海淀区高三年级第一学期期末练习 数学 理科

合集下载

北京市海淀区届高三上学期期末练习数学理试题含答案

北京市海淀区届高三上学期期末练习数学理试题含答案

海淀区高三年级第一学期期末练习数 学(理科) 2015.1本试卷共4页,150分。

考试时长120分钟。

考生务必将答案答在答题卡上,在试卷上 作答无效。

考试结束后,将本试卷和答题卡一并交回。

一、选择题共8小题,每小题5分,共40分。

在每小题列出的四个选项中,选出符合题目要求的一项。

(1)抛物线22x y =-的焦点坐标是( ) (A )(1,0)-(B )(1,0)(C )1(0,)2-(D )1(0,)2(2)如图所示,在复平面内,点A 对应的复数为z ,则复数2z =( )A1-2Oyx(A )34i --(B )54i +(C )54i -(D )34i -(3)当向量(2,2)==-a c ,(1,0)=b 时, 执行如图所示的程序框图,输出的i 值为( )(A )5(B )4(C )3(D )2(4)已知直线1:(2)10l ax a y +++=,2:20l x ay ++=. 若12l l ⊥,则实数a 的值是( ) (A )0(B )2或1-(C )0或3-(D )3-(5)设不等式组220,10,10x y x y x y --⎧⎪+-⎨⎪-+⎩≤≥≥表示的平面区域为D . 则区域D 上的点到坐标原点的距离的最小值是( ) (A )1(B )22(C )12(D )5(6)某三棱锥的三视图如图所示,该三棱锥四个面的面积中最大的是( )344俯视图侧(左)视图正(主)视图(A )234 (B )12(C )83(D )62(7)某堆雪在融化过程中,其体积V (单位:3m )与融化时间t (单位:h )近似满足函数关系:31()(10)10V t H t =-(H 为常数),其图象如图所示. 记此堆雪从融化开始到结束的平均融化速度为3(m /h)v . 那么瞬时融化速度等于3(m /h)v 的时刻是图中的( )t 4t 3t 2100t 1tOV(A )1t(B )2t(C )3t(D )4t(8)已知点A 在曲线2:(0)P y x x =>上, A e 过原点O ,且与y 轴的另一个交点为M .若线段OM ,A e 和曲线P 上分别存在点B 、点C 和点D ,使得四边形ABCD (点,,,A B C D 顺时针排列)是正方形,则称点A 为曲线P 的“完美点”. 那么下列结论中正确的是( ) (A )曲线P 上不存在“完美点”(B )曲线P 上只存在一个“完美点”,其横坐标大于1(C )曲线P 上只存在一个“完美点”,其横坐标大于12且小于1 (D )曲线P 上存在两个“完美点”,其横坐标均大于12二、填空题共6小题,每小题5分,共30分。

