ,DE 平分∠ADC 交BC 边于点E , 求BE 的长度.23.(7分)如图,已知菱形ABCD 的对角线相交于点O ,延长AB 至点E ,使BE =AB ,连接CE.B第19题B(1)求证:BD =EC ;(2)若∠E =57°,求∠BAO 的大小.24.(10分)已知:如图,在△ABC 中,∠ACB =90°,∠A =30°,AB =4,D 是AB 延长线上一点且∠CDB =45°, 求DB 与DC 的长.25.(10分)如图1,在正方形ABCD 中,E 、F 分别是边AD 、DC 上的点,且AF ⊥BE .(1)求证:AF =BE ;(2)如图2,在正方形ABCD 中,M 、N 、P 、Q 分别是边AB 、BC 、CD 、DA上的点,且MP ⊥NQ ,MP与NQ 是否相等?并说明理由.26.(10分)如图,矩形ABCD中,点P是线段AD上一动点(不与点D重合),O为BD的中点,PO的延长线交BC于点Q.(1)求证:四边形PBQD为平行四边形;(2)若AD=8厘米,AB=6厘米,P从点A出发,以1厘米/秒的速度向D运动.设点P的运动时间为t秒,请用t表示PD的长;并求t为何值时,四边形PBQD 是菱形.27.(10分)已知在矩形ABCD和△BEF中,∠DBC=∠EBF=30°,∠BEF=90°.(1)如图1,当点E在对角线BD上,点F在BC边上时,连接DF,取DF 的中点M,连接ME,MC,则ME与MC的数量关系是,∠EMC=________°;(2)如图2,将图1中的△BEF绕点B旋转,使点E在CB的延长线上,(1)中的其他条件不变.(1)中ME与MC的数量关系仍然成立吗?请证明你的结论.图2参考答案: 一、选择题1.A2.B3.A4.C5. A6.B7.C8.C9.B 10.D 二、填空题11.x ≥13- 12.14 13.133- 14.110° 15.16.57° 17. ∠A +∠C=90° 18.24 19.10 20. 4,7,13 ,2三、解答题 21. (1)3;(2)122.证明:∵四边形ABCD 是平行四边形, ∴AD ∥BC ,AB =CD =12cm ,AD =BC =16cm. ∵AD ∥BC ∴∠ADE =∠DEC .∵DE 平分∠ADC ,∴∠ADE =∠EDC ,∴∠DEC =∠EDC , ∴CE =CD =12cm ,∴BE =BC -CE =4cm.23. (1)证明:∵菱形ABCD ,∴AB =CD ,AB ∥CD ,又∵BE =AB ,∴BE =CD ,BE ∥CD , ∴四边形BECD 是平行四边形,∴BD =EC . (2)解:∵平行四边形BECD ,∴BD ∥CE , ∴∠ABO =∠E =57°,又∵菱形ABCD ,∴AC 丄BD ,∴∠BAO =90°,∴∠BAO +∠ABO =90°∴∠BAO =90°-∠ABO =33°. 24. 解:过C 作CE ⊥AB 于E ,如图.在Rt △ABC 中,∠ACB =90°,∠A =30°,AB =4, ∴BC = 2,∠ABC =60°, ∴∠BCE =30°, ∴BE =1,CE =3.在Rt △CDE 中,∠CED =90°,∠CDB =45°, ∴∠ECD = 45°,∴DE = CE=3,∴CD =622=+DE CE , ∴BD =3-1.25. (1)证明:在正方形ABCD 中,AB=AD ,∠BAE =∠D=90°,∴∠DAF +∠BAF =90°,∵AF ⊥BE ,∴∠ABE +∠BAF =90°,∴∠ABE =∠DAF ,又∵AB=AD ,∠BAE =∠D ,∴△ABE ≌△DAF (ASA ),∴AF=BE ; (2)解:MP 与NQ 相等.理由如下:如图,过点A 作AF ∥M P 交CD 于F ,过点B 作BE ∥NQ 交AD 于E , 则与(1)的情况完全相同.26. (1)证明:四边形ABCD是矩形,当四边形PBQD是菱形时,PB=PD=(8-t)cm,27.解:(1)ME=MC,120;(2)ME=MC仍然成立.证明:分别延长EM,CD交于点G,如图.∵四边形ABCD是矩形,∴∠DCB=90°.∵∠BEF=90°,∴∠FEB+∠DCB=180°.∵点E在CB的延长线上,∴FE∥DC.∴∠1=∠G.∵M是DF的中点,∴FM=DM.在△FEM和△DGM中,∠1=∠G,∠2=∠3,FM=DM,∴△FEM≌△DGM.∴EM=GM.∴在Rt△GEC中,CM=12EG=EM,即ME=MC.。
2016---2017学年度下期期中考试八年级
2016---2017学年度下期期中考试八年级数 学 试 卷一、选择题 (每小题3分,共24分)1.下列各组数中,能够组成直角三角形的是 【 】 A .3,4,5 B .4,5,6 C .5,6,7 D .6,7,8 2-1有意义,则x 的取值范围是 【 】 A .x ≥12 B .x ≤12 C .x =12D .以上答案都不对3【 】 A .① ② B .③ ④ C .① ③ D .① ④42,则此三角形的面积为 【 】 A.2BC.2 D .5.如图所示,△ABC 和△DCE 都是边长为4的等边三角形,点B ,C ,E 在同一条直线上, 连接BD ,则BD 的长为【 】 A B . C . D .6.如图,在菱形ABCD 中,对角线AC 与BD 相交于点O ,OE ⊥AB ,垂足为E , 若∠ADC =130°,则∠AOE 的大小为 【 】A .75°B .65°C .55°D .50°7.如图,矩形ABCD 的对角线AC ,BD 相交于点O ,CE ∥BD ,DE ∥AC ,若AC =4,则四边形CODE 的周长是 【 】A . 4B . 6C . 8D .10第5题图ABD E第6题图O E AB C D第7题图ABC OE D y x第8题图8.如图,是4个全等的直角三角形镶嵌而成的正方形图案,已知大正方形的面积为49,小正方形的面积为4,若用x ,y 表示直角三角形的两条直角边(x > y ),请观察图案,指出下列关系式不正确...的是 【 】A .2249x y +=B .2x y -=C .2449xy +=D .13x y +=二、填空题( 每小题3分,共21分) 9.若x ,y 为实数,且∣x +2∣+3y -=0,则(x +y )2017的值为.10 .11. 实数a ,b 在数轴上的对应点如图所示,则∣a -b = .12.若x =27+x 2+(2x = .13.如图,在平面直角坐标系中,若菱形ABCD 的顶点A ,B 的坐标分别为(-3,0), (2,0),点D 在y 轴上,则点C 的坐标是 .14.如图所示,直线a 经过正方形ABCD 的顶点A ,分别过顶点D ,B 作DE ⊥a 于点E ,BF ⊥a 于点F ,若DE =4,BF =3,则EF = .15.如图,R t △ABC 中,∠B =90°,AB =3,BC =4,将△ABC 折叠,使点B 恰好落在斜边AC 上,与点B '重合,AE 为折痕,则E B '= .三、解答题:(本大题共8个小题,满分75分) 16.(每小题4分 共8分)计算:(101)2++; (2)a 532.第11题图0baB 'A BC E aA B C D E F第13题图第14题图第15题图17.(8分)x 的取值范围是什么?18.(9分)如图,每个小正方形的边长都是1, (1)求四边形ABCD 的周长和面积(2)∠BCD 是直角吗?19.(9分)如图所示,在□ABCD 中,点E ,F 分别在边BC 和AD 上,且CE =AF ,(1)求证:△ABE ≌ △CDF ;(2)求证:四边形AECF 是平行四边形.第18题图AB第19题图ABCDE F20.(10分) 如图所示,在菱形ABCD 中,点E ,F 分别是边BC ,AD 的中点,(1)求证:△ABE ≌ △CDF ;(2)若∠B =60°,AB =4,求线段AE 的长.21.(10分)如图所示,在矩形ABCD 中,对角线AC ,BD 相交于点O ,E 是CD 的中点,连接OE ,过点C 作CF∥BD 交线段OE 的延长线于点F ,连接DF .求证: (1)OD =CF ; (2)四边形ODFC 是菱形.22.(10分)如图所示,矩形ABCD 的对角线相交于点O ,OF ⊥AD 于点F ,OF =2cm ,AE ⊥BD 于点E ,且BE ﹕BD =1﹕4,求AC 的长.第20题图AB C DFE第21题图A B C D F E OA B OED F C 第22题图23.(11分)在平面内,正方形ABCD 与正方形CEFH 如图放置,连接DE ,BH ,两线交于M ,求证:(1)BH =DE ;(2)BH ⊥DE .HM A BF EC D 第23题图2016-2017学年度八年级(下)期中数学参考答案16.(1)1(4分) (2)7a 4分) 17.a =5; ……………………3分 5≤x ≤10 ……………………8分18.(1……………………3分面积14.5 ……………………6分(2)是……………………7分,证明:略.……………………9分 19.(1)略 5分 (2)略 9分20.(1)略 5分 (2)证出AE 是高 8分,AE = 10分 21.证明:(1)∵CF ∥BD ∴∠DOE =∠CFE ,∵E 是CD 的中点,∴CE =DE在△ODE 和△FCE 中,DOE CFE CE DE DEO CEFì??ïïï=íïï??ïïî,∴△ODE ≌△FCE (ASA )∴OD =CF .……………………6分(2)由(1)知OD =CF ,∵CF ∥BD ,∴四边形ODFC 是平行四边形在矩形ABCD 中,OC =OD ,∴四边形ODFC 是菱形.……………………10分22.解法一:∵四边形ABCD 为矩形,∴∠BAD =90°,OB =OD ,AC =BD ,又∵OF ⊥AD ,∴OF ∥AB ,又∵OB =OD ,∴ AB =2OF =4cm ,∵BE ︰BD =1︰4,∴BE ︰ED =1︰3 ……………………3分 设BE =x ,ED =3 x ,则BD =4 x ,∵AE ⊥BD 于点E∴22222AE AB BE AD ED =-=-,∴16-x 2=AD 2-9x 2………………6分 又∵AD 2=BD 2-AB 2=16 x 2-16 ,∴16-x 2=16 x 2-16-9x 2,8 x 2=32∴x 2=4,∴x =2 ……………………9分 ∴BD =2×4 =8(cm ),∴AC =8 cm . ……………………10分解法二:在矩形ABCD 中,BO =OD =12BD ,∵BE ︰BD =1︰4,∴BE ︰BO =1︰2, 即E 是BO 的中点 ……………………3分 又AE ⊥BO ,∴AB =A O ,由矩形的对角线互相平分且相等,∴AO =BO ……………………5分 ∴△ABO 是正三角形,∴∠BAO=60°,∴∠OAD=90°-60°=30°……………………8分在Rt△AOF中,AO=2OF=4,∴AC=2AO=8 ……………………10分23.(1)提示:证明:△BCH≌△DCE(SAS)……………………6分(2)由(1)知△BCH≌△DCE∴∠CBH=∠EDC设BH,CD交于点N,则∠BNC=∠DNH∴∠CBH+∠BNC=∠EDC+∠DNH=90°∴∠DMN=180°-90°=90°∴BH⊥DE.……………………11分。
