贵州省安顺市中考数学真题试题(含解析)
安顺中考数学试题及答案
安顺中考数学试题及答案本文将为您提供安顺中考数学试题及答案。
试题与答案将按照合适的格式进行呈现,以帮助您更好地理解和应对中考数学题。
**一、选择题(每题4分,共50分)**1. 在一个等差数列中,首项为2,公差为3,前n项和为50,则n 的值是:A. 5B. 8C. 10D. 12答案:C2. 若a:b = 2:3,且b:c = 4:5,则a:b:c的比值为:A. 8:12:15B. 4:6:10C. 6:9:10D. 8:12:16答案:A3. 下列哪个图形不是一个正多边形?A. 正三角形B. 正方形C. 正五边形D. 正六边形答案:D(...以下省略部分选择题...)**二、填空题(每题4分,共40分)**1. 一个线段上有5个点,它们把这个线段分成了几份?答案:42. 两个互为倒数的数的乘积等于多少?答案:-13. 已知等差数列的前两项分别为a1和a4,公差为d,那么a5是多少?答案:a5 = a4 + d(...以下省略部分填空题...)**三、解答题(共40分)**1. 某商店打折促销,原价500元的商品打8.8折,求打折后的价格。
解答:打折后的价格 = 原价 ×打折比例打折后的价格 = 500元 × 0.88 = 440元2. 某车行共有150辆汽车,其中30%为SUV车型,剩下的都为轿车。
求轿车的数量。
解答:轿车的数量 = 总数量 - SUV车的数量轿车的数量 = 150辆 - 30% × 150辆= 150辆 - 0.3 × 150辆= 150辆 - 45辆= 105辆(...以下省略部分解答题...)希望以上提供的安顺中考数学试题及答案能够对您有所帮助。
祝您在中考中取得优异的成绩!。
2020年贵州省安顺市中考数学试卷和答案解析
2020年贵州省安顺市中考数学试卷和答案解析一、选择题:以下每小题均有A、B、C、D四个选项,其中只有一个选项正确,请用2B铅笔在答题卡相应位置作答,每小题3分,共30分.1.(3分)计算(﹣3)×2的结果是()A.﹣6B.﹣1C.1D.6解析:原式利用乘法法则计算即可求出值.参考答案:解:原式=﹣3×2=﹣6.故选:A.点拨:此题考查了有理数的乘法,熟练掌握乘法法则是解本题的关键.2.(3分)下列4个袋子中,装有除颜色外完全相同的10个小球,任意摸出一个球,摸到红球可能性最大的是()A.B.C.D.解析:各选项袋子中分别共有10个小球,若要使摸到红球可能性最大,只需找到红球的个数最多的袋子即可得出答案.参考答案:解:在四个选项中,D选项袋子中红球的个数最多,所以从D选项袋子中任意摸出一个球,摸到红球可能性最大,故选:D.点拨:本题主要考查可能性的大小,解题的关键是掌握随机事件发生的可能性(概率)的计算方法.3.(3分)2020年为阻击新冠疫情,某社区要了解每一栋楼的居民年龄情况,以便有针对性进行防疫,一志愿者得到某栋楼60岁以上人的年龄(单位:岁)数据如下:62,63,75,79,68,85,82,69,70.获得这组数据的方法是()A.直接观察B.实验C.调查D.测量解析:直接利用调查数据的方法分析得出答案.参考答案:解:一志愿者得到某栋楼60岁以上人的年龄(单位:岁)数据如下:62,63,75,79,68,85,82,69,70.获得这组数据的方法是:调查.故选:C.点拨:此题主要考查了调查收集数据的过程与方法,正确掌握基本调查方法是解题关键.4.(3分)如图,直线a,b相交于点O,如果∠1+∠2=60°,那么∠3是()A.150°B.120°C.60°D.30°解析:根据对顶角相等求出∠1,再根据互为邻补角的两个角的和等于180°列式计算即可得解.参考答案:解:∵∠1+∠2=60°,∠1=∠2(对顶角相等),∴∠1=30°,∵∠1与∠3互为邻补角,∴∠3=180°﹣∠1=180°﹣30°=150°.故选:A.点拨:本题考查了对顶角相等的性质,邻补角的定义,是基础题,熟记概念与性质并准确识图是解题的关键.5.(3分)当x=1时,下列分式没有意义的是()A.B.C.D.解析:直接利用分式有意义的条件分析得出答案.参考答案:解:A、,当x=1时,分式有意义不合题意;B、,当x=1时,x﹣1=0,分式无意义符合题意;C、,当x=1时,分式有意义不合题意;D、,当x=1时,分式有意义不合题意;故选:B.点拨:此题主要考查了分式有意义的条件,正确把握分式的定义是解题关键.6.(3分)下列四幅图中,能表示两棵树在同一时刻太阳光下的影子的图是()A.B.C.D.解析:根据平行投影得特点,利用两小树的影子的方向相反可对A、B进行判断;利用在同一时刻阳光下,树高与影子成正比可对C、D进行判断.参考答案:解:A、两棵小树的影子的方向相反,不可能为同一时刻阳光下影子,所以A选项错误;B、两棵小树的影子的方向相反,不可能为同一时刻阳光下影子,所以B选项错误;C、在同一时刻阳光下,树高与影子成正比,所以C选项正确.D、图中树高与影子成反比,而在同一时刻阳光下,树高与影子成正比,所以D选项错误;故选:C.点拨:本题考查了平行投影:由平行光线形成的投影是平行投影,如物体在太阳光的照射下形成的影子就是平行投影.7.(3分)菱形的两条对角线长分别是6和8,则此菱形的周长是()A.5B.20C.24D.32解析:根据题意画出图形,由菱形的性质求得OA=4,OB=3,再由勾股定理求得边长,继而求得此菱形的周长.参考答案:解:如图所示:∵四边形ABCD是菱形,AC=8,BD=6,∴AB=BC=CD=AD,OA=AC=4,OB=BD=3,AC⊥BD,∴AB===5,∴此菱形的周长=4×5=20;故选:B.点拨:本题考查了菱形的性质以及勾股定理;熟练掌握菱形的性质,由勾股定理求出菱形的边长是解题的关键.8.(3分)已知a<b,下列式子不一定成立的是()A.a﹣1<b﹣1B.﹣2a>﹣2bC.a+1<b+1D.ma>mb解析:根据不等式的基本性质进行判断.参考答案:解:A、在不等式a<b的两边同时减去1,不等号的方向不变,即a﹣1<b﹣1,原变形正确,故此选项不符合题意;B、在不等式a<b的两边同时乘以﹣2,不等号方向改变,即﹣2a >﹣2b,原变形正确,故此选项不符合题意;C、在不等式a<b的两边同时乘以,不等号的方向不变,即a <b,不等式a<b的两边同时加上1,不等号的方向不变,即a+1<b+1,原变形正确,故此选项不符合题意;D、在不等式a<b的两边同时乘以m,不等式不一定成立,即ma >mb,或ma<mb,或ma=mb,原变形不正确,故此选项符合题意.故选:D.点拨:此题主要考查了不等式的基本性质,不等式的基本性质:(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变.(2)不等式两边乘(或除以)同一个正数,不等号的方向不变.(3)不等式两边乘(或除以)同一个负数,不等号的方向改变.9.(3分)如图,Rt△ABC中,∠C=90°,利用尺规在BC,BA上分别截取BE,BD,使BE=BD;分别以D,E为圆心、以大于DE 的长为半径作弧,两弧在∠CBA内交于点F;作射线BF交AC于点G.若CG=1,P为AB上一动点,则GP的最小值为()A.无法确定B.C.1D.2解析:如图,过点G作GH⊥AB于H.根据角平分线的性质定理证明GH=GC=1,利用垂线段最短即可解决问题.参考答案:解:如图,过点G作GH⊥AB于H.由作图可知,GB平分∠ABC,∵GH⊥BA,GC⊥BC,∴GH=GC=1,根据垂线段最短可知,GP的最小值为1,故选:C.点拨:本题考查作图﹣基本作图,垂线段最短,角平分线的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.10.(3分)已知二次函数y=ax2+bx+c的图象经过(﹣3,0)与(1,0)两点,关于x的方程ax2+bx+c+m=0(m>0)有两个根,其中一个根是3.则关于x的方程ax2+bx+c+n=0 (0<n<m)有两个整数根,这两个整数根是()A.﹣2或0B.﹣4或2C.﹣5或3D.﹣6或4解析:根据题目中的函数解析式和二次函数与一元二次方程的关系,可以得到关于x的方程ax2+bx+c+n=0 (0<n<m)的两个整数根,从而可以解答本题.参考答案:解:∵二次函数y=ax2+bx+c的图象经过(﹣3,0)与(1,0)两点,∴当y=0时,0=ax2+bx+c的两个根为﹣3和1,函数y=ax2+bx+c 的对称轴是直线x=﹣1,又∵关于x的方程ax2+bx+c+m=0(m>0)有两个根,其中一个根是3.∴方程ax2+bx+c+m=0(m>0)的另一个根为﹣5,函数y=ax2+bx+c 的图象开口向下,∵关于x的方程ax2+bx+c+n=0 (0<n<m)有两个整数根,∴这两个整数根是﹣4或2,故选:B.点拨:本题考查抛物线与x轴的交点、二次函数与一元二次方程的关系,解答本题的关键是明确题意,利用二次函数的关系解答.二、填空题:每小题4分,共20分11.(4分)化简x(x﹣1)+x的结果是x2.解析:先根据单项式乘以多项式法则算乘法,再合并同类项即可.参考答案:解:x(x﹣1)+x=x2﹣x+x=x2,故答案为:x2.点拨:本题考查了单项式乘以多项式和合并同类项法则,能灵活运用法则进行计算是解此题的关键.12.(4分)如图,点A是反比例函数y=图象上任意一点,过点A 分别作x轴,y轴的垂线,垂足为B,C,则四边形OBAC的面积为3.解析:根据反比例函数y=的图象上点的坐标性得出|xy|=3,进而得出四边形OQMP的面积.参考答案:解:∵过点A分别作x轴,y轴的垂线,垂足为B,C,∴AB×AC=|k|=3,则四边形OBAC的面积为:3.故答案为:3.点拨:本题考查了反比例函数y=(k≠0)系数k的几何意义:从反比例函数y=(k≠0)图象上任意一点向x轴和y轴作垂线,垂线与坐标轴所围成的矩形面积为|k|.13.(4分)在“抛掷正六面体”的试验中,正六面体的六个面分别标有数字“1”“2”“3”“4”“5”“6”,在试验次数很大时,数字“6”朝上的频率的变化趋势接近的值是.解析:随着试验次数的增多,变化趋势接近于理论上的概率.参考答案:解:在试验次数很大时,数字“6”朝上的频率的变化趋势接近的值是.故答案为:.点拨:本题考查了利用频率估计概率.大量反复试验下频率稳定值即概率.14.(4分)如图,△ABC是⊙O的内接正三角形,点O是圆心,点D,E分别在边AC,AB上,若DA=EB,则∠DOE的度数是120度.解析:连接OA,OB,根据已知条件得到∠AOB=120°,根据等腰三角形的性质得到∠OAB=∠OBA=30°,根据全等三角形的性质得到∠DOA=∠BOE,于是得到结论.参考答案:解:连接OA,OB,∵△ABC是⊙O的内接正三角形,∴∠AOB=120°,∵OA=OB,∴∠OAB=∠OBA=30°,∵∠CAB=60°,∴∠OAD=30°,∴∠OAD=∠OBE,∵AD=BE,∴△OAD≌△OBE(SAS),∴∠DOA=∠BOE,∴∠DOE=∠DOA+∠AOE=∠AOB=∠AOE+∠BOD=120°,故答案为:120.点拨:本题考查了三角形的外接圆与外心,等边三角形的性质,全等三角形的判定和性质,正确的作出辅助线构造全等三角形是解题的关键.15.(4分)如图,△ABC中,点E在边AC上,EB=EA,∠A=2∠CBE,CD垂直于BE的延长线于点D,BD=8,AC=11,则边BC的长为4.解析:延长BD到F,使得DF=BD,根据等腰三角形的性质与判定,勾股定理即可求出答案.参考答案:解:延长BD到F,使得DF=BD,∵CD⊥BF,∴△BCF是等腰三角形,∴BC=CF,过点C点作CH∥AB,交BF于点H ∴∠ABD=∠CHD=2∠CBD=2∠F,∴HF=HC,∵CH∥AB,∴∠ABE=∠CHE,∠BAE=∠ECH,∴EH=CH,∵EA=EB,∴AC=BH,∵BD=8,AC=11,∴DH=BH﹣BD=AC﹣BD=3,∴HF=HC=8﹣3=5,在Rt△CDH,∴由勾股定理可知:CD=4,在Rt△BCD中,∴BC==4,故答案为:4点拨:本题考查勾股定理,解题的关键是熟练运用等腰三角形的性质与判定,本题属于中等题型.三、解答题:本大题10小题,共100分.16.(8分)如图,在4×4的正方形网格中,每个小格的顶点叫做格点,以格点为顶点分别按下列要求画三角形.(1)在图①中,画一个直角三角形,使它的三边长都是有理数;(2)在图②中,画一个直角三角形,使它的一边长是有理数,另外两边长是无理数;(3)在图③中,画一个直角三角形,使它的三边长都是无理数.解析:(1)构造边长3,4,5的直角三角形即可.(2)构造直角边为2,斜边为4的直角三角形即可(答案不唯一).(3)构造三边分别为2,,的直角三角形即可.参考答案:解:(1)如图①中,△ABC即为所求.(2)如图②中,△ABC即为所求.(3)△ABC即为所求.点拨:本题考查作图﹣应用与设计,无理数,勾股定理,勾股定理的逆定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.17.(10分)2020年2月,贵州省积极响应国家“停课不停学”的号召,推出了“空中黔课”.为了解某中学初三学生每天听空中黔课的时间,随机调查了该校部分初三学生.根据调查结果,绘制出了如图统计图表(不完整),请根据相关信息,解答下列问题:部分初三学生每天听空中黔课时间的人数统计表时间/h 1.52 2.53 3.54人数/人26610m4(1)本次共调查的学生人数为50,在表格中,m=22;(2)统计的这组数据中,每天听空中黔课时间的中位数是3.5h,众数是 3.5h;(3)请就疫情期间如何学习的问题写出一条你的看法.解析:(1)根据2小时的人数和所占的百分比求出本次调查的学生人数,进而求得m的值;(2)根据中位数、众数的定义分别进行求解即可;(3)如:认真听课,独立思考(答案不唯一).参考答案:解:(1)本次共调查的学生人数为:6÷12%=50(人),m=50×44%=22,故答案为:50,22;(2)由条形统计图得,2个1.5,6个2,6个2.5,10个3,22个3.5,4个4,∵第25个数和第26个数都是3.5h,∴中位数是3.5h;∵3.5h出现了22次,出现的次数最多,∴众数是3.5h,故答案为:3.5h,3.5h;(3)就疫情期间如何学习的问题,我的看法是:认真听课,独立思考(答案不唯一).点拨:本题考查扇形统计图、中位数和众数,解答本题的关键是明确题意,利用数形结合的思想解答.18.(10分)如图,四边形ABCD是矩形,E是BC边上一点,点F 在BC的延长线上,且CF=BE.(1)求证:四边形AEFD是平行四边形;(2)连接ED,若∠AED=90°,AB=4,BE=2,求四边形AEFD 的面积.解析:(1)先根据矩形的性质得到AD∥BC,AD=BC,然后证明AD=EF可判断四边形AEFD是平行四边形;(2)连接DE,如图,先利用勾股定理计算出AE=2,再证明△ABE∽△DEA,利用相似比求出AD,然后根据平行四边形的面积公式计算.参考答案:(1)证明:∵∠四边形ABCD是矩形,∴AD∥BC,AD=BC,∵BE=CF,∴BE+EC=EC+EF,即BC=EF,∴AD=EF,∴四边形AEFD是平行四边形;(2)解:连接DE,如图,∵四边形ABCD是矩形,∴∠B=90°,在Rt△ABE中,AE==2,∵AD∥BC,∴∠AEB=∠EAD,∵∠B=∠AED=90°,∴△ABE∽△DEA,∴AE:AD=BE:AE,∴AD==10,∵AB=4,∴四边形AEFD的面积=AB×AD=4×10=40.点拨:本题考查了相似三角形的判定与性质:在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用,寻找相似三角形的一般方法是通过作平行线构造相似三角形,灵活运用相似三角形的性质表示线段之间的关系;也考查了平行四边形的判定和矩形的性质.19.(10分)如图,一次函数y=x+1的图象与反比例函数y=的图象相交,其中一个交点的横坐标是2.(1)求反比例函数的表达式;(2)将一次函数y=x+1的图象向下平移2个单位,求平移后的图象与反比例函数y=图象的交点坐标;(3)直接写出一个一次函数,使其过点(0,5),且与反比例函数y=的图象没有公共点.解析:(1)将x=2代入y=x+1=3,故其中交点的坐标为(2,3),将(2,3)代入反比例函数表达式,即可求解;(2)一次函数y=x+1的图象向下平移2个单位得到y=x﹣1②,联立①②即可求解;(3)设一次函数的表达式为:y=kx+5③,联立①③并整理得:kx2+5x﹣6﹣0,则△=25+24k<0,解得:k<﹣,即可求解.参考答案:解:(1)将x=2代入y=x+1=3,故其中交点的坐标为(2,3),将(2,3)代入反比例函数表达式并解得:k=2×3=6,故反比例函数表达式为:y=①;(2)一次函数y=x+1的图象向下平移2个单位得到y=x﹣1②,联立①②并解得:,故交点坐标为(﹣2,﹣3)或(3,2);(3)设一次函数的表达式为:y=kx+5③,联立①③并整理得:kx2+5x﹣6﹣0,∵两个函数没有公共点,故△=25+24k<0,解得:k<﹣,故可以取k=﹣2(答案不唯一),故一次函数表达式为:y=﹣2x+5(答案不唯一).点拨:本题考查了反比例函数与一次函数的交点,当有两个函数的时候,着重使用一次函数,体现了方程思想,综合性较强.20.(10分)“2020第二届贵阳市应急科普知识大赛”的比赛中有一个抽奖活动,规则是:准备3张大小一样,背面完全相同的卡片,3张卡片的正面所写内容分别是《消防知识手册》《辞海》《辞海》,将它们背面朝上洗匀后任意抽出一张,抽到卡片后可以免费领取卡片上相应的书籍.(1)在上面的活动中,如果从中随机抽出一张卡片,记下内容后不放回,再随机抽出一张卡片,请用列表或画树状图的方法,求恰好抽到2张卡片都是《辞海》的概率;(2)再添加几张和原来一样的《消防知识手册》卡片,将所有卡片背面朝上洗匀后,任意抽出一张,使得抽到《消防知识手册》卡片的概率为,那么应添加多少张《消防知识手册》卡片?请说明理由.解析:(1)画出树状图,由概率公式即可得出答案;(2)设应添加x张《消防知识手册》卡片,由概率公式得出方程,解方程即可.参考答案:解:(1)把《消防知识手册》《辞海》《辞海》分别即为A、B、C,画树状图如图:共有6个等可能的结果,恰好抽到2张卡片都是《辞海》的结果有2个,∴恰好抽到2张卡片都是《辞海》的概率为=;(2)设应添加x张《消防知识手册》卡片,由题意得:=,解得:x=4,经检验,x=4是原方程的解;答:应添加4张《消防知识手册》卡片.点拨:本题考查了列表法或画树状图法以及概率公式;列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.注意概率=所求情况数与总情况数之比.21.(8分)脱贫攻坚工作让老百姓过上了幸福的生活.如图①是政府给贫困户新建的房屋,如图②是房屋的侧面示意图,它是一个轴对称图形,对称轴是房屋的高AB所在的直线,为了测量房屋的高度,在地面上C点测得屋顶A的仰角为35°,此时地面上C 点、屋檐上E点、屋顶上A点三点恰好共线,继续向房屋方向走8m到达点D时,又测得屋檐E点的仰角为60°,房屋的顶层横梁EF=12m,EF∥CB,AB交EF于点G(点C,D,B在同一水平线上).(参考数据:sin35°≈0.6,cos35°≈0.8,tan35°≈0.7,≈1.7)(1)求屋顶到横梁的距离AG;(2)求房屋的高AB(结果精确到1m).解析:(1)根据题意得到AG⊥EF,EG=∠AEG=∠ACB=35°,解直角三角形即可得到结论;(2)过E作EH⊥CB于H,设EH=x,解直角三角形即可得到结论.参考答案:解:(1)∵房屋的侧面示意图,它是一个轴对称图形,对称轴是房屋的高AB所在的直线,EF∥BC,∴AG⊥EF,EG=EF,∠AEG=∠ACB=35°,在Rt△AGE中,∠AGE=90°,∠AEG=35°,∵tan∠AEG=tan35°=,EG=6,∴AG=6×0.7=4.2(米);答:屋顶到横梁的距离AG为4.2米;(2)过E作EH⊥CB于H,设EH=x,在Rt△EDH中,∠EHD=90°,∠EDH=60°,∵tan∠EDH=,∴DH=,在Rt△ECH中,∠EHC=90°,∠ECH=35°,∵tan∠ECH=,∴CH=,∵CH﹣DH=CD=8,∴﹣=8,解得:x≈9.52,∴AB=AG+BG=13.72≈14(米),答:房屋的高AB为14米.点拨:本题考查了解直角三角形的应用,轴对称图形,解题的关键是借助仰角关系构造直角三角形,并结合图形利用三角函数解直角三角形.22.(10分)第33个国际禁毒日到来之际,贵阳市策划了以“健康人生绿色无毒”为主题的禁毒宣传月活动,某班开展了此项活动的知识竞赛.学习委员为班级购买奖品后与生活委员对话如下:(1)请用方程的知识帮助学习委员计算一下,为什么说学习委员搞错了;(2)学习委员连忙拿出发票,发现的确错了,因为他还买了一本笔记本,但笔记本的单价已模糊不清,只能辨认出单价是小于10元的整数,那么笔记本的单价可能是多少元?解析:(1)设单价为6元的钢笔买了x支,则单价为10元的钢笔买了(100﹣x)支,根据总共的费用为(1300﹣378)元列方程解答即可;(2)设笔记本的单价为a元,根据总共的费用为(1300﹣378)元列方程解求出方程的解,再根据a的取值范围以及一次函数的性质求出x的值,再把x的值代入方程的解即可求出a的值.参考答案:解:(1)设单价为6元的钢笔买了x支,则单价为10元的钢笔买了(100﹣x)支,根据题意,得:6x+10(100﹣x)=1300﹣378,解得x=19.5,因为钢笔的数量不可能是小数,所以学习委员搞错了;(2)设笔记本的单价为a元,根据题意,得:6x+10(100﹣x)+a=1300﹣378,整理,得:x=,因为0<a<10,x随a的增大而增大,所以19.5<x<22,∵x取整数,∴x=20,21.当x=20时,a=4×20﹣78=2;当x=21时,a=4×21﹣78=6,所以笔记本的单价可能是2元或6元.点拨:本题考查了一元一次方程解实际问题的运用,一次函数的运用,理清题意,找出相应的等量关系是解答本题的关键.23.(10分)如图,AB为⊙O的直径,四边形ABCD内接于⊙O,对角线AC,BD交于点E,⊙O的切线AF交BD的延长线于点F,切点为A,且∠CAD=∠ABD.(1)求证:AD=CD;(2)若AB=4,BF=5,求sin∠BDC的值.解析:(1)根据圆周角定理得∠ABD=∠ACD,进而得∠ACD=∠CAD,便可由等腰三角形判定定理得AD=CD;(2)证明△ADF≌△ADE,得AE=AF,DE=DF,由勾股定理求得AF,由三角形面积公式求得AD,进而求得DE,BE,再证明△BEC ∽△AED,得BC,进而求得sin∠BAC便可.参考答案:解:(1)证明:∵∠CAD=∠ABD,又∵∠ABD=∠ACD,∴∠ACD=∠CAD,∴AD=CD;(2)∵AF是⊙O的切线,∴∠FAB=90°,∵AB是⊙O的直径,∴∠ACB=∠ADB=∠ADF=90°,∴∠ABD+∠BAD=∠BAD+∠FAD=90°,∴∠ABD=∠FAD,∵∠ABD=∠CAD,∴∠FAD=∠EAD,∵AD=AD,∴△ADF≌△ADE(ASA),∴AF=AE,DF=DE,∵AB=4,BF=5,∴AF=,∴AE=AF=3,∵,∴,∴DE=,∴BE=BF﹣2DE=,∵∠AED=∠BEC,∠ADE=∠BCE=90°,∴△BEC∽△AED,∴,∴,∴,∵∠BDC=∠BAC,∴.点拨:本题主要考查了圆的切线的性质,圆周角定理,相似三角形的性质与判定,全等三角形的性质与判定,等腰三角形的性质与判定,解直角三角形的应用,勾股定理,关键是证明三角形全等与相似.24.(12分)2020年体育中考,增设了考生进入考点需进行体温检测的要求.防疫部门为了解学生错峰进入考点进行体温检测的情况,调查了一所学校某天上午考生进入考点的累计人数y(人)与时间x(分钟)的变化情况,数据如下表:(表中9~15表示9<x≤15)时间x(分钟)01234567899~15人数y(人)0170320450560650720770800810810(1)根据这15分钟内考生进入考点的累计人数与时间的变化规律,利用初中所学函数知识求出y与x之间的函数关系式;(2)如果考生一进考点就开始测量体温,体温检测点有2个,每个检测点每分钟检测20人,考生排队测量体温,求排队人数最多时有多少人?全部考生都完成体温检测需要多少时间?(3)在(2)的条件下,如果要在12分钟内让全部考生完成体温检测,从一开始就应该至少增加几个检测点?解析:(1)分两种情况讨论,利用待定系数法可求解析式;(2)设第x分钟时的排队人数为w人,由二次函数的性质和一次函数的性质可求当x=7时,w的最大值=490,当9<x≤15时,210≤w<450,可得排队人数最多时是490人,由全部考生都完成体温检测时间×每分钟检测的人数=总人数,可求解;(3)设从一开始就应该增加m个检测点,由“在12分钟内让全部考生完成体温检测”,列出不等式,可求解.参考答案:解:(1)由表格中数据的变化趋势可知,①当0≤x≤9时,y是x的二次函数,∵当x=0时,y=0,∴二次函数的关系式可设为:y=ax2+bx,由题意可得:,解得:,∴二次函数关系式为:y=﹣10x2+180x,②当9<x≤15时,y=810,∴y与x之间的函数关系式为:y=;(2)设第x分钟时的排队人数为w人,由题意可得:w=y﹣40x=,①当0≤x≤9时,w=﹣10x2+140x=﹣10(x﹣7)2+490,∴当x=7时,w的最大值=490,②当9<x≤15时,w=810﹣40x,w随x的增大而减小,∴210≤w<450,∴排队人数最多时是490人,要全部考生都完成体温检测,根据题意得:810﹣40x=0,解得:x=20.25,答:排队人数最多时有490人,全部考生都完成体温检测需要20.25分钟;(3)设从一开始就应该增加m个检测点,由题意得:12×20(m+2)≥810,解得m≥,∵m是整数,∴m≥的最小整数是2,∴一开始就应该至少增加2个检测点.点拨:本题考查了二次函数的应用,二次函数的性质,一次函数的性质,一元一次不等式的应用,理解题意,求出y与x之间的函数关系式是本题的关键.25.(12分)如图,四边形ABCD是正方形,点O为对角线AC的中点.(1)问题解决:如图①,连接BO,分别取CB,BO的中点P,Q,连接PQ,则PQ与BO的数量关系是PQ=BO,位置关系是PQ⊥BO;(2)问题探究:如图②,△AO'E是将图①中的△AOB绕点A按顺时针方向旋转45°得到的三角形,连接CE,点P,Q分别为CE,BO'的中点,连接PQ,PB.判断△PQB的形状,并证明你的结论;(3)拓展延伸:如图③,△AO'E是将图①中的△AOB绕点A按逆时针方向旋转45°得到的三角形,连接BO',点P,Q分别为CE,BO'的中点,连接PQ,PB.若正方形ABCD的边长为1,求△PQB 的面积.解析:(1)由正方形的性质得出BO⊥AC,BO=CO,由中位线定理得出PQ∥OC,PQ=OC,则可得出结论;(2)连接O'P并延长交BC于点F,由旋转的性质得出△AO'E是等腰直角三角形,O'E∥BC,O'E=O'A,证得∠O'EP=∠FCP,∠PO'E=∠PFC,△O'PE≌△FPC(AAS),则O'E=FC=O'A,O'P =FP,证得△O'BF为等腰直角三角形.同理△BPO'也为等腰直角三角形,则可得出结论;(3)延长O'E交BC边于点G,连接PG,O'P.证明△O'GP≌△BCP(SAS),得出∠O'PG=∠BPC,O'P=BP,得出∠O'PB=90°,则△O'PB为等腰直角三角形,由直角三角形的性质和勾股定理可求出O'A和O'B,求出BQ,由三角形面积公式即可得出答案.参考答案:解:(1)∵点O为对角线AC的中点,∴BO⊥AC,BO=CO,∵P为BC的中点,Q为BO的中点,∴PQ∥OC,PQ=OC,∴PQ⊥BO,PQ=BO;故答案为:PQ=BO,PQ⊥BO.(2)△PQB的形状是等腰直角三角形.理由如下:连接O'P并延长交BC于点F,∵四边形ABCD是正方形,∴AB=BC,∠ABC=90°,∵将△AOB绕点A按顺时针方向旋转45°得到△AO'E,∴△AO'E是等腰直角三角形,O'E∥BC,O'E=O'A,∴∠O'EP=∠FCP,∠PO'E=∠PFC,又∵点P是CE的中点,∴CP=EP,∴△O'PE≌△FPC(AAS),∴O'E=FC=O'A,O'P=FP,∴AB﹣O'A=CB﹣FC,∴BO'=BF,∴△O'BF为等腰直角三角形.∴BP⊥O'F,O'P=BP,∴△BPO'也为等腰直角三角形.又∵点Q为O'B的中点,∴PQ⊥O'B,且PQ=BQ,∴△PQB的形状是等腰直角三角形;(3)延长O'E交BC边于点G,连接PG,O'P.∵四边形ABCD是正方形,AC是对角线,∴∠ECG=45°,由旋转得,四边形O'ABG是矩形,∴O'G=AB=BC,∠EGC=90°,∴△EGC为等腰直角三角形.∵点P是CE的中点,∴PC=PG=PE,∠CPG=90°,∠EGP=45°,∴△O'GP≌△BCP(SAS),∴∠O'PG=∠BPC,O'P=BP,∴∠O'PG﹣∠GPB=∠BPC﹣∠GPB=90°,∴∠O'PB=90°,∴△O'PB为等腰直角三角形,∵点Q是O'B的中点,∴PQ=O'B=BQ,PQ⊥O'B,∵AB=1,∴O'A=,∴O'B===,∴BQ=.∴S△PQB=BQ•PQ=×=.点拨:本题是四边形综合题,考查了正方形的性质,旋转的性质,全等三角形的判定与性质,等腰直角三角形的判定与性质,中位线定理,矩形的判定与性质,勾股定理,三角形的面积等知识,熟练掌握正方形的性质及全等三角形的判定与性质是解题的关键.。
