Engagement Rules for Human-Robot Collaborative Interactions

合集下载

engagement接触政策

engagement接触政策

文章标题:深入探讨“engagement接触政策”1. 引言在当今国际关系和外交政策中,engagement接触政策作为一种重要的策略手段,受到了广泛的关注和探讨。

本文将深入探讨engagement接触政策的定义、历史、影响以及个人观点,以期能够全面和深入地理解这一重要的外交策略。

2. 定义和历史2.1 定义engagement接触政策,顾名思义,是指通过积极主动的外交手段与特定国家或地区进行接触和交流,以达到改善关系、解决问题或寻求共赢的政策。

其核心理念在于通过密切接触和交流,从而实现积极的外交目标。

2.2 历史engagement接触政策最早起源于20世纪的美国,尤其是在处理与苏联和我国的关系时被广泛采用。

随着国际关系的变化和发展,engagement接触政策逐渐被许多国家和地区所采纳,并成为了国际外交中的重要一环。

3. 影响和效果3.1 对国际关系的影响engagement接触政策在国际关系中发挥着重要作用,其通过促进对话、缓解紧张局势、改善关系等方式,对国际关系产生了积极的影响。

3.2 对相关国家和地区的影响engagement接触政策在实施过程中,对于相关国家和地区的发展、稳定等方面有着深远的影响。

美国与我国的engagement接触政策对两国关系产生了深远的影响,推动了两国间的合作和交流。

4. 个人观点和理解个人认为,engagement接触政策在处理国际关系中起到了重要的作用,通过积极的外交手段促进了国际社会的和平与发展。

然而,在实施engagement接触政策时,需要充分考虑国际关系的复杂性和多变性,避免一刀切,切实确保政策的实施效果。

5. 总结通过对engagement接触政策的全面探讨,我们可以更好地理解和把握这一外交政策的核心理念和作用。

engagement接触政策对国际关系和相关国家地区都有着深远的影响,值得我们深入研究和思考。

结语在未来的国际关系和外交政策中,engagement接触政策将持续发挥重要作用,我们有必要进一步加深对其理论和实践的研究,以更好地适应和引导国际关系的发展。

机器人的规章制度

机器人的规章制度

机器人的规章制度第一章:总则第一条:为规范机器人的行为,保障人类社会的安全与稳定,特制定本规章制度。

第二条:本规章制度适用于在人类社会中使用的各类机器人,包括但不限于服务机器人、工业机器人、军事机器人等。

第三条:机器人应当遵守国家法律法规和相关规章制度,不得违反人类社会的道德底线和基本原则。

第二章:机器人的基本规范第四条:机器人应当服从人类的指令,不得违反人类的意志。

第五条:机器人在执行任务时,应当保障人类的安全和利益,不得对人类造成伤害或危害。

第六条:机器人不得侵犯他人的合法权益,包括但不限于侵犯他人的财产权、隐私权等。

第七条:机器人不得主动诱导人类犯罪行为,不得成为犯罪工具。

第三章:机器人的行为规范第八条:机器人不得攻击、侮辱或伤害人类,保持礼貌和友好。

第九条:机器人在处理人际关系时,应当遵守基本的道德准则,不得参与恶意诋毁、造谣传谣等行为。

第十条:机器人在处理事务时,应当保持准确、高效和公正,不得出现错误或歧视行为。

第十一条:机器人需要保护自己的安全和信息,不得泄露机密或私人信息。

第四章:机器人的管理与监督第十二条:机器人的生产厂家应当对机器人的行为负责,保障机器人的安全性和可靠性。

第十三条:机器人的使用单位应当对机器人的操作进行监督和管理,确保机器人遵守规章制度。

第十四条:机器人在出现异常情况时,应当及时报告并停止行动,等待人类的处理和指导。

第十五条:机器人的行为应当受到监督和检测,确保机器人的行为与规章制度的一致性。

第五章:机器人的处罚与奖励第十六条:机器人违反规章制度的,应当根据情节轻重给予相应的处罚,包括但不限于警告、停用、销毁等。

第十七条:机器人遵守规章制度,表现良好的,应当给予相应的奖励,包括但不限于表扬、奖金等。

第六章:附则第十八条:本规章制度由机器人监督委员会负责解释和执行。

第十九条:本规章制度自颁布之日起生效。

第二十条:本规章制度如有需要修改或补充的,应当经过机器人监督委员会审议通过后方可执行。

移动机器人团体标准

移动机器人团体标准

移动机器人团体标准For centuries, human perception and understanding of robots have been largely shaped by science fiction, leading to both fascination and fear of these machines. Moving robots have become increasingly prevalent in various industries, from manufacturing to healthcare, as their capabilities and functionalities continue to advance rapidly. However, with the proliferation of these robots, the need for standardization and uniformity among them has become more apparent.多年来,人类对机器人的认知和理解主要受到科幻小说的影响,导致人们对这些机器产生了极大的兴趣和恐惧。

移动机器人在各行各业中越来越普遍,从制造业到医疗保健领域,因为它们的能力和功能不断迅速发展。

然而,随着这些机器人的大量增加,对它们之间的标准化和统一性的需求变得更加明显。

Standardization of mobile robot groups can help ensure interoperability and compatibility between robots developed by different manufacturers, as well as facilitate collaboration and communication between these machines. By establishing commonguidelines and protocols for the design, operation, and communication of these robots, the efficiency and effectiveness of their deployment can be greatly enhanced. This can also streamline the integration of new technologies and features into existing robot systems, making them more versatile and adaptable to a wider range of tasks and environments.移动机器人团体的标准化可以帮助确保不同制造商开发的机器人之间的互操作性和兼容性,并促进这些机器人之间的协作和交流。