海淀区高三年级第一学期理科数学期末测试及答案

海淀区高三年级第一学期理科数学期末测试及答案

海淀区高三年级第一学期理科数学期末测试一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中, 只有一项是符合题目要求的. 1.已知=-=αα2cos ,53cos 则( )A .257 B .257-C .2524D .2524-2.已知抛物线的方程为y 2=4x ,则此抛物线的焦点坐标为( )A .(-1,0)B .(0,-1)C .(1,0)D .(0,1)3.设集合1,,},4,3,2,1{22=+∈=nym xA n m A 则方程表示焦点位于x 轴上的椭圆有( )A .6个B .8个C .12个D .16个4.已知三条不同直线m 、n 、l ,两个不同平面βα,,有下列命题: ①βαββαα////,//,,⇒⊂⊂n m n m②ααα⊥⇒⊥⊥⊂⊂l n l m l n m ,,, ③αββαβα⊥⇒⊥⊂=⋂⊥n m n n m ,,, ④αα//,//m n n m ⇒⊂ 其中正确的命题是( )A .①③B .②④C .①②④D .③5.某台机器上安装甲乙两个元件,这两个元件的使用寿命互不影响.已知甲元件的使用寿命超过1年的概率为0.6,要使两个元件中至少有一个的使用寿命超过1年的概率至少为0.9,则乙元件的使用寿命超过1年的概率至少为 ( )A .0.3B .0.6C .0.75D .0.96.已知函数),20,0)(sin(πϕωϕω≤<>+=x y且此函数的图象如图所示,则点P (),ϕω的坐标是 ( ) A .)2,2(πB .)4,2(πC .)2,4(πD .)4,4(π7.已知向量),sin 3,cos 3(),sin ,cos 2(ββαα==b a 若向量a 与b 的夹角为60°,则直线 21)s i n ()c o s (021s i n c o s 22=++-=+-ββααy x y x 与圆的位置关系是 ( )A .相交B .相切C .相离D .相交且过圆心8.动点P 为椭圆)0(12222>>=+b a by ax 上异于椭圆顶点(±a ,0)的一点,F 1、F 2为椭圆的两个焦点,动圆C 与线段F 1、P 、F 1F 2的延长线及线段PF 2相切,则圆心C 的轨迹为除去坐标轴上的点的( )A .一条直线B .双曲线的右支C .抛物线D .椭圆二、填空题:本大题共6小题,每小题5分,共30分.把答案填在题中横线上. 9.已知双曲线1422=-xy,则其渐近线方程是 ,离心率e= .10.在复平面内,复数i z i z 32,121+=+=对应的点分别为A 、B 、O 为坐标原点,OB OA OP λ+=.若点P 在第四象限内,则实数λ的取值范围是 .11.等差数列{a n }的公差为3,若a 1,a 3,a 4成等比数列,则a 2=. 12.已知正四棱锥P —ABCD 中,PA=2,AB=2,M 是侧棱PC 的中点,则异面直线PA 与BM 所成角大小为 .13.动点P 在平面区域|)||(|2:221y x y x C +≤+内,动点Q 在曲线1)4()4(:222=-+-y x C上,则平面区域C 1的面积为 ,|PQ|的最小值为 . 14.已知每条棱长都为3的直平行六面体ABCD —A 1B 1C 1D 1中,∠BAD=60°, 长为2的线段MN 的一个端点M 在 DD 1上运动,另一个端点N 在底面ABCD上运动.则MN 中点P 的轨迹与直平行 六面体表面所围成的几何体中较小体积值 为 .三、解答题:本大题共6小题,共80分.解答应写出文字说明,证明过程或演算步骤. 15.(本小题共13分)在三角形ABC 中,∠A 、∠B 、∠C 的对边分别为a 、b 、c ,若B c a C b c o s )2(c o s -=. (Ⅰ)求∠B 的大小; (Ⅱ)若,4,7=+=c a b 求三角形ABC 的面积.16.(本小题共13分)已知圆C 的方程为:.422=+y x(Ⅰ)直线l 过点P (1,2),且与圆C 交于A 、B 两点,若,32||=AB 求直线l 的方程;(Ⅱ)过圆C 上一动点M 作平行与x 轴的直线m ,设m 与y 轴的交点为N ,若向量 ON OM OQ +=,求动点Q 的轨迹方程,并说明此轨迹是什么曲线.17.(本小题共13分)如图,在直三棱柱ABC —A 1B 1C 1中,,6,3,1,901===︒=∠AA CA CB ACB M 为侧棱CC 1上一点,AM ⊥BA 1 (Ⅰ)求证:AM ⊥平面A 1BC ; (Ⅱ)求二面角B —AM —C 的大小; (Ⅲ)求点C 到平面ABM 的距离.18.(本小题共14分)设函数)1ln(2)1()(2x x x f +-+=. (Ⅰ)求函数f (x )的单调区间;(Ⅱ)当0<a <2时,求函数]30[1)()(2,在区间---=ax x x f x g 的最小值.19.(本小题共14分)设椭圆)0(12222>>=+b a by ax 的焦点分别为F 1(-1,0)、F 2(1,0),右准线l 交x 轴于点A ,且.221AF AF =(Ⅰ)试求椭圆的方程; (Ⅱ)过F 1、F 2分别作互相垂直的两直线与椭圆分别交于D 、E 、M 、N 四点(如图所示),试求四边形DMEN 面积的最大值和最小值.20.(本小题共13分)已知函数f (x )的定义域为[0,1],且满足下列条件: ①对于任意;4)1(,3)(],1,0[=≥∈f x f x ,且总有②若.3)()()(,1,0,021212121-+≥+≤+≥≥x f x f x x f x x x x 则有 (Ⅰ)求f (0)的值; (Ⅱ)求证:4)(≤x f ; (Ⅲ)当33)(,...)3,2,1](31,31(1+<=∈-x x f n x n n时,试证明:.