函数3
离散数学 第三章 函数
下面先规定几个标准集合的基数: 1) 空集的基数为0。 2) 设n为一自然数,Nn为从1到n的连贯的自然数集合, Nn={1,2,3,…,n},Nn的基数为n,|Nn|=n 。 3) 设N为自然数的全体,N={1,2,3,…},N的基数为ℵ0(读成 阿列夫零, ℵ是希伯莱文的第一个字母)。 4) 设R为实数的全体,R的基数为ℵ ,|R|= ℵ 。 • • 以上四项规定,对于空集及Nn的基数,实际上就是集 合中元素的个数,关于ℵ0及ℵ,下面将予探讨。 有了标准基数之后,我们可以对各种集合测量其基数。 测量的手段是以双射函数为主体的等价关系一等势。 比如说,一个集合与N等势,那么这个集合的基数为 ℵ0 。
定理6 设A及B为两个可数集,那么A×B为一可数集。 定理 推论1 推论 设A1,A2,A3,…,An为n个可数集,那么 × A是可数集。
i=1 i n
定理7 (0,1)开区间上的实数不是可数集。 定理 定理8 设A为一集Y的函数,若f 是双射函数,则f 的逆关系 f –1是从Y到X的双射函数。 定理2 定理 设f 是从X到Y的函数,g 是从Y到Z的函数,则复合关 系f οg是从 X到Z的函数,将f ο g记为g ο f 。 定理3 定理 设f 是从X到Y的函数,g 是从Y到Z的函数。 1)若f 和g是满射函数,则g ο f 是满射函数; 2)若f 和g是单射函数,则g ο f 是单射函数; 3)若f 和g是双射函数,则g ο f 是双射函数。 定理4 定理 设f 是从X到Y的双射函数, f –1是f 的逆函数,则 1) (f –1) –1 = f 2) f –1 ο f = IX 3) f ο f –1 = IY
定义3 定义 设 |X|=n,P是从X到X的双射函数,称P为X上的置 换,称n为置换的阶。 • 在n个元素的集合中,不同的n阶置换的个数为n!。 • 通常用下面的方法表示置换。 x1 x2 x3 … xn P = p(x ) p(x ) p(x ) … p(x ) 1 2 3 n • 若∀xi∈X 有 p(xi) = xi ,则称P是恒等置换。 • P的逆函数P-1可表示为 p(x1) p(x2) p(x3) … p(xn) P-1 = x1 x2 x3 … xn • 置换的复合与关系的复合相同。 1 2 3 1 2 3 1 2 3 3 2 1 2 1 3 3 1 2
新高考A版讲义:第三章函数 第3节 函数的基本性质奇偶性
第3节 函数的基本性质:奇偶性知识点一 函数奇偶性 1.奇偶性的几何特征一般地,图象关于y 轴对称的函数称为偶函数,图象关于原点对称的函数称为奇函数. 2.函数奇偶性的定义(1)偶函数:函数f (x )的定义域为I ,如果∀x ∈I ,都有-x ∈I ,且f (-x )=f (x ),那么函数f (x )就叫做偶函数.(2)奇函数:函数f (x )的定义域为I ,如果∀x ∈I ,都有-x ∈I ,且f (-x )=-f (x ),那么函数f (x )就叫做奇函数.3.奇(偶)函数的定义域特征:奇(偶)函数的定义域关于原点对称.题型一、函数奇偶性的判断 例1 判断下列函数的奇偶性.(1)f (x )=1x ;(2)f (x )=x 2(x 2+2);(3)f (x )=xx -1;(4)f (x )=x 2-1+1-x 2.解 (1)f (x )=1x 的定义域为(-∞,0)∪(0,+∞),∵f (-x )=1-x=-1x =-f (x ),∴f (x )=1x 是奇函数.(2)f (x )=x 2(x 2+2)的定义域为R .∵f (-x )=f (x ),∴f (x )=x 2(x 2+2)是偶函数. (3)f (x )=xx -1的定义域为(-∞,1)∪(1,+∞), ∵定义域不关于原点对称,∴f (x )=xx -1既不是奇函数,也不是偶函数.(4)f (x )=x 2-1+1-x 2的定义域为{-1,1}.∵f (-x )=f (x )=-f (x )=0,∴f (x )=x 2-1+1-x 2既为奇函数,又为偶函数. 反思感悟 判断函数奇偶性的方法(1)定义法:①定义域关于原点对称;②确定f (-x )与f (x )的关系. (2)图象法.跟踪训练1 判断下列函数的奇偶性.(1)f (x )=x ;(2)f (x )=1-x 2x ;(3)f (x )=⎩⎪⎨⎪⎧x 2+x ,x >0,x 2-x ,x <0.解(1)函数f(x)的定义域为[0,+∞),不关于原点对称,所以f(x)=x是非奇非偶函数.(2)f(x)的定义域为[-1,0)∪(0,1],关于原点对称.f(-x)=1-x2-x=-f(x),所以f(x)为奇函数.(3)f(x)的定义域为(-∞,0)∪(0,+∞),关于原点对称,当x>0时,-x<0,则f(-x)=(-x)2-(-x)=x2+x=f(x);当x<0时,-x>0,则f(-x)=(-x)2+(-x)=x2-x=f(x),所以f(x)是偶函数.题型二、奇、偶函数图象的应用例2定义在R上的奇函数f(x)在[0,+∞)上的图象如图所示.(1)画出f(x)的图象;(2)解不等式xf(x)>0.解(1)先描出(1,1),(2,0)关于原点的对称点(-1,-1),(-2,0),连线可得f(x)的图象如图.(2)xf(x)>0即图象上横坐标、纵坐标同号.结合图象可知,xf(x)>0的解集是(-2,0)∪(0,2).延伸探究把本例中的“奇函数”改为“偶函数”,重做该题.解(1)f(x)的图象如图所示:(2)xf(x)>0的解集是(-∞,-2)∪(0,2).反思感悟可以用奇(偶)函数图象关于原点(y轴)对称这一特性去画图,求值,解不等式等.跟踪训练2已知奇函数f(x)的定义域为[-5,5],且在区间[0,5]上的图象如图所示.(1)画出在区间[-5,0]上的图象;(2)写出使f(x)<0的x的取值集合.解(1)如图,在[0,5]上的图象上选取5个关键点O,A,B,C,D.分别描出它们关于原点的对称点O ′,A ′,B ′,C ′,D ′, 再用光滑曲线连接即得.(2)由(1)图可知,当且仅当x ∈(-2,0)∪(2,5)时,f (x )<0. ∴使f (x )<0的x 的取值集合为{x |-2<x <0或2<x <5}. 题型三、利用函数的奇偶性求参数值例3 (1)若函数f (x )=ax 2+bx +3a +b 是偶函数,定义域为[a -1,2a ],则a =________,b =________.解析 因为偶函数的定义域关于原点对称,所以a -1=-2a ,解得a =13.又函数f (x )=13x 2+bx +b +1为二次函数,结合偶函数图象的特点,易得b =0.(2)已知函数f (x )=ax 2+2x 是奇函数,则实数a =________.解析 由奇函数定义有f (-x )+f (x )=0,得a (-x )2+2(-x )+ax 2+2x =2ax 2=0,故a =0. 反思感悟 利用奇偶性求参数的常见类型(1)定义域含参数:奇偶函数f (x )的定义域为[a ,b ],根据定义域关于原点对称,利用a +b =0求参数.(2)解析式含参数:根据f (-x )=-f (x )或f (-x )=f (x )列式,比较系数利用待定系数法求解. 跟踪训练3 (1)若函数f (x )=x 2-|x +a |为偶函数,则实数a =________. 解析 方法一 显然x ∈R ,由已知得f (-x )=(-x )2-|-x +a |=x 2-|x -a |. 又f (x )为偶函数,所以f (x )=f (-x ),即x 2-|x +a |=x 2-|x -a |, 即|x +a |=|x -a |.又x ∈R ,所以a =0.方法二 由题意知f (-1)=f (1),则|a -1|=|a +1|,解得a =0.(2)已知函数f (x )是奇函数,当x ∈(-∞,0)时,f (x )=x 2+mx .若f (2)=-3,则m 的值为________. 解析 ∵f (-2)=-f (2)=3,∴f (-2)=(-2)2-2m =3,∴m =12.知识点二 奇偶性与单调性若函数f (x )为奇函数,则f (x )在关于原点对称的两个区间[a ,b ]和[-b ,-a ]上具有相同的单调性;若函数f (x )为偶函数,则f (x )在关于原点对称的两个区间[a ,b ]和[-b ,-a ]上具有相反的单调性.题型一、利用奇偶性求解析式 命题角度1 求对称区间上的解析式例1 函数f (x )是定义域为R 的奇函数,当x >0时,f (x )=-x +1,求当x <0时,f (x )的解析式. 解 设x <0,则-x >0,∴f (-x )=-(-x )+1=x +1,又∵函数f (x )是定义域为R 的奇函数,∴当x <0时,f (x )=-f (-x )=-x -1.反思感悟 求给定哪个区间的解析式就设这个区间上的变量为x ,然后把x 转化为-x ,此时-x 成为了已知区间上的解析式中的变量,通过应用奇函数或偶函数的定义,适当推导,即可得所求区间上的解析式.跟踪训练1已知f (x )是R 上的奇函数,且当x ∈(0,+∞)时,f (x )=x (1+x ),求f (x )的解析式. 解 因为x ∈(-∞,0)时,-x ∈(0,+∞),所以f (-x )=-x [1+(-x )]=x (x -1). 因为f (x )是R 上的奇函数,所以f (x )=-f (-x )=-x (x -1),x ∈(-∞,0).f (0)=0.所以f (x )=⎩⎪⎨⎪⎧x (1+x ),x ≥0,-x (x -1),x <0.命题角度2 构造方程组求解析式例2 设f (x )是偶函数,g (x )是奇函数,且f (x )+g (x )=1x -1,求函数f (x ),g (x )的解析式.解 ∵f (x )是偶函数,g (x )是奇函数,∴f (-x )=f (x ),g (-x )=-g (x ), 由f (x )+g (x )=1x -1.①,用-x 代替x ,得f (-x )+g (-x )=1-x -1,∴f (x )-g (x )=1-x -1,② (①+②)÷2,得f (x )=1x 2-1;(①-②)÷2,得g (x )=xx 2-1.反思感悟 f (x )+g (x )=1x -1对定义域内任意x 都成立,所以可以对x 任意赋值,如x =-x .利用f (x ),g (x )一奇一偶,把-x 的负号或提或消,最终得到关于f (x ),g (x )的二元方程组,从中解出f (x )和g (x ).跟踪训练2设f (x )是偶函数,g (x )是奇函数,且f (x )+g (x )=x 2+2x ,求函数f (x ),g (x )的解析式. 解 ∵f (x )是偶函数,g (x )是奇函数,∴f (-x )=f (x ),g (-x )=-g (x ), 由f (x )+g (x )=2x +x 2.①用-x 代替x ,得f (-x )+g (-x )=-2x +(-x )2,∴f(x)-g(x)=-2x+x2,②(①+②)÷2,得f(x)=x2;(①-②)÷2,得g(x)=2x.题型二、利用函数的奇偶性与单调性比较大小例3设偶函数f(x)的定义域为R,当x∈[0,+∞)时,f(x)是增函数,则f(-2),f(π),f(-3)的大小关系是()A.f(π)>f(-3)>f(-2) B.f(π)>f(-2)>f(-3)C.f(π)<f(-3)<f(-2) D.f(π)<f(-2)<f(-3)解析因为函数f(x)为R上的偶函数,所以f(-3)=f(3),f(-2)=f(2).又当x∈[0,+∞)时,f(x)是增函数,且π>3>2,所以f(π)>f(3)>f(2),故f(π)>f(-3)>f(-2).反思感悟利用函数的奇偶性与单调性比较大小(1)自变量在同一单调区间上,直接利用函数的单调性比较大小;(2)自变量不在同一单调区间上,需利用函数的奇偶性把自变量转化到同一单调区间上,然后利用单调性比较大小.跟踪训练3(1)已知偶函数f(x)在[0,+∞)上单调递减,则f(1)和f(-10)的大小关系为() A.f(1)>f(-10) B.f(1)<f(-10)C.f(1)=f(-10) D.f(1)和f(-10)关系不定答案A解析∵f(x)是偶函数,且在[0,+∞)上单调递减,∴f(-10)=f(10)<f(1).(2)定义在R上的奇函数f(x)为增函数,偶函数g(x)在区间[0,+∞)上的图象与f(x)的图象重合,设a>b>0,下列不等式中成立的有________.(填序号)①f(a)>f(-b);②f(-a)>f(b);③g(a)>g(-b);④g(-a)<g(b);⑤g(-a)>f(-a).解析f(x)为R上奇函数,增函数,且a>b>0,∴f(a)>f(b)>f(0)=0,又-a<-b<0,∴f(-a)<f(-b)<f(0)=0,∴f(a)>f(b)>0>f(-b)>f(-a),∴①正确,②错误.x∈[0,+∞)时,g(x)=f(x),∴g(x)在[0,+∞)上单调递增,∴g(-a)=g(a)>g(b)=g(-b),∴③正确,④错误.又g(-a)=g(a)=f(a)>f(-a),∴⑤正确.题型三、利用函数的奇偶性与单调性解不等式例4(1)已知f(x)是定义在R上的偶函数,且在区间(-∞,0)上是增函数.若f(-3)=0,则f(x)x<0的解集为________.解析∵f(x)是定义在R上的偶函数,且在区间(-∞,0)上是增函数,∴f(x)在区间(0,+∞)上是减函数.∴f(3)=f(-3)=0.当x>0时,由f(x)<0,解得x>3;当x<0时,由f(x)>0,解得-3<x<0.故所求解集为{x |-3<x <0或x >3}.(2)已知偶函数f (x )在区间[0,+∞)上单调递增,则满足f (2x -1)<f ⎝⎛⎭⎫13的x 的取值范围为( ) A.⎝⎛⎭⎫13,23 B.⎣⎡⎭⎫13,23C.⎝⎛⎭⎫12,23 D.⎣⎡⎭⎫12,23 解析 由于f (x )为偶函数,且在[0,+∞)上单调递增,则不等式f (2x -1)<f ⎝⎛⎭⎫13, 即-13<2x -1<13,解得13<x <23.反思感悟 利用函数奇偶性与单调性解不等式,一般有两类 (1)利用图象解不等式; (2)转化为简单不等式求解.①利用已知条件,结合函数的奇偶性,把已知不等式转化为f (x 1)<f (x 2)或f (x 1)>f (x 2)的形式; ②根据奇函数在对称区间上的单调性一致,偶函数在对称区间上的单调性相反,脱掉不等式中的“f ”转化为简单不等式(组)求解.跟踪训练4 设定义在[-2,2]上的奇函数f (x )在区间[0,2]上是减函数,若f (1-m )<f (m ),求实数m 的取值范围.解 因为f (x )是奇函数且f (x )在[0,2]上是减函数,f (x )在[-2,2]上是减函数. 所以不等式f (1-m )<f (m )等价于⎩⎪⎨⎪⎧1-m >m ,-2≤m ≤2,-2≤1-m ≤2,解得-1≤m <12.1.下列函数中奇函数的个数为( ) ①f (x )=x 3; ②f (x )=x 5; ③f (x )=x +1x;④f (x )=1x2.A .1B .2C .3D .4 答案 C2.已知f (x )是定义在R 上的奇函数,f (-3)=2,则下列各点中一定在函数f (x )的图象上的是( )A .(3,-2)B .(3,2)C .(-3,-2)D .(2,-3) 答案 A解析 f (-3)=2即点(-3,2)在奇函数的图象上, ∴(-3,2)关于原点的对称点(3,-2)必在f (x )的图象上.3.设f (x )是定义在R 上的一个函数,则函数F (x )=f (x )-f (-x )在R 上一定( ) A .是奇函数 B .是偶函数C .既是奇函数又是偶函数D .既不是奇函数又不是偶函数 答案 A解析 F (-x )=f (-x )-f (x )=-[f (x )-f (-x )]=-F (x ). ∴F (x )为奇函数4.若f (x )=3x 3+5x +a -1为奇函数,则a 的值为( ) A .0 B .-1 C .1 D .2 答案 C解析 ∵f (x )为R 上的奇函数, ∴f (0)=0得a =1.5.如图,给出奇函数y =f (x )的局部图象,则f (-2)+f (-1)的值为( )A .-2B .2C .1D .0答案 A解析 f (-2)+f (-1)=-f (2)-f (1) =-32-12=-2.6.若f (x )=(x +a )(x -4)为偶函数,则实数a =________. 答案 4解析 f (x )=x 2+(a -4)x -4a 是偶函数,∴a =4.7.