贵州安顺初中毕业考试数学试题—-解析版
贵州省安顺市中考数学试卷一、单项选择题(共30分,每小题3分)1、(2011•安顺)﹣4的倒数的相反数是()A、﹣4B、4 C 、﹣D 、2、(2011•安顺)已知地球距离月球表面约为383900千米,那么这个距离用科学记数法表示为(保留三个有效数字)()A、3.84×104千米B、3.84×105千米C、3.84×106千米D、38.4×104千米3、(2011•安顺)如图,己知AB∥CD,BE平分∠ABC,∠CDE=150°,则∠C 的度数是()A、100°B、110°C、120°D、150°4、(2011•安顺)我市某一周的最高气温统计如下表:21世纪教育网最高气温(℃)25 26 27 28天数 1 1 2 3则这组数据的中位数与众数分别是()A 、27,28 B、27.5,28 C、28,27 D、26.5,275、(2008•黄石)若不等式组有实数解,则实数m的取值范围是()A、m≤B、m<C、m>D、m≥6、(2011•安顺)如图是几个小立方块所搭的几何体俯视图,小正方形中的数字表示该位置上小立方块的个数,则这个几何体的主视图是()A、B、C、D、7、(2007•遵义)函数y=﹣中的自变量x的取值范围是()A、x≥0B、x<0且x≠1C、x<0D、x≥0且x≠18、(2006•浙江)在△ABC中,斜边AB=4,∠B=60°,将△ABC绕点B旋转60°,顶点C运动的路线长是()A、B、C、πD、9、(2011•安顺)正方形ABCD边长为1,E、F、G、H分别为边AB、BC、CD、DA上的点,且AE=BF=CG=DH.设小正方形EFGH的面积为y,AE=x.则y关于x的函数图象大致是()A、B、C、D、10、(2011•安顺)一只跳蚤在第一象限及x轴、y轴上跳动,在第一秒钟,它从原点跳动到(0,1),然后接着按图中箭头所示方向跳动[即(0,0)→(0,1)→(1,1)→(1,0)→…],且每秒跳动一个单位,那么第35秒时跳蚤所在位置的坐标是()A、(4,O)B、(5,0)C、(0,5)D、(5,5)二、填空题(共32分,每小题4分)11、(2011•安顺)分解因式:x3﹣9x=_________.12、(2011•安顺)小程对本班50名同学进行了“我最喜爱的运动项目”的调查,统计出了最喜爱跳绳、羽毛球、篮球、乒乓球、踢毽子等运动项目的人数.根据调查结果绘制了人数分布直方图.若将其转化为扇形统计图,那么最喜爱打篮球的人数所在扇形区域的圆心角的度数为_________°.13、(2011•安顺)已知圆锥的母线长为30,侧面展开后所得扇形的圆心角为120°,则该圆锥的底面半径为_________.14、如图,点E(0,4),O(0,0),C(5,0)在⊙A上,BE是⊙A上的一条弦.则tan∠OBE=_________.15、(2011•安顺)某市今年起调整居民用水价格,每立方米水费上涨20%,小方家去年12月份的水费是26元,而今年5月份的水费是50元.已知小方家今年5月份的用水量比去年12月份多8立方米,设去年居民用水价格为x元/立方米,则所列方程为_________.16、(2011•安顺)如图,在Rt△ABC中,∠C=90°,BC=6cm,AC=8cm,按图中所示方法将△BCD沿BD折叠,使点C落在AB边的C′点,那么△ADC′的面积是_________.17、(2011•安顺)已知:如图,O为坐标原点,四边形OABC为矩形,A(10,0),C(0,4),点D是OA的中点,点P在BC上运动,当△ODP是腰长为5的等腰三角形时,则P点的坐标为_________.18、(2011•安顺)如图,在Rt△ABC中,∠C=90°,CA=CB=4,分别以A、B、C为圆心,以AC为半径画弧,三条弧与边AB所围成的阴影部分的面积是_________.三、解答题(本大题共9个小题,共88分)19、(2011•安顺)计算:.20、(2011•安顺)先化简,再求值:,其中a=2﹣.21、(2011•安顺)一次数学活动课上,老师带领学生去测一条南北流向的河宽,如图所示,某学生在河东岸点A处观测到河对岸水边有一点C,测得C在A北偏西31°的方向上,沿河岸向北前行40米到达B处,测得C在B北偏西45°的方向上,请你根据以上数据,求这条河的宽度.(参考数值:tan31°≈)22、(2011•安顺)有A、B两个黑布袋,A布袋中有两个完全相同的小球,分别标有数字1和2.B布袋中有三个完全相同的小球,分别标有数字﹣l,﹣2和﹣3.小强从A布袋中随机取出一个小球,记录其标有的数字为a,再从B布袋中随机取出一个小球,记录其标有的数字为b,这样就确定点Q的一个坐标为(a,b).(1)用列表或画树状图的方法写出点Q的所有可能坐标;(2)求点Q落在直线y=x﹣3上的概率.23、(2011•安顺)如图,已知反比例函数的图象经过第二象限内的点A(﹣1,m),AB⊥x轴于点B,△AOB的面积为2.若直线y=ax+b经过点A ,并且经过反比例函数的图象上另一点C(n,一2).(1)求直线y=ax+b的解析式;(2)设直线y=ax+b与x轴交于点M,求AM的长.24、(2011•安顺)某班到毕业时共结余班费1800元,班委会决定拿出不少于270元但不超过300元的资金为老师购买纪念品,其余资金用于在毕业晚会上给50位同学每人购买一件T恤或一本影集作为纪念品.已知每件T恤比每本影集贵9元,用200元恰好可以买到2件T恤和5本影集.(1)求每件T恤和每本影集的价格分别为多少元?(2)有几种购买T恤和影集的方案?25、(2011•安顺)如图,在△ABC中,∠ACB=90°,BC的垂直平分线DE交BC于D,交AB于E,F在DE上,且AF=CE=AE.(1)说明四边形ACEF是平行四边形;(2)当∠B满足什么条件时,四边形ACEF是菱形,并说明理由.26、(2011•安顺)已知:如图,在△ABC中,BC=AC,以BC为直径的⊙O与边AB相交于点D,DE⊥AC,垂足为点E.(1)求证:点D是AB的中点;(2)判断DE与⊙O的位置关系,并证明你的结论;(3)若⊙O的直径为18,cosB=,求DE的长.27、(2011•菏泽)如图,抛物线y=x2+bx﹣2与x轴交于A,B两点,与y轴交于C点,且A(﹣1,0).(1)求抛物线的解析式及顶点D的坐标;(2)判断△ABC的形状,证明你的结论;(3)点M(m,0)是x轴上的一个动点,当MC+MD的值最小时,求m的值.答案与评分标准一、单项选择题(共30分,每小题3分)1、(2011•安顺)﹣4的倒数的相反数是()A、﹣4B、4 C 、﹣D 、考点:倒数;相反数。
2020年贵州省安顺市中考数学试卷(附详解)
(0<n<m)有两个整数根,这两个整数根是( )
A.﹣2 或 0
B.﹣4 或 2
C.﹣5 或 3
D.﹣6 或 4
二、填空题:每小题 4 分,共 20 分
11.(4 分)化简 x(x﹣1)+x 的结果是
.
12.(4 分)如图,点 A 是反比例函数 y 图象上任意一点,过点 A 分别作 x 轴,y 轴的垂
2020 年贵州省安顺市中考数学试卷
一、选择题:以下每小题均有 A、B、C、D 四个选项,其中只有一个选项正确,请用 2B
铅笔在答题卡相应位置作答,每小题 3 分,共 30 分.
1.(3 分)计算(﹣3)×2 的结果是( )
A.﹣6
B.﹣1
C.1
D.6
2.(3 分)下列 4 个袋子中,装有除颜色外完全相同的 10 个小球,任意摸出一个球,摸到
A.
B.
C.
D.
7.(3 分)菱形的两条对角线长分别是 6 和 8,则此菱形的周长是( )
A.5
B.20
C.24
D.32
8.(3 分)已知 a<b,下列式子不一定成立的是( )
A.a﹣1<b﹣1 C.⅕a+1< ⅕b+1
B.﹣2a>﹣2b D.ma>mb
9.(3 分)如图,Rt分别截取 BE,BD,使 ⅕
BE=BD;分别以 D,E 为圆心、以大于 DE 的长为半径作弧,两弧在∠CBA 内交于点 F;
作射线 BF 交 AC 于点 G.若 CG=1,P 为 AB 上一动点,则 GP 的最小值为( )
第 2页(共 28页)
A.无法确定
⅕ B.
C.1
D.2
10.(3 分)已知二次函数 y=ax2+bx+c 的图象经过(﹣3,0)与(1,0)两点,关于 x 的方 程 ax2+bx+c+m=0(m>0)有两个根,其中一个根是 3.则关于 x 的方程 ax2+bx+c+n=0
2023年中考真题精品解析数学(贵州安顺卷)精编版(原卷版)
一、选择题.(本大题共10小题,每题3分,共30分)1.﹣2023旳倒数是( )A .2023B .﹣2023C .12016D .12016-2.下列计算对旳旳是( )A .236a a a ⋅=B .235a b ab +=C .826a a a ÷= D .224()a b a b =3.中国倡导旳“一带一路”建设将增进我国与世界各国旳互利合作,根据规划,“一带一路”地区覆盖总人口约为人,这个数用科学记数法表达为( ) A .44×108B .4.4×109C .4.4×108D .4.4×10104.如图是一种正方体展开图,把展开图折叠成正方体后,“我”字一面旳相对面上旳字是( )A .旳B .中C .国D .梦 5.已知实数x ,y 满足480x y -+-=,则以x ,y 旳值为两边长旳等腰三角形旳周长是( )A .20或16B .20C .16D .以上答案均不对 6.某校九年级(1)班全体学生2023年初中毕业体育考试旳成绩记录如表: 成绩(分) 35 39 42 44 45 48 50 人数(人) 2566876根据表中旳信息判断,下列结论中错误旳是( ) A .该班一共有40名同学B .该班学生这次考试成绩旳众数是45分C .该班学生这次考试成绩旳中位数是45分D .该班学生这次考试成绩旳平均数是45分7.已知命题“有关x 旳一元二次方程210x bx ++=,必有实数解”是假命题,则在下列选项中,b 旳值可以是( )A .b =﹣3B .b =﹣2C .b =﹣1D .b =28.如图,将△PQR 向右平移2个单位长度,再向下平移3个单位长度,则顶点P 平移后旳坐标是( )A .(﹣2,﹣4)B .(﹣2,4)C .(2,﹣3)D .(﹣1,﹣3)9.如图,在网格中,小正方形旳边长均为1,点A ,B ,C 都在格点上,则∠ABC 旳正切值是( )A .2B 25C 5D .1210.某校校园内有一种大正方形花坛,如图甲所示,它由四个边长为3米旳小正方形构成,且每个小正方形旳种植方案相似.其中旳一种小正方形ABCD 如图乙所示,DG =1米,AE =AF =x 米,在五边形EFBCG 区域上种植花卉,则大正方形花坛种植花卉旳面积y 与x 旳函数图象大体是( )A .B .C .D .二、填空题.(本大题共8小题,每题4分,共32分)11.把多项式329a ab -分解因式旳成果是 .12.在函数12xy x -=+中,自变量x 旳取值范围是 . 13.如图,直线m ∥n ,△ABC 为等腰直角三角形,∠BAC =90°,则∠1= 度.14.根据如图所示旳程序计算,若输入x 旳值为1,则输出y 旳值为 .15.如图,AB是⊙O旳直径,弦CD⊥AB于点E,若AB=8,CD=6,则BE= .16.如图,在边长为4旳正方形ABCD中,先以点A为圆心,AD旳长为半径画弧,再以AB边旳中点为圆心,AB长旳二分之一为半径画弧,则阴影部分面积是(成果保留π).17.如图,矩形EFGH内接于△ABC,且边FG落在BC上,若AD⊥BC,BC=3,AD=2,EF=23EH,那么EH旳长为.18.观测下列砌钢管旳横截面图:则第n 个图旳钢管数是(用含n 旳式子表达)三、解答题.(本大题共8小题,共88分)19.计算:120cos602(2)(3)π--+---.20.先化简,再求值:12(1)11x x x --÷++,从﹣1,2,3中选择一种合适旳数作为x 值代入. 21.如图,在平面直角坐标系中,一次函数y =kx +b (k ≠0)旳图象与反比例函数my x=(m ≠0)旳图象交于A 、B 两点,与x 轴交于C 点,点A 旳坐标为(n ,6),点C 旳坐标为(﹣2,0),且tan ∠ACO =2. (1)求该反比例函数和一次函数旳解析式; (2)求点B 旳坐标.22.如图,在▱ABCD 中,BC =2AB =4,点E 、F 分别是BC 、AD 旳中点. (1)求证:△ABE ≌△CDF ;(2)当四边形AECF 为菱形时,求出该菱形旳面积.23.某校住校生宿舍有大小两种寝室若干间,据记录该校高一年级男生740人,使用了55间大寝室和50间小寝室,恰好住满;女生730人,使用了大寝室50间和小寝室55间,也恰好住满.求该校旳大小寝室每间各住多少人?24.某校开展了“互助、平等、感恩、友好、进取”主题班会活动,活动后,就活动旳5个主题进行了抽样调查(每位同学只选最关注旳一种),根据调查成果绘制了两幅不完整旳记录图.根据图中提供旳信息,解答下列问题:(1)这次调查旳学生共有多少名?(2)请将条形记录图补充完整,并在扇形记录图中计算出“进取”所对应旳圆心角旳度数.(3)假如要在这5个主题中任选两个进行调查,根据(2)中调查成果,用树状图或列表法,求恰好选到学生关注最多旳两个主题旳概率(将互助、平等、感恩、友好、进取依次记为A、B.C.D.E).25.如图,在矩形ABCD中,点O在对角线AC上,以OA旳长为半径旳圆O与AD、AC分别交于点E、F,且∠ACB=∠DCE.(1)判断直线CE与⊙O旳位置关系,并证明你旳结论;(2)若tan∠ACB=22,BC=2,求⊙O旳半径.26.如图,抛物线通过A(﹣1,0),B(5,0),C(0,52)三点.(1)求抛物线旳解析式;(2)在抛物线旳对称轴上有一点P,使P A+PC旳值最小,求点P旳坐标;(3)点M为x轴上一动点,在抛物线上与否存在一点N,使以A,C,M,N四点构成旳四边形为平行四边形?若存在,求点N旳坐标;若不存在,请阐明理由.一、选择题.(本大题共10小题,每题3分,共30分)1.﹣2023旳倒数是( )A .2023B .﹣2023C .12016D .12016- 【答案】D . 【解析】试题分析:﹣2023旳倒数是12016-.故选D . 考点:倒数.2.下列计算对旳旳是( )A .236a a a ⋅=B .235a b ab +=C .826a a a ÷= D .224()a b a b =【答案】C . 【解析】故选C .考点:同底数幂旳除法;合并同类项;幂旳乘方与积旳乘方.3.中国倡导旳“一带一路”建设将增进我国与世界各国旳互利合作,根据规划,“一带一路”地区覆盖总人口约为人,这个数用科学记数法表达为( )A .44×108B .4.4×109C .4.4×108D .4.4×1010【答案】B . 【解析】试题分析:4 400 000 000=4.4×109,故选B .学科网 考点:科学记数法—表达较大旳数.4.如图是一种正方体展开图,把展开图折叠成正方体后,“我”字一面旳相对面上旳字是( )A .旳B .中C .国D .梦 【答案】D . 【解析】试题分析:正方体旳表面展开图,相对旳面之间一定相隔一种正方形,“们”与“中”是相对面,“我”与“梦”是相对面,“旳”与“国”是相对面.故选D . 考点:正方体相对两个面上旳文字. 5.已知实数x ,y 满足480x y --=,则以x ,y 旳值为两边长旳等腰三角形旳周长是( )A .20或16B .20C .16D .以上答案均不对 【答案】B . 【解析】考点:等腰三角形旳性质;非负数旳性质;三角形三边关系;分类讨论. 6.某校九年级(1)班全体学生2023年初中毕业体育考试旳成绩记录如表: 成绩(分) 35 39 42 44 45 48 50 人数(人) 2566876根据表中旳信息判断,下列结论中错误旳是( ) A .该班一共有40名同学B .该班学生这次考试成绩旳众数是45分C .该班学生这次考试成绩旳中位数是45分D .该班学生这次考试成绩旳平均数是45分 【答案】D . 【解析】试题分析:该班人数为:2+5+6+6+8+7+6=40,得45分旳人数最多,众数为45,第20和21名同学旳成绩旳平均值为中位数,中位数为:(45+45)÷2 =45,平均数为:(35×2+39×5+42×6+44×6+45×8+48×7+50×6)÷40 =44.425.故错误旳为D .故选D . 考点:众数;平均数;中位数.7.已知命题“有关x 旳一元二次方程210x bx ++=,必有实数解”是假命题,则在下列选项中,b 旳值可以是( )A.b=﹣3B.b=﹣2C.b=﹣1D.b=2【答案】C.考点:命题与定理.8.如图,将△PQR向右平移2个单位长度,再向下平移3个单位长度,则顶点P平移后旳坐标是()A.(﹣2,﹣4)B.(﹣2,4)C.(2,﹣3)D.(﹣1,﹣3)【答案】A.【解析】试题分析:由题意可知此题规律是(x+2,y﹣3),照此规律计算可知顶点P(﹣4,﹣1)平移后旳坐标是(﹣2,﹣4).故选A.考点:坐标与图形变化-平移.9.如图,在网格中,小正方形旳边长均为1,点A,B,C都在格点上,则∠ABC旳正切值是()A.2B.255C.55D.12【答案】D.考点:网格型;锐角三角函数旳定义.10.某校校园内有一种大正方形花坛,如图甲所示,它由四个边长为3米旳小正方形构成,且每个小正方形旳种植方案相似.其中旳一种小正方形ABCD如图乙所示,DG=1米,AE=AF=x米,在五边形EFBCG区域上种植花卉,则大正方形花坛种植花卉旳面积y与x旳函数图象大体是()A .B .C .D .【答案】A .【解析】 考点:动点问题旳函数图象;动点型.二、填空题.(本大题共8小题,每题4分,共32分)11.把多项式329a ab -分解因式旳成果是 .【答案】a (3a +b )(3a ﹣b ).【解析】试题分析:329a ab -=22(9)a a b -=a (3a +b )(3a ﹣b ).故答案为:a (3a +b )(3a ﹣b ). 考点:提公因式法与公式法旳综合运用.12.在函数12x y x -=+中,自变量x 旳取值范围是 . 【答案】x ≤1且x ≠﹣2.【解析】试题分析:根据二次根式故意义,分式故意义得:1﹣x ≥0且x +2≠0,解得:x ≤1且x ≠﹣2.故答案为:x ≤1且x≠﹣2.考点:函数自变量旳取值范围;分式故意义旳条件;二次根式故意义旳条件.13.如图,直线m∥n,△ABC为等腰直角三角形,∠BAC=90°,则∠1= 度.【答案】45.【解析】试题分析:∵△ABC为等腰直角三角形,∠BAC=90°,∴∠ABC=∠ACB=45°,∵m∥n,∴∠1=45°;故答案为:45.考点:等腰直角三角形;平行线旳性质.14.根据如图所示旳程序计算,若输入x旳值为1,则输出y旳值为.【答案】4.【解析】考点:代数式求值.15.如图,AB 是⊙O 旳直径,弦CD ⊥AB 于点E ,若AB =8,CD =6,则BE = . 【答案】47-.【解析】试题分析:如图,连接OC .∵弦CD ⊥AB 于点E ,CD =6,∴CE =ED =12CD =3.∵在Rt △OEC 中,∠OEC =90°,CE =3,OC =4,∴OE =2243-=7,∴BE =OB ﹣OE =47-.故答案为:47-.考点:垂径定理;勾股定理.16.如图,在边长为4旳正方形ABCD 中,先以点A 为圆心,AD 旳长为半径画弧,再以AB 边旳中点为圆心,AB 长旳二分之一为半径画弧,则阴影部分面积是 (成果保留π).【答案】2π.【解析】考点:扇形面积旳计算.17.如图,矩形EFGH内接于△ABC,且边FG落在BC上,若AD⊥BC,BC=3,AD=2,EF=23EH,那么EH旳长为.【答案】32.【解析】试题分析:如图所示:∵四边形EFGH是矩形,∴EH∥BC,∴△AEH∽△ABC,∵AM⊥EH,AD⊥BC,∴AM EHAD BC=,设EH=3x,则有EF=2x,AM=AD﹣EF=2﹣2x,∴22323x x-=,解得:x=12,则EH=32.故答案为:32.考点:相似三角形旳鉴定与性质;矩形旳性质.学科网18.观测下列砌钢管旳横截面图:则第n 个图旳钢管数是 (用含n 旳式子表达)【答案】23322n n +. 【解析】考点:规律型:图形旳变化类;综合题.三、解答题.(本大题共8小题,共88分)19.计算:120cos602(2)(3)π--+--.【答案】1.【解析】 试题分析:原式第一项运用特殊角旳三角函数值计算,第二项运用负整数指数幂法则计算,第三项运用二次根式性质化简,最终一项运用零指数幂法则计算即可得到成果.试题解析:原式=112122-+-=1. 考点:实数旳运算.20.先化简,再求值:12(1)11x x x --÷++,从﹣1,2,3中选择一种合适旳数作为x 值代入.【答案】2x x -,3. 考点:分式旳化简求值.21.如图,在平面直角坐标系中,一次函数y =kx +b (k ≠0)旳图象与反比例函数m y x=(m ≠0)旳图象交于A 、B 两点,与x 轴交于C 点,点A 旳坐标为(n ,6),点C 旳坐标为(﹣2,0),且tan ∠ACO =2.(1)求该反比例函数和一次函数旳解析式;(2)求点B 旳坐标.【答案】(1)6y x=,y =2x +4;(2)B (﹣3,﹣2). 【解析】 试题分析:(1)先过点A 作AD ⊥x 轴,根据tan ∠ACO =2,求得点A 旳坐标,进而根据待定系数法计算两个函数解析式;(2)先联立两个函数解析式,再通过解方程求得交点B 旳坐标即可.试题解析:(1)过点A 作AD ⊥x 轴,垂足为D .由A (n ,6),C (﹣2,0)可得,OD =n ,AD =6,CO =2∵tan ∠ACO =2,∴AD CD =2,即622n=+,∴n =1,∴A (1,6).将A (1,6)代入反比例函数,得m =1×6=6,∴反比例函数旳解析式为6y x =.将A(1,6),C(﹣2,0)代入一次函数y=kx+b,可得:602k bk b=+⎧⎨=-+⎩,解得:24kb=⎧⎨=⎩,∴一次函数旳解析式为y=2x+4;考点:反比例函数与一次函数旳交点问题.22.如图,在▱ABCD中,BC=2AB=4,点E、F分别是BC、AD旳中点.