参考答案一、选择题(本大题共8小题,每小题5分,共40分)题号1 2 3 4 5 6 7 8答案B C A D C B C A二、填空题(本大题共6小题,每小题5分,有两空的小题,第一空3分,第二空2分,共30分)9.x y 2±=,(缺一扣1分)25 10.3121-<<-λ 11.-912.4π13.π48+,122- 14.92π三、解答题(本大题共6小题,共80分) 15.(共13分)解:(Ⅰ)由已知及正弦定理可得sin B cos C = 2sin A cos B -cos B sin C …………………………………………………2分 ∴2sin A cos B = sin B cos C +cos B sin C = sin(B +C )又在三角形ABC 中,sin (B +C ) = sin A ≠0 ………………………………………3分 ∴2sinAcosB = sinA ,即在△ABC 中,cosB=21,………………………………5分3π=B ………………………………………………………………………………6分(Ⅱ)B ac c a b cos 27222-+==ac c a -+=∴227………………………………………………………………8分又ac c a c a 216)(222++==+3=∴ac …………………………………………………………………………10分 B ac S ABC sin 21=∴∆43323321=⨯⨯=∴∆ABC S …………………………………………………13分16.(共13分)解:(Ⅰ)①直线l 垂直于x 轴时,直线方程为x =1,l 与圆的两个交点坐标为(1,3)和(1,-3),其距离为32 满足题意………………………………………1分 ②若直线l 不垂直于x 轴,设其方和为)1(2-=-x k y ,即02=+--k y kx …………………………………………………………2分 设圆心到此直线的距离为d ,则24232d -=,得d =1…………………3分 1|2|12++-=∴kk ,43=k ,………………………………………………………4分故所求直线方程为0543=+-y x ………………………………………………5分 综上所述,所求直线方程为0543=+-y x 或x =1……………………………6分(Ⅱ)设点M 的坐标为)0)(,(000≠y y x ,Q 点坐标为(x ,y )则N 点坐标是),0(0y …7分,ON OM OQ +=2,)2,(),(0000y y x x y x y x ===∴即………………………………………………9分又)0(44,4222020≠=+∴=+y yx y x ……………………………………………11分∴Q 点的轨迹方程是)0(,116422≠=+y yx…………………………………………12分轨迹是一个焦点在y 轴上的椭圆,除去短轴端点. …………………………………13分注:多端点时,合计扣1分.17.(共13分)证明:(Ⅰ)在直三棱柱111C B A ABC -中,易知面⊥11A ACC 面ABC , ︒=∠90ACB ,11A A C C BC 面⊥∴,……………………………………………………………2分 11A A C C AM 面⊆ AM BC ⊥∴B BA BC BA AM =⊥11 ,且BC A AM 1平面⊥∴……………………………………………………………4分解:(Ⅱ)设AM 与A 1C 的交点为O ,连结BO ,由(Ⅰ)可 知AM ⊥OB ,且AM ⊥OC ,所以∠BOC 为二面角 B -AM -C 的平面角,…………………………5分在Rt △ACM 和Rt △A 1AC 中,∠OAC+∠ACO=90°, ∴∠AA 1C=∠MAC ∴Rt △ACM~ Rt △A 1AC ∴AC 2= MC ²AA 1 ∴26=MC ……………………………………7分∴在Rt △ACM 中,223=AMCO AM MC AC ⋅=⋅21211=∴CO∴在Rt △BCO 中,1tan ==COBC BOC .︒=∠∴45BOC ,故所求二面角的大小 为45°………………………………9分 (Ⅲ)设点C 到平面ABM 的距离为h ,易知2=BO ,可知2322232121=⨯⨯=⋅⋅=∆BO AM S ABM ……………………………10分A B C M A B M C V V --= ………………………………………………………………11分 A B C A B MS MC hS∆∆⋅=∴313122232326=⨯=⋅=∴∆∆A B MA B CS S MC h∴点C 到平面ABM 的距离为22………………………………………………13分解法二:(Ⅰ)同解法一…………………………4分 (Ⅱ)如图以C 为原点,CA ,CB ,CC 1所在直线 分别为x 轴,y 轴,z 轴,建立空间直角坐标系,则)0,1,0(),6,0,3(),0,0,3(1B A A ,设 M (0,0,z 1) 1BA AM ⊥ .01=⋅∴BA AM 即06031=++-z ,故261=z ,所以)26,0,0(M …………………6分设向量m =(x ,y ,z )为平面AMB 的法向量,则m ⊥AM ,m ⊥AB ,则 ⎪⎩⎪⎨⎧=⋅=⋅00AB m AM m 即,030263⎪⎩⎪⎨⎧=+-=+-y x z x 令x =1,平面AMB 的一个法向量为m =)2,3,1(,……………………………………………………………………8分 显然向量CB 是平面AMC 的一个法向量22||||,cos =⋅⋅>=<CB m CB m CB m易知,m 与CB 所夹的角等于二面角B -AM -C 的大小,故所求二面角的大小为 45°. ………………………………………………………………………………9分 (Ⅲ)所求距离为:2263||==⋅m CB m即点C 到平面ABM 的距离为22………………………………………………13分18.