已知y =f (x )是奇函数,当x <0时,f (x )=x 2+ax ,且f (3)=6,则a 的值为________. 答案 5解析 因为f (x )是奇函数, 所以f (-3)=-f (3)=-6,所以(-3)2+a (-3)=-6,解得a =5.8.若f (x )为R 上的奇函数,给出下列四个说法: ①f (x )+f (-x )=0; ②f (x )-f (-x )=2f (x );③f(x)·f(-x)<0;④f(x)f(-x)=-1.其中一定正确的为________.(填序号)答案①②解析∵f(x)在R上为奇函数,∴f(-x)=-f(x).∴f(x)+f(-x)=f(x)-f(x)=0,故①正确.f(x)-f(-x)=f(x)+f(x)=2f(x),故②正确.当x=0时,f(x)·f(-x)=0,故③不正确.当x=0时,f(x)f(-x)分母为0,无意义,故④不正确.9.判断下列函数的奇偶性:(1)f(x)=x3+x5;(2)f(x)=|x+1|+|x-1|;(3)f(x)=2x2+2x x+1.考点函数的奇偶性判定与证明题点判断简单函数的奇偶性解(1)函数的定义域为R.∵f(-x)=(-x)3+(-x)5=-(x3+x5)=-f(x),∴f(x)是奇函数.(2)f(x)的定义域是R.∵f(-x)=|-x+1|+|-x-1|=|x-1|+|x+1|=f(x),∴f(x)是偶函数.(3)函数f(x)的定义域是(-∞,-1)∪(-1,+∞),不关于原点对称,∴f(x)是非奇非偶函数.10.(1)如图①,给出奇函数y=f(x)的局部图象,试作出y轴右侧的图象并求出f(3)的值.(2)如图②,给出偶函数y=f(x)的局部图象,试作出y轴右侧的图象并比较f(1)与f(3)的大小.解(1)由奇函数的性质可作出它在y轴右侧的图象,图③为补充后的图象.易知f(3)=-2.(2)由偶函数的性质可作出它在y 轴右侧的图象,图④为补充后的图象,易知f (1)>f (3).11.下列函数中,既是偶函数又在(0,+∞)上单调递增的函数是( ) A .y =x 3 B .y =|x |+1 C .y =-x 2+1 D .y =-2x答案 B解析 对于函数y =|x |+1,f (-x )=|-x |+1=|x |+1=f (x ), 所以y =|x |+1是偶函数,当x >0时,y =x +1, 所以在(0,+∞)上单调递增.另外,函数y =x 3不是偶函数,y =-x 2+1在(0,+∞)上单调递减,y =-2x 不是偶函数.故选B.12.设函数f (x )和g (x )分别是R 上的偶函数和奇函数,则下列结论恒成立的是( ) A .f (x )+|g (x )|是偶函数 B .f (x )-|g (x )|是奇函数 C .|f (x )|+g (x )是偶函数 D .|f (x )|-g (x )是奇函数 考点 函数的奇偶性判定与证明 题点 判断抽象函数的奇偶性 答案 A解析 由f (x )是偶函数,可得f (-x )=f (x ), 由g (x )是奇函数可得g (-x )=-g (x ), 故|g (x )|为偶函数, ∴f (x )+|g (x )|为偶函数.13.函数f (x )=4-x 22-|x +2|的定义域为________,为______函数(填“奇”或“偶”).答案 [-2,0)∪(0,2] 奇解析 依题意有⎩⎪⎨⎪⎧4-x 2≥0,2-|x +2|≠0,解得-2≤x ≤2且x ≠0, ∴f (x )的定义域为[-2,0)∪(0,2].∵f (x )=4-x 22-|x +2|=4-x 2-x=-4-x 2x ,定义域关于原点对称,∴f (-x )=4-x 2x =-f (x ),∴f (x )为奇函数.14.函数f (x )=ax 3+bx +cx +5满足f (-3)=2,则f (3)的值为________.答案 8解析 设g (x )=f (x )-5=ax 3+bx +cx (x ≠0),∵g (-x )=-ax 3-bx -cx =-g (x ),∴g (x )是奇函数,∴g (3)=-g (-3)=-[f (-3)-5] =-f (-3)+5=-2+5=3, 又g (3)=f (3)-5=3, ∴f (3)=8.15.已知函数f (x )=x 2+x +1x 2+1,若f (a )=23,则f (-a )=________.考点 函数图象的对称性 题点 中心对称问题 答案 43解析 根据题意,f (x )=x 2+x +1x 2+1=1+x x 2+1,而h (x )=xx 2+1是奇函数,故f (-a )=1+h (-a )=1-h (a )=2-[1+h (a )]=2-f (a )=2-23=43.16.设函数f (x )=ax 2+1bx +c 是奇函数(a ,b ,c ∈Z ),且f (1)=2,f (2)<3,求a ,b ,c 的值.解 由条件知f (-x )+f (x )=0, ∴ax 2+1bx +c +ax 2+1c -bx =0,∴c =0. 又f (1)=2,∴a +1=2b .∵f (2)<3,∴4a +12b <3,∴4a +1a +1<3,解得-1<a <2,∴a =0或1. ∴b =12或1,由于b ∈Z ,∴a =1,b =1,c =0.1.设函数f (x )=⎩⎪⎨⎪⎧x 2+x ,x ≥0,g (x ),x <0,且f (x )为偶函数,则g (-2)等于( ) A .6 B .-6 C .2 D .-2考点 函数奇偶性的应用题点 利用奇偶性求函数的解析式答案 A解析 g (-2)=f (-2)=f (2)=22+2=6.2.如果奇函数f (x )在区间[-3,-1]上是增函数且有最大值5,那么函数f (x )在区间[1,3]上是( )A .增函数且最小值为-5B .增函数且最大值为-5C .减函数且最小值为-5D .减函数且最大值为-5答案 A解析 f (x )为奇函数,∴f (x )在[1,3]上的单调性与[-3,-1]上一致且f (1)为最小值, 又已知f (-1)=5,∴f (-1)=-f (1)=5,∴f (1)=-5,故选A.3.已知函数y =f (x )是R 上的偶函数,且f (x )在[0,+∞)上是减函数,若f (a )≥f (-2),则a 的取值范围是( )A .a ≤-2B .a ≥2C .a ≤-2或a ≥2D .-2≤a ≤2答案 D解析 由f (a )≥f (-2)得f (|a |)≥f (2),∴|a |≤2,∴-2≤a ≤2.4.已知函数y =f (x )是偶函数,其图象与x 轴有4个交点,则方程f (x )=0的所有实根之和是( )A .4B .2C .1D .0答案 D解析 y =f (x )是偶函数,所以y =f (x )的图象关于y 轴对称,所以f (x )=0的所有实根之和为0.5.设f (x )是R 上的偶函数,且在(0,+∞)上是减函数,若x 1<0且x 1+x 2>0,则( )A .f (-x 1)>f (-x 2)B .f (-x 1)=f (-x 2)C.f(-x1)<f(-x2)D.f(-x1)与f(-x2)的大小不确定考点抽象函数单调性与奇偶性题点抽象函数单调性与不等式结合问题答案A解析∵x1<0,x1+x2>0,∴x2>-x1>0,又f(x)在(0,+∞)上是减函数,∴f(x2)<f(-x1),∵f(x)是偶函数,∴f(-x2)=f(x2)<f(-x1).6.设f(x)是定义在R上的奇函数,当x>0时,f(x)=x2+1,则f(-2)+f(0)=________.答案-5解析由题意知f(-2)=-f(2)=-(22+1)=-5,f(0)=0,∴f(-2)+f(0)=-5.7.已知奇函数f(x)在区间[0,+∞)上单调递增,则满足f(x)<f(1)的x的取值范围是________.考点抽象函数单调性与奇偶性题点抽象函数单调性与不等式结合问题答案(-∞,1)解析由于f(x)在[0,+∞)上单调递增,且是奇函数,所以f(x)在R上单调递增,f(x)<f(1)等价于x<1.8.若f(x)=(m-1)x2+6mx+2是偶函数,则f(0),f(1),f(-2)从小到大的排列是________.答案f(-2)<f(1)<f(0)解析∵f(x)是偶函数,∴f(-x)=f(x)恒成立,即(m-1)x2-6mx+2=(m-1)x2+6mx+2恒成立,∴m=0,即f(x)=-x2+2.∵f(x)的图象开口向下,对称轴为y轴,在[0,+∞)上单调递减,∴f(2)<f(1)<f(0),即f(-2)<f(1)<f(0).9.已知函数y=f(x)的图象关于原点对称,且当x>0时,f(x)=x2-2x+3.(1)试求f(x)在R上的解析式;(2)画出函数的图象,根据图象写出它的单调区间.考点 单调性与奇偶性的综合应用题点 求奇偶函数的单调区间解 (1)因为函数f (x )的图象关于原点对称,所以f (x )为奇函数,则f (0)=0.设x <0,则-x >0,因为当x >0时,f (x )=x 2-2x +3.所以当x <0时,f (x )=-f (-x )=-(x 2+2x +3)=-x 2-2x -3.于是有f (x )=⎩⎪⎨⎪⎧ x 2-2x +3,x >0,0,x =0,-x 2-2x -3,x <0.(2)先画出函数在y 轴右侧的图象,再根据对称性画出y 轴左侧的图象,如图.由图象可知函数f (x )的单调递增区间是(-∞,-1],[1,+∞),单调递减区间是(-1,0),(0,1).10.已知函数f (x )=ax +b x +c (a ,b ,c 是常数)是奇函数,且满足f (1)=52,f (2)=174. (1)求a ,b ,c 的值;(2)试判断函数f (x )在区间⎝⎛⎭⎫0,12上的单调性并证明. 考点 单调性与奇偶性的综合应用题点 判断或证明奇偶函数在某区间上的单调性解 (1)∵f (x )为奇函数,∴f (-x )=-f (x ),∴-ax -b x +c =-ax -b x-c , ∴c =0,∴f (x )=ax +b x. 又∵f (1)=52,f (2)=174, ∴⎩⎨⎧ a +b =52,2a +b 2=174.∴a =2,b =12.综上,a =2,b =12,c =0.(2)由(1)可知f (x )=2x +12x .函数f (x )在区间⎝⎛⎭⎫0,12上为减函数.证明如下:任取0<x 1<x 2<12,则f (x 1)-f (x 2)=2x 1+12x 1-2x 2-12x 2=(x 1-x 2)⎝⎛⎭⎫2-12x 1x 2=(x 1-x 2)4x 1x 2-12x 1x 2.∵0<x 1<x 2<12,∴x 1-x 2<0,2x 1x 2>0,4x 1x 2-1<0.∴f (x 1)-f (x 2)>0,即f (x 1)>f (x 2).∴f (x )在⎝⎛⎭⎫0,12上为减函数.11.设奇函数f (x )在(0,+∞)上为减函数,且f (1)=0,则不等式f (x )-f (-x )x <0的解集为() A .(-1,0)∪(1,+∞)B .(-∞,-1)∪(0,1)C .(-∞,-1)∪(1,+∞)D .(-1,0)∪(0,1)答案 C解析 ∵f (x )为奇函数,f (x )-f (-x )x <0,即f (x )x <0,∵f (x )在(0,+∞)上为减函数且f (1)=0,∴当x >1时,f (x )<0.∵奇函数图象关于原点对称,∴在(-∞,0)上f (x )为减函数且f (-1)=0,即x <-1时,f (x )>0.综上使f (x )x<0的解集为(-∞,-1)∪(1,+∞). 12.已知f (x +y )=f (x )+f (y )对任意实数x ,y 都成立,则函数f (x )是( )A .奇函数B .偶函数C .既是奇函数,也是偶函数D .既不是奇函数,也不是偶函数答案 A解析 令x =y =0,所以f (0)=f (0)+f (0),所以f (0)=0.又因为f (x -x )=f (x )+f (-x )=0,所以f (-x )=-f (x ),所以f (x )是奇函数,故选A.13.已知y =f (x )+x 2是奇函数且f (1)=1,若g (x )=f (x )+2,则g (-1)=________. 考点 函数奇偶性的应用题点 利用奇偶性求函数值答案 -1解析 ∵y =f (x )+x 2是奇函数,∴f (-x )+(-x )2=-[f (x )+x 2],∴f (x )+f (-x )+2x 2=0,∴f (1)+f (-1)+2=0.∵f (1)=1,∴f (-1)=-3.∵g (x )=f (x )+2,∴g (-1)=f (-1)+2=-3+2=-1.14.已知定义在R 上的函数f (x )满足f (1-x )=f (1+x ),且f (x )在[1,+∞)上为单调减函数,则当x =________时,f (x )取得最大值;若不等式f (0)<f (m )成立,则m 的取值范围是________. 答案 1 (0,2)解析 由f (1-x )=f (1+x )知,f (x )的图象关于直线x =1对称,又f (x )在(1,+∞)上单调递减,则f (x )在(-∞,1]上单调递增,所以当x =1时f (x )取到最大值.由对称性可知f (0)=f (2),所以f (0)<f (m ),得0<m <2,即m 的取值范围为(0,2).15.已知f (x ),g (x )分别是定义在R 上的偶函数和奇函数,且f (x )-g (x )=x 3+x 2+1,则f (1)+g (1)等于( )A .-3B .-1C .1D .3考点 函数奇偶性的应用题点 利用奇偶性求函数的解析式答案 C解析 ∵f (x )-g (x )=x 3+x 2+1,∴f (-x )-g (-x )=-x 3+x 2+1.∵f (x )是偶函数,g (x )是奇函数,∴f (-x )=f (x ),g (-x )=-g (x ).∴f (x )+g (x )=-x 3+x 2+1.∴f (1)+g (1)=-1+1+1=1.16.设f (x )是定义在R 上的奇函数,且对任意a ,b ∈R ,当a +b ≠0时,都有f (a )+f (b )a +b>0. (1)若a >b ,试比较f (a )与f (b )的大小关系;(2)若f (1+m )+f (3-2m )≥0,求实数m 的取值范围.解 (1)因为a >b ,所以a -b >0,由题意得f (a )+f (-b )a -b>0, 所以f (a )+f (-b )>0.又f (x )是定义在R 上的奇函数,所以f (-b )=-f (b ),所以f (a )-f (b )>0,即f (a )>f (b ).(2)由(1)知f (x )为R 上的单调递增函数,因为f (1+m )+f (3-2m )≥0,所以f (1+m )≥-f (3-2m ),即f (1+m )≥f (2m -3),所以1+m ≥2m -3,所以m ≤4.所以实数m 的取值范围为(-∞,4].。
2023新教材高中数学第三章函数的概念与性质3-4函数的应用一课件新人教A版必修第一册
解析 由已知得,该户每月缴费 y 元与实际用水量 x 立方米满足的关系 式为 y=m2mx,x-0≤ 10xm≤,1x0>,10. 由 y=16m,得 x>10,所以 2mx-10m=16m.解 得 x=13.故选 A.
7.某公司招聘员工,面试人数按拟录用人数分段计算,计算公式为 y
4x,1≤x<10,x∈N, =2x+10,10≤x<100,x∈N,
1.5x,x≥100,x∈N,
其中,x 代表拟录用人数,y 代表面试人
数,若面试人数为 60,则该公司拟录用人数为( ) A.15 B.40 C.25 0,若 4x=60,则 x=15>10,不符合题意;若 2x+10= 60,则 x=25,满足题意;若 1.5x=60,则 x=40<100,不符合题意.故拟 录用人数为 25.
销售单价(元) 6 7 8 9 10 11 12 日销售量(桶) 480 440 400 360 320 280 240 请根据以上数据作出分析,这个经营部怎样定价才能获得最大利润?最 大利润是多少?
解 设每桶水在进价的基础上上涨 x 元出售,利润为 y 元,由表格中的 数据可知,价格每上涨 1 元,日销售量就减少 40 桶,所以涨价 x 元后,日 销售桶数 480-40(x-1)=520-40x>0,∴0<x<13.
答案 C
解析 设公司在甲地销售 x 辆,则在乙地销售(15-x)辆,公司获利为 L =-x2+21x+2(15-x)=-x2+19x+30=-x-1292+30+1492,∴当 x=9 或 10 时,L 最大为 120 万元.