2015--2016八年级下册数学期中测试卷及答案
AB CDE 2015—2016学年度第二学期期中考试初二数学试题 (I 卷)一、选择答案:(每题3分,共30分)1、下列二次根式中,属于最简二次根式的是( ) A .21B . 8.0C . 4D . 52、有意义的条件是二次根式3 x ( ) A .x>3 B. x>-3 C. x ≥-3 D.x ≥33、正方形面积为36,则对角线的长为( ) A .6 B .62 C .9 D .924、矩形的两条对角线的夹角为60度,对角线长为15,则矩形的较短边长为( )A. 12B. 10C. 7.5D. 55、如图,把矩形ABCD 沿EF 翻折,点B 恰好落在AD 边的B′处,若AE=2,DE=6,∠EFB=60°,则矩形ABCD 的面积是( ) A.12 B. 24 C. 312 D. 3166、下列条件中 能判断四边形是平行四边形的是( )(A ) 对角线互相垂直(B )对角线相等(C )对角线互相垂直且相等(D )对角线互相平分7、如图,在□ABCD 中,已知AD =5cm ,AB =3cm ,AE 平分∠BAD 交BC 边于点E ,则EC 等于( )(A)1cm (B)2cm (C)3cm (D)4cm8、如图,菱形ABCD 中,E 、F 分别是AB 、AC的中点,若EF =3,则菱形ABCD 的周长是( )A .12B .16C .20D .249、如图,在矩形ABCD 中,AB =8,BC =4,将矩形沿AC 折叠,点D 落在点D’处,则重叠部分△AFC 的面积为( ). A .6 B .8 C .10 D .1210、如图,正方形ABCD 中,AE =AB ,直线DE 交 BC 于点F ,则∠BEF =( ) A .45° B .30° C .60° D .55°A B CD F D ’O E F D A BC 2015—2016学年度第二学期期中考试初二数学试题 (II 卷)一、选择题答案:题号1 2 3 4 5 6 7 8 9 10 答案二、填空:(每题3分,共30分)11、ABCD 中一条对角线分∠A 为35°和45°,则∠B= __ 度。
2016年山西省太原市八年级(下)期中数学试卷与解析(word版)
2015-2016学年山西省太原市八年级(下)期中数学试卷一、选择题(共10小题,每小题3分,满分30分)1.(3分)若x>y,则下列变形正确的是()A.x+3>y+3 B.x﹣3<y﹣3 C.﹣3x>﹣3y D.﹣2.(3分)在以下”绿色食品、响应环保、可回收物、节水“四个标志图案中,是中心对称图形的是()A.B.C.D.3.(3分)不等式﹣x>﹣1的解集为()A.x>2 B.x<2 C.x>﹣2 D.x<﹣24.(3分)如图,AD是△ABC的角平分线,DE⊥AB,DF⊥AC,垂足分别为点E、点F,连接EF与AD相交于点O,下列结论不一定成立的是()A.DE=DF B.AE=AF C.OD=OF D.OE=OF5.(3分)如图,在△ABC中,AB=AC,∠A=40°,将△ABC绕点B逆时针旋转得到△A′BC′,若点C的对应点C′落在AB边上,则旋转角为()A.40°B.70°C.80°D.140°6.(3分)如图,数轴上表示的是两个不等式的解集,由它们组成的不等式组的解集为()A.﹣1<x≤1 B.﹣1<x<1 C.x>﹣1 D.x≤17.(3分)平面直角坐标系中,点P(2,0)平移后对应的点为Q(5,4),则平移的距离为()A.3个单位长度B.4个单位长度C.5个单位长度D.7个单位长度8.(3分)如图,在△ABC中,∠A=36°,AB=AC,BD是△ABC的角平分线.若在边AB上截取BE=BC,连接DE,则图中等腰三角形共有()A.2个 B.3个 C.4个 D.5个9.(3分)如图,已知△ABC中,AC<BC,分别以点A、点B为圆心,大于AB 长为半径作弧,两弧交于点D、点E;作直线DE交BC边于点P,连接AP.根据以上作图过程得出下列结论,其中不一定正确的是()A.PA+PC=BC B.PA=PB C.DE⊥AB D.PA=PC10.(3分)如图,直线y1=k1x+b1与坐标轴交于点(﹣4,0)和(0,2.9);直线y2=k2x+b2与坐标轴交于点(3,0)和(0,4).不等式组的解集是()A.x>﹣4 B.x<3 C.﹣4<x<3 D.x<﹣4或x>3二、填空题(共6小题,每小题2分,满分12分)11.(2分)如图,等边△ABC中,AD为高,若AB=6,则CD的长度为.12.(2分)如图,△ABC和△DCB中,∠A=∠D=90°,边AC与DB相交于点O,要使△ABC≌△DCB,则需要添加的一个条件是.(写出一种情况即可)13.(2分)命题“两直线平行,同位角相等.”的逆命题是.14.(2分)如图,已知一次函数y=kx+b的图象与x轴交于点(3,0),与y轴交于点(0,2),不等式kx+b≥2解集是.15.(2分)如图,在△ABC中,AB=AC,BD⊥AC,垂足为点D.若∠BAC=30°,则∠DBC的度数为°.16.(2分)如图是一张边长为3cm的正方形纸片ABCD.现要利用这张正方形纸片剪出一个腰长为2cm的等腰三角形,要求等腰三角形的一个顶点与正方形的一个顶点重合,另外两个顶点都在正方形的边上,则剪下的等腰三角形的面积为cm2.三、解答题(共8小题,满分58分)17.(5分)解不等式2x﹣7<5﹣2x.18.(6分)解不等式组:并将其解集表示在如图所示的数轴上.19.(6分)如图,已知△ABC中,AB=AC.(1)求作:△ABC的高CD和BE;(要求:尺规作图,保留作图痕迹,不写作法)(2)判断线段BE与CD的数量关系,并证明你的猜想.20.(7分)如图,在平面直角坐标系内,△ABC三个顶点的坐标分别为A(﹣3,0),B(﹣5,﹣4),C(﹣1,﹣4).(1)画图:将△ABC绕点(0,﹣3)旋转180°,画出旋转后对应点△A1B1C1;平移△ABC,使点A的对应点A2的坐标为(﹣1,6),画出平移后对应的△A2B2C2;(2)分析:①描述由△ABC到△A2B2C2的平移过程;②△A2B2C2可由△A1B1C1通过旋转得到,请直接写出旋转中心的坐标及旋转角的度数.21.(6分)为提高饮水质量,越来越多的居民选购家用净水器,一商场抓住商机,从厂家购进了A,B两种型号家用净水器,其数量和进价如表:为使每台B型号家用净水器的售价是A型号的2倍,且保证售完这批家用净水器的利润不低于1650元,每台A型号家用净水器的售价至少应为多少元?(注:利润=售价﹣进价)22.(8分)如图,△ABC中,∠ACB=90°,∠BAC=30°,将线段AC绕点A顺时针旋转60°得到线段AD,连接CD交AB于点O,连接BD.(1)求证:AB垂直平分CD;(2)若AB=6,求BD的长.23.(10分)同学们用气象探测气球探究气温与海拔高度的关系,1号气球从海拔5米处出发,以1米/分的速度匀速上升.与此同时,2号气球从海拔15米处出发,以0.5米/分的速度匀速上升.设1号、2号气球在上升过程中的海拔分别为y1(米)、y2(米),它们上升的时间为x(分),其中0≤x≤60.(1)填空:y1,y2与x之间的函数关系式分别为:y1,y2;(2)当1号气球位于2号气球的下方时,求x的取值范围;当1号气球位于2号气球的上方时,求x的取值范围;(3)设两个气球在上升过程中的海拔高度差为s(米).请在A,B两题中任选一题解答,我选择题.A.直接写出当s=5时x的值.B.直接写出当s>5时x的取值范围.24.(10分)已知Rt△ABC中,∠BAC=90°,AB=AC,△CDE的边CE在射线AC 上,CE<AC,∠DCE=90°,CD=CA,沿CA方向平移△CDE,使点C移动到点A,得到△ABF,过点F作FG⊥BC,垂足为点G,连接EG,DG.(1)如图1,边CE在线段AC上,求证:GC=GF;(2)在以下A,B两题中任选一题解答,我选择题.A.在图1中,求证:△EFG≌△DCG;B.如图2,边CE在线段AC的延长线上,其余条件不变.①在图2中,求证:△EFG≌△DCG;②若∠CDE=20°,直接写出∠CGE的度数.2015-2016学年山西省太原市八年级(下)期中数学试卷参考答案与试题解析一、选择题(共10小题,每小题3分,满分30分)1.(3分)若x>y,则下列变形正确的是()A.x+3>y+3 B.x﹣3<y﹣3 C.﹣3x>﹣3y D.﹣【解答】解:A、两边都加3,不等号的方向不变,故A正确;B、两边都减3,不等号的方向不变,故B错误;C、两边都乘以﹣3,不等号的方向改变,故C错误;D、两边都除以﹣3,不等号的方向改变,故D错误;故选:A.2.(3分)在以下”绿色食品、响应环保、可回收物、节水“四个标志图案中,是中心对称图形的是()A.B.C.D.【解答】解:A、是轴对称图形,不是中心对称图形.故错误;B、是轴对称图形,也是中心对称图形.故正确;C、是轴对称图形,不是中心对称图形.故错误;D、不是轴对称图形,不是中心对称图形.故错误.故选:B.3.(3分)不等式﹣x>﹣1的解集为()A.x>2 B.x<2 C.x>﹣2 D.x<﹣2【解答】解:不等式﹣x>﹣1,解得:x<2,故选:B.4.(3分)如图,AD是△ABC的角平分线,DE⊥AB,DF⊥AC,垂足分别为点E、点F,连接EF与AD相交于点O,下列结论不一定成立的是()A.DE=DF B.AE=AF C.OD=OF D.OE=OF【解答】解:∵AD是△ABC的角平分线,DE⊥AB,DF⊥AC,∴DE=DF,∠AED=∠AFD=90°,在Rt△ADE和Rt△ADF中,,∴Rt△ADE≌Rt△ADF(HL),∴AE=AF;∵AD是△ABC的角平分线,∴∠EAO=∠FAO,在△AEO和△AFO中,,∴△AEO≌△AFO(SAS),∴OE=OF;故选:C.5.(3分)如图,在△ABC中,AB=AC,∠A=40°,将△ABC绕点B逆时针旋转得到△A′BC′,若点C的对应点C′落在AB边上,则旋转角为()A.40°B.70°C.80°D.140°【解答】解:∵AB=AC,∠A=40°,∴∠ABC=∠C=(180°﹣∠A)=×140°=70°,∵△A′BC′是由△ABC旋转得到,∴旋转角为∠ABC=70°.故选:B.6.(3分)如图,数轴上表示的是两个不等式的解集,由它们组成的不等式组的解集为()A.﹣1<x≤1 B.﹣1<x<1 C.x>﹣1 D.x≤1【解答】解:由题意,得﹣1<x≤1,故选:A.7.(3分)平面直角坐标系中,点P(2,0)平移后对应的点为Q(5,4),则平移的距离为()A.3个单位长度B.4个单位长度C.5个单位长度D.7个单位长度【解答】解:∵平面直角坐标系中,点P(2,0)平移后对应的点为Q(5,4),∴平移的距离为PQ==5.故选:C.8.(3分)如图,在△ABC中,∠A=36°,AB=AC,BD是△ABC的角平分线.