(共14分)解:(Ⅰ).1)2(212)1(2)('++=+-+=x x x x x x f …………………………2分由0)('>x f 得012>-<<-x x 或;由0)('<x f ,得.012<<--<x x 或 又)(x f 定义域为(-1,+∞)∴所以函数f (x )的单调递增区间为(0,+∞),单调递减区间为(-1,0)…5分 (Ⅱ))1(212)(x n ax x x g +--=,定义域为(-1,+∞) 1)2(122)('+--=+--=x ax a x a x g ……………………………………………7分0202,20>->-∴<<aa a a 且由0)('>x g 得aa x ->2,即)(x g 在⎪⎭⎫⎝⎛+∞-,2a a上单调递增;由0)('<x g 得aa x -<<-21,即)(x g 在⎪⎭⎫⎝⎛--a a2,1上单调递减…………8分 ①时 )(,320x g a a<-<在⎪⎭⎫ ⎝⎛-a a 2,0上单调递减,在⎪⎭⎫⎝⎛-3,2a a 上单调递增; ∴在区间[0,3]上,ana aa g x g --=-=2221)2()(min ; (2)30<<a …10分②当)(,32,223x g aa a ≥-<≤时在(0,3)上单调递减,∴在区间[0,3]上,42136)3()(min n a g x g --==…………………………13分 综上可知,当230<<a 时,在区间[0,3]上,ana aa g x g --=-=2221)2()(min ;当223<≤a 时,在区间[0,3]上42136)3()(min n a g x g --==.…14分19.(共14分)解:(Ⅰ)由题意,),0,(,22||221a A C F F ∴==…………………………………2分212AF AF = 2F ∴为AF 1的中点……………………………………………3分2,322==∴b a即:椭圆方程为.12322=+yx……………………………………………………5分(Ⅱ)当直线DE 与x 轴垂直时,342||2==abDE ,此时322||==a MN ,四边形DMEN 的面积为42||||=⋅MN DE .同理当MN 与x 轴垂直时,也有四边形DMEN 的面积为42||||=⋅MN DE .…7 分当直线DE ,MN 均与x 轴不垂直时,设DE ∶)1(+=x k y ,代入椭圆方程,消去 y 得:.0)63(6)32(2222=-+++k x k x k设⎪⎪⎩⎪⎪⎨⎧+-=+-=+,3263,326),,(),,(222122212211k k x x kkx x y x E y x D 则…………………………………8分所以,231344)(||222122121++⋅=-+=-kkx x x x x x ,所以,2221232)1(34||1||kk x x kDE ++=-+=,同理,.32)11(34)1(32)1)1((34||2222kkkkMN ++=-++-=………………………………10分所以,四边形的面积222232)11(3432)1(34212||||kkkk MN DE S ++⋅++⋅=⋅=13)1(6)21(242222++++=kkkk ,…………………………………12分 令uuu S kk u 61344613)2(24,122+-=++=+=得因为,2122≥+=kk u当2596,2,1==±=S u k 时,且S 是以u 为自变量的增函数,所以42596<≤S .综上可知,四边形DMEN 面积的最大值为4,最小值为2596.…………………14分20.(共13分)解:(Ⅰ)令021==x x ,由①对于任意]1,0[∈x ,总有3)0(,3)(≥∴≥f x f ……………………………1分 又由②得 3)0(,3)0(2)0(≤-≥f f f 即;……………………………………2分 .3)0(=∴f …………………………………………………………………………3分证明:(Ⅱ)任取2121]1,0[,x x x x <∈且设,则3)()()]([)(1211212--+≥-+=x x f x f x x x f x f , 因为1012≤-<x x ,所以03)(,3)(1212≥--≥-x x f x x f 即,).()(21x f x f ≤∴………………………………………………………………5分 .4)1()(,]1,0[=≤∈∴f x f x 时当……………………………………………7分(Ⅲ)先用数学归纳法证明:)(331)31(*11N n f n n ∈+≤-- (1)当n =1时,331314)1()31(+=+===f f ,不等式成立;(2)假设当n=k 时,)(331)31(*11N k f k k ∈+≤--由6)31()31()31(3)3131()31()]3131(31[)31(1-++≥-++≥++=-kkkkkkkkkk f f f f f f f得≤)31(3kf 9316)31(11+≤+--k k f331)31(+≤∴kkf即当n=k+1时,不等式成立. 由(1)(2)可知,不等式331)31(+≤∴kkf 对一切正整数都成立.于是,当)31(331331333,...)3,2,1](31,31(111---≥+=+⨯>+=∈n n nn nf x n x 时,,而x ∈[0,1],f (x )单调递增)31()31(1-<∴n nf f 所以33)31()31(1+<<∴-x f f n n……………………………………13分。