4.某桶装水经营部每天房租、工作人员工资等固定成本为 200 元,每 桶水进价为 5 元,销售单价与日销售量的关系如下表:
2020版新教材高中数学第三章函数3.1.1.4分段函数课件新人教B版必修1
2.已知函数f(x)的图像如图所示,则f(x)的解析式是 ________.
【解析】因为f(x)的图像由两条线段组成,
所以结合函数图像和一次函数解析式的求法可得
f(x)=
x 1,1 x 0, x,0 x 1.
答案:f(x)=
x 1,x [1,0), x,x [0,1]
类型三 分段函数的综合问题
角度1 范围问题
【典例】已知f(x)=
1, x 0, 1, x 0,
则不等式x+(x+2)·f(x+2)
≤5的解集是世纪金榜导学号( )
A.[-2,1] C.[2, 3]
2
B.(-∞,-2] D. ( , 3 ]
2
【思维·引】 分x+2≥0,x+2&[-4,2] D.(-4,2]
【解析】选B.因为f(x)≥-1,
x 0,
所以
1 2
x
1
1,
或
x 0, (x 1)2
1,
所以-4≤x≤0或0<x≤2,即-4≤x≤2.
2.若f(x)=
x 7, x [1,1], 2x 6, x [1, 2],
1 4
(x-2)2-1,x
0.
x 1,-1 x 0,
答案:f(x)=
1 4
(x-2)2-1,x
0
【内化·悟】 已知分段函数的函数值求自变量的值时需要注意什么? 提示:分段求,求出的自变量的值要符合相应段的定 义域.
【类题·通】 1.分段函数求函数值的方法 (1)确定要求值的自变量属于哪一段区间. (2)代入该段的解析式求值,直到求出值为止.当出现 f(f(x0))的形式时,应从内到外依次求值.
新教材高中数学第三章函数3.1.3函数的奇偶性(第1课时)函数奇偶性的概念课件新人教B版必修第一册
已知函数 y=f(x)是 的所有实根之和是( )
A.4
B.2
C.1
D.0
解析:选 D.因为 f(x)是偶函数,且图像与 x 轴有四个交点,所
以这四个交点每组两个关于 y 轴一定是对称的,故所有实根之
和为 0.
利用函数的奇偶性求参数
(1)若函数 f(x)=ax2+bx+3a+b 是偶函数,且定义域为
第三章 函 数
3.1.3 函数的奇偶性
第 1 课时 函数奇偶性的概念
第三章 函 数
考点
函数奇偶 性的判断
奇、偶函 数的图像 奇、偶函 数的应用
学习目标 结合具体函数,了解函数奇偶 性的含义,掌握判断函数奇偶 性的方法 了解函数奇偶性与函数图像 对称性之间的关系 会利用函数的奇偶性解决简 单问题
核心素养 数学抽象、
(2)作出函数在 y 轴另一侧的图像,如图所示.
观察图像可知 f(1)=f(-1),f(3)=f(-3),f(-1)<f(-3),所以 f(1)<f(3).
(3)f(x)的定义域为[-1,0)∪(0,1].
即有-1≤x≤1 且 x≠0,
则-1≤-x≤1,且-x≠0,
又因为 f(-x)=
1-(-x)2 -x
=- 1-x x2=-f(x).
所以 f(x)为奇函数.
(4)f(x)的定义域是(-∞,0)∪(0,+∞),关于原点对称. 当 x>0 时,-x<0, f(-x)=1-(-x)=1+x=f(x); 当 x<0 时,-x>0, f(-x)=1+(-x)=1-x=f(x). 综上可知,对于 x∈(-∞,0)∪(0,+∞),都有 f(-x)=f(x), 所以 f(x)为偶函数.
高中数学第三章函数3.1函数的概念与性质3.1.3函数的奇偶性第课时学案含解析B版第一册
3。
1。
3 函数的奇偶性第2课时学习目标1.掌握函数奇偶性的简单应用。
2.了解函数图像的对称轴、对称中心满足的条件。
自主预习1.函数的奇偶性与单调性的性质(1)若f(x)为奇函数且在区间[a,b](a<b)上为增函数(减函数),则f(x)在[—b,—a]上为(函数),即在关于原点对称的区间上单调性.(2)若f(x)为偶函数且在区间[a,b](a〈b)上为增函数(减函数),则f(x)在[-b,-a]上为(函数),即在关于原点对称的区间上单调性.2.奇偶函数的运算性质在公共定义域内:(1)两个奇函数的和函数是函数,积函数是函数;(2)两个偶函数的和函数、积函数都是函数;(3)一个奇函数、一个偶函数的积函数是函数。
3.函数的对称轴与对称中心(1)若函数f(x)的定义域为D,对∀x∈D都有f(T+x)=f (T—x)(T为常数),则x=是f(x)的对称轴.(2)若函数f(x)的定义域为D,对∀x∈D都有f(a+x)+f(a-x)=2b(a,b为常数),则是f(x)的对称中心.课堂探究题型一利用奇偶性求函数解析式例1(1)函数f(x)是R上的偶函数,且当x<0时,f(x)=x(x-1),则当x〉0时,f(x)=。
(2)函数f(x)为R上的奇函数,当x〉0时,f(x)=-2x2+3x+1,则f(x)=.【训练1】(1)设函数f(x)是定义在R上的奇函数,当x〈0时,f(x)=-x2-x,求函数f(x)的解析式;(2)已知f(x)是R上的偶函数,当x∈(0,+∞)时,f(x)=x2+x—1,当x∈(-∞,0)时,求f(x)的解析式.题型二利用奇偶性研究函数的性质例2研究函数f(x)=x2—2|x|+1的单调性,并求出f(x)的最值.【训练2】研究函数f(x)=x+1的单调性,并写出函数的值x域。
题型三证明函数图像的对称性例3求证:二次函数f(x)=—x2—2x+1的图像关于x=-1对称。
【训练3】证明函数f(x)=x的图像关于点(—1,1)对x+1称.课堂练习1。
第三章函数
第三章 函数一、基础知识定义1 映射,对于任意两个集合A ,B ,依对应法则f ,若对A 中的任意一个元素x ,在B 中都有唯一一个元素与之对应,则称f : A →B 为一个映射。
定义2 单射,若f : A →B 是一个映射且对任意x , y ∈A , x ≠y , 都有f (x )≠f (y )则称之为单射。
定义3 满射,若f : A →B 是映射且对任意y ∈B ,都有一个x ∈A 使得f (x )=y ,则称f : A →B 是A 到B 上的满射。
定义4 一一映射,若f : A →B 既是单射又是满射,则叫做一一映射,只有一一映射存在逆映射,即从B 到A 由相反的对应法则f -1构成的映射,记作f -1: A →B 。
定义5 函数,映射f : A →B 中,若A ,B 都是非空数集,则这个映射为函数。
A 称为它的定义域,若x ∈A , y ∈B ,且f (x )=y (即x 对应B 中的y ),则y 叫做x 的象,x 叫y 的原象。
集合{f (x )|x ∈A }叫函数的值域。
通常函数由解析式给出,此时函数定义域就是使解析式有意义的未知数的取值范围,如函数y =3x -1的定义域为{x |x ≥0,x ∈R}.定义6 反函数,若函数f : A →B (通常记作y =f (x ))是一一映射,则它的逆映射f -1: A→B 叫原函数的反函数,通常写作y =f -1(x ). 这里求反函数的过程是:在解析式y =f (x )中反解x 得x =f -1(y ),然后将x , y 互换得y =f -1(x ),最后指出反函数的定义域即原函数的值域。
例如:函数y =x -11的反函数是y =1-x1(x ≠0). 定理1 互为反函数的两个函数的图象关于直线y =x 对称。
定理2 在定义域上为增(减)函数的函数,其反函数必为增(减)函数。
定义7 函数的性质。
(1)单调性:设函数f (x )在区间I 上满足对任意的x 1, x 2∈I 并且x 1< x 2,总有f (x 1)<f (x 2)(f (x )>f (x 2)),则称f (x )在区间I 上是增(减)函数,区间I 称为单调增(减)区间。
§3 函数的单调性
A.减少的
B.增加的
C.一定不单调
D.不确定
2.已知关于 x 的不等式 x2-x+a-1≥0 在 R 上恒
成立,则实数 a 的取值范围是( D )
A.-∞,54
5
C.4,+∞
B.-∞,54
5
D.4,+∞
【解析】记 f(x)=x2-x+a-1,则原问题等价于二次
当x1<x2时,都有f(x1)<f(x2)
x
y
图像在区间I逐渐上升ຫໍສະໝຸດ 区间I内随着x的增大,y也增大
N
f(x2)
对区间I内 任意 x1,x2 ,
f(x1) O
M
I x1 x2
当x1<x2时,都有f(x1)<f(x2)
x
根据以上的探究,同学们互相交流一下,试着总结出函 数在区间增加的定义.
函数在区间增加(或减少) 你能类比函数在区间增加的研究
是增函数. (×)
y
f(2)
f(1)
O 1 2x
【即时训练】
写出下列函数的单调区间:
y y=2x+1
y
y=(x-1)2-1
o
x
增区间为 (, )
y
y =x3
o1
-1
2x
增区间为 [1, )
减区间为 (,1]
o x 增区间为 (, )
例1 说出函数 f (x) 1 的单调区间,并指明在该区间
x)
|
2x
a
|
=
2x a, x 2x a,
a, 2
xa 2
,
函数f (x)的单调递增区间是[3,+),
实验3 函数
实验3 函数一、实验目的1、复习并掌握C++函数的定义方法和调用形式。
2、学习使用函数原型来声明函数。
3、掌握函数参数的传递方式,透彻理解值传递方式和引用传递方式之间的区别。
4、掌握递归函数的设计方法。
5、学习并掌握函数重载技术。
6、学习并掌握函数模板技术。
7、进一步学习程序的调试方法。
二、实验任务1、编写一个函数完成两个整数的加法运算,并返回运算结果。
要求使用函数原型声明该函数。
2、定义一个函数计算一个正整数各位数字之和,要求不使用函数返回值和指针返回运算结果。
3、编写递归函数求解n阶勒让德多项式的值。
已知勒让德多项式的推导公式如下:1 (n=0)P n(x)= x (n=1)[(2n-1)*P n-1(x)-(n-1)*P n-2(x)]/n4、编写一组重载的函数分别计算两个短整数的加法,两个普通整数的加法,两个单精度浮点数的加法和两个双精度浮点数的加法。
5、编写一个函数模板,计算两个数值的加法。
并使用这个函数模板求出任意两个整数和任意两个浮点数的和。
6、进一步学习VC++编程环境的程序调试功能。
三、实验步骤1、创建VC++控制台应用程序exp3_1,编写一个函数add,实现两个整数的加法,并使用函数原型声明该函数。
在main函数中从键盘输入两个整数,使用它们作为参数调用add 函数计算并返回两个整数的和,并在main函数中输出结果。
2、创建控制台应用程序exp3_2,编写函数sum用来计算并一个正整数的各位数字之和,但不能使用函数返回值和指针来返回计算结果。
在main函数中从键盘输入一个正整数,调用函数sum计算各位数字之和,再于main函数中输出结果。
3、创建控制台应用程序exp3_3,在其中编写递归函数Lpolynomial,用来计算n阶勒让德多项式的值。
函数原型如下:float Lpolynomial(int n, int x);在程序的主函数main中从键盘输入两个正整数x和n,调用函数Lpolynomial来计算x 的n阶勒让德多项式的值。
第2讲函数之三:函数的值域(最大值与最小值)
第2讲函数之三:函数的值域(最⼤值与最⼩值)第2讲函数之三:函数的值域(函数的最⼤值或最⼩值)1.⼆次函数配⽅法:例1.求函数]3,0[,232∈-+=x x x y 时的最⼤值和最⼩值。
解:4)1(3222+--=++-=x x x y∴]1,(-∞∈x 时为增函数,],1(+∞∈x 时为减函数 ]3,0[∈x , f (3)当4,1max ==y x 时例2.求函数98212+-=x x y 的最⼤值解:令1)2(298222+-=+-=x x x u∴u ≥1 ∴01≤1 ∴0例3.设]1,1[-∈x ,求函数)(32R a ax x y ∈+-=的最⼤值和最⼩值解:43)2(3222a a x ax x y -+-=+-=1)2a>1 ,即a >2当a y x +=-=4,1max 时; 当a y x -==4,1min 时2)2a<-1 ,即a <-2当a y x -==4,1max 时; 当a y x +=-=4,1min 时3)-1≤2a≤0 ,即-2≤a ≤0当=x 2a 时,432min a y -=;当a y x -==4,1max 时4)0<当=x 2a 时,432min a y -=;当a y x +=-=4,1min 时例4.某商店如将进货单价为8元的商品,按每件10元出售,每天可销售50件,现采⽤提⾼该商品售价,减少货量的办法,增加利润。
已知该商品每提⾼1元,其销售量减少5件,问每件价格多少,才能使每天销售所得利润最⼤?并求最⼤值。
解:设利润为y ,每件价格为x 元)8)](10(550[---=x x y )8)(1005(-+-=x x180)19628(52++--=x 180)14(52+--=x∴当x =14时,最⼤利润为180元。
2.利⽤函数单调性例1.求函数x x y --=13的值域解:定义域1-x ≥0 ,x ≤1在(]1,∞-∈x 时,是增函数∴y ≤3∴值域为(]3,∞-(注:本题还可以⽤换元法。
三次函数
第28关:三次函数专题—全解全析一、定义:定义1、形如的函数,称为“三次函数”(从函数解析式的结构上命名)定义2、三次函数的导数,把叫做三次函数导函数的判别式二、三次函数图象与性质的探究:1、单调性一般地,当时,三次函数在上是单调函数;当时,三次函数在上有三个单调区间(根据两种不同情况进行分类讨论)2、对称中心三次函数是关于点对称,且对称中心为点,此点的横坐标是其导函数极值点的横坐标。
证明:设函数的对称中心为(m,n)。
按向量将函数的图象平移,则所得函数是奇函数,所以化简得:上式对恒成立,故,得,。
所以,函数的对称中心是()。
可见,y=f(x)图象的对称中心在导函数y=的对称轴上,且又是两个极值点的中点,同时也是二阶导为零的点。
3、三次方程根的问题(1)当△=时,由于不等式恒成立,函数是单调递增的,所以原方程仅有一个实根。
(2)当△=时,由于方程有两个不同的实根,不妨设,可知,为函数的极大值点,为极小值点,且函数在和上单调递增,在上单调递减。
此时:①若,即函数极大值点和极小值点在轴同侧,图象均与轴只有一个交点,所以原方程有且只有一个实根。
②若,即函数极大值点与极小值点在轴异侧,图象与轴必有三个交点,所以原方程有三个不等实根。
③若,即与中有且只有一个值为0,所以,原方程有三个实根,其中两个相等。
4、极值点问题若函数f(x)在点x0的附近恒有f(x0)≥f(x) (或f(x0)≤f(x)),则称函数f(x)在点x0处取得极大值(或极小值),称点x0为极大值点(或极小值点)。
当时,三次函数在上的极值点要么有两个。
当时,三次函数在上不存在极值点。
5、最值问题函数若,且,则:;三、三次函数与导数专题:1. 三次函数与导数例题例1. 函数.(1)讨论函数的单调性;(2)若函数在区间(1,2)是增函数,求的取值范围.解:(Ⅰ),的判别式△=36(1-a).(ⅰ)当a≥1时,△≤0,则恒成立,且当且仅当,故此时在R上是增函数.来自QQ群3(ⅱ)当且,时,有两个根:,若,则, 当或时,,故在上是增函数;当时,,故在上是减函数;若,则当或时,,故在和上是减函数;当时,,故在上是增函数;(Ⅱ)当且时, ,所以当时,在区间(1,2)是增函数.当时,在区间(1,2)是增函数,当且仅当且,解得.综上,的取值范围是.例2. 设函数,其中。
高中数学第三章函数的概念与性质3.1.1函数的概念讲义新人教A版必修第一册
3.1.1 函数的概念最新课程标准:在初中用变量之间的依赖关系描述函数的基础上,用集合语言和对应关系刻画函数,建立完整的函数概念,体会集合语言和对应关系在刻画函数概念中的作用。