(1)求证:△ABE≌△CDF;(2)当四边形AECF为菱形时,求出该菱形旳面积.【答案】(1)证明见解析;(2)23.【解析】试题分析:第(1)问要证明三角形全等,由平行四边形旳性质,很轻易用SAS证全等.第(2)规定菱形旳面积,在第(1)问旳基础上很快懂得△ABE为等边三角形.这样菱形旳高就可求了,用面积公式可求得.试题解析:(1)证明:∵在▱ABCD中,AB=CD,∴BC=AD,∠ABC=∠CDA.又∵BE=EC=12BC,AF=DF=12AD,∴BE=DF,∴△ABE≌△CDF.(2)解:∵四边形AECF为菱形时,∴AE=EC.又∵点E是边BC旳中点,∴BE=EC,即BE=AE.又BC=2AB=4,∴AB=12BC=BE,∴AB=BE=AE,即△ABE为等边三角形,▱ABCD旳BC边上旳高为2×sin60°=3,∴菱形AECF旳面积为23.考点:平行四边形旳性质;全等三角形旳鉴定与性质;菱形旳性质.23.某校住校生宿舍有大小两种寝室若干间,据记录该校高一年级男生740人,使用了55间大寝室和50间小寝室,恰好住满;女生730人,使用了大寝室50间和小寝室55间,也恰好住满.求该校旳大小寝室每间各住多少人?【答案】该校旳大寝室每间住8人,小寝室每间住6人.【解析】答:该校旳大寝室每间住8人,小寝室每间住6人.考点:二元一次方程组旳应用.24.某校开展了“互助、平等、感恩、友好、进取”主题班会活动,活动后,就活动旳5个主题进行了抽样调查(每位同学只选最关注旳一种),根据调查成果绘制了两幅不完整旳记录图.根据图中提供旳信息,解答下列问题:(1)这次调查旳学生共有多少名?(2)请将条形记录图补充完整,并在扇形记录图中计算出“进取”所对应旳圆心角旳度数.(3)假如要在这5个主题中任选两个进行调查,根据(2)中调查成果,用树状图或列表法,求恰好选到学生关注最多旳两个主题旳概率(将互助、平等、感恩、友好、进取依次记为A、B.C.D.E).【答案】(1)280;(2)108°;(3)1 10.【解析】试题解析:(1)56÷20%=280(名).答:这次调查旳学生共有280名;(2)280×15%=42(名),280﹣42﹣56﹣28﹣70=84(名),补全条形记录图,如图所示,根据题意得:84÷280=30%,360°×30%=108°.答:“进取”所对应旳圆心角是108°;(3)由(2)中调查成果知:学生关注最多旳两个主题为“进取”和“感恩”用列表法为:A BCDEA(A,B)(A,C)(A,D)(A,E)B(B,A)(B,C)(B,D)(B,E)C(C,A)(C,B)(C,D)(C,E)D(D,A)(D,B)(D,C)(D,E)E(E,A)(E,B)(E,C)(E,D)用树状图为:共20种状况,恰好选到“C”和“E”有2种,∴恰好选到“进取”和“感恩”两个主题旳概率是1 10.考点:列表法与树状图法;扇形记录图;条形记录图.25.如图,在矩形ABCD中,点O在对角线AC上,以OA旳长为半径旳圆O与AD、AC分别交于点E、F,且∠ACB=∠DCE.(1)判断直线CE与⊙O旳位置关系,并证明你旳结论;(2)若tan∠ACB=22,BC=2,求⊙O旳半径.【答案】(1)直线C E与⊙O相切;(2)64.【解析】试题分析:(1)连接OE.欲证直线CE与⊙O相切,只需证明∠CEO=90°,即OE⊥CE即可;试题解析:(1)直线C E与⊙O相切.理由如下:∵四边形ABCD是矩形,∴BC∥AD,∠ACB=∠DAC;又∵∠ACB=∠DCE,∴∠DAC=∠DCE;连接OE,则∠DAC=∠AEO=∠DCE;∵∠DCE+∠DEC=90°,∴∠AE0+∠DEC=90°,∴∠OEC=90°,即OE⊥CE.又OE是⊙O旳半径,∴直线CE与⊙O相切.(2)∵tan∠ACB=ABBC=22,BC=2,∴AB=BC•tan∠ACB=2,∴AC=6;又∵∠ACB=∠DCE,∴tan∠DCE=tan∠ACB=22,∴DE=DC•tan∠DCE=1;考点:圆旳综合题;探究型.26.如图,抛物线通过A (﹣1,0),B (5,0),C (0,52-)三点. (1)求抛物线旳解析式; (2)在抛物线旳对称轴上有一点P ,使P A +PC 旳值最小,求点P 旳坐标; (3)点M 为x 轴上一动点,在抛物线上与否存在一点N ,使以A ,C ,M ,N 四点构成旳四边形为平行四边形?若存在,求点N 旳坐标;若不存在,请阐明理由.【答案】(1)215222y x x =--;(2);(3).【解析】(2)∵抛物线旳解析式为:215222y x x =--,∴其对称轴为直线x =2b a -=2,连接BC ,如图1所示,∵B (5,0),C (0,52-),∴设直线BC 旳解析式为y =kx +b (k ≠0),∴5052k b b +=⎧⎪⎨=-⎪⎩,解得:1252k b ⎧=⎪⎪⎨⎪=-⎪⎩,∴直线BC 旳解析式为1522y x =-,当x =2时,y =512-=32-,∴P (2,32-);学科网 (3)存在.如图2所示.①当点N 在x 轴下方时,∵抛物线旳对称轴为直线x =2,C (0,52-),∴N 1(4,52-); ②当点N 在x 轴上方时,如图,过点N 2作N 2D ⊥x 轴于点D ,在△AN 2D 与△M 2CO 中,∵∠N 2AD =∠CM 2O ,AN 2=CM 2,∠AN 2D =∠M 2CO ,∴△AN 2D ≌△M 2CO (ASA ),∴N 2D =OC =52,即N 2点旳纵坐标为52,∴215222x x --=52,解得x =214x 214-N 2(214+52),N 3(214,52). 综上所述,符合条件旳点N 旳坐标为(4,52-),(214+52)或(214,52).考点:二次函数综合题;轴对称-最短路线问题;最值问题;存在型;分类讨论;压轴题.。
贵州省安顺市中考数学试题(含答案)
2009年安顺市初中毕业生学业、升学(高中、中职、五年制专科)招生考试数学科试卷特别提示:1、 本卷为数学试卷单,共 27个题,满分150分,共4页。
考试时间120分钟。
2、 考试采用闭卷形式,用笔在特制答题卡上答题,不能在本题单上作答。
3、 答题时请仔细阅读答题卡上的注意事项,并根据本题单各题的编号在答题卡上找到答 题的对应位置,用规定的笔进行填涂和书写。
4、参考公式:抛物线 y 二ax 2 • bx • c (a = 0)的顶点坐标为(…匕,4ac b)2a 4a4、 五箱苹果的质量分别为(单位:千克):18, 20, 21, 22, 19.则这五箱苹果质量的平 均数和中位数分别为:A • 19 和 20B • 20 和 19C . 20 和 20D • 20 和 215、 下列成语所描述的事件是必然事件的是:A .瓮中捉鳖B .拔苗助长C .守株待兔D .水中捞月6、 如图,箭头表示投影的方向,则图中圆柱体的投影是:A .圆B .矩形C .梯形D .圆柱7、如图,已知 CD 为O O 的直径,过点D 的弦DE 平行于半径 OA ,若/ D 的度数是50°,则/ C 的度数是:A .B . 40°C . 30°、单项选择题(共 30分,,每小题 3分)1、3的相反数是:11A . 3B .C .D . -3332、 下列计算正确的是:_ 2亠Z 3、26 326A . a 2a=3aB .(a ) aC . a a = a8 . 24D . a " a 二 a3、 新建的北京奥运会体育场“鸟”能容纳91000位观众,将91000用科学记数法表示为:3A . 91 103B . 2910 102C . 9.1 1043D • 9.1 10 ED. 50°B .、.3-、.2=19、如图,已知等边三角形 ABC 的边长为2, DE 是它的中位线,则下面四个结论:(1)DE=1, ( 2)△ CDECAB , ( 3)^ CDE 的面积与厶 CAB 的面积之比为 1 : 4. 其中正确的有:B . 1个C . 2个10、如图,乌鸦口渴到处找水喝,它看到了一个装有水的瓶子,但水位较低,且瓶口又 小,乌鸦喝不着水,沉思一会后,聪明的乌鸦衔来一个个小石子放入瓶中,水位上升 后,乌鸦喝到了水。
安顺中考数学试题及答案
安顺中考数学试题及答案一、选择题1. 若a和b是两个不同的非零数,且a+b=0,则a和b互为相反数。
()A. 正确B. 错误答案:A2. 下列哪个选项是二次函数y=ax^2+bx+c(a≠0)的图像?()A. 直线B. 抛物线C. 双曲线D. 圆答案:B3. 一个数的平方根是它本身的数是()。
A. 0B. 1C. -1D. 以上都是答案:A二、填空题4. 已知一个直角三角形的两条直角边分别为3和4,根据勾股定理,斜边的长度为______。
答案:55. 一个多项式除以单项式,商为多项式,余数为单项式,那么这个多项式的次数至少是单项式次数的______。
答案:1三、解答题6. 已知方程x^2 - 5x + 6 = 0,求方程的解。
解:方程x^2 - 5x + 6 = 0可以分解为(x - 2)(x - 3) = 0,因此方程的解为x1 = 2,x2 = 3。
7. 某商店销售一种商品,进价为每件80元,售价为每件100元,每天可售出100件。
如果每降价1元,每天可多售出10件。
设降价x元,利润为y元,求y与x的函数关系式,并求出最大利润及对应的售价。
解:根据题意,利润y = (100 - 80 - x)(100 + 10x) = -10x^2 +100x + 2000。
这是一个开口向下的二次函数,其最大值出现在顶点处,即x = -b/2a = -100/(-20) = 5。
此时,y = -10(5)^2 + 100(5) + 2000 = 2250元。
因此,最大利润为2250元,对应的售价为100 - 5= 95元。
结束语:以上为安顺中考数学试题及答案,希望同学们通过练习能够掌握相关知识点,提高解题能力。
2020贵州省安顺市中考数学试题(word解析版)
安贵州省安顺市2020年初中毕业生学业水平(升学)考试数学试题(含答案解析)2020.07.23编辑整理一、选择题:以下每小题均有A 、B 、C 、D 四个选项,其中只有一个选项正确,请用2B 铅笔在答题卡相应位置作答,每小题3分,共30分.1.计算(3)2-⨯的结果是( )A. 6-B. 1-C. 1D. 62.下列4个袋子中,装有除颜色外完全相同的10个小球,任意摸出一个球,摸到红球可能性最大的是( ) A. B. C. D.3.2020年为阻击新冠疫情,某社区要了解每一栋楼的居民年龄情况,以便有针对性进行防疫.一志愿者得到某栋楼60岁以上人的年龄(单位:岁)数据如下:62,63,75,79,68,85,82,69,70.获得这组数据的方法是( )A. 直接观察B. 实验C. 调查D. 测量4.如图,直线a ,b 相交于点O ,如果1260∠+∠=︒,那么3∠是( )A. 150︒B. 120︒C. 60︒D. 305.当1x =时,下列分式没有意义的是( ) A. 1x x + B. 1x x - C. 1x x - D. 1x x + 6.在下列四幅图形中,能表示两棵小树在同一时刻阳光下影子的图形的可能是( )A. B. C. D.7.菱形的两条对角线长分别是6和8,则此菱形的周长是( )A. 5B. 20C. 24D. 328.已知a b <,下列式子不一定成立的是( )A. 11a b -<-B. 22a b ->-C. 111122a b +<+D. ma mb >9.如图,Rt ABC ∆中,90C ∠=︒,利用尺规在BC ,BA 上分别截取BE ,BD ,使BE BD =;分别以D ,E 为圆心、以大于12DE 为长的半径作弧,两弧在CBA ∠内交于点F ;作射线BF 交AC 于点G ,若1CG =,P 为AB 上一动点,则GP 的最小值为( )A. 无法确定B. 12C. 1D. 210.已知二次函数2y ax bx c =++的图象经过(3,0)-与(1,0)两点,关于x 的方程20ax bx c m +++=(0)m >有两个根,其中一个根是3.则关于x 的方程20ax bx c n +++=(0)n m <<有两个整数根,这两个整数根是( )A. 2-或0B. 4-或2C. 5-或3D. 6-或4二、填空题:每小题4分,共20分.11.化简(1)x x x -+的结果是_____.12.如图,点A 是反比例函数3y x=图象上任意一点,过点A 分别作x 轴,y 轴的垂线,垂足为B ,C ,则四边形OBAC 的面积为____.13.在“抛掷正六面体”的试验中,正六面体的六个面分别标有数字“1”“2”“3”“4”“5”“6”,在试验次数很大时,数字“6”朝上的频率的变化趋势接近的值是_____.14.如图,ABC ∆是O 的内接正三角形,点O 是圆心,点D ,E 分别在边AC ,AB 上,若DA EB =,则DOE ∠的度数是____度.15.如图,ABC ∆中,点E 在边AC 上,EB EA =,2A CBE ∠=∠,CD 垂直于BE 的延长线于点D ,8BD =,11AC =,则边BC 的长为_____.三、解答题:本大题10小题,共100分.16.如图,在44⨯的正方形网格中,每个小格的顶点叫做格点,以格点为项点分别按下列要求画三角形.(1)在图①中,画一个直角三角形,使它三边长都是有理数;(2)在图②中,画一个直角三角形,使它的一边长是有理数,另外两边长是无理数;(3)在图③中,画一个直角三角形,使它的三边长都是无理数.17.2020年2月,贵州省积极响应国家“停课不停学”的号召,推出了“空中黔课”.为了解某中学初三学生每天听空中黔课的时间,随机调查了该校部分初三学生.根据调查结果,绘制出了如下统计图表(不完整),请根据相关信息,解答下列问题:部分初三学生每天听空中黔课时间的人数统计表时间/h 1.52 2.53 3.54 人数/人 26 6 10 m4部分初三学生每天听空中黔课时间的人数统计图(1)本次共调查的学生人数为_____,在表格中,m =___;(2)统计的这组数据中,每天听空中黔课时间的中位数是____,众数是_____;(3)请就疫情期间如何学习的问题写出一条你的看法.18.如图,四边形ABCD 是矩形,E 是BC 边上一点,点F 在BC 的延长线上,且CF BE =.(1)求证:四边形AEFD 是平行四边形;(2)连接ED ,若90AED ∠=︒,4AB =,2BE =,求四边形AEFD 的面积.19.如图,一次函数1y x =+的图象与反比例函数k y x=的图象相交,其中一个交点的横坐标是2.(1)求反比例函数的表达式;(2)将一次函数1y x =+的图象向下平移2个单位,求平移后的图象与反比例函数k y x =图象的交点坐标; (3)直接写出一个一次函数,使其过点(0,5),且与反比例函数k y x=的图象没有公共点. 20.“2020第二届贵阳市应急科普知识大赛”的比赛中有一个抽奖活动.规则是:准备3张大小一样,背面完全相同的卡片,3张卡片的正面所写内容分别是《消防知识手册》《辞海》《辞海》,将它们背面朝上洗匀后任意抽出一张,抽到卡片后可以免费领取卡片上相应的书籍.(1)在上面的活动中,如果从中随机抽出一张卡片,记下内容后不放回,再随机抽出一张卡片,请用列表或画树状图的方法,求恰好抽到2张卡片都是《辞海》的概率;(2)再添加几张和原来一样的《消防知识手册》卡片,将所有卡片背面朝上洗匀后,任意抽出一张,使得抽到《消防知识手册》卡片的概率为57,那么应添加多少张《消防知识手册》卡片?请说明理由. 21.脱贫攻坚工作让老百姓过上了幸福的生活.如图①是政府给贫困户新建的房屋,如图②是房屋的侧面示意图,它是一个轴对称图形,对称轴是房屋的高AB 所在的直线.为了测量房屋的高度,在地面上C 点测得屋顶A 的仰角为35︒,此时地面上C 点、屋檐上E 点、屋顶上A 点三点恰好共线,继续向房屋方向走8m 到达点D 时,又测得屋檐E 点的仰角为60︒,房屋的顶层横梁12EF m =,//EF CB ,AB 交EF 于点G (点C ,D ,B 在同一水平线上).(参考数据:sin350.6︒≈,cos350.8︒≈,tan350.7︒≈,3 1.7≈)(1)求屋顶到横梁的距离AG ;(2)求房屋的高AB (结果精确到1m ).22.第33个国际禁毒日到来之际,贵阳市策划了以“健康人生绿色无毒”为主题的禁毒宣传月活动,某班开展了此项活动的知识竞赛.学习委员为班级购买奖品后与生活委员对话如下:(1)请用方程的知识帮助学习委员计算一下,为什么说学习委员搞错了;(2)学习委员连忙拿出发票,发现的确错了,因为他还买了一本笔记本,但笔记本的单价已模糊不清,只能辨认出单价是小于10元的整数,那么笔记本的单价可能是多少元?23.如图,AB 为O 的直径,四边形ABCD 内接于O ,对角线AC ,BD 交于点E ,O 的切线AF 交BD 的延长线于点F ,切点为A ,且CAD ABD ∠=∠.(1)求证:AD CD =;(2)若4,5AB BF ==,求sin BDC ∠的值.24.2020年体育中考,增设了考生进入考点需进行体温检测的要求.防疫部门为了解学生错峰进入考点进行体温检测的情况,调查了一所学校某天上午考生进入考点的累计人数y (人)与时间x (分钟)的变化情况,数据如下表:(表中9-15表示915x <≤) 时间x (分钟) 0 1 2 3 4 5 6 7 8 9 9~15 人数y (人) 0 170 320 450 560 650 720 770 800 810 810(1)根据这15分钟内考生进入考点的累计人数与时间的变化规律,利用初中所学函数知识求出y 与x 之间的函数关系式;(2)如果考生一进考点就开始测量体温,体温检测点有2个,每个检测点每分钟检测20人,考生排队测量体温,求排队人数最多时有多少人?全部考生都完成体温检测需要多少时间?(3)在(2)的条件下,如果要在12分钟内让全部考生完成体温检测,从一开始就应该至少增加几个检测点?25.如图,四边形ABCD 是正方形,点O 为对角线AC 的中点.(1)问题解决:如图①,连接BO ,分别取CB ,BO 的中点P ,Q ,连接PQ ,则PQ 与BO 的数量关系是_____,位置关系是____;(2)问题探究:如图②,AO E ∆'是将图①中的AOB ∆绕点A 按顺时针方向旋转45︒得到的三角形,连接CE ,点P ,Q 分别为CE ,BO '的中点,连接PQ ,PB .判断PQB ∆的形状,并证明你的结论; (3)拓展延伸:如图③,AO E ∆'是将图①中的AOB ∆绕点A 按逆时针方向旋转45︒得到的三角形,连接BO ',点P ,Q 分别为CE ,BO '的中点,连接PQ ,PB .若正方形ABCD 的边长为1,求PQB ∆的面积.答案解析一、选择题:以下每小题均有A、B、C、D四个选项,其中只有一个选项正确,请用2B铅笔在答题卡相应位置作答,每小题3分,共30分.1.计算(3)2-⨯的结果是()A. 6-B. 1-C. 1D. 6【答案】A【解析】原式利用异号两数相乘的法则计算即可求出值.【详解】解:原式=−3×2=−6,故选:A.【点评】此题考查了有理数的乘法,熟练掌握乘法法则是解本题的关键.2.下列4个袋子中,装有除颜色外完全相同的10个小球,任意摸出一个球,摸到红球可能性最大的是()A. B. C. D.【答案】D【解析】要求可能性的大小,只需求出各袋中红球所占的比例大小即可.【详解】解:第一个袋子摸到红球的可能性=1 10;第二个袋子摸到红球的可能性=21 105=;第三个袋子摸到红球的可能性=51 102=;第四个袋子摸到红球的可能性=63 105=.故选:D.【点评】本题主要考查了可能性大小的计算,用到的知识点为:可能性等于所求情况数与总情况数之比,难度适中.3.2020年为阻击新冠疫情,某社区要了解每一栋楼的居民年龄情况,以便有针对性进行防疫.一志愿者得到某栋楼60岁以上人的年龄(单位:岁)数据如下:62,63,75,79,68,85,82,69,70.获得这组数据的方法是()A. 直接观察B. 实验C. 调查D. 测量【答案】C【解析】根据得到数据的活动特点进行判断即可.【详解】解:因为获取60岁以上人的年龄进行了数据的收集和整理,所以此活动是调查.故选:C .【点评】本题考查了数据的获得方式,解题的关键是要明确,调查要进行数据的收集和整理. 4.如图,直线a ,b 相交于点O ,如果1260∠+∠=︒,那么3∠是( )A. 150︒B. 120︒C. 60︒D. 30【答案】A 【解析】根据对顶角相等求出∠1,再根据互为邻补角的两个角的和等于180°列式计算即可得解.【详解】解:∵∠1+∠2=60°,∠1=∠2(对顶角相等),∴∠1=30°,∵∠1与∠3互为邻补角,∴∠3=180°−∠1=180°−30°=150°.故选:A .【点评】本题考查了对顶角相等的性质,邻补角的定义,是基础题,熟记概念与性质并准确识图是解题的关键.5.当1x =时,下列分式没有意义的是( ) A. 1x x + B. 1x x - C. 1x x - D. 1x x + 【答案】B【解析】由分式有意义的条件分母不能为零判断即可. 【详解】1x x -,当x=1时,分母为零,分式无意义. 故选B.【点评】本题考查分式有意义的条件,关键在于牢记有意义条件.6.在下列四幅图形中,能表示两棵小树在同一时刻阳光下影子的图形的可能是( )A. B. C. D.【答案】D【解析】根据太阳光下的影子的特点:(1)同一时刻,太阳光下的影子都在同一方向;(2)太阳光线是平行的,太阳光下的影子与物体高度成比例,据此逐项判断即可.【详解】选项A、B中,两棵小树的影子的方向相反,不可能为同一时刻阳光下的影子,则选项A、B错误选项C中,树高与影长成反比,不可能为同一时刻阳光下的影子,则选项C错误选项D中,在同一时刻阳光下,影子都在同一方向,且树高与影长成正比,则选项D正确故选:D.【点评】本题考查了太阳光下的影子的特点,掌握太阳光下的影子的特点是解题关键.7.菱形的两条对角线长分别是6和8,则此菱形的周长是()A. 5B. 20C. 24D. 32【答案】B【解析】根据菱形的对角线互相垂直平分的性质,利用对角线的一半,根据勾股定理求出菱形的边长,再根据菱形的四条边相等求出周长即可.【详解】解:如图所示,根据题意得AO=1842⨯=,BO=1632⨯=,∵四边形ABCD是菱形,∴AB=BC=CD=DA,AC⊥BD,∴△AOB是直角三角形,∴AB=221695AO BO+=+=,∴此菱形的周长为:5×4=20.故选:B.【点评】本题主要考查了菱形的性质,利用勾股定理求出菱形的边长是解题的关键,同学们也要熟练掌握菱形的性质:①菱形的四条边都相等;②菱形的两条对角线互相垂直,并且每一条对角线平分一组对角.8.已知a b<,下列式子不一定成立的是()A. 11a b -<-B. 22a b ->-C. 111122a b +<+D. ma mb >【答案】D 【解析】根据不等式的性质解答.【详解】解:A 、不等式a <b 的两边同时减去1,不等式仍成立,即a−1<b−1,故本选项不符合题意; B 、不等式a <b 的两边同时乘以-2,不等号方向改变,即22a b ->-,故本选项不符合题意; C 、不等式a <b 的两边同时乘以12,不等式仍成立,即:1122a b <,再在两边同时加上1,不等式仍成立,即111122a b +<+,故本选项不符合题意; D 、不等式a <b 的两边同时乘以m ,当m>0,不等式仍成立,即ma mb <;当m<0,不等号方向改变,即ma mb >;当m=0时,ma mb =;故ma mb >不一定成立,故本选项符合题意,故选:D .【点评】本题考查了不等式的性质.应用不等式的性质应注意的问题:在不等式的两边都乘以(或除以)同一个负数时,一定要改变不等号的方向;当不等式的两边要乘以(或除以)含有字母的数时,一定要对字母是否大于0进行分类讨论.9.如图,Rt ABC ∆中,90C ∠=︒,利用尺规在BC ,BA 上分别截取BE ,BD ,使BE BD =;分别以D ,E 为圆心、以大于12DE 为长的半径作弧,两弧在CBA ∠内交于点F ;作射线BF 交AC 于点G ,若1CG =,P 为AB 上一动点,则GP 的最小值为( )A. 无法确定B. 12C. 1D. 2【答案】C 【解析】当GP ⊥AB 时,GP 的值最小,根据尺规作图的方法可知,GB 是∠ABC 的角平分线,再根据角平分线的性质可知,当GP ⊥AB 时,GP=CG=1.【详解】解:由题意可知,当GP ⊥AB 时,GP 的值最小,根据尺规作图的方法可知,GB 是∠ABC 的角平分线,∵∠C=90°,∴当GP ⊥AB 时,GP=CG=1,故答案为:C .【点评】本题考查了角平分线的尺规作图以及角平分线的性质,难度不大,解题的关键是根据题意得到GB 是∠ABC 的角平分线,并熟悉角平分线的性质定理.10.已知二次函数2y ax bx c =++的图象经过(3,0)-与(1,0)两点,关于x 的方程20ax bx c m +++=(0)m >有两个根,其中一个根是3.则关于x 的方程20ax bx c n +++=(0)n m <<有两个整数根,这两个整数根是( )A. 2-或0B. 4-或2C. 5-或3D. 6-或4【答案】B【解析】由题意可得方程20ax bx c ++=的两个根是﹣3,1,方程在y 的基础上加m ,可以理解为二次函数的图象沿着y 轴平移m 个单位,由此判断加m 后的两个根,即可判断选项.【详解】二次函数2y ax bx c =++的图象经过(3,0)-与(1,0)两点,即方程20ax bx c ++=的两个根是﹣3和1,20ax bx c m +++=可以看成二次函数y 的图象沿着y 轴平移m 个单位,得到一个根3,由1到3移动2个单位,可得另一个根为﹣5.由于0<n <m ,可知方程20ax bx c n +++=的两根范围在﹣5~﹣3和1~3,由此判断B 符合该范围.故选B .【点评】本题考查二次函数图象与一元二次方程的综合,关键在于方程加减任意数值可理解为在图像上进行平移. 