北京市海淀区高三第一学期期末考试数学(理科)共10页word资料

北京市海淀区高三第一学期期末考试数学(理科)共10页word资料

北京市海淀区高三年级第一学期期末练习数学(理科)一、选择题:本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.(1)已知全集U ,A B ⊆,那么下列结论中可能不成立的是( )(A )AB A = (B )A B B =(C )()U A B ≠∅ð (D )()U B A =∅ð(2)抛物线22y x =的准线方程为( ) (A )18y =-(B )14y =- (C )12y =- (D )1y =- (3)将函数cos 2y x =的图象按向量(,1)4a π=平移后得到函数()f x 的图象,那么( )(A )()sin 21f x x =-+ (B )()sin 21f x x =+ (C )()sin 21f x x =-- (D )()sin 21f x x =- (4)在ABC ∆中,角A 、B 、C 所对的边分别为a 、b 、c ,如果a c 3=,30B =?,那么角C 等于( )(A )120° (B )105° (C )90° (D )75° (5)位于北纬x 度的A 、B 两地经度相差90︒,且A 、B 两地间的球面距离为3R π(R 为地球半径),那么x 等于( )(A )30 (B ) 45 (C ) 60 (D )75 (6)已知定义域为R 的函数()f x ,对任意的R x Î都有1(1)()22f x f x +=-+恒成立,且1()12f =,则(62)f 等于 ( ) (A )1 (B ) 62 (C ) 64 (D )83(7)已知{},1,2,3,4,5αβÎ,那么使得sin cos 0αβ?的数对(),αβ共有( )(A) 9个 (B) 11个 (C) 12个 (D) 13个(8)如果对于空间任意()2n n ³条直线总存在一个平面α,使得这n 条直线与平面α所成的角均相等,那么这样的n ( )(A )最大值为3 (B )最大值为4 (C )最大值为5 (D )不存在最大值 二、填空题:本大题共6小题,每小题5分,共30分.把答案填在题中横线上. (9)22462limnnn ++++= .(10)如果()1,10,1x f x x ì£ïï=íï>ïî,, 那么()2f f 轾=臌 ;不等式()1212f x -?的解集是 .(11)已知点1F 、2F 分别是双曲线的两个焦点, P 为该双曲线上一点,若12PF F ∆为等腰直角三角形,则该双曲线的离心率为_____________.(12)若实数x 、y 满足20,,,x y y x y x b -≥⎧⎪≥⎨⎪≥-+⎩且2z x y =+的最小值为3,则实数b 的值为 .(13)已知直线0=++m y x 与圆222x y +=交于不同的两点A 、B ,O 是坐标原点,||||OA OB AB +?,那么实数m 的取值范围是 .(14)已知:对于给定的*q N Î及映射*:,N f AB B.若集合C A Í,且C 中所有元素对应的象之和大于或等于q ,则称C 为集合A 的好子集. ① 对于2q =,{},,A a b c =,映射:1,f x x A ,那么集合A 的所有好子集的个数为 ;② 对于给定的q ,{}1,2,3,4,5,6,A π=,映射:f A B ®的对应关系如下表:x12 3 4 5 6π()f x1 1 1 1 1yz若当且仅当C 中含有π和至少A 中2个整数或者C 中至少含有A 中5个整数时,C 为集合A 的好子集.写出所有满足条件的数组(),,q y z : . 三、解答题: 本大题共6小题,共80分.解答应写出文字说明, 演算步骤或证明过程. (15)(本小题共12分)已知函数22()sin )cos()cos 44f x x x x x ππ=++---. (Ⅰ)求函数)(x f 的最小正周期和单调递减区间;(Ⅱ)求函数)(x f 在25,1236ππ轾犏-犏臌上的最大值和最小值并指出此时相应的x 的值. (16)(本小题共12分)已知函数)(x g 是2()(0)f x x x =>的反函数,点),(00y x M 、),(00x y N 分别是)(x f 、)(x g 图象上的点,1l 、2l 分别是函数)(x f 、)(x g 的图象在N M ,两点处的切线,且1l ∥2l . (Ⅰ)求M 、N 两点的坐标;(Ⅱ)求经过原点O 及M 、N 的圆的方程. (17)(本小题共14分)已知正三棱柱111C B A ABC -中,点D 是棱AB的中点,11,BC AA ==.(Ⅰ)求证://1BC 平面DC A 1; (Ⅱ)求1C 到平面1A DC 的距离; (Ⅲ)求二面角1D AC A --的大小.(18)(本小题共14分)某种家用电器每台的销售利润与该电器的无故障使用时间T (单位:年)有关. 若1≤T ,则销售利润为0元;若31≤<T ,则销售利润为100元;若3>T ,则销售利润为200元. 设每台该种电器的无故障使用时间1≤T ,31≤<T 及3>T 这三种情况发生的概率分别为321,,p p p ,又知21,p p 是方程015252=+-a x x 的两个根,且32p p =.(Ⅰ)求321,,p p p 的值;(Ⅱ)记ξ表示销售两台这种家用电器的销售利润总和,求ξ的分布列; (Ⅲ)求销售两台这种家用电器的销售利润总和的平均值. (19)(本小题共14分)已知点()0,1A 、()0,1B -,P 是一个动点,且直线PA 、PB 的斜率之积为12-. (Ⅰ)求动点P 的轨迹C 的方程;(Ⅱ)设()2,0Q ,过点()1,0-的直线l 交C 于M 、N 两点,QMN ∆的面积记为S ,若对满足条件的任意直线l ,不等式tan S MQN λ≤恒成立,求λ的最小值. (20)(本小题共14分)如果正数数列{}n a 满足:对任意的正数M ,都存在正整数0n ,使得0n a M >,则称数列{}n a 是一个无界正数列.(Ⅰ)若()32s i n ()1,2,3,n a n n =+=, 1, 1,3,5,,1, 2,4,6,,2n n nb n n ⎧=⎪⎪=⎨+⎪=⎪⎩分别判断数列{}n a 、{}n b 是D C 1B 1A 1CBA否为无界正数列,并说明理由;(Ⅱ)若2n a n =+,是否存在正整数k ,使得对于一切n k ≥,有1223112n n a a a n a a a ++++<-成立; (Ⅲ)若数列{}n a 是单调递增的无界正数列,求证:存在正整数m ,使得122312009mm m a a a a a a +-+++<. 海淀区高三年级第一学期期末练习 数学(理科)参考答案及评分标准 2009.01一、选择题(本大题共8小题,每小题5分,共40分)CABAB DDA二、填空题(本大题共6小题,每小题5分.有两空的小题,第一空3分,第二空2分,共30分) (9)1 (10)1,[0,1] (111(12)94(13)(2,[2,2)- (14) 4,(5,1,3) 三、解答题(本大题共6小题,共80分) (15)(本小题共12分)解:(Ⅰ)22()sin )cos()cos 44f x x x x x ππ=++-- 2sin(2)6x π=- ………………………………………………4分所以22T ππ==. ………………………………………………5分 由()3222262Z k x k k πππππ+???得所以函数)(x f 的最小正周期为π,单调递减区间为5[,]36k k ππππ++()k ∈Z .………………………………………………7分 (Ⅱ)由(Ⅰ)有()2sin(2)6f x x π=-.因为25,1236x ππ轾犏?犏臌, 所以112,639x πππ轾犏-?犏臌. 因为411sin()sin sin 339πππ-=<,所以当12x π=-时,函数)(x f取得最小值-3x π=时,函数)(x f 取得最大值2.………………………………………………12分(16)(本小题共12分) 解:(Ⅰ)因为2()(0)f x x x =>,所以()0)g x x =>.从而,2)(x x f ='()g x ¢=. ………………………………………………3分所以切线21,l l 的斜率分别为,2)(001x x f k ='=00221)(y y g k ='=.又2000(0)y x x =>,所以2012k x =. ………………………………………………4分 因为两切线21,l l 平行,所以21k k =. ………………………………………………5分从而20(2)1x =.