了解构成函数的要素,能求简单函数的定义域.知识点一函数的概念1.函数的概念一般地,设A,B是非空的实数集,如果对于集合A中的任意一个数x,按照某种确定的对应关系f,在集合B中都有唯一确定的数y和它对应,那么就称f:A→B为从集合A到集合B的一个函数(function),记作y=f(x),x∈A.2.函数的定义域和值域函数y=f(x)中x叫做自变量,x的取值范围A叫做函数的定义域(domain);与x的值相对应的y值叫做函数值,函数值的集合{f(x)|x∈A}叫做函数的值域(range).显然,值域是集合B的子集.状元随笔对函数概念的3点说明(1)当A , B为非空实数集时,符号“ f :A→B ”表示A到B的一个函数.(2)集合A中的数具有任意性,集合B中的数具有唯一性.(3)符号“f”表示对应关系,在不同的函数中f的具体含义不一样.知识点二区间的概念1.区间的几何表示定义名称符号数轴表示{x|a≤x≤b}闭区间[a,b]{x|a<x<b}开区间(a,b){x|a≤x<b}半开半闭区间[a,b){x|a<x≤b}半开半闭区间(a,b]2.实数集R可以用区间表示为(-∞,+∞),“∞”读作“无穷大”;“-∞”读作“负无穷大”;“+∞”读作“正无穷大”.3.无穷大的几何表示定义 符号 数轴表示{x |x ≥a } [a ,+∞) {x |x >a } (a ,+∞) {x |x ≤b } (-∞,b ] {x |x <b }(-∞,b )状元随笔 关于无穷大的2点说明 (1)“∞”是一个符号,而不是一个数.(2)以“-∞”或“+∞”为端点时,区间这一端必须是小括号. 知识点三 同一函数如果两个函数的定义域相同,并且对应关系完全一致,即相同的自变量对应的函数值也相同,那么这两个函数是同一个函数.[教材解难]1.教材P 60思考根据问题1的条件,我们不能判断列车以350 km/h 运行半小时后的情况,所以上述说法不正确.显然,其原因是没有关注到t 的变化范围.2.教材P 63思考反比例函数y =kx(k ≠0)的定义域为{x |x ≠0},对应关系为“倒数的k 倍”,值域为{y |y ≠0}.反比例函数用函数定义叙述为:对于非空数集A ={x |x ≠0}中的任意一个x 值,按照对应关系f “倒数的k (k ≠0)倍”,在集合B ={y |y ≠0}中都有唯一确定的数k x和它对应,那么此时f :A →B 就是集合A 到集合B 的一个函数,记作f (x )=k x(k ≠0),x ∈A .3.教材P 66思考初中所学习的函数传统定义与高中的近代定义之间的异同点如下:不同点:传统定义从变量变化的角度,刻画两个变量之间的对应关系;而近代定义,则从集合间的对应关系来刻画两个非空数集间的对应关系.相同点:两种对应关系满足的条件是相同的,“变量x 的每一个值”以及“集合A 中的每一个数”,都有唯一一个“y 值”与之对应.[基础自测]1.下列从集合A 到集合B 的对应关系f 是函数的是( ) A .A ={-1,0,1},B ={0,1},f :A 中的数平方 B .A ={0,1},B ={-1,0,1},f :A 中的数开方 C .A =Z ,B =Q ,f :A 中的数取倒数D .A ={平行四边形},B =R ,f :求A 中平行四边形的面积解析:对B ,集合A 中的元素1对应集合B 中的元素±1,不符合函数的定义;对C ,集合A 中的元素0取倒数没有意义,在集合B 中没有元素与之对应,不符合函数的定义;对D ,A 集合不是数集,故不符合函数的定义.综上,选A.答案:A 2.函数f (x )=x -1x -2的定义域为( ) A .(1,+∞) B .[1,+∞) C .[1,2) D .[1,2)∪(2,+∞) 解析:使函数f (x )=x -1x -2有意义, 则⎩⎪⎨⎪⎧x -1≥0,x -2≠0,即x ≥1,且x ≠2.所以函数的定义域为{x |x ≥1且x ≠2}.故选D. 答案:D3.下列各组函数表示同一函数的是( )A .y =x 2-9x -3与y =x +3B .y =x 2-1与y =x -1 C .y =x 0(x ≠0)与y =1(x ≠0) D .y =x +1,x ∈Z 与y =x -1,x ∈Z解析:A 中两函数定义域不同;B 中两函数值域不同;D 中两函数对应法则不同. 答案:C4.用区间表示下列集合:(1)⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪-12≤x <5=________; (2){x |x <1或2<x ≤3}=________.解析:(1)注意到包括不包括区间的端点与不等式含不含等号对应,则{x |-12≤x <5}=[-12,5). (2)注意到集合中的“或”对应区间中的“∪”,则{x |x <1或2<x ≤3}=(-∞,1)∪(2,3].答案:(1)⎣⎢⎡⎭⎪⎫-12,5 (2)(-∞,1)∪(2,3]题型一 函数的定义[经典例题]例1 根据函数的定义判断下列对应关系是否为从集合A 到集合B 的函数: (1)A ={1,2,3},B ={7,8,9},f (1)=f (2)=7,f (3)=8; (2)A ={1,2,3},B ={4,5,6},对应关系如图所示;(3)A =R ,B ={y |y >0},f :x →y =|x |;(4)A =Z ,B ={-1,1},n 为奇数时,f (n )=-1,n 为偶数时,f (n )=1. 【解析】 对于集合A 中的任意一个值,在集合B 中都有唯一的值与之对应,因此(1)(4)中对应关系f 是从集合A 到集合B 的一个函数.(2)集合A 中的元素3在集合B 中没有对应元素,且集合A 中的元素2在集合B 中有两个元素(5和6)与之对应,故所给对应关系不是集合A 到集合B 的函数.(3)A 中的元素0在B 中没有对应元素,故所给对应关系不是集合A 到集合B 的函数. 1.从本题(1)可以看出函数f(x)的定义域是非空数集A ,但值域不一定是非空数集B ,也可以是集合B 的子集.2.判断从集合A 到集合B 的对应是否为函数,一定要以函数的概念为准则,另外也要看A 中的元素是否有意义,同时,一定要注意对特殊值的分析.方法归纳(1)判断一个集合A 到集合B 的对应关系是不是函数关系的方法:①A ,B 必须都是非空数集;②A 中任意一个数在B 中必须有并且是唯一的实数和它对应.[注意] A 中元素无剩余,B 中元素允许有剩余.(2)函数的定义中“任意一个x ”与“有唯一确定的y ”说明函数中两变量x ,y 的对应关系是“一对一”或者是“多对一”,而不能是“一对多”.跟踪训练1 (1)设M ={x |0≤x ≤2},N ={y |0≤y ≤2},给出下列四个图形,其中能表示从集合M 到集合N 的函数关系的有( )A .0个B .1个C .2个D .3个 (2)下列对应是否是函数? ①x →3x,x ≠0,x ∈R ;②x →y ,其中y 2=x ,x ∈R ,y ∈R . 解析:(1)图号 正误 原因① × x =2时,在N 中无元素与之对应,不满足任意性② √ 同时满足任意性与唯一性③ × x =2时,对应元素y =3∉N ,不满足任意性 ④ ×x =1时,在N 中有两个元素与之对应,不满足唯一性(1)①x∈[0,1]取不到[1,2]. ③y∈[0,3]超出了N∈[0,2]范围.④可取一个x 值,y 有2个对应,不符合题意.(2)①是函数.因为任取一个非零实数x ,都有唯一确定的3x与之对应,符合函数定义.②不是函数.当x =1时,y =±1,即一个非零自然数x ,对应两个y 的值,不符合函数的概念.答案:(2)①是函数②不是函数 (2)关键是否符合函数定义.题型二 求函数的定义域 [经典例题] 例2 (1)函数f (x )=x +1x -1的定义域是( ) A.[-1,1)B .[-1,1)∪(1,+∞)C .[-1,+∞)D .(1,+∞)(2)求下列函数的定义域. ①y =x +2+1x 2-x -6;②y =(x -1)0|x |+x.【解析】 (1)由⎩⎪⎨⎪⎧x +1≥0,x -1≠0,解得x ≥-1,且x ≠1.所以所求函数的定义域为[-1,1)∪(1,+∞). 【答案】 (1)B(1)依据分式的分母不为0,二次根式的被开方数大于等于0,列不等式组求定义域. 【解析】(2)①要使函数有意义,需满足⎩⎪⎨⎪⎧x +2≥0,x 2-x -6≠0,即⎩⎪⎨⎪⎧x ≥-2,x ≠-2且x ≠3,得x >-2且x ≠3.所以所求函数的定义域为(-2,3)∪(3,+∞). ②要使函数有意义,需满足⎩⎪⎨⎪⎧x -1≠0,|x |+x ≠0,即⎩⎪⎨⎪⎧x ≠1,x >0,所以x >0且x ≠1,所以所求函数的定义域为(0,1)∪(1,+∞). 【答案】(2)见解析(2)依据分式的分母不为0,二次根式的被开方数大于等于0,0的0次幂没有意义,列不等式组求定义域.方法归纳求函数的定义域(1)要明确使各函数表达式有意义的条件是什么,函数有意义的准则一般有:①分式的分母不为0;②偶次根式的被开方数非负;③y =x 0要求x ≠0.(2)当一个函数由两个或两个以上代数式的和、差、积、商的形式构成时,定义域是使得各式子都有意义的公共部分的集合.(3)定义域是一个集合,要用集合或区间表示,若用区间表示数集,不能用“或”连接,而应该用并集符号“∪”连接.跟踪训练2 求下列函数的定义域: (1)f (x )=6x 2-3x +2;(2)f (x )=(x +1)|x |-x;(3)f (x )=2x +3-12-x+1x.解析:(1)要使函数有意义,只需x 2-3x +2≠0, 即x ≠1且x ≠2,故函数的定义域为{x |x ≠1且x ≠2}.(2)要使函数有意义,则⎩⎪⎨⎪⎧x +1≠0,|x |-x >0,解得x <0且x ≠-1.所以定义域为(-∞,-1)∪(-1,0). (3)要使函数有意义,则⎩⎪⎨⎪⎧2x +3≥0,2-x >0,x ≠0,解得-32≤x <2,且x ≠0.故定义域为⎣⎢⎡⎭⎪⎫-32,0∪(0,2). (1)分母不为0(2)⎩⎪⎨⎪⎧偶次根式被开方数≥0(x +1)0底数不为0(3)⎩⎪⎨⎪⎧偶次根式被开方数≥0分母不为0题型三 同一函数[教材P 66例3]例3 下列函数中哪个与函数y =x 是同一个函数? (1)y =(x )2;(2)u =3v 3;(3)y =x 2; (4)m =n 2n.【解析】 (1)y =(x )2=x (x ∈{x |x ≥0}),它与函数y =x (x ∈R )虽然对应关系相同,但是定义域不相同,所以这个函数与函数y =x (x ∈R )不是同一个函数.(2)u =3v 3=v (v ∈R ),它与函数y =x (x ∈R )不仅对应关系相同,而且定义域也相同,所以这个函数与函数y =x (x ∈R )是同一个函数.(3)y =x2=|x |=⎩⎪⎨⎪⎧-x ,x <0,x ,x ≥0,它与函数y =x (x ∈R )的定义域都是实数集R ,但是当x <0时,它的对应关系与函数y =x (x ∈R )不相同.所以这个函数与函数y =x (x ∈R )不是同一个函数.(4)m =n 2n=n (n ∈{n |n ≠0}),它与函数y =x (x ∈R )的对应关系相同但定义域不相同.所以这个函数与函数y =x (x ∈R )不是同一个函数.教材反思判断同一函数的三个步骤和两个注意点(1)判断同一函数的三个步骤(2)两个注意点:①在化简解析式时,必须是等价变形; ②与用哪个字母表示无关.跟踪训练3 试判断下列函数是否为同一函数.(1)f (x )=x 2-xx,g (x )=x -1;(2)f (x )=x x ,g (x )=x x; (3)f (x )=x 2,g (x )=(x +1)2; (4)f (x )=|x |,g (x )=x 2. 解析:应关系来确定,因而只要判断定义域和对应关系是否对应相同即可.题型四 求函数的值域[经典例题] 例4 求下列函数的值域. (1)y =3-4x ,x ∈(-1,3]. (2)y =2xx +1. (3)y =x 2-4x +5,x ∈{1,2,3}. (4)y =x 2-4x +5.【解析】 (1)因为-1<x ≤3,所以-12≤-4x <4,所以-9≤3-4x <7, 所以函数y =3-4x ,x ∈(-1,3]的值域是[-9,7). (2)因为y =2x x +1=2(x +1)-2x +1=2-2x +1≠2, 所以函数y =2xx +1的值域为{y |y ∈R 且y ≠2}. (3)函数的定义域为{1,2,3}, 当x =1时,y =12-4×1+5=2,当x =2时,y =22-4×2+5=1,当x =3时,y =32-4×3+5=2, 所以这个函数的值域为{1,2},(4)因为y =x 2-4x +5=(x -2)2+1,x ∈R 时,(x -2)2+1≥1, 所以这个函数的值域为[1,+∞).状元随笔 (1)用不等式的性质先由x∈(-1,3]求-4x 的取值范围,再求3-4x 的取值范围即为所求.(2)先分离常数将函数解析式变形,再求值域. (3)将自变量x =1,2,3代入解析式求值,即可得值域. (4)先配方,然后根据任意实数的平方都是非负数求值域.方法归纳求函数值域的常用方法(1)观察法:对于一些比较简单的函数,其值域可通过观察法得到. (2)配方法:是求“二次函数”类值域的基本方法.(3)换元法:运用新元代换,将所给函数化成值域易确定的函数,从而求得原函数的值域.对于f (x )=ax +b +cx +d (其中a ,b ,c ,d 为常数,且ac ≠0)型的函数常用换元法.(4)分离常数法:此方法主要是针对有理分式,即将有理分式转化为“反比例函数类”的形式,便于求值域.跟踪训练4 求下列函数的值域: (1)y =2x +1,x ∈{1,2,3,4,5}; (2)y =x +1; (3)y =1-x21+x2;(4)y =-x 2-2x +3(-5≤x ≤-2).解析:(1)将x =1,2,3,4,5分别代入y =2x +1,计算得函数的值域为{3,5,7,9,11}. (2)因为x ≥0,所以x +1≥1, 即所求函数的值域为[1,+∞). (3)因为y =1-x 21+x 2=-1+21+x 2,所以函数的定义域为R , 因为x 2+1≥1,所以0<21+x 2≤2.所以y ∈(-1,1].所以所求函数的值域为(-1,1]. (4)y =-x 2-2x +3=-(x +1)2+4. 因为-5≤x ≤-2, 所以-4≤x +1≤-1. 所以1≤(x +1)2≤16. 所以-12≤4-(x +1)2≤3. 所以所求函数的值域为[-12,3]. (3)先分离再求值域 (4)配方法求值域一、选择题1.下列各个图形中,不可能是函数y =f (x )的图象的是( )解析:对于1个x 有无数个y 与其对应,故不是y 的函数.答案:A2.函数f (x )=x +3+(2x +3)3-2x 的定义域是( )A.⎣⎢⎡⎦⎥⎤-3,32B.⎣⎢⎡⎭⎪⎫-3,-32∪⎝ ⎛⎭⎪⎫-32,32C.⎣⎢⎡⎭⎪⎫-3,32D.⎣⎢⎡⎦⎥⎤-3,-32解析:由题意得⎩⎪⎨⎪⎧x +3≥0,3-2x >0,2x +3≠0,解得-3≤x <32且x ≠-32,故选B.答案:B3.已知函数f (x )=-1,则f (2)的值为( )A .-2B .-1C .0D .不确定解析:因为函数f (x )=-1,所以不论x 取何值其函数值都等于-1,故f (2)=-1.故选B.答案:B4.下列各组函数中,表示同一函数的是( )A .y =x +1和y =x 2-1x -1B .y =x 2和y =(x )2C .f (x )=x 2和g (x )=(x +1)2D .f (x )=(x )2x 和g (x )=x(x )2解析:只有D是相同的函数,A与B中定义域不同,C是对应法则不同.答案:D二、填空题5. 用区间表示下列数集.(1){x|x≥2}=________;(2){x|3<x≤4}=________;(3){x|x>1且x≠2}=________.解析:由区间表示法知:(1)[2,+∞);(2)(3,4];(3)(1,2)∪(2,+∞).答案:(1)[2,+∞)(2)(3,4] (3)(1,2)∪(2,+∞)6.函数f(x)的图象如图所示,则f(x)的定义域为________,值域为________.解析:由f(x)的图象可知-5≤x≤5,-2≤y≤3.答案:[-5,5] [-2,3]7.若A={x|y=x+1},B={y|y=x2+1},则A∩B=________.解析:由A={x|y=x+1},B={y|y=x2+1},得A=[-1,+∞),B=[1,+∞),∴A∩B=[1,+∞).答案:[1,+∞)三、解答题8.(1)求下列函数的定义域:①y=4-x;②y=1|x|-x;③y=5-x+x-1-1x2-9;(2)将长为a的铁丝折成矩形,求矩形面积y关于一边长x的解析式,并写出此函数的定义域.解析:(1)①4-x≥0,即x≤4,故函数的定义域为{x|x≤4}.②分母|x|-x≠0, 即|x|≠x,所以x<0.故函数的定义域为{x|x<0}.③解不等式组⎩⎪⎨⎪⎧ 5-x ≥0,x -1≥0,x 2-9≠0,得⎩⎪⎨⎪⎧ x ≤5,x ≥1,x ≠±3.故函数的定义域是{x |1≤x ≤5,且x ≠3}.(2)设矩形一边长为x ,则另一边长为12(a -2x ), 所以y =x ·12(a -2x )=-x 2+12ax ,函数的定义域为⎩⎪⎨⎪⎧ x >012(a -2x )>0⇒0<x <a 2,定义域为⎝ ⎛⎭⎪⎫0,a 2. 9.求下列各函数的值域:(1)y =x +1,x ∈{2,3,4,5,6};(2)y =x 2-4x +6;(3)y =x +2x -1. 解析:(1)因为当x 分别取2,3,4,5,6时,y =x +1分别取3,4,5,6,7, 所以函数的值域为{3,4,5,6,7}.(2)函数的定义域为R .因为y =x 2-4x +6=(x -2)2+2≥2,所以该函数的值域为[2,+∞).(3)设t =2x -1,则x =t 2+12,且t ≥0. 问题转化为求y =1+t 22+t (t ≥0)的值域. 因为y =1+t 22+t =12(t +1)2(t ≥0), 所以y 的取值范围为⎣⎢⎡⎭⎪⎫12,+∞. 故该函数的值域为⎣⎢⎡⎭⎪⎫12,+∞. [尖子生题库]10.(1)已知函数f (x )的定义域为[-1,5],求函数f (x -5)的定义域;(2)已知函数f (x -1)的定义域是[0,3],求函数f (x )的定义域.解析:(1)由-1≤x -5≤5,得4≤x ≤10,所以函数f (x -5)的定义域是[4,10].(2)由0≤x≤3,得-1≤x-1≤2,所以函数f(x)的定义域是[-1,2].。