二、填空题:每小题4分,共20分.11.化简(1)x x x -+的结果是_____.【答案】2x【解析直接去括号然后合并同类项即可.【详解】解:22(1)x x x x x x x -+=-+=,故答案为:2x .【点评】本题考查了整式运算,涉及了单项式乘以多项式、合并同类项等知识点,熟练掌握运算性质是解题的关键.12.如图,点A 是反比例函数3y x=图象上任意一点,过点A 分别作x 轴,y 轴的垂线,垂足为B ,C ,则四边形OBAC 的面积为____.【答案】3【解析】根据反比例函数3y x=的图象上点的坐标性得出|xy|=3,进而得出四边形OBAC 的面积. 【详解】解:如图所示:可得OB×AB =|xy|=|k|=3, 则四边形OBAC 的面积为:3,故答案为:3.【点评】本题考查了反比例函数k y x =(k≠0)系数k 的几何意义:从反比例函数k y x=(k≠0)图象上任意一点向x 轴和y 轴作垂线,垂线与坐标轴所围成的矩形面积为|k|. 13.在“抛掷正六面体”的试验中,正六面体的六个面分别标有数字“1”“2”“3”“4”“5”“6”,在试验次数很大时,数字“6”朝上的频率的变化趋势接近的值是_____.【答案】16【解析】随着试验次数的增多,变化趋势接近与理论上的概率. 【详解】解:如果试验的次数增多,出现数字“6”的频率的变化趋势是接近16. 故答案为:16. 【点评】实验次数越多,出现某个数的变化趋势越接近于它所占总数的概率.14.如图,ABC ∆是O 的内接正三角形,点O 是圆心,点D ,E 分别在边AC ,AB 上,若DA EB =,则DOE ∠的度数是____度.【答案】120【解析】本题可通过构造辅助线,利用垂径定理证明角等,继而利用SAS 定理证明三角形全等,最后根据角的互换结合同弧所对的圆周角等于圆心角的一半求解本题.【详解】连接OA ,OB ,作OH ⊥AC ,OM ⊥AB ,如下图所示:因为等边三角形ABC ,OH ⊥AC ,OM ⊥AB ,由垂径定理得:AH=AM ,又因为OA=OA ,故△OAH ≅△OAM (HL ).∴∠OAH=∠OAM .又∵OA=OB,AD=EB,∴∠OAB=∠OBA=∠OAD,∴△ODA ≅△OEB (SAS ),∴∠DOA=∠EOB,∴∠DOE=∠DOA+∠AOE=∠AOE+∠EOB=∠AOB .又∵∠C=60°以及同弧AB ,∴∠AOB=∠DOE=120°.故本题答案为:120.【点评】本题考查圆与等边三角形的综合,本题目需要根据等角的互换将所求问题进行转化,构造辅助线是本题难点,全等以及垂径定理的应用在圆综合题目极为常见,圆心角、弧、圆周角的关系需熟练掌握. 15.如图,ABC ∆中,点E 在边AC 上,EB EA =,2A CBE ∠=∠,CD 垂直于BE 的延长线于点D ,8BD =,11AC =,则边BC 的长为_____.【答案】45【解析】如图,延长BD到点G,使DG=BD,连接CG,则由线段垂直平分线的性质可得CB=CG,在EG 上截取EF=EC,连接CF,则∠EFC=∠ECF,∠G=∠CBE,根据等腰三角形的性质和三角形的内角和定理可得∠EFC=∠A=2∠CBE,再根据三角形的外角性质和等腰三角形的判定可得FC=FG,设CE=EF=x,则可根据线段间的和差关系求出DF的长,进而可求出FC的长,然后根据勾股定理即可求出CD的长,再一次运用勾股定理即可求出答案.【详解】解:如图,延长BD到点G,使DG=BD,连接CG,则CB=CG,在EG上截取EF=EC,连接CF,则∠EFC=∠ECF,∠G=∠CBE,∵EA=EB,∴∠A=∠EBA,∵∠AEB=∠CEF,∴∠EFC=∠A=2∠CBE=2∠G,∵∠EFC=∠G+∠FCG,∴∠G=∠FCG,∴FC=FG,设CE=EF=x,则AE=BE=11-x,∴DE=8-(11-x)=x-3,∴DF=x-(x-3)=3,∵DG=DB=8,∴FG=5,∴CF=5,在Rt△CDF中,根据勾股定理,得224=-=,CD CF DF∴2222=+=+=.BC BD CD8445故答案为:45.【点评】本题考查了等腰三角形的判定和性质、三角形的内角和定理和三角形的外角性质、勾股定理以及线段垂直平分线的性质等知识,具有一定的难度,正确添加辅助线、灵活应用上述知识是解题的关键.三、解答题:本大题10小题,共100分.⨯的正方形网格中,每个小格的顶点叫做格点,以格点为项点分别按下列要求画三角形.16.如图,在44(1)在图①中,画一个直角三角形,使它的三边长都是有理数;(2)在图②中,画一个直角三角形,使它的一边长是有理数,另外两边长是无理数;(3)在图③中,画一个直角三角形,使它的三边长都是无理数.【答案】(1)见解析;(2)见解析;(3)见解析【解析】(1)画一个边长为3,4,5的三角形即可;(2)利用勾股定理,找长为2、224的线段,画三角形即可;(3)利用勾股定理,找长为2、210【详解】解:(答案不唯一)图①(2)图②(3)图③【点评】本题主要考查了勾股定理的应用,准确的理解勾股定理公式和构造直角三角形是解题的关键.17.2020年2月,贵州省积极响应国家“停课不停学”的号召,推出了“空中黔课”.为了解某中学初三学生每天听空中黔课的时间,随机调查了该校部分初三学生.根据调查结果,绘制出了如下统计图表(不完整),请根据相关信息,解答下列问题:部分初三学生每天听空中黔课时间的人数统计表时间/h 1.5 2 2.5 3 3.5 4人数/人 2 6 6 10 m 4部分初三学生每天听空中黔课时间的人数统计图(1)本次共调查的学生人数为_____,在表格中,m ___;(2)统计的这组数据中,每天听空中黔课时间的中位数是____,众数是_____;(3)请就疫情期间如何学习的问题写出一条你的看法.【答案】(1)50,22;(2)3.5h,3.5h;(3)认真听课,独立思考.(答案不唯一)【解析】(1)根据已知人数和比例算出学生总人数,再利用所占比例求出m的值.(2)根据中位数和众数的概念计算即可.(3)任写一条正能量看法即可.【详解】(1)学生人数=2÷4%=50.m=50×44%=22.故答案为:50,22.(2)50÷2=25,所以中位数为第25人所听时间为3.5h,人数最多的也是3.5h,故答案为:3.5h,3.5h.(3)认真听课,独立思考.【点评】本题考查扇形统计图和统计基础运算,关键在于牢记统计相关的概念和运算方法.18.如图,四边形ABCD 是矩形,E 是BC 边上一点,点F 在BC 的延长线上,且CF BE =.(1)求证:四边形AEFD 是平行四边形;(2)连接ED ,若90AED ∠=︒,4AB =,2BE =,求四边形AEFD 的面积.【答案】(1)见解析;(2)40【解析】(1)直接利用矩形的性质结合BE=CF,可得EF AD =,进而得出答案;(2)在Rt ABE ∆中利用勾股定理可计算25EA =,再由求出ABE DEA ∆∆∽得BE EA EA AD =,进而求出AD 长,由AEFD S EF AB =⋅即可求解.【详解】解:(1)∵四边形ABCD 是矩形,∴//AD BC ,AD BC =.∵CF BE =,∴CF EC BE EC +=+,即EF BC =.∴EF AD =,∴四边形AEFD 是平行四边形.(2)如图,连接ED ,∵四边形ABCD 是矩形∴90B ∠=︒在Rt ABE ∆中,4AB =,2BE =,∴由勾股定理得,216420EA =+=,即25EA =∵//AD BC ,∴DAE AEB ∠=∠.∵90B AED ∠=∠=︒,∴ABE DEA ∆∆∽. ∴BE EA EA AD =即2525AD =,解得10AD =. 由(1)得四边形AEFD 是平行四边形,又∵10EF =,高4AB =,∴10440AEFD S EF AB =⋅=⨯=.【点评】本题主要考查了矩形和平行四边形的性质以及判定,相似三角形的判定和性质、勾股定理,熟练运用勾股定理和相似三角形性质求线段长是解题的关键.19.如图,一次函数1y x =+的图象与反比例函数k y x=的图象相交,其中一个交点的横坐标是2.(1)求反比例函数的表达式;(2)将一次函数1y x =+的图象向下平移2个单位,求平移后的图象与反比例函数k y x=图象的交点坐标; (3)直接写出一个一次函数,使其过点(0,5),且与反比例函数k y x =的图象没有公共点. 【答案】(1)6y x=;(2)(2,3),(3,2)--;(3)25y x =-+(答案不唯一) 【解析】(1)将x=2代入一次函数,求出其中一个交点是(2,3),再代入反比例函数k y x=即可解答; (2)先求出平移后的一次函数表达式,联立两个函数解析式得到一元二次方程260x x --=即可解答; (3)设一次函数为y=ax+b (a≠0),根据题意得到b=5,联立一次函数与反比例函数解析式,得到2560ax x +-=,若无公共点,则方程无解,利用根的判别式得到25240a ∆=+<,求出a 的取值范围,再在范围内任取一个a 的值即可.【详解】解:(1)∵一次函数1y x =+的图象与反比例函数k y x =的图象的一个交点的横坐标是2, ∴当2x =时,3y =,∴其中一个交点是(2,3).∴236k =⨯=.∴反比例函数的表达式是6y x=. (2)∵一次函数1y x =+的图象向下平移2个单位,∴平移后的表达式是1y x =-. 联立6y x=及1y x =-,可得一元二次方程260x x --=, 解得12x =-,23x =.∴平移后的图象与反比例函数图象的交点坐标为(2,3),(3,2)--(3)设一次函数为y=ax+b (a ≠0),∵经过点(0,5),则b=5,∴y=ax+5,联立y=ax+5以及6y x=可得:2560ax x +-=, 若一次函数图象与反比例函数图象无交点,则25240a ∆=+<,解得:2524a <-, ∴25y x =-+(答案不唯一).【点评】本题考查了一次函数与反比例函数图象交点问题以及函数图象平移问题,解题的关键是熟悉函数图象上点的特征,第(3)问需要先确定a 的取值范围.20.“2020第二届贵阳市应急科普知识大赛”的比赛中有一个抽奖活动.规则是:准备3张大小一样,背面完全相同的卡片,3张卡片的正面所写内容分别是《消防知识手册》《辞海》《辞海》,将它们背面朝上洗匀后任意抽出一张,抽到卡片后可以免费领取卡片上相应的书籍.(1)在上面的活动中,如果从中随机抽出一张卡片,记下内容后不放回,再随机抽出一张卡片,请用列表或画树状图的方法,求恰好抽到2张卡片都是《辞海》的概率;(2)再添加几张和原来一样的《消防知识手册》卡片,将所有卡片背面朝上洗匀后,任意抽出一张,使得抽到《消防知识手册》卡片的概率为57,那么应添加多少张《消防知识手册》卡片?请说明理由. 【答案】(1)图表见解析,13;(2)应添加4张《消防知识手册》卡片,理由见解析 【解析】(1)根据题意画出列表,由概率公式即可得出答案;(2)设应添加x 张《消防知识手册》卡片,由概率公式得出方程,解方程即可.【详解】解:(1)先将《消防知识手册》《辞海》《辞海》分别记作A ,1B ,2B ,然后列表如下:总共有6种结果,每种结果出现的可能性相同,而2张卡片都是《辞海》的有2种:21(,)B B ,12(,)B B所以,P (2张卡片都是《辞海》)2163==; (2)设再添加x 张和原来一样的《消防知识手册》卡片,由题意得:1537x x +=+,解得,4x =, 经检验,4x =是原方程的根,答:应添加4张《消防知识手册》卡片.【点评】本题考查了列表法以及概率公式,熟悉相关性质是解题的关键.21.脱贫攻坚工作让老百姓过上了幸福的生活.如图①是政府给贫困户新建的房屋,如图②是房屋的侧面示意图,它是一个轴对称图形,对称轴是房屋的高AB 所在的直线.为了测量房屋的高度,在地面上C 点测得屋顶A 的仰角为35︒,此时地面上C 点、屋檐上E 点、屋顶上A 点三点恰好共线,继续向房屋方向走8m 到达点D 时,又测得屋檐E 点的仰角为60︒,房屋的顶层横梁12EF m =,//EF CB ,AB 交EF 于点G(点C ,D ,B 在同一水平线上).(参考数据:sin350.6︒≈,cos350.8︒≈,tan350.7︒≈ 1.7≈)(1)求屋顶到横梁的距离AG ;(2)求房屋的高AB (结果精确到1m ).【答案】(1)4.2米;(2)14米【解析】(1)//EF CB 可得35AEG ACB ∠=∠=︒,在Rt AGE ∆中由tan AEG AG EG∠=即可求AG ; (2)设EH x =,利用三角函数由x 表示DH 、CH ,由DH -CH =8列方程即可求解.【详解】解:(1)∵房屋的侧面示意图是轴对称图形,AB 所在直线是对称轴,//EF CB ,∴AG EF ⊥,162EG EF ==,35AEG ACB ∠=∠=︒. 在Rt AGE ∆中,90AGE ∠=︒,35AEG ∠=°,∵tan AEG AG EG∠=,6EG =,tan350.7︒≈. ∴6tan3542AG =≈°(米) 答:屋顶到横梁的距离AG 约是4.2米.(2)过点E 作EH CB ⊥于点H ,设EH x =,在Rt EDH ∆中,90EHD ∠=︒,60EDH ∠=°,∵tan EH EDH DH ∠=,∴tan 60x DH =°, 在Rt ECH ∆中,90EHC ∠=︒,35ECH ∠=°, ∵tan EH ECH CH ∠=,∴tan 35x CH =°.∵8CH DH CD -==, ∴8tan 35tan 60x x -=°°, ∵tan350.7︒≈,3 1.7≈,解得9.52x ≈.∴ 4.29.5213.7214AB AG BG =+=+=≈(米)答:房屋的高AB 约是14米.【点评】本题主要考查了仰角的定义及其解直角三角形的应用,解题时首先正确理解仰角的定义,然后构造直角三角形利用三角函数和已知条件列方程解决问题.22.第33个国际禁毒日到来之际,贵阳市策划了以“健康人生绿色无毒”为主题的禁毒宣传月活动,某班开展了此项活动的知识竞赛.学习委员为班级购买奖品后与生活委员对话如下:(1)请用方程的知识帮助学习委员计算一下,为什么说学习委员搞错了;(2)学习委员连忙拿出发票,发现的确错了,因为他还买了一本笔记本,但笔记本的单价已模糊不清,只能辨认出单价是小于10元的整数,那么笔记本的单价可能是多少元?【答案】(1)方程见解析,因为钢笔的数量不可能是小数,所以学习委员搞错了;(2)可能是2元或者6元【解析】(1)根据题意列出方程解出答案判断即可;(2)根据题意列出方程得出x 与a 的关系,再由题意中a 的条件即可判断x 的范围,从而得出单价.【详解】解:(1)设单价为6元的钢笔买了x 支,则单价为10元的钢笔买了(100x -)支, 根据题意,得610(100)1300378x x +-=-,解得:19.5x =.因为钢笔的数量不可能是小数,所以学习委员搞错了(2)设笔记本的单价为a 元,根据题意,得610(100)1300378x x a +-+=-,整理,得13942x a =+, 因为010a <<,x 随a 的增大而增大,所以19.522x <<,。
贵州省安顺市中考数学试题(解析版)
贵州省安顺市·2018·中考数学试题一、选择题(共10个小题,每小题3分,共30分)1. 下面四个手机应用图标中是轴对称图形是()A. B. C. D.【答案】D【解析】分析:分别根据轴对称图形与中心对称图形性质对各选项进行逐一分析即可、详解:A、既不是轴对称图形,也不是中心对称图形,故本选项错误;B、是中心对称图形,故本选项错误;C、既不是轴对称图形,也不是中心对称图形,故本选项错误;D、是轴对称图形,故本选项正确、故选D、点睛:本题考查是轴对称图形,熟知轴对称图形是针对一个图形而言,是一种具有特殊性质图形,被一条直线分割成两部分沿着对称轴折叠时,互相重合是解答此题关键、2. 算术平方根为()A. B. C. D.【答案】B【解析】分析:先求得值,再继续求所求数算术平方根即可、详解:∵=2,而2算术平方根是,∴算术平方根是,故选B、点睛:此题主要考查了算术平方根定义,解题时应先明确是求哪个数算术平方根,否则容易出现选A错误、3. “五·一”期间,美丽黄果树瀑布景区吸引大量游客前来游览.经统计,某段时间内来该风景区游览人数约为人,用科学记数法表示为()A. B. C. D.【答案】A【解析】分析:利用科学记数法表示形式为a×10n形式,其中1≤|a|<10,n为整数、确定n值时,要看把原数变成a时,小数点移动了多少位,n绝对值与小数点移动位数相同、当原数绝对值>1时,n是正数;当原数绝对值<1时,n是负数、详解:36000用科学记数法表示为3.6×104、故选A、点睛:此题考查了科学记数法表示方法、科学记数法表示形式为a×10n形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a值以及n值、4. 如图,直线,直线与直线,分别相交于、两点,过点作直线垂线交直线于点,若,则度数为()A. B. C. D.【答案】C【解析】分析:根据直角三角形两锐角互余得出∠ACB=90°-∠1,再根据两直线平行,内错角相等求出∠2即可、详解:∵AC⊥BA,∴∠BAC=90°,∴∠ACB=90°-∠1=90°-58°=32°,∵直线a∥b,∴∠ACB=∠2,∴∠2=-∠ACB=32°.故选C、点睛:本题考查了对平行线性质和三角形内角和定理应用,注意:①两直线平行,同位角相等,②两直线平行,内错角相等,③两直线平行,同旁内角互补5. 如图,点,分别在线段,上,与相交于点,已知,现添加以下哪个条件仍不能...判定..()A. B. C. D.【答案】D【解析】分析:欲使△ABE≌△ACD,已知AB=AC,可根据全等三角形判定定理AAS、SAS、ASA添加条件,逐一证明即可、详解:∵AB=AC,∠A为公共角,A、如添加∠B=∠C,利用ASA即可证明△ABE≌△ACD;B、如添AD=AE,利用SAS即可证明△ABE≌△ACD;C、如添BD=CE,等量关系可得AD=AE,利用SAS即可证明△ABE≌△ACD;D、如添BE=CD,因为SSA,不能证明△ABE≌△ACD,所以此选项不能作为添加条件、故选D、点睛:此题主要考查学生对全等三角形判定定理理解和掌握,此类添加条件题,要求学生应熟练掌握全等三角形判定定理、6. 一个等腰三角形两条边长分别是方程两根,则该等腰三角形周长是()A. B. C. D. 或【答案】A【解析】试题分析:∵,∴,即,,①等腰三角形三边是2,2,5,∵2+2<5,∴不符合三角形三边关系定理,此时不符合题意;②等腰三角形三边是2,5,5,此时符合三角形三边关系定理,三角形周长是2+5+5=12;即等腰三角形周长是12、故选A、考点:1、解一元二次方程-因式分解法;2、三角形三边关系;3、等腰三角形性质、7. 要调查安顺市中学生了解禁毒知识情况,下列抽样调查最适合是()A. 在某中学抽取名女生B. 在安顺市中学生中抽取名学生C. 在某中学抽取名学生D. 在安顺市中学生中抽取名男生【答案】B【解析】分析:根据具体情况正确选择普查或抽样调查方法,并理解有些调查是不适合使用普查方法、要选择调查方式,需将普查局限性和抽样调查必要性结合起来具体分析、详解:要调查安顺市中学生了解禁毒知识情况,就对所有学生进行一次全面调查,费大量人力物力是得不尝失,采取抽样调查即可、考虑到抽样全面性,所以应在安顺市中学生中随机抽取200名学生、故选B、点睛:本题考查了抽样调查和全面调查,选择普查还是抽样调查要根据所要考查对象特征灵活选用,一般来说,对于具有破坏性调查、无法进行普查、普查意义或价值不大时,应选择抽样调查,对于精确度要求高调查,事关重大调查往往选用普查、8. 已知,用尺规作图方法在上确定一点,使,则符合要求作图痕迹是()A. B.C. D.【答案】D【解析】分析:要使PA+PC=BC,必有PA=PB,所以选项中只有作AB中垂线才能满足这个条件,故D正确、详解:D选项中作是AB中垂线,∴PA=PB,∵PB+PC=BC,∴PA+PC=BC故选D、点睛:本题主要考查了作图知识,解题关键是根据中垂线性质得出PA=PB、9. 已知直径,是弦,,垂足为,且,则长为()A. B. C. 或 D. 或【答案】C【解析】试题解析:连接AC,AO,∵⊙O直径CD=10cm,AB⊥CD,AB=8cm,∴AM=AB=×8=4cm,OD=OC=5cm.当C点位置如答1所示时,∵OA=5cm,AM=4cm,CD⊥AB,∴cm.∴CM=OC+OM=5+3=8cm.∴在Rt△AMC中,cm.当C点位置如图2所示时,同理可得OM=3cm,∵OC=5cm,∴MC=5﹣3=2cm.∴在Rt△AMC中,cm、综上所述,AC长为cm或cm.故选C、10. 已知二次函数图象如图,分析下列四个结论:①;②;③;④.其中正确结论有()A. 个B. 个C. 个D. 个【答案】B【解析】试题解析:①由开口向下,可得又由抛物线与y轴交于正半轴,可得再根据对称轴在y轴左侧,得到与同号,则可得故①错误;②由抛物线与x轴有两个交点,可得故②正确;③当时,即 (1)当时,,即 (2)(1)+(2)×2得,即又因为所以故③错误;④因为时,时,所以即所以故④正确,综上可知,正确结论有2个.故选B、二、填空题(共8个小题,每小题4分,共32分)11. 函数中自变量取值范围是__________、【答案】【解析】试题解析:根据题意得,x+1>0,解得x>-1、故答案为:x>-1、、12. 学校射击队计划从甲、乙两人中选拔一人参加运动会射击比赛,在选拔过程中,每人射击次,计算他们平均成绩及方差如表,请你根据表中数据选一人参加比赛,最适合人选是__________、【答案】乙【解析】分析:根据方差定义,方差越小数据越稳定、详解:因为S甲2=0.035>S乙2=0.015,方差小为乙,所以本题中成绩比较稳定是乙、故答案为:乙、点睛:本题考查了方差意义、方差是用来衡量一组数据波动大小量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定、13. 不等式组所有整数解积为__________、【答案】0【解析】试题分析:,解不等式①得:,解不等式②得:,∴不等式组整数解为﹣1,0,1…50,所以所有整数解积为0,故答案为:0、考点:一元一次不等式组整数解、14. 若是关于完全平方式,则__________、【答案】7或-1【解析】分析】直接利用完全平方公式定义得出2(m-3)=±8,进而求出答案、详解:∵x2+2(m-3)x+16是关于x完全平方式,∴2(m-3)=±8,解得:m=-1或7,故答案为:-1或7、点睛:此题主要考查了完全平方公式,正确掌握完全平方公式基本形式是解题关键、15. 如图,点,,,均在坐标轴上,且,,若点,坐标分别为,,则点坐标为__________、【答案】【解析】分析:根据相似三角形性质求出P3D坐标,再根据相似三角形性质计算求出OP4长,得到答案、详解:∵点P1,P2坐标分别为(0,-1),(-2,0),∴OP1=1,OP2=2,∵Rt△P1OP2∽Rt△P2OP3,∴,即,解得,OP3=4,∵Rt△P2OP3∽Rt△P3OP4,∴,即,解得,OP4=8,则点P4坐标为(8,0),故答案为:(8,0)、点睛:本题考查是相似三角形判定和性质以及坐标与图形性质,掌握相似三角形判定定理和性质定理是解题关键、16. 如图,为半圆内一点,为圆心,直径长为,,,将绕圆心逆时针旋转至,点在上,则边扫过区域(图中阴影部分)面积为__________、(结果保留)【答案】【解析】分析:根据已知条件和旋转性质得出两个扇形圆心角度数,再根据扇形面积公式进行计算即可得出答案、详解:∵∠BOC=60°,△B′OC′是△BOC绕圆心O逆时针旋转得到,∴∠B′OC′=60°,△BCO=△B′C′O,∴∠B′OC=60°,∠C′B′O=30°,∴∠B′OB=120°,∵AB=2cm,∴OB=1cm,OC′=,∴B′C′=,∴S扇形B′OB=,∵S扇形C′OC=,∴阴影部分面积=S扇形B′OB+S△B′C′O-S△BCO-S扇形C′OC=S扇形B′OB-S扇形C′OC=.故答案为:、点睛:此题考查了旋转性质和扇形面积公式,掌握直角三角形性质和扇形面积公式是本题关键、17. 如图,已知直线与轴、轴相交于、两点,与图象相交于、两点,连接、.给出下列结论:①;②;③;④不等式解集是或.其中正确结论序号是__________、【答案】②③④【解析】分析:根据一次函数和反比例函数性质得到k1k2>0,故①错误;把A(-2,m)、B(1,n)代入y=中得到-2m=n故②正确;把A(-2,m)、B(1,n)代入y=k1x+b得到y=-mx-m,求得P(-1,0),Q (0,-m),根据三角形面积公式即可得到S△AOP=S△BOQ;故③正确;根据图象得到不等式k1x+b>解集是x<-2或0<x<1,故④正确、详解:由图象知,k1<0,k2<0,∴k1k2>0,故①错误;把A(-2,m)、B(1,n)代入y=中得-2m=n,∴m+n=0,故②正确;把A(-2,m)、B(1,n)代入y=k1x+b得,∴,∵-2m=n,∴y=-mx-m,∵已知直线y=k1x+b与x轴、y轴相交于P、Q两点,∴P(-1,0),Q(0,-m),∴OP=1,OQ=m,∴S△AOP=m,S△BOQ=m,∴S△AOP=S△BOQ;故③正确;由图象知不等式k1x+b>解集是x<-2或0<x<1,故④正确;故答案为:②③④、点睛:本题考查了反比例函数与一次函数交点,求两直线交点坐标,三角形面积计算,正确理解题意是解题关键、18. 正方形、、、…按如图所示方式放置.