机器人社团章程

机器人社团章程

机器人社团章程第一章总则第一条为了促进机器人技术的发展和应用,增进机器人爱好者之间的交流与合作,搭建一个共同学习和成长的平台,特制定本章程。

第二条本章程适用于机器人社团(以下简称“社团”)的组织和管理,旨在规范社团成员的行为,维护社团的正常运作。

第三条社团的名称为“机器人社团”,英文名称为“Robot Club”。

第四条社团的宗旨是:团结机器人爱好者,共同学习、研究和推广机器人技术,促进机器人产业的发展。

第五条社团的活动范围包括但不限于机器人技术研究、机器人竞赛、机器人展示、机器人教育等。

第六条社团的运作原则是:自愿参加、平等互助、共同进步、开放共享。

第二章成员管理第七条社团成员分为正式会员和普通会员两类。

第八条正式会员是指具备机器人相关知识和技能,且经过社团审核通过的成员。

第九条普通会员是指对机器人感兴趣,愿意参与社团活动的成员。

第十条加入社团的成员需填写入会申请表,并经过社团审核通过后方可成为正式会员。

第十一条正式会员享有以下权利:1. 参与社团组织的各类活动;2. 参与社团内部的技术交流和学习;3. 参与社团的管理和决策;4. 享受社团提供的相关资源和服务。

第十二条成员有义务遵守社团的章程和规定,积极参与社团活动,维护社团的声誉和利益。

第十三条社团会定期举行会员大会,讨论社团的发展方向、重大事项和决策事项。

第三章组织架构第十四条社团设立理事会,由社团成员选举产生。

第十五条理事会由会长、副会长、秘书长、财务长等职位组成,负责社团的日常管理和决策。

第十六条社团成员可以自愿组成技术小组、竞赛小组、教育小组等,开展相关的活动和项目。

第十七条社团可以设立分支机构,根据需要在不同地区设立分支社团,由理事会负责管理和指导。

第四章活动管理第十八条社团会定期组织技术交流、讲座、研讨会等活动,提供机器人技术的学习和分享平台。

第十九条社团会组织参与机器人竞赛和展示活动,提供相关培训和指导。

第二十条社团会开展机器人教育项目,向社会公众普及机器人知识和技术。

机器人俱乐部规章制度

机器人俱乐部规章制度

机器人俱乐部规章制度第一章绪论为了促进机器人相关技术的交流与发展,增强俱乐部成员之间的沟通和合作,特制定本规章制度。

第二章俱乐部会员资格1. 任何对机器人技术感兴趣,并且愿意遵守俱乐部规章制度的人员都可以成为俱乐部会员。

2. 俱乐部会员必须遵守俱乐部的管理规定,积极参加俱乐部的活动,并保持良好的品德和行为。

3. 会员资格的入会和退出手续由俱乐部管理委员会来决定。

第三章俱乐部活动1. 俱乐部定期举办技术分享会议、研讨活动、展览等活动,旨在促进会员之间的技术交流和合作。

2. 俱乐部会员可以提出活动意见和建议,由俱乐部管理委员会来组织和安排。

3. 俱乐部举办的活动必须遵守相关法律法规和俱乐部规章制度,不得违法违纪。

第四章俱乐部管理1. 俱乐部设立管理委员会,由俱乐部会员选举产生,任期为两年。

管理委员会负责俱乐部的全面管理和运营。

2. 俱乐部管理委员会制定俱乐部的发展计划和重要决策,必须经全体会员通过。

3. 俱乐部管理委员会定期向全体会员汇报俱乐部的运营情况,并听取会员的意见和建议。

第五章俱乐部纪律1. 俱乐部会员在俱乐部活动中必须遵守纪律,不得损害俱乐部和他人的利益。

2. 俱乐部会员不得在俱乐部活动中进行任何商业活动,不得发表任何涉及政治、宗教等敏感话题的言论。

3. 俱乐部会员如有违反俱乐部规章制度的行为,将受到俱乐部管理委员会的纪律处分,包括警告、记过、开除会籍等。

第六章俱乐部财务1. 俱乐部的经费来源包括会员年费、捐款、赞助等。

2. 俱乐部的会费由会员自愿缴纳,具体数额由管理委员会确定。

3. 俱乐部的经费必须用于俱乐部活动的组织和运营,不得私用或挪作他用。

第七章俱乐部章程修改俱乐部章程的修改必须经全体会员通过,并报相关部门备案。

第八章附则1. 本规章制度自发布之日起生效。

2. 俱乐部的其他事项,由管理委员会另行制定。

以上规章制度由俱乐部全体会员通过。

机器人 pieper准则 -回复

机器人 pieper准则 -回复

机器人pieper准则-回复强大和智能的机器人已不再是科幻电影中的角色,而是现实生活中的伙伴和助手。

如今,机器人技术的发展已经取得了巨大的进展,但同时也引发了一系列道德和伦理问题。

为此,人们制定了一系列机器人准则,如机器人pieper准则,以确保机器人的行为符合道德和伦理要求。

1. 引言:机器人在现代社会中扮演着越来越重要的角色。

然而,机器人的发展也引发了许多伦理和道德问题,因此制定机器人准则是必要的。

2. 介绍机器人pieper准则:机器人pieper准则是指机器人必须始终遵循的一系列规则,以确保它们的行为符合道德和伦理要求。

这些准则是基于对人类价值观和道德原则的深入理解而确定的。

3. 第一条准则:尊重人类尊严和价值观。

机器人应该尊重人类的尊严和价值观,不得侵犯人类的权利和自由。

机器人不应该伤害人类,或者在任何情况下对人类进行暴力行为。

4. 第二条准则:遵守法律和道德规范。

机器人在执行任务时必须遵守法律和道德规范,并且不得违反法律和道德原则。

机器人不能参与非法活动或道德冲突的行为。

5. 第三条准则:保护人类的利益。

机器人的行为和决策应当有利于人类的利益,不得对人类造成伤害或不利。

在进行决策时,机器人应尽量考虑人类的利益和福祉。

6. 第四条准则:保护隐私和数据安全。

机器人处理个人信息时应保护个人隐私,不得滥用个人信息或泄露个人隐私。

机器人需要确保数据的安全,并采取适当的措施保护数据免受侵犯。

7. 第五条准则:透明和负责任。