函数3.函数性质及其应用
函数三 函数性质及其应用一.知识梳理1.定义域为I 的函数f (x )的增减性:2.如果函数y =f (x )在区间D 上是增函数或减函数,那么就说函数y =f (x )在这一区间具有(严格的)单调性,区间D 叫做y =f (x )的单调区间.3.设x 1,x 2∈[a ,b ],如果1212()()f x f x x x -->0,则f (x )在[a ,b ]上是单调递增函数,如果1212()()f x f x x x --<0,则f (x )在[a ,b ]上是单调递减函数.4. 重点掌握好七类初等函数的图象,用其判断函数单调性。
(1)、一次函数y=kx+b(k ≠0)图象为直线,k>0时.在(-∞,+∞)上为增函数。
K<0时,在(-∞,+∞)上为减函数。
(2)、反比例函数y=k x图象为双曲线,k>0时在(-∞,0),(0,+∞)上为减函数,K<0时,在(-∞,0),(0,+∞)上为增函数。
(3)、二次函数y=a 2x +bx+c(a ≠0)图象为抛物线,一看开口方向(由a 正负号确定),二看对称轴(即x=-2b a),再由图象确定单调区间。
(4)、耐克函数b y ax x=+(a>0,b>0),(又称为对勾函数),由图象可得其四个单调区间。
(5)、指数函数单调递减。
时,单调递增;时,)(10)(1,x f a x f a a y x<<>= (6)、对数函数单调递减。
时,单调递增;时,)(10)(1,log x f a x f a x y a <<>=(7)、幂函数a x y =α>0时,在第一象限内递增;当0<α<1时,图象上凸,当α>1时,图象下凸.α<0时,则在第一象限内单调递减 ,图象下凸.5.函数的最值:一般地,设函数y =f (x )的定义域为I ,如果存在实数M 满足:①对于任意的x ∈I ,都有f (x )≤M (f (x )≥M );②存在x 0∈I ,使得f (x 0)=M .那么,称M 是函数y =f (x )的最大值(最小值)。
第三章 函数的概念和性质
A 、 第三章 函数的概念和性质Ⅰ 教学要求(1)了解映射的概念.(2)理解函数的概念,了解函数的三种表示法,理解分段函数的定义及表示法.(3)理解函数的单调性和奇偶性.(4)了解反函数的概念,掌握简单函数的反函数的求法,了解函数)(x f y =的图像与它的反函数)(1x f y -=的图像之间的关系.(5)掌握一元二次函数的性质及其图像,掌握解一元二次不等式与一元二次函数之间的关系.(6)会用待定系数法求一次函数和二次函数的解析式.(7)了解函数的实际应用.Ⅱ 教材分析、教学建议和练习题解答现实世界中许多量之间有依赖关系,一个量变化时另一个量随着起变化,函数是研究各个量之间确定性依赖关系的数学模型,在工业革命时代,函数是数学中最基本的概念之一. 现在的世界已进入信息时代,计算机和互联网迅速普及,计算机科学和信息科学蓬勃发展. 由此促使了离散数学的地位日益上升,于是映射成了数学中最基本的概念之一.映射也是日常生活中许多现象的抽象.中学生学习映射的概念,至少有三方面的好处:作为现代社会的居民,能看懂信息时代的书报、电视;在日常生活中把事情做好;能更好理解函数的概念,反函数的概念.函数的图像是数形结合的基础,要让学生理解函数的图像的意义.本教材从函数的图像引出奇函数与偶函数的概念,既直观,同时又揭示了其本质. 本教材运用映射的观点阐述反函数的概念,给出反函数的求法,这与传统的方法不同.我们有创新,使得反函数概念的本质容易理解,使得反函数的求法严谨且易于掌握. 本章第三单元讲一元二次函数,这是在初中讲一元二次函数的基础上进一步讲清楚道理,运用第二单元函数的单调性和奇偶性的一般理论来具体地研究一元二次函数的性质和图像,既让学生学习如何运用理论研究具体函数的性质和图像,又使画函数图像的方法严谨、科学.待定系数法是数学中的一种重要方法,本章用一节介绍如何用待定系数法求一次函数和二次函数的解析式.总之,本章首先介绍映射和函数的概念,然后讨论函数的一般性质,最后运用函数的单调性和奇偶性的一般理论研究一元二次函数,并且介绍了一元二次不等式的解法. 本章的重点是:映射的概念,函数的概念,函数的图像,函数的单调性、奇偶性;一元二次函数的性质和图像,一元二次函数的最大值或最小值;解一元二次不等式的图像法;待定系数法.本章的难点是:映射的概念,点M在函数的图像上的充分必要条件,反函数的概念,函数的实际应用.学好本章的关键是:了解映射的概念,理解函数的图像的意义.本章教学时间约需15课时,具体分配如下:3.1 映射1课时3.2 函数的定义及记号1课时3.3 函数的三种表示法1课时3.4 分段函数1课时3.5 函数的单调性1课时3.6 函数的奇偶性2课时3.7 函数的图像2课时3.8 反函数1课时3.9 一元二次函数的性质及其图像1课时3.10 用待定系数法求函数的解析式1课时3.11 函数的实际应用1课时本章小结2课时3.1 映射1. 集合的概念与映射的概念是现代数学中最基本的两个概念. 在信息时代,映射的概念比函数的概念更基本. 理解了映射的概念,就能更深刻地理解函数的概念.2. 在讲映射的定义时,要着重指出:有两个集合和一个对应法则,并且这个对应法则使第一个集合的每一个元素,都有第二个集合中唯一确定的元素与它对应.3. 设f是集合A到集合B的一个映射,则把A叫做定义域,把B叫做值域.许多教材没有给第二个集合起名字,有的教材把第二集合叫做陪域.4. 一个映射f:BA→由定义域、值域和对应法则组成,它们称为映射的三要素,因此两个映射相等的定义应当是:定义域相等,值域相等,对应法则相同.3.1的练习答案1.(1)不是;(2)是.2.(1)是;(2)是;(3)不是;(4)不是;(5)不是.3.(1)不是;(2)是;(3)是;(4)不是;(5)不是.4. 是3.2 函数的定义及记号1. 在现实世界中有不少变量之间有确定性的依赖关系,函数就是研究这种关系的有力工具. 研究各种各样的函数的性质是数学的重要内容之一.2. 函数的概念包含三个要素:定义域,值域和对应法则. 从而两个函数相等当且仅当它们的定义域相等,并且对应法则相同.3. 例1(1)求函数值,例如求3xx=xf在处的函数值,实质上就是求-x,253)(=-=3,2=-=x x 处的函数值,实质上就是求3,2=-=x x 时,代数式35-x 的值,因此12335)3(,133)2(5)2(=-⨯=-=--⨯=-f f .由于在初中一年级已经学过代数式求值,因此给学生讲:求函数值实质上就是求代数式的值,学生便容易学会.在上述例子中,不要给学生说:“35)(-=x x f 的对应法则是‘乘5减3’,因此求处的函数值就是在2)(-x f -2乘5减3,即133)2(5)2(-=--⨯=-f .”这种讲法会使学生感到求函数值难学,因为要把一个函数的对应法则用语言叙述是很啰嗦的,再由对应法则来求函数值,显然是增加了难度.3.2的练习答案1.(1)是;(2)是;(3)不是;(4)不是.2. 是,定义域为{,,,,d c b a …,y ,z },值域为{0,1,2,…,24,25}.3. f (1)=-37, f (2)=-34. 4. (1)31)2(;13-=+=b a a b . 5.(1)是;(2)是.6. (1) f (1)=1,g (1)=-1;(2) 1)]1([,3)]1([-==f g g f ; (3) 5496)]([,1639)13(22--=--=-x x x g f x x x f . 3.3 函数的三种表示法1. 函数的概念包含三个要素:定义域、值域和对应法则.目前中职阶段,值域通常取为实数集,因此表示一个函数就要指明它的定义域和对应法则.当函数f 的定义域A 是有限集时,可以用一张表格来表示函数,第一行写出A 的各个元素,第二行写出相应的函数值,这种表示函数的方法叫做列表法.2. 当f 的定义域A 是无限集或有限集时,通常要寻找一个或几个式子来表示对应法则,即用一个或几个等式来表示函数,这种方法叫做公式法. 这一个或几个等式叫做这个函数的解析表达式,简称为解析式.教材中公式法下的第(2)个例子,设}1,0{B },6,5,4,3,2,1,0{A ==.考虑A 到B 的一个对应法则f :⎪⎩⎪⎨⎧∉∈=A,,0A,,1)(x x x f 当当 这是A 到B 的一个映射,从而是定义域为A 、值域为B 的一个函数这个例子来自组合设计与现代通信和密码的关系.本教材有意识地举一些信息时代的例子,目的是使中职数学不要囿于传统的教材中,而能透出信息时代的一些气息.在上面这个例子中,集合A 到集合B 的一个对应法则f 用了两个等式来表示;当A∈x时,0)(,A ;1)(=∉=x f x x f 时当.习惯上把这样的函数叫做分段函数. 其实不必用这个术语,因为不管用几个等式表示函数,都无非是给出了定义域到值域的一个对应法则,多一个术语,会使学生多一份负担,所以我们在教材中没有出现“分段函数”这个术语,希望教师不要补充这个术语.3. 在用公式法表示定义域为数集的函数时,如果没有标明定义域,那么我们约定:函数)(x f 的定义域是指所有使解析式有意义(即,在解析式给出的对应法则下有象)的实数x 组成的集合,不再每次声明. 此外要注意,在实际问题中,还必须结合问题的实际意义来确定自变量x 的取值范围.在上面一段话里,我们阐明了什么叫做“使解析式有意义”,即“在解析式给出的对应法则下有象”. 例如,求函数31)(-=x x f 的定义域,解法如下: 03)(≠-⇔x x f 的解析式有意义3≠⇔x .因此函数),3()3,()(+∞-∞ 的定义域是x f .在上面这个例子中,“)(x f 的解析式有意义”指的是“在解析式给出的对应法则下有象”. 由于x 在)(x f 的解析式给出的对应法则下没有象当且仅当03=-x ,因此)(x f 的解析式有意义当且仅当)3(03≠≠-x x 即. 这样讲是确切的,因为表达式31-x 是一个分式,它当然是有意义的;只是分式函数31)(-=x x f 当3=x 时没有象,此时称分式函数31)(-=x x f 的解析式当3=x 时没有象,此时称为分式函数31)(-=x x f 的解析式当3=x 时没有意义.在这里我们区分了“分式”与“分式函数”这两个不同的概念:分式..指的是表达式...),,),(),(()()(等等或y x g y x f x g x f 其中)()(x g x f 与是一元多项式,且)(x g 不是零多项式(或),(),(y x g y x f 与是二元多项式,且),(y x g 不是零多项式,等等),而分式函数....指的是由分式给出的映射..,这一段话是为教师写的,不要给学生讲. 在求函数的定义域时,我们采用等价术语来叙述,既严谨又简捷.4. 用平面直角坐标系里的圆形表示函数的方法称为图像法.用图像法表示函数的最大优点是直观,因为函数的图像是数形结合的基础. 为此首先要把什么是函数的图像搞清楚. 教材中给函数的图像下了一个定义:设)(x f 是定义域为A 的一个函数,任取A ∈a ,在平面直角坐标系Oxy 里,描出坐标为M a f a 的点))(,(.当a 取遍A 的所有元素时,坐标为))(,(a f a 的点组成的集合,称为函数)(x f 的图像.从这个定义应即得出:点)(A,)(),(a f b a x f b a M =∈⇔且的图像上在.即,点)(),(x f b a M 在的图像上当且仅当它的横坐标a 属于定义域,纵坐标b 等于a 处的函数值.这个结论十分重要,它是利用函数的图像研究函数性质的基础.3.3的练习答案1.(1)f (x )的解析式有意义⇔53035≠⇔≠-x x ,因此)(x f 定义域为),53()53,(+∞-∞ ; (2)f (x )的解析式有意义⇔x 37-≥0⇔x ≤37,因此)(x f 定义域为]37,(-∞; (3)f (x )的解析式有意义⇔162-x ≥0⇔x ≤-4或x ≥4, 因此)(x f 定义域为);,4[]4,(+∞--∞(4)f (x )的解析式有意义⇔216x -≥0⇔-4≤x =4,因此)(x f 定义域为]4,4[-;(5)f (x )的解析式有意义⇔1523-+x x ≥0⇔-32≤x <51,因此)(x f 定义域为)51,32[-; (6)f (x )的解析式有意义⇔x x 5123-+≥0⇔x ≤-32或x >51,因此)(x f 定义域为),51(]32,(+∞--∞ . 2.(1)532)2(;)1(4122+-+x x a . 3.图略4.点M 、Q 都不在函数)(x f 的图像上.5.(1)(a , f (a ));(2) (-a , f (-a )).6.(1));,31()31,0)[4(];3,2)[3(];23,0)[2();,21()21,0[+∞-+∞ (5)(-∞,-5) ]7,6)(6(]; 7,5-(.7. 图像略8. 证明:)0()(≠+=k b kx x f 的图像经过原点 ⇔ f (0)=0 ⇔ k ·0+b =0⇔ b =03.4 分段函数1. 自变量在不同变化范围中,对应法则用不同式子表示的函数,称为分段函数.2. 教材给出了分段函数f (x )=⎪⎩⎪⎨⎧+∞∈+∈),1(.1]1,0[,2x x x x .要求作出此函数的图像.3.4的练习答案1.1)0()}5({-==f f f .2.(1).8101)]3([,7)]5([,161)]3([-=--==f f f f f f (2)⎪⎪⎪⎩⎪⎪⎪⎨⎧∈-<-=-R ,132·3.313,2.313 ≥,529)]([133x x x x x f f x x 3.(1))0 ≥()]([4x x x g f =;(2))0(1)]([>-=x xx f g . 4.图略 二、函数的性质3.5 函数的单调性1. 判断函数f (x )在区间上是增函数还是减函数,如果我们在画函数f (x )的图像时没有默让函数的单调性,那么用图像法判断f (x )的单调性,它具有直观易懂的优点,但是要注意:我们不能默认函数f (x )的单调性,去用一条光滑的曲线联结描出的各点,然后又让学生从这样画出的图像去判断f (x )的单调性,在画基本初等函数时在某个区间上的图像时,往往是要先用定义证明函数的单调性,然后才能用一条光滑曲线联结描出的各点,得到该函数在某个区间上的图像,之后利用对称性等画出该函数在另一个区间上的图像,这样对于该函数在另一个区间上的单调性就可以从图像来判断了.2. 