关于高等数学所有符 的写法与读法

合集下载

高等数学中特殊符号读法及功能

高等数学中特殊符号读法及功能

常用高等数学符号的读法及含义表一、常用符号读法大写小写英文注音国际音标注音中文注音Ααalpha alfa 阿耳法Ββbeta beta 贝塔Γγgamma gamma 伽马Δδdeta delta 德耳塔Εεepsilon epsilon 艾普西隆Ζζzeta zeta 截塔Ηηeta eta 艾塔Θθtheta θita西塔Ιιiota iota 约塔Κκkappa kappa 卡帕∧λlambda lambda 兰姆达Μμmu miu 缪Ννnu niu 纽Ξξxi ksi 可塞Οοomicron omikron 奥密可戎∏πpi pai 派Ρρrho rou 柔∑σsigma sigma 西格马Ττtau tau 套Υυupsilon jupsilon 衣普西隆Φφphi fai 斐Χχchi khai 喜Ψψpsi psai 普西Ωωomega omiga 欧米伽符号表符号含义i -1的平方根f(x) 函数f在自变量x处的值sin(x) 在自变量x处的正弦函数值exp(x) 在自变量x处的指数函数值,常被写作exa^x a的x次方;有理数x由反函数定义ln x exp x 的反函数ax 同a^xlogba 以b为底a的对数;blogba = acos x 在自变量x处余弦函数的值tan x 其值等于sin x/cos xcot x 余切函数的值或cos x/sin xsec x 正割含数的值,其值等于1/cos xcsc x 余割函数的值,其值等于1/sin xasin x y,正弦函数反函数在x处的值,即x = sin y acos x y,余弦函数反函数在x处的值,即x = cos y atan x y,正切函数反函数在x处的值,即x = tan y acot x y,余切函数反函数在x处的值,即x = cot y asec x y,正割函数反函数在x处的值,即x = sec y acsc x y,余割函数反函数在x处的值,即x = csc yθ角度的一个标准符号,不注明均指弧度,尤其用于表示atan x/y,当x、y、z用于表示空间中的点时i, j, k 分别表示x、y、z方向上的单位向量(a, b, c) 以a、b、c为元素的向量(a, b) 以a、b为元素的向量(a, b) a、b向量的点积a?b a、b向量的点积(a?b) a、b向量的点积|v| 向量v的模符号含义|x| 数x的绝对值Σ表示求和,通常是某项指数。

高等数学中特殊符号读法及功能

高等数学中特殊符号读法及功能

常用高等数学符号的读法及含义表一、常用符号读法大写小写英文注音国际音标注音中文注音Ααalpha alfa 阿耳法Ββbeta beta 贝塔Γγgamma gamma 伽马Δδdeta delta 德耳塔Εεepsilon epsilon 艾普西隆Ζζzeta zeta 截塔Ηηeta eta 艾塔Θθtheta θita西塔Ιιiota iota 约塔Κκkappa kappa 卡帕∧λlambda lambda 兰姆达Μμmu miu 缪Ννnu niu 纽Ξξxi ksi 可塞Οοomicron omikron 奥密可戎∏πpi pai 派Ρρrho rou 柔∑σsigma sigma 西格马Ττtau tau 套Υυupsilon jupsilon 衣普西隆Φφphi fai 斐Χχchi khai 喜Ψψpsi psai 普西Ωωomega omiga 欧米伽符号表符号含义i -1的平方根f(x) 函数f在自变量x处的值sin(x) 在自变量x处的正弦函数值exp(x) 在自变量x处的指数函数值,常被写作exa^x a的x次方;有理数x由反函数定义ln x exp x 的反函数ax 同a^xlogba 以b为底a的对数;blogba = acos x 在自变量x处余弦函数的值tan x 其值等于sin x/cos xcot x 余切函数的值或cos x/sin xsec x 正割含数的值,其值等于1/cos xcsc x 余割函数的值,其值等于1/sin xasin x y,正弦函数反函数在x处的值,即x = sin y acos x y,余弦函数反函数在x处的值,即x = cos y atan x y,正切函数反函数在x处的值,即x = tan y acot x y,余切函数反函数在x处的值,即x = cot y asec x y,正割函数反函数在x处的值,即x = sec y acsc x y,余割函数反函数在x处的值,即x = csc yθ角度的一个标准符号,不注明均指弧度,尤其用于表示atan x/y,当x、y、z用于表示空间中的点时i, j, k 分别表示x、y、z方向上的单位向量(a, b, c) 以a、b、c为元素的向量(a, b) 以a、b为元素的向量(a, b) a、b向量的点积a?b a、b向量的点积(a?b) a、b向量的点积|v| 向量v的模符号表符号含义|x| 数x的绝对值Σ表示求和,通常是某项指数。