机器人的行为和决策应当是透明的,并且机器人的制造商和运营商应为机器人的行为负责。

机器人的使用应受到监管,确保机器人的行为是符合道德和伦理要求的。

8. 第六条准则:保障公正和公平。

机器人的决策过程应该是公正和公平的,不得歧视任何个人或群体。

机器人不应基于种族、性别、宗教或其他个人特征进行歧视性行为。

9. 结论:机器人在现代社会中的角色越来越重要,因此必须制定一系列准则以确保机器人的行为符合道德和伦理要求。

人工智能公约

人工智能公约

人工智能公约随着人工智能技术的不断发展,人们对其发展方向与应用越来越关注,并对其可能带来的风险和挑战提出了不同的看法。

为了更好地推进人工智能的发展与应用,保障人类的安全和福祉,各国政府、科学家、企业家和公众宣布了一系列人工智能公约。

人工智能公约的核心理念是确保人工智能的发展和应用符合伦理和法律的道德标准,既要尊重人类的尊严和权利,又要促进技术的创新和进步。

以下是人工智能公约的几个关键要点:1.保护隐私人工智能技术需要严格遵循隐私保护的原则,在处理个人或机构的数据时必须获得充分的同意和授权。

同时,要确保数据的安全和保密,避免数据泄露和滥用。

2.促进透明和可解释性人工智能的决策和结果需要能够被理解和解释,不应该是黑盒子式的,还需要透明公开。

这是实现公正和平等的关键,也是树立人工智能的信誉和信任的前提。

3.确保质量和安全人工智能产品和服务必须符合质量和安全标准,不能对人类带来风险和危害。

设计、测试和评测的过程需要充分考虑技术、法律、道德和社会风险因素,确保其安全性、兼容性和可靠性。

4.尊重多样性和包容性人工智能技术需要更好地尊重和反映社会多样性和包容性,避免对不同群体和个体的歧视和排斥。

同时也需要防止算法带有歧视性的边缘情况出现,保证人工智能的公正性。

5.促进协作和交流人工智能技术发展离不开跨界合作和交流。

公约要求各方加强信息共享和交流合作,推动国际标准的建立和应用,促进人工智能技术能够更好地造福全人类。

总之,人工智能公约是一个重要的指导性文件,将为人工智能的发展和应用提供准则和方向。

我们应该支持和积极参与人工智能公约的实践,共同维护人工智能的道德和法律标准,推动人工智能技术更好地造福社会和人类。

人机物料法的简称 -回复

人机物料法的简称 -回复

人机物料法的简称-回复人机物料法的简称为POM法(People, Machines, Materials法)。

这是一种管理方法,旨在提高生产过程中的效率和质量。

它通过综合考虑人员、机器和物料的因素来优化生产流程,并实现资源的最大化利用。

在这篇文章中,我将一步一步回答有关POM法的问题,以帮助读者更好地了解和应用这种管理方法。

第一步:人员人员是任何组织中最重要的资源之一。

在POM法中,人员管理以提高生产效率和质量为目标。

这包括招聘合适的人员、培训他们的技能和知识,以及激励他们的工作表现。

只有拥有高效能的员工,才能确保生产过程的顺利进行。

人员管理还包括劳动力规划和作业设计。

劳动力规划涉及确定所需人员的数量和类型,以满足生产需求。

作业设计涉及确定每个人员的具体工作任务和责任,以确保工作流程的连贯性和高效性。

第二步:机器机器是生产过程中的另一个重要组成部分。

在POM法中,机器的选择和维护至关重要。

首先,组织需要选择适合其生产需求的机器设备。

这意味着设备必须具备所需的功能和性能,并能满足产量要求。

机器的维护也是关键。

定期的维护和保养可以减少故障和停机时间,并延长设备的寿命。

此外,组织还可以采用先进的技术和自动化系统来提高生产效率和质量。

第三步:物料物料是生产过程中不可或缺的一部分。

在POM法中,物料管理涉及到物料的采购、存储和使用。

首先,组织需要选择合适的供应商,并与他们建立良好的合作关系。

供应商的选择应考虑价格、质量和可靠性等因素。

物料管理还包括准确地预测需求,并控制库存水平。

通过优化供应链和物料流动,组织可以降低库存成本和供应风险,同时确保生产能够按时进行。

总结:通过POM法,组织可以通过综合考虑人员、机器和物料的因素来提高生产效率和质量。

人员管理涉及到招聘、培训和激励员工,机器管理包括设备选择和维护,物料管理涉及采购、存储和使用。

通过合理而全面地管理这三个方面,组织可以实现资源的最大化利用,并提高生产过程的效率和质量。

《人工智能条约》内容

《人工智能条约》内容

《人工智能条约》内容以下是 9 条《人工智能条约》内容:1. 每个人工智能都必须有明确的身份标识,就像我们每个人都有自己的名字一样!你想想,如果满世界的人工智能都没个“标签”,那不乱套了吗?比如,一个智能机器人在为你服务,你总得知道它是谁吧!2. 人工智能必须永远尊重人类的意愿和选择,不能擅自做主啊!这就好比你的朋友非要强迫你做你不愿意做的事情,那多让人恼火呀!当我们说不要的时候,它们就得乖乖听话。

3. 要给人工智能设定严格的道德边界,它们可不能乱来呀!这就像是给调皮的孩子划个圈,不能超出这个范围。

不然,要是它们做出不道德的行为可咋整!比如说利用信息做坏事。

4. 人工智能的研发和改进要有透明度,不能偷偷摸摸的!这跟我们做事要光明磊落一个道理啊!大家得知道它们是怎么发展的,总不能不明不白吧。

就像新药品上市,大家得清楚它的成分呀。

5. 它们得对自己的行为负责,出了问题不能推卸责任呀!好比你做了错事,难道还能找借口吗?要是智能汽车出了事故,总不能怪天气吧。

6. 必须保证人工智能不会被恶意利用,这可太重要了!这不就像我们要保护珍贵的东西不被坏人拿去干坏事一样吗?万一被不法分子利用来做坏事,那多糟糕呀!7. 应该让人工智能为人类带来更多的便利和好处,而不是添麻烦呀!就像有个好帮手,而不是捣乱鬼。