对于任意的一次函数)0(≠+=k b kx y 的单调性,自然应当用定义法去判断. 教材的例1写出了求解过程,先统一写出)()(21x f x f -的表达式,然后分k >0和k <0两种情形判断)()(21x f x f -的正负.例2是讨论二次函数[)+∞--+=,13)1(21)(2在x x f 上的单调性. 必须先用定义法判断),1[3)1(21)(2+∞--+=在x x f 上是增函数,才能用一条光滑曲线联结描出的各点,得到),1[3)1(21)(2+∞--+=在x x f 上的一段图像.利用对称性.就能判定函数在]1,(--∞上是减函数,在),1[+∞-上是增函数.还有一种方法判定函数单调性,我们将在第三册中讲到. 定理:设函数f (x )在闭区间),(,],[b a b a 在开区间上连续内可导.(1)如果在内),(b a )('x f >0,那么],[)(b a x f 在上是增函数;(2)如果在内),(b a )('x f <0,那么],[)(b a x f 在上是减函数;(3)如果在内),(b a )('x f =0,那么],[)(b a x f 在上是常数.3.5的练习答案1. 任取121),,(,x x x 且+∞-∞∈<2x ,有-3x 1>-3x 2⇒-3x 1-2>-3x 2-2⇒)(1x f >)(2x f因此),(23)(+∞-∞--=在x x f 上是减函数.2. 任取),,0[,21+∞∈x x 且x 1<x 2,有212x <222x⇒212x +5<222x +5⇒)(1x f <)(2x f因此上在),0[52)(2+∞+=x x f 是增函数.3. 任取),0(,21+∞∈x x ,且x 1<x 2,有21122121)(555)()(x x x x x x x f x f -=-=-, 由于,x 2>x 1,x 1x 2>0,因此)(1x f -)(2x f >0从而 )(1x f >)(2x f 这表明()+∞=,05)(在xx f 上是减函数. 4. 任取),3[,21+∞x x ,且1x <2x ,有2x >1x ≥3⇒2x -3>1x -3≥0⇒(2x -3)2>(1x -3) 2≥0⇒-5)3(3122+-x <-5)3(3121+-x ⇒)(2x f <)(1x f所以),3[5)3(31)(2+∞+--=在x x f 上是减函数. 3.6 函数的奇偶性1. 本教材在阐述奇函数和偶函数的定义和性质上有创新.我们抓住了讨论函数奇偶性的实质是研究函数图像的对称性. 因此我们先复习图形关于直线对称的概念, 然后探索定义域为A 的函数)(x f 的图像在什么条件下关于原点对称?运用点P (a , b )在)(x f 的图像上的充分必要条件,我们推导出定义域为A 的函数)(x f 的图像E 关于原点对称 ⇔ E 上每一点))(,(a f a P 关于原点的对称点))(,(a f a M --仍在E 上⇔ A ),()(A,∈-=-∈-a a f a f a 对一切且.由此引出了奇函数的定义,并且上述推理也就证明了奇函数的图像关于原点对称,起了一箭双雕的作用.对于奇函数也是先复习圆形关于原点O 对称的概念,然后探索函数)(x f 的图像关于原点O 对称的充分必要条件:由此引出奇函数的定义,并且证明了奇函数的图像关于原点对称.我们这种讲法阐明了为什么要引进奇函数和偶函数的概念,而且简捷地证明了奇函数和偶函数的图像的对称性.2. 我们在教材中结合图形推导出“点),(b a P 关于y 轴的对称点Q 的坐标是),(b a -.关于原点的对称点M 的坐标是(b a --,)”这两个结论. 它们在探索)(x f 的图像的对称性时有用.3. 我们在例1中给出了判断一个函数)(x f 是不是奇函数的方法:求出)(x f 的定义域A.如果对于任意的)()(A,A,x f x f x x -=-∈-∈并且有都有,那么)(x f 是奇函数. 如果能找到一个)()(A,c f c f c -≠-∈使得,那么)(x f 不是奇函数.例2中给出了判断一个函数)(x f 是不是偶函数的方法:求出)(x f 的定义域A ,如果对于任意的A ∈x ,都有-A ∈x ,并且有)()(x f x f =-,那么)(x f 是偶函数.如果能找一个A ∈d ,使得)()(d f d f ≠-,那么)(x f 不是偶函数.例1和例2给出的方法是教学的基本要求,应让学生学会.3.6的练习答案1.(1)是;(2)是;(3)是;(4)不是.2.(1)是;(2)是;(3)不是;(4)不是.3. 证明:由于)(x f 、)(x g 都是定义域相同的偶函数,因此对于任意A ∈x ,有A ∈-x ,并且)F()()()()()F(x x g x f x g x f x =+=-+-=-.因此)(x F 是偶函数.4. )5(-f =-3.5.)3(f >)1(f .6. 证明:由于)(x f 、)(x g 都是定义域为A 的奇函数.因此对于任意A A,∈-∈x x 有,并且[])()()()()()()()(x h x g x f x g x f x g x f x h -=+-=--=-+-=-,)()()()]()][([)()()(x P x g x f x g x f x g x f x P ==--=--=-, 因此)(x h 是奇函数,)(x P 是偶函数.3.7 函数的图像1. 如果已经判断出)(x f 是奇函数,那么在画)(x f 的图像时,可以先画出y 轴右边的部分,然后利用对称性画出y 轴左边的部分. 这里的基本作图是,会作出点P 关于原点的对称点N ,这只要联结PO ,且延长至N ,使线段ON 的长度等于线段PO 的长度,则点N 就是点P 关于原点的对称点.2. 如果已经判断出)(x f 是偶函数,那么在画)(x f 的图像时,只要先画出y 轴右边的部分,然后利用对称性画出y 轴左边的部分,这里的基本作图法是,会作出点P 关于y 轴的对称轴Q ,这只要过点P 作y 轴垂线,设垂足为M ,把这垂线往左延长至点Q ,使线段MQ 的长度等于线段PM 的长度,则点Q 就是点P 关于y 轴的对称点.3.7的练习答案1. (1) (2)是偶函数,(3) (4) (5) (6)不是偶函数.2. (1)是;(2)是;(3)不是;(4)不是.3. 图略4.(1)2123)2(;3432--=+-=x x y x y . 5 ~7. 图略.3.8 反函数1. 我们在反函数的概念和求法上与传统的讲法不同,我们有创新. 传统的讲法大致是:给了函数的解析式,例如x y 3=.反解出y x 31=. 于是对于y 在R 中的任何一个值,通过式子y x 31=,x 在R 中都有唯一确定的值和它对应.因此也可以把y 作为自变量(∈y R ),x 作为y 的函数,我们一般用x 表示自变量,用y 表示函数,为此我们对调函数式y x 31=中的字母x 、y ,把它与成x y 31=.传统的讲法没有清晰地揭示反函数概念的本质,通过对调字母x 与y ,学生很难看清楚反函数与原来函数的关系.传统的讲法在反解出)(y g x =时,由于没有写出反解过程. 因此导致一些误会和差错. 传统的讲法对于用列表法表示的函数(不知道函数的解析式),没有给出反函数的概念. 而当今信息时代,由于计算机科学和信息科学的迅速发展,离散数学的地位加强,遇到的函数不一定能用公式表示,因此传统的讲法已不适应时代的要求.基本上述原因,我们对于反函数的概念和求法采取了新的讲法.2. 对于反函数的概念,我们给出这样的定义:如果函数)(x f y =有反函数,那么我们的讲法可以立即得出,严格单调函数一定有反函数. 3. 关于反函数的求法,我们给出了函数)(x f 的解析式,求它的反函数(仍用函数式表示). 对于用公式法表示的函数,我们给出的求反函数的方法是科学的. 以教材中例1的(3)为例:解b a x x y 对应到把2213-≠+-= )2(213-≠+-=⇔a a a b )2(13)2(-≠-=+⇔a a a b)3,2(12)3(≠-≠+=-⇔b a b a b)3,2(312≠-≠-+=⇔b a bb a a b xx y 对应到把3312≠-+=⇔ 因此函数213+-=x x y 的反函数是 ∈-+=x xx y (,313R 且3≠x ). 求213+-=x x y 的反函数,就是要寻找一个函数使得,对于原来函数的值域中的每一个b ,当原来的函数把a 对应到b 时,所求的函数把b 对应到a . 上述求解过程满足这一要求. 从反函数的定义知道,我们首先要知道原来的函数)(x f y =的值域;才能判断出所求出的函数是不是反函数(因为反函数必须是对于)(x f y =的值域中每一个元素b ,都有)(x f y =的定义域中唯一的一个元素a 与它对应).我们求反函数的方法是在求解过程中先求出了原来函数的值域,然后才求出了反函数. 这是符合反函数定义的要求的.我们是怎样求出原来函数的值域的呢?上述例子中,在第二步等价于b (a +2)=3a -1(a ≠-2),3.3=≠b b 因为假如从此式看出,则上式左边=3(a +2)=3a +6,而上式右边=3a -1.由此推出6=1-,矛盾,所以3≠b .即原来函数的值域是{b ∈R|(b ≠3)}. 于是对于原来函数值域中的每一个元素b ,在(3-b )a =2b +1而边除以(3-b )(此时3-b ≠0,因此可以用它作除数)得,b b a -+=312.从而求出了反函数为)3(312≠-+=x x x y .4. 有的教材在讲求反函数时是像下述那样讲的: “由213+-=x x y ,可得y y x -+=312,所以函数213+-=x x y 的反函数是xx y -+=312(∈x R 且3≠x ).”这种讲法没有详细写出反解的过程,在得出y y x -+=312时,没有讨论3≠y . 就把y -3当除数用了,这是不严谨的. 这种讲法没有事先求出原来函数的值域,因此所求出的函数xx y -+=312是否为反函数无从判断. 这种讲法容易引起误会以至产生差错,不少复习资料由此引出求原来函数值域的方法:“先求反函数,再从反函数的解析式求出定义域,它就是原来函数的值域.”这种方法是错误的,以213+-=x x y 为例,在反解时,如果不讨论3≠y ,就用)3(y -去除两边,得出y y x -+=312,然后又说从3312≠-+=x xx y 看出,因此得出反函数的定义域为{x ∈R |x ≠3},于是原来函数的值域为{y ∈R |y ≠3}. 这是先默认3≠y ,用(3-y )去除两边得到y y x -+=312,然后又说从x =yy -+312看出3≠y ,这在逻辑上是混乱的,这种思维方式是错误的. 由此看出,教数学不能只是教计算,而不管计算过程是否合理;教数学不能只是看答案对不对,而不管其思维方式是否正确. 这些都是直接关系到我们培养的学生的素质啊!定理1 如果函数)(x f y =有反函数,那么)(x f y =的图像与它的反函数)(1x f y -=的图像关于直线y =x 对称.学习数学一定要掌握基本理论,有了理论的指导,解题就会有思路,就能通过逻辑推理深入揭示事物之间的内在联系以及它们的本质.三、一元二次函数及其应用3.9 一元二次函数的性质及其图像1. 一元二次函数的图像在初中时已讲过,但是一些道理没有讲. 鉴于一元二次函数是非常重要的一类函数,有必要在中学阶段打下扎实的基础,因此我们在教材中用一节来讲一元二次函数的性质和图像, 这是在初中的基础上的提高.2. 我们在教材一开始就让学生动脑筋:如何正确..、简便..地画一元二次函数25212-+=x x y 的图像?然后分析:先把函数的表达式配方得,()31212-+=x y . 利用3.7节例3的结论,()31212-+=x y 的图像有对称轴1-=x . 因此只要先画出图像在直线1-=x 的右边的一半. 从而列表时只需要列出1-=x ,0,1,2,3,…时相应的函数值. 接着在平面直角坐标系Oxy 中描点. 描完点后,不是马上连线,而是先利用3.4节例3的结论:3)1(212-+=x y 在区间),1[+∞-上是增函数,这时才知道可以用一条光滑曲线把描出的各点联结起来. 最后利用对称性,画出图像在直线1-=x 的左边的部分.这样画函数的图像既简便又科学.传统的画函数图像的方法是:列表,描点,连线.前两步虽然正确,但是较麻烦(如果先讨论对称性,则可减少一半的工作量).第三步连线是不科学的. 在还没有讨论函数的单调性时,怎么知道如何联结描出的有限几个点?更不应该的是,事先不讨论单调性,但是却默认函数有单调性,“用一条光滑曲线联结各点”,然后又让学生从图像上看出函数是增函数或减函数. 这在逻辑上是混乱的,这种思维方式是不正确的.也许有人会说,让中学生讨论函数的单调性要求太高了,那么让我们来看一看,)(x f =),1[3)1(212+∞--+在x 上是单调性的讨论: 任取1x ,2x ),1[+∞-∈,且1x <2x ,有2x >1x ≥-1⇒12+x >11+x ≥0⇒(12+x )2>(11+x )2 ⇒()312122-+x >()312121-+x ⇒()2x f >()1x f , 因此),1[3)1(21)(2+∞--+=在区间x x f 上是增函数. 从上述讨论过程看到,用的都是不等式的性质,并不困难,而且正好是复习巩固不等式的性质. 我们又注意了分散难点,把这个讨论放在3.4节的例3,到3.8节时只是引用这个结论. 因此中学生是能够接受先讨论函数的单调性,再连线的.3. 在讲完()31212-+=x y 的图像后,我们给出顶点的概念,并且让学生观察顶点坐标)3,1(--与表达式有什么联系?观察顶点坐标与函数的最小值有什么联系?从函数的图像(我们已正确地画出了函数的图像)看出函数在顶点横坐标往左的区间上的单调性,以及图像的开口方向. 在观察的基础上,我们抽象出一般的一元二次函数()02≠++=a c bx ax y 的性质和图像. 由于其论证与()31212-+=x y 的性质和图像的论证类似,因此我们在教材中就不写出了.4. 在让学生画一个具体的一元二次函数的图像时,先配方,然后求出对称轴,接着先画图像在对称轴右边的一半(列表,描点,连线. 由于已经讲了一般的一元二次函数的单调性,因此在连线之前不用再讨论单调性了),最后利用对称性画出图像在对称轴左边的部分.5. 本节的练习除了画二次函数的图像以外,还有写出顶点坐标,求函数的最大值或最小值,求一元二次函数的最大(小)值的基本方法是将表达式配方. 这应让学生掌握. 这是因为配方在数学中是常用的一种技巧.至于直接利用顶点坐标来求最大 (小)值的方法,对于课时较充裕的学校也可以介绍. 我们在教材中把它作为思考题,让学生思考.3.9的练习答案1.(1)对称轴为5=x ,顶点坐标为)223,5(-,图略; (2)对称轴为41=x ,顶点坐标为)87,41(-,图略. 2.(1)当1-=x 时,y 达到最小值2;(2)当2-=x 时,y 达到最大值5;(3)当23=x 时,y 达到最小值41-; (4)当2=x 时,y 达到最大值1. 3.(1)顶点坐标)421,3(-,对称轴为x =3; (2)841)25(-=f ; (3))415()41(f f >-. 4.(1)对称轴为45=x ,顶点坐标为)825,45(-,函数最小值为825-,]45,(-∞为单调递减区间,),45[+∞为单调递增区间,函数图像开口向上; (2)对称轴为3=x ,顶点坐标为)27,3(,函数最大值为27,]3,(-∞为单调递增区间,),3[+∞为单调递减区间,函数图像开口向下.5.(1)顶点坐标为(3,-2).),63()63,(+∞+--∞∈ x 时,y >0;()63,63+-∈x 时,y <0.]3,(-∞∈x 时,函数为单调递减函数; ),3[+∞∈x 时,函数为单调递增函数. (2)顶点坐标为(-1,3). )261,261(+---∈x 时,y >0;),261()261,(+∞+----∞∈ x 时,y <0.]1,(--∞∈x 时,函数为单调递增函数;),,1[+∞-∈x 时,函数为单调递减函数.3.10 用待定系数法求函数的解析式1. 在许多数学问题或实际问题中,建立了函数的模型后,需要求其中的未知的系数,这可以通过列方程组并且解这个方程组求出,从而求出函数的解析式,这种方法叫做待定系数法.它是数学中重要的一种方法.本节主要是介绍如何用待定系数法求一元一次函数和一元二次函数的解析式,并且介绍了它们在实际问题中的应用.2. 一次函数的解析式)0(≠+=k b kx y 有2个系数k ,b ,因此需要列出两个彼此独立的方程来求未知系数k ,b ,于是需要已知两个条件来列两个方程.3. 一元二次函数)0(2≠++=a c bx ax y 的解析式有3个系数,因此用待定系数法求这3个系数时,需要列出3个彼此独立的方程,于是通常要给出这个函数当自变量取3个不同数时相应的函数值.4. 如果知道一元二次函数g (x )的图像的顶点坐标为(e , d ),则可以假设g (x )的解析式为d e x a x g +-=2)()(.这时只要再知道图像所经过的一个点的坐标,就可以求出系数a .5. 如果知道一元二次函数)(x g 的图像的对称轴是直线e x =,则可以假设)(x g 的解析式为d e x a x g +-=2)()(.这时只要再知道图像上两个点的坐标,就可以列出两个方程,从而求出待定系a 、d.6. 为了让学生了解待定系数法在日常生活中的应用,教材的例3求出了扔铅球时铅球在空中飞行轨道(抛物线的一段)的解析表达式.3.10的练习答案1. 设这个一次函数的解析式为b kx y +=,其中k ,b 待定.由于P (2,-5),Q (-1,7)在这个函数的图像上,因此有⎩⎨⎧=+--=+.7,52b k b k 解得 3,4=-=b k因此所求一次函数的解析式为34+-=x y .2. 设这个正比例函数的解析式为kx y =,其中k 待定,由于点(2,8)在这个函数的图像上,因此有8=2k ,解得 k =4.。