各种数学符号及读法大全

各种数学符号及读法大全

各种数学符号及读法大全数学是一门充满符号的科学,这些符号就像一种特殊的语言,帮助我们更简洁、准确地表达数学概念和进行运算。

下面就为大家介绍一些常见的数学符号及其读法。

一、基本运算符号1、加号(+):读作“加”,例如“2 +3”读作“二加三”。

2、减号(-):读作“减”,比如“5 2”读作“五减二”。

3、乘号(×):读作“乘”,像“4 × 5”读作“四乘五”。

在数学中,有时也会用“·”表示乘号,例如“3·2”,同样读作“三乘二”。

4、除号(÷):读作“除以”,例如“6 ÷ 3”读作“六除以三”。

二、比较符号1、等于号(=):读作“等于”,比如“2 + 3 =5”读作“二加三等于五”。

2、大于号(>):读作“大于”,例如“5 >3”读作“五大于三”。

3、小于号(<):读作“小于”,像“2 <4”读作“二小于四”。

4、大于等于号(≥):读作“大于等于”,比如“x ≥ 5”读作“x 大于等于五”。

5、小于等于号(≤):读作“小于等于”,例如“y ≤ 8”读作“y 小于等于八”。

三、括号1、小括号():通常读作“括号”,例如“(2 + 3)× 4”读作“括号二加三括号乘四”。

2、中括号:读作“中括号”,像“ 5 (3 1)÷ 2”读作“中括号五减去括号三减一括号除以二”。

3、大括号{}:读作“大括号”,比如“{ 2, 4, 6, 8 }”读作“大括号二,四,六,八”。

四、分数符号1、分数线(—):例如“3/5”,读作“五分之三”。

分子在前,分母在后。

2、带分数:由整数部分和分数部分组成,例如“2 又1/3”,读作“二又三分之一”。

五、指数符号1、平方(²):例如“5²”,读作“五的平方”。

2、立方(³):像“2³”,读作“二的立方”。

3、多次方:比如“4 的 5 次方”写作“4^5”,读作“四的五次方”。

高数符号大全及读法

高数符号大全及读法

高数符号大全及读法
高数符号大全及读法如下:
符号:∑(读作西格玛)
含义:求和
符号:∫(读作拉个)
含义:不定积分
符号:dx (读作得克西)
含义:微分
符号:∫(读作拉个)
含义:定积分
符号:d (读作得)
含义:微分
符号:lim (读作林姆)
含义:极限
符号:f(z) (读作fai(z))
含义:关于z的m阶导函数
符号:C(n:m) (读作C艾克斯n:m)
含义:组合数,n中取m
符号:P(n:m) (读作P艾克斯n:m)
含义:排列数m|n m整除n m⊥n m与n互质
符号:a ∈A (读作艾塔属于A)
含义:a属于集合A
符号:#A (读作阿尔法艾塔)
含义:集合A中的元素个数
以上是高数中常用的一些符号及其读法,希望能够帮助到您。

数学符号读法大全高等数学中所有符号的读法

数学符号读法大全高等数学中所有符号的读法

数学符号读法大全高等数学中所有符号的读法
1 Α α alpha a:lf 阿尔法角度;系数
2 Β β beta bet 贝塔磁通系数;角度;系数
3 Γ γ gamma ga:m 伽马电导系数(小写)
4 Δ δ delta delt 德尔塔变动;密度;屈光度
5 Ε ε epsilon ep`silon 伊普西龙对数之基数
6 Ζ ζ zeta zat截塔系数;方位角;阻抗;相对粘度;原子序数
7 Η η eta eit 艾塔磁滞系数;效率(小写)
8 Θ θ thet θit 西塔温度;相位角
9 Ι ι iot aiot 约塔微小,一点儿
10 Κ κ kappa kap 卡帕介质常数
11 ∧ λ lambda lambd 兰布达波长(小写);体积
12 Μ μ mu mju 缪磁导系数;微(千分之一);放大因数(小写)
13 Ν ν nu nju 纽磁阻系数
14 Ξ ξ xi ksi 克西
15 Ο ο omicron omik`ron 奥密克戎
16 ∏ π pi pai 派圆周率=圆周÷直径=3.1416
17 Ρ ρ rho rou 肉电阻系数(小写)
18 ∑ σ sigma `sigma 西格马总和(大写),表面密度;跨导(小写)
19 Τ τ tau tau 套时间常数
20 Υ υ upsilon jup`silon 宇普西龙位移
21 Φ φ phi fai 佛爱磁通;角
22 Χ χ chi phai 西
23 Ψ ψ psi psai 普西角速;介质电通量(静电力线);角
24 Ω ω omega o`miga 欧米伽欧姆(大写);角速(小写);角。