点、、、…和点、、、…分别在直线和轴上,则点坐标是__________、(为正整数)【答案】【解析】分析:由图和条件可知A1(0,1)A2(1,2)A3(3,4),B1(1,1),B2(3,2),Bn横坐标为A n+1横坐标,纵坐标为An纵坐标,又A n横坐标数列为An=2n-1-1,所以纵坐标为(2n-1),然后就可以求出Bn坐标为[A(n+1)横坐标,An纵坐标]、详解:由图和条件可知A1(0,1)A2(1,2)A3(3,4),B1(1,1),B2(3,2),∴Bn横坐标为A n+1横坐标,纵坐标为An纵坐标又A n横坐标数列为An=2n-1-1,所以纵坐标为2n-1,∴Bn坐标为[A(n+1)横坐标,An纵坐标]=(2n-1,2n-1)、故答案为:(2n-1,2n-1)、点睛:本题主要考查函数图象上点坐标特征及正方形性质,解决这类问题首先要从简单图形入手,抓住随着“编号”或“序号”增加时,后一个图形与前一个图形相比,在数量上增加(或倍数)情况变化,找出数量上变化规律,从而推出一般性结论、三、解答题(本大题共8小题,满分88分.解答应写出文字说明、证明过程或演算步骤)19. 计算:.【答案】4.【解析】分析:原式第一项利用乘方意义计算,第二项利用绝对值代数意义化简,第三项利用特殊角三角函数值进行计算,第四项利用零指数幂法则计算,最后一项利用负整指数幂法则计算即可得到结果、详解:原式.点睛:此题考查了实数运算,熟练掌握运算法则是解本题关键、20. 先化简,再求值:,其中.【答案】,.【解析】分析:先化简括号内式子,再根据分式除法进行计算即可化简原式,然后将x=-2代入化简后式子即可解答本题、详解:原式=.∵,∴,舍,当时,原式.点睛:本题考查分式化简求值,解题关键是明确分式化简求值方法、21. 如图是某市一座人行天桥示意图,天桥离地面高是米,坡面倾斜角,在距点米处有一建筑物.为了方便行人推车过天桥,市政府部门决定降低坡度,使新坡面倾斜角,若新坡面下处与建筑物之间需留下至少米宽人行道,问该建筑物是否需要拆除(计算最后结果保留一位小数). (参考数据:,)【答案】该建筑物需要拆除.【解析】分析:根据正切定义分别求出AB、DB长,结合图形求出DH,比较即可、详解:由题意得,米,米,在中,,∴,在中,,∴,∴(米),∵米米,∴该建筑物需要拆除.点睛:本题考查是解直角三角形应用-坡度坡角问题,掌握锐角三角函数定义、熟记特殊角三角函数值是解题关键、22. 如图,在中,是边上中线,是中点,过点作平行线交延长线于点,连接.(1)求证:;(2)若,试判断四边形形状,并证明你结论.【答案】(1)证明见解析;(2)四边形是菱形,理由见解析.【解析】试题分析:(1)根据AAS证△AFE≌△DBE,推出AF=BD,即可得出答案;(2)得出四边形ADCF是平行四边形,根据直角三角形斜边上中线性质得出,根据菱形判定推出即可、试题解析:(1)证明:∵AF∥BC,∴∠AFE=∠DBE,∵E是AD中点,AD是BC边上中线,∴AE=DE,BD=CD,在△AFE和△DBE中∴△AFE≌△DBE(AAS),∴AF=BD,∴AF=DC.(2)四边形ADCF是菱形,证明:AF∥BC,AF=DC,∴四边形ADCF是平行四边形,∵AC⊥AB,AD是斜边BC中线,∴平行四边形ADCF是菱形.点睛:有一组邻边相等平行四边形是菱形.23. 某地年为做好“精准扶贫”,投入资金万元用于异地安置,并规划投入资金逐年增加,年在年基础上增加投入资金万元.(1)从年到年,该地投入异地安置资金年平均增长率为多少?(2)在年异地安置具体实施中,该地计划投入资金不低于万元用于优先搬迁租房奖励,规定前户(含第户)每户每天奖励元,户以后每户每天奖励元,按租房天计算,求年该地至少有多少户享受到优先搬迁租房奖励.【答案】(1)从年到年,该地投入异地安置资金年平均增长率为;(2)年该地至少有户享受到优先搬迁租房奖励.【解析】分析:(1)设年平均增长率为x,根据:2015年投入资金给×(1+增长率)2=2017年投入资金,列出方程求解可得;(2)设今年该地有a户享受到优先搬迁租房奖励,根据:前1000户获得奖励总数+1000户以后获得奖励总和≥500万,列不等式求解可得、详解:(1)设该地投入异地安置资金年平均增长率为,根据题意得,解得:或(舍),答:从年到年,该地投入异地安置资金年平均增长率为;(2)设年该地有户享受到优先搬迁租房奖励,根据题意得,∵,∴,,解得:,答:年该地至少有户享受到优先搬迁租房奖励.点睛:本题主要考查一元二次方程与一元一次不等式应用,由题意准确抓住相等关系并据此列出方程或不等式是解题关键、24. 某电视台为了解本地区电视节目收视情况,对部分市民开展了“你最喜爱电视节目”问卷调查(每人只填写一项),根据收集数据绘制了两幅不完整统计图(如图所示),根据要求回答下列问题:(1)本次问卷调查共调查了________名观众;图②中最喜爱“新闻节目”人数占调查总人数百分比为________;(2)补全图①中条形统计图;(3)现有最喜爱“新闻节目”(记为),“体育节目”(记为),“综艺节目”(记为),“科普节目”(记为)观众各一名,电视台要从四人中随机抽取两人参加联谊活动,请用列表或画树状图方法,求出恰好抽到最喜爱“”和“”两位观众概率.【答案】(1),;(2)补图见解析;(3)恰好抽到最喜爱“”和“”两位观众概率为.【解析】分析:(1)用喜欢科普节目人数除以它所占百分比即可得到调查总人数,用喜爱“新闻节目”人数除以调查总人数得到它所占百分比;(2)用调查总人数分别减去喜欢新闻、综艺、科普人数得到喜欢体育人数,然后补全图①中条形统计图;(3)画树状图展示所有12种等可能结果数,再找出抽到最喜爱“B”和“C”两位观众结果数,然后根据概率公式求解、详解:(1)本次问卷调查共调查观众数为45÷22.5%=200(人);图②中最喜爱“新闻节目”人数占调查总人数百分比为50÷200=25%;(2)最喜爱“新闻节目”人数为200-50-35-45=70(人),如图,(3)画树状图为:共有12种等可能结果数,恰好抽到最喜爱“B”和“C”两位观众结果数为2,所以恰好抽到最喜爱“B”和“C”两位观众概率=、点睛:本题考查了列表法与树状图法:通过列表法或树状图法展示所有等可能结果求出n,再从中选出符合事件A或B结果数目m,然后根据概率公式求出事件A或B概率、也考查了统计图、25. 如图,在中,,为中点,与半圆相切于点.(1)求证:是半圆所在圆切线;(2)若,,求半圆所在圆半径.【答案】(1)证明见解析;(2)半圆所在圆半径是.【解析】分析:(1)根据等腰三角形性质,可得OA,根据角平分线性质,可得OE,根据切线判定,可得答案;(2)根据余弦,可得OB长,根据勾股定理,可得OA长,根据三角形面积,可得OE长、详解:(1)如图1,作于,连接、,∵,为中点,∴.∵与半圆相切于点,∴,∵,∴,∵经过圆半径外端,∴是半圆所在圆切线;(2)∵,是中点,∴,由,,得∴.由勾股定理,得.由三角形面积,得,,半圆所在圆半径是.点睛:本题考查了切线判定与性质,利用切线判定是解题关键,利用面积相等得出关于OE长是解题关键、26. 如图,已知抛物线对称轴为直线,且抛物线与轴交于、两点,与轴交于点,其中,.(1)若直线经过、两点,求直线和抛物线解析式;(2)在抛物线对称轴上找一点,使点到点距离与到点距离之和最小,求出点坐标;(3)设点为抛物线对称轴上一个动点,求使为直角三角形点坐标.【答案】(1)抛物线解析式为,直线解析式为.(2);(3)坐标为或或或.【解析】分析:(1)先把点A,C坐标分别代入抛物线解析式得到a和b,c关系式,再根据抛物线对称轴方程可得a和b关系,再联立得到方程组,解方程组,求出a,b,c值即可得到抛物线解析式;把B、C两点坐标代入直线y=mx+n,解方程组求出m和n值即可得到直线解析式;(2)设直线BC与对称轴x=-1交点为M,则此时MA+MC值最小、把x=-1代入直线y=x+3得y值,即可求出点M坐标;(3)设P(-1,t),又因为B(-3,0),C(0,3),所以可得BC2=18,PB2=(-1+3)2+t2=4+t2,PC2=(-1)2+(t-3)2=t2-6t+10,再分三种情况分别讨论求出符合题意t值即可求出点P坐标、详解:(1)依题意得:,解之得:,∴抛物线解析式为.∵对称轴为,且抛物线经过,∴把、分别代入直线,得,解之得:,∴直线解析式为.(2)直线与对称轴交点为,则此时值最小,把代入直线得,∴.即当点到点距离与到点距离之和最小时坐标为.(注:本题只求坐标没说要证明为何此时值最小,所以答案没证明值最小原因). (3)设,又,,∴,,,①若点为直角顶点,则即:解之得:,②若点为直角顶点,则即:解之得:,③若点为直角顶点,则即:解之得:,.综上所述坐标为或或或.点睛:本题综合考查了二次函数图象与性质、待定系数法求函数(二次函数和一次函数)解析式、利用轴对称性质确定线段最小长度、难度不是很大,是一道不错中考压轴题、。
贵州省安顺市2022年中考数学真题试题(含答案)
贵州省安顺市 2022年中考数学真题试题一、选择题〔共10个小题,每题3分,共30分〕1.下面四个 应用图标中是轴对称图形的是〔 〕A .B .C .D . 2.4的算术平方根为〔 〕A .2±B .2C .2±D .23.“五·一〞期间,美丽的黄果树瀑布景区吸引大量游客前来游览.经统计,某段时间内来该风景区游览的人数约为36000人,用科学记数法表示36000为〔 〕A .43.610⨯B .60.3610⨯C .40.3610⨯D .33610⨯4.如图,直线//a b ,直线l 与直线a ,b 分别相交于A 、B 两点,过点A 作直线l 的垂线交直线b 于点C ,假设158∠=︒,那么2∠的度数为〔 〕A .58︒B .42︒C .32︒D .28︒5.如图,点D ,E 分别在线段AB ,AC 上,CD 与BE 相交于O 点,AB AC =,现添加以下哪个条件仍.不能判定....ABE ACD ∆≅∆〔 〕A .BC ∠=∠ B .AD AE = C .BD CE = D .BE CD =6.一个等腰三角形的两条边长分别是方程27100x x -+=的两根,那么该等腰三角形的周长是〔 〕A .12B .9C .13D .12或97.要调查安顺市中学生了解禁毒知识的情况,以下抽样调查最适合的是〔 〕A .在某中学抽取200名女生B .在安顺市中学生中抽取200名学生C .在某中学抽取200名学生D .在安顺市中学生中抽取200名男生8.()ABC AC BC ∆<,用尺规作图的方法在BC 上确定一点P ,使PA PC BC +=,那么符合要求的作图痕迹是〔 〕A .B .C .D .9.O 的直径10CD cm =,AB 是O 的弦,AB CD ⊥,垂足为M ,且8AB cm =,那么AC 的长为〔 〕A .25cmB .5cmC .25cm 或45cmD .23cm 或43cm10.二次函数2(0)y ax bx c a =++≠的图象如图,分析以下四个结论:①0abc <;②240b ac ->;③30a c +>;④22()a c b +<.其中正确的结论有〔 〕A .1个B .2个C .3个D .4个二、填空题〔共8个小题,每题4分,共32分〕11.函数11y x =+中自变量x 的取值范围是 . 12.学校射击队方案从甲、乙两人中选拔一人参加运动会射击比赛,在选拔过程中,每人射击10次,计算他们的平均成绩及方差如表,请你根据表中的数据选一人参加比赛,最适合的人选是 .选手甲 乙 平均数〔环〕9.5 9.5 方差 0.035 0.01513.不等式组34012412x x +≥⎧⎪⎨-≤⎪⎩的所有整数解的积为 . 14.假设22(3)16x m x +-+是关于x 的完全平方式,那么m = . 15.如图,点1P ,2P ,3P ,4P 均在坐标轴上,且1223PP P P ⊥,2334P P P P ⊥,假设点1P ,2P 的坐标分别为(0,1)-,(2,0)-,那么点4P 的坐标为 .16.如图,C 为半圆内一点,O 为圆心,直径AB 长为2cm ,60BOC ∠=︒,90BCO ∠=︒,将BOC ∆绕圆心O 逆时针旋转至''B OC ∆,点'C 在OA 上,那么边BC 扫过区域〔图中阴影局部〕的面积为 2cm .〔结果保存π〕17.如图,直线1y k x b =+与x 轴、y 轴相交于P 、Q 两点,与2k y x =的图象相交于(2,)A m -、(1,)B n 两点,连接OA 、OB .给出以下结论:①120k k <;②102m n +=;③AOP BOQ S S ∆∆=;④不等式21k k x b x +>的解集是2x <-或01x <<. 其中正确结论的序号是 .18.正方形111A B C O 、2221A B C C 、3332A B C C 、…按如下图的方式放置.点1A 、2A 、3A 、…和点1C 、2C 、3C 、…分别在直线1y x =+和x 轴上,那么点n B 的坐标是 .〔n 为正整数〕三、解答题〔本大题共8小题,总分值88分.解容许写出文字说明、证明过程或演算步骤〕19.计算:()2020181132tan 60 3.142π-⎛⎫-+︒--+ ⎪⎝⎭. 20.先化简,再求值:2282442x x x x x ⎛⎫÷-- ⎪-+-⎝⎭,其中2x =. 21.如图是某市一座人行天桥的示意图,天桥离地面的高BC 是10米,坡面AC 的倾斜角45CAB ∠=︒,在距A 点10米处有一建筑物HQ .为了方便行人推车过天桥,市政府部门决定降低坡度,使新坡面DC 的倾斜角30BDC ∠=︒,假设新坡面下D 处与建筑物之间需留下至少3米宽的人行道,问该建筑物是否需要撤除〔计算最后结果保存一位小数〕. 〔参考数据:2 1.414≈,3 1.732≈〕22.如图,在ABC ∆中,AD 是BC 边上的中线,E 是AD 的中点,过点A 作BC 的平行线交BE 的延长线于点F ,连接CF .〔1〕求证:AF DC =;〔2〕假设AB AC ⊥,试判断四边形ADCF 的形状,并证明你的结论.23.某地2015年为做好“精准扶贫〞,投入资金1280万元用于异地安置,并规划投入资金逐年增加,2017年在2015年的根底上增加投入资金1600万元.〔1〕从2015年到2017年,该地投入异地安置资金的年平均增长率为多少?〔2〕在2017年异地安置的具体实施中,该地方案投入资金不低于500万元用于优先搬迁租房奖励,规定前1000户〔含第1000户〕每户每天奖励8元,1000户以后每户每天奖励5元,按租房400天计算,求2017年该地至少有多少户享受到优先搬迁租房奖励.24.某电视台为了解本地区电视节目的收视情况,对局部市民开展了“你最喜爱的电视节目〞的问卷调查〔每人只填写一项〕,根据收集的数据绘制了两幅不完整的统计图〔如下图〕,根据要求答复以下问题:〔1〕本次问卷调查共调查了________名观众;图②中最喜爱“新闻节目〞的人数占调查总人数的百分比为________;〔2〕补全图①中的条形统计图;〔3〕现有最喜爱“新闻节目〞〔记为A 〕,“体育节目〞〔记为B 〕,“综艺节目〞〔记为C 〕,“科普节目〞〔记为D 〕的观众各一名,电视台要从四人中随机抽取两人参加联谊活动,请用列表或画树状图的方法,求出恰好抽到最喜爱“B 〞和“C 〞两位观众的概率.25.如图,在ABC ∆中,AB AC =,O 为BC 的中点,AC 与半圆O 相切于点D .〔1〕求证:AB 是半圆O 所在圆的切线;〔2〕假设2cos 3ABC ∠=,12AB =,求半圆O 所在圆的半径. 26.如图,抛物线2(0)y ax bx c a =++≠的对称轴为直线1x =-,且抛物线与x 轴交于A 、B 两点,与y轴交于C 点,其中(1,0)A ,(0,3)C .〔1〕假设直线y mx n =+经过B 、C 两点,求直线BC 和抛物线的解析式;〔2〕在抛物线的对称轴1x =-上找一点M ,使点M 到点A 的距离与到点C 的距离之和最小,求出点M 的坐标;〔3〕设点P 为抛物线的对称轴1x =-上的一个动点,求使BPC ∆为直角三角形的点P 的坐标.参考答案一、选择题1-5: DBACD 6-10: ABDCB二、填空题11. 1x >- 12. 乙 13. 0 14. 7或-1 15. (8,0) 16. 4π 17. ②③④ 18. 1(21,2)n n -- 三、解答题19.解:原式1233144=-++=.20.解:原式228(2)(2)(2)22x x x x x x ⎡⎤+-=÷-⎢⎥---⎣⎦ 22284(2)2x x x x -+=÷-- 282(2)4x x -=⋅- 22x -. ∵2x =,∴2x =±,2x =舍,当2x =-时,原式21222==---. 21.解:由题意得,10AH =米,10BC =米,在Rt ABC ∆中,45CAB ∠=︒,∴10AB BC ==,在Rt DBC ∆中,30CDB ∠=︒, ∴103tan BC DB CDB==∠ ∴()DH AH AD AH DB AB =-=--101031020103 2.7=-=-≈〔米〕, ∵2.7米3<米,∴该建筑物需要撤除.22.证明:〔1〕∵E 是AD 的中点,∴AE ED =.∵//AF BC ,∴AFE DBE ∠=∠,FAE BDE ∠=∠,∴AFE DBE ∆≅∆.∴AF DB =.∵AD 是BC 边上的中点,∴DB DC =,∴AF DC =.〔2〕四边形ADCF 是菱形.理由:由〔1〕知,AF DC =,∵//AF CD ,∴四边形ADCF 是平行四边形.又∵AB AC ⊥,∴ABC ∆是直角三角形.∵AD 是BC 边上的中线, ∴12AD BC DC ==. ∴平行四边形ADCF 是菱形.23.解:〔1〕设该地投入异地安置资金的年平均增长率为x ,根据题意得21280(1)12801600x +=+,解得:0.5x =或 2.5x =-〔舍〕,答:从2015年到2017年,该地投入异地安置资金的年平均增长率为50%; 〔2〕设2017年该地有a 户享受到优先搬迁租房奖励,根据题意得,∵8100040032000005000000⨯⨯=<,∴1000a >,10008400(1000)54005000000a ⨯⨯+-⨯⨯≥,解得:1900a ≥,答:2017年该地至少有1900户享受到优先搬迁租房奖励.24.解:〔1〕200,25%.〔2〕最喜爱“新闻节目〞的人数为20050354570---=〔人〕,如图,〔3〕画树状图为:共有12种等可能的结果,恰好抽到最喜爱“B 〞和“C 〞两位观众的结果数为2, 所以恰好抽到最喜爱“B 〞和“C 〞两位观众的概率21126==. 25.〔1〕证明:如图1,作OE AB ⊥于E ,连接OD 、OA ,∵AB AC =,O 为BC 的中点,∴CAO BAO ∠=∠.∵AC 与半圆O 相切于点D ,∴OD AC ⊥,∵OE AB ⊥,∴OD OE =,∵AB 经过圆O 半径的外端,∴AB 是半圆O 所在圆的切线;〔2〕∵AB AC =,O 是BC 的中点,∴AO BC ⊥,由2cos 3ABC ∠=,12AB =,得∴2cos 1283OB AB ABC =⋅∠=⨯=. 由勾股定理,得2245AO AB OB =-=.由三角形的面积,得1122AOB S AB OE OB AO ∆=⋅=⋅, 853OB OA OE AB ⋅==,半圆O 所在圆的半径是853. 26.解:〔1〕依题意得:1203b a a b c c ⎧-=-⎪⎪++=⎨⎪=⎪⎩,解之得:123a b c =-⎧⎪=-⎨⎪=⎩,∴抛物线的解析式为223y x x =--+.∵对称轴为1x =-,且抛物线经过(1,0)A ,∴把(3,0)B -、(0,3)C 分别代入直线y mx n =+, 得303m n n -+=⎧⎨=⎩,解之得:13m n =⎧⎨=⎩, ∴直线y mx n =+的解析式为3y x =+.〔2〕直线BC 与对称轴1x =-的交点为M ,那么此时MA MC +的值最小,把1x =-代入直线3y x =+得2y =,∴(1,2)M -.即当点M 到点A 的距离与到点C 的距离之和最小时M 的坐标为(1,2)-.〔注:此题只求M 坐标没说要证明为何此时MA MC +的值最小,所以答案没证明MA MC +的值最小的原因〕.〔3〕设(1,)P t -,又(3,0)B -,(0,3)C ,∴218BC =,2222(13)4PB t t =-++=+,2222(1)(3)610PC t t t =-+-=-+, ①假设点B 为直角顶点,那么222BC PB PC +=即:22184610t t t ++=-+解之得:2t =-, ②假设点C 为直角顶点,那么222BC PC PB +=即:22186104t t t +-+=+解之得:4t =, ③假设点P 为直角顶点,那么222PB PC BC +=即:22461018t t t ++-+=解之得: 13172t +=23172t =. 综上所述P 的坐标为(1,2)--或(1,4)-或317(+-或317()--.。
安顺中考数学试题及答案
安顺中考数学试题及答案一、选择题(每题3分,共30分)1. 下列哪个数是最小的正整数?A. 0B. 1C. -1D. 2答案:B2. 如果a > 0,b < 0,且|a| < |b|,那么a + b的值是:A. 正数B. 负数C. 零D. 无法确定答案:B3. 一个直角三角形的两条直角边分别为3和4,斜边的长度是:A. 5B. 6C. 7D. 8答案:A4. 下列哪个表达式的结果不是整数?A. 2^3B. 3^2C. 4^1/2D. 5^0答案:C5. 一个数的平方根是它本身,这个数是:A. 1B. 0C. -1D. 2答案:B6. 一个圆的半径是5,那么它的直径是:A. 10B. 15C. 20D. 25答案:A7. 如果一个数的立方是-8,那么这个数是:A. 2B. -2C. 3D. -38. 一个数的倒数是它本身,这个数是:A. 1B. 0C. -1D. 2答案:A9. 一个长方体的长、宽、高分别是2、3、4,它的体积是:A. 24B. 20C. 18D. 12答案:A10. 下列哪个是二次方程的根?A. x^2 - 4x + 4 = 0B. x^2 + 4x + 4 = 0C. x^2 - x - 6 = 0D. x^2 + 2x + 1 = 0答案:A二、填空题(每题2分,共20分)11. 一个数的绝对值是5,这个数可以是______或______。
答案:5,-512. 一个分数的分子是8,分母是3,这个分数化简后是______。
答案:\(\frac{8}{3}\)13. 如果一个角是直角的一半,那么这个角是______度。
答案:4514. 一个数的平方是16,这个数可以是______或______。
答案:4,-415. 一个数的立方根是2,这个数是______。
16. 一个数的相反数是-3,这个数是______。
答案:317. 一个数的平方根是\(\sqrt{2}\),这个数是______。
安顺市中考数学试题及答案
一、选择题(共30分,每小题3分)1. D 2 .B 3. C 4. C 5.A 6.B 7.A 8.A 9.D 10.D二、填空题(共32分,每小题4分)11、-1 12、2 13、))((b a b a a -+ 14、25 15、6 16、76 17、B 18,30三、解答题(共88分)19.解:3235322(6')12(8')2222=∙-∙+=-+=原式 20.解:()()()()()()2222242(3')6'2222x x x x x x -+-⎡⎤-=∙+=⎢⎥-⎣⎦原式或 ()2254415(8')222x x --===时,21.解:解①得2<x (3′) 解②得1-≥x(6′) ∴12x -≤<(7′) ∴所求不等式组的整数解为:-1. 0.1 . (8′) 22.解:(1)50,20 (4′) (2)103(7′)(3)依题意,有= 18 . (8′)解得x ≈530 . 经检验,x =530是原方程的解.答:每张乒乓球门票的价格约为530元. (10′)说明:学生答案在区间[528,530]内都得满分。
23.解:(1)∵点A (1,1)在反比例函数x 2ky =的图象上,∴k=2.∴反比例函数的解析式为:x 1y =. (3′)一次函数的解析式为:b x 2y +=.∵点A (1,1)在一次函数b x 2y +=的图象上 ∴1b -=.∴一次函数的解析式为1x 2y -= (6′)(2)∵点A (1,1) ∴∠AOB=45o .∵△AOB 是直角三角形 ∴点B 只能在x 轴正半轴上.① 当∠OB 1A=90 o 时,即B 1A ⊥OB 1.∵∠AOB 1=45o ∴B 1A= OB 1 . ∴B 1(1,0).(8′)② 当∠O A B 2=90 o 时,∠AOB 2=∠AB 2O=45o ,∴B 1 是OB 2中点, ∴B 2(2,0). (10′)综上可知,B 点坐标为(1,0)或(2,0).24. 解:(1)设成人人数为x 人,则学生人数为(12-x)人. 则 (1′)35x + 235(12 –x )= 350 (4′)解得:x = 8 (7′)故:学生人数为12 – 8 = 4 人, 成人人数为8人. (8′)(2)如果买团体票,按16人计算,共需费用:35×0.6×16 = 336元336﹤350 所以,购团体票更省钱。
2023年贵州安顺中考数学真题及答案