新教材高中数学第3章函数的概念与性质3.1函数的概念及其表示3.1.1函数的概念教学案新人教A版必修第一册
新教材高中数学第3章函数的概念与性质3.1函数的概念及其表示3.1.1函数的概念教学案新人教A 版必修第一册3.1.1 函数的概念(教师独具内容)课程标准:1.通过丰富实例,进一步体会函数是描述变量之间的依赖关系的重要数学模型.2.在此基础上学习用集合与对应的符号语言来刻画函数,体会对应关系在刻画函数概念中的作用.3.了解构成函数的要素,能求一些简单函数的定义域.教学重点:1.理解函数的定义,会求一些简单函数的定义域和值域.2.明确函数的两个要素,了解同一个函数的定义,会判定两个给定的函数是否是同一个函数.教学难点:1.对应关系f 的正确理解,函数符号y =f (x )的理解.2.抽象函数的定义域.3.一些简单函数值域的求法.【知识导学】知识点一 函数的概念一般地,设A ,B 是非空的实数集,如果对于集合A 中的任意一个数x ,按照某种确定的对应关系f ,在集合B 中都有□01唯一确定的数y 和它对应,那么就称f :A →B 为从集合A 到集合B 的一个函数,记作□02y =f (x ),x ∈A .其中,x 叫做□03自变量,x 的取值范围A 叫做函数的□04定义域;与x 的值相对应的y 值叫做□05函数值,函数值的集合{f (x )|x ∈A }叫做函数的□06值域.显然,□07值域是集合B 的子集. 注意:(1)两个非空实数集间的对应能否构成函数,主要看是否满足三性:任意性、存在性、唯一性.这是因为函数概念中明确要求对于非空实数集A 中的任意一个(任意性)元素x ,在非空实数集B 中都有(存在性)唯一(唯一性)的元素y 与之对应.这三性只要有一个不满足便不能构成函数.(2)集合A 是函数的定义域,因为给定A 中每一个x 值都有唯一的y 值与之对应;集合B 不一定是函数的值域,因为B 中的元素可以在A 中没有与之对应的x ,也就是说,B 中的某些元素可以不是函数值,即{f (x )|x ∈A }⊆B .(3)在函数定义中,我们用符号y =f (x )表示函数,其中f (x )表示“x 对应的函数值”,而不是“f 乘x ”.知识点二 函数的两要素从函数的定义可以看出,函数有三个要素:□01定义域、□02对应关系、□03值域,由于值域是由定义域和对应关系决定的,所以确定一个函数只需要两个要素:□04定义域和对应关系.即要检验给定的两个变量(变量均为数值)之间是否具有函数关系,只要检验:(1)定义域和对应关系是否给出;(2)根据给出的对应关系,自变量x 在其定义域中的每一个值是否都有唯一的函数值y 和它对应.知识点三 区间的概念(1)设a ,b 是两个实数,而且a <b .我们规定:①满足不等式a ≤x ≤b 的实数x 的集合叫做□01闭区间,表示为□02[a ,b ]; ②满足不等式a <x <b 的实数x 的集合叫做□03开区间,表示为□04(a ,b ); ③满足不等式a ≤x <b 或a <x ≤b 的实数x 的集合叫做□05半开半闭区间,分别表示为□06[a ,b ),(a ,b ].这里的实数a 与b 都叫做相应区间的□07端点. 实数集R 可以用区间表示为□08(-∞,+∞),“∞”读作“□09无穷大”,“-∞”读作“□10负无穷大”,“+∞”读作“□11正无穷大”. 我们可以把满足x ≥a ,x >a ,x ≤b ,x <b 的实数x 的集合,用区间分别表示为□12[a ,+∞),□13(a ,+∞),□14(-∞,b ],□15(-∞,b ). (2)区间的几何表示在用数轴表示区间时,用实心点表示□16包括在区间内的端点,用空心点表示□17不包括在区间内的端点.(3)含“∞”的区间的几何表示注意:(1)无穷大“∞”只是一个符号,而不是一个数,因而它不具备数的一些性质和运算法则.(2)以“-∞”或“+∞”为区间一端时,这一端必须用小括号. 知识点四 同一个函数如果两个函数的□01定义域相同,并且□02对应关系完全一致,即相同的□03自变量对应的□04函数值也相同,那么这两个函数是同一个函数.【新知拓展】(1)函数符号“y =f (x )”是数学中抽象符号之一,“y =f (x )”仅为y 是x 的函数的数学表示,不表示y 等于f 与x 的乘积,f (x )也不一定是解析式,还可以是图表或图象.(2)函数的概念中强调“三性”:任意性、存在性、唯一性,这是因为函数定义中明确要求是对于非空实数集A 中的任意一个(任意性)数x ,在非空实数集B 中都有(存在性)唯一确定(唯一性)的数y 和它对应,这“三性”只要有一个不满足,便不能构成函数.1.判一判(正确的打“√”,错误的打“×”)(1)函数值域中的每一个数都有定义域中的数与之对应.( ) (2)函数的定义域和值域一定是无限集合.( )(3)定义域和对应关系确定后,函数值域也就确定了.( )(4)若函数的定义域中只有一个元素,则值域中也只有一个元素.( )(5)对于定义在集合A 到集合B 上的函数y =f (x ),x 1,x 2∈A ,若x 1≠x 2,则f (x 1)≠f (x 2).( )答案 (1)√ (2)× (3)√ (4)√ (5)× 2.做一做(请把正确的答案写在横线上)(1)下列给出的对应关系f ,不能确定从集合A 到集合B 的函数关系的是________. ①A ={1,4},B ={-1,1,-2,2},对应关系:开平方; ②A ={0,1,2},B ={1,2},对应关系:③A =[0,2],B =[0,1],对应关系:(2)下列函数中,与函数y =x 是同一个函数的是________. ①y =x 2;②y =3x 3;③y =(x )2;④s =t . 答案 (1)①③ (2)②④题型一 求函数的定义域 例1 求下列函数的定义域: (1)y =2x +3;(2)f (x )=1x +1;(3)y =x -1+1-x ;(4)y =x +1x 2-1;(5)y =(1-2x )0. [解] (1)函数y =2x +3的定义域为{x |x ∈R }.(2)要使函数式有意义,即分式有意义,则x +1≠0,x ≠-1.故函数的定义域为{x |x ≠-1}.(3)要使函数式有意义,则⎩⎪⎨⎪⎧x -1≥0,1-x ≥0,即⎩⎪⎨⎪⎧x ≥1,x ≤1,所以x =1,从而函数的定义域为{x |x =1}.(4)因为当x 2-1≠0,即x ≠±1时,x +1x 2-1有意义,所以函数的定义域是{x |x ≠±1}. (5)∵1-2x ≠0,即x ≠12,∴函数的定义域为{|x x ≠12}.例2 已知函数f (x )的定义域是[-1,4],求函数f (2x +1)的定义域. [解] 已知函数f (x )的定义域是[-1,4],即-1≤x ≤4. 故对于f (2x +1)应有-1≤2x +1≤4. ∴-2≤2x ≤3,∴-1≤x ≤32,∴函数f (2x +1)的定义域是⎣⎢⎡⎦⎥⎤-1,32. 例3 如图所示,用长为1 m 的铁丝做一个下部为矩形、上部为半圆形的框架(铁丝恰好用完),若半圆的半径为x (单位:m),求此框架围成的面积y (单位:m 2)与x 的函数关系式.[解] 由题意可得,AB =2x ,CD ︵的长为πx , 于是AD =1-2x -πx2,∴y =2x ·1-2x -πx 2+πx 22,即y =-π+42x 2+x .由⎩⎪⎨⎪⎧2x >0,1-2x -πx2>0,得0<x <1π+2,∴此函数的定义域为⎝ ⎛⎭⎪⎫0,1π+2. 故所求的函数关系式为y =-π+42x 2+x ⎝ ⎛⎭⎪⎫0<x <1π+2.金版点睛求函数定义域的基本要求(1)整式:若y =f (x )为整式,则函数的定义域是实数集R .(2)分式:若y =f (x )为分式,则函数的定义域为使分母不为0的实数集.(3)偶次根式:若y =f (x )为偶次根式,则函数的定义域为被开方数非负的实数集(特别注意0的0次幂没有意义).(4)几部分组成:若y =f (x )是由几部分数学式子的和、差、积、商组成的形式,定义域是使各部分都有意义的集合的交集.(5)对于抽象函数的定义域:①若f (x )的定义域为[a ,b ],则f [g (x )]中,g (x )∈[a ,b ],从中解得x 的解集即f [g (x )]的定义域.②若f [g (x )]的定义域为[m ,n ],则由x ∈[m ,n ]可确定g (x )的范围,设u =g (x ),则f [g (x )]=f (u ),又f (u )与f (x )是同一个函数,所以g (x )的范围即f (x )的定义域.③已知f [φ(x )]的定义域,求f [h (x )]的定义域,先由f [φ(x )]中x 的取值范围,求出φ(x )的取值范围,即f (x )中的x 的取值范围,即h (x )的取值范围,再根据h (x )的取值范围便可以求出f [h (x )]中x 的取值范围.(6)实际问题:若y =f (x )是由实际问题确定的,其定义域要受实际问题的约束.如:例3中,任何一条线段的长均大于零.[跟踪训练1] (1)若函数f (x +1)的定义域为⎣⎢⎡⎦⎥⎤-12,2,则函数f (x -1)的定义域为________;(2)求下列函数的定义域:①y =(x +1)2x +1-1-x ;②y =x +1|x |-x ;(3)①求函数y =5-x +x -1-1x 2-9的定义域; ②将长为a m 的铁丝折成矩形(铁丝恰好用完),求矩形的面积y (单位:m 2)关于一边长x (单位:m)的解析式,并写出此函数的定义域.答案 (1)⎣⎢⎡⎦⎥⎤32,4 (2)见解析 (3)见解析解析 (1)由题意知,-12≤x ≤2,则12≤x +1≤3,即f (x )的定义域为⎣⎢⎡⎦⎥⎤12,3,∴12≤x -1≤3,解得32≤x ≤4.∴f (x -1)的定义域为⎣⎢⎡⎦⎥⎤32,4.(2)①要使函数有意义,自变量x 的取值必须满足⎩⎪⎨⎪⎧x +1≠0,1-x ≥0,即⎩⎪⎨⎪⎧x ≠-1,x ≤1,∴函数的定义域为{x |x ≤1,且x ≠-1}.②要使函数有意义,需满足|x |-x ≠0,即|x |≠x , ∴x <0.∴函数的定义域为{x |x <0}. (3)①解不等式组⎩⎪⎨⎪⎧5-x ≥0,x -1≥0,x 2-9≠0,得⎩⎪⎨⎪⎧x ≤5,x ≥1,x ≠±3.故函数的定义域是{x |1≤x ≤5,且x ≠3}.②因为矩形的一边长为x ,则另一边长为12(a -2x ),所以y =x ·12(a -2x )=-x 2+12ax ,定义域为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪0<x <a 2. 题型二 已知函数值求自变量的值例4 已知函数f (x )=2x 2-4,x ∈R ,若f (x 0)=2,求x 0的值. [解] 易知f (x 0)=2x 20-4, ∴2x 20-4=2,即x 20=3. 又∵x 0∈R ,∴x 0=± 3. 金版点睛就本例而言,已知函数值求自变量的值就是解方程,需要注意:所求的自变量的值必须在函数的定义域内.如果本例中加一个条件“x ∈[0,+∞)”,则x 0=3(-3不符合题意,舍去).[跟踪训练2] 已知函数f (x )=x 2-2x ,x ∈(-∞,0),若f (x 0)=3.求x 0的值. 解 由题意可得f (x 0)=x 20-2x 0. ∴x 20-2x 0=3,即x 20-2x 0-3=0. 解得x 0=3或x 0=-1.又∵x 0∈(-∞,0),∴x 0=-1. 题型三 已知自变量的值求函数值 例5 已知f (x )=x 2,x ∈R ,求: (1)f (0),f (1); (2)f (a ),f (a +1).[解] (1)f (0)=02=0,f (1)=12=1. (2)∵a ∈R ,a +1∈R , ∴f (a )=a 2,f (a +1)=(a +1)2. 金版点睛对于函数定义域内的每一个值,都可以求函数值(当然函数值唯一),本例可以直接应用公式:f (x )=x 2求解,实质上就是求代数式的值,例如f (1)就是当x =1时,代数式x 2的值,而f (a +1)就是当x =a +1时,代数式x 2的值.[跟踪训练3] 已知f (x )=x +1x +1,求: (1)f (2);(2)当a >0时,f (a +1)的值. 解 (1)f (2)=2+13.(2)易知f (x )的定义域A =[0,+∞), ∵a >0,∴a +1>1,则a +1∈A , ∴f (a +1)=a +1+1a +2. 题型四 求函数的值域 例6 求下列函数的值域: (1)y =x +1,x ∈{1,2,3,4,5}; (2)y =x 2-2x +3,x ∈[0,3); (3)y =2x +1x -3;(4)y =2x -x -1.[解] (1)(观察法)因为x ∈{1,2,3,4,5},分别代入求值,可得函数的值域为{2,3,4,5,6}.(2)(配方法)y =x 2-2x +3=(x -1)2+2,由x ∈[0,3),再结合函数的图象(如图),可得函数的值域为[2,6).(3)(分离常数法)y =2x +1x -3=2(x -3)+7x -3=2+7x -3,显然7x -3≠0,所以y ≠2. 故函数的值域为(-∞,2)∪(2,+∞).(4)(换元法)设t =x -1,则x =t 2+1,且t ≥0,所以y =2(t 2+1)-t=2⎝ ⎛⎭⎪⎫t -142+158,由t ≥0,再结合函数的图象(如右图),可得函数的值域为⎣⎢⎡⎭⎪⎫158,+∞. 金版点睛求函数值域的原则及常用方法(1)原则:①先确定相应的定义域;②再根据函数的具体形式及运算法则确定其值域. (2)常用方法①观察法:对于一些比较简单的函数,其值域可通过观察法得到. ②配方法:是求“二次函数”类值域的基本方法.③换元法:运用新元代换,将所给函数化成值域易确定的函数,从而求得原函数的值域.对于f (x )=ax +b +cx +d (其中a ,b ,c ,d 为常数,且ac ≠0)型的函数常用换元法.④分离常数法:此方法主要是针对有理分式,即将有理分式转化为“反比例函数类”的形式,便于求值域.[跟踪训练4] 求下列函数的值域: (1)y =xx +1;(2)y =x 2-4x +6,x ∈[1,5); (3)y =x +x +1. 解 (1)∵y =xx +1=(x +1)-1x +1=1-1x +1,且1x +1≠0,∴函数y =xx +1的值域为{y |y ≠1}.