海水海洋大气腐蚀特点及防腐
盐雾试验标准
盐雾试验标准对灯饰产品表面防腐能力的判定分析一、概论灯饰产品有一些材料的耐腐蚀性较差,尤其是室外灯具的工作环境比较差,灯具的装饰性使得其表面要求极其重要。
需要采用一定防腐保护措施才能满足顾客对产品质量的需要。
因此对灯具产品及其材料的耐大气和环境气候的抗腐蚀性试验或模拟试验成了是本行业关心的问题。
我在这方面作了一些工作和研究,在此将盐雾试验的方法或标准对灯装饰产品表面防腐蚀能力的判断分析作个总结,以供设计选材和表面防护处理作参考。
二、腐蚀机理灯饰产品的工作环境为大气和室内环境,条件恶劣的在海洋气候或海底。
大气腐蚀分干大气腐蚀;潮大气腐蚀;湿大气腐蚀三类。
1,大气腐蚀的特点大气腐蚀的特点是金属表面处于薄层电解液下的腐蚀过程,其腐蚀机理符合电化学腐蚀规律:当金属表面形成连续的电解液薄层时,大气腐蚀的阴极过程为:O2+2H2O+4e→4OH-阳极过程为:Me- ne→Me n+ ;当Fe、Zn全部浸入还原性酸液:阴极为氢去极化;在城市污染大气形成的酸性水膜下:阴极为氧去极化腐蚀.在薄层液膜下:氧易达到金属表面生成氧化膜,阳极钝态,阳极极化;液膜增厚(湿大气)氧达到金属表面要有个扩散过程,因此腐蚀受控减缓。
锈蚀机理:大气腐蚀之锈层处于潮湿条件下,锈层起强氧化剂作用,锈层内阳极发生在金属的Fe3O4界面上:Fe-2e→Fe2+;阴极发生在Fe3O4和FeOOH界面上:6FeOOH+2e→2Fe3O4+2H2O+2OH-,锈层参与了阴极过程。
在工业大气下,SO2、NO2、H2S和NH3等都增加大气腐蚀作用。
当湿度大于70%时,水膜形成,发生电化学腐蚀,腐蚀速度急剧增加;当湿度过小于70%湿度时,二氧化硫的电化学腐蚀速度很小。
尤其是铁、锌、镉、镍不耐硫酸的金属,在大气中极容易腐蚀。
一般认为SO2的腐蚀机理是硫酸盐穴自催化过程。
一旦锈层生成硫酸盐,锈层便无保护能力。
所以碳钢在室外大气条件下必须进行保护,方法有防锈漆、镀Zn、AI等或加入耐大气腐蚀之合金元素,如Cu、P等使锈层具有很好的保护作用。
海水腐蚀
认为是氧浓差电池引起潮差区钢样受阴极 保护。
在全浸区中部(约第8-9段),该区域腐蚀比较严 重,而且随深度加深,腐蚀加大,表明该区域为 阳极区。 这是为什么呢? 查阅文献显示,吃水线区试样的锈层结构与全浸 区不同,不同的锈层结构导致了腐蚀电位的差异,因 而使吃水线区的电位比全浸区高,电位差形成了电 偶电流的驱动力,使吃水线区得到了阴极保护 ,而 全浸区中部成为阳极发生加速腐蚀。
实验结果讨论
在大气区(14段及其上部分),金属虽然和 大气接触,但是该处金属表面平均湿度很 小,因此该区域在电化学腐蚀中扮演的角 色是阴极,故该处腐蚀较小。
对于飞溅区(约11-13段),其处于活跃带, 即有间歇性的风也有海浪的活动。该区域 大部分时间处于湿润状态,表层只有一层 很薄的水分,这样该区域氧充足,在电化 学反应中相对于大气区属于阳极,因而发 生严重的腐蚀。
(2)对锈蚀的表面和质量损失剖面图的观 察表明,吃水线以上的腐蚀机理是氧分压 差,与经典的描述浸泡区的局部腐蚀机理 相符。然而,飞溅区和浸泡阳极区的点蚀 图有很大区别。
海水腐蚀区带环境条件
海水全浸区:
① 浅海区:海水通常为氧饱和,海生物污损、 海水流速、水温、污染等都有可能起重要作 用 ② 大陆架区:无植物污损,动物污损也大大减 少。氧含量有所降低,水温也较低 ③ 深海区:氧含量不一,温度接近0℃,海水流 速低,pH值比表层低。 海泥区:往往存在细菌,如硫酸盐还原菌。海 底沉积物的特征和形状不同。
实验部分
钢条标记为A-G,浸入到海水的深度分别为 0.3m,0.4m,0.5m,„„,0.9m。钢条上半部分暴露 在空气中。钢条经过冷轧处理。经过12个月,钢条 被带回实验室,清除表面蓬松的锈,每一段都被切 成100mm长的条状并按顺序编号,并按照ASTM G32004标准清洗,并测量其质量。
船舶腐蚀原因及防腐措施分析
船舶腐蚀原因及防腐措施分析船舶腐蚀是指船舶在使用过程中由于受到自然环境、化学物质等因素的影响而导致船体或船舶设备表面出现腐蚀现象。
船舶作为重要的海上运输工具,其安全性和使用寿命直接关系到航运业的发展和人民生活的质量。
对船舶腐蚀原因及防腐措施进行深入分析,对船舶安全和使用寿命的保障具有重要意义。
一、船舶腐蚀的原因1. 海水腐蚀海水中含有大量氯化钠等盐类,这些盐类会在船舶表面形成腐蚀性的介质,加速船舶金属材料的腐蚀过程。
海水中的氯离子是引起金属腐蚀最主要的因素之一,特别是在气候潮湿的海域。
2. 大气腐蚀船舶在航行中会受到大气中的氧气、水蒸气和其他气体的腐蚀影响,特别是在潮湿、多雨、多雾的环境中,船舶的金属表面更容易被腐蚀。
3. 电化学腐蚀船舶金属结构在海水中存在电化学反应,而产生腐蚀。
由于船舶金属结构通常会接触海水,因而船舶金属结构表面容易产生电化学腐蚀,加速金属材料的腐蚀速度。
4. 微生物腐蚀海水中存在大量的微生物,这些微生物通过附着在船舶金属表面,生长繁殖并分泌酸性物质,对船舶金属结构起到了腐蚀作用。
微生物腐蚀主要出现在船舶的水线以下处,对船舶的腐蚀程度常常超出人们的意料。
5. 化学品腐蚀在船舶的运输和装卸过程中,还会受到化学品的腐蚀。
船舶承载的化学品会对船舶的货舱、舱壁等部位造成腐蚀,并加速船舶的老化。
二、船舶腐蚀的防腐措施1. 选用耐腐蚀性能好的材料船舶在设计和建造过程中,应该选用耐腐蚀性能好的材料,例如不锈钢和合金材料等,以提高船舶的抗腐蚀能力。
2. 表面处理船舶的金属表面应进行防腐处理,如喷涂防锈漆、热浸镀锌、电镀镍等措施,以降低船舶金属表面受到海水、空气等腐蚀介质的侵蚀程度。
3. 防腐保护系统船舶建造时应设计合理的防腐保护系统,例如在船体表面覆盖防腐蚀漆、使用防腐蚀涂料、安装防腐蚀陶瓷等,形成保护层,延长船舶的使用寿命。
4. 海水防腐船舶在浸泡在海水中的时间较长,因此要对船舶的海水部位进行特殊的防腐处理,包括船舶底部的防腐蚀漆涂层,以及使用防腐蚀剂等措施。
海水淡化设备的材料选择及防腐
海水淡化设备的材料选择及防腐在海水淡化过程中,要用到很多材料,常用的壳体、换热材料有碳钢、不锈钢、钛管、铜管、铝管。
下边就这几种材料在海水中的腐蚀做一个简单的介绍,并指出一些相应的防腐措施。
1、铸铁在海水中的腐蚀铸铁在海水中的腐蚀类型为石墨腐蚀。
即铸铁表面的铁腐蚀,留下不腐蚀的石墨和腐蚀产物,腐蚀后保持原来的外形和尺寸,但失去了重量和强度。