(完整)高等数学所有符号的写法与读法

(完整)高等数学所有符号的写法与读法

高等数学所有符号的写法与读法 ̄hyphen 连字符' apostrophe 省略号;所有格符号— dash 破折号‘’single quotation marks 单引号“”double quotation marks 双引号( ) parentheses 圆括号[ ] square brackets 方括号Angle bracket{} Brace《》French quotes 法文引号;书名号... ellipsis 省略号¨ tandem colon 双点号" ditto 同上‖ parallel 双线号/virgule 斜线号&ampersand = and~swung dash 代字号§ section; division 分节号→ arrow 箭号;参见号+plus 加号;正号-minus 减号;负号± plus or minus 正负号× is multiplied by 乘号÷ is divided by 除号=is equal to 等于号≠ is not equal to 不等于号≡ is equivalent to 全等于号≌ is equal to or approximately equal to 等于或约等于号≈ is approximately equal to 约等于号<is less than 小于号>is more than 大于号≮ is not less than 不小于号≯ is not more than 不大于号≤ is less than or equal to 小于或等于号≥ is more than or equal to 大于或等于号%per cent 百分之…‰ per mill 千分之…∞ infinity 无限大号∝ varies as 与…成比例√ (square) root 平方根∵ since; because 因为∴ hence 所以∷ equals, as (proportion) 等于,成比例∠ angle 角⌒ semicircle 半圆⊙ circle 圆○ circumference 圆周π pi 圆周率△ triangle 三角形⊥ perpendicular to 垂直于∪ union of 并,合集∩ intersection of 交,通集∫ the integral of …的积分∑ (sigma) summation of 总和° degree 度′ minute 分〃second 秒#number …号℃ Celsius system 摄氏度@at 单价x'是x prime(比如转置矩阵)x"是x double-prime常用数学符号读法大全以及主要数学符号含义-转载数学符号:(1)数量符号:如:i,2+i,a,x,自然对数底e,圆周率π。

高等数学中特殊符号的读法及功能

高等数学中特殊符号的读法及功能

数学符号及读法符号含义i -1的平方根f(x) 函数f在自变量x处的值sin(x) 在自变量x处的正弦函数值exp(x) 在自变量x处的指数函数值,常被写作ex a^x a的x次方;有理数x由反函数定义ln x exp x 的反函数a x同a^xlog b a 以b为底a的对数;blog b a = acos x 在自变量x处余弦函数的值tan x 其值等于sin x/cos xcot x 余切函数的值或cos x/sin xsec x 正割含数的值,其值等于1/cos xcsc x 余割函数的值,其值等于1/sin x arcsin x y,正弦函数反函数在x处的值,即x = sin y arccos x y,余弦函数反函数在x处的值,即x = cos y arctan x y,正切函数反函数在x处的值,即x = tan y arccot x y,余切函数反函数在x处的值,即x = cot y arcsec x y,正割函数反函数在x处的值,即x = sec y arccsc x y,余割函数反函数在x处的值,即x = csc yθ角度的一个标准符号,不注明均指弧度,尤其用于表示atan x/y,当x、y、z用于表示空间中的点时i, j, k 分别表示x、y、z方向上的单位向量(a, b, c) 以a、b、c为元素的向量(a, b) 以a、b为元素的向量(a, b) a、b向量的点积a?b a、b向量的点积(a?b) a、b向量的点积|v| 向量v的模|x| 数x的绝对值Σ表示求和,通常是某项指数。

下边界值写在其下部,上边界值写在其上部。

如j从1到100的和可以表示成:。

这表示 1 + 2 + …+ nM 表示一个矩阵或数列或其它|v> 列向量,即元素被写成列或可被看成k×1阶矩阵的向量<v| 被写成行或可被看成从1×k阶矩阵的向量dx 变量x的一个无穷小变化,dy, dz, dr等类似ds 长度的微小变化ρ变量(x2 + y2 + z2)1/2 或球面坐标系中到原点的距离r 变量(x2 + y2)1/2 或三维空间或极坐标中到z轴的距离|M| 矩阵M的行列式,其值是矩阵的行和列决定的平行区域的面积或体。

高等数学中符号的读法及功能(挺全的)

高等数学中符号的读法及功能(挺全的)