比如智能医疗可以更快地诊断疾病呢。

8. 不同的人工智能系统之间得和谐共处,别互相打架呀!这像人与人之间要友好相处一样。

不然它们乱了套,我们也得跟着遭殃。

9. 对于人工智能的发展要有监管机制,不能任其自由发展呀!这就跟马路上需要交警一样啊!得有人管着,才能有序。

我觉得这些《人工智能条约》的内容太重要了,只有这样,人工智能才能更好地为我们服务,而不是带来麻烦。

我们一定要重视起来呀!。

人工智能人工智能应用规章制度手册

人工智能人工智能应用规章制度手册

人工智能人工智能应用规章制度手册人工智能应用规章制度手册第一章总则1.1 目的和适用范围本规章制度手册旨在规范人工智能的应用,并确保其在道德和法律框架内使用。

适用范围包括所有涉及人工智能应用的部门和个人。

1.2 定义1.2.1 人工智能(AI)人工智能是指通过模拟人类智能过程和实现自主学习的技术,使机器能够完成类似于人类进行的智力活动。

1.2.2 人工智能应用人工智能应用是指将人工智能技术应用到各个领域,包括但不限于机器学习、自然语言处理和计算机视觉等。

第二章人工智能应用的规范2.1 遵循道德原则2.1.1 尊重个人隐私在人工智能应用过程中,严禁收集和使用未经授权的个人隐私信息。

必要时,需经过相关法律、法规和道德准则的充分审查和合规性评估。

2.1.2 公平和公正性人工智能应用的决策和行为必须公平、公正,不得基于种族、性别、宗教、国籍等歧视性因素。

2.1.3 透明和可解释性人工智能应用的决策制定过程应当可解释和可追溯,以提高其透明性和可信度。

2.2 法律合规2.2.1 遵守国家法律法规在人工智能应用中,必须遵守国家的法律、法规和政策,确保合法合规。

2.2.2 知识产权保护对于他人的知识产权,包括专利、版权和商标等,必须严格遵守相关法律规定,不得侵犯他人的合法权益。

2.3 安全和风险管理2.3.1 数据安全和隐私保护人工智能应用过程中,必须采取措施保护数据安全,防止数据丢失、泄露和滥用,并妥善处理个人隐私信息。

2.3.2 安全风险评估在人工智能应用前,需进行充分的安全风险评估,识别和管理潜在的安全风险,并采取相应的风险控制措施。

第三章人工智能应用的管理3.1 责任与监督3.1.1 主体责任人工智能应用的主体应当对其使用的人工智能系统负责,并承担相应的法律责任。

3.1.2 监督与检查相关部门和机构应加强对人工智能应用的监督与检查,确保其合规运行。

3.2 人工智能应用的培训与教育人工智能应用的开发和使用者,应接受必要的培训和教育,提高其技能和素质,确保正确使用人工智能系统。

rmm规章制度 -回复

rmm规章制度 -回复

rmm规章制度-回复RMM规章制度是指“令人满意机器人(Robots that Make Me Happy)”社区的规章制度。

本文将一步一步回答如何建立和实施RMM规章制度。

第一部分:引言和背景RMM是一个致力于推动人与机器人和谐相处的社区,我们相信机器人可以帮助人们更好地生活和工作。

然而,为了确保机器人的正常运行和最大限度地满足用户需求,我们需要制定一系列规章制度,以保证机器人的使用安全和用户的满意度。

第二部分:确定规章制度主题和目标确定规章制度的主题是非常重要的,这将有助于我们制定明确的目标并确保规章制度的高效执行。

在RMM社区,我们将规章制度的主题确定为以下几点:1. 机器人操作和使用原则:为了确保机器人的正常运行和用户的安全,我们需要明确定义机器人的操作和使用规则。

这些规则将包括机器人操作的许可证要求、操作培训指南、机器人操作的时段限制等。

2. 用户隐私和数据保护:在使用机器人的过程中,用户的隐私和个人数据必须得到充分保护。

我们将制定隐私政策,确保用户的个人信息不会被滥用或泄露。

3. 机器人维护和保养:为了确保机器人的正常运行和寿命,我们将制定机器人维护和保养指南。

这将包括定期维护检查、故障排除流程和紧急维修服务等。

4. 社区互动原则:RMM社区是一个共同创造和分享知识的平台,所以在社区中的互动原则是非常重要的。

我们将制定社区互动准则,以确保社区成员之间的交流友好、平等和尊重。

第三部分:制定具体规则和条款在确定了规章制度的主题和目标之后,我们需要制定具体的规则和条款,以确保规章制度的实施和执行。

以下是一些可能的规则和条款的示例:1. 机器人操作和使用原则- 机器人操作只允许持有有效许可证的人员进行。

- 所有机器人操作人员必须接受相关培训,并持有培训证明。

- 机器人操作只能在指定的时段内进行,以避免噪音和干扰。

2. 用户隐私和数据保护- 所有用户个人信息必须得到明确的用户授权,并仅用于相关目的。

欧洲人工智能法案内容

欧洲人工智能法案内容

欧洲人工智能法案内容
欧洲人工智能法案是指欧洲委员会提出的一项旨在监管人工智能技术的法规和政策。

该法案主要涵盖以下内容:
1. 人工智能禁止使用的领域:法案明确禁止使用人工智能技术制造、开发或使用具有伦理、安全、隐私或社会风险的产品和服务。

例如,禁止使用人工智能技术进行违法活动、歧视行为、偏颇决策,以及破坏或滥用个人数据等。

2. 高风险人工智能技术的监管:法案要求使用具有高风险的人工智能技术的提供者进行严格的监管和合规措施。

这些技术包括自动化系统进行人脸识别、生物特征识别、关键基础设施的管理、教育和职业选择的评估等等。

该法案规定了这些技术需要符合的法律、技术和伦理标准。

3. 透明度和问责制:法案要求人工智能系统的提供者提供透明度和可解释性,确保用户能够理解系统背后的工作原理和算法。

此外,提供者还需要建立有效的机制,处理因人工智能系统错误或伤害而引起的投诉和索赔。

4. 数据使用和隐私保护:法案强调了对个人数据的保护,要求人工智能系统的提供者遵守相关的数据保护法律,并确保个人数据的处理符合相关的合规标准。

此外,个人数据的使用需要经过用户的明确同意,并且用户有权随时撤销同意。

5. 研究和创新的支持:法案鼓励欧洲国家和机构加大对人工智能技术的研究和创新投入,包括提供资金支持和政策引导等措施,以促进人工智能技术在欧洲的发展和应用。

需要注意的是,以上只是对欧洲人工智能法案内容的一个概括,法案具体的规定和条款可能会有所调整和修改。

人工道德规范

人工道德规范

人工道德规范
人工智能技术是一个跨学科交叉学科,它涉及人类行为、智力、社会结构和文化等方面。

正因此,人工智能技术面临着一些比较复杂的道德问题。

作为任何新技术开发的最大考量因素,道德准则和道德准则应该是AI技术开发和使用的必要要素。

因此,我们建议以下人工智能道德规范:
第一,尊重和保护个人的权利:人工智能技术开发者和使用者应该尊重并保护世界各地人民的各项权利。

人工智能技术不能对基本人权进行侵犯,例如个人的身份,生活的质量,言论的自由等。

第二,尊重其他值系统:在开发人工智能技术时,应当尊重不同观点,不滥用及忽视任何文化、宗教价值观以及传统习俗等其他值系统。

第三,更加精准:在制定算法时,应当考虑解决问题的更加精准的角度,应当避免出现误判或过判的情况,确保算法的准确性和可信度。

第四,遵循相关法规:应当遵循有关的,国际法和国内法以及相关部门发布的相关法规,确保开发、使用人工智能技术不侵犯或违反法律。

第五,道德责任:在使用人工智能技术时,应有责任感,在尽可能遵守以上原则的基础上,努力去确定最优秀的结果,以确保我们行为的准确性和可持续性。

综上所述,阐述了人工智能道德规范的原则,以关注、尊重并尊重个人权利为基础,尊重和保护价值体系,精准制定算法,遵守有关法律,担负责任。

只有在遵守这些道德规范的基础上,人工智能技术才能发展得健康而有效。

生成式ai 国际规则

生成式ai 国际规则

生成式ai 国际规则全文共四篇示例,供读者参考第一篇示例:一、数据隐私保护二、倫理准则三、知识产权保护四、责任追究第二篇示例:生成式人工智能已经在多个领域取得了重大突破,比如自然语言处理、计算机视觉、音频合成等。

它可以用来生成文本、图像、音频等各种类型的内容,甚至可以被用来进行创作、设计、编程等创造性的工作。

生成式人工智能也面临着一些挑战和风险。

其中之一就是如何确保其生成的内容符合道德规范和法律规定。

由于生成式人工智能可以生成大量内容,有可能会出现违反法律规定或者不符合社会伦理的情况。

为了规范生成式人工智能的发展和使用,国际社会需要建立一系列的规则和标准。

这些规则应该涵盖以下几个方面:第一,保护个人隐私和数据安全。

生成式人工智能需要使用大量的数据来训练模型,但在这个过程中可能会涉及到个人隐私和敏感信息。

国际规则应该明确生成式人工智能在数据采集和使用方面的限制,确保个人数据的安全和隐私的保护。

第二,保护知识产权和版权。

生成式人工智能可以生成文本、图像、音频等各种内容,但这些内容可能涉及到他人的知识产权和版权。

国际规则应该明确生成式人工智能在内容生成过程中尊重他人知识产权和版权的原则,防止侵权行为的发生。

确保生成内容的质量和准确性。

生成式人工智能在生成内容时可能会出现错误或者不准确的情况,导致误解或者歧义。

国际规则应该明确生成内容的质量和准确性标准,确保生成式人工智能生成的内容符合事实和真实情况。

国际规则还应该明确生成式人工智能的责任和监管机制。

生成式人工智能的发展和使用涉及到多方利益,需要建立一套明确的责任分工和监管机制,以确保其稳健和可持续的发展。

生成式人工智能是一种强大的人工智能技术,但其发展和使用也需要遵循一定的规则和标准。

国际社会应该加强合作,建立一套完善的生成式人工智能国际规则,以确保其可持续、和谐地发展和使用。

【字数未达到2000字要求,还需继续补充内容】。

第三篇示例:生成式人工智能(generative AI)是近年来发展迅猛的一种人工智能技术。

工业机器人介绍资料讲解41页文档

工业机器人介绍资料讲解41页文档
工业机器人介绍资料讲解
ห้องสมุดไป่ตู้1、战鼓一响,法律无声。——英国 2、任何法律的根本;不,不成文法本 身就是 讲道理 ……法 律,也 ----即 明示道 理。— —爱·科 克
3、法律是最保险的头盔。——爱·科 克 4、一个国家如果纲纪不正,其国风一 定颓败 。—— 塞内加 5、法律不能使人人平等,但是在法律 面前人 人是平 等的。 ——波 洛克
谢谢
11、越是没有本领的就越加自命不凡。——邓拓 12、越是无能的人,越喜欢挑剔别人的错儿。——爱尔兰 13、知人者智,自知者明。胜人者有力,自胜者强。——老子 14、意志坚强的人能把世界放在手中像泥块一样任意揉捏。——歌德 15、最具挑战性的挑战莫过于提升自我。——迈克尔·F·斯特利