因为00x >, 所以012x =. 所以N M ,两点的坐标分别为)21,41(),41,21(. ………………………………………7分 (Ⅱ)设过O 、M 、N 三点的圆的方程为:220x y Dx Ey F ++++=.因为圆过原点,所以0F =.因为M 、N 关于直线y x =对称,所以圆心在直线y x =上. 所以D E =.又因为11(,)24M 在圆上, 所以512D E ==-. 所以过O 、M 、N 三点的圆的方程为:225501212x y x y +--=. ………………12分 (17)(本小题共14分)(Ⅰ)证明:连结1AC 交1A C 于点G ,连结DG .在正三棱柱111C B A ABC -中,四边形11ACC A 是平行四边形, ∴DG ∥1BC . ………………………………………2分∵DG ⊂平面1A DC ,1BC ⊄平面1A DC ,∴1BC ∥平面1A DC .………………………………………4分解法一:(Ⅱ)连结1DC ,设1C 到平面1A DC 的距离为h .∵四边形11ACC A 是平行四边形,∴1118C A CD V -=. ………………………………………6分在等边三角形ABC 中,D 为AB 的中点, ∵AD 是1A D 在平面ABC 内的射影,∴1CD A D ^. ………………………………………8分∴111313C A DC A DCV h S -∆==. ………………………………………9分 (Ⅲ)过点D 作DE AC ⊥交AC 于E ,过点D 作1DF A C ⊥交1A C 于F ,连结EF .∵平面ABC ⊥平面11ACC A ,DE ⊂平面ABC ,平面ABC平面11ACC A AC =,∴DE ⊥平面11ACC A .∴EF 是DF 在平面11ACC A 内的射影.∴DFE Ð是二面角1D AC A --的平面角. ………………………………………12分 在直角三角形ADC中,AD DC DE AC ×==同理可求:118A D DC DF AC ×==.∴DFE ?………………………………………14分解法二:过点A 作AO BC ⊥交BC 于O ,过点O 作F ED C 1B 1A 1CBAOE BC ⊥交11B C 于E .因为平面ABC ⊥平面11CBB C ,所以AO ⊥平面11CBB C .分别以,,CB OE OA 所在的直线为x 轴,y 轴,z 轴建立空间直角坐标系,如图所示.因为11,BC AA ==,ABC ∆是等边三角形,所以O 为BC 的中点.则()0,0,0O ,A ⎛ ⎝⎭,1,0,02C ⎛⎫- ⎪⎝⎭,1A ⎛ ⎝⎭,1(4D ,112C ⎛⎫- ⎪⎝⎭. ………………………………………6分 (Ⅱ)设平面1A DC 的法向量为(),,n x y z =,则取x =1A DC 的一个法向量为()3,1,3n =-. ………………………………………8分∴1C 到平面1A DC 的距离为:13913CC n n⋅=………………………………………10分 (Ⅲ)解:同(Ⅱ)可求平面1ACA 的一个法向量为()13,0,1n =-. …………………………12分设二面角1D AC A --的大小为θ,则1cos cos ,n n θ=<>=∴θ=. ………………………………………14分 (18)(本小题共14分)解:(Ⅰ)由已知得1321=++p p p .21,p p 是方程015252=+-a x x 的两个根, ∴511=p ,5232==p p . ………………………………………3分 (Ⅱ)ξ的可能取值为0,100,200,300,400. ………………………………………4分()400=ξP =2545252=⨯. ………………………………………9分随机变量ξ的分布列为:ξ 0 100 200 300 400P251 254 258 258 254………………………………………11分 (Ⅲ)销售利润总和的平均值为E ξ=2544002583002582002541002510⨯+⨯+⨯+⨯+⨯=240. ∴销售两台这种家用电器的利润总和的平均值为240元.………………………………………14分注:只求出E ξ,没有说明平均值为240元,扣1分. (19)(本小题共14分)解:(Ⅰ)设动点P 的坐标为(),x y ,则直线,PA PB 的斜率分别是11,y y x x-+. 由条件得1112y y x x-+?-. 即()22102x y x +=?. 所以动点P 的轨迹C 的方程为()22102x y x +=?. ………………………………………5分 注:无0x ¹扣1分. (Ⅱ)设点,M N 的坐标分别是()()1122,,,x y x y .当直线l 垂直于x 轴时,21212111,,2x x y y y ==-=-=. 所以()()()1122112,,2,2,QM x y QN x y x y =-=-=--. 所以()22111722QM QNx y ?--=. ………………………………………7分 当直线l 不垂直于x 轴时,设直线l 的方程为()1y k x =+,由221,2(1)x y y k x ìïï+=ïíïï=+ïî得()2222124220k x k x k +++-=. 所以 2122, 21422212221k k x x k k x x +-=+-=+. ………………………………………9分 所以()()()12121212122224QM QNx x y y x x x x y y ?--+=-+++.因为()()11221,1y k x y k x =+=+, 所以()()()()2221212217131712422212QM QNk x x k x x k k ?++-+++=-<+.综上所述⋅的最大值是217. ………………………………………11分 因为tan S MQN λ≤恒成立,即1sin ||||sin 2cos MQN QM QN MQN MQNλ⋅≤恒成立. 由于()2171302212QM QNk ?->+. 所以cos 0MQN >.所以2QM QN λ⋅≤恒成立. ………………………………………13分 所以λ的最小值为174. ………………………………………14分 注:没有判断MQN Ð为锐角,扣1分. (20)(本小题共14分)解:(Ⅰ){}n a 不是无界正数列.理由如下:取M = 5,显然32sin()5n a n =+≤,不存在正整数0n 满足05n a >;{}n b 是无界正数列.理由如下:对任意的正数M ,取0n 为大于2M 的一个偶数,有0012122n n M b M ++=>>,所以{}n b 是无界正数列. ………………………………………4分(Ⅱ)存在满足题意的正整数k .理由如下: 当3n ³时, 因为12231n n a a a n a a a +⎛⎫-+++⎪⎝⎭32121231n nn a a a a a a a a a ++---=+++即取3k =,对于一切n k ≥,有1223112n n a a a n a a a ++++<-成立. ……………………9分 注:k 为大于或等于3的整数即可.(Ⅲ)证明:因为数列{}n a 是单调递增的正数列,所以12231n n a a a n a a a +⎛⎫-+++ ⎪⎝⎭32121231n nn a a a a a a a a a ++---=+++即12123111n n n a a a a n a a a a +++++<-+. 因为{}n a 是无界正数列,取12M a =,由定义知存在正整数1n ,使1112n a a +>. 所以1112123112n n a a a n a a a ++++<-.由定义可知{}n a 是无穷数列,考察数列11n a +,12n a +,13n a +,…,显然这仍是一个单调递增的无界正数列,同上理由可知存在正整数2n ,使得()112112122123112n n n n n n a a a n n a a a ++++++++<--.重复上述操作,直到确定相应的正整数4018n .则401840181212140184017231111222n n a a a n n n n n a a a +⎛⎫⎛⎫⎛⎫+++<-+--++-- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭即存在正整数4018m n =,使得122312009mm m a a a a a a +-+++<成立. ………………………………………14分。