大写小写英文注音国际音标注音中文注音A a alpha alfa 阿耳法B3beta beta 贝塔r Y gamma gamma 伽马r5deta delta 德耳塔△£epsilon epsilon 艾普西隆E zeta zeta 截塔Z£eta eta 艾塔©z theta z ita 西塔H n iota iota 约塔K9kappa kappa 卡帕A i lambda lambda 兰姆达M K mu miu 缪N入nu niu 纽g xi ksi 可塞0V omicron omikron 奥密可戎n n pi pai 派p E rho rou 柔刀z sigma sigma 西格马T n tau tau 套Y u upsilon jupsilon 衣普西隆①9phi fai 斐①X chi khai 喜X I psi psai 普西omegaomiga欧米伽符号表符号含义i f(x)-1 的平方根函数f 在自变量x 处的值sin(x)在自变量x 处的正弦函数值exp(x)在自变量x 处的指数函数值,常被写作exa A x a 的x 次方;有理数x 由反函数定义ln x exp x 的反函数ax 同aAxlogba 以b 为底a 的对数;blogba = acos x 在自变量x 处余弦函数的值tan x 其值等于sin x/cos xcot x 余切函数的值或cos x/sin xsec x 正割含数的值,其值等于1/cos xcsc x 余割函数的值,其值等于1/sin xasin x y,正弦函数反函数在x处的值,即x = sin y acos x y,余弦函数反函数在x处的值,即x = cos y atan x y,正切函数反函数在x处的值,即x = tan y acot x y,余切函数反函数在x处的值,即x = cot y asec x y,正割函数反函数在x处的值,即x = sec y acsc x y,余割函数反函数在x处的值,即x = csc yZ 角度的一个标准符号,不注明均指弧度,尤其用于表示atan x/y ,当x、y、z 用于表示空间中的点时i, j, k分别表示x、y、z 方向上的单位向量(a, b, c) 以 a 、 b 、 c 为元素的向量(a, b) 以a、b 为元素的向量(a, b) a、b 向量的点积a?b a、b 向量的点积(a?b) a、b 向量的点积|v| 向量v 的模|x| 数x 的绝对值表示求和,通常是某项指数。

高数常见符号及读法

高数常见符号及读法
atan x
y,正切函数反函数在x处的值,即x = tan y
acot x
y,余切函数反函数在x处的值,即x = cot y
asec x
y,正割函数反函数在x处的值,即x = sec y
acsc x
y,余割函数反函数在x处的值,即x = csc y
θ
角度的一个标准符号,不注明均指弧度,尤其用于表示atan x/y,当x、y、z用于表示空间中的点时
M
表示一个矩阵或数列或其它
|v>
列向量,即元素被写成列或可被看成k×1阶矩阵的向量
<v|
被写成行或可被看成从1×k阶矩阵的向量
dx
变量x的一个无穷小变化,dy, dz, dr等类似
ds
长度的微小变化
ρ
变量(x2 + y2 + z2)1/2或球面坐标系中到原点的距离
r
变量(x2 + y2)1/2或三维空间或极坐标中到z轴的距离
i, j, k
分别表示x、y、z方向上的单位向量
(a, b, c)
以a、b、c为元素的向量
(a, b)
以a、b为元素的向量
(a, b)
a、b向量的点积
a•b
a、b向量的点积
(a•b)
a、b向量的点积
|v|
向量v的模
|x|
数x的绝对值
Σ
表示求和,通常是某项指数。下边界值写在其下部,上边界值写在其上部。如j从1到100的和可以表示成:数学常用符号。这表示1 + 2 +…+ n
ds
沿曲线方向距离的导数
κ
曲线的曲率,单位切线向量相对曲线距离的导数的值:|dT/ds|
N

高数中的符号及读法

高数中的符号及读法

高数中的符号及读法
高数是数学的一个重要分支,它主要研究关于函数、空间等概念的数学原理,也是数学学习所必不可少的课程。

高数涉及到很多符号,如果不掌握它们的正确读法,就很难理解其蕴含的含义。

因此,了解高数中的符号及其读法对学习高数是至关重要的。

高数中的符号大致可分为两类:普通符号和特殊符号。

普通符号包括加减乘除等,它们的读法很容易记住,例如加号一般读作“加”,减号一般读作“减”,乘号一般读作“乘”,除号一般读作“除”。

特殊符号包括方程符号、函数符号、分数符号、数字符号、绝对值符号等。

方程符号一般读作“等于”,例如“2x+3=7”,一般读作“两个x再加上三等于七”;函数符号一般读作“对”,例如“y=f(x)”,一般读作“y对x的函数为f”;分数符号一般读作“分之”,例如“3/4”,一般读作“三分之四”;数字符号一般读作“的”,例如“x2”,一般读作“x的平方”;绝对值符号一般读作“绝对值”,例如“|x|”,一般读作“绝对值为x”。

另外,在高数中还有许多其他符号,包括∞、Σ、∫、γ、ω等。

其中,∞一般读作“无穷”,Σ一般读作“和”,∫一般读作“积分”,γ一般读作“伽玛”,ω一般读作“欧拉”。

为了更好地记忆高数中的符号及其读法,可以结合课本及其他书籍中的例题来多练习,以加深记忆。

此外,还可以跟随数学老师的讲解,对符号的读法进行探究,从而更好地理解高数中的符号及其读法。

总之,高数中的符号及其读法是高数学习中必不可少的一部分,
为了更好地学习高数,可以结合课本及其他书籍中的例题多练习,以加深记忆,还可以跟随数学老师的讲解,对符号的读法进行探究,从而更好地理解高数中的符号及其读法。

高等数学中符号的读法及功能 (挺全的)

高等数学中符号的读法及功能 (挺全的)