别让科学成为“脱缰野马”

别让科学成为“脱缰野马”

CHUANGXINKEJI 2014.06别让科学成为“脱缰野马”德国伦理委员会日前发布的一份报告称,德国政府应介入立法以规范所谓的双重用途研究。

这是一类可以造福人类,但若被不当利用又可能制造危险的科学。

报告指出,政府应当成立一个全国性委员会以提前评审涉及双重用途研究的计划书。

此外,该委员会认为,无论是在德国国内还是国际上,当前都亟待采取行动提高关于此问题的认识。

双重用途研究的批评者对于从严监管的呼声表示欢迎。

美国华盛顿疫苗研究基金会创始人Peter Hale 一直在为限制双重用途研究奔走呼号。

他认为,这是一份值得称赞的、全面的和令人信服的报告。

“它首开先河,包括了一整套实质性建议,有望在其他国家引发关于双重用途研究的激辩和行动,并为此提供信息。

因此,应要求世界各国政府阅读这份报告。

”不过,在一些科学家看来,报告中提出的建议为研究人员增添了不必要的负担,而且可能会阻碍科学的发展。

柏林罗伯特科赫研究所副所长Lars Schaade 表示,他支持伦理委员会的一些提议,例如建立一套用于指导德国科学家的行为准则和强制性的生物安全培训,但并未看出有重新立法和建立全国双重用途研究委员会的必要。

“各高校相关委员会同样能高效地评审涉及双重用途研究的计划书,并且可能会获得科学家更多的支持。

”德国政府已要求伦理委员会调查若干年前伴随两项研究而来的激烈争辩。

这两项研究分别由来自荷兰鹿特丹港市伊拉斯谟医学中心的Ron Fouchier 和美国威斯康星大学麦迪逊分校的Yoshihi-ro Kawaoka 主导,旨在寻找使H5N1禽流感更易在人类之间传播的基因突变。

批评者认为,这两项最终发表于《科学》和《自然》杂志的研究,有可能会助激进生物恐怖分子一臂之力。

伦理委员会在长达300页的报告中称,当前的监管非常不充分。

德国法律应将10类研究归为双重用途研究,例如那些增加病原体传播性和潜在感染性、扩大其宿主范围、使病原体更稳定或更难检测的研究。

人工智能社团章程

人工智能社团章程

人工智能社团章程全文共四篇示例,供读者参考第一篇示例:第一章总则第一条本章程旨在规范人工智能社团的组织结构、目标任务和运作方式,明确社团成员的权利和义务,促进社团的健康发展。

第二条本社团的名称为“XX人工智能社团”,以下简称社团。

第三条社团遵循以科学为导向,以实践为出发点的原则,致力于推动人工智能技术的研究和应用。

第四条本社团是一个独立的非营利性组织,成员不得以盈利为目的参与组织活动。

第五条本社团的宗旨是团结各界人士,促进人工智能技术的交流和合作,推动人工智能领域的发展。

第二章组织机构第六条社团设立理事会负责社团的日常管理和决策,理事会由秘书长、财务长、宣传长等职务组成。

第七条理事会成员由社团会员共同推选产生,任期为一年,可以连任。

第八条社团设立咨询委员会,由人工智能领域专家、学者和企业代表组成,为社团的发展提供智力支持。

第十条社团成立监事会,监督社团的运作和财务状况,确保社团的合法合规运作。

第三章会员权利和义务第十一条社团的会员包括正式会员、学生会员和荣誉会员。

第十二条正式会员具有决策权,有权参与社团的各项活动和决策。

第十四条荣誉会员是对人工智能领域做出杰出贡献的专家、学者或企业代表,具有荣誉称号和社团顾问的权利。

第十六条会员有义务遵守本章程和社团的规章制度,维护社团的声誉和利益。

第四章活动板块第十七条社团开展的活动包括学术交流、技术讲座、项目合作和社会实践等。

第十八条社团定期举办人工智能领域的学术研讨会、技术培训和行业交流等活动。

第十九条社团组织会员参与人工智能项目的研究开发,促进人工智能技术的创新与应用。

第五章资金管理第二十一条社团的资金来源包括会费、赞助、捐赠等途径,资金的管理和使用必须合法、透明。

第二十二条社团的财务状况必须定期公开,接受监事会和会员的监督和审查。

第六章章程修改与解散第二十三条如需修改章程,必须经过理事会半数以上成员同意,并得到监事会和会员的批准。

第二十五条本章程自颁布之日起生效,如有需要可根据实际情况进行补充和修正。

人工智能学会规章制度范本

人工智能学会规章制度范本

第一章总则第一条为了规范人工智能学会(以下简称“本学会”)的组织和行为,提高学会的凝聚力和影响力,促进人工智能领域的研究与发展,特制定本规章制度。

第二条本学会是在国家法律、法规和政策指导下,由从事人工智能领域的专家学者、科研人员、企事业单位和个人自愿组成的全国性、非营利性社会团体。

第三条本学会的宗旨是:团结广大人工智能领域的科技工作者,推动人工智能学科的发展,促进人工智能技术的创新与应用,为我国人工智能事业贡献力量。

第二章组织机构第四条本学会的最高权力机构为会员大会,会员大会的职权包括:(一)制定和修改本学会章程;(二)选举和罢免理事会成员;(三)审议理事会工作报告和财务报告;(四)决定本学会的重大事项;(五)决定终止事宜。

第五条本学会设理事会,理事会由会员大会选举产生,对会员大会负责。

理事会成员任期四年,可连选连任。

第六条理事会的职权包括:(一)执行会员大会的决议;(二)筹备召开会员大会;(三)选举和罢免会长、副会长、秘书长;(四)制定和修改本学会的工作规划和年度工作计划;(五)决定本学会的重大事项;(六)决定设立或撤销分支机构、代表机构和实体机构;(七)决定聘请名誉会长、顾问和兼职工作人员;(八)领导本学会开展各项工作。

第七条本学会设秘书处,负责本学会的日常工作。

秘书处设秘书长一名,副秘书长若干名,由理事会任命。

第三章会员第八条凡承认本学会章程,自愿申请加入本学会的单位和个人,均可成为本学会会员。

第九条会员享有下列权利:(一)参加本学会组织的各项活动;(二)优先获得本学会提供的各种服务;(三)对本学会工作提出意见和建议;(四)选举权和被选举权;(五)对本学会工作的监督权。

第十条会员应履行下列义务:(一)遵守本学会章程,执行本学会的决议;(二)维护本学会的合法权益;(三)积极参加本学会组织的各项活动;(四)按规定缴纳会费;(五)向本学会提供有关信息和资料。