若在边AB上截取BE=BC,连接DE,则图中等腰三角形共有()A.2个 B.3个 C.4个 D.5个【解答】解:∵AB=AC,∴△ABC是等腰三角形;∵AB=AC,∠A=36°,∴∠ABC=∠C=72°,∵BD是△ABC的角平分线,∴∠ABD=∠DBC=∠ABC=36°,∴∠A=∠ABD=36°,∴BD=AD,∴△ABD是等腰三角形;在△BCD中,∵∠BDC=180°﹣∠DBC﹣∠C=180°﹣36°﹣72°=72°,∴∠C=∠BDC=72°,∴BD=BC,∴△BCD是等腰三角形;∵BE=BC,∴BD=BE,∴△BDE是等腰三角形;∴∠BED=(180°﹣36°)÷2=72°,∴∠ADE=∠BED﹣∠A=72°﹣36°=36°,∴∠A=∠ADE,∴DE=AE,∴△ADE是等腰三角形;∴图中的等腰三角形有5个.故选:D.9.(3分)如图,已知△ABC中,AC<BC,分别以点A、点B为圆心,大于AB 长为半径作弧,两弧交于点D、点E;作直线DE交BC边于点P,连接AP.根据以上作图过程得出下列结论,其中不一定正确的是()A.PA+PC=BC B.PA=PB C.DE⊥AB D.PA=PC【解答】解:由作图可得:DE是AB的垂直平分线,∵DE是AB的垂直平分线,∴AP=BP,DE⊥AB,∴AP+CP=BP+CP=BC,故A、B、C选项结论正确;∵P在AB的垂直平分线上,∴AP和PC不一定相等,故D选项结论不一定正确,故选:D.10.(3分)如图,直线y1=k1x+b1与坐标轴交于点(﹣4,0)和(0,2.9);直线y 2=k2x+b2与坐标轴交于点(3,0)和(0,4).不等式组的解集是()A.x>﹣4 B.x<3 C.﹣4<x<3 D.x<﹣4或x>3【解答】解:∵直线y1=k1x+b1与x轴交于点(﹣4,0),且y随x的增大而增大,∴不等式k1x+b1>0的解集为x>﹣4;∵直线y2=k2x+b2与x轴交于点(3,0),且y随x的增大而减小,∴不等式k2x+b2>0的解集为x<3,∴不等式组的解集是﹣4<x<3.故选:C.二、填空题(共6小题,每小题2分,满分12分)11.(2分)如图,等边△ABC中,AD为高,若AB=6,则CD的长度为3.【解答】解:∵等边△ABC中,AB=8,∴AB=BC=6.∵AD⊥BC,∴BD=BC=3.故答案为:3.12.(2分)如图,△ABC和△DCB中,∠A=∠D=90°,边AC与DB相交于点O,要使△ABC≌△DCB,则需要添加的一个条件是AB=DC.(写出一种情况即可)【解答】解:所添加条件为:AB=DC,∵∠A=∠D=90°,∴在Rt△ABC和△RtDCB中,∵,∴△ABC≌△DCB(HL).故答案为AB=DC.(答案不唯一)13.(2分)命题“两直线平行,同位角相等.”的逆命题是同位角相等,两直线平行.【解答】解:∵原命题的条件为:两直线平行,结论为:同位角相等.∴其逆命题为:同位角相等,两直线平行.14.(2分)如图,已知一次函数y=kx+b的图象与x轴交于点(3,0),与y轴交于点(0,2),不等式kx+b≥2解集是x≤0.【解答】解:由一次函数的图象可知,此函数是减函数,即y随x的增大而减小,∵一次函数y=kx+b的图象与y轴交于点(0,2),∴当x≤0时,有kx+b≥2.故答案为x≤015.(2分)如图,在△ABC中,AB=AC,BD⊥AC,垂足为点D.若∠BAC=30°,则∠DBC的度数为15°.【解答】解:∵在△ABC中,AB=AC,∠BAC=30°,∴∠ABC=∠ACB=(180°﹣30°)÷2=75°;又∵BD⊥AC垂足为D,∴∠DBC=90°﹣∠ACB=90°﹣75°=15°.故答案为:15.16.(2分)如图是一张边长为3cm的正方形纸片ABCD.现要利用这张正方形纸片剪出一个腰长为2cm的等腰三角形,要求等腰三角形的一个顶点与正方形的一个顶点重合,另外两个顶点都在正方形的边上,则剪下的等腰三角形的面积为2或cm2.【解答】解:①如图,角的顶点是正方形的顶点,AC=AB=2cm,则剪下的等腰三角形的面积为:×2×2=2(cm2);②顶角的顶点在正方形的边上,∵AB=BC=2,∴BD=1.在直角△BCD中,由勾股定理得到CD==(cm),则剪下的等腰三角形的面积为:×2×=(cm2).综上所述,剪下的等腰三角形的面积为2cm2或cm2.故答案是:2或.三、解答题(共8小题,满分58分)17.(5分)解不等式2x﹣7<5﹣2x.【解答】解:由原不等式移项,得4x<12,不等式的两边同时除以4,得x<3.18.(6分)解不等式组:并将其解集表示在如图所示的数轴上.【解答】解:解不等式3(x﹣2)≤x﹣4,得:x≤1,解不等式,得:x<4,所以不等式组的解集为:x≤1,其解集在数轴上表示为:19.(6分)如图,已知△ABC中,AB=AC.(1)求作:△ABC的高CD和BE;(要求:尺规作图,保留作图痕迹,不写作法)(2)判断线段BE与CD的数量关系,并证明你的猜想.【解答】解:(1)如图,(2)CD=BE.理由如下:∵CD和BE为高,∴∠ADC=∠AEB=90°,在△ADC和△AEB中,∴△ADC≌△AEB,∴BE=CD.20.(7分)如图,在平面直角坐标系内,△ABC三个顶点的坐标分别为A(﹣3,0),B(﹣5,﹣4),C(﹣1,﹣4).(1)画图:将△ABC绕点(0,﹣3)旋转180°,画出旋转后对应点△A1B1C1;平移△ABC,使点A的对应点A2的坐标为(﹣1,6),画出平移后对应的△A2B2C2;(2)分析:①描述由△ABC到△A2B2C2的平移过程;②△A2B2C2可由△A1B1C1通过旋转得到,请直接写出旋转中心的坐标及旋转角的度数.【解答】解:(1)如图,△A1B1C1和△A2B2C2为所作;(2)①△ABC先向右平移2个单位,再向上平移6个单位得到△A2B2C2;②△A2B2C2可由△A1B1C1通过旋转得到,旋转中心为Q(1,0),旋转的度数为180°.21.(6分)为提高饮水质量,越来越多的居民选购家用净水器,一商场抓住商机,从厂家购进了A,B两种型号家用净水器,其数量和进价如表:为使每台B型号家用净水器的售价是A型号的2倍,且保证售完这批家用净水器的利润不低于1650元,每台A型号家用净水器的售价至少应为多少元?(注:利润=售价﹣进价)【解答】解:设每台A型家用净水器售价为x元,根据题意可得:10(x﹣150)+5(2x﹣350)≥1650,解得:x≥245,故x的最小值为245,答:每台A型号家用净水器的售价至少245元.22.(8分)如图,△ABC中,∠ACB=90°,∠BAC=30°,将线段AC绕点A顺时针旋转60°得到线段AD,连接CD交AB于点O,连接BD.(1)求证:AB垂直平分CD;(2)若AB=6,求BD的长.【解答】(1)证明:∵线段AC绕点A顺时针旋转60°得到线段AD,∴AD=AC,∠CAD=60°,∴△ACD是等边三角形,∵∠BAC=30°,∴∠DAB=30°,∴∠BAC=∠DAB,∴AO⊥CD,又CO=DO,∴AB垂直平分CD;(2)解:∵AB垂直平分CD,∴BD=BC,∠ADB=∠ACB=90°,∴BD=AB=3.23.(10分)同学们用气象探测气球探究气温与海拔高度的关系,1号气球从海拔5米处出发,以1米/分的速度匀速上升.与此同时,2号气球从海拔15米处出发,以0.5米/分的速度匀速上升.设1号、2号气球在上升过程中的海拔分别为y1(米)、y2(米),它们上升的时间为x(分),其中0≤x≤60.(1)填空:y1,y2与x之间的函数关系式分别为:y1=x+5,y2=0.5x+15;(2)当1号气球位于2号气球的下方时,求x的取值范围;当1号气球位于2号气球的上方时,求x的取值范围;(3)设两个气球在上升过程中的海拔高度差为s(米).请在A,B两题中任选一题解答,我选择A题.A.直接写出当s=5时x的值.B.直接写出当s>5时x的取值范围.【解答】解:(1)根据题意,y1=5+1•x=x+5,y2=15+0.5•x=0.5x+15;(2)当y1<y2时,x+5<0.5x+15,解得:x<20,∵0≤x≤60,∴当0≤x<20时,1号气球在2号气球的下方,当y1>y2时,x+5>0.5x+15,解得:x>20,∵0≤x≤60,∴当20<x≤60时,1号气球在2号气球的上方;(3)A、根据题意,s=y1﹣y2=x+5﹣0.5x﹣15=0.5x﹣10,若s=3,则0.5x﹣10=5,解得:x=30;或s=y2﹣y1=0.5x+15﹣x﹣5=﹣0.5x+10,若s=5,则﹣0.5x+10=5,解得:x=10;故当s=5时,x的值为10或30;B、当s>5时,①0.5x﹣10>5,解得:x>30;②﹣0.5x+10>5,解得:x<10;故当s>5时,0≤x<10或30<x≤60.故答案为:(1)=x+5,=0.5x+15;(3)A.24.(10分)已知Rt△ABC中,∠BAC=90°,AB=AC,△CDE的边CE在射线AC 上,CE<AC,∠DCE=90°,CD=CA,沿CA方向平移△CDE,使点C移动到点A,得到△ABF,过点F作FG⊥BC,垂足为点G,连接EG,DG.(1)如图1,边CE在线段AC上,求证:GC=GF;(2)在以下A,B两题中任选一题解答,我选择A题.A.在图1中,求证:△EFG≌△DCG;B.如图2,边CE在线段AC的延长线上,其余条件不变.①在图2中,求证:△EFG≌△DCG;②若∠CDE=20°,直接写出∠CGE的度数.【解答】证明:(1)如图1,∵Rt△ABC中,∠BAC=90°,AB=AC,∴∠ACB=∠ABC=45°,∵FG⊥CG,∴∠FGC=90°,∴∠GCF+∠GFC=90°,∴∠GCF=45°=∠GCF,∴GC=GF,∵∠DCE=90°∴∠DCG=90°﹣45°=45°∴∠DCG=∠GCF,∵平移△CDE,得到△ABF,∴CA=EF,∵CD=CA,∴CD=EF,在△EFG和△DCG中,,∴△EFG≌△DCG;(2)①如图2,与(1)同理可证:GC=GF,∠GCF=∠GFC=45°∵∠DCE=90°,∴∠DCF=90°∴∠DCG=90°﹣∠GCF=45°∴∠DCG=∠GFC∵△ABF由△CDE平移得到,∴EC=FA∴EF=CA∵AC=CD∴EF=CD在△EFG和△DCG中,,∴△EFG≌△DCG.②∠CGE=20°.(设CD交EG于O,只要证明△DOE∽△GOC即可)。
2016年最新人教版八年级下数学期中测验题及答案
(1)求证;OE=OF;
(2)若BC=,求AB的长。
六解答题:(每小题10分,共20分)
25.如图1,在△OAB中,∠OAB=90°,∠AOB=30°,OB=8.以OB为边,在△OAB外作等边△OBC,D是OB的中点,连接AD并延长交OC于E.
∴OE=OF
19.(1)证明:∵四边形ABCD是矩形,
∴∠A=∠C=90°,AB=CD,AB∥CD,
∴∠ABD=∠CDB,
∵在矩形ABCD中,将点A翻折到对角线BD上的点M处,折痕BE交AD于点E.将点C翻折到对角线BD上的点N处,
∴∠ABE=∠EBD=∠ABD,∠CDF=∠CDB,
∴∠ABE=∠CDF,
19.在矩形ABCD中,将点A翻折到对角线BD上的点M处,折痕BE交AD于点E.将点C翻折到对角线BD上的点N处,折痕DF交BC于点F.