大写小写英文注音国际音标注音中文注音Ααalpha alfa 阿耳法Ββbeta beta 贝塔Γγgamma gamma 伽马Δδdeta delta 德耳塔Εεepsilon epsilon 艾普西隆Ζζzeta zeta 截塔Ηηeta eta 艾塔Θθtheta θita西塔Ιιiota iota 约塔Κκkappa kappa 卡帕∧λlambda lambda 兰姆达Μμmu miu 缪Ννnu niu 纽Ξξxi ksi 可塞Οοomicron omikron 奥密可戎∏πpi pai 派Ρρrho rou 柔∑σsigma sigma 西格马Ττtau tau 套Υυupsilon jupsilon 衣普西隆Φφphi fai 斐Χχchi khai 喜Ψψpsi psai 普西Ωωomega omiga 欧米伽符号表符号含义i -1的平方根f(x) 函数f在自变量x处的值sin(x) 在自变量x处的正弦函数值exp(x) 在自变量x处的指数函数值,常被写作exa^x a的x次方;有理数x由反函数定义ln x exp x 的反函数ax 同a^xlogba 以b为底a的对数;blogba = acos x 在自变量x处余弦函数的值tan x 其值等于sin x/cos xcot x 余切函数的值或cos x/sin xsec x 正割含数的值,其值等于1/cos xcsc x 余割函数的值,其值等于1/sin xasin x y,正弦函数反函数在x处的值,即x = sin y acos x y,余弦函数反函数在x处的值,即x = cos y atan x y,正切函数反函数在x处的值,即x = tan y acot x y,余切函数反函数在x处的值,即x = cot y asec x y,正割函数反函数在x处的值,即x = sec y acsc x y,余割函数反函数在x处的值,即x = csc yθ角度的一个标准符号,不注明均指弧度,尤其用于表示atan x/y,当x、y、z用于表示空间中的点时i, j, k 分别表示x、y、z方向上的单位向量(a, b, c) 以a、b、c为元素的向量(a, b) 以a、b为元素的向量(a, b) a、b向量的点积a?b a、b向量的点积(a?b) a、b向量的点积|v| 向量v的模|x| 数x的绝对值Σ表示求和,通常是某项指数。

高等数学中符号的读法及功能-(挺全的)

高等数学中符号的读法及功能-(挺全的)

大写小写英文注音国际音标注音中文注音Αα alpha alfa阿耳法Ββ beta beta贝塔Γγ gamma gamma伽马Δδ deta delta德耳塔Εε epsilon epsilon 艾普西隆Ζζ zeta zeta截塔Ηη eta eta艾塔Θθ theta θita西塔Ιι iota iota约塔Κκ kappa kappa卡帕∧λ lambda lambda兰姆达Μμ mu miu缪Νν nu niu纽Ξξ xi k si 可塞Οο omicron omikron 奥密可戎∏π pi pai派Ρρ rho rou柔∑σ sigma sigma 西格马Ττ tau tau套Υυ upsilon jupsilon衣普西隆Φφ phi fai斐Χχ chi khai喜Ψψ psi psai 普西Ωω omega omiga欧米伽符号表符号含义i -1的平方根f(x) 函数f在自变量x处的值sin(x) 在自变量x处的正弦函数值exp(x) 在自变量x处的指数函数值,常被写作exa^x a的x次方;有理数x由反函数定义ln x exp x 的反函数ax 同 a^xlogba 以b为底a的对数; blogba = acos x 在自变量x处余弦函数的值符号含义tan x 其值等于 sin x/cos xcot x 余切函数的值或 cos x/sin xsec x 正割含数的值,其值等于 1/cos xcsc x 余割函数的值,其值等于 1/sin xasin x y,正弦函数反函数在x处的值,即 x = sin y acos x y,余弦函数反函数在x处的值,即 x = cos y atan x y,正切函数反函数在x处的值,即 x = tan y acot x y,余切函数反函数在x处的值,即 x = cot y asec x y,正割函数反函数在x处的值,即 x = sec y acsc x y,余割函数反函数在x处的值,即 x = csc yθ角度的一个标准符号,不注明均指弧度,尤其用于表示atan x/y,当x、y、z用于表示空间中的点时i, j, k 分别表示x、y、z方向上的单位向量(a, b, c) 以a、b、c为元素的向量(a, b) 以a、b为元素的向量(a, b) a、b向量的点积a?b a、b向量的点积(a?b) a、b向量的点积|v| 向量v的模|x| 数x的绝对值Σ表示求和,通常是某项指数。