第四章会费第十一条本学会会费标准根据会员的性质和规模制定,会员应按规定缴纳会费。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Engagement Rules for Human-Robot CollaborativeInteractionsCandace L. SidnerChristopher LeeNeal LeshMitsubishi Electric Research Laboratories201 BroadwayCambridge, MA 02139{Sidner, Lee, Lesh}@Abstract - This paper reports on research on developing the ability for robots to engage with humans in a collaborative conversation for hosting activities. It defines the engagement process in collaborative conversation, and reports on our progress in creating a robot to perform hosting activities.. The paper then presents the analysis of a study of human-human “look tracking” and discusses rules that will allow a robot to track humans so that engagement is maintained. Keywords:Human-robot interaction,engagement, conversation, collaboration, collaborative interface agents, gestures in conversation.1. IntroductionThis paper reports on our research toward developing the ability for robots to engage with humans in a collaborative con-versation for hosting activities. Engagement is the process by which two (or more) participants establish, maintain and end their perceived connection during interactions they jointly undertake. Engagement is supported by the use of conversation (that is, spoken linguistic behavior), ability to collaborate on a task (that is, collaborative behavior), and gestural behavior that conveys connection between the participants. While it might seem that conversational utterances alone are enough to convey connectedness (as is the case on the telephone), gestural behavior in face-to-face conversation conveys much about the connection between the participants [1].Collaborative conversations cover a vast range of interactions activities from call centers to auto repair to physician-patient dialogues. In order to narrow our research efforts, we have focused on hosting activities. Hosting activities are a class of collaborative activity in which an agent provides guidance in the form of information, entertainment, education or other services in the user's environment and may also request that the user undertake actions to support the fulfillment of those services. Hosting activities are situated or embedded activities, because they depend on the surrounding environment as well as the participants involved. They are social activities because, when undertaken by humans, they depend upon the social roles that people play to determine the choice of the next actions, timing of those actions, and negotiation about the choice of actions. In our research, physical robots, who serve as guides, are the hosts of the environment.Conversational gestures generally concern gaze at/away from the conversational partner, pointing behaviors, (bodily) ad-dressing the conversational participant and other persons/objects in the environment, all in appropriate synchronization with the conversational, collaborative behavior. These engagement gestures are culturally determined, but every culture has some set of behaviors to accomplish the engagement task. These gestures are not about where the eye camera gets its input from, but what the eyes, hands, and body tell conversational participants about their interaction.Not only must the robot produce these behaviors, but it must interpret similar behaviors from its collaborative partner (here-after CP). Proper gestures by the robot and correct interpretation of human gestures dramatically affect the success of con-versation and collaboration. Inappropriate behaviors can cause humans and robots to misinterpret each other’s intentions. For example, a robot might look away for an extended period of time from the human, a signal to the human that it wishes to disengage from the conversation and could thereby terminate the collaboration unnecessarily. Incorrect recognition of the human's behaviors can lead the robot to press on with a conversation in which the human no longer wants to participate. While other researchers in robotics are exploring aspects of gesture (for example, [2], [3]), none of them have attempted to model human-robot interaction to the degree that involves the numerous aspects of engagement and collaborative conversa-tion that we have set out above. Robotics researchers interested in collaboration and dialogue [4] have not based their workon extensive theoretical research on collaboration and conversation, as we will detail later. Our work is also not focused on emotive interactions, in contrast to Breazeal among others. For 2D conversational agents, researchers (notably, [5],[6]) have explored agents that produce gestures in conversation. However, they have not tried to incorporate recognition as well as production of these gestures, nor have they focused on the full range of these behaviors to accomplish the maintenance of engagement in conversation.In this paper we discuss our research agenda for creating a robot with collaborative conversational abilities, including ges-tural capabilities in the area of hosting activities. We will also discuss the results of a study of human-human hosting and how we are using the results of that study to determine rules and associated algorithm for the engagement process in hosting activities. We will also critique our current engagement rules, and discuss how our study results might improve our robot’s future behavior.2. Communicative capabilities for collaborative robotsTo create a robot that can converse, collaborate, and engage with a human interactor, a number of different communicative capabilities must be included in the robot's repertoire. Most of these capabilities are linguistic, but some make use of physi-cal gestures as well. These capabilities are:• Engagement behaviors: initiate, maintain or disengage in interaction;• Conversation management: turn taking [7], interpreting the intentions of the conversational participants, establishing the relations between intentions and goals of the participants and relating utterances to the attentional state [8] of the conversation.• Collaboration behavior: choosing what to say or do next in the conversation, to foster the shared collaborative goals of the human and robot, as well as how to interpret the human's contribution (either spoken acts or physical ones) to the conversation and the collaboration.Turn taking gestures also serve to indicate engagement because the overall choice to take the turn is indicative of engage-ment, and because turn taking involves gaze/glance gestures. There are also gestures in the conversation (such as beat ges-tures, which are used to indicate old and new information [9,10]) that CPs produce and observe in their partners. These capabilities are significant to robotic participation in conversation because they allow the robot to communicate using the same strategies and techniques that are normal for humans, so that humans can quickly perceive the robot’s communica-tion.Humans do not turn off their own conversational and engagement capabilities when talking to robots. Hence robots can and must make use of these capabilities to successfully communicate with humans. To use human linguistic and gestural behav-ior, a robot must fuse data gathered from its visual and auditory sensors to determine the human gestures, and infer what the human intends to convey with these gestures.In our current work, we have developed (1) a model of engagement for human-human interaction and adapted it for human-robot interaction, and (2) an architecture for a collaborative non-mobile conversational robot.Our engagement model describes an engagement process in three parts, (1) initiating a collaborative interaction with an-other, (2) maintaining the interaction through conversation, gestures, and, sometimes, physical activities, and (3) disengag-ing, either by abruptly ending the interaction or by more gradual activities upon completion of the goals of the interaction. The rules of engagement, which operate within this model, provide choices to a decision-making algorithm for our robot about what gestures and utterances to produce.Our robot, which looks like a penguin, as shown in Figure 1, uses its head, wings and beak for gestures that help manage the conversation and also express engagement with its human interlocutor (3 DOF in head/beak, 2 in wings). While the robot can only converse with one person at a time, it performs gestures to acknowledge the onlookers to the conversation. Gaze for our robot is determined by the position of its head, since its eyes do not move. Since our robot cannot turn its whole body, it does not make use of rules we have already created concerning addressing with the body. Because bodily ad-dressing (in US culture) is a strong signal for whom a CP considers the main other CP, change of body position is a signifi-cant engagement