(1)求证:四边形BFDE为平行四边形;
(2)若四边形BFDE为菱形,且AB=2,求BC的长.
20.如图,在四边形ABCD中,AB=BC,对角线BD平分ABC,P是BD上一点,过点P作PMAD,PNCD,垂足分别为M、N。
(1)求证:四边形ABCE是平行四边形;
(2)如图2,将图1中的四边形ABCO折叠,使点C与点A重合,折痕为FG,求OG的长.
26.如图,在等边三角形ABC中,BC=6cm.射线AG//BC,点E从点A出发沿射线AG以1cm/s的速度运动,同时点F从点B出发沿射线BC以2cm/s的速度运动,设运动时间为t(s).
(1)求证:DE=BF;
河北省邯郸市2016-2017学年八年级(下)期中考试数学试卷(含答案)
八年级下学期期中考试数学试卷一、 选择题(每题3分,共16题,共48分) 1、下列函数中,y 是x 的正比例函数的是( )A. 12-=x yB. 3x y =C. 22x y = D. xy 3= 2、下面哪个点在函数121-=x y 的图象上( ) A.(2,1) B.(-2,1) C.(2,0) D.(-2,0) 3、下列函数中,自变量x 的取值范围是x ≥2的是( )A. 21-=x y B. 21-=x y C. 2-=x y D. 2-=x y 4、下列哪组条件能够判别四边形ABCD 是平行四边形( )A. AB ∥CD ,AD =BCB. AB =CD ,AD =BCC. ∠A =∠B ,∠C =∠DD. AB =AD ,CB =CD 5、在平面直角坐标系中,点(-3,4)到原点的距离是( )A. 5B. -5C. 3D. 4 6、正方形具有而菱形不具有的性质是( )A. 对角线互相平分;B. 对角线互相垂直;C. 对角线相等;D. 对角线平分一组对角7、李老师骑自行车上班,最初以某一速度匀速行进,中途由于自行车发生故障,停下修车耽误了几分钟,为了按时到校,李老师加快了速度,仍保持匀速行进,结果准时到校,在课堂上,李老师请学生画出他行进的路程y (千米)与行进时间t (小时)的函数图象的示意图,同学们画出的图象如图所示,你认为正确的是( )A 、B 、C 、D 、8、已知一次函数的图象与直线y =x +1平行,且过点(8,2),此函数的解析式为( ) A. y =-x -2 B. y =-x -6 C. y =-x +10 D. y =-x -1 9、如图,菱形ABCD 的周长为8cm ,高AE 长为3cm ,则对角线AC 长和BD 长之比为( )A. 1:2B. 1:3C. 1:2D. 1:310、一次函数y =mx +n 与y =mnx (mn <0)在同一坐标系中的图象可能是( )11、一天,小军和爸爸去登山,已知山脚到山顶的路程为300米,小军先走了一段路程,爸爸才开始出发,图中两条线段分别表示小军和爸爸离开山脚登山的路程S (米)与登山所用的时间t (分)的关系(从爸爸开始登山时计时).根据图象,下列说法错误的是( ) A .爸爸登山时,小军已走了50米B .爸爸走了5分钟,小军仍在爸爸的前面C .小军比爸爸晚到山顶D .爸爸前10分钟登山的速度比小军慢,10分钟后登山的速度比小军快 12、已知一次函数y =kx +b 的图象如图所示,当y <0时,x 的取值范围是( )A. x >1B. x <1C. x <0D. x >-2 13、如图,直线l 是四边形ABCD 的对称轴,若AB =CD ,有下面的结论:①AB ∥CD ;②AC ⊥BD ;③AO =OC ;④AB ⊥BC ,其中正确的结论有( )个 A. 1 B. 2 C. 3 D. 414、一次函数y =ax +1与y =bx -2的图象交于x 轴上一点,那么a :b 等于( )A.21 B. -21 C. 23D. 以上答案都不对 15、如图,在直角坐标系中,将矩形OABC 沿OB 对折,使点A 落在A 1处,已知OA =3,AB =1,则点A 1的坐标是( )16、某公司市场营销人员的个人收入与其每月的销售量成一次函数关系,其图象的一部分如图所示,由图中给出的信息可知,营销人员销量为0时的收入是( )元A.310B.300C.290D.280 二、 填空题(每题3分,共12分)17、直角三角形的两条直角边长分别为a 和2a ,则其斜边上的中线长为____。
期中考试】___2015-2016年八年级下期中数学试卷含答案解析
期中考试】___2015-2016年八年级下期中数学试卷含答案解析2015-2016学年___八年级(下)期中数学试卷一、选择题:(本大题12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A、B、C、D的四个答案,其中只有一个是正确的,请将正确答案的代号填入答题卷中对应的表格内.1.要使分式的值为 $-\frac{1}{2}$,则 $x$ 的值为()A。
$x=1$。
B。
$x=2$。
C。
$x=-1$。
D。
$x=-2$2.下列说法正确的是()A。
对角线互相垂直的四边形是菱形B。
对角线相等的四边形是矩形C。
三条边相等的四边形是菱形D。
三个角是直角的四边形是矩形3.运用分式的性质,下列计算正确的是()A。
$\frac{3}{4} \div \frac{6}{5} = \frac{5}{8}$。
B。
$\frac{2}{3} \div \frac{1}{4} = \frac{1}{6}$。
C。
$\frac{5}{6} \times \frac{1}{4} = \frac{5}{24}$。
D。
$\frac{2}{3} + \frac{3}{4} = \frac{17}{12}$。
4.一个凸五边形的内角和为()A。
$360^\circ$。
B。
$540^\circ$。
C。
$720^\circ$。
D。
$900^\circ$5.根据下列表格对应值,判断关于 $x$ 的方程$ax^2+bx+c=0$($a\neq 0$)的一个解 $x$ 的取值范围为()begin{array}{|c|c|}hlinex & ax^2+bx+c \\hline1.1 & -0.59 \\hline1.2 & 0.84 \\hline1.3 &2.29 \\hline1.4 & 3.76 \\hlineend{array}A。
$-0.59<x<0.84$。
B。
$1.1<x<1.2$。
上海市2016学年第二学期八年级数学期中考试试卷(含答案)
上海市2016学年第二学期八年级期中考试数学试卷(满分:100分,完成时间90分钟)2017.4 一、选择题(本大题共6小题,每小题3分,满分18分) 1.下列函数中,一定是一次函数的是( ) A .x y 5-=; B.3y kx =+ ; C.32+=x y ; D.132-=x y . 2. 下列方程中,无理方程是( ) A.312=+x ; 1= C.312=+x ; D.312=+x .3.下列方程中,没有实数解的是( )A.2422+=+x x x ; B.022=+-x ; C. 013=+x ; D.122=+y x . 4.一次函数b kx y +=的图像如图所示,当3y >时,x 的取值范围是( )A. 0x >;B. 0x <;C. 2x <;D. 2x >.5.一次函数b kx y +=,y 随着x 的增大而减小,且0kb >, 则该函数的图像不经过...( ) A 、第一象限; B 、第二象限; C 、第三象限; D 、第四象限.6.甲、乙二人沿相同的路线由A 到B 匀速行进,A ,B 两地间的路程为20km .他们行进的路程)(km s 与甲出发后的时间)(h t 之间的函数图像如图所示.根据图中信息,下列说法中,不正确...的是( ) A .甲的速度是5h km / ; B .乙的速度是10h km /; C .乙比甲晚出发1h;D .从A 到B ,甲比乙多用了1h . 二、填空题(本大题共12小题,每题2分,满分24分) 7.直线y =2x -4与x 轴交点的坐标是__________.8.一次函数24y x =--的图像在y 轴上的截距是_____________.h )10. 一次函数的图像过点(0,3)且与直线x y 2-=平行,那么函数解析式是 .11.已知221)(-=x x f ,如果4)(=a f ,则实数a 的值是 . 12.若点A (7,1y )、点B (5,2y )是直线b x y -=31(b 为常数)上的点,则21y y ,大小关系是_________.13.如果关于x 的方程()11=-x m 无解,那么m 满足的条件是 .14.二项方程4182x =的实数根是__________. 15.用换元法解分式方程:03221=+-+-x x x x ,若设xx y 1-=,则,原方程可化成关于y 的整式方程是 .16.0=的根是 .17.若一个多边形的内角和是2160°,则这个多边形的边数是 .18.已知直线()0≠+=k b kx y 与坐标轴围成的三角形面积是6,且经过(3,0),则这条直线的解析式为______________________.三、计算题(本大题共4小题,每题6分,满分24分) 19.解方程:14-42-12=-x x . 20.解方程:32133-=++x x x21.解方程组:222302x xy y x y ⎧--=⎨-=⎩ 22.解方程组:⎪⎪⎩⎪⎪⎨⎧=--+=-++113715y x y x yx y x四、解答题:(本大题共4小题,满分34分.第23题7分,第24题8分,第25题9分,第26题10分)23.已知一次函数图像经过点(0,-2)和(-1,-5),求:(1)求这个函数的解析式;(2)所求得的一次函数的图像与坐标轴围成的三角形面积.24.某校迎新活动需要用气球3000个,八(1)班同学承担了吹气球的工作。
2016-2017下学期八年级期中考试数学试卷
A(2016—2017年下学期八年级期中考试数学试卷时量:100分分值:100分一、选择题(本题共有10小题,每小题3分,共30分)1.已知a b>,则下列不等式中正确的是()A.33a b->- B.33a b->- C.33a b->- D.33a b->-2.下列从左到右的变形,是因式分解的是()A、()()9332-=-+aaa B、()5152-+=-+xxxxC、⎪⎭⎫⎝⎛+=+xxxx112 D、()22244+=++xxx3.下列图案中是中心对称图形但不是轴对称图形的是()A. B. C . D.4.不等式组2133xx+⎧⎨>-⎩≤的解集在数轴上表示正确的是()5.如右图,△ABC中,AB=AC,∠A=30º,DE垂直平分AC,则∠BCD的度数为(A.80º B.45º C.65º D.75º6. 如右图,已知AE=CF,∠AFD=∠CEB,那么添加下列一个条件后,仍无法判定△ADF≌△CBE的是()A.∠A=∠C B.AD=CB C.BE=DF D.AD∥BC7.不等式xx228)2(5-≤+的非负整数解的个数是()A.1 B.2 C.3 D.无数个8.下列命题是真命题的是( ).A.有两条边、一个角相等的两个三角形全等 B.全等三角形对应边上的中线相等C.等腰三角形的对称轴是底边上的中线 D.有一个角是60°的三角形是等边三角形9.如果不等式组的解集是x>2,则m的取值范围是( )A、m≥2B、m=2C、m≤2D、m<210. 如图,在△ABC中,∠C=90°,∠B=30°,以A为圆心,任意长为半径画弧分别交AB、AC于点M和N,再分别以M、N为圆心,大于21MN的长为半径画弧,两弧交于点P,连结AP并延长交BC于点D,则下列说法中正确的个数是()①AD是∠BAC的平分线;②∠ADC=60°;③点D在AB的中垂线上;④S△ADC:S△ABC=1:3.A.1个 B.2个 C.3个 D.4个二、填空题(本题共8小题,每小题3分,共24分)11.分解因式xx-3=12.在△ABC中,22,2===cba,则△ABC为_______________三角形。