高等数学重要常用符号读法指南

高等数学重要常用符号读法指南

大写小写英文注音国际音标注音中文注音Ααalpha alf a 阿耳法Ββbetabeta 贝塔Γγgamma gamma伽马Δδdetadelta 德耳塔Εεepsilon epsil on 艾普西隆Ζζzetazeta 截塔Ηηetaeta 艾塔Θθtheta θi ta 西塔Ιιiotaiota 约塔Κκkappa kappa卡帕∧λlambda lambda兰姆达Μμmumiu 缪Ννnuniu 纽Ξξxiksi 可塞Οοomicron omikron 奥密可戎∏πpipai 派Ρρrhorou 柔∑σsigma sigma西格马Ττtautau 套Υυupsilon jup silon 衣普西隆Φφphifai 斐Χχchikhai 喜Ψψpsipsai 普西Ωωomega omiga 欧米伽符号表符号含义i -1的平方根f(x) 函数f在自变量x处的值符号含义sin(x) 在自变量x处的正弦函数值exp(x) 在自变量x处的指数函数值,常被写作exa^x a的x次方;有理数x由反函数定义lnx expx的反函数ax 同a^xlogba 以b为底a的对数;blogba=acosx 在自变量x处余弦函数的值tanx 其值等于sinx/cosxcotx 余切函数的值或cosx/sinxsecx 正割含数的值,其值等于1/cosxcscx 余割函数的值,其值等于1/sinxasinx y,正弦函数反函数在x处的值,即x=sinyacosx y,余弦函数反函数在x处的值,即x=cosyatanx y,正切函数反函数在x处的值,即x=tanyacotx y,余切函数反函数在x处的值,即x=cotyasecx y,正割函数反函数在x处的值,即x=secyacscx y,余割函数反函数在x处的值,即x=cscyθ角度的一个标准符号,不注明均指弧度,尤其用于表示atanx/y,当x、y、z用于表示空间中的点时i,j,k 分别表示x、y、z方向上的单位向量(a,b,c) 以a、b、c为元素的向量(a,b) 以a、b为元素的向量(a,b) a、b向量的点积a?b a、b向量的点积(a?b) a、b向量的点积|v| 向量v的模|x| 数x的绝对值Σ表示求和,通常是某项指数。

高等数学中符号的读法及功能(挺全的)

高等数学中符号的读法及功能(挺全的)

⾼等数学中符号的读法及功能(挺全的)⼤写⼩写英⽂注⾳国际⾳标注⾳中⽂注⾳Ααalpha alfa 阿⽿法Ββbeta beta 贝塔Γγgamma gamma 伽马Γδdeta delta 德⽿塔Δεepsilon epsilon 艾普西隆Εδzeta zeta 截塔Ζεeta eta 艾塔Θζtheta ζita西塔Ηηiota iota 约塔Κθkappa kappa 卡帕∧ιlambda lambda 兰姆达Μκmu miu 缪Νλnu niu 纽Ξµxi ksi 可塞Ονomicron omikron 奥密可戎∏πpi pai 派Ρξrho rou 柔∑ζsigma sigma 西格马Τηtau tau 套Υυupsilon jupsilon ⾐普西隆Φθphi fai 斐Φχchi khai 喜Χψpsi psai 普西Ψωomega omiga 欧⽶伽符号表符号含义i -1的平⽅根f(x) 函数f在⾃变量x处的值sin(x) 在⾃变量x处的正弦函数值exp(x) 在⾃变量x处的指数函数值,常被写作exa^x a的x次⽅;有理数x由反函数定义ln x exp x 的反函数ax 同a^xlogba 以b为底a的对数;blogba = acos x 在⾃变量x处余弦函数的值tan x 其值等于sin x/cos xcot x 余切函数的值或cos x/sin xsec x 正割含数的值,其值等于1/cos xcsc x 余割函数的值,其值等于1/sin xasin x y,正弦函数反函数在x处的值,即x = sin y acos x y,余弦函数反函数在x处的值,即x = cos y atan x y,正切函数反函数在x处的值,即x = tan y acot x y,余切函数反函数在x处的值,即x = cot y asec x y,正割函数反函数在x处的值,即x = sec y acsc x y,余割函数反函数在x处的值,即x = csc yζ⾓度的⼀个标准符号,不注明均指弧度,尤其⽤于表⽰atan x/y,当x、y、z⽤于表⽰空间中的点时i, j, k 分别表⽰x、y、z⽅向上的单位向量(a, b, c) 以a、b、c为元素的向量(a, b) 以a、b为元素的向量(a, b) a、b向量的点积a?b a、b向量的点积(a?b) a、b向量的点积|v| 向量v的模|x| 数x的绝对值Σ表⽰求和,通常是某项指数。