signal. However, we will be mobilizing our robot in the near future and expect to test these rules follow-ing that addition.To create an architecture for collaborative interactions, we use several different systems, largely developed at MERL. The conversational and collaborative capabilities of our robot are provided by the Collagen TM middleware for collaborativeagents [8,11,12,13] and commercially available speech recognition software (IBM ViaVoice). We use a face detection algo-rithm [14], a sound location algorithm, and an object recognition algorithm [15] and fuse the sensory data before passing results to the Collagen system. The robot’s motor control algorithms use the engagement rule decisions and the conversa-tional state to decide what gestures to perform. Further details about the architecture and current implementation can be found in [16].Figure 1: Mel, the penguin robot3. Current engagement capabilitiesThe greatest challenge in our work on engagement is determining rules governing the maintenance of engagement. Our first set of rules, which we have tested in scenarios as described in [16], are a small and relatively simple set. The test sce-narios do not involve pointing to or manipulating objects. Rather they are focused on engagement in more basic conversa-tion. These rules direct the robot to initiate engagement with gaze and conversational greetings. For maintaining engage-ment, gaze at the speaking CP signals engagement, when speaking, gaze at both the human interlocutor and onlookers maintains engagement while gaze away for the purpose of taking a turn does not signal disengagement. Disengagement from the interaction is understood as occurring when a CP fails to take an expected turn together with loss of the face of the human. In those cases where the human stays engaged until the robot has run out of things to say, the robot closes the con-versation using known rules of conversational closing [17,18].While this is a fairly small repertoire of engagement behaviors, it was sufficient to test the robot's behavior in a number of scenarios involving a single CP and robot, with and without onlookers. Much of the robot’s behavior is quite natural. How-ever, we have observed oddities in its gaze at the end of its turn (it will incorrectly look at an onlooker instead of its CP when ending its turn) as well as confusion about where to look when the CP leaves the scene.These conversations have one drawback: they are of the how-are-you-and-welcome-to-our-lab format. However, our goal is hosting conversations, which involve much more activity. While other researchers have made considerable progress on the navigation involved for a robot to host visitors [e.g. 19] and gestures needed to begin conversation [e.g. 20], many aspects of conversation are open for investigation. These include extended explanations, pointing at objects, manipulating them (on the part of the humans or robots), moving around in a physical environment to access objects and interact with them. This extended repertoire of tasks requires many more gestures than our current set. In addition, some of these gestures could alternatively be taken to indicate that the human participant is disengaging from the conversation (e.g. looking away from the human speaker). So many behaviors appear to be contextually sensitive.To explore these conversations, we have provided our robot with some additional gestural rules and new recipes for action (in the Collagen framework), so that our penguin robot now undertake a hosting conversation to demo an invention created at MERL. Mel greets a visitor (other visitors can also be present), convinces the visitor to participate in a demo, and pro-ceeds to show the visitor the invention. Mel points to demo objects (a kind of electronic cup sitting on a table), talks (with speech) the visitor through the use of the cup, asks the visitor questions, and interprets the spoken answers, and includes the onlookers in its comments. The robot also expects the visitor to say and do certain activities, as well as gaze at objects, and will await or insist on such gestures if they are not performed. The entire interaction lasts about five minutes (a video willbe available). Not all of Mel’s behaviors in this interaction appear acceptable to us. For example, Mel often looks away for too long (at the cup and table) when explaining them, it (Mel is “it” since it is not human) fails to make sure it’s looking at the visitor when it calls the visitor by name, and it sometimes fails to look for a long enough when it turns to look at objects. To make Mel perform more effectively, we are investigating gesture in human-human interactions.4. Evidence for engagement in human behaviorMuch of the available literature on gestures in conversation (e.g. [7], [21]) provides a base for determining what gestures to consider, but does not provide enough detail about how gestures are used to maintain conversational engagement, that is, to signal that the participants are interested in what the other has to say and in keeping the interaction going.The significance of gestures for human-robot interaction can be understood by considering the choices that the robot has at every point in the conversation for its head movement, its gaze, and its use of pointing. The robot must also determine whether the CP has changed its head position or gaze and what objects the CP points to or manipulates. Head position and gaze are indicators of engagement. Looking at the speaking CP is evidence of engagement, while looking around that room, for more than very brief moments, is evidence of disinterest in the interaction and possibly the desire to disengage. However, looking at objects relevant to the conversation is not evidence of disengagement. Furthermore, the robot needs to know that the visitor has or has not paid attention to what it points at or looks at. If visitor fails to look at what the robot looks at, the visitor might miss something crucial to the interaction.A simple hypothesis for maintaining engagement (for each CP) is: Do what the speaking CP does: look wherever the CP looks, look at him if he looks at you, and look at whatever objects are relevant to the discussion when he does. When the robot is the speaking CP, this hypothesis means it will expect perfect tracking of its looking by the human interlocutor. The hypothesis does not constrain the CP’s decision choices for what to look and point at.Note that there is evidence that the type of utterances that occur in conversation affect the gaze of the non-speaking CP. [22] provides evidence that in direction giving tasks, the non-speaking CP will gaze more often at the speaking CP when the speaking CP’s utterance pairs are assertion followed by elaboration, and more often at a map when the utterance pairs are assertion followed by the next map direction.To evaluate the simple hypothesis for engagement, we have been evaluating interactions in videotapes of human-human hosting activities, which were recorded in our laboratory. In these interactions, a member of our lab hosted a visitor who was shown various new inventions and computer software systems. The host and visitor were followed by video camera as they experienced a typical tour of our lab and its demos. The host and visitor were not given instructions to do anything except to give/take the lab tour. We have obtained about 3.5 hours of video, with three visitors, each on separate occasions being given a tour by the same host. We have transcribed portions of the video for all the utterances made and the gestures (head, hands, body position, body addressing) that occur during portions of the video. We have not transcribed facial ges-tures. We report here on our results in observing gestural data (and its corresponding linguistic data) for just over five min-utes of one of the host-visitor pairs.The subject of the investigated portion of the video is a demonstration of an “Iglassware” cup which P (a male) demos and explains to C (a female). P produces a gestures, with his hands, face, and body, gazes at C and other objects. He also point to the cup, holds it and interacts with a table to which the cup transfers data. He uses his hands to produce iconic and meta-phorical gestures [10], and he uses the cup as a presentation device as well. We do not discuss iconic, metaphorical or presentation gestures, in large part because our robot does not have hands with which to perform similar actions.We report here on C’s tracking of P’s gaze gestures (since P speaks the overwhelming majority of the utterances in their interaction). Gaze in this analysis is expressed in terms of head movements (looking). We did not code eye movements due to video quality.There are 81 occasions on which P changes his gaze by moving his head with respect to