除去石墨和腐蚀产物,呈不均匀全面腐蚀。
灰口铸铁HT200在海水中暴露1年的腐蚀率为0.16mm/a,平均点蚀深度、最大点蚀深度分别为0.27mm、0.45mm。
灰口铸铁在海水中的腐蚀速度随暴露时间下降,HT200在海水暴露0.5年的腐蚀率为0.19mm/a,暴露1.5年的腐蚀率为0.14mm/a。
普通铸铁在海水中的腐蚀速度与碳钢接近。
碳钢在青岛小麦岛海区暴露1年的典型腐蚀率为:全浸区0.18mm/a,海洋大气区0.06mm/a。
灰口铸铁在流动海水中的腐蚀速度随海水流速的增大而增大, HT200在3m/s的海水中试验164h的腐蚀率为1.0mm/a;在7和11m/s的海水中试验40h,腐蚀率为7.82和9.33mm/a。
灰口铸铁在流速为5、10和15m/s的海水中试验30天的腐蚀率分别为1.8、2.7和3.6mm/a,它与碳钢在流动海水中的腐蚀速度接近。
(1)普通铸铁在天然海水及流动海水中的腐蚀速度与碳钢接近。
(2)低合金铸铁在海水中的腐蚀行为与普通铸铁的腐蚀行为相似。
CrSbCu铸铁在海水中的腐蚀比普通铸铁轻。
添加Ni、Ni-Cr、Ni-Cr-Mo、Ni-Cr-Cu、Ni-Cr-Re、Cu-Sn-Re、Cu-Cr、Cu-Al等的低合金铸铁在海水中的腐蚀速度与普通铸铁无明显差别。
加入少量Ni、Cr、Mo、Cu、Sn、Sb、Re等元素可减小铸铁海洋大气区的腐蚀速度。
(3)高镍铸铁在天然海水及流动海水中的腐蚀均较轻。
高镍铸铁在海水中暴露1.5年的腐蚀率大约是普通铸铁的1/3,它们在海水中暴露1.5年的最大点蚀深度小于0.20mm。
船舶腐蚀原因及防腐措施分析
船舶腐蚀原因及防腐措施分析
船舶腐蚀是指船舶结构部件受到各种外界环境因素作用下,发生表面金属材料物质的损失和结构破坏的现象。
船舶腐蚀的主要原因有以下几个方面:
1.海水腐蚀:海水中含有大量的氯离子和溶解性氧,这些物质会与金属结构发生电化学反应,导致金属腐蚀。
海水中的微生物和海洋生物也会对金属结构产生腐蚀作用。
2.大气腐蚀:船舶在大气环境中暴露,不断受到大气中的氧、水蒸气、二氧化硫、酸雨等化学物质的侵蚀,从而引起金属表面的腐蚀。
3.电化学腐蚀:船舶结构中不同金属材料之间的电位差异会产生电流,在浸泡在电解质中的金属表面形成阳极和阴极,从而引起电化学腐蚀。
为了防止船舶腐蚀,可以采取以下一些防腐措施:
1.防护涂料:通过在金属表面涂覆防护涂料,形成一层保护膜,可以阻止氧气和水分进入金属表面,减少腐蚀的发生。
2.电位保护:通过在金属结构上加装阴极保护设备,使金属结构成为阴极,从而牺牲阴极以保护金属结构不被腐蚀。
3.合理设计:在船舶结构的设计中,应合理选择材料和结构形式,避免或减少不同金属材料之间的电位差,从而减少电化学腐蚀的发生。
4.定期检测和维护:船舶应定期进行腐蚀检测和维护,及时修复受损的防腐层和金属结构,避免腐蚀进一步扩大。
5.使用防腐材料:在船舶建造和维修过程中,应选择具有良好耐腐蚀性能的材料,如不锈钢、铝合金等,以提高船舶的抗腐蚀能力。
船舶腐蚀是一个常见的问题,需要采取一系列的防腐措施,从材料选择到定期检测和维护,都能有效减少船舶腐蚀的发生,延长船舶的使用寿命。
腐蚀环境种类
环境种类大气腐蚀环境1.农村大气农村大气是最洁净的大气,空气中不含强烈的化学污染,主要含有有机物和无机物尘埃等。
影响腐蚀的因素主要是相对湿度、温度和温差.2.城市大气城市大气的主要污染物主要是城市居民生活所造成的大气污染,如汽车尾气、锅炉排放的SO2等。
实际上,很多大城市往往也是工业城市,或者是海滨城市,所以大气环境污染的相当复杂。
3.工业生产区大气工业生产区所排放的污染物含有大量的SO2、H2S等含硫化合物,所以工业大气环境最大的特征是含有硫化物。
他们易溶于水,形成的水膜成为强腐蚀介质,加速金属的腐蚀。
随着大气相对湿度和温差的变化,这种腐蚀作用更强。
很多石化企业和钢铁企业往往非常大,可以形成一个中等城市规模,大气质量相当差,对工业设备和居民生活造成的污染极其严重。
4.海洋大气其特点是空气湿度大,含盐分多。
暴露在海洋大气中的金属表面有细小盐粒子的沉降。
海盐粒子吸收空气中的水分后很容易在金属表面形成液膜,引起腐蚀。
在季节或昼夜变化气温达到露点是尤为明显。
同时尘埃、微生物在金属表面的沉积,会增强环境的腐蚀性。
所以海洋大气对金属结构的腐蚀性比内陆大气,包括乡村大气和城市大气要严重的多.海洋的风浪条件、离海面的高度等都会影响到海洋大气腐蚀性。
风浪大时,大气中的水分含盐量高,腐蚀性增加。
据研究,离海平面7~8m处的腐蚀最强,在此之上越高腐蚀性越弱。
雨量的大小也会影响腐蚀,频繁的降雨会冲刷掉金属表面的沉积物,腐蚀会减轻。
相对湿度升高会使海洋大气腐蚀加剧。
一般热带腐蚀性最强,温带次之,两级最弱。
中国最典型的处于海洋腐蚀环境中的是杭州湾跨海大桥,地处亚热带海洋性季风气候。
5.处于海滨的工业大气环境,属于海洋性工业大气,这种大气中既含有化学腐蚀污染的有害物质,又含有海洋环境的海盐粒子。
2种腐蚀介质的相互作用对混凝土的危害更大。
淡水腐蚀环境混凝土碳化模型国内外学者提出了许多混凝土碳化深度预测模型,这些模型大致可分为两类:一类是基于试验数据或实际结构的碳化深度实测值,采用数学统计或神经网络等方法拟合得到的经验模型;另一类为基于碳化反应过程的定量分析建立的理论模型。
海洋平台的腐蚀及防腐技术
腐蚀原理
海洋平台腐蚀的主要原因是电化 学、化学反应和生物侵蚀等。
电化学腐蚀是由于海洋平台结构材料与海水、海洋生物等接触,形成原电池反 应,导致金属腐蚀。这种腐蚀在海洋平台中最为普遍,严重时可能导致平台结 构削弱。
化学反应腐蚀主要是由于海洋平台结构材料与海水、盐分等化学物质发生反应, 导致腐蚀。例如,钢铁材质的海洋平台在海水中会发生氧化反应,形成铁锈, 导致结构材料的腐蚀。
挑战与机遇
当前,微生物腐蚀及防腐技术的研究仍面临着一系列的挑战。首先,微生物腐 蚀的机制尚不完全清楚,需要进一步深入研究;其次,现有防腐技术的效果还 需要进一步提高,以满足更为严苛的防腐要求;此外,新型防腐技也带来了诸多机遇。随着环境保护意识的 提高和绿色可持续发展的要求,对于环保型防腐技术的需求不断增加。例如, 生物防腐剂和生物防护技术的发展前景十分广阔。此外,随着材料科学和纳米 技术的快速发展,新型防腐材料的研发和应用也将为微生物腐蚀及防腐技术的 发展带来新的机遇。