海淀区高三年级第一学期期末练习--理科

海淀区高三年级第一学期期末练习--理科

海淀区高三年级第一学期期末练习数 学(理科) 2019.01本试卷共4页,150分。

考试时长120分钟。

考生务必将答案答在答题卡上,在试卷上 作答无效。

考试结束后,将本试卷和答题卡一并交回。

第一部分(选择题 共40分)一、选择题共8小题,每小题5分,共40分。

在每小题列出的四个选项中,选出符合题目要求的一项。

(1)双曲线x y -=22122的左焦点的坐标为(A )(,)-20(B )()0(C )(,)-10(D )(,)-40(2)已知向量(,),(,)t ==201a b ,且||⋅=a b a ,则,a b 的夹角大小为 (A )π6(B )π4(C )π3(D )5π12(3)已知等差数列{}n a 满足12a =,公差d ≠0,且125,,a a a 成等比数列,则d =(A )1(B )2(C )3(D )4(4)直线y kx =+1被圆x y +=222截得的弦长为2,则k 的值为(A )0(B )12±(C )1±(D )2(5)以正六边形的6个顶点中的3个作为顶点的三角形中,等腰三角形的个数为(A )6(B )7(C )8(D )12(6)已知函数()ln af x x x=+,则“a <0”是“函数()f x 在区间(,)+∞1上存在零点”的(A )充分而不必要条件(B )必要而不充分条件(C )充分必要条件(D )既不充分也不必要条件(7)已知函数()sin cos ,()f x x x g x =-是()f x 的导函数,则下列结论中错误的是(A )函数()f x 的值域与()g x 的值域相同(B )若0x 是函数()f x 的极值点,则0x 是函数g()x 的零点(C )把函数()f x 的图象向右平移π2个单位,就可以得到函数()g x 的图象 (D )函数()f x 和g()x 在区间ππ(,)44-上都是增函数(8)已知集合{(,)|150,150,,}A s t s t s t =≤≤≤≤∈∈N N . 若B A ⊆,且对任意的(,),(,)a b B x y B ∈∈,均有()()0a x b y --≤,则集合B 中元素个数的最大值为(A )25(B )49 (C )75(D )99第二部分(非选择题 共110分)二、填空题共6小题,每小题5分,共30分。

北京市海淀区届高三上学期期末考试数学理试题

北京市海淀区届高三上学期期末考试数学理试题

31 海淀区高三年级第一学期期末练习数学(理科)2016.1本试卷共 4 页,150 分。

考试时长 120 分钟。

考生务必将答案答在答题卡上,在试卷上作答无效。

考试结束后,将本试卷和答题卡一并交回。

一、选择题共 8 小题,每小题 5 分,共 40 分。

在每小题列出的四个选项中,选出符合题目要求的一项。

1. 已知 (1 + b i)i = -1 + i(b ∈ R) ,则 b 的值为A.1B. -1C. iD.-i2. 抛物线 x 2 = 4 y 的准线与 y 轴的交点的坐标为A. (0, - 1 )2B. (0, -1)C. (0, -2)D. (0, -4)ED C5. 已知数列 A : a 1, a 2 , a 3 , a 4 , a 5 ,其中 a i ∈{-1,0,1},i = 1, 2,3, 4,5 , 则满足 a 1 + a 2 + a 3 + a 4 + a 5 = 3 的不同数列 A 一共有A. 15 个B. 25 个C. 30 个D. 35 个6. 已知圆 C :( x - 2)2 + y 2 = 4 , 直线 l : y = x , l 2 : y = kx - 1若 l 1,l 2 被圆 C 所截得的弦的长度之比为1: 2 ,则 k 的值为A.B.1C.1 2D.3 33否是输出结束3. 如图,正方形ABCD 中, E 为 DC 的中点,若 AD = AC + AE , 则 - 的值为ABA. 3B. 2C. 1D. -3 4. 某程序框图如图所示,执行该程序,若输入的 a 值为 1,则输 出的 a 值为开始 输入A.1B. 2C. 3D. 5⎨ ⎩⎧ x - y +2 ≥ 0, 7. 若 x , y 满足 ⎪x + y - 4 ≤ 0, ⎪ y ≥ 0, 则z = y - 2 | x | 的最大值为A. -8B. -4C.1D. 28. 已知正方体 ABCD - A ' B 'C ' D ' ,记过点 A 与三条直线 AB , AD , AA ' 所成角都相等的直线条数为m , 过点 A 与三个平面 AB ', AC , AD ' 所成角都相等的直线的条数为 n ,则下面结论正确的是A. m = 1, n = 1B. m = 4, n = 1C. m = 3, n = 4D. m = 4, n = 4二、填空题共 6 小题,每小题 5 分,共 30 分。

2018-2019北京市海淀区高三第一学期期末数学(理科)试卷

2018-2019北京市海淀区高三第一学期期末数学(理科)试卷

海淀区高三年级第一学期期末练习数 学(理科) 2019.01本试卷共4页,150分。

考试时长120分钟。

考生务必将答案答在答题卡上,在试卷上作答无效。

考试结束后,将本试卷和答题卡一并交回。

第一部分(选择题 共40分)一、选择题共8小题,每小题5分,共40分。

在每小题列出的四个选项中,选出符合题目要求的一项。

(1)双曲线x y -=22122的左焦点的坐标为(A )(,)-20 (B )()0 (C ) (,)-10 (D )(,)-40 (2)已知向量(,),(,)t ==201a b ,且||⋅=a b a ,则,a b 的夹角大小为 (A )π6 (B )π4 (C )π3 (D )5π12(3)已知等差数列{}n a 满足12a =,公差d ≠0,且125,,a a a 成等比数列,则d = (A )1 (B )2 (C )3 (D )4(4)直线y kx =+1被圆x y +=222截得的弦长为2,则k 的值为(A )0 (B )12±(C )1± (D )2(5)以正六边形的6个顶点中的3个作为顶点的三角形中,等腰三角形的个数为 (A )6 (B )7 (C )8 (D )12 (6)已知函数()ln af x x x=+ ,则“a <0”是“函数()f x 在区间(,)+∞1 上存在零点”的 (A )充分而不必要条件 (B )必要而不充分条件 (C )充分必要条件(D )既不充分也不必要条件(7)已知函数()sin cos ,()f x x x g x =-是()f x 的导函数,则下列结论中错误的是 (A )函数()f x 的值域与()g x 的值域相同(B )若0x 是函数()f x 的极值点,则0x 是函数g()x 的零点(C )把函数()f x 的图象向右平移π2个单位,就可以得到函数()g x 的图象 (D )函数()f x 和g()x 在区间ππ(,)44-上都是增函数(8)已知集合{(,)|150,150,,}A s t s t s t =≤≤≤≤∈∈N N . 若B A ⊆,且对任意的(,),(,)a b B x y B ∈∈,均有()()0a x b y --≤,则集合B 中元素个数的最大值为(A )25 (B )49 (C )75 (D )99第二部分(非选择题 共110分)二、填空题共6小题,每小题5分,共30分。