2016-2017学年八年级下学期数学期中考试试题及答案
2016-2017学年八年级下学期数学期中测试一、选择题〔每题3分,共30分〕1..若代数式0)21-+-x x x (有意义,则实数x 的取值范围是〔〕 A. x ≠ 1B.x ≥0C. x ≥0且x ≠1D.x ≥0且x ≠1,x ≠22.已知a <b,化简二次根式b a 3-的正确结果是〔〕A .ab a --B .ab a -C .ab aD .ab a -3、等边三角形的边长为2,则该三角形的面积为 〔 〕 A :43 B :3C :23 D :34.下列运算正确的是〔 〕A 、235=-B 、312914=C 、32321+=- D 、()52522-=-5.由线段a 、b 、c 组成的三角形不是直角三角形的是< >A 、a=7,b=24,c=25;B 、a=41,b=4,c=5;C 、a=54,b=1,c=34; D 、a=13,b=14,c=15; 5.若ABC ∆中,13,15AB cm AC cm ==,高AD=12,则BC 的长为〔 〕 A :14 B :4 C :14或4 D :以上都不对7.已知110a a+=,则1a a -的值为〔〕 A .22±B .8 C .6± D .68. 如图,过矩形ABCD 的四个顶点作对角线AC,BD 的平行线,分别相交于E,F,G,H 四点,则四边形EFGH 为A.平行四边形B.矩形C.菱形D.正方形9.如图,在矩形ABCD 中,AB =8,BC =4,将矩形沿AC 折叠,点D 落在点D ’处,则重叠部分△AFC的面积为〔〕.A .6B .8C .10D .1210. 如图,正方形ABCD 的边长为4,点E 在对角线BD 上,且△BAE=22.5 º,EF △AB ,垂足为F ,则EF 的长为〔〕 A .1 B .错误! C .4-2错误! D .3错误!-4二、填空题〔每题分3,共18分〕11.如果最简二次根式a +1与24-a 是同类二次根式,那么a =.12.如图由于台风的影响,一棵树在折断前〔不包括树根〕长度是m 16,树顶落在离树干底部A B C D F D’↑ ↓ ←m 8E DA Om 8处,则这棵树在离地面处折断.13.如图,▱ABCD 的对角线AC,BD 相交于点O,点E,F 分别是线段AO,BO 的中点.若AC+BD=24厘米,△OAB 的周长是18厘米,则EF=厘米.14..如图,每个小正方形的边长为1.在△ABC 中,点D 为AB 的中点,则线段CD 的长为;15.如图,在Rt ΔABC 中,∠ACB=90°,AC=4,BC=3,D 为斜边AB 上一点,以CD 、CB 为边作平行四边形CDEB,当AD=时,平行四边形CDEB 为菱形.16.如图,正方形ABCD 中,点E 在BC 上,且CE=14BC,点F 是CD 的中点,延长AF 与BC 的延长线交于点M.以下结论:①AB=CM ;②AE=AB+CE ;③S △AEF =ABCF S 31四边形;④∠AFE=90°,其中正确结论的个数有三.解答题〔共72分〕17.〔8分〕计算:<1> 〔2〕 18〔8分〕<1>先化简,再求值:1-12122a a a a +--,其中121+=a . <2>如图,实数a 、b 、c 在数轴上的位置,化简:错误!-︱a -b ︱+ 错误!.19.〔8分〕如图,Rt △ABC 中,∠C=90°,AD 平分∠CAB,DE ⊥AB 于E,若AC=6,BC=8,CD=3. 〔1〕求DE 的长;〔2〕求△ADB 的面积.20.〔8分〕如图,某校将一块△ABC 废地开辟为生物园,AB=100m,AC=80m,BC=60m.〔1〕若入口E 在边AB 上,且与A 、B 等距离,求从入口E 到出口C 的最短路线〔2〕若线段CD 是一条水渠,且D 点在边AB 上,已知水渠的造价为10元/米,则D 点在距A 点多远处时,水渠的造价最低?最低造价是多少?21.〔8分〕如图,△ABC 中,AB=AC,AD 是△ABC 的角平分线,点O 为AB 的中点,连接DO 并延长到点E,使OE=OD,连接AE,BE.<1>求证:四边形AEBD 是矩形.<2>当△ABC 满足什么条件时,矩形AEBD 是正方形,并说明理由.22.〔10分〕如图,在菱形ABCD 中,对角线AC 与BD 相交于点O ,MN 过点O 且与边AD 、BC 分别交于点M 和点N .〔1〕请你判断OM 与ON 的数量关系,并说明理由;〔2〕过点D 作DE ∥AC 交BC 的延长线于点E ,当AB =6,AC =8时,求△BDE 的周长.23.〔10分〕如图,已知平行四边形中,对角线交于点,是延长线上的点,且是等边三角形.〔1〕求证:四边形是菱形;〔2〕若求证:四边形是正方形. ABCD AC BD ,O E BD ACE △ABCD 2AED EAD ∠=∠ABCD )323125.0()4881(----)65()154(5333y x x y xy --÷•24.〔12分〕如图1,四边形ABCD 、DEFG 都是正方形,连接AE 、CG . 〔1〕求证:AE=CG ; 〔2〕观察图形,猜想AE 与CG 之间的位置关系,并证明你的猜想;〔3〕将正方形ABCD,绕点D 逆时针旋转一定的角度〔小于90度〕,如图2,请猜想AE 与CG 之间的关系,并证明你的猜想.2016-2017学年八年级下学期数学期中测试答案一、选择题〔每题3分,共36分〕1..若代数式0)21-+-x x x (有意义,则实数x 的取值范围是〔D 〕 A. x ≠ 1B.x ≥0C. x ≥0且x ≠1D.x ≥0且x ≠1,x ≠22.已知a <b,化简二次根式b a 3-的正确结果是〔A 〕A .ab a --B .ab a -C .ab aD .ab a -3、等边三角形的边长为2,则该三角形的面积为 〔B 〕 A :43 B :3C :23 D :34.下列运算正确的是〔 〕A 、235=-B 、312914=C 、32321+=- D 、()52522-=-5.由线段a 、b 、c 组成的三角形不是直角三角形的是< D >A 、a=7,b=24,c=25;B 、a=41,b=4,c=5;C 、a=54,b=1,c=34; D 、a=13,b=14,c=15; 5.若ABC ∆中,13,15AB cm AC cm ==,高AD=12,则BC 的长为〔C 〕 A :14 B :4 C :14或4 D :以上都不对7.已知110a a +=,则1a a -的值为〔C 〕 A .22±B .8 C .6± D .68. 如图,过矩形ABCD 的四个顶点作对角线AC,BD 的平行线,分别相交于E,F,G,H 四点,则四边形EFGH 为 < C >A.平行四边形B.矩形C.菱形D.正方形11.如图,在矩形ABCD 中,9.AB =8,BC =4,将矩形沿AC 折叠,点D 落在点D ’处,则重叠部分△AFC 的面积为〔C 〕.A .6B .8C .10D .12 10. 如图,正方形ABCD 的边长为4,点E 在对角线BD 上,且△BAE =22.5 º,EF △AB ,垂足为F ,则EF 的长为〔C 〕 A .1 B .错误!A B C D F D’↑ ↓ ← m 8E D C B A C .4-2错误! D .3错误!-4二、填空题〔每题分3,共18分〕11.如果最简二次根式a +1与24-a 是同类二次根式,那么a =1.12.如图由于台风的影响,一棵树在折断前〔不包括树根〕长度是m 16,树顶落在离树干底部m 8处,则这棵树在离地面6处折断.13.如图,▱ABCD 的对角线AC,BD 相交于点O,点E,F 分别是线段AO,BO 的中点.若AC+BD=24厘米,△OAB 的周长是18厘米,则EF=3厘米.14..如图,每个小正方形的边长为1,在△ABC 中,点D 为AB 的中点,则线段CD 的长为√262; 15.如图,在Rt ΔABC 中,∠ACB=90°,AC=4,BC=3,D 为斜边AB 上一点,以CD 、CB 为边作平行四边形CDEB,当AD=75时,平行四边形CDEB 为菱形. 16.如图,正方形ABCD 中,点E 在BC 上,且CE=14BC,点F 是CD 的中点,延长AF 与BC 的延长线交于点M.以下结论:①AB=CM ;②AE=AB+CE ;③S △AEF =ABCF S 31四边形;④∠AFE=90°, 其中正确结论的个数有①②④三.解答题〔共72分〕17.〔8分〕计算:<1> <2>18、〔8分〕<1>先化简,再求值:1-12122a a a a +--,其中121+=a . <2>如图,实数a 、b 、c 在数轴上的位置,化简:错误!-︱a -b ︱+ 错误!.19.〔8分〕如图,Rt △ABC 中,∠C=90°,AD 平分∠CAB,DE ⊥AB 于E,若AC=6,BC=8,CD=3. 〔1〕求DE 的长;〔2〕求△ADB 的面积.20.〔8分〕如图,某校将一块△ABC 废地开辟为生物园,AB=100m,AC=80m,BC=60m.〔1〕若入口E 在边AB 上,且与A 、B 等距离,求从入口E 到出口C 的最短路线〔2〕若线段CD 是一条水渠,且D 点在边AB 上,已知水渠的造价为10元/米,则D 点在距A 点多远处时,水渠的造价最低?最低造价是多少?解:〔1〕在△ABC 中,因为AC=80,BC=60,AB =100,所以所以∠C=90°,即△ABC 为直角三角形,)323125.0()4881(----故入口E到出口C的最短线路就是Rt△ABC斜边的中线CE,又因为CE=AB=50,所以入口E到出口C的最短距离为50m;〔2〕CD为Rt△ABC斜边上的高时,CD最短,此时水渠造价最低,因为CD×AB-AC×BC,所以CD=48m,在Rt△ACD中,,即,解得AD=64m,所以点D距点A64m时,水渠的造价最低,最低造价为48×10=480元21.〔8分〕如图,△ABC中,AB=AC,AD是△ABC的角平分线,点O为AB的中点,连接DO并延长到点E,使OE=OD,连接AE,BE.<1>求证:四边形AEBD是矩形.<2>当△ABC满足什么条件时,矩形AEBD是正方形,并说明理由.〔1〕证明:∵点O为AB的中点, OE=OD,∴四边形AEBD是平行四边形,∵AB=AC,AD是△ABC的角平分线,∴AD⊥BC,∴∠ADB=90°,∴平行四边形AEBD是矩形;〔2〕当∠BAC=90°时,理由:∵∠BAC=90°,AB=AC,AD是△ABC的角平分线,∴AD=BD=CD,∵由〔1〕得四边形AEBD是矩形,∴矩形AEBD是正方形.22.〔10分〕如图,在菱形ABCD中,对角线AC与BD相交于点O,MN过点O且与边AD、BC分别交于点M和点N.〔1〕请你判断OM与ON的数量关系,并说明理由;〔2〕过点D作DE∥AC交BC的延长线于点E,当AB=6,AC=8时,求△BDE的周长.解:〔1〕∵四边形ABCD是菱形,∴AD∥BC,AO=OC∴OM=ON.〔2〕∵四边形ABCD是菱形,∴AC⊥BD,AD=BC=AB=6,∴BO==2,∴,∵DE∥AC,AD∥CE,∴四边形ACED是平行四边形,∴DE=AC=6,∴△BDE的周长是:BD+DE+BE=BD+AC+〔BC+CE〕=4+8+〔6+6〕=20即△BDE的周长是20.E C D B A O 23.