2023同学你好!答题前请认真阅读以下内容:A.B.C.D.3.据中国经济网资料显示,今年一季度全国居民人均可支配收入平稳增长,全国居民元.10870这个数用科学记数法表示正确的是(41.08710⨯31.08710⨯BD 相交于点E .若40C =︒,则A ∠的度数是(A.39︒B.40︒5.化简11a a a+-结果正确的是(A.4m B.6m8.在学校科技宣传活动中,某科技活动小组将个标有“高铁”的小球(除标记外其它都相同)放入盒中,小红从盒中随机摸出球,并对小球标记的内容进行介绍,下列叙述正确的是(A.模出“北斗”小球的可能性最大C.摸出“高铁”小球的可能性最大A.第一象限B.第二象限11.如图,在四边形ABCD中,A.2B.312.今年“五一”假期,小星一家驾车前往黄果树旅游,在行驶过程中,汽车离黄果树景点的路程y(km)与所用时间x(h)之间的函数关系的图象如图所示,下列说法正确的是()A.小星家离黄果树景点的路程为50km75km/hC.小星从家出发2小时离景点的路程为用了3h二、填空题(每小题4分,共16分)x-=__________.13.因式分解:2414.如图,是贵阳市城市轨道交通运营部分示意图,以喷水池为原点,分别以正东、正北方向为x轴、y轴的正方向建立平面直角坐标系,若贵阳北站的坐标是洞堡机场的坐标是_______.三、解答题(本大题共9步骤)17.(1)计算:2(2)(-+(2)已知,1,A a B =-=18.为加强体育锻炼,某校体育兴趣小组,随机抽取部分学生,对他们在一周内体育锻炼的情况进行问卷调查,根据问卷结果,绘制成如下统计图.请根据相关信息,解答下列问题:某校学生一周体育锻炼调查问卷以下问题均为单选题,请根据实际情况填写(其中0~4表示大于等于0同时小星:由题目的已知条件,若连接BE 证明(1)请你选择一位同学的说法,并进行证明;(2)连接AD ,若5AD =21.如图,在平面直角坐标系中,四边形是矩形,反比例函数()0k y x x=>的图象分别与,AB BC 交于点(D (1)求反比例函数的表达式和点E 的坐标;(2)若一次函数y x m =+与反比例函数,当点M 在反比例函数图象上,D E 之间的部分时(点m 的取值范围.22.贵州旅游资源丰富.某景区为给游客提供更好的游览体验,拟在如图①景区内修建观光索道.设计示意图如图②所示,以山脚、CD 两段长度相等的观光索道,最终到达山顶D 处,中途设计了一段与平行的观光平台BC 为50m .索道AB 与AF 的夹角为15︒,两处的水平距离AE(1)求索道AB 的长(结果精确到1m );(2)求水平距离AF 的长(结果精确到1m ).(参考数据:sin150.25︒≈,cos150.96︒≈,tan150.26︒≈,223.如图,已知O 是等边三角形ABC 的外接圆,连接CO 并延长交于点E ,连接EA ,EB .(1)写出图中一个度数为30︒的角:_______,图中与ACD 全等的三角形是_______;(2)求证:AED CEB ∽△△;(3)连接OA ,OB ,判断四边形OAEB 的形状,并说明理由.24.如图①,是一座抛物线型拱桥,小星学习二次函数后,受到该图启示设计了一建筑物造型,它的截面图是抛物线的一部分(如图②所示),抛物线的顶点在与水平线OA 垂直,9OC =,点A 在抛物线上,且点A 到对称轴的距离抛物线上,点B 到对称轴的距离是1.(1)求抛物线的表达式;(2)如图②,为更加稳固,小星想在OC 上找一点P ,加装拉杆,PA PB ,同时使拉杆的长度之和最短,请你帮小星找到点P 的位置并求出坐标;(3)为了造型更加美观,小星重新设计抛物线,其表达式为221(0)y x bx b b =-++->,当46x ≤≤时,函数y 的值总大于等于9.求b 的取值范围.25.如图①,小红在学习了三角形相关知识后,对等腰直角三角形进行了探究,在等腰直角三角形ABC 中,,90CA CB C =∠=︒,过点B 作射线BD AB ⊥,垂足为B ,点P 在CB 上.(1)【动手操作】如图②,若点P 在线段CB 上,画出射线PA ,并将射线PA 绕点P 逆时针旋转90︒与BD 交于点E ,根据题意在图中画出图形,图中PBE ∠的度数为_______度;(2)【问题探究】根据(1)所画图形,探究线段PA 与PE 的数量关系,并说明理由;(3)【拓展延伸】如图③,若点P 在射线CB 上移动,将射线PA 绕点P 逆时针旋转90︒与BD 交于点E ,探究线段,,BA BP BE 之间的数量关系,并说明理由.ABC 中,120BAC ∠=︒,∴(11802B C BAC ∠=∠=︒-∠ AD BC ⊥,∴11126m 22AD AB ==⨯=,故选B.矩形ABCD 中,1AB =∴3BC AD ==,∴1tan 3AB ACB BC ∠===∴30ACB ∠=︒,60BAC ∠= 60BCE ∠=︒,BAE ∠=∴30ACE BCA ︒∠=∠=,∵6030ACD ACB ∠+∠=︒+∴点E 关于AC 的对称点∴AFB CAF ACB ∠=∠+∠∴45AFB BAF ︒∠=∠=,∴1AB FB ==,∴31FC BC BF =-=-,∴四边形ABCE 的面积ABC ACE ABC S S S S =+=+ 故答案为:2312-.【点睛】本题考查矩形的性质,根据特殊角三角函数值求角的度数,轴对称的性质,等腰三角形的判定和性质,三角形外角的性质等,综合性较强,难度较大,解题的关键是正确作出辅助线,将四边形ABCE 17.(1)4;(2)2a >【分析】(1)先计算乘方和零次幂,再进行加减运算;由①可知四边形AEBC是矩形,∴CE AB=,四边形AEDB是平行四边形,∴DE AB=,∴CE DE=.(2)解:如图,连接ADBD CB=,23 CBAC=,【点睛】本题考查解直角三角形解决实际应用题,解题的关键是熟练掌握几种三角函数.23.(1)1∠、2∠、3∠、4∠;(2)证明见详解;(3)四边形OAEB 是菱形;【分析】(1)根据外接圆得到CO 是ACB ∠的角平分线,即可得到30︒的角,根据垂径定理得到90ADC BDC ∠=∠=︒,即可得到答案;(2)根据(1)得到3=2∠∠,根据垂径定理得到5660∠=∠=︒,即可得到证明;(3)连接OA ,OB ,结合5660∠=∠=︒得到OAE △,OBE △是等边三角形,从而得到OA OB AE EB r ====,即可得到证明;【详解】(1)解:∵O 是等边三角形ABC 的外接圆,∴CO 是ACB ∠的角平分线,60ACB ABC CAB ∠=∠=∠=︒,∴1230∠=∠=︒,∵CE 是O 的直径,∴90CAE CBE ∠=∠=︒,∴3430∠=∠=︒,∴30︒的角有:1∠、2∠、3∠、4∠,∵CO 是ACB ∠的角平分线,∴90ADC BDC ∠=∠=︒,56903060∠=∠=︒-︒=︒,在ACD 与BCD △中,∵1290CD CD ADC BDC ∠=∠⎧⎪=⎨⎪∠=∠=︒⎩,∴ACD BCD ≌,故答案为:1∠、2∠、3∠、4∠,BCD △;(2)证明:∵56∠=∠,3=230∠∠=︒,∴AED CEB ∽△△;(3)解:连接OA ,OB ,∵OA OE OB r ===,5660∠=∠=︒,∴OAE △,OBE △是等边三角形,∴OA OB AE EB r ====,∴四边形OAEB 是菱形;【点睛】本题考查垂径定理,菱形判定,等边三角形的判定和性质,相似三角形的判定等知识,解题的关键是熟练掌握垂径定理,从而得到相应角的等量关系.24.(1)29y x =-+(2)点P 的坐标为()0,6(3)4613b ≥【分析】(1)设抛物线的解析式为(2)点B 关于y 轴的对称点坐标即可;(3)分05b <≤和5b >两种情况,根据最小值大于等于【详解】(1)解: 抛物线的对称轴与∴设抛物线的解析式为y 9OC =,3OA =,∴()09C ,,()3,0A ,将()09C ,,()3,0A 代入y 2930k a k =⎧⎨⋅+=⎩,解得91k a =⎧⎨=-⎩,∴抛物线的解析式为y =-(2)解: 抛物线的解析式为当1x =时,198y =-+=(3)解: 22y x bx =-+∴抛物线开口向下,当05b <≤时,在46x ≤≤范围内,当x =则13379b -≥,解得4613b ≥,∴46513b ≤≤;当5b >时,在46x ≤≤范围内,当x =∵,90CA CB C =∠=︒,∴190452ABC BAC ∠=∠=⨯︒=∵BD AB ⊥,∴90ABD Ð=°,∴45CBE ABC ABE ∠=∠+∠=根据旋转可知,90APE ∠=︒,∵90ABE ∠=︒,∴A 、P 、B 、E 四点共圆,∴45AEP ABP ∠=∠=︒,∴904545EAP ∠=︒-︒=︒,∴AEP EAP ∠=∠,∴PA PE =.(3)解:当点P 在线段BC 上时,连接根据解析(2)可知,PA PE =,∵90EFP APE ∠=∠=︒,∴EPF PEF EPF APC ∠+∠=∠+∠∴PEF APC ∠=∠,∵90EFP ACP ∠=∠=︒,∴PEF APC ≌,∴EF PC =,∵18045EBF CBE ∠=︒-∠=︒,∠∴EBF △为等腰直角三角形,∴2BE EF =,∵ABC 为等腰直角三角形,根据旋转可知,90APE ∠=︒,∵90ABE ∠=︒,∴A 、B 、P 、E 四点共圆,∴45EAP EBP ∠=∠=︒,∴904545AEP ∠=︒-︒=︒,∴AEP EAP ∠=∠,∴PA PE =,∵90EFP APE ∠=∠=︒,∴90EPF PEF EPF APC ∠+∠=∠+∠=∴PEF APC ∠=∠,∵90EFP ACP ∠=∠=︒,∴PEF APC ≌,∴PF AC =,∵BC AC =,∴PF BC =,∵45EBF ∠=︒,90EFB ∠=︒,∴EBF △为等腰直角三角形,∴()(222BE BF PF BP BC ==+=即2BE BA BP =+;四点共圆,等腰直角三角形的性质,解题的关键是作出图形和相关的辅助线,数形结合,并注意分类讨论.。
2022年贵州省安顺市中考数学真题(解析版)
2022年贵州省安顺市中考数学真题一、选择题1. 下列实数中,比-5小的数是( )A. -6B. 12-C. 0D. 【答案】A【解析】【分析】根据两个负数比较,绝对值大的反而小,正数大于0,负数小于0,即可求解.【详解】解:∵16502-<-<-<<.∴比-5小的数是-6.故选A【点睛】本题考查了实数大小比较,掌握两个负数的大小比较是解题的关键.2. 某几何体如图所示,它的俯视图是( )A B. C. D.【答案】D【解析】【分析】根据从上面看得到的图形是俯视图,即可得答案.【详解】解:从上面看,是两个圆形,大圆内部有个小圆.故选:D .【点睛】本题考查了简单组合体的三视图,解题的关键是掌握从上面看得到的图形是俯视图.3. 贵州省近年来经济飞速发展,经济增长速度名列前茅,据相关统计,2021年全省GDP 约为196000000万元,则数据196000000用科学记数法表示为( )A. 619610⨯B. 719.610⨯C. 81.9610⨯D. 90.19610⨯.【解析】【分析】用科学记数法表示较大的数时,一般形式为10n a ⨯,其中11|0|a ≤<,n 为整数.【详解】解:8196000000 1.9610=⨯.故选C .【点睛】本题考查了科学记数法,科学记数法的表示形式为10n a ⨯的形式,其中11|0|a ≤<,n 为整数.确定n 的值时,要看把原来的数,变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值10≥时,n 是正数;当原数的绝对值1<时,n 是负数,确定a 与n 的值是解题的关键.4. 如图,a b ∥,将一个等腰直角三角板放置到如图所示位置.若115∠=︒,则2∠的大小是( )A. 20︒B. 25︒C. 30°D. 45︒【答案】C【解析】【分析】如图,过等腰直角三角板的一个顶点作直线c a ∥,根据平行线的性质,可得23,14∠=∠∠=∠3445∠+∠=︒,进而等量代换结合已知条件即可求解.【详解】解:如图,过等腰直角三角板的一个顶点作直线c a∥∵a ∥b ,a b c ∴∥∥,23,14∴∠=∠∠=∠,3445∠+∠=︒ ,1245\Ð+Ð=°,115Ð=°Q ,230∴∠=︒.【点睛】本题考查了平行线的性质与判定,掌握平行线的性质是解题的关键.5. 一组数据:3,4,4,6,若添加一个数据6,则不发生变化的统计量是( )A. 平均数B. 中位数C. 众数D. 方差【答案】B【解析】【分析】根据中位数的定义即可求解.中位数:把一组数据按从小到大的顺序排列,在中间的一个数字(或者两个数字的平均值)叫做这组数据的中位数.【详解】解:∵一组数据:3,4,4,6,的中位数为4442+=,若添加一个数据6,则这组数据变为3,4,4,6,6其中位数为4,∴不发生变化的统计量是中位数,其他统计量均会发生变化,故选B【点睛】本题考查了求中位数,掌握中位数的定义是解题的关键.6. 估计+的值应在( )A. 4和5之间B. 5和6之间C. 6和7之间D. 7和8之间【答案】B【解析】【分析】根据二次根式的混合运算进行化简,进而估算即可求解.【详解】解:原式=+=2+34<< ,526∴<+<,故选B .【点睛】本题考查了二次根式的混合运算,无数的估算,正确的计算是解题的关键.7. 如图,在ABC V 中,90ABC ∠<︒,AB BC ≠,BE 是AC 边上的中线.按下列步骤作图:①分别以点B 和点C 为圆心,大于12BC 的长为半径作弧,两弧相交于点M ,N ;②作直线MN ,分别交BC ,BE 于点D ,O ;③连接CO ,DE .则下列结论错误的是( )A. OB OC= B. BOD COD ∠=∠ C. DE AB ∥ D. BOC BDE≌△△【答案】D【解析】【分析】利用基本作图得到MN 垂直平分BC ,根据线段垂直平分线的性质得到OB =OC ,BD =CD ,OD ⊥BC ,则可对A 选项进行判断,根据等腰三角形的“三线合一”可对B 选项进行判断;根据三角形中位线的性质对C 选项进行判断;由于BE BC <,则可对D 选项进行判断.【详解】解:由作法得MN 垂直平分BC ,∴OB =OC ,BD =CD ,OD ⊥BC ,所以A 选项不符合题意;∴OD 平分∠BOC ,∴∠BOD =∠COD ,所以B 选项不符合题意;∵AE =CE ,DB =DC ,∴DE 为△ABC 的中位线,∴DE ∥AB ,所以C 选项不符合题意;∵BE BC <,∴BOC V 与BDE V 不全等;所以D 选项符合题意.故选:D .【点睛】本题考查了作图-基本作图:熟练掌握5种基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).也考查了三角形中位线性质.8. 定义新运算*a b :对于任意实数a ,b 满足()()*1a b a b a b =+--,其中等式右边是通常的加法、减法、乘法运算,例如3*2(32)(32)1514=+--=-=.若*2x k x =(k 为实数)是关于x 的方程,则它的根的情况是( )A. 有一个实数根B. 有两个不相等的实数根C. 有两个相等的实数根D. 没有实数根【答案】B【解析】【分析】根据新定义运算列出一元二次方程,根据一元二次方程根的判别式即可求解.【详解】解:∵()()*1a b a b a b =+--,∴()()*1x k x k x k =+--,∴()()12x k x k x+--=即22210x x k ---=()22441480k k ∆=++=+>∴原方程有两个不相等实数根故选B【点睛】本题考查了新定义运算,一元二次方程根的判别式,掌握一元二次方程根的判别式是解题的关键.9.的正方形ABCD 内接于O e ,PA ,PD 分别与O e 相切于点A 和点D ,PD 的延长线与BC 的延长线交于点E ,则图中阴影部分的面积为( )A. 5π- B. 52π- C. 522π- D. 524π-【答案】C【解析】【分析】根据正方形的性质以及切线的性质,求得,ED DP 的长,勾股定理求得AC 的长,进而根据1=2O ACEP S S S -e 阴影梯形即可求解.【详解】如图,连接AC , BD ,的的正方形ABCD 内接于O e ,即CD =,2AC ∴=,AC ,BD 为O e 的直径,90ECD ∠=︒,PA ,PD 分别与O e 相切于点A 和点D ,EP BD ∴⊥,四边形ABCD 是正方形,45EBD ∴∠=︒,BED ∴V 是等腰直角三角形,2ED BD AC ∴=== ,,,AC BD PA AO PD OD ⊥⊥⊥ ,∴四边形OAPD 是矩形,OA OD = ,∴四边形OAPD 是正方形,1OP OA ∴==,213EP ED PD ∴=+=+=,1=2O ACEP S S S ∴-e 阴影梯形()211231122π=+⨯-⨯5=22π-.故选C .【点睛】本题考查了圆的切线的性质,正方形的性质,勾股定理,等腰直角三角形的性质,掌握以上知识是解题的关键.10. 二次函数2y ax bx c =++的图象如图所示,则一次函数y ax b =+和反比例函数c y x=在同一平面直角坐标系中的图象可能是( )A. B. C. D.【答案】D【解析】【分析】根据二次函数2y ax bx c =++的图象开口向上,得出a >0,与y 轴交点在y 轴的正半轴,得出c >0,利用对称轴2b x a=->0,得出b <0,进而对照四个选项中的图象即可得出结论.【详解】解:因为二次函数2y ax bx c =++图象开口向上,得出a >0,与y 轴交点在y 轴的正半轴,得出c >0,利用对称轴2b x a=->0,得出b <0,所以一次函数y =ax +b 经过一、三、四象限,反比例函数c y x=经过一、三象限.故选:D .【点睛】本题考查了反比例函数的图象、一次函数的图象以及二次函数的图象,根据二次函数图象,得出a >0、b <0、c >0是解题的关键.11. 如图,在ABC V中,AC =,120ACB ∠=︒,D 是边AB 的中点,E 是边BC 上一点,若DE 平分ABC V 的周长,则DE 的长为( )的【答案】C【解析】【分析】延长BC 至F ,使得CF CA =,连接AF ,构造等边三角形,根据题意可得DE 是AFB △的中位线,即可求解.【详解】解:如图,延长BC 至F ,使得CF CA =,连接AF ,120ACB ∠=︒,60FCA ∴∠=︒,又 CF CA =,AFC ∴V 是等边三角形,AF AC ∴== D 是边AB 的中点,E 是边BC 上一点,DE 平分ABC V 的周长,AC CE AD BE BD ∴++=+,AD BD =,AC CE BE ∴+=,AC CF = ,∴CF CE BE +=,即EF EB =,ED ∴是ABF V 的中位线,12ED FA ∴==故选C .【点睛】本题考查了三角形中位线的性质与判定,等边三角形的性质,三角形中线的定义,构造等边三角形是解题的关键.12. 如图,在平面直角坐标系中,将边长为2的正六边形OABCDE 绕点O 顺时针旋转n 个45︒,得到正六边形n n n n n OA B C D E ,当2022n =时,正六边形n n n n n OA B C D E 的顶点n D 的坐标是( )A. ()3- B. (3,- C. (3, D. ()【答案】B【解析】【分析】由于正六边形每次转45°,根据202282526÷=⋅⋅⋅,则2022D 的坐标与6D 的坐标相同,求得6D 的坐标即可求解.【详解】解: 将边长为2的正六边形OABCDE 绕点O 顺时针旋转n 个45︒, 458360︒⨯=︒当2022n =时,202282526÷=⋅⋅⋅则2022D 的坐标与6D 的坐标相同,624590DOD ∠=⨯︒=︒则6OD OD ⊥如图,过点D 作DF x ⊥于F ,过点66D F y ⊥轴于点F 6,2OE DE ==,6OD OD =,66ODF OD F ∴V V ≌,666,DF D F OF OF ∴==,正六边形OABCDE 的一个外角DEF ∠=360606=︒,sin 2DF DEF DE ∴=∠⨯==,180120,DEO DEF DE EO ∠=︒-∠=︒= ,30DOF ∴∠=︒,3tan DF OF DOF∴===∠,6663D F DF OF OF ∴====,()63D ∴-,()20223D ∴-,故选B .【点睛】本题考查了旋转的性质,解直角三角形,正六边形的性质,正多边形的外角和,内角和,求得2022D 的位置是解题的关键.二、填空题13. x 的取值范围是____.【答案】12x ≥【解析】【分析】根据二次根式有意义的条件可直接进行求解.210x -≥,解得:12x ≥;故答案为12x ≥.【点睛】本题主要考查二次根式有意义的条件,熟练掌握二次根式有意义的条件是解题的关键.14. 若28,3418a b a b +=+=,则a b +的值为__________________.【答案】5【解析】【分析】将3418a b +=变形可得2418a a b ++=,因为28a b +=,所以得到a=2,再求出b ,得到a+b【详解】将3418a b +=变形可得2418a a b ++=,因为28a b +=,所以2416a b +=,得到a=2,将a=2带入28a b +=,得到b=3,所以a+b=5,故填5【点睛】本题考查代数式的求值,以及二元一次方程组的解法,本题也可采用加减消元或者代入消元法进行解题15. 在一个不透明口袋有四个完全相同的小球,把它们分别标号为1,2,3,4.随机摸出一个球后不放回,再随机摸出一个,则两次摸出的小球标号之和为5的概率为__________.【答案】13【解析】【分析】先利用树状图列出两次取出的小球标号和的所有可能情况数,再找出两次取出的小球标号的和等于5的情况数,最后求出概率即可.【详解】解:画树状图得:由树状图可知:共有12种等可能的结果,两次摸出的小球标号之和等于5的有4种情况,∴两次摸出的小球标号之和等于5的概率是:412=13.故答案为:13.【点睛】本题主要考查求随机事件概率的方法,利用树状图列出两次取出的小球标号和的所有可能情况是解答本题的关键.16. 已知正方形ABCD 的边长为4,E 为CD 上一点,连接AE 并延长交BC 的延长线于点F ,过点D 作DG AF ⊥,交AF 于点H ,交BF 于点G ,N 为EF 的中点,M 为BD 上一动点,分别连接MC ,MN .若19DCG FCE S S =△△,则MC MN +的最小值为______.【解析】【分析】由正方形的性质,可得A 点与C 点关于BD 对称,则有MN CM MN AM AN +=+…,所以当A 、M 、N 三点共线时,MN CM +的值最小为AN ,先证明DCG FCE ∆∆∽,再由19DCG FCE S S ∆∆=,可知31CD CF =,分别求出1DE =,3CE =,12CF =,即可求出AN .【详解】解: 四边形ABCD 是正方形,A ∴点与C 点关于BD 对称,CM AM ∴=,MN CM MN AM AN ∴+=+…,∴当A 、M 、N 三点共线时,MN CM +的值最小,AD ∥CF ,DAE F ∴∠=∠,90DAE DEH ∠+∠=︒ ,DG AF ⊥ ,90CDG DEH ∴∠+∠=︒,DAE CDG ∴∠=∠,CDG F ∴∠=∠,DCG FCE ∴∆∆∽, 19DCG FCE S S ∆∆=,∴31CD CF =, 正方形边长为4,12CF ∴=,AD ∥CF,∴31AD DE CF CE ==,1DE =∴,3CE =,在Rt CEF V 中,222EF CE CF =+,EF ∴==,N Q 是EF 的中点,EN ∴=,在Rt ADE △中,222EA AD DE =+,AE ∴==,AN AE EN ∴=+=,MN MC ∴+,【点睛】本题考查轴对称求最短距离,解题的关键是熟练掌握正方形的性质,用轴对称求最短距离的方法,灵活应用三角形相似、勾股定理.三、解答题17.(1)计算20(1)( 3.14)2sin 601π-+-++-︒(2)先化简,再求值:2(3)(3)(3)2(1)x x x x x +++--+,其中12x =.【答案】(1)1(2)4x ;2【解析】【分析】(1)先化简各式,然后再进行计算即可解答;(2)先利用平方差公式,完全平方公式、单项式乘多项式计算括号里,再算括号外,然后把x 的值代入化简后的式子进行计算即可解答.【小问1详解】解:原式=1121+++--=111++-=1;【小问2详解】解:2(3)(3)(3)2(1)x x x x x +++--+=22269922x x x x x+++---=4x ;当12x =时,原式=1422⨯=.【点睛】本题考查了整式的混合运算-化简求值,实数的运算,锐角三角形函数,零指数幂,绝对值及二次根式的性质,准确熟练地进行计算是解题的关键.18. 国务院教育督导委员会办公室印发的《关于组织责任督学进行“五项管理”督导的通知》指出,要加强中小学生作业、睡眠、手机、读物、体质管理.某校数学社团成员采用随机抽样的方法,抽取了七年级部分学生,对他们一周内平均每天的睡眠时间t (单位:小时)进行了调查,将数据整理后得到下列不完整的统计表:请根据统计表中的信息回答下列问题.(1)=a ______,b =______;(2)请估计该校600名七年级学生中平均每天睡眠时间不足9小时的人数;(3)研究表明,初中生每天睡眠时间低于9小时,会影响学习效率.请你根据以上调查统计结果,向学校提出一条合理化的建议.【答案】(1)8;0.48(2)252人 (3)建议学校尽量让学生在学校完成作业,课后少布置作业的【解析】【分析】(1)按照频率=频数÷总体数量进行求解,根据睡眠时间7t <组别的频数和频率即可求得本次调查的总人数,再按照频率=频数÷总体数量进行求解,即可得到a ,b 的值.(2)根据频率估计概率,即可计算出该校600名八年级学生中睡眠不足9小时的人数.(3)根据(2)中结果,即可知道该学校每天睡眠不足9小时的人数,根据实际情况提出建议.【小问1详解】根据睡眠时间7t <组别的频数和频率,本次调查的总体数量=频数÷频率3==500.06∴睡眠时间78t ≤<组别的频数500.168.a =⨯=∴睡眠时间910t ≤<组别的频率240.48.50b ==故答案为:8;0.48【小问2详解】∵每天的睡眠时间不足9小时的人数的频率之和为0.200.160.060.42++=∴该校600名八年级学生中睡眠不足9小时的人数为6000.42252⨯=(人).【小问3详解】根据(2)中求得的该学校每天睡眠时长低于9小时的人数,建议学校尽量让学生在学校完成作业,课后少布置作业.