2、化学方法
化学方法主要包括使用缓蚀剂和杀菌剂。缓蚀剂是一种能够减缓金属腐蚀的物 质,如亚硝酸盐、铬酸盐等。杀菌剂则用于消灭海洋生物,防止生物污损引起 的腐蚀。然而,这些化学物质有可能对海洋生态系统造成负面影响,因此需要 慎重使用。
3、生物方法
生物方法主要利用某些生物的耐腐蚀特性,如海藻、珊瑚等,以降低海水的腐 蚀性。此外,生物污损也可以形成保护层,提高金属的耐腐蚀性能。生物方法 具有环保性和长效性,但需要充分考虑生物生态平衡以及不同生物对不同材料 的适应性。
未来展望
随着科技的不断进步,海洋环境腐蚀控制技术将迎来更多的发展机遇。新型材 料和涂层技术的研发将为海洋腐蚀控制提供更多选择。此外,智能防腐技术也 将成为未来的研究热点,包括智能涂层、自修复材料等。同时,随着海洋工程 的发展,针对深海和极地等特殊环境的腐蚀控制技术也将得到进一步研究和发 展。
铝的腐蚀性能及海洋大气环境中铝的腐蚀特性
铝的腐蚀性能及海洋大气环境中铝的腐蚀特性1、铝的耐氧腐蚀性能铝是一种活泼金属,极容易和空气中的氧气起化应生成氧化铝。
氧化铝在铝制器皿表面结一层灰色致密的极薄的(约十万分之一厘米厚)薄膜,这层薄膜十分坚固,它能使里力的金属和外界完全隔开。
从而保护内部的铝不再受空气中氧气的侵蚀。
2、铝的酸碱腐蚀铝和氧化铝薄膜都能和许多酸性或碱性物质起化学反应,一旦氧化铝薄膜被碱性溶液或酸性溶液溶解掉,则内部铝就要和碱性或酸性溶液起反应而渐渐被侵蚀掉。
3、铝的腐蚀形式(1)点腐蚀:点腐蚀又称为孔腐蚀,是在金属上产生针尖状、点状、孔状的一种为局部的腐蚀形态。
点腐蚀是阳极反应的一种独特形式,是一种自催化过程,即点腐蚀孔内的腐蚀过程造成的条件,如有腐蚀介质(CL-、F-等)、促进反应的物质(CU2+、ZN2+等),既促进又足以维持腐蚀的继续进行。
(2)均匀腐蚀:铝在磷酸与氢氧化钠等溶液中,其上的氧化膜溶解,发生均匀腐蚀,溶解速度也是均匀的。
溶液温度升高,溶液浓度增大,促进铝的腐蚀。
(3)缝隙腐蚀:缝隙腐蚀是一种局部腐蚀。
金属部件在电解溶液中,由于金属与金属或金属与非金属之间形成缝隙,其宽度足以使介质浸入而又使介质处于一种停滞状态,使得缝隙内部腐蚀加剧的现象称为缝隙腐蚀。
缝隙腐蚀特别容易发生在机械组件接合的地方,例如金属垫圈或是铆接处和铝门窗与灰浆填隙处。
它是属于一种电池效应,但是缝隙一般需在特定程度大小的范围内才会发生,例如:有足够的宽度可使溶液进入,足够窄得使溶液可以停滞等,所以在应用或工程上必须要小心,避免发生足以产生缝隙腐蚀的环境。
缝隙腐蚀的机构很类似穿孔腐蚀的情况,首先是均匀腐蚀,然后因氧浓淡电池会引起阳极反应(缺氧区)和阴极反应(富氧区),由于间隙内氧无法补充,因此阳极反应会继续在同一个位置进行,因此产生严重的腐蚀结果。
(4)晶间腐蚀:是在金属界处发生局部腐蚀的现象。
就电化学的观点来看,由于材料的晶粒为阴极,而晶界一般为阳极,因此在均匀腐蚀的情况下,晶界处的腐蚀性仍稍大于晶粒处,如果在特殊情况下,材料的晶界抗蚀元素又相对减少,晶间腐蚀的现象就会发生。
完整版海水腐蚀情况讲解
海水腐蚀情况海水腐蚀的原因浸入海水中的金属,表面会出现稳定的电极电势。
由于金属有晶界存在,物理性质不均一;实际的金属材料总含有些杂质,化学性质也不均一;加上海水中溶解氧的浓度和海水的温度等,可能分布不均匀,因此金属表面上各部位的电势不同,形成了局部的腐蚀电池或微电池。
其中电势较高的部位为阴极,较低的为阳极。
电势较高的金属,例如铁,腐蚀时阳极进行铁的氧化;电势较低的金属,例如镁,被海水腐蚀时,镁作为阳极而被溶解,阴极处释放出氢。
当电势不同的两种金属在海水中接触时,也形成腐蚀电池,发生接触腐蚀。
例如锌和铁在海水中接触时,因锌的电势较低,腐蚀加快;铁的电势较高,腐蚀变慢,甚至停止。
海洋环境对腐蚀的影响盐度海水含盐量较高,水中的含盐量直接影响水的电导率和含氧量,随着水中含盐量的增加,水的电导率增加但含氧量却降低。
海水中的盐度并不和NaCI 的行为相一致,这是因为其中所含的钙离子和镁离子,能够在金属表面析出碳酸钙和氢氧化镁的沉淀,对金属有一定的保护作用。
河口区海水的盐度低,钙和镁的含量较小,金属的腐蚀性增加。
海水中的氯离子能破坏金属表面的氧化膜,并能与金属离子形成络合物,后者在水解时产生氢离子,使海水的酸度增大,使金属的局部腐蚀加强。
电导率海水中不仅含盐量高,而且其中的盐类几乎全部处于电离状态,这使得海水成为一种导电性良好的电解质。
这就决定了海水腐蚀过程中,不仅微观电池腐蚀的活性大,同时宏观电池的活性也大。
研究表明:随着电导率的增大,微观电池腐蚀和宏观电池腐蚀都将加速。
溶解氧海水溶解氧的含量越多,金属在海水中的电极电位越高,金属的腐蚀速度越快。
但对于铝和不锈钢一类金属,当其被氧化时,表面形成一薄层氧化膜,保护金属不再被腐蚀,即保持了钝态。
此外,在没有溶解氧的海水中,铜和铁几乎不受腐蚀。
(常压下氧在海水中的溶解度如下)(表一)酸碱度一般来说,海水的pH升高,有利于抑制海水对钢铁的腐蚀。
但是海水pH远没有含氧量对付腐蚀的影响大,尽管表层海水pH比深层海水高,但由于表层海水中的植物光合作用,含氧量远比深处海水高,所以表层海水的腐蚀性远比深层海水要强,这与实际的实验结论是一致的。
海水 海洋大气腐蚀特点及防腐
海水、海洋大气中的金属腐蚀1、海水水质的主要特点含盐量高,盐度一般在35g/L左右;腐蚀性大;海水中动、植物多;海水中各种离子组成比例比较稳。
pH变化小,海水表层pH在8.1~8.3范围内,而在深层pH则为7.8左右。
2、海水腐蚀的特点海水腐蚀为电化学腐蚀;海水腐蚀的阳极极化阻滞对大多数金属(铁、钢、铸铁、锌等)都很小,因而腐蚀速度相当大;海水氯离子含量很高,Cl-破坏钝化膜,因此大多数金属在海水中不能建立钝态,在海水中由于钝化的局部破坏,很容易发生空隙和缝隙腐蚀等局部腐蚀。
不锈钢在海水中也遭到严重腐蚀;多数金属阴极过程为氧去极化作用,少数负电性很强金属(Mg)及合金腐蚀时发生阴极氢去极化作用;海水电导率很大,海水腐蚀电阻性阻滞很小,所以海水腐蚀中不仅腐蚀微电池的活性大,腐蚀宏电池的活性也很大。
海水的电阻率很小,因此异种金属接触能造成的显着的电偶腐蚀。
其作用强烈,作用范围大。
3、海水腐蚀的影响因素3.1盐类及浓度盐度是指100克海水中溶解的固体盐类物质的总克数。