〔10分〕如图,已知平行四边形中,对角线交于点,是延长线上的点,且是等边三角形.〔1〕求证:四边形是菱形;〔2〕若求证:四边形是正方形. 证明:〔1〕∵四边形ABCD 是平行四边形, ∴AO=CO.又∵△ACE 是等边三角形,∴EO⊥AC,即AC⊥BD,∴四边形ABCD 是菱形 〔2〕∵四边形ABCD 是平行四边形,∴AO=CO.又∵△ACE 是等边三角形,∴EO 平分∠AEC〔三线合一〕,∴∠AED=1/2∠AEC=1/2×60°=30°,又∵∠AED=2∠EAD∴∠EAD=15°,∴∠ADO=∠DAE+∠DEA=15°+30°=45°∵四边形ABCD 是菱形,∴∠ADC=2∠ADO=90°,∴平行四边形ABCD 是正方形. 24.〔12分〕如图1,四边形ABCD 、DEFG 都是正方形,连接AE 、CG .〔1〕求证:AE=CG ;〔2〕观察图形,猜想AE 与CG 之间的位置关系,并证明你的猜想;〔3〕将正方形ABCD,绕点D 逆时针旋转一定的角度〔小于90度〕,如图2,请猜想AE 与CG 之间的关系,并证明你的猜想.〔1〕证明:由题意得AD=CD,ED=GD,∠ADE=∠GDC=90°∴根据SAS 可证△EAD ≌△GCD,∴AE=CG ;〔2〕猜想:AE ⊥CG ;延长EA 交CG 于H,由〔1〕得∠CGD+∠GAH=∠CGD+∠EAD=∠CGD+∠GCD=90°∴AE ⊥CG ;〔3〕猜想:AE=CG ;AE ⊥CG .由题意得CD=AD,GD=ED,∠ADE=90+∠GDA=∠CDG ∴△EAD ≌△GCD ∴AE=CG,∠CGD=∠AED ∵∠AED+∠EOD=90°,∴∠CGD+∠EOD=90°,∵∠EOD=∠GOH,∴∠CGO+∠GOH=∠CGO+∠EOD=∠AED+∠EOD=90°,∴AE ⊥CG . ∴∠EAN=∠MAN .∵在△MAN 和△EAN 中,AE=AM ∠MAN=∠EAN AN=AN∴△MAN ≌△EAN 〔SAS 〕,∴EN=MN,即DN-DE=MN,∴DN-BM=MN.ABCD AC BD ,O E BD ACE △ABCD 2AED EAD ∠=∠ABCD。
2016年初二数学下学期期中试题及答案(共7套)
2016年初二数学下学期期中试题及答案(共
7套)
初一数学下学期期中试卷及答案
※初二数学期中考试模拟试卷
※初二数学期中测试试卷
※初二数学期中考试复习题(鲁教版)
※初二数学期中备考模拟试题
※初二年级数学期中考试模拟试题
※初二数学下册期中模拟试题
※初二年级数学下册期中复习试题
反复的做题及练习不仅仅是为了让大家熟知题型,更是为了让大家了解自己知识的缺漏,从而找到正确的复习方向,初一数学下学期期中试卷及答案希望大家能用到实处,想要了解更多试题可点击八年级数学期中试卷获悉,预祝大家在期末考中都能取得理想的成绩。
***友情链接***
八年级期中复习为大家提供了初二年级所有的复习计划及复习重点,大家可参照这些复习计划进行合理的复习
规划~。
2016学年第二学期八年级期中数学试卷.doc
2016学年第二学期八年级期中数学试卷 姓名:一、选择题:(本题有10小题,每题3分,共30分) 1.下列运算正确的是( )A.2(3=- B.3= C.2(3= D3=-2.=,则( )A .3m ≥B .5m ≤C .35m ≤≤D .m 为一切实数 3.一元二次方程(2)2x x x -=-的根是( )A .1-B .0C .1和2D .1-和2 4.数据4、2、6的中位数和方差分别是( )A .2和83B .4和4C .4和83D .4和435.下列图形中,既是轴对称图形又是中心对称图形的有( )A .1个B .2个C .3个D .4个 6.当0x ≤时,化简1x - )A .12x -B .21x -C .1-D .1 7.已知关于x 的方程221(3)04x m x m --+=有两个不相等的实数根,m 的最大整数值为( )A .2B .1-C .0D .18.某同学参加了5科考试,平均成绩是68分,他想在下一科考试后使6科考试的平均成绩为70分,那么他第6科考试要得的分数应为( )A .72分B .74分C .78分D .80分 9.如图,在ABCD 中,AE ⊥BC 于点E ,AF ⊥CD 于点F ,若AE=4,AF=6,ABCD 的周长为40,则ABCD 的面积为( ) A .48 B .24 C .36 D .4010.有下列三个命题:①五边形的内角中至少有两个钝角;②十二边形共有54条对角线;③平行四边形的对角线互相平分;④6422+-x x 的值随x 的变化而变化,因此这个代数式没有最小值.其中正确命题的个数是( )A .1B .2C . 3D .4二、填空题:(本题有10小题,每题3分,共30分) 11=第9题图12.若一个多边形内角和等于1260°,则该多边形边数是13.一件商品原价100元,经过两次连续降价,现价81元,则平均每次降价的百分率是 14.设231022014m m m m +-=-+=,则15.一元二次方程2(1)210k x x ---=有两个实数根,则实数k 的取值范围是 16.某学习小组5位同学参加初中毕业生实验操作考试(满分20分)的平均成绩是16分,其中三位男生的方差为6(分2),两位女生的成绩分别为17分和15分。
2016—2017年八年级下册 数学期中试卷及答案解析
2016—2017年八年级第二学期数学期中试卷班别________姓名________分数_________一.选择题(每题3分,共30分)1.若式子在实数范围内有意义,则a的取值范围是()A.a>3 B.a≥3 C.a<3 D.a≤32.下列属于最简二次根式的是()A.B.C.D.3.下列计算正确的是()A.=2 B.3+=3C.+=D.+=34.如图所示,在Rt△ABC中,AB=8,AC=6,∠CAB=90°,AD⊥BC,那么AD的长为()A.1 B.2 C.3 D.4.85.下列语句正确的是()A.对角线互相垂直的四边形是菱形B.矩形的对角线相等C.有两边及一角对应相等的两个三角形全等D.平行四边形是轴对称图形6.如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为10cm,正方形A的边长为6cm、B的边长为5cm、C的边长为5cm,则正方形D的边长为()A.cm B.4 cmC.cm D.3 cm7.如图,在平行四边形ABCD中,对角线AC⊥BD,且AC=8,CB=6,DH⊥AB于H,则AH等于()C.D.A.B.A.4 B.3 C.D.29.如图,在□ABCD中,AD=8,点E,F分别是BD,CD的中点,则EF等于()A.2 B.3C.4 D.510.如图,在菱形ABCD中,AC=8,BD=6,则△ABD的周长等于()A.18 B.16 C.15 D.14二.填空题(每小题3分,共24分)11.=,(﹣)2=,=12.已知a=﹣,b=+,求a2+b2的值为.13.如图1 ,P(3,4)是直角坐标系中一点,则P到原点的距离是.图1 图2 图314.如图2,在□ABCD中,对角线AC与BD相交于点O,请添加一个条件,使□ABCD成为菱形(写出符合题意的一个条件即可)15.如图3,△ABC中,AC=15,AB=13,BC=14,则BC边上的高AD=.16.已知,在菱形ABCD中,AC=8,BD=6,则菱形的周长是.17.一个菱形的周长为52cm,一条对角线长为10cm,则其面积为cm2.18.如图,已知菱形ABCD的边长2,∠A=60°,点E、F分别在边AB、AD上,若将△AEF沿直线EF折叠,使得点A恰好落在CD边的中点G处,则EF=.三.解答题(共44分)19.化简与计算:(每小题5分,共10分)(1)2﹣6+3(2)×+3×220.(8分)如图,在△ABC中,∠ACB=90°,CD⊥AB于D(1)若AB=5cm,BC=3cm,求CD的长;(2)若BD=2,AD=4,求CD的长.21.(8分)如图,四边形ABCD是平行四边形,点E在BC上,点F在AD上,BE=DF,求证:AE=CF.22.(8分)如图,菱形ABCD的对角线AC、BC相交于点O,BE∥AC,CE∥DB.求证:四边形OBEC 是矩形.23.(10分)如图,□ABCD中,AC与BD相交于点O,∠ABD=2∠DBC,AE⊥BD于点E.(1)若∠ADB=25°,求∠BAE的度数;(2)求证:AB=2OE.2016—2017年八年级下册数学期中试卷参考答案与试题解析一.选择题(共10小题)1.(2017•无锡一模)若式子在实数范围内有意义,则a的取值范围是()A.a>3 B.a≥3 C.a<3 D.a≤3【分析】根据被开方数大于等于0列式计算即可得解.【解答】解:由题意得,a﹣3≥0,解得a≥3.故选B.【点评】本题考查的知识点为:二次根式的被开方数是非负数.2.(2016秋•新华区期末)下列属于最简二次根式的是()A.B. C. D.【分析】检查最简二次根式的两个条件是否同时满足,同时满足的就是最简二次根式,否则就不是.【解答】解:A、被开方数不含分母;被开方数不含能开得尽方的因数或因式,故A正确;B、被开方数含能开得尽方的因数或因式,故B错误;C、被开方数含能开得尽方的因数或因式,故C错误;D、被开方数含分母,故D错误;故选:A.【点评】本题考查最简二次根式的定义,最简二次根式必须满足两个条件:被开方数不含分母;被开方数不含能开得尽方的因数或因式3.(2017•平顶山一模)下列计算正确的是()A.=2 B.3+=3C.+=D.+=3【分析】根据二次根式的加减法进行计算即可.【解答】解:A、=2,故A错误;B、3+不能合并,故B错误;C、+不能合并,故C错误;D、+=3+,故D正确,【点评】本题考查了二次根式的加减,掌握二次根式加减法的法则是解题的关键.4.(2017春•孝南区校级月考)如图所示,在Rt△ABC中,AB=8,AC=6,∠CAB=90°,AD⊥BC,那么AD的长为()A.1 B.2 C.3 D.4.8=AC•AB=BC•AD,【分析】先根据AB=8,AC=6,∠CAB=90°,利用勾股定理可求BC,再根据S△ABC可求AD.【解答】解:如右图所示,在Rt△ABC中,AB=8,AC=6,∠CAB=90°,∴BC===10,又∵S=AC•AB=BC•AD,△ABC∴6×8=10AD,∴AD=4.8.故选D.【点评】本题考查了勾股定理.注意直角三角形面积的两种求法,等于两直角边乘积的一半,也等于斜边乘以斜边上高的积的一半.5.(2017•启东市一模)下列语句正确的是()【分析】由菱形的判定、矩形的性质、全等三角形的判定、平行四边形的性质分别进行判断,即可得出结论.【解答】解:A、对角线互相垂直的四边形是菱形,不正确;B、矩形的对角线相等,正确;C、有两边及一角对应相等的两个三角形全等,不正确;D、平行四边形是轴对称图形,不正确;故选:B.【点评】本题考查了菱形的判定、矩形的性质、全等三角形的判定、平行四边形的性质;熟练掌握有关判定定理和性质定理是解决问题的关键.6.(2017春•武昌区校级月考)如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为10cm,正方形A的边长为6cm、B的边长为5cm、C的边长为5cm,则正方形D的边长为()【分析】先求出S A、S B、S C的值,再根据勾股定理的几何意义求出D的面积,从而求出正方形D 的边长.【解答】解:∵S A=6×6=36cm2,S B=5×5=25cm2,S C=5×5=25cm2,又∵S A+S B+S C+S D=10×10,∴36+25+25+S D=100,∴S D=14,∴正方形D的边长为cm.故选:A.