高数数学符号的读法

高数数学符号的读法

高数数学符号的读法一、运算符号1. “+”加号,可读作“加上”。

2. “-”减号,可读作“减”。

3. “×”乘号,可读作“乘”或“乘以”。

4. “÷”除号,可读作“除以”。

5. “=”等于号,可读作“等于”,另外,较大量的等于可以用“囿于篇幅原因,此处省略XXX 个字”代替。

6. “>”大于号,可读作“大于”。

7. “<”小于号,可读作“小于”。

8. “≥”大于或等于号,可读作“大于或等于”。

9. “≤”小于或等于号,可读作“小于或等于”。

10. “≠”不等于号,可读作“不等于”。

二、代数符号1. “n”表示正整数集。

2. “N+”表示正整数集内的所有正数。

3. “N”表示所有自然数。

4. “Z”表示整数集。

5. “Q”表示有理数集。

6. “R”表示实数集。

7. “0”表示零或常数。

8. “+”右上角小数字,代表幂,比如“x2”可读作“x的平方”。

9. “i”表示虚数单位。

10. “∞”表示无穷大。

三、函数符号1. “f(x)”,表示函数名,读作“f 括号x”,其中x为自变量。

2. “sin(x)”,正弦函数,读作“正弦括号x”。

3. “cos(x)”,余弦函数,读作“余弦括号x”。

4. “tan(x)”,正切函数,读作“正切括号x”。

5. “ln(x)”,自然对数函数,读作“自然对数括号x”。

6. “log(x)”,对数函数,读作“对数括号x”。

7. “π”,圆周率,读作“派”。

8. “e”,自然对数的底数,读作“e”。

9. “ρ”,总体密度函数的泊松分布参数,读作“rho”。

10. “σ”,标准差或均方差的正态分布参数,读作“sigma”。

四、集合符号1. “A”,“B”,“C”等大写字母表示集合。

例如,“A={1,2,3}”可以读作集合A包含元素1,2,3。

2. “a”,“b”,“c”等小写字母表示元素。

例如,“a∈A”可以读作元素a属于集合A。

3. “∈”表示集合的并运算。

常用数学符号读法大全以及主要数学符号含义

常用数学符号读法大全以及主要数学符号含义

高等数学常用数学符号读法大全以及主要数学符号含义-转载大写小写英文注音国际音标注音中文注音Α α alpha alfa阿耳法Β β beta beta贝塔Γ γ gamma gamma伽马Γ δ deta delta德耳塔Δ ε epsilon epsilon艾普西隆Ε δ zeta zeta截塔Ζ ε eta eta艾塔Θ ζ theta ζita西塔Η η iota iota约塔Κ θ kappa kappa卡帕∧ι lambda lambda兰姆达Μ κmu miu缪Ν λ nu niu纽Ξ μ xi ksi可塞Ο ν omicro n omikron奥密可戎∏ π pi pai派Ρ ξ rho rou柔∑ ζ sigma sigma西格马Τ η tau tau套Υ υ upsilon jupsilon衣普西隆Φ θ phi fai斐Φ χ chi khai喜Χ ψ psi psai普西Ψ ω omega omiga欧米伽数学符号:(1)数量符号:如:i,2+i,a,x,自然对数底e,圆周率π。

(2)运算符号:如加号(+),减号(-),乘号(×或·),除号(÷或/),两个集合的并集(∪),交集(∩),根号(√),对数(log,lg,ln),比(:),微分(dx),积分(∫)等。

(3)关系符号:如“=”是等号,“≈”是近似符号,“≠”是不等号,“>”是大于符号,“<”是小于符号,“→ ”表示变量变化的趋势,“∽”是相似符号,“≌”是全等号,“∥”是平行符号,“⊥”是垂直符号,“∝”是反比例符号,“∈”是属于符号,“C”或“C下面加一横”是“包含”符号等。

(4)结合符号:如圆括号“()”方括号“[]”,花括号“{}”括线“—”(5)性质符号:如正号“+”,负号“-”,绝对值符号“‖”(6)省略符号:如三角形(△),正弦(sin),余弦(cos),x的函数(f(x)),极限(lim),因为(∵),所以(∴),总和(∑),连乘(∏),从n个元素中每次取出r个元素所有不同的组合数(C(r)(n) ),幂(A,Ac,Aq,x^n),阶乘(!)等。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高等数学所有符号的写法与读法
 ̄hyphen 连字符
' apostrophe 省略号;所有格符号
— dash 破折号
‘’single quotation marks 单引号“”double quotation marks 双引号( ) parentheses 圆括号
[ ] square brackets 方括号
Angle bracket
{} Brace
《》French quotes 法文引号;书名号... ellipsis 省略号
¨ tandem colon 双点号
" ditto 同上
‖ parallel 双线号
/virgule 斜线号
&ampersand = and
~swung dash 代字号
§ section; division 分节号
→ arrow 箭号;参见号
+plus 加号;正号
-minus 减号;负号
± plus or minus 正负号
× is multiplied by 乘号
÷ is divided by 除号
=is equal to 等于号
≠ is not equal to 不等于号
≡ is equivalent to 全等于号
≌ is equal to or approximately equal to 等于或约等于号≈ is approximately equal to 约等于号
<is less than 小于号
>is more than 大于号
≮ is not less than 不小于号
≯ is not more than 不大于号
≤ is less than or equal to 小于或等于号
≥ is more than or equal to 大于或等于号
%per cent 百分之…
‰ per mill 千分之…
∞ infinity 无限大号
∝ varies as 与…成比例
√ (square) root 平方根
∵ since; because 因为
∴ hence 所以
∷ equals, as (proportion) 等于,成比例∠ angle 角
⌒ semicircle 半圆
⊙ circle 圆
○ circumference 圆周
π pi 圆周率
△ triangle 三角形
⊥ perpendicular to 垂直于
∪ union of 并,合集
∩ intersection of 交,通集
∫ the integral of …的积分
∑ (sigma) summation of 总和
° degree 度
′ minute 分
〃second 秒
#number …号
℃ Celsius system 摄氏度
@at 单价
x'是x prime(比如转置矩阵)
x"是x double-prime
常用数学符号读法大全以及主要数学符号含义-转载
数学符号:
(1)数量符号:如:i,2+i,a,x,自然对数底e,圆周率π。