一般在相通的海洋中总盐度和各种盐的相对比例并无明显改变,在公海的表层海水中,其盐度范围为3.20%~3.75%,这对一般金属的腐蚀无明显的差异。
但海水的盐度波动却直接影响到海水的比电导率,比电导率又是影响金属腐蚀速度的一个重要因素,同时因海水中含有大量的氯离子,破坏金属的钝化,所以很多金属在海水中遭到严重腐蚀。
盐类以Cl-为主,一方面:盐浓度的增加使得海水导电性增加,使海水腐蚀性很强;另一方面:盐浓度增大使溶解氧浓度下降,超过一定值时金属腐蚀速度下降。
3.2 pH值海水pH在7.2-8.6之间,为弱碱性,对腐蚀影响不大。
3.3碳酸盐饱和度在海水pH条件下,碳酸盐达到饱和,易沉积在金属表面形成保护层。
若未饱和,则不会形成保护层,使腐蚀速度增加。
3.4含氧量海水腐蚀是以阴极氧去极化控制为主的腐蚀过程。
海水中的含氧量是影响海水腐蚀性的重要因素。
海水海洋大气腐蚀特点及防腐
海水海洋大气腐蚀特点及防腐海水和海洋大气对金属的腐蚀是工程中常见的问题。
在以下1200字以上的文章中,我将介绍海水和海洋大气腐蚀的特点和常用的防腐措施。
首先,海水腐蚀的特点有以下几点。
第一,在海洋环境中,氯离子是最主要的腐蚀物质。
氯离子和金属中的阳离子反应生成金属氯化物,导致金属的腐蚀。
第二,海水中的溶解氧也能促进金属的腐蚀,尤其是在存在水分的情况下。
氧气与金属反应形成氧化物,使金属表面产生腐蚀。
第三,海水中的微生物和海藻可以加速金属腐蚀。
微生物和海藻通过产生酸性物质和吸附金属表面来腐蚀金属。
其次,海洋大气腐蚀的特点如下。
第一,海洋大气中含有大量的盐雾,盐雾中的氯离子和金属氧化物反应会导致金属的腐蚀。
第二,海洋大气中的湿度较高,会加速金属的腐蚀。
湿度高时金属表面的水分含量增加,氧气和水分反应形成氢氧化物,使金属表面发生腐蚀。
第三,海洋大气中的硫化物和氮氧化物也会加速金属的腐蚀。
为了保护金属材料免受海水和海洋大气的腐蚀,常用的防腐措施包括以下几种。
第一,使用防腐涂料。
防腐涂料具有良好的抗腐蚀性能,可以形成一层保护膜,隔绝金属与海水或海洋大气的接触,防止金属腐蚀。
第二,使用防蚀合金。
防蚀合金通过增加合金元素的含量来提高材料的抗腐蚀性能,减少金属的腐蚀速率。
第三,采用阴极保护。
阴极保护是通过在金属表面施加电流,使金属表面形成保护性的氧化膜,减缓金属的腐蚀。
此外,还可以采用其他措施来防止海水和海洋大气的腐蚀。
例如,加强金属的维护保养,及时清洗金属表面的污垢和盐结物;使用耐腐蚀材料,如不锈钢和镀锌钢等;提高金属的表面处理质量,如去除金属表面的氧化膜和锈蚀;使用软件控制技术,及时监测和预测金属腐蚀的发展趋势,采取相应的防腐措施。
综上所述,海水和海洋大气对金属的腐蚀是工程中需要重视的问题。
了解海水和海洋大气腐蚀的特点和采取适当的防腐措施是保护金属材料免受腐蚀的关键。
通过使用防腐涂料、防蚀合金、阴极保护等措施,结合加强维护保养和改进技术手段,可以有效地减少金属的腐蚀,延长金属的使用寿命。
我国海洋钢结构腐蚀现状及防护对策概述
我国海洋钢结构腐蚀现状及防护对策概述近年来,随着我国经济的快速发展和海洋资源的广泛开发利用,海洋钢结构作为重要的基础设施,扮演着越来越重要的角色。
然而,由于海洋环境的特殊性,海洋钢结构面临着严峻的腐蚀问题,给海洋工程的安全运行带来了巨大挑战。
本文将从我国海洋钢结构腐蚀的现状入手,综述海洋钢结构腐蚀的主要原因,并提出一些有效的防护对策。
第一部分:我国海洋钢结构腐蚀现状我国海洋钢结构腐蚀问题非常严重。
主要体现在以下几个方面:1. 海水中的氯离子腐蚀:由于我国沿海地区氯离子含量较高,海洋环境中的氯离子会与钢结构表面的氧化铁反应,形成可溶性氯化物,加速钢结构的腐蚀。
2. 海洋大气环境腐蚀:海洋中的盐雾和湿度都会加速钢结构的腐蚀。
特别是在海洋风力发电等项目中,钢结构暴露在海洋环境中的时间更长,腐蚀问题更为突出。
3. 微生物腐蚀:海洋环境中存在各种微生物,它们会附着在钢结构表面并产生酸性物质,对钢结构进行腐蚀。
第二部分:海洋钢结构腐蚀的防护对策针对海洋钢结构腐蚀问题,我们可以采取一系列的防护对策,以延长钢结构的使用寿命:1. 表面涂层防护:在钢结构表面涂覆一层防腐涂料,形成保护膜,阻隔钢结构与海洋环境的直接接触,减少腐蚀的发生。
常用的防腐涂料有环氧涂料、聚氨酯涂料等。
2. 电镀防护:通过电镀技术,在钢结构表面形成一层金属镀层,增加钢结构的抗腐蚀性能。
常用的电镀方法有镀锌、镀铝等。
3. 降低钢结构与海水的接触:可以通过增加隔离层、改变结构设计等方式,减少钢结构与海水的直接接触,从而减少腐蚀的发生。
4. 定期维护检修:定期对海洋钢结构进行检查和维护,及时修补防护层,清除腐蚀产物,保持钢结构的完整性和稳定性。
5. 使用耐腐蚀钢材:选择具有较高耐蚀性能的钢材作为海洋钢结构的材料,能够有效减少腐蚀的发生。
6. 增强防腐技术研发:加大对海洋钢结构防腐技术的研发力度,推动新型防腐材料和技术的应用,提高海洋钢结构的抗腐蚀性能。
(完整版)海水腐蚀情况讲解
海水腐蚀情况海水腐蚀的原因浸入海水中的金属,表面会出现稳定的电极电势。
由于金属有晶界存在,物理性质不均一;实际的金属材料总含有些杂质,化学性质也不均一;加上海水中溶解氧的浓度和海水的温度等,可能分布不均匀,因此金属表面上各部位的电势不同,形成了局部的腐蚀电池或微电池。
其中电势较高的部位为阴极,较低的为阳极。
电势较高的金属,例如铁,腐蚀时阳极进行铁的氧化;电势较低的金属,例如镁,被海水腐蚀时,镁作为阳极而被溶解,阴极处释放出氢。
当电势不同的两种金属在海水中接触时,也形成腐蚀电池,发生接触腐蚀。
例如锌和铁在海水中接触时,因锌的电势较低,腐蚀加快;铁的电势较高,腐蚀变慢,甚至停止。
海洋环境对腐蚀的影响盐度海水含盐量较高,水中的含盐量直接影响水的电导率和含氧量,随着水中含盐量的增加,水的电导率增加但含氧量却降低。
海水中的盐度并不和NaCl 的行为相一致,这是因为其中所含的钙离子和镁离子,能够在金属表面析出碳酸钙和氢氧化镁的沉淀,对金属有一定的保护作用。
河口区海水的盐度低,钙和镁的含量较小,金属的腐蚀性增加。
海水中的氯离子能破坏金属表面的氧化膜,并能与金属离子形成络合物,后者在水解时产生氢离子,使海水的酸度增大,使金属的局部腐蚀加强。
电导率海水中不仅含盐量高,而且其中的盐类几乎全部处于电离状态,这使得海水成为一种导电性良好的电解质。
这就决定了海水腐蚀过程中,不仅微观电池腐蚀的活性大,同时宏观电池的活性也大。