【点评】本题考查了勾股定理,熟悉勾股定理的几何意义是解题的关键.7.(2017•东光县一模)如图,在平行四边形ABCD中,对角线AC⊥BD,且AC=8,CB=6,DH⊥AB 于H,则AH等于()A.B.C.D.【分析】先祝你四边形ABCD是菱形,根据菱形的面积等于对角线积的一半,可求得菱形的面积,又由菱形的对角线互相平分且垂直,可根据勾股定理得AB的长,根据菱形的面积的求解方法:底乘以高或对角线积的一半,即可得菱形的高.【解答】解:∵平行四边形ABCD中,对角线AC⊥BD,∴四边形ABCD是菱形,∴AC⊥BD,OA=OC=AC=4,OB=OD=3,∴AB=5cm,=AC•BD=AB•DH,∴S菱形ABCD∴DH==,故选A.【点评】此题考查了平行四边形的性质、菱形的判定与性质:菱形的对角线互相平分且垂直;菱形的面积的求解方法:底乘以高或对角线积的一半.8.(2017•新野县一模)如图,在平行四边形ABCD中,AD=7,CE平分∠BCD交AD边于点E,且AE=4,则AB的长为()A.4 B.3 C.D.2【分析】利用平行四边形的性质以及角平分线的性质得出∠DEC=∠DCE,进而得出DE=DC=AB求出即可.【解答】解:∵在▱ABCD中,CE平分∠BCD交AD于点E,∴∠DEC=∠ECB,∠DCE=∠BCE,AB=DC,∴∠DEC=∠DCE,∴DE=DC=AB,∵AD=7,AE=4,∴DE=DC=AB=3.故选:B.【点评】此题主要考查了平行四边形的性质以及角平分线的性质,得出DE=DC=AB是解题关键.9.(2017•黔东南州模拟)如图,在▱ABCD中,AD=8,点E,F分别是BD,CD的中点,则EF等于()A.2 B.3 C.4 D.5【分析】由四边形ABCD是平行四边形,根据平行四边形的对边相等,可得BC=AD=8,又由点E、F分别是BD、CD的中点,利用三角形中位线的性质,即可求得答案.【解答】解:∵四边形ABCD是平行四边形,∴BC=AD=8,∵点E、F分别是BD、CD的中点,∴EF=BC=×8=4.故选C.【点评】此题考查了平行四边形的性质与三角形中位线的性质.此题比较简单,注意掌握数形结合思想的应用.10.(2016•五指山校级模拟)如图,在菱形ABCD中,AC=8,BD=6,则△ABD的周长等于()A.18 B.16 C.15 D.14【分析】根据菱形对角线互相垂直平分的性质,可以求得BO=OD,AO=OC,在Rt△AOD中,根据勾股定理可以求得AB的长,进而△ABD的周长.【解答】解:菱形对角线互相垂直平分,∴BO=OD=3,AO=OC=4,∴AB=5,∴△ABD的周长等于5+5+6=16,故选B.【点评】本题考查了菱形面积的计算,考查了勾股定理在直角三角形中的运用,考查了菱形各边长相等的性质,本题中根据勾股定理计算AB的长是解题的关键.二.填空题(共8小题)11.(2017秋•海宁市校级月考)=2,(﹣)2=3,=4.【分析】根据二次根式的乘除法法则和二次根式的性质计算即可.【解答】解:==2,(﹣)2=3,=4,故答案为:2;3;4.【点评】本题考查的是二次根式的乘除法,掌握二次根式的乘除法法则是解题的关键.12.(2017春•上虞区校级月考)已知a=﹣,b=+,求a2+b2的值为10.【分析】把已知条件代入求值.【解答】解:原式=(﹣)2+(+)2=5﹣2+5+2=10.故本题答案为:10.【点评】此题直接代入即可,也可先求出a+b、ab的值,原式=(a+b)2﹣2ab,再整体代入.13.(2017春•上虞区校级月考)如图P(3,4)是直角坐标系中一点,则P到原点的距离是5.【分析】根据两点间的距离公式便可解答.【解答】解:∵P点坐标为(3,4),∴OP==5.【点评】本题考查的是点在平面直角坐标系中坐标的几何意义及两点间的距离公式.14.(2016春•潮南区期末)如图,在▱ABCD中,对角线AC与BD相交于点O,请添加一个条件AB=AD,使▱ABCD成为菱形(写出符合题意的一个条件即可)【分析】根据邻边相等的平行四边形是菱形可得添加条件AB=AD.【解答】解:添加AB=AD,∵四边形ABCD是平行四边形,AB=AD,∴▱ABCD成为菱形.故答案为:AB=AD.【点评】此题主要考查了菱形的判定,关键是掌握一组邻边相等的平行四边形是菱形.15.(2017春•启东市校级月考)△ABC中,AC=15,AB=13,BC=14,则BC边上的高AD=12.【分析】AD为高,那么题中有两个直角三角形.AD在这两个直角三角形中,设BD为未知数,可利用勾股定理都表示出AD长.求得BD长,再根据勾股定理求得AD长.【解答】解:设BD=x,则CD=14﹣x,在Rt△ABD中,AD2+x2=132,在Rt△ADC中,AD2=152﹣(14﹣x)2,则有132﹣x2=152﹣(14﹣x)2,132﹣x2=152﹣196+28x﹣x2,解得x=5,在Rt△ABD中,AD==12.故答案为:12.【点评】本题考查了勾股定理,解决本题的关键在于利用两个直角三角形的公共边找到突破点.主要利用了勾股定理进行解答.16.(2017•大连模拟)已知,在菱形ABCD中,AC=8,BD=6,则菱形的周长是20.【分析】根据菱形对角线互相垂直平分的性质,可以求得BO=OD,AO=OC,在Rt△AOB中根据勾股定理,可以求得AB的长,即可得出菱形ABCD的周长.【解答】解:如图所示,∵在菱形ABCD中,AC=8,BD=6,∴∠AOB=90°,AO=4,BO=3,∴Rt△AOB中,AB=5,∴菱形ABCD的周长=5×4=20.故答案为:20.【点评】本题考查了菱形各边长相等的性质,以及勾股定理在直角三角形中的运用,根据勾股定理计算出菱形的边长是解题的关键.17.(2017•长春一模)一个菱形的周长为52cm,一条对角线长为10cm,则其面积为120cm2.【分析】先由菱形ABCD的周长求出边长,再根据菱形的性质求出OA,然后由勾股定理求出OB,即可得出BD,再根据菱形的面积等于对角线乘积的一半计算即可.【解答】解:如图所示:∵四边形ABCD是菱形,∴AB=BC=CD=DA,AC⊥BD,OA=AC=5,OB=BD,∵菱形ABCD的周长为52cm,∴AB=13cm,在Rt△AOB中,根据勾股定理得:OB===12cm,∴BD=2OB=24cm,∴菱形ABCD的面积=×10×24=120cm2,故答案为120.【点评】本题考查了菱形的性质以及勾股定理的运用;熟练掌握菱形的性质和运用勾股定理计算是解决问题的关键.18.(2016•盐城)如图,已知菱形ABCD的边长2,∠A=60°,点E、F分别在边AB、AD上,若将△AEF沿直线EF折叠,使得点A恰好落在CD边的中点G处,则EF=.【分析】延长CD,过点F作FM⊥CD于点M,连接GB、BD,作FH⊥AE交于点H,由菱形的性质和已知条件得出∠MFD=30°,设MD=x,则DF=2x,FM=x,得出MG=x+1,由勾股定理得出(x+1)2+(x)2=(2﹣2x)2,解方程得出DF=0.6,AF=1.4,求出AH=AF=0.7,FH=,证明△DCB是等边三角形,得出BG⊥CD,由勾股定理求出BG=,设BE=y,则GE=2﹣y,由勾股定理得出()2+y2=(2﹣y)2,解方程求出y=0.25,得出AE、EH,再由勾股定理求出EF即可.【解答】解:延长CD,过点F作FM⊥CD于点M,连接GB、BD,作FH⊥AE交于点H,如图所示:∵∠A=60°,四边形ABCD是菱形,∴∠MDF=60°,∴∠MFD=30°,设MD=x,则DF=2x,FM=x,∵DG=1,∴MG=x+1,∴(x+1)2+(x)2=(2﹣2x)2,解得:x=0.3,∴DF=0.6,AF=1.4,∴AH=AF=0.7,FH=AF•sin∠A=1.4×=,∵CD=BC,∠C=60°,∴△DCB是等边三角形,∵G是CD的中点,∴BG⊥CD,∵BC=2,GC=1,∴BG=,设BE=y,则GE=2﹣y,∴()2+y2=(2﹣y)2,解得:y=0.25,∴AE=1.75,∴EH=AE﹣AH=1.75﹣0.7=1.05,∴EF===.故答案为:.【点评】本题考查了菱形的性质、翻折变换的性质、勾股定理、等边三角形的判定与性质等知识;本题综合性强,难度较大,运用勾股定理得出方程是解决问题的关键.三.解答题(共5小题)19.(2017春•黄陂区月考)计算:(1)×+3×2(2)2﹣6+3.【分析】(1)二次根式乘法法则即可化简求值(2)将各二次根式化为最简二次根式,然后合并同类二次根式.【解答】解:(1)原式=7+30=37(2)原式=4﹣2+12=14【点评】本题考查二次根式的运算法则,解题的关键是熟练运用二次根式的运算法则,本题属于基础题型.20.(2017春•武昌区校级月考)如图,在△ABC中,∠ACB=90°,CD⊥AB于D(1)若AB=5cm,BC=3cm,求CD的长;(2)若BD=2,AD=4,求CD的长.【分析】(1)首先根据勾股定理求得直角三角形的另一直角边,再根据直角三角形的面积公式求得斜边上的高CD;(2)利用等角的余角相等得到∠B=∠ACD,则利用有两组角对应相等的两三角形相似可判断△ADC ∽△CDB;利用相似比得到=,然后利用比例性质求CD.【解答】解:(1)在直角三角形ABC中,AC===4(cm),根据直角三角形的面积公式,得CD===(cm)故CD的长为cm;(2)∵CD⊥AB于D,∴∠CDA=∠CDB=90°,∴∠BCD+∠B=90°∵∠ACB=90°,即∠BCD+∠ACD=90°,∴∠B=∠ACD,∴△ADC∽△CDB,∴=,即=,∴CD=2.【点评】本题考查了勾股定理,相似三角形的判定与性质,要熟练运用勾股定理以及直角三角形的面积公式,直角三角形斜边上的高等于两条直角边的乘积除以斜边.在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用;再运用相似三角形的性质时主要利用相似比进行几何计算.21.(2017•邵阳县一模)如图,四边形ABCD是平行四边形,点E在BC上,点F在AD上,BE=DF,求证:AE=CF.【分析】根据平行四边形性质得出AD∥BC,且AD=BC,推出AF∥EC,AF=EC,根据平行四边形的判定推出四边形AECF是平行四边形,即可得出结论.【解答】证明:∵四边形ABCD是平行四边形,∴AD∥BC,且AD=BC,∴AF∥EC,∵BE=DF,∴AF=EC,∴四边形AECF是平行四边形,∴AE=CF.【点评】本题考查了平行四边形的性质和判定的应用,注意:平行四边形的对边平行且相等,有一组对边平行且相等的四边形是平行四边形.22.(2016春•历下区期末)如图,菱形ABCD的对角线AC、BC相交于点O,BE∥AC,CE∥DB.求证:四边形OBEC是矩形.【分析】根据平行四边形的判定推出四边形OBEC是平行四边形,根据菱形性质求出∠AOB=90°,根据矩形的判定推出即可.【解答】证明:∵BE∥AC,CE∥DB,∴四边形OBEC是平行四边形,又∵四边形ABCD是菱形,∴AC⊥BD,∴∠AOB=90°,∴平行四边形OBEC是矩形.【点评】本题考查了菱形性质,平行四边形的判定,矩形的判定的应用,主要考查学生的推理能力.23.(2013•沙坪坝区模拟)如图,▱ABCD中,AC与BD相交于点O,∠ABD=2∠DBC,AE⊥BD于点E.(1)若∠ADB=25°,求∠BAE的度数;(2)求证:AB=2OE.【分析】(1)根据平行四边形的对边平行可得AD∥BC,再根据两直线平行,内错角相等可得∠DBC=∠ADB,然后求出∠ABD,再根据直角三角形两锐角互余列式计算即可求出∠BAE;(2)取AB的中点F,连接EF、OF,根据直角三角形斜边上的中线等于斜边的一半可得EF=BF=AB,根据等边对等角可得∠ABD=∠BEF,根据三角形的中位线平行于第三边并且等于第三边的一半可得OF∥BC,根据两直线平行,内错角相等可得∠DBC=∠EOF,然后根据三角形的一个外角等于与它不相邻的两个内角的和求出∠EFO=∠EOF,再根据等角对等边可得EF=OE,从而得证.【解答】(1)解:在▱ABCD中,AD∥BC,∴∠DBC=∠ADB,∵∠ABD=2∠DBC,∠ADB=25°,∴∠ABD=2×25°=50°,∵AE⊥BD,∴∠BAE=90°﹣∠ABD=90°﹣50°=40°;(2)证明:如图,取AB的中点F,连接EF、OF,∵AE⊥BD,∴EF=BF=AB,∴∠ABD=∠BEF,∵AO=CO,∴OF是△ABC的中位线,∴OF∥BC,∴∠DBC=∠EOF,根据三角形的外角性质,∠BEF=∠EFO+∠EOF,又∵∠ABD=2∠DBC,∴∠EFO=∠EOF,∴EF=OE,∴OE=AB,∴AB=2OE.【点评】本题考查了平行四边形的对边平行,对角线互相平分的性质,直角三角形斜边上的中线等于斜边的一半,三角形的中位线平行于第三边并且等于第三边的一半,三角形的一个外角等于与它不相邻的两个内角的和的性质,作辅助线是解题的关键.。