(2)运算符号:如加号(+),减号(-),乘号(×或·),除号(÷或/),两个集合的并集(∪),交集(∩),根号(√),对数(log,lg,ln),比(:),微分(dx),积分(∫)等。

(3)关系符号:如“=”是等号,“≈”是近似符号,“≠”是不等号,“>”是大于符号,“<”是小于符号,“→”表示变量变化的趋势,“∽”是相似符号,“≌”是全等号,“∥”是平行符号,“⊥”是垂直符号,“∝”是反比例符号,“∈”是属于符号,“C”或“C下面加一横”是“包含”符号等。

(4)结合符号:如圆括号“()”方括号“[]”,花括号“{}”括线“—”(5)性质符号:如正号“+”,负号“-”,绝对值符号“‖”
(6)省略符号:如三角形(△),正弦(sin),余弦(cos),x的函数(f(x)),极限(lim),因为(∵),所以(∴),总和(∑),连乘(∏),从n个元素中每次取出r
个元素所有不同的组合数(C(r)(n) ),幂(A,Ac,Aq,x^n),阶乘(!)等。

数学符号的意义
符号意义
∞无穷大
π圆周率
|x|绝对值
∪并集
∩交集
≥大于等于
≤小于等于
≡恒等于或同余
ln(x)以e为底的对数
lg(x)以10为底的对数
floor(x)上取整函数
ceil(x)下取整函数
x mod y求余数
x - floor(x) 小数部分
∫f(x)dx不定积分
∫[a:b]f(x)dx a到b的定积分
数学符号的应用
P为真等于1否则等于0
∑[1≤k≤n]f(k) 对n进行求和,可以拓广至很多情况如:∑[n is prime][n < 10]f(n)
∑∑[1≤i≤j≤n]n^2
lim f(x) (x->?) 求极限
f(z) f关于z的m阶导函数
C(n:m) 组合数,n中取m
P(n:m) 排列数
m|n m整除n
m⊥n m与n互质
a ∈ A a属于集合A
#A 集合A中的元素个数
[
P为真等于1否则等于0
∑[1≤k≤n]f(k) 对n进行求和,可以拓广至很多情况如:∑[n is prime][n < 10]f(n)
∑∑[1≤i≤j≤n]n^2
lim f(x) (x->?) 求极限
f(z) f关于z的m阶导函数C(n:m) 组合数,n中取m P(n:m) 排列数
m|n m整除n
m⊥n m与n互质
a ∈ A a属于集合A
#A 集合A中的元素个数∞无穷大
π圆周率
|x| 绝对值
∪并集
∩交集
≥大于等于
≤小于等于
≡恒等于或同余
ln(x) 以e为底的对数
lg(x) 以10为底的对数floor(x) 上取整函数
ceil(x) 下取整函数
x mod y 求余数
x - floor(x) 小数部分
∫f(x)dx 不定积分
∫[a:b]f(x)dx a到b的定积分
>>远远大于号
<<远远小于号
⊆包括
⊙圆
φ直径
β贝塔
读音
Αα alpha alfa 阿耳法
Ββ beta beta 贝塔
Γγ gamma gamma 伽马
Δδ deta delta 德耳塔
大写Δ在数学和科学,表示变量的变化Εε epsilon epsilon 艾普西隆
Ζζ zeta zeta 截塔
Ηη eta eta 艾塔
Θθ theta θita 西塔
Ιι iota iota 约塔
Κκ kappa kappa 卡帕
∧λ lambda lambda 兰姆达
Μμ mu miu 缪
Νν nu niu 纽
Ξξ xi ksi 可塞
Οο omicron omikron 奥密可戎∏π pi pai 派
Ρρ rho rou 柔
∑σ sigma sigma 西格马
Ττ tau tau 套
Υυ upsilon jupsilon 衣普西隆Φφ phi fai 斐
Χχ chi khai 喜
Ψψ psi psai 普西
Ωω omega omiga 欧米伽。

相关文档
最新文档