研究表明:随着电导率的增大,微观电池腐蚀和宏观电池腐蚀都将加速。
溶解氧海水溶解氧的含量越多,金属在海水中的电极电位越高,金属的腐蚀速度越快。
但对于铝和不锈钢一类金属,当其被氧化时,表面形成一薄层氧化膜,保护金属不再被腐蚀,即保持了钝态。
此外,在没有溶解氧的海水中,铜和铁几乎不受腐蚀。
(常压下氧在海水中的溶解度如下)(表一)酸碱度一般来说,海水的pH升高,有利于抑制海水对钢铁的腐蚀。
但是海水pH远没有含氧量对付腐蚀的影响大,尽管表层海水pH比深层海水高,但由于表层海水中的植物光合作用,含氧量远比深处海水高,所以表层海水的腐蚀性远比深层海水要强,这与实际的实验结论是一致的。
海洋平台的腐蚀及防腐技术
海洋平台的腐蚀及防腐技术化学化工学院装控131 杨哲 1304310125摘要:概括了海洋平台不同区域的腐蚀环境和腐蚀规律,对海洋平台重防腐涂料的选择要求及配套体系进行简要叙述。
针对海洋平台的长效防腐防护要求,介绍了几种具有长效的防腐材料和防腐技术特点,包括海洋平台热喷涂长效防腐蚀技术、锌加保护技术、海洋平台桩腿防腐套包缚技术等,为我国对海洋平台长效防腐防护技术的研究提供参考。
关键词:海洋平台;防腐;热喷涂;锌加技术;防腐套Abstract:This paper summarizes the corrosion environment and rules of the differentzones in offshore platforms, also briefly introduces the requirements and systems of the anticorrosion coating .According to the long-term anticorrosion requirements in offshore platforms, the paper introduces several long-term anticorrosion technology, including thermal spraying, adding zinc protection and anticorrosion technology with platform legs wrapped etc,which will provide some references to the research of the long-term anticorrosion technology in offshore platforms.Key words:Offshore platform;anticorrosion; Thermal spraying; Adding zinc technology; Anticorrosion wrap海洋平台是一种海上大型工程结构物。
海水、海洋大气腐蚀特点及防腐
海⽔、海洋⼤⽓腐蚀特点及防腐海⽔、海洋⼤⽓中的⾦属腐蚀1、海⽔⽔质的主要特点含盐量⾼,盐度⼀般在35g/L左右;腐蚀性⼤;海⽔中动、植物多;海⽔中各种离⼦组成⽐例⽐较稳。
pH变化⼩,海⽔表层pH 在8.1~8.3范围内,⽽在深层pH则为7.8左右。
2、海⽔腐蚀的特点海⽔腐蚀为电化学腐蚀;海⽔腐蚀的阳极极化阻滞对⼤多数⾦属(铁、钢、铸铁、锌等)都很⼩,因⽽腐蚀速度相当⼤;海⽔氯离⼦含量很⾼,Cl-破坏钝化膜,因此⼤多数⾦属在海⽔中不能建⽴钝态,在海⽔中由于钝化的局部破坏,很容易发⽣空隙和缝隙腐蚀等局部腐蚀。
不锈钢在海⽔中也遭到严重腐蚀;多数⾦属阴极过程为氧去极化作⽤,少数负电性很强⾦属(Mg)及合⾦腐蚀时发⽣阴极氢去极化作⽤;海⽔电导率很⼤,海⽔腐蚀电阻性阻滞很⼩,所以海⽔腐蚀中不仅腐蚀微电池的活性⼤,腐蚀宏电池的活性也很⼤。
海⽔的电阻率很⼩,因此异种⾦属接触能造成的显著的电偶腐蚀。
其作⽤强烈,作⽤范围⼤。
3、海⽔腐蚀的影响因素3.1盐类及浓度盐度是指100克海⽔中溶解的固体盐类物质的总克数。
⼀般在相通的海洋中总盐度和各种盐的相对⽐例并⽆明显改变,在公海的表层海⽔中,其盐度范围为3.20%~3.75%,这对⼀般⾦属的腐蚀⽆明显的差异。
但海⽔的盐度波动却直接影响到海⽔的⽐电导率,⽐电导率⼜是影响⾦属腐蚀速度的⼀个重要因素,同时因海⽔中含有⼤量的氯离⼦,破坏⾦属的钝化,所以很多⾦属在海⽔中遭到严重腐蚀。
盐类以Cl-为主,⼀⽅⾯:盐浓度的增加使得海⽔导电性增加,使海⽔腐蚀性很强;另⼀⽅⾯:盐浓度增⼤使溶解氧浓度下降,超过⼀定值时⾦属腐蚀速度下降。
3.2 pH值海⽔pH在7.2-8.6之间,为弱碱性,对腐蚀影响不⼤。
3.3碳酸盐饱和度在海⽔pH条件下,碳酸盐达到饱和,易沉积在⾦属表⾯形成保护层。
若未饱和,则不会形成保护层,使腐蚀速度增加。
3.4含氧量海⽔腐蚀是以阴极氧去极化控制为主的腐蚀过程。
海⽔中的含氧量是影响海⽔腐蚀性的重要因素。
船舶腐蚀原因及防腐措施分析
船舶腐蚀原因及防腐措施分析船舶腐蚀是指船体在海水、湿气和其他化学物质的作用下,表面金属逐渐丧失其原有的性能和功能,最终导致结构破坏的过程。
船舶腐蚀是船舶维护和管理工作中的一个重要问题,有关原因和防腐措施的分析对于延长船舶寿命和确保安全航行至关重要。
船舶腐蚀的原因主要包括以下几个方面:1. 海水腐蚀:海水中含有大量的盐分和含氧量高的气体,这些物质会与金属发生化学反应,从而导致腐蚀。
2. 电化学腐蚀:当不同金属相互接触,并且在湿气或海水环境下时,会形成电化学电池,引发电化学腐蚀。
3. 细菌腐蚀:海水中存在各种细菌,有些细菌会分解金属表面的氧化物并产生腐蚀物质,从而导致腐蚀。
4. 化学腐蚀:船舶常受到大气中的各种化学物质的侵蚀,如二氧化硫、氨气等,这些物质会使金属发生化学反应并腐蚀。
针对船舶腐蚀的原因,需要采取一系列的防腐措施来延缓或阻止腐蚀的发生。
1. 防止海水侵入:船舶的外部要进行防水处理,将金属与海水隔离开来,减少海水的侵蚀。
2. 防止电化学腐蚀:通过合理设计和选择金属材料,避免不同金属接触,减少电化学反应的发生。
3. 防止细菌腐蚀:船舶水箱和污水系统要进行定期清洗和消毒,控制细菌的滋生和繁殖。
4. 防止化学腐蚀:船舶在装载危险品时要做好防护措施,减少化学物质对金属的腐蚀。
5. 防腐涂层:船舶表面涂覆防腐涂层,阻断金属与外界环境的接触,减少腐蚀的发生。
6. 船舶维护:定期进行船舶维护检查,发现腐蚀问题及时修复,保持船舶的完好状态。