(2)配方,得y =(x -2)2+2. ∵x ∈[1,5),∴结合函数的图象可知,函数的值域为{y |2≤y <11}. (3)(换元法)设t =x +1,则x =t 2-1,且t ≥0,所以y =t 2+t -1=⎝ ⎛⎭⎪⎫t +122-54,由t ≥0,再结合函数的图象可得函数的值域为[-1,+∞). 题型五 相同函数的判断例7 下列各组函数表示同一函数的是( ) A .f (x )=x ,g (x )=(x )2B .f (x )=x 2+1,g (t )=t 2+1 C .f (x )=1,g (x )=x xD .f (x )=x ,g (x )=|x |[解析] A 项中,由于f (x )=x 的定义域为R ,g (x )=(x )2的定义域为{x |x ≥0},它们的定义域不相同,所以它们不是同一函数.B 项中,函数的定义域、值域和对应关系都相同,所以它们是同一函数.C 项中,由于f (x )=1的定义域为R ,g (x )=x x的定义域为{x |x ≠0},它们的定义域不相同,所以它们不是同一函数.D 项中,两个函数的定义域相同,但对应关系不同,所以它们不是同一函数. [答案] B 金版点睛判断两个函数为同一函数的条件(1)判断两个函数是相同函数的准则是两个函数的定义域和对应关系分别相同.定义域、对应关系两者中只要有一个不相同就不是相同函数,即使定义域与值域都相同,也不一定是相同函数.(2)函数是两个实数集之间的对应关系,所以用什么字母表示自变量、因变量是没有限制的.另外,在化简解析式时,必须是等价变形.[跟踪训练5] 下列函数中哪个与函数y =x 相同?(1)y =(x )2;(2)y =3x 3;(3)y =x 2;(4)y =x 2x.解 (1)y =(x )2=x (x ≥0),y ≥0,定义域不同且值域不同,所以不相同. (2)y =3x 3=x (x ∈R ),y ∈R ,对应关系相同,定义域和值域都相同,所以相同. (3)y =x2=|x |=⎩⎪⎨⎪⎧x ,x ≥0,-x ,x <0,y ≥0;值域不同,且当x <0时,它的对应关系与函数y=x 不相同,所以不相同.(4)y =x 2x的定义域为{x |x ≠0},与函数y =x 的定义域不相同,所以不相同.1.下列各图中,可能是函数y =f (x )的图象的是( )答案 D解析 A ,B 中的图象与y 轴有两个交点,即有两个y 值与x =0对应,所以A ,B 不可能是函数y =f (x )的图象;对于C 中图象,过x =1作与x 轴垂直的直线,与图象有两个交点,所以C 不可能是函数y =f (x )的图象.故选D.2.函数f (x )=x +2-x 的定义域是( )A .{x |x ≥2} B.{x |x >2}C .{x |x ≤2} D.{x |x <2}答案 C解析 要使函数式有意义,则2-x ≥0,即x ≤2.所以函数的定义域为{x |x ≤2}.3.已知函数f (x )的定义域为(-1,0),则函数f (2x +1)的定义域为( )A .(-1,1)B.⎝ ⎛⎭⎪⎫-1,-12 C .(-1,0)D.⎝ ⎛⎭⎪⎫12,1 答案 B解析 ∵原函数的定义域为(-1,0),∴-1<2x +1<0,解得-1<x <-12. ∴函数f (2x +1)的定义域为⎝⎛⎭⎪⎫-1,-12. 4.已知函数f (x )=x 2-2ax +5的定义域和值域都是[1,a ],则a =________.答案 2解析 因为f (x )=(x -a )2+5-a 2,所以f (x )在[1,a ]上是减函数,又f (x )的定义域和值域均为[1,a ],所以⎩⎪⎨⎪⎧ f (1)=a ,f (a )=1,即⎩⎪⎨⎪⎧ 1-2a +5=a ,a 2-2a 2+5=1,解得a =2. 5.已知函数f (x )=x 2+x -1.(1)求f (2),f ⎝ ⎛⎭⎪⎫1x ,f (a +1); (2)若f (x )=5,求x . 解 (1)f (2)=22+2-1=5,f ⎝ ⎛⎭⎪⎫1x =1x 2+1x -1=1+x -x 2x 2, f (a +1)=(a +1)2+(a +1)-1=a 2+3a +1.(2)∵f (x )=x 2+x -1=5,∴x 2+x -6=0,解得x =2或x =-3.。
3函数的基本性质
1.3 函数的基本性质1.3.1单调性与最大(小)值(一)课型:新授课教学目标:理解增函数、减函数、单调区间、单调性等概念,掌握增(减)函数的证明和判别, 学会运用函数图象理解和研究函数的性质。
教学重点:掌握运用定义或图象进行函数的单调性的证明和判别。
教学难点:理解概念。
教学过程:一、复习准备:1.引言:函数是描述事物运动变化规律的数学模型,那么能否发现变化中保持不变的特征呢?2. 观察下列各个函数的图象,并探讨下列变化规律:①随x的增大,y的值有什么变化?②能否看出函数的最大、最小值?③函数图象是否具有某种对称性?3. 画出函数f(x)= x、f(x)= x2的图像。
(小结描点法的步骤:列表→描点→连线)二、讲授新课:前面学习了函数的概念、表示,接下来我们将学习1.教学增函数、减函数、单调性、单调区间等概念:①根据f(x)=x、f(x)=x2(x>0)的图象进行讨论:随x的增大,函数值怎样变化?当x1>x2时,f(x1)与f(x2)的大小关系怎样?②.一次函数、二次函数和反比例函数,在什么区间函数有怎样的增大或减小的性质?③定义增函数:设函数y=f(x)的定义域为I,如果对于定义域I内的某个区间D 内的任意两个自变量x1,x2,当x1<x2时,都有f(x1)<f(x2),那么就说f(x)在区间D上是增函数(increasing function)④探讨:仿照增函数的定义说出减函数的定义;→区间局部性、取值任意性⑤定义:如果函数f(x)在某个区间D上是增函数或减函数,就说f(x)在这一区间上具有(严格的)单调性,区间D叫f(x)的单调区间。
⑥讨论:图像如何表示单调增、单调减?所有函数是不是都具有单调性?单调性与单调区间有什么关系?⑦一次函数、二次函数、反比例函数的单调性2.教学增函数、减函数的证明:例1.将进货单价40元的商品按50元一个售出时,能卖出500个,若此商品每个涨价1元,其销售量减少10个,为了赚到最大利润,售价应定为多少?1、例题讲解例1(P29例1)如图是定义在区间[-5,5]上的函数y=f(x),根据图象说出函数的单调区间,以及在每一单调区间上,它是增函数还是减函数?例2:(P29例2)物理学中的玻意耳定律kpV=(k为正常数),告诉我们对于一定量的气体,当其体积V增大时,压强p如何变化?试用单调性定义证明.例3.判断函数21yx=-在区间[2,6] 上的单调性三、巩固练习:1.求证f(x)=x+x1的(0,1)上是减函数,在[1,+∞]上是增函数。
quiver3函数
quiver3函数
Quiver3函数是Matlab中用来绘制三维箭头的函数。
Quiver3函数
需要传入起始点和终止点的坐标,以及箭头的长度和方向。
它可以用
于表示三维向量场,如流体力学、电动力学等等。
使用Quiver3函数前,需要先创建一个三维坐标系,使用axes3函数可以创建一个新的三维坐标系,使用view函数可以设置观察角度。
Quiver3函数有很多可选参数,如箭头线的宽度、颜色、透明度,箭
头头部的宽度、颜色、长度等等。
使用这些可选参数可以调整箭头的
外观,使其更符合需求。
除了绘制三维箭头外,Quiver3函数还可以绘制等值线、曲面等等。
它是Matlab中非常实用的三维绘图函数之一。
在使用Quiver3函数时,需要注意一些问题,如箭头长度过长或过短、箭头方向不准确等等。
这些问题可以通过调整箭头的长度参数和方向
参数来解决。
总的来说,Quiver3函数是Matlab中非常实用的三维绘图函数,它
可以用于表示向量场等等,具有广泛的应用价值。
在使用Quiver3函
数时,我们需要仔细调整箭头的方向和长度,同时通过调整可选参数来优化箭头的外观。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
例18.当a为何值时,不等式
log 1
a
x 2 ax 5 log 5 ( x 2 ax 6) log a 3 0
有且只有一解 解:易知:a>0且a≠1, 设u=x2+ax+5,原不等式可化为
log 3 ( u 1) 1 log 5 (u 1) 0 log 3 a log 3 a
∴ 1-2a-1>2c-1-1
∴ 2a+2c<4.
故选(D).
例14 设 mR,关于x 的方程
a
3x
2ma
2x
(m 1)a m=0
2
x
(a>0且a≠1) 有几个实根?证明你
的结论.
【解】设y=ax,则y>0,且
y 3 2my2 (m 2 1)y m= 0
(y + m)(y2+my+1) = 0 ∴ y =-m ① 或y2+my+1=0 ②
例19.已知a>0且a≠1,试求使方程
log a ( x ak ) log a ( x a )
2 2
有解的k的取值范围 解:原方程即
log a ( x ak ) log a x a
2
2
即
0 x ak x 2 a 2
x 分别解关于 的不等式、方程得: a x 1 k 2 k ( k ≠0时) a 2k
函数(三)
六、幂函数、指数函数与对数函数
例1 已知函数
f ( x) a
lg (3 ax)
(a >0 且a ≠1) 在其定义域 [-1,
1] 上是减函数,则实数 a
范围是___________.
的取值
【讲解】由 a > 0 且 a≠1 知 t = 3 - ax 是减函数,从而 lg(3 - ax) 也是减函数, 故只有a>1时,f (x)才是减函数; 另外, x [-1 ,1] 时, 要保证 3-ax>0,为此只须考虑最小值: x=1时, tmin=3-a,要3-a>0, 则a<3,综上知1<a<3.
例3.化简 (1) a b c a
x
bc
b c a b
x
ca
c a b c
x
a b
(2)
(x
a 1 a b c a
)
(x
b 1 b c a b
)
(x
c 1 c a b c
)
1 2 1 lg 2 1 (3) (lg 2){[log 1 ( 2 ) ] ( lg 5 ) } 2
2 x 2 3 x 1
,y2= 3
x 2 2 x 5
(2)y1>y2
(3)y1<y2
例8.对于自然数a,b,c (a≤b≤c)和实数x,y,z,w若 (1)ax=by=cz=70w 求证:a+b=c
1 1 1 1 (2) x y z m
例9.已知A=6lgp+lgq,其中p,q为素数, 且满足 q-p=29,求证:3<A<4 证明:由于p、q为素数,其差q-p=29为 奇数,∴p=2,q=31 A=6lg2+lg31=lg(64×31)=lg1984 1000<1984<10000 故3<A<4
像如下图
由于在 (, 1 ] 上,f (x) 是 减函数,所 以 a, b,c 不能同时
在 (, 1 ]上;同理,a,b,c 也
不能同时在 [1, )上.
故必有a<1且c>1.
从而2a-1<1,2c-1>1
∴ f (a)=1-2a-1,f (c)=2c-1-1
∵ f (a ) > f (c )
例13 已知函数 f (x)=|2x -1 -1 |,
a<b<c 且 f (a)>f (c)>f (b) ,则必
有
(A) a<b,b<1,c<1 (B) a<1,b≥1,c>1 (C) 2-a< 2c (D) 2a+2c<4.
【解】函数 y=2x 的图像右移 1 个 单位得 y = 2x-1 ,再下移1个单位得 y = 2x-1 -1,再把 x 轴下方的部分 翻折到x 轴上方得y =| 2x-1-1|,图
=sinθ+cosθ
(sin cos ) 2 1 2 sin cos 1
故a<15 综合得:1<a<15
例11.已知0<a<1,x2+y=0,求证: 1 x y log a (a a ) log a 2 8 证:因为0<a<1,所以ax>0,ay>0由平均值不等式
(4) 当m≥0 时,
① 只有负根,而②无实根或实根为负.
∴ 原方程无实根. 综上所述,知
m的值 m<-2 -2 -2<m<0 m≥0
方程实根个 数
3
2
1
0
例15.解方程 (1)x+log2(2x-31)=5 (2) 2lgx×xlg2-3×xlg2-21+lgx+4=0 例16.设a>0且a≠1,求证:方程ax+a-x=2a的根不 在区间[-1,1]内
121994 1 121995 1 1996 1995 12 1 12 1
¸
所以
例6.已知函数f(x)=logax (a>0,a≠1,x∈R+)若 1 x1 x2 x1,x2∈R+,试比较 2 [ f ( x1 ) f ( x2 )] 与 f ( 2 ) 的大小 例7.已知y1= 3 当x为何值时 (1)y1=y2
a 1 1994 1995 12 1 12 1 12 12a 1 1996 1995 12 1 12 1 a 1 a 1 2 (a 12)(12a 1) 12a 145a 12 1 2 2 12(a 1) 12a 24a 12
例2 如果不等式 x2- log a < x 0
1 在区间 ( 0 , ] 上恒成立,那么实数a 2 的取值范围是___________.
1 1 log a 2 4 0a1
【讲解】 设y=x2
①
y=log a x ② 1 当a>1时,函数②在 ( 0 , ] 上取负值,
(2)当a>1时,不等式化为
log 3 ( u 1) log 5 (u 1) 1
(2)
由f(4)=1知,(2)等价于0≤u≤4, 即0≤x2+ax+5≤4 从上式可知,只有当x2+ax+5=4有唯一解 即Δ=a2-4=0,a=2时, 不等式0≤x2+ax+5≤4有唯一解x= -1 综上所述,当a=2时原不等式有且只有一个解
2 m 4 0 令 , 则m≤-2 m 0
(1) 当m<-2 时, ① 有正实根,②有两个不等正实根. ∴ 原方程有三个实根; (2) 当m=-2 时, ① 有正实根,②有一个正实根. ∴ 原方程有两个实根; (3) 当-2<m<0 时, ① 有正实根,②无实根. ∴ 原方程有一个实根;
a x a y 2 a x a y 2a
故
log a (a a ) log a (2a
x y
x y 2
x y 2
1 ) log a 2 ( x y ) 2
1 log a 2 ( x x 2 ) 2 1 1 2 1 1 log a 2 ( x ) log a 2 2 2 8 8
因此 不可能有x2< log a x 成立.
2
1 1 在 ( 0 , ]上函数①的最大值是 , 2 4 1 在 ( 0 , ]上,当0<a<1时,②的最小 2 1 值是 log a , 2
1 在 ( 0 , ]上,x2<log a 2
x恒成立
1 1 log a 4 2
1 1 1 当0<a<1时,由 log a ,得 1 a 4 4 2 2 1 ∴ a1 16
所以f(x)+f(1-x)=1
1000
i 1
i 1 i i f( ) [f( ) f (1 )] 1001 2 1001 1001
1 1000 2 500
121994 1 121995 1 例5.试比较 1995 与 1996 的大小 12 1 12 1
解:令121995=a>0则
略解:(1)x的指数是0,所以原式=1 (2)x的指数是=0所以原式=1
1 lg 5 1 2 1 lg 2 1 1 2 (lg 2){[log 1 ( ) ] ( ) } (lg 2){ } 2 lg 2 lg 5 2 2 1 1 1 1 (lg 2){ } 2 2 lg 2 2 2
(3)原式=
ax 例4.若f ( x) x ,求 a a
1000
i 1
i f( ) 1001
ax ax a a a 1 x 解:因为 f ( x) x x a a a a a a a a1 x 1 1 1 f (1 x) x 1 x aa a a a
例10.设f(x)=logax (a>0,a≠1)且
8 25 f ( ) sin , f ( ) cos 15 6
(θ为锐角),求证:1<a<15
18 sin 0 证明:∵θ是锐角,∴ log a 5 18 25 18 25 从而a>1又 f ( ) f ( ) f ( ) 5 6 5 6 f(15)=
(1)当0<a<1时,原不等式为
log 3 ( u 1) log 5 (u 1) 1
(1)