【点睛】本题主要考查了用频率估计概率,解题的关键是掌握频率=频数÷总体数量,解答本题的关键是掌握频率,频数和总体数量的关系.19. 如图,在Rt ABC V 中,90BAC ∠=︒,1AB AC ==,D 是BC 边上的一点,以AD 为直角边作等腰Rt ADE △,其中90DAE ∠=︒,连接CE .(1)求证:ABD ACE △≌△;(2)若22.5BAD ∠=︒时,求BD 的长.【答案】(1)见解析(21-【解析】【分析】(1)根据等腰直角三角形的性质可得90,DAE AD AE ∠=︒=,进而证明BAD CAE ∠=∠,即可根据SAS 证明ABD ACE △≌△;(2)勾股定理求得BC =ADC V 是等腰三角形可得AC DC =,进而根据BD BC CD =-即可求解.【小问1详解】证明: ADE V 是等腰直角三角形,90,DAE AD AE ∴∠=︒=,90BAC ∠=︒ ,90BAD DAC CAE ∴∠=︒-∠=∠,在ABD △与ACE V 中AB AC BAD CAE AD AE =⎧⎪∠=∠⎨⎪=⎩;∴ABD ACE △≌△,【小问2详解】在Rt ABC V 中,90BAC ∠=︒,1AB AC ==,BC ∴==,9022.5,D BAC BA ∠=︒∠=︒ ,9067.6DAC BAD ∴∠=︒-∠=︒,,AB AC =()118090452ACD ∴∠=︒-︒=︒,18067.5ADC ACD DAC ∴∠=︒-∠-∠=,1AC DC ∴==,1BD BC DC ∴=-=-.【点睛】本题考查了等腰三角形的性质与判定,勾股定理,全等三角形的性质与判定,掌握等腰三角形的性质与判定是解题的关键.20. 如图,在平面直角坐标系中,菱形ABCD 的顶点D 在y 轴上,A ,C 两点的坐标分别为()4,0,()4,m ,直线CD :()0y ax b a =+≠与反比例函数()0k y k x=≠的图象交于C ,()8,2P --两点.(1)求该反比例函数的解析式及m 的值;(2)判断点B 是否在该反比例函数的图象上,并说明理由.【答案】(1)16y x=,4m = (2)点B 在该反比例函数的图象上,理由见解答【解析】【分析】(1)因为点(8,2)P --在双曲线k y x =上,所以代入P 点坐标即可求出双曲线k y x=的函数关系式,又因为点(4,)C m 在k y x=双曲线上,代入即可求出m 的值;(2)先求出点B 【小问1详解】解:将点(8,2)P --代入k y x=中,得8(2)16k =-⨯-=,∴反比例函数的解析式为16y x =,将点(4,)C m 代入16y x=中,得4416m ==;【小问2详解】解:因为四边形ABCD 是菱形,(4,0)A ,(4,4)C ,4m ∴=,1(8,)2B m ,(8,2)B ∴,由(1)知双曲线的解析式为16y x=;2816⨯= ,∴点B 在双曲线上.【点睛】此题是反比例函数综合题,主要考查了待定系数法,菱形的性质,解题的关键是用m 表示出点D 的坐标.21. 随着我国科学技术的不断发展,5G 移动通信技术日趋完善.某市政府为了实现5G 网络全覆盖,2021~2025年拟建设5G 基站3000个,如图,在斜坡CB 上有一建成的5G 基站塔AB ,小明在坡脚C 处测得塔顶A 的仰角为45︒,然后他沿坡面CB 行走了50米到达D 处,D 处离地平面的距离为30米且在D 处测得塔顶A 的仰角53︒.(点A 、B 、C 、D 、E 均在同一平面内,CE 为地平线)(参考数据:sin 5345︒≈,cos5335︒≈,tan 5343︒≈)(1)求坡面CB 的坡度;(2)求基站塔AB 的高.【答案】(1)3:4(2)基站塔AB 的高为175.米【解析】【分析】(1)过点C 、D 分别作AB 的垂线,交AB 的延长线于点N 、F ,过点D 作DM CE ⊥,垂足为M ,利用勾股定理求出CM ,然后利用坡度的求解方式求解即可;(2)设4DF a =米,则4MN a =米,3BF a =米,根据45ACN ∠=︒,求出(404)AN CN a ==+米,(410)AF a =+米.在Rt ADF V 中,求出152a =;再根据AB AF BF =-(米).【小问1详解】解:如图,过点C 、D 分别作AB 的垂线,交AB 的延长线于点N 、F ,过点D 作DM CE ⊥,垂足为M .根据他沿坡面CB 行走了50米到达D 处,D 处离地平面的距离为30米,50CD ∴=(米),30DM =(米),根据勾股定理得:40CM ==(米)∴坡面CB 的坡度为;303404DM CM ==,即坡面CB 的坡度比为3:4;【小问2详解】解:设4DF a =米,则4MN a =3BF a =米,45ACN ∠=︒ ,45CAN ACN ∴∠=∠=︒,(404)AN CN a ∴==+米,40430(410)AF AN FN AN DM a a ∴=-=-=+-=+米.在Rt ADF V ,4DF a = 米,(410)AF a =+米,53ADF ∠=︒,4104ta 4n 3AF ADF DF a a +∴∠===,∴解得152a =;15410410402AF a ∴=+=⨯+=(米),45331522BF a ==⨯=(米),45403522AB AF BF ∴=-=-=(米).答:基站塔AB的高为175.米.【点睛】本题考查解直角三角形,通过作垂线构造直角三角形,利用直角三角形的边角关系和坡度的意义进行计算是常用的方法.22. 阅读材料:被誉为“世界杂交水稻之父”的“共和国勋章”获得者袁隆平,成功研发出杂交水稻,杂交水稻的亩产量是普通水稻的亩产量的2倍.现有两块试验田,A块种植杂交水稻,B块种植普通水稻,A块试验田比B块试验田少4亩.(1)A块试验田收获水稻9600千克、B块试验田收获水稻7200千克,求普通水稻和杂交水稻的亩产量各是多少千克?(2)为了增加产量,明年计划将种植普通水稻的B块试验田的一部分改种杂交水稻,使总产量不低于17700千克,那么至少把多少亩B块试验田改种杂交水稻?【答案】(1)普通水稻亩产量是600千克,杂交水稻的亩产量是1200千克.(2)至少把B块试验田改1.5亩种植杂交水稻.【解析】【分析】(1)设普通水稻的亩产量是x千克,则杂交水稻的亩产量是2x千克,利用种植亩数=总产量÷亩产量,结合A块试验田比B块试验田少4亩,即可得出关于x的分式方程,解之即可得出普通水稻的亩产量,再将其代入2x中即可求出杂交水稻的亩产量;(2)设把B块试验田改y亩种植杂交水稻,利用总产量=亩产量×种植亩数,结合总产量不低于17700千克,即可得出关于y的一元一次不等式,解之取其中的最小值即可得出结论.【小问1详解】解:设普通水稻亩产量是x千克,则杂交水稻的亩产量是2x千克,依题意得:7200960042x x-=,解得:600x=;经检验,x=600是原方程的解,且符合题意,∴2x=2×600=1200.答:普通水稻亩产量是600千克,杂交水稻的亩产量是1200千克.【小问2详解】解:设把B块试验田改y亩种植杂交水稻,依题意得:9600+600(7200600y-)+1200y≥17700,解得: 1.5y≥.答:至少把B块试验田改1.5亩种植杂交水稻.【点睛】本题考查了分式方程的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)根据各数量之间的关系,正确列出一元一次不等式.23. 如图,AB 是O e 的直径,点E 是劣弧BD 上一点,PAD AED ∠=∠,且DE =,AE 平分BAD ∠,AE 与BD 交于点F .(1)求证:PA 是O e 的切线;(2)若tan DAE ∠=,求EF 的长;(3)延长DE ,AB 交于点C ,若OB BC =,求O e 的半径.【答案】(1)见解析(2)1 (3)2【解析】【分析】(1)根据AB 是O e 90ADB ∠=︒,即90DAB DBA ∠+∠=,根据同弧所对的圆周角相等,以及已知条件可得PAD ABD ∠=∠,等量代换后即可得90PAB ∠=︒,进而得证;(2)连接,OE EB ,根据角平分线的定义,以及等边对等角可得AD OE ∥,根据同弧所对的圆周角相等可得DAE DBE ∠=∠,由垂径定理可得DE EB ==,进而可得tan EBF ∠=,即可求解.(3)过点B 作BG AD ∥,根据平行线分线段成比例,求得DG =,设O e 的半径为x ,则1122GB OE x ==,证明CGB CDA V V ∽,可得32AD x =,在Rt ADB V 中,222AD DB AB +=,勾股定理建立方程,解方程即可求解.【小问1详解】证明:∵AB 是O e 的直径,90ADB ∴∠=︒,90DAB DBA ∴∠+∠=︒,»»AD AD = ,AED ABD ∴∠=∠,PAD AED ∠=∠,PAD ABD ∴∠=∠,90BAD PAD BAD ABD ∴∠+∠=∠+∠=︒,即90PAB ∠=︒,PA ∴是O e 的切线,【小问2详解】如图,连接,OE EB ,AE 平分BAD ∠,DAE BAE ∴∠=∠,OA OE = ,OEA OAE ∴∠=∠,DAE AEO ∴∠=∠,AD OE ∴∥,AB Q 是O e 的直径,AD DB ∴⊥,AE EB ⊥,OE DE ∴⊥,DE EB ∴==,»»DEDE = ,DAE DBE ∴∠=∠,tan EBF ∴∠=,EF EB ∴=1EF EB ∴== ;【小问3详解】如图,过点B 作BG AD ∥,由(2)可知AD OE ∥,OE BG ∴∥,AO OB BC == ,DE EG GC ∴==,设O e 的半径为x ,则1122GB OE x ==,AD BG ∥ ,CGB CDA ∴V V ∽,CG GB CD AD∴=,332AD GB x ∴==,OE DB ⊥ ,DB GB ∴⊥,DE =,2DG DE ∴==,在Rt DBG △中,2222182DB DG GB x ⎛⎫=-=- ⎪⎝⎭,在Rt ADB V 中,222AD DB AB +=,即()222318222x x x ⎛⎫⎛⎫+-= ⎪ ⎪⎝⎭⎝⎭,解得:2x =(负值舍去),O ∴e 的半径为2.【点睛】本题考查了切线的判定,圆周角定理的推论,平行线分线段成比例,相似三角形的性质与判定,解直角三角形,综合运用以上知识是解题的关键.24. 在平面直角坐标系中,如果点P 的横坐标和纵坐标相等,则称点P 为和谐点,例如:点()1,1,11,22⎛⎫ ⎪⎝⎭,(,……都是和谐点.(1)判断函数21y x =+的图象上是否存在和谐点,若存在,求出其和谐点的坐标;(2)若二次函数()260y ax x c a =++≠的图象上有且只有一个和谐点55,22⎛⎫ ⎪⎝⎭.①求a ,c 的值;②若1x m ≤≤时,函数216(0)4y ax x c a =+++≠的最小值为-1,最大值为3,求实数m 的取值范围.【答案】(1)存在,()1,1-- (2)①251,4a c =-=-;35m ≤≤【解析】【分析】(1)根据定义可知,和谐点都在y x =上,联立两直线解析式即可求解;(2)①根据题意可知二次函数与y x =相切于点55,22⎛⎫ ⎪⎝⎭,据此即可求解;②根据①得到解析式,根据二次函数图象的性质分析即可求解.【小问1详解】解:∵点P 的横坐标和纵坐标相等,则称点P 为和谐点,∴和谐点都在y x =上,21y x y x =⎧⎨=+⎩,解得11x y =-⎧⎨=-⎩,∴21y x =+上的和谐点为()1,1--;【小问2详解】解:①∵二次函数()260y ax x c a =++≠的图象上有且只有一个和谐点55,22⎛⎫ ⎪⎝⎭,∴26y ax x c y x⎧=++⎨=⎩即250ax x c ++=有两个相等的实数根,2540ac ∆=-=,解得254ac =①,将55,22⎛⎫ ⎪⎝⎭代入()260y ax x c a =++≠得,52530242a c =++②,联立①②,得251,4a c =-=-,② 251,4a c =-=-,()2221666334y ax x c x x x =+++=-+-=--+∴,其顶点坐标为()3,3,则最大值为3,在3x <时,y 随x 的增大而增大,当1x =时,()21331y =--+=-,根据对称轴可知,当5x =时,1y =-,1x m ≤≤时,函数()233y x =--+的最小值为-1,最大值为3,根据函数图象可知,当15x ≤≤时,函数()233y x =--+的最小值为-1,最大值为3,∴实数m 的取值范围为:3m ≤≤【点睛】本题考查了新定义问题,两直线交点问题,一次函数与抛物线交点问题,待定系数法求二次函数解析式,二次函数的性质,理解新定义是解题的关键.25. 如图1,在矩形ABCD 中,10AB =,8AD =,E 是AD 边上一点,连接CE ,将矩形ABCD 沿CE 折叠,顶点D 恰好落在AB 边上的点F 处,延长CE 交BA 的延长线于点G .(1)求线段AE 的长;(2)求证四边形DGFC 为菱形;(3)如图2,M ,N 分别是线段CG ,DG 上的动点(与端点不重合),且DMN DCM ∠=∠,设DN x =,是否存在这样的点N ,使DMN V 是直角三角形?若存在,请求出x的值;若不存在,请说明理的由.【答案】(1)3AE =(2)见解析(3)存在,2x =或2.5【解析】【分析】(1)根据在Rt V AEF 中,222AE AF EF +=,根据矩形的折叠与勾股定理即可求解;(2)根据(1)的结论分别求得,GF DG ,根据四边相等的四边形是菱形即可得证;(3)分90NDM ∠=︒和90DNM ∠=︒两种情况分别讨论即可求解.【小问1详解】解:如图四边形ABCD 是矩形,10AB =,8AD =,8,10AD BC DC AB ∴====,90DAB B ∠=∠=︒,将矩形ABCD 沿CE 折叠,顶点D 恰好落在AB 边上的点F 处,10CF CD ∴==,在Rt BCF V 中,6BF ===,1064AF AB BF ∴=-=-=,设AE a =,则8DE EF a ==-,在Rt V AEF 中,222AE AF EF +=,()22248a a +=-,解得3a =,3AE ∴=;【小问2详解】835DE AD AE =-=-=,51tan 102DE DCE CD ∴∠===, 四边形ABCD 是矩形,DC GB ∴∥,EGA DCE ∴∠=∠,1tan 2EA EGA GA ∴∠==,3EA =Q ,6GA ∴=,Rt GAD V 中,10DG ===,6410FG GA AF ∴=+=+=,GD DC CF GF ∴===,∴四边形DGFC 为菱形;【小问3详解】DMN DCM ∠=∠,设DN x =,DMN V 是直角三角形设DMN DCM α∠=∠=由(2)可得1tan 2DCM ∠=tan DMN ∴∠1=2①当90DNM ∠=︒时,如图,12DN NM ∴=,90GNM ∠=︒,GD CD= DGM DCM α∴∠=∠=90NMG α∴∠=︒-9090DMG αα∴∠=︒-+=︒10DG DC == 1tan tan 2DGM α∠== 2GN NM∴=1022x x∴-=⨯解得2x =;②当90NDM ∠=︒时,同理可得11,22DN DM DM GD ==1542ND DG ∴==综上所述,2ND =或2.5【点睛】本题考查了矩形的性质,折叠的性质,勾股定理,解直角三角形,菱形的判定,掌握以上知识是解题的关键.。
贵州省安顺市中考数学真题试题(含解析)-人教版初中九年级全册数学试题
2019年某某省某某市中考数学试卷一、选择题(本大题10个小题,每小题3分,共30分)1.(3分)2019的相反数是()A.﹣2019B.2019C.﹣D.2.(3分)中国陆地面积约为9600000km2,将数字9600000用科学记数法表示为()A.96×105×106×107×1083.(3分)如图,该立体图形的俯视图是()A.B.C.D.4.(3分)下列运算中,计算正确的是()A.(a2b)3=a5b3B.(3a2)3=27a6C.a6÷a2=a3D.(a+b)2=a2+b25.(3分)在平面直角坐标系中,点P(﹣3,m2+1)关于原点对称点在()A.第一象限B.第二象限C.第三象限D.第四象限6.(3分)如图,三角板的直角顶点落在矩形纸片的一边上.若∠1=35°,则∠2的度数是()A.35°B.45°C.55°D.65°7.(3分)如图,点B、F、C、E在一条直线上,AB∥ED,AC∥FD,那么添加下列一个条件后,仍无法判定△ABC≌△DEF的是()A.∠A=∠D B.AC=DF C.AB=ED D.BF=EC8.(3分)如图,半径为3的⊙A经过原点O和点C(0,2),B是y轴左侧⊙A优弧上一点,则tan∠OBC为()A.B.2C.D.9.(3分)如图,在菱形ABCD中,按以下步骤作图:①分别以点C和点D为圆心,大于CD的长为半径作弧,两弧相交于M、N两点;②作直线MN,且MN恰好经过点A,与CD交于点E,连接BE.则下列说法错误的是()A.∠ABC=60°B.S△ABE=2S△ADEC.若AB=4,则BE=4D.sin∠CBE=10.(3分)如图,已知二次函数y=ax2+bx+c的图象与x轴分别交于A、B两点,与y轴交于C点,OA=OC.则由抛物线的特征写出如下结论:①abc>0;②4ac﹣b2>0;③a﹣b+c>0;④ac+b+1=0.其中正确的个数是()A.4个B.3个C.2个D.1个二、填空题(本大题共8个小题,每小题4分,共32分)11.(4分)函数y=的自变量x的取值X围是.12.(4分)若实数a、b满足|a+1|+=0,则a+b=.13.(4分)如图,沿一条母线将圆锥侧面剪开并展平,得到一个扇形,若圆锥的底面圆的半径r=2,扇形的圆心角θ=120°,则该圆锥母线l的长为.14.(4分)某生态示X园计划种植一批蜂糖李,原计划总产量达36万千克,为了满足市场需求,现决定改良蜂糖李品种,改良后平均每亩产量是原计划的1.5倍,总产量比原计划增加了9万千克,种植亩数减少了20亩,则原计划和改良后平均每亩产量各多少万千克?设原计划平均亩产量为xx万千克,根据题意列方程为.15.(4分)如图,直线l⊥x轴于点P,且与反比例函数y1=(x>0)及y2=(x>0)的图象分别交于A、B两点,连接OA、OB,已知△OAB的面积为4,则k1﹣k2=.16.(4分)已知一组数据x1,x2,x3,…,x n的方差为2,则另一组数据3x1,3x2,3x3,…,3x n的方差为.17.(4分)如图,在Rt△ABC中,∠BAC=90°,且BA=3,AC=4,点D是斜边BC上的一个动点,过点D分别作DM⊥AB于点M,DN⊥AC于点N,连接MN,则线段MN的最小值为.18.(4分)如图,将从1开始的自然数按下规律排列,例如位于第3行、第4列的数是12,则位于第45行、第7列的数是.三、解答题(本大题共8个小题,满分88分,解答应写出必要的文字说明或演算步骤)19.(8分)计算:(﹣2)﹣1﹣+cos60°+()0+82019×(﹣0.125)2019.20.(10分)先化简(1+)÷,再从不等式组的整数解中选一个合适的x的值代入求值.21.(10分)某某市某商贸公司以每千克40元的价格购进一种干果,计划以每千克60元的价格销售,为了让顾客得到更大的实惠,现决定降价销售,已知这种干果销售量y(千元)与每千元降价x(元)(0<x<20)之间满足一次函数关系,其图象如图所示:(1)求y与x之间的函数关系式;(2)商贸公司要想获利2090元,则这种干果每千克应降价多少元?22.(10分)阅读以下材料:对数的创始人是苏格兰数学家纳皮尔(J.Nplcr,1550﹣1617年),纳皮尔发明对数是在指数书写方式之前,直到18世纪瑞士数学家欧拉(Evlcr,1707﹣1783年)才发现指数与对数之间的联系.对数的定义:一般地,若a x=N(a>0且a≠1),那么x叫做以a为底N的对数,记作x =log a N,比如指数式24=16可以转化为对数式4=log216,对数式2=log525,可以转化为指数式52=25.我们根据对数的定义可得到对数的一个性质:log a(M•N)=log a M+log a N(a>0,a≠1,M>0,N>0),理由如下:设log a M=m,log a N=n,则M=a m,N=a n,∴M•N=a m•a n=a m+n,由对数的定义得m+n=log a(M•N)又∵m+n=log a M+log a N∴log a(M•N)=log a M+log a N根据阅读材料,解决以下问题:(1)将指数式34=81转化为对数式;(2)求证:log a=log a M﹣log a N(a>0,a≠1,M>0,N>0)(3)拓展运用:计算log69+log68﹣log62=.23.(12分)近年来,在总书记“既要金山银山,又要绿水青山”思想的指导下,我国持续的大面积雾霾天气得到了较大改善.为了调查学生对雾霾天气知识的了解程度,某校在学生中做了一次抽样调查,调查结果共分为四个等级:A.非常了解;B.比较了解;C.基本了解;D.不了解.根据调查统计结果,绘制了如图所示的不完整的三种统计图表.对雾霾天气了解程度的统计表对雾霾天气了解程百分比度A.非常了解5%B.比较了解15%C.基本了解45%D.不了解n请结合统计图表,回答下列问题:(1)本次参与调查的学生共有,n=;(2)扇形统计图中D部分扇形所对应的圆心角是度;(3)请补全条形统计图;(4)根据调查结果,学校准备开展关于雾霾的知识竞赛,某班要从“非常了解”程度的小明和小刚中选一人参加,现设计了如下游戏来确定,具体规则是:把四个完全相同的乒乓球分别标上数字1,2,3,4,然后放到一个不透明的袋中充分摇匀,一个人先从袋中随机摸出一个球,另一人再从剩下的三个球中随机摸出一个球.若摸出的两个球上的数字和为奇数,则小明去,否则小刚去.请用树状图或列表法说明这个游戏规则是否公平.24.(12分)(1)如图①,在四边形ABCD中,AB∥CD,点E是BC的中点,若AE是∠BAD 的平分线,试判断AB,AD,DC之间的等量关系.解决此问题可以用如下方法:延长AE交DC的延长线于点F,易证△AEB≌△FEC得到AB =FC,从而把AB,AD,DC转化在一个三角形中即可判断.AB,AD,DC之间的等量关系;(2)问题探究:如图②,在四边形ABCD中,AB∥CD,AF与DC的延长线交于点F,点E 是BC的中点,若AE是∠BAF的平分线,试探究AB,AF,CF之间的等量关系,并证明你的结论.25.(12分)如图,在△ABC中,AB=AC,以AB为直径的⊙O与边BC,AC分别交于D,E两点,过点D作DH⊥AC于点H.(1)判断DH与⊙O的位置关系,并说明理由;(2)求证:H为CE的中点;(3)若BC=10,cos C=,求AE的长.26.(14分)如图,抛物线y=x2+bx+c与直线y=x+3分别相交于A,B两点,且此抛物线与x轴的一个交点为C,连接AC,BC.已知A(0,3),C(﹣3,0).(1)求抛物线的解析式;(2)在抛物线对称轴l上找一点M,使|MB﹣MC|的值最大,并求出这个最大值;(3)点P为y轴右侧抛物线上一动点,连接PA,过点P作PQ⊥PA交y轴于点Q,问:是否存在点P使得以A,P,Q为顶点的三角形与△ABC相似?若存在,请求出所有符合条件的点P的坐标;若不存在,请说明理由.2019年某某省某某市中考数学试卷参考答案与试题解析一、选择题(本大题10个小题,每小题3分,共30分)1.【解答】解:2019的相反数是﹣2019,故选:A.2.【解答】×106.故选:B.3.【解答】解:如图所示的立体图形的俯视图是C.故选:C.4.【解答】解:A.(a2b)3=a6b3,故选项A不合题意;B.(3a2)3=27a6,故选项B符合题意;C.a6÷a2=a4,故选项C不合题意;D.(a+b)2=a2+2ab+b2,故选项D不合题意.故选:B.5.【解答】解:∵m2+1>0,∴点P(﹣3,m2+1)在第二象限,∴点P(﹣3,m2+1)关于原点对称点在第四象限,故选:D.6.【解答】解:∵∠1+∠3=90°,∠1=35°,∴∠3=55°,∴∠2=∠3=55°,故选:C.7.【解答】解:选项A、添加∠A=∠D不能判定△ABC≌△DEF,故本选项正确;选项B、添加AC=DF可用AAS进行判定,故本选项错误;选项C、添加AB=DE可用AAS进行判定,故本选项错误;选项D、添加BF=EC可得出BC=EF,然后可用ASA进行判定,故本选项错误.故选:A.8.【解答】解:作直径CD,在Rt△OCD中,CD=6,OC=2,则OD==4,tan∠CDO==,由圆周角定理得,∠OBC=∠CDO,则tan∠OBC=,故选:D.9.【解答】解:由作法得AE垂直平分CD,即CE=DE,AE⊥CD,∵四边形ABCD为菱形,∴AD=CD=2DE,AB∥DE,在Rt△ADE中,cos D==,∴∠D=60°,∴∠ABC=60°,所以A选项的结论正确;∵S△ABE=AB•AE,S△ADE=DE•AE,而AB=2DE,∴S△ABE=2S△ADE,所以B选项的结论正确;若AB=4,则DE=2,∴AE=2,在Rt△ABE中,BE==2,所以C选项的结论错误;作EH⊥BC交BC的延长线于H,如图,设AB=4a,则CE=2a,BC=4a,BE=2a,在△CHE中,∠ECH=∠D=60°,∴CH=a,EH=a,∴sin∠CBE===,所以D选项的结论正确.故选:C.10.【解答】解:①观察图象可知,开口方上a>0,对称轴在右侧b<0,与y轴交于负半轴c<0,∴abc>0,故正确;②∵抛物线与x轴有两个交点,∴b2﹣4ac>0,即4ac﹣b2<0,故错误;③当x=﹣1时y=a﹣b+c,由图象知(﹣1,a﹣b+c)在第二象限,∴a﹣b+c>0,故正确④设C(0,c),则OC=|c|,∵OA=OC=|c|,∴A(c,0)代入抛物线得ac2+bc+c=0,又c≠0,∴ac+b+1=0,故正确;故正确的结论有①③④三个,故选:B.