7. 环境控制:控制船舶周围环境的湿度和温度,例如加装除湿设备,使船舶处于干燥的环境中。
船舶腐蚀是一个复杂的问题,需要从多个方面进行分析和防治。
除了以上提到的措施,船舶的设计和建造也要考虑防腐的要求,并采用适当的防腐手段,以确保船舶的安全和寿命。
海洋耐蚀材料性能汇总
海洋耐蚀材料性能汇总海洋材料的腐蚀问题涉及生物学、电化学、材料学等多门学科,是一项非常复杂的研究工作。
海洋腐蚀的电化学过程、海洋防腐蚀材料的应用及研究进展想必是大家最想了解的问题。
由于海洋环境苛刻、海水对材料腐蚀严重、海洋生物加剧腐蚀进行、深海环境下水压过强、海洋设备尺寸巨大等多方面因素影响,海洋产业因此受到极大限制,海洋新材料的研发和应用是目前须解决的首要问题。
海水腐蚀的特点1、海水中的氯离子等卤素离子能阻碍和破坏金属的钝化,海水腐蚀的阳极过程较易进行。
2、海水腐蚀的阴极去极化剂是氧,阴极过程是腐蚀反应的控制性环节。
一切有利于供氧的条件,如海浪、飞溅、增加流速,都会促进氧的阴极去极化反应,加速金属的腐蚀。
3.海水腐蚀的电阻延迟很小,异种金属的接触会引起显著的腐蚀效应。
影响腐蚀的海水环境因素1、温度的影响从动力学方面考虑,海水温度升高,会加速阴极和阳极过程的反应速度。
但海水温度变化会使其他环境因素随之变化。
海水温度升高,氧的扩散速度加快,这将促进腐蚀过程进行。
另一方面,海水温度升高,海水中氧的溶解度降低,同时促进保护性钙质水垢生成,这又会减缓金属在海水中的腐蚀。
2、溶解氧的影响溶解氧对铁腐蚀的影响更大。
氧气是金属电化学腐蚀中阴极反应的去极化剂。
对于碳钢、低合金钢等在海水中不钝化的金属,海水含氧量的增加会加速阴极去极化过程,增加金属的腐蚀速率;对于那些依靠表面钝化膜来提高耐蚀性的金属,如铝和不锈钢,氧含量的增加有利于钝化膜的形成和修复,提高了钝化膜的稳定性,降低了点蚀和缝隙腐蚀的倾向。
3、盐度的影响水中含盐量直接影响到水的电导率和含氧量,因此必然对腐蚀产生影响。
随着水中含盐量增加,水的电导率增加而含氧量降低,所以在某一含盐量时将存在一个腐蚀速度的最大值。
海水的含盐量刚好为腐蚀速度最大时所对应的含盐量。
4、pH的影响一般说来,海水的 pH 值升高,有利于抑制海水对钢的腐蚀。
在施加阴极保护时,阴极表面处海水 pH 值升高,很容易形成碳酸钙水垢这种沉积层,这对阴极保护是有利的。
海洋环境下的腐蚀
海洋环境下腐蚀悄然发生前言:“海到尽头天作岸,山登绝顶我为峰”,以海为诗,多有海之宽广、波澜之意,以抒心中豪情;古人写海多豪迈,然而大海也有其凶猛的一面,出海的渔船不仅要面对大海的咆哮,还要警惕海中生物的威胁;海边的居民要随时注意潮起潮落,以及阴暗处吞吐的信子……而现代,钢铁林立的都市,海边开采石油的平台、船舶停靠的港口都存在着严重的腐蚀问题,和内陆环境不同,普通的防腐蚀方法已经不适用与海洋环境。
本文将浅析海洋环境下钢铁腐蚀的原因以及防腐方案。
海洋环境:不同于内陆环境,钢铁等金属结构表面的钝化膜、漆膜等保护足够支撑很长时间,就像葫芦娃里的三娃一样变成了钢筋铁骨,不惧怕任何攻击。
然而在海洋环境中金属结构的“钢筋铁骨”仿佛却失去了作用,就像被蛇精知道了弱点的三娃一样无计可施,海洋的特殊环境抓住了材料的弱点,从而使其失去了保护,腐蚀更加剧烈。
海洋环境下腐蚀机理:钢铁从内到外分为几个层次:1.内层的金属基材;2.其次是与基材接触的FeO氧化膜;3.然后是中间层Fe3O4氧化膜,该层较为致密,同时能拦截水和氧气的深入,具有一定的抗腐蚀能力;4.外层是Fe2O3氧化膜,表面较为疏松多孔,易吸水、吸氧。
正常腐蚀在进行到第二层Fe3O4层时会变得较为缓慢,但是在海洋环境下,氯离子以其微小的粒径,具有较强的穿透力,能够穿透致密的氧化膜层,从而发生以下反应:Fe2++2Cl-+2H2O→Fe(OH)2+2HCl4Fe(OH)2+O2+2H2O→4Fe(OH)3钢铁的进一步腐蚀产生的化合物体积增大,会从内部产生较大的膨胀应力,如果是混凝土中的钢结构则会连带着破坏混凝土的开裂和脱落,使得内部金属暴露在外界海洋环境下又进行了新一轮的腐蚀,加剧了腐蚀的进行。
海洋环境下腐蚀速率的影响因素:盐度、含氧量、CO2、碳酸盐、温度、海水流速、海洋生物、光照条件。
根据有关调查材料,我国沿海主要港口的海水平均含盐量约为25000mg/L,其中SO42-平均约为2300mg/L,Mg2+平均约为1250 mg/L,Cl-平均约为15000mg/L。
浅谈海水淡化工程设备防腐
浅谈海水淡化工程设备防腐摘要:近些年来,国内海水淡化工程发展迅速,海水及海洋大气环境对设备腐蚀问题严重。
海水淡化防腐问题也越来越得到重视。
本论文将结合辽宁徐大堡海水淡化工程,对海水淡化工程防腐问题进行阐述。
关键词:海水淡化防腐1 海水淡化设备腐蚀的影响因素海水含盐量在3.5%左右,是天然强电解质,大多数金属结构材料受海水或海洋大气的腐蚀,通常海洋腐蚀环境分5个区带:海洋大气区、浪花飞溅区、潮差区、海水全浸区及海底泥土区。
根据本工程的实际,本论文仅讨论海洋大气区和海洋全浸区的影响因素。
海洋大气的腐蚀环境和内陆环境相比,由于金属表面存在着盐粒盐雾,特别是氯化钙和氯化镁等海盐粒子是吸湿性的,容易在金属表面形成液膜,而且在金属表面常有真菌和霉菌的沉积,保持了表面的水分,增强了环境的腐蚀性,在海洋大气中具有的影响因素有水分、尘埃、二氧化硫、盐粒等。
后面将叙述针对这些因素采取的相应的防腐措施。
在海水全浸区,影响因素主要有温度、流速、溶解氧、盐度、PH值、海洋生物等,一般来说,温度上升腐蚀速度越快,但也考虑到氧扩散等其他因素。
对于表面难以形成钝化膜的金属,流速加快,使金属表面水膜变薄,氧扩散容易,腐蚀加快。
而对于易形成钝化膜的金属,流速加快,反而易形成钝化膜,腐蚀速度反而降低。
氧是金属电化学腐蚀过程中阴极反应的去极化剂,可使微电池阳极区金属溶解造成腐蚀,但另一方面由于金属氧化膜形成,可以抑制腐蚀反应的进行。
盐度增加也将造成腐蚀加快,但盐度增加到一定程度时,由于溶解氧浓度降低而造成腐蚀速度下降。
PH值对不同的金属腐蚀影响不仅相同。
在海水中金属表面经常有贝壳或藻类等生物附着着并生长,开始可能会由于生物附着降低金属的腐蚀速递,但不久就会加速腐蚀、产生孔蚀或者涂层遭到破坏。
因此影响腐蚀的因素是多样化且复杂的。
2 海水淡化设备腐蚀原因、后果及防腐措施本项目包括海水淡化预处理、超滤预处理、反渗透相关工艺设备管道、电气自控及配套的土建等,下面分类别进行讨论。