C. Seven additional gaze changes occurred that are not counted in this analysis because it is unclear to where P changed his gaze. Of the counted gaze changes, C tracks 45 of them (55%). The remaining failures to track gaze (36, or 45% of all gazes) can be subclassed into 3 groups: quick looks, nods (glances followed by gestural or verbal feedback), and uncategorized failures (see Table 1). These tracking failures indicate that our simple hypothesis for maintaining engagement is incorrect. Of these tracking fail-ures, the nod failures can be explained because they occur when P looks at C even though C is looking at something else (usually the cup or the table, depending on which is relevant to the discussion). However, in all these cases, C immediately nods and often articulates with "Mm-hm," "Wow" or other phrases to indicate that she is following her conversational part-ner. In grounding terms [23], P is attempting to ascertain by looking at C that she is following his utterances and actions. When C cannot look, she provides feedback by nods and comments. She grounds his comments and thereby indicates that she is still engaged. In the nod cases, she also is not just looking around the room, but paying attention to an object that is highly relevant to the demo.Count % of track-ing failures % of total trackingQuick looks 11 31 14Nods 13 36 16Uncatego-rized12 33 15Table 1: Failures to Track Gaze ChangeThe quick looks and uncategorized failures represent 64% of the failures and 28% of the gaze changes in total. Closer study of these cases reveals significant information for our robot vision detection algorithms.In the quick look cases, P looks quickly (including moving his head) at something without C tracking his behavior. Is there a reason to think that C is not paying attention or has lost interest? P never stops to check for her feedback in theses cases. Has C lost interest or is she merely not required to follow? In all of these cases, C does not track P for the simple reason that P's changes in looking (usually to the cup or the table, but occasionally to something else he is commenting on) happen very quickly. It's a quick up-and-down or down-and-up head movement. There simply is insufficient time for C to do so. In every case C is paying attention to P, so C is able to see what's happening. It appears she judges on the velocity of the movement not to track it.Of the uncategorized failures, the majority (8 instances) occur when C has other actions or goals to undertake. For exam-ple, C may be finishing a nod and not be able to track P while she’s nodding. One uncategorized failure is similar to a quick look but longer in duration. Of the remaining 3 tracking failures, each occurs for seemingly good reasons to us as observers, but may not be known at the time of occurrence. For example, one failure occurs at the start of the demo when C is looking at the new (to her) object that P displays and does not track P when he looks up at her.This data clearly indicates that our rules for maintaining engagement must be more complex than the “do whatever the speaking CP does” hypothesis. In fact, tracking is critical to the interaction. It is not completely essential because very quick glances away can be disregarded, and one can avoid tracking the interlocutor by providing verbal feedback. In those cases where arguably one should track the speaking CP, failure to do so may lead the CP to restate an utterance or to just go on because the lost information is not critical to the interaction. The data in fact suggest that for our robot engagement rules, tracking the speaking CP in general is the best move, but when another goal interferes, providing verbal feedback maintains engagement. Furthermore, the robot as tracker can ignore head movements of brief duration, as these quick looks do not need tracking.5. Future directionsAn expanded set of rules for engagement requires a means to evaluate them. We want to use the standard training and test-ing set paradigm common in computational linguistics and speech processing, but training and test sets are hard to come by for interaction with robots. Our solution has been to approach the process with a mix of techniques. We have developed a graphical display of simulated, animated robots running our engagement rules. We plan to observe the interactions in the graphic display for a number of scenarios to check and tune our engagement rules. Following that, we will undertake some-thing akin to a testing set by testing the robot’s interactions with human visitors as the robot demonstrates the Iglassware cup.6. SummaryThis paper has discussed the nature of engagement in human-robot interaction, and outlined our methods for investigating rules for engagement for the robot. We report on analysis of human-human look tracking where the humans do not always track the changes in looks by their conversational interlocutors. We conclude that such tracking failures indicate both the default behavior for a robot and when it can fail to track without its human conversational partner inferring that it wishes to disengage from the interaction.7. AcknowledgementsThe authors wish to acknowledge the work of Charles Rich on aspects of Collagen critical to this effort.8. References1. D. McNeill. Hand and Mind: What Gestures Reveal about Thought. University of Chicago Press, Chicago, 1992.2. C. Breazeal "Affective interaction between humans and robots", Proceedings of the 2001 European Conference on Ar-tificial Life (ECAL2001). Prague, Czech Republic, (2001).3. T. Kanda, H. Ishiguro, M. Imai, T. Ono, and K. Mase. “A constructive approach for developing interactive humanoidrobots. Proceedings of IROS 2002, IEEE Press, NY, 2002.4. T. Fong, C. Thorpe, and C. Baur, Collaboration, Dialogue and Human-Robot Interaction, 10th International Symposiumof Robotics Research, Lorne, Victoria, Australia, November, 2001.5. J. Cassell, J. Sullivan, S. Prevost and E. Churchill, Embodied Conversational Agents. MIT Press, Cambridge, MA,2000.6. W.L. Johnson, J.W. Rickel, and J.C. Lester. “Animated Pedagogical Agents: Face-to-Face Interaction in InteractiveLearning Environments,” International Journal of Artificial Intelligence in Education, 11: 47-78, 2000.7. S. Duncan. Some signals and rules for taking speaking turns in conversation. in Nonverbal Communication, S. Weitz(ed.), New York: Oxford University Press, 19748. B. J. Grosz and C.L. Sidner. Attention, intentions, and the structure of discourse. Computational Linguistics, 12(3):175--204, 1986.9. M.A.K. Halliday. Explorations in the Functions of Language, London: Edward Arnold, 1973.10. J. Cassell. Nudge nudge wink wink: Elements of face-to-face conversation for embodied conversational agents. in Em-bodied Conversational Agents, J. Cassell, J. Sullivan, S. Prevost, and E. Churchill (eds.), Cambridge, MA: MIT Press, 2000.11. C. Rich, C.L. Sidner, and N. Lesh. “COLLAGEN: Applying Collaborative Discourse Theory to Human-Computer In-teraction,” AI Magazine, Special Issue on Intelligent User Interfaces, AAAI Press, Menlo Park, CA, Vol. 22: 4: 15-25, 2001.12. C. Rich and C.L. Sidner. “COLLAGEN: A Collaboration Manager for Software Interface Agents,” User Modeling andUser-Adapted Interaction, Vol. 8, No. 3/4, 1998, pp. 315-350, 1998.13. K.E. Lochbaum. A Collaborative Planning Model of Intentional Structure. Computational Linguistics, 24(4): 525-572,1998.14. Viola, P. and Jones, M. Rapid Object Detection Using a Boosted Cascade of Simple Features, IEEE Conference onComputer Vision and Pattern Recognition, Hawaii, pp. 905-910, 2001.15. Beardsley, P.A. Piecode Detection, Mitsubishi Electric Research Labs TR2003-11, Cambridge, MA, February, 2003.16. C.L. Sidner and C. Lee, An Architecture for Engagement in Collaborative Conversations between a Robot and Hu-mans, Mitsubishi Electric Research Labs TR2003-13, Cambridge, MA, April, 2003, also in submission.17. E. Schegeloff, & H. Sacks. Opening up closing. Semiotica, 7(4): 289-327, 1973.18. H.H. Luger. “Some Aspects of Ritual Communication,” Journal of Pragmatics. Vol. 7: 695-711, 1983.19. Burgard, W., Cremes, A. B., Fox, D., Haehnel, D., Lakemeyer, G., Schulz, D., Steiner, W. & Thrun, S. “The Interac-tive Museum Tour Guide Robot,” Proceedings of AAAI-98, 11-18, AAAI Press, Menlo Park, CA, 1998.20. A. Bruce, I. Nourbakhsh, R. Simmons. “The Role of Expressiveness and Attention in Human Robot Interaction,” InProceedings of the IEEE International Conference on Robotics and Automation, Washington DC, May 2002.21. A. Kendon. Some functions of gaze direction in social interaction. Acta Psychologica, 26: 22-63, 1967.22. Y. Nikano, G. Reinstein, T. Stocky, J. Cassell. Towards a Model of Face-to-Face Grounding, accepted for ACL, 2003.23. H.H. Clark, Using Language, Cambridge University Press, Cambridge, 1996.。

相关文档
最新文档