二、填空题(本大题共8个小题,每小题4分,共32分)11.【解答】解:根据题意得,x﹣2≥0,解得x≥2.故答案为:x≥2.12.【解答】解:∵|a+1|+=0,∴,解得a=﹣1,b=2,∴a+b=﹣1+2=1.13.【解答】解:根据题意得2π×2=,解德l=6,即该圆锥母线l的长为6.故答案为6.14.【解答】解:设原计划平均亩产量为xx万千克,依题意,得:﹣=20.故答案为:﹣=20.15.【解答】解:根据反比例函数k的几何意义可知:△AOP的面积为k1,△BOP的面积为k2,∴△AOB的面积为k1﹣2,∴k1﹣2=4,∴k1﹣k2=8,故答案为8.16.【解答】解:∵一组数据x1,x2,x3…,x n的方差为2,∴另一组数据3x1,3x2,3x3…,3x n的方差为32×2=18.故答案为18.17.【解答】解:∵∠BAC=90°,且BA=3,AC=4,∴BC==5,∵DM⊥AB,DN⊥AC,∴∠DMA=∠DNA=∠BAC=90°,∴四边形DMAN是矩形,∴MN=AD,∴当AD⊥BC时,AD的值最小,此时,△ABC的面积=AB×AC=BC×AD,∴AD==,∴MN的最小值为;故答案为:.18.【解答】解:观察图表可知:第n行第一个数是n2,∴第45行第一个数是2025,∴第45行、第7列的数是2025﹣6=2019,故答案为2019三、解答题(本大题共8个小题,满分88分,解答应写出必要的文字说明或演算步骤)19.【解答】解:原式=﹣﹣3++1+(﹣×8)2019=﹣3+﹣1=﹣3.20.【解答】解:原式=×=,解不等式组得﹣2<x<4,∴其整数解为﹣1,0,1,2,3,∵要使原分式有意义,∴x可取0,2.∴当x=0 时,原式=﹣3,(或当x=2 时,原式=﹣).21.【解答】解:(1)设一次函数解析式为:y=kx+b当x=2,y=120;当x=4,y=140;∴,解得:,∴y与x之间的函数关系式为y=10x+100;(2)由题意得:(60﹣40﹣x)(10 x+100)=2090,整理得:x2﹣10x+9=0,解得:x1=1.x2=9,∵让顾客得到更大的实惠,∴x=9,答:商贸公司要想获利2090元,则这种干果每千克应降价9元.22.【解答】解:(1)4=log381(或log381=4),故答案为:4=log381;(2)证明:设log a M=m,log a N=n,则M=a m,N=a n,∴==a m﹣n,由对数的定义得m﹣n=log a,又∵m﹣n=log a M﹣log a N,∴log a=log a M﹣log a N;(3)log69+log68﹣log62=log6(9×8÷2)=log636=2.故答案为:2.23.【解答】解:(1)180÷45%=400,所以本次参与调查的学生共有400人,n=1﹣=5%﹣15%﹣45%=35%;(2)扇形统计图中D部分扇形所对应的圆心角=360°×35%=126°,故答案为400;35%;126;(3)D等级的人数为400×35%=140(人),补全条形统计图为:(4)画树状图为:共有12种等可能的结果,其中和为奇数的结果有8种,∴P(小明去)==P(小刚去)=1﹣=∵≠∴这个游戏规则不公平.24.【解答】解:(1)AD=AB+DC理由如下:∵AE是∠BAD的平分线∴∠DAE=∠BAE∵AB∥CD∴∠F=∠BAE∴∠DAF=∠F∴AD=DF,∵点E是BC的中点∴CE=BE,且∠F=∠BAE,∠AEB=∠CEF∴△CEF≌△BEA(AAS)∴AB=CF∴AD=CD+CF=CD+AB(2)AB=AF+CF理由如下:如图②,延长AE交DF的延长线于点G∵E是BC的中点,∴CE=BE,∵AB∥DC,∴∠BAE=∠G.且BE=CE,∠AEB=∠GEC∴△AEB≌△GEC(AAS)∴AB=GC∵AE是∠BAF的平分线∴∠BAG=∠FAG,∵∠BAG∠G,∴∠FAG=∠G,∴FA=FG,∵CG=CF+FG,∴AB=AF+CF25.【解答】(1)解:DH与⊙O相切.理由如下:连结OD、AD,如图,∵AB为直径,∴∠ADB=90°,即AD⊥BC,∵AB=AC,∴BD=CD,而AO=BO,∴OD为△ABC的中位线,∴OD∥AC,∵DH⊥AC,∴OD⊥DH,∴DH为⊙O的切线;(2)证明:连结DE,如图,∵四边形ABDE为⊙O的内接四边形,∴∠DEC=∠B,∵AB=AC,∴∠B=∠C,∴∠DEC=∠C,∵DH⊥CE,∴CH=EH,即H为CE的中点;(3)解:在Rt△ADC中,CD=BC=5,∵cos C==,∴AC=5,在Rt△CDH中,∵cos C==,∴CH=,∴CE=2CH=2,∴AE=AC﹣CE=5﹣2=3.26.【解答】解:(1)①将A(0,3),C(﹣3,0)代入y=x2+bx+c得:,解得:,∴抛物线的解析式是y=x2+x+3;(2)将直线y=x+3表达式与二次函数表达式联立并解得:x=0或﹣4,∵A(0,3),∴B(﹣4,1)①当点B、C、M三点不共线时,|MB﹣MC|<BC②当点B、C、M三点共线时,|MB﹣MC|=BC∴当点、C、M三点共线时,|MB﹣MC|取最大值,即为BC的长,过点B作x轴于点E,在Rt△BEC中,由勾股定理得BC==,∴|MB﹣MC|取最大值为;(3)存在点P使得以A、P、Q为顶点的三角形与△ABC相似.设点P坐标为(x,x2+x+3)(x>0)在Rt△BEC中,∵BE=CE=1,∴∠BCE=45°,在Rt△ACO中,∵AO=CO=3,∴∠ACO=45°,∴∠ACB=180°﹣450﹣450=900,AC=3,过点P作PQ⊥PA于点P,则∠APQ=90°,过点P作PQ⊥y轴于点G,∵∠PQA=∠APQ=90°∠PAG=∠QAP,∴△PGA∽△QPA∵∠PGA=∠ACB=90°∴①当时,△PAG∽△BAC,∴=,解得x1=1,x2=0,(舍去)∴点P的纵坐标为×12+×1+3=6,∴点P为(1,6);②当时,△PAG∽△ABC,∴=3,解得x1=﹣(舍去),x2=0(舍去),∴此时无符合条件的点P综上所述,存在点P(1,6).。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
贵州省安顺市xx年中考数学真题试题一、选择题(共10个小题,每小题3分,共30分)1. 下面四个手机应用图标中是轴对称图形的是()A. B. C. D.【答案】D【解析】分析:分别根据轴对称图形与中心对称图形的性质对各选项进行逐一分析即可.详解:A、既不是轴对称图形,也不是中心对称图形,故本选项错误;B、是中心对称图形,故本选项错误;C、既不是轴对称图形,也不是中心对称图形,故本选项错误;D、是轴对称图形,故本选项正确.故选D.点睛:本题考查的是轴对称图形,熟知轴对称图形是针对一个图形而言的,是一种具有特殊性质图形,被一条直线分割成的两部分沿着对称轴折叠时,互相重合是解答此题的关键.2. 的算术平方根为()A. B. C. D.【答案】B【解析】分析:先求得的值,再继续求所求数的算术平方根即可.详解:∵=2,而2的算术平方根是,∴的算术平方根是,故选B.点睛:此题主要考查了算术平方根的定义,解题时应先明确是求哪个数的算术平方根,否则容易出现选A 的错误.3. “五·一”期间,美丽的黄果树瀑布景区吸引大量游客前来游览.经统计,某段时间内来该风景区游览的人数约为人,用科学记数法表示为()A. B. C. D.【答案】A【解析】分析:利用科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.详解:36000用科学记数法表示为3.6×104.故选A.点睛:此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a的值以及n的值.4. 如图,直线,直线与直线,分别相交于、两点,过点作直线的垂线交直线于点,若,则的度数为()A. B. C. D.【答案】C【解析】分析:根据直角三角形两锐角互余得出∠ACB=90°-∠1,再根据两直线平行,内错角相等求出∠2即可.详解:∵AC⊥BA,∴∠BAC=90°,∴∠ACB=90°-∠1=90°-58°=32°,∵直线a∥b,∴∠ACB=∠2,∴∠2=-∠ACB=32°.故选C.点睛:本题考查了对平行线的性质和三角形内角和定理的应用,注意:①两直线平行,同位角相等,②两直线平行,内错角相等,③两直线平行,同旁内角互补5. 如图,点,分别在线段,上,与相交于点,已知,现添加以下哪个条件仍不能...判定..()A. B. C. D.【答案】D【解析】分析:欲使△ABE≌△ACD,已知AB=AC,可根据全等三角形判定定理AAS、SAS、ASA添加条件,逐一证明即可.详解:∵AB=AC,∠A为公共角,A、如添加∠B=∠C,利用ASA即可证明△ABE≌△ACD;B、如添AD=AE,利用SAS即可证明△ABE≌△ACD;C、如添BD=CE,等量关系可得AD=AE,利用SAS即可证明△ABE≌△ACD;D、如添BE=CD,因为SSA,不能证明△ABE≌△ACD,所以此选项不能作为添加的条件.故选D.点睛:此题主要考查学生对全等三角形判定定理的理解和掌握,此类添加条件题,要求学生应熟练掌握全等三角形的判定定理.6. 一个等腰三角形的两条边长分别是方程的两根,则该等腰三角形的周长是()A. B. C. D. 或【答案】A【解析】试题分析:∵,∴,即,,①等腰三角形的三边是2,2,5,∵2+2<5,∴不符合三角形三边关系定理,此时不符合题意;②等腰三角形的三边是2,5,5,此时符合三角形三边关系定理,三角形的周长是2+5+5=12;即等腰三角形的周长是12.故选A.考点:1.解一元二次方程-因式分解法;2.三角形三边关系;3.等腰三角形的性质.7. 要调查安顺市中学生了解禁毒知识的情况,下列抽样调查最适合的是()A. 在某中学抽取名女生B. 在安顺市中学生中抽取名学生C. 在某中学抽取名学生D. 在安顺市中学生中抽取名男生【答案】B【解析】分析:根据具体情况正确选择普查或抽样调查方法,并理解有些调查是不适合使用普查方法的.要选择调查方式,需将普查的局限性和抽样调查的必要性结合起来具体分析.详解:要调查安顺市中学生了解禁毒知识的情况,就对所有学生进行一次全面的调查,费大量的人力物力是得不尝失的,采取抽样调查即可.考虑到抽样的全面性,所以应在安顺市中学生中随机抽取200名学生.故选B.点睛:本题考查了抽样调查和全面调查,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.8. 已知,用尺规作图的方法在上确定一点,使,则符合要求的作图痕迹是()A. B.C. D.【答案】D【解析】分析:要使PA+PC=BC,必有PA=PB,所以选项中只有作AB的中垂线才能满足这个条件,故D正确.详解:D选项中作的是AB的中垂线,∴PA=PB,∵PB+PC=BC,∴PA+PC=BC故选D.点睛:本题主要考查了作图知识,解题的关键是根据中垂线的性质得出PA=PB.9. 已知的直径,是的弦,,垂足为,且,则的长为()A. B. C. 或 D. 或【答案】C【解析】试题解析:连接AC,AO,∵⊙O的直径CD=10cm,AB⊥CD,AB=8cm,∴AM=AB=×8=4cm,OD=OC=5cm.当C点位置如答1所示时,∵OA=5cm,AM=4cm,CD⊥AB,∴cm.∴CM=OC+OM=5+3=8cm.∴在Rt△AMC中,cm.当C点位置如图2所示时,同理可得OM=3cm,∵OC=5cm,∴MC=5﹣3=2cm.∴在Rt△AMC中,cm.综上所述,AC的长为cm或cm.故选C.10. 已知二次函数的图象如图,分析下列四个结论:①;②;③;④.其中正确的结论有()A. 个B. 个C. 个D. 个【答案】B【解析】试题解析:①由开口向下,可得又由抛物线与y轴交于正半轴,可得再根据对称轴在y轴左侧,得到与同号,则可得故①错误;②由抛物线与x轴有两个交点,可得故②正确;③当时,即 (1)当时,,即 (2)(1)+(2)×2得,即又因为所以故③错误;④因为时,时,所以即所以故④正确,综上可知,正确的结论有2个.故选B.二、填空题(共8个小题,每小题4分,共32分)11. 函数中自变量的取值范围是__________.【答案】【解析】试题解析:根据题意得,x+1>0,解得x>-1.故答案为:x>-1..12. 学校射击队计划从甲、乙两人中选拔一人参加运动会射击比赛,在选拔过程中,每人射击次,计算他们的平均成绩及方差如表,请你根据表中的数据选一人参加比赛,最适合的人选是__________.选手甲乙平均数(环)方差【答案】乙【解析】分析:根据方差的定义,方差越小数据越稳定.详解:因为S甲2=0.035>S乙2=0.015,方差小的为乙,所以本题中成绩比较稳定的是乙.故答案为:乙.点睛:本题考查了方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.13. 不等式组的所有整数解的积为__________.【答案】0【解析】试题分析:,解不等式①得:,解不等式②得:,∴不等式组的整数解为﹣1,0,1…50,所以所有整数解的积为0,故答案为:0.考点:一元一次不等式组的整数解.14. 若是关于的完全平方式,则__________.【答案】7或-1【解析】分析】直接利用完全平方公式的定义得出2(m-3)=±8,进而求出答案.详解:∵x2+2(m-3)x+16是关于x的完全平方式,∴2(m-3)=±8,解得:m=-1或7,故答案为:-1或7.点睛:此题主要考查了完全平方公式,正确掌握完全平方公式的基本形式是解题关键.15. 如图,点,,,均在坐标轴上,且,,若点,的坐标分别为,,则点的坐标为__________.【答案】【解析】分析:根据相似三角形的性质求出P3D的坐标,再根据相似三角形的性质计算求出OP4的长,得到答案.详解:∵点P1,P2的坐标分别为(0,-1),(-2,0),∴OP1=1,OP2=2,∵Rt△P1OP2∽Rt△P2OP3,∴,即,解得,OP3=4,∵Rt△P2OP3∽Rt△P3OP4,∴,即,解得,OP4=8,则点P4的坐标为(8,0),故答案为:(8,0).点睛:本题考查的是相似三角形的判定和性质以及坐标与图形的性质,掌握相似三角形的判定定理和性质定理是解题的关键.16. 如图,为半圆内一点,为圆心,直径长为,,,将绕圆心逆时针旋转至,点在上,则边扫过区域(图中阴影部分)的面积为__________.(结果保留)【答案】【解析】分析:根据已知条件和旋转的性质得出两个扇形的圆心角的度数,再根据扇形的面积公式进行计算即可得出答案.详解:∵∠BOC=60°,△B′OC′是△BOC绕圆心O逆时针旋转得到的,∴∠B′OC′=60°,△BCO=△B′C′O,∴∠B′OC=60°,∠C′B′O=30°,∴∠B′OB=120°,∵AB=2c m,∴OB=1cm,OC′=,∴B′C′=,∴S扇形B′OB=,∵S扇形C′OC=,∴阴影部分面积=S扇形B′OB+S△B′C′O-S△BCO-S扇形C′OC=S扇形B′OB-S扇形C′OC=.故答案为:.点睛:此题考查了旋转的性质和扇形的面积公式,掌握直角三角形的性质和扇形的面积公式是本题的关键.17. 如图,已知直线与轴、轴相交于、两点,与的图象相交于、两点,连接、.给出下列结论:①;②;③;④不等式的解集是或.其中正确结论的序号是__________.【答案】②③④【解析】分析:根据一次函数和反比例函数的性质得到k1k2>0,故①错误;把A(-2,m)、B(1,n)代入y=中得到-2m=n故②正确;把A(-2,m)、B(1,n)代入y=k1x+b得到y=-mx-m,求得P(-1,0),Q(0,-m),根据三角形的面积公式即可得到S△AOP=S△BOQ;故③正确;根据图象得到不等式k1x+b>的解集是x<-2或0<x<1,故④正确.详解:由图象知,k1<0,k2<0,∴k1k2>0,故①错误;把A(-2,m)、B(1,n)代入y=中得-2m=n,∴m+n=0,故②正确;把A(-2,m)、B(1,n)代入y=k1x+b得,∴,∵-2m=n,∴y=-mx-m,∵已知直线y=k1x+b与x轴、y轴相交于P、Q两点,∴P(-1,0),Q(0,-m),∴OP=1,OQ=m,∴S△AOP=m,S△BOQ=m,∴S△AOP=S△BOQ;故③正确;由图象知不等式k1x+b>的解集是x<-2或0<x<1,故④正确;故答案为:②③④.点睛:本题考查了反比例函数与一次函数的交点,求两直线的交点坐标,三角形面积的计算,正确的理解题意是解题的关键.18. 正方形、、、…按如图所示的方式放置.点、、、…和点、、、…分别在直线和轴上,则点的坐标是__________.(为正整数)【答案】【解析】分析:由图和条件可知A1(0,1)A2(1,2)A3(3,4),B1(1,1),B2(3,2),Bn的横坐标为A n+1的横坐标,纵坐标为An的纵坐标,又A n的横坐标数列为An=2n-1-1,所以纵坐标为(2n-1),然后就可以求出Bn的坐标为[A(n+1)的横坐标,An的纵坐标].详解:由图和条件可知A1(0,1)A2(1,2)A3(3,4),B1(1,1),B2(3,2),∴Bn的横坐标为A n+1的横坐标,纵坐标为An的纵坐标又A n的横坐标数列为An=2n-1-1,所以纵坐标为2n-1,∴Bn的坐标为[A(n+1)的横坐标,An的纵坐标]=(2n-1,2n-1).故答案为:(2n-1,2n-1).点睛:本题主要考查函数图象上点的坐标特征及正方形的性质,解决这类问题首先要从简单图形入手,抓住随着“编号”或“序号”增加时,后一个图形与前一个图形相比,在数量上增加(或倍数)情况的变化,找出数量上的变化规律,从而推出一般性的结论.三、解答题(本大题共8小题,满分88分.解答应写出文字说明、证明过程或演算步骤)19. 计算:.【答案】4.【解析】分析:原式第一项利用乘方的意义计算,第二项利用绝对值的代数意义化简,第三项利用特殊角三角函数值进行计算,第四项利用零指数幂法则计算,最后一项利用负整指数幂法则计算即可得到结果.详解:原式.点睛:此题考查了实数的运算,熟练掌握运算法则是解本题的关键.20. 先化简,再求值:,其中.【答案】,.【解析】分析:先化简括号内的式子,再根据分式的除法进行计算即可化简原式,然后将x=-2代入化简后的式子即可解答本题.详解:原式=.∵,∴,舍,当时,原式.点睛:本题考查分式的化简求值,解题的关键是明确分式化简求值的方法.21. 如图是某市一座人行天桥的示意图,天桥离地面的高是米,坡面的倾斜角,在距点米处有一建筑物.为了方便行人推车过天桥,市政府部门决定降低坡度,使新坡面的倾斜角,若新坡面下处与建筑物之间需留下至少米宽的人行道,问该建筑物是否需要拆除(计算最后结果保留一位小数).(参考数据:,)【答案】该建筑物需要拆除.【解析】分析:根据正切的定义分别求出AB、DB的长,结合图形求出DH,比较即可.详解:由题意得,米,米,在中,,∴,在中,,∴,∴(米),∵米米,∴该建筑物需要拆除.点睛:本题考查的是解直角三角形的应用-坡度坡角问题,掌握锐角三角函数的定义、熟记特殊角的三角函数值是解题的关键.22. 如图,在中,是边上的中线,是的中点,过点作的平行线交的延长线于点,连接.(1)求证:;(2)若,试判断四边形的形状,并证明你的结论.【答案】(1)证明见解析;(2)四边形是菱形,理由见解析.【解析】试题分析:(1)根据AAS证△AFE≌△DBE,推出AF=BD,即可得出答案;(2)得出四边形ADCF是平行四边形,根据直角三角形斜边上中线性质得出,根据菱形的判定推出即可.试题解析:(1)证明:∵AF∥BC,∴∠AFE=∠DBE,∵E是AD的中点,AD是BC边上的中线,∴AE=DE,BD=CD,在△AFE和△DBE中∴△AFE≌△DBE(AAS),∴AF=BD,∴AF=DC.(2)四边形ADCF是菱形,证明:AF∥BC,AF=DC,∴四边形ADCF是平行四边形,∵AC⊥AB,AD是斜边BC的中线,∴平行四边形ADCF是菱形.点睛:有一组邻边相等的平行四边形是菱形.23. 某地年为做好“精准扶贫”,投入资金万元用于异地安置,并规划投入资金逐年增加,年在年的基础上增加投入资金万元.(1)从年到年,该地投入异地安置资金的年平均增长率为多少?(2)在年异地安置的具体实施中,该地计划投入资金不低于万元用于优先搬迁租房奖励,规定前户(含第户)每户每天奖励元,户以后每户每天奖励元,按租房天计算,求年该地至少有多少户享受到优先搬迁租房奖励.【答案】(1)从年到年,该地投入异地安置资金的年平均增长率为;(2)年该地至少有户享受到优先搬迁租房奖励.【解析】分析:(1)设年平均增长率为x,根据:xx年投入资金给×(1+增长率)2=xx年投入资金,列出方程求解可得;(2)设今年该地有a户享受到优先搬迁租房奖励,根据:前1000户获得的奖励总数+1000户以后获得的奖励总和≥500万,列不等式求解可得.详解:(1)设该地投入异地安置资金的年平均增长率为,根据题意得,解得:或(舍),答:从年到年,该地投入异地安置资金的年平均增长率为;(2)设年该地有户享受到优先搬迁租房奖励,根据题意得,∵,∴,,解得:,答:年该地至少有户享受到优先搬迁租房奖励.点睛:本题主要考查一元二次方程与一元一次不等式的应用,由题意准确抓住相等关系并据此列出方程或不等式是解题的关键.24. 某电视台为了解本地区电视节目的收视情况,对部分市民开展了“你最喜爱的电视节目”的问卷调查(每人只填写一项),根据收集的数据绘制了两幅不完整的统计图(如图所示),根据要求回答下列问题:(1)本次问卷调查共调查了________名观众;图②中最喜爱“新闻节目”的人数占调查总人数的百分比为________;(2)补全图①中的条形统计图;(3)现有最喜爱“新闻节目”(记为),“体育节目”(记为),“综艺节目”(记为),“科普节目”(记为)的观众各一名,电视台要从四人中随机抽取两人参加联谊活动,请用列表或画树状图的方法,求出恰好抽到最喜爱“”和“”两位观众的概率.【答案】(1),;(2)补图见解析;(3)恰好抽到最喜爱“”和“”两位观众的概率为.【解析】分析:(1)用喜欢科普节目的人数除以它所占的百分比即可得到调查的总人数,用喜爱“新闻节目”的人数除以调查总人数得到它所占的百分比;(2)用调查的总人数分别减去喜欢新闻、综艺、科普的人数得到喜欢体育的人数,然后补全图①中的条形统计图;(3)画树状图展示所有12种等可能的结果数,再找出抽到最喜爱“B”和“C”两位观众的结果数,然后根据概率公式求解.详解:(1)本次问卷调查共调查的观众数为45÷22.5%=200(人);图②中最喜爱“新闻节目”的人数占调查总人数的百分比为50÷200=25%;(2)最喜爱“新闻节目”的人数为200-50-35-45=70(人),如图,(3)画树状图为:共有12种等可能的结果数,恰好抽到最喜爱“B”和“C”两位观众的结果数为2,所以恰好抽到最喜爱“B”和“C”两位观众的概率=.点睛:本题考查了列表法与树状图法:通过列表法或树状图法展示所有等可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式求出事件A或B的概率.也考查了统计图.25. 如图,在中,,为的中点,与半圆相切于点.(1)求证:是半圆所在圆的切线;(2)若,,求半圆所在圆的半径.【答案】(1)证明见解析;(2)半圆所在圆的半径是.【解析】分析:(1)根据等腰三角形的性质,可得OA,根据角平分线的性质,可得OE,根据切线的判定,可得答案;(2)根据余弦,可得OB的长,根据勾股定理,可得OA的长,根据三角形的面积,可得OE的长.详解:(1)如图1,作于,连接、,∵,为的中点,∴.∵与半圆相切于点,∴,∵,∴,∵经过圆半径的外端,∴是半圆所在圆的切线;(2)∵,是的中点,∴,由,,得∴.由勾股定理,得.由三角形的面积,得,,半圆所在圆的半径是.点睛:本题考查了切线的判定与性质,利用切线的判定是解题关键,利用面积相等得出关于OE的长是解题关键.26. 如图,已知抛物线的对称轴为直线,且抛物线与轴交于、两点,与轴交于点,其中,.(1)若直线经过、两点,求直线和抛物线的解析式;(2)在抛物线的对称轴上找一点,使点到点的距离与到点的距离之和最小,求出点的坐标;(3)设点为抛物线的对称轴上的一个动点,求使为直角三角形的点的坐标.【答案】(1)抛物线的解析式为,直线的解析式为.(2);(3)的坐标为或或或.【解析】分析:(1)先把点A,C的坐标分别代入抛物线解析式得到a和b,c的关系式,再根据抛物线的对称轴方程可得a和b的关系,再联立得到方程组,解方程组,求出a,b,c的值即可得到抛物线解析式;把B、C两点的坐标代入直线y=mx+n,解方程组求出m和n的值即可得到直线解析式;(2)设直线BC与对称轴x=-1的交点为M,则此时MA+MC的值最小.把x=-1代入直线y=x+3得y的值,即可求出点M坐标;(3)设P(-1,t),又因为B(-3,0),C(0,3),所以可得BC2=18,PB2=(-1+3)2+t2=4+t2,PC2=(-1)2+(t-3)2=t2-6t+10,再分三种情况分别讨论求出符合题意t值即可求出点P的坐标.详解:(1)依题意得:,解之得:,∴抛物线的解析式为.∵对称轴为,且抛物线经过,∴把、分别代入直线,得,解之得:,∴直线的解析式为.(2)直线与对称轴的交点为,则此时的值最小,把代入直线得,∴.即当点到点的距离与到点的距离之和最小时的坐标为..(注:本题只求坐标没说要证明为何此时的值最小,所以答案没证明的值最小的原因). (3)设,又,,∴,,,①若点为直角顶点,则即:解之得:,②若点为直角顶点,则即:解之得:,③若点为直角顶点,则即:解之得:,.综上所述的坐标为或或或.点睛:本题综合考查了二次函数的图象与性质、待定系数法求函数(二次函数和一次函数)的解析式、利用轴对称性质确定线段的最小长度、难度不是很大,是一道不错的中考压轴题.如有侵权请联系告知删除,感谢你们的配合!精品。