海洋环境腐蚀规律及控制技术
海洋环境腐蚀规律及控制技术日期:2005-3-28作者:侯保荣中国工程院院士、中科院海洋所研究员阅读:156一、海洋环境腐蚀研究的意义随着人口增加,资源匮乏和环境恶化,人们越来越深刻地认识到,浩瀚的海洋是人类生命源泉、资源宝库和环境调节器。
自人类有文明史以来,从“兴渔盐之利”、“行舟楫之便”的传统海洋产业的开发,到今天海上运输、深海采矿、港口码头、油气开发、海洋生物技术等新兴海洋产业的兴起,人类对海洋的开发利用逐步走向深入,海洋开发的规模不断扩大,但是海洋环境又是一个腐蚀性很强的灾害环境,各种材料在海洋环境中极易发生劣化破坏,腐蚀损失包括直接损失和间接损失两大类,它是一种悄悄在进行的破坏,世界各国每年因腐蚀造成的直接经济损失约占其国民生产总值的2%- 4%,其破坏力之大令人震惊!其中海洋腐蚀的损失约占总腐蚀的1/3。
美国早在1949年就曾经做过全国腐蚀调查,2001年调查结果表明,1998年美国每年因腐蚀带来的直接经济损失达2 760亿美元,占国民生产总值的3.1 %,其他国家像英国、日本、德国、印度、原苏联、法国等也都做过类似的调查。
2003年我国国内生产总值突破11万亿元人民币大关,以此推算,去年我国腐蚀损失约为4000亿元人民币,其灾害性事故隐患也是严峻的。
尽管如此,如果我们的防护工作做得好,其中25% ~ 4 0%的损失可以得到有效避免。
二、海洋环境因素与海洋腐蚀规律海洋腐蚀环境研究主要是从环境角度来考察海洋环境对材料的的腐蚀能力问题。
海水不仅是盐度在32‰~37‰,pH值在8~8.2之间的天然强电解质溶液,更是一个含有悬浮泥沙、溶解的气体、生物以及腐败的有机物的复杂体系。
影响海水腐蚀的有化学因素、物理因素和生物因素等三类,而且其影响常常是相互关联的,不但对不同的金属影响不一样,就是在同一海域对同一金属的影响也因金属在海水环境中的部位不同而异。
海洋腐蚀环境一般分为海洋大气区、浪花飞溅区、潮差区、海水全浸区和海泥区五个腐蚀区带。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
海水、海洋大气中的金属腐蚀1、海水水质的主要特点含盐量高,盐度一般在35g/L左右;腐蚀性大;海水中动、植物多;海水中各种离子组成比例比较稳。
pH变化小,海水表层pH在8、1~8、3范围内,而在深层pH则为7、8左右。
2、海水腐蚀的特点海水腐蚀为电化学腐蚀;海水腐蚀的阳极极化阻滞对大多数金属(铁、钢、铸铁、锌等)都很小,因而腐蚀速度相当大;海水氯离子含量很高,Cl-破坏钝化膜,因此大多数金属在海水中不能建立钝态,在海水中由于钝化的局部破坏,很容易发生空隙与缝隙腐蚀等局部腐蚀。
不锈钢在海水中也遭到严重腐蚀;多数金属阴极过程为氧去极化作用,少数负电性很强金属(Mg)及合金腐蚀时发生阴极氢去极化作用;海水电导率很大,海水腐蚀电阻性阻滞很小,所以海水腐蚀中不仅腐蚀微电池的活性大,腐蚀宏电池的活性也很大。
海水的电阻率很小,因此异种金属接触能造成的显著的电偶腐蚀。
其作用强烈,作用范围大。
3、海水腐蚀的影响因素3、1盐类及浓度盐度就是指100克海水中溶解的固体盐类物质的总克数。
一般在相通的海洋中总盐度与各种盐的相对比例并无明显改变,在公海的表层海水中,其盐度范围为3、20%~3、75%,这对一般金属的腐蚀无明显的差异。
但海水的盐度波动却直接影响到海水的比电导率,比电导率又就是影响金属腐蚀速度的一个重要因素,同时因海水中含有大量的氯离子,破坏金属的钝化,所以很多金属在海水中遭到严重腐蚀。
盐类以Cl-为主,一方面:盐浓度的增加使得海水导电性增加,使海水腐蚀性很强;另一方面:盐浓度增大使溶解氧浓度下降,超过一定值时金属腐蚀速度下降。
3、2 pH值海水pH在7、2-8、6之间,为弱碱性,对腐蚀影响不大。
3、3碳酸盐饱与度在海水pH条件下,碳酸盐达到饱与,易沉积在金属表面形成保护层。
若未饱与,则不会形成保护层,使腐蚀速度增加。
3、4含氧量海水腐蚀就是以阴极氧去极化控制为主的腐蚀过程。
海水中的含氧量就是影响海水腐蚀性的重要因素。
氧在海水中的溶解度主要取决于海水的盐度与温度,随海水盐度增加或温度升高,氧的溶解度降低。
如果完全除去海水中的氧,金属就是不会腐蚀的。
对碳钢、低合金钢与铸铁等,含氧量增加,则阴极过程加速,使金属腐蚀速度增加。
但对依靠表面钝化膜提高耐蚀性的金属,如铝与不锈钢等,含氧量增加有利于钝化膜的形成与修补,使钝化膜的稳定性提高,点蚀与缝隙腐浊的倾向减小。
含氧量增加,金属腐蚀速度增加;对于能形成钝化膜的金属,含氧量适当增加,有助于防止腐蚀的进一步进行。
3、5温度一方面:温度升高,腐蚀速度加快。
另一方面:温度升高,氧在海水中溶解度下降,引起腐蚀速度减小海水的温度随着时间、空间上的差异会在一个比较大的范围变化。
从两极到赤道,表层海水温度可由0℃增加到35℃,海底水温可接近0℃,表层海水温度还随季节而呈周期性变化。
温度对海水腐蚀的影响就是复杂的。
从动力学方面考虑,温度升高,会加速金属的腐蚀。
另一方面,海水温度升高,海水中氧的溶解度降低,同时促进保护性碳酸盐的生成,这又会减缓钢在海水中的腐蚀。
但在正常海水含氧量下,温度就是影响腐蚀的主要因素。
这就是因为含氧量足够高时(实测值为5 mL/L以上),控制阴极反应速度的就是氧的扩散速度,而不就是含氧量。
对于在海水中钝化的金属,温度升高,钝化膜稳定性下降,点蚀、应力腐蚀与缝隙腐蚀的敏感性增加。
3、6流速流速增加,金属腐蚀速度增加。
海水腐蚀就是借助氧去极化而进行的阴极控制过程,并且主要受氧的扩散速度的控制,海水流速与波浪由于改变了供氧条件,必然对腐蚀产生重要影响。
另一方面,海水对金属表面有冲蚀作用,当流速超过某一临界流速wc时,金属表面的腐蚀产物膜被冲刷掉,金属表面同时受到磨损,这种腐蚀与磨损联合作用,使钢的腐蚀速度急剧增加。
对于在海水中能钝化的金属,如不锈钢、铝合金、钛合金等,海水流速增加会促进其钝化,可提高耐蚀性。
3、7海生物的影响海生物在大多数情况下就是加大腐蚀的,尤其就是局部腐蚀。
海水中叶绿素使周围海水酸性加大,海生物死植物可使海水中含氧量增加,海生物放出的CO2亡、腐烂可产生酸性物质与HS,这些都可使腐蚀加速。
此外,有些海生物会破坏2金属表面的油漆或镀层,有些微生物本身对金属就有腐蚀作用。