2016第二学期八年级数学阶段试卷
第1页,共6页 第2页,共6页密 封 线学校 班级 姓名 学号密 封 线 内 不 得 答 题yxO 2(第5题图)3 2016学年第二学期八年级数学学科阶段性考试卷(一)(满分:150分 考试时间:90分钟)题号一 (24)二 (48)三 (32)四 (46)总分得分一、单项选择题:(本大题共6小题,每题4分,满分24分)1、下列函数),(,32,1,,12为常数b k b kx y x y xy x y x y +=-===+=π中,是一次函数的有…………………………………………………………………………………… ( ) (A )4个 (B )3个 (C )2个 (D )1个2、函数23--=x y 的图像不经过的象限是……………………………………… ( ) (A )第一象限 (B )第二象限 (C )第三象限 (D )第四象限3、在下列方程中,有实数根的是……………………………………………………( )(A )032=+-x (B )41x x +=- (C )2230x x ++= (D )111x x x =-- 4、对于直线34+=x y ,下列说法错误的是………………………………………( )(A )图像与x 轴的交点为⎪⎭⎫⎝⎛-0,43 (B )直线在y 轴上的截距为(0,3) (C )图像经过第一、二、三象限 (D )y 随x 的增大而增大5、如图,一次函数b kx y +=的图像如图所示,当3>y 时,x 的取值范围是……( )(A )0<x (B )0>x (C )2<x (D )2>x6、某景区有一景点的改造工程要限期完工.甲工程队独做可提前1天完成,乙工程队独做要误期6天.现由两工程队合做3天后,余下的由乙工程队独做,正好如期完成.设工程期限为x 天,则下面所列方程中正确的是……………………………………………………………………………( )(A )1613=-++x x x (B )613-=-x x x (C )x x x x =++-613 (D )1613=++-x x x二、填空题:(本大题共12小题,每小题4分,满分48分) 7、一次函数x y 23-=的截距为 .8、若函数(1)1y k x =-+是一次函数,则k 的取值范围为 .9、已知一次函数b kx y +=的图像经过点)2,0(-A ,并与直线x y 4-=平行,那么这个一次函数解析式是 _.10、直线m x y +-=2的图像不经过第三象限,那么m 的取值范围为 . 11、关于无理方程01)2(=--x x 的解是 .12、某工厂2014年总产值为500万元,2016年总产值为720万元,若该厂这两年的平均增长率均为x ,则求x 可列出的方程为: .13、解方程组⎪⎩⎪⎨⎧=+-=+065202222y xy x y x 时,可先化为 和 两个方程组.14、用换元法解方程21333322=-+-x x x x .如果设x x y 32-=,则原方程可化为y 的整 式方程是 .15、如果3=x 是方程xkx x --=-323的增根,那么k 的值为___________. 16、如果直线k x y +-=2与两坐标轴所围成的三角形面积是9,则k 的值为 . 17、已知一次函数中,函数与自变量x 的部分对应值如下:x -4 -2 0 2 4 y 11 8 5 2 -1那么,下列说法错误的是(填序号)①3-=+-b k ②当2<x 时。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初二(数学)中期试题 第1页
2016级(初二下)中期考试数学试题
注意事项:
1.答题前,考生务必将自己的姓名、考号在答题卡相应栏内用签字笔或钢笔填写清楚,并将考号..
栏下对应的数字框涂黑,科目栏将 语文 擦掉,再将 数学 [ ] 涂黑。
2.选择题每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号,不能答在试题卷上。
(数学题号:12—21)
3.考试时间:150分钟,满分150分。
一、选择题(每小题只有一个正确答案,共30分)
12.化简=-2
)7(( ) A .-7
B .7
C .±7
D .49
13.下列五个等式中一定成立的有( ) ①a a =2)( ②a a =2 ③24a a = ④10=a ⑤3
1
2914= A .1个
B .2个
C .3个
D .4个
14.下列哪个点在直线32+-=x y 上( ) A .(―2,―7)
B .(-1,1)
C .(2,1)
D .(-3,9)
15.一次函数20152015+-=x y 的图象不经过( ) A .第一象限 B .第二象限
C .第三象限
D .第四象限
16.下列说法正确的是( ) A .对角线相等的四边形是矩形 B .对角互补的平行四边形是矩形 C .对角线互相垂直的四边形是菱形
D .菱形是轴对称图形,它的对角线就是它的对称轴
17.已知正比例函数x m y )32(+=的图象上两点),(11y x A 和 ),(22y x A ,当21x x <时
21y y >,则m 的取值范围是( )
A .23-<m
B .2
3
->m
C .2
3
0<
<m D . 0<m 18,一次函数的图象经过点(2,1)和(-1,-3),则它的解析式为( )
A .3
543-=x y B .5334-=
x y C .5343+=x y D . 3
5
34-=x y 19.正比例函数kx y 2=和一次函数k
kx y 1
-=的大致草图是( )
20.下列图象中每条直线上的点的坐标都是二元一次方程22=-y x 的解是( )
21.如图,矩形ABCD 中,对角线AC 与BD 相交于点O ,P 为AD 上的动点,过点P 作
PM ⊥AC ,PN ⊥BD ,垂足分别为M 、N ,若m AB =,n BC =,则PM+PN=( ) A .
2n m + B .n
m mn
+ C .
2
2n m mn + D .
m
n
二、填空题(每小题3分,共24分) 11.=-128 .
12.三角形三边之比为25:7:1,,则这个三角形的形状是 .
13.一次函数32--=x y 的图象向上平移7个单位后所得直线的解析式为
.
初二(数学)中期试题 第2页
14.顺次连结四边形各边中点所得到的四边形是 .
15.若平行四边形的一条边长是10,一条对角线长为8,则它的另一条对角线长x 的取值范围是 .
16.矩形ABCD 的两条对角线AC 、BD 相交于点O , 60=∠AOB ,OA=3,则这个矩形的面积为 .
17.菱形的周长为4a ,邻角之比为2:1,则较长的一条对角线长为 .
18.已知22121111++=S
22231
211++=S
2234
1
311++=S
(2)
2)
1(1
11+++
=n n S n 设n S S S S S ++++= 321 则S= .
2016级(初二下)中期考试
数 学 答 卷
二、填空题(每小题3分,共24分)
1. 2. 3. 4. 5. 6. 7. 8. 三、解答题(96分,请写出必要的解答步骤和推理过程。
) 19.(10分)计算 (1)2
1
81218+-+ (2)3210831)7512(32÷+-
20.(10分)先化简再求值
)24()44)4(2
232x y x xy
y xy x y y x +-⋅++- 其中12+=x ,21-=y
21.(10分)如图,在平行四边形ABCD 中,E 、F 分别是AB 、CD 边上的点且BE=DF ,
求证:四边形AECF 为平行四边形.
22.(10分)如图,四边形ABCD 是平行四边形,AC 、BD 相交于点O ,21∠=∠,
(1)求证:四边形
ABCD
是矩形.
初二(数学)中期试题 第3页
-----------------------------------------------------
--------------------------------------------------- -------------------------------------------------------
(2)若 120=∠BOC ,cm AB 4=,求四边形ABCD 的面积.
23.(10分)如图,平行四边形ABCD 的两条对角线AC 、BD 相交于点O ,BD=6,AC=4,
13=BC ,四边形ABCD 是菱形吗?请说出你的理由.
24.(10分)已知等腰三角形周长为30. (1)写出底边长y 关于腰长x 的函数关系式; (2)写出自变量x 的取值范围; (3)画出函数的图象。
25.为了提高土地利用率,将小麦、玉米、黄豆三种农作物套种在一起,俗称“三种三收”,现将面积为10亩的一块农田进行“三种三收”套种,为保证主要农作物的种植比例,要求小麦的种植面积占总面积的60%,下表是三种农作物的亩产量及销售单价的对应表
(1)设玉米种植面积为x 亩,三种农作物的总售价为y 元,写出y 与x 的函数关系式; (2)在保证小麦种植面积的情况下,玉米、黄豆同时均按整亩数套种,有几种“三种三收”套种方案?
(3)在(2)中的种植方案中,采用哪种套种方案才能使总销售价最高?最高价是多少?
26.(12分)国家推行“节能减排,低碳经济”的政策后,某企业推出一种叫“CNG ”的改烧汽油为天然气的装置,每辆车改装费为b 元。
据市场调查可知:每辆车改装前后的燃料费(含改装费)0y ,1y (单位:元)与正常运营时间(x 单位:天)之间分别满足解析式:ax y =0,x b
y
501+=,如图所示. (1)每辆车改装前每天的燃料费=a 元,每辆车的改装费b = 元,正常运营 天后,就可以从节省燃烧费中收回成本。
(2)某出租汽车公司一次性改装了100辆,正常运营多少天后节省燃烧费40万元?
27.(14分)已知点P 是ABC Rt ∆斜边AB 上一动点(不与A 、B 重合),分别过A 、B 向直线CP 作垂线,垂足分别是E 、F ,点Q 为斜边AB 的中点。
(1)如图1,当点P与点Q重合时,AE与BF的位置关系是,QE与QF
的数量关系是 .
(2)如图2,当点P在线段AB上不与点Q重合时,判断QE与QF的数量关系,并
给予证明.
(3)如图3,当点P在线段AB(或BA)的延长线上时,此时(2)中的结论是否成
立?请画出图形并给予证明。
初二(数学)中期试题第4页。