4、海洋大气腐蚀大气腐蚀基本上属于电化学性腐蚀范围。
它就是一种液膜下的电化学腐蚀,与浸在电解质溶液内的腐蚀有所不同。
由于金属表面上存在着一层饱与了氧的电解液薄膜,使大气腐蚀以优先的氧去极化过程进行腐蚀。
另一方面在薄层电解液下很容易造成阳极钝化的适当条件,固体腐蚀产物也常以层状沉积在金属表面,因而带来一定的保护性。
例如,钢中含有千分之几的铜,由于生成一层致密的、保护性较强的锈膜,使钢的耐蚀性得到明显改善。
海洋大气就是指在海平面以上由于海水的蒸发,形成含有大量盐分的大气环境。
此种大气中盐雾含量较高,对金属有很强的腐蚀作用。
与浸于海水中的钢铁腐蚀不同 ,海洋大气腐蚀同其它环境中的大气腐蚀一样就是由于潮湿的气体在物体表面形成一个薄水膜而引起的。
这种腐蚀大多发生在海上的船只、海上平台以及沿岸码头设施上。
普通碳钢在海洋大气中的腐蚀比沙漠大气中大50倍~100倍。
除了在强风暴的天气中,在距离海岸近的大气中的金属材料,特别就是在距海离海岸24m处钢的腐蚀岸200m以内的大气区域中,强烈的受到海洋大气的影响,、比240m处大12倍,海洋大气中金属材料腐蚀速率明显变化发生在距海岸线 15 km 到 25 km之间。
因此,海洋大气的影响范围一般界定为20km左右。
海洋大气中相对湿度较大,同时由于海水飞沫中含有氯化钠粒子,所以对于海洋钢结构来说,空气的相对湿度都高于它的临界值。
因此,海洋大气中的钢铁表面很容易形成有腐蚀性的水膜。
薄水膜对钢铁的作用而发生大气腐蚀的过程,符合电解质中电化学腐蚀的规律。
这个过程的特点就是氧特别容易到达钢铁表面,钢铁腐蚀速度受到氧极化过程控制。
空气中所含杂质对大气腐蚀影响很大,海洋大气中富含大量的海盐粒子,这些盐粒子杂质溶于钢铁表面的水膜中,使这层水膜变为腐蚀性很强的电解质,加速了腐蚀的进行,与干净大气的冷凝水膜比,被海雾周期饱与的空气能使钢的腐蚀速度增加8倍。
5、海洋大气腐蚀的影响因素5、1 大气相对湿度海洋大气中相对湿度较大,空气的相对湿度都高于它的临界值。
因此海洋大气中的钢铁表而有腐蚀性水膜。
表面水膜的厚度对钢铁的海洋大气腐蚀有重要影响,它直接影响到钢铁腐蚀速率与腐蚀机理。
同一般的大气腐蚀相比,由于海洋大气环境具有高的湿度,钢铁表面通常存在较厚的水膜,随着水膜厚度的增加,腐蚀速度变大。
对于海洋大气环境的不同湿度,所形成的水膜也具有不同的厚度,因而在不同海域的海洋大气腐蚀形式也不完全相同。
对于日晒与风吹,钢铁表而的水膜厚度也会发生改变,从而改变钢铁表面大气腐蚀的过程。
腐蚀性水膜对钢铁发生作用的海洋大气腐蚀的过程,符合电解质中电化学腐蚀的规律。
这个过程就是氧特别容易到达钢铁表而,钢铁腐蚀速度受到氧极化过程控制。
此外,海洋环境中的雨、雾、露中的水分通过不同的方式影响相对湿度,进而影响钢铁的大气腐蚀过程。
试验结果表明钢在相对湿度大于70%时腐蚀严重。
5、2大气含盐量海洋大气中因富含大量的海盐粒子,形成含有大量盐分气体的环境,这就是与其它气体环境的重要区别。
这些盐粒子杂质溶于钢铁表面的水膜中,使这层水膜变为腐蚀性很强的电解质,加速了腐蚀的进行,与干净大气的冷凝水膜比,被海雾周期饱与的空气能使钢的腐蚀速度增加8倍。
海洋大气区海盐的沉积随风浪条件、距离海面的高度与在空气中暴露时间的长短等因素有关。
随着海岸线向内陆的扩展,大气中盐雾含量逐渐降低,海洋大气腐蚀现象会相对减弱直至过渡到一般的大气腐蚀环境。
5、3干湿交替的影响暴露于海洋大气环境下的金属材料表面常常处于干湿交替变化的状态中,干湿交替导致金属表面盐浓度较高从而影响金属材料的腐蚀速率干湿交替变化的频率受到多种因素的影响。
空气中的相对湿度通过影响金属表面的水膜厚度来影响干湿交替的频率。
日照时间如果过长导致金属表面水膜的消失,降低表面的润湿时间, 腐蚀总量减小。
另外降雨、风速对金属表面液膜的干湿交替频率也有一定的影响。
在海洋大气区金属表面常会有真菌与霉菌沉积,这样由于它保持了表面的水分而影响干湿交替的频率从而增强了环境的腐蚀性。
5、4光照条件光照条件就是影响材料海洋大气腐蚀的重要因素。
光照会促进铜及铁金属表面的光敏腐蚀反应及真菌类生物的生物活性,这就为湿气与尘埃在金属表面贮存并腐蚀提供更大的可能性。
在热带地区金属受到日光的强烈照射,同时珊瑚粉尘与海盐混合在一起使金属的腐蚀极为严重。
另外,海洋大气中的材料背阳面比朝阳面腐蚀更快。
这就是因为与朝向太阳的一面相比,背向太阳面的金属材料尽管避开太阳光直射、温度较低,但其表面尘埃与空气中的海盐及污染物未被及时冲洗掉,湿润程度更高使腐蚀更为严重。
5、5大气温度不同海域由于温度及其它环境因素的差异,海洋大气的腐蚀性差异较大。
海洋大气腐蚀环境的温度及其变化通过影响金属表而的水蒸汽的凝聚、水膜中各种腐蚀气体与盐类的溶解度、水膜的电阻以及腐蚀电池中的阴、阳极过程的腐蚀速度来影响金属材料的海洋大气腐蚀。
在一般的大气环境中由于相对湿度低于金属临界相对湿度,在温度升高的情况下由于环境干燥,金属的腐蚀仍然很轻微。
但就是在海洋大气腐蚀环境中由于空气湿度大,常常高于金属的临界相对湿度,温度的影响十分明显,温度升高使海洋大气腐蚀明显加剧。
对于一般的化学反应,温度每升高10℃,反应速度提高到2倍。
所以同一地区的季竹变化会影响腐蚀速度。
温度越高,腐蚀性越强一般热带海洋大气的腐蚀性最强温带海洋大气次之温度较低的南北极最弱。
6、下面着重说一下湿度与温度的影响大气腐蚀速度与水膜厚度如图所示Ⅰ区—干大气腐蚀Ⅱ区—潮大气腐蚀Ⅲ区—湿大气腐蚀Ⅳ—金属零件表面水膜厚超过1mm,相当于金属全浸在水中的腐蚀,随水膜厚度进一步增加,金属的腐蚀速度不再变化。
区域I:在大气湿度特别低的情况下,金属表面只有几个分子层厚的附着水膜,没有形成连续的电解液,腐蚀速度很小,相当于干大气腐蚀。
区域Ⅱ:随着大气湿度的增加,金属表面液膜层厚度也逐渐增加,形成连续电解液膜层,(几十或几百个水分子层厚),但膜薄氧易于扩散进入界面,发生电化学腐蚀。
此区腐蚀速度急剧增加,相当于潮的大气腐蚀。
区域Ⅲ:水膜厚可达几十至几百微米,为湿的大气腐蚀区。
随着液膜的增厚,氧的扩散阻力加大,因而腐蚀速度也相应降低。
区域Ⅳ:当金属表面水膜变得更厚,如大于1mm时,已相当于全浸在电解液中的腐蚀情况,腐蚀速度已基本不变。
一般环境的大气腐蚀大多就是在Ⅱ、Ⅲ区进行的。
但应当指出的就是,随着气候条件与相应的金属表面状态的变化,各种腐蚀形式可以相互转换。