海淀区高三年级第一学期期末练习数学考试答案

海淀区高三年级第一学期期末练习数学考试答案

海淀区高三年级第一学期期末练习数学(理)答案及评分参考2011.1第Ⅰ卷(选择题 共40分)一、选择题(本大题共8小题,每小题5分,共40分)第Ⅱ卷(非选择题 共110分)二、填空题(本大题共6小题,每小题5分, 共30分.有两空的题目,第一空3分,第二空2分) 9. 222x y x += (1,0) 10. 180 11. 512. M P N e e e << 13.① ④ 14. 4 32 (1)2 3 (01)k kk k ⎧+≥⎪⎨⎪+<<⎩ 三、解答题(本大题共6小题,共80分) 15.(共12分)解:(I ) x x x f 2cos )32cos()(--=πx x x 2cos 3sin2sin 3cos2cos -+=ππ .......................................2分x x 2cos 212sin 23-=)62si n(π-=x . .......................................4分)2,0(π∈x Θ,)65,6(62πππ-∈-∴x , .......................................5分]1,21()62sin(-∈-∴πx ,即)(x f 在(0,2π)的值域为]1,21(- . .......................................6分(II )由(I )可知,)62sin()(π-=A A f ,1)62sin(=-∴πA , ......................................7分π<<A 0Θ , 611626πππ<-<-∴A , .....................................8分 3,262πππ==-∴A A . ....................................9分A bc c b a cos 2222-+=Θ , .....................................10分把3a b ==代入,得到2320c c -+=, ..................................11分1=∴c 或2=c . ....................................12分 16.(共13分) 解:(I )方法一设选手甲在A 区投两次篮的进球数为X ,则)109,2(~B X , 故591092)(=⨯=X E , ....................................... 2分 则选手甲在A 区投篮得分的期望为6.3592=⨯ . ....................................... 3分设选手甲在B 区投篮的进球数为Y ,则)31,3(~B Y ,故1313)(=⨯=Y E , ....................................... 5分则选手甲在B 区投篮得分的期望为313=⨯ . ....................................... 6分 36.3>Θ,∴选手甲应该选择A 区投篮. .......................................7分方法二:(I )设选手甲在A 区投篮的得分为ξ,则ξ的可能取值为0,2,4,212291(0)(1)101009918(2)(1)1010100981(4)().10100P P C P ξξξ==-===⋅-====;;所以ξ的分布列为.......................................2分6.3=∴ξE .......................................3分 同理,设选手甲在B 区投篮的得分为η,则η的可能取值为0,3,6,9,3123223318(0)(1);327114(3)(1);339112(6)()(1);33911(9)().327P P C P C P ηηηη==-===⋅-===-====所以η的分布列为:.......................................5分3E η∴=, .......................................6分ηξE E >Θ,∴选手甲应该选择A 区投篮. .......................................7分(Ⅱ)设选手甲在A 区投篮得分高于在B 区投篮得分为事件C ,甲在A 区投篮得2分在B 区投篮得0分为事件1C ,甲在A 区投篮得4分在B 区投篮得0分为事件2C ,甲在A 区投篮得4分在B 区投篮得3分为事件3C ,则123C C C C =U U ,其中123,,C C C 为互斥事件. .......................................9分 则: 12312318881881449()()= ()()()1002710027100975P C P C C C P C P C P C =++=⨯+⨯+⨯=U U 故选手甲在A 区投篮得分高于在B 区投篮得分的概率为4975..................................13分17. (共14分)解:(I )Θ棱柱ABCD —1111A B C D 的所有棱长都为2,∴四边形ABCD 为菱形,AC BD ⊥ . .......................................1分又1A O ⊥平面ABCD, BD ⊂平面ABCD ,1AO BD ∴⊥ . .......................................2分 又1AC AO O =Q I ,1,AC AO ⊂平面11ACC A , ⊥∴BD 平面11ACC A , .......................................3分⊂1AA Θ平面11ACC A ,∴ BD ⊥1AA . .......................................4分(Ⅱ)连结1BCΘ四边形ABCD 为菱形,AC BD O =IABC1B 1C 1A DF1D OO ∴是BD 的中点. ....................................... 5分 又Θ点F 为1DC 的中点,∴在1DBC ∆中,1//BC OF , .......................................6分 ⊄OF Θ平面11BCC B ,⊂1BC 平面11BCC B∴//OF 平面11BCC B .......................................8分(III )以O 为坐标系的原点,分别以1,,OA OB OA 所在直线为,,x y z 轴建立空间直角坐标系. Θ侧棱1AA 与底面ABCD 的所成角为60°,1A O ⊥平面ABCD .ο601=∠∴AO A ,在AO A Rt 1∆中,可得11,AO AO == 在Rt AOB ∆中,OB ===得1(1,0,0),(0,A A D B ...............................10分 设平面D AA 1的法向量为),,(1111z y x n =⎪⎩⎪⎨⎧=⋅=⋅∴0111AD n AA n )0,3,1(),3,0,1(1--=-=Θ111100x x ⎧-+=⎪∴⎨-=⎪⎩ 可设)1,1,3(1-=n .......................................11分 又ΘBD ⊥平面11ACC A所以,平面11A ACC的法向量为2n OB ==u u r u u u r.......................................12分55353,cos 21-=⋅-=>=<∴n n , Θ二面角D —1AA —C 为锐角,故二面角D —1AA —C 的余弦值是55. ....................................14分18. (共13分)解:2211(21)()1(1)(1)a x ax a f x a x x x --+-'=--=+++,1x >-, .......................................2分(I )由题意可得13(1)24af -'==-,解得3a =, ....................................3分 因为(1)ln 24f =-,此时在点(1,(1))f 处的切线方程为(ln24)2(1)y x --=--, 即2ln22y x =-+-,与直线:21l y x =-+平行,故所求a 的值为3. ....................4分 (II ) 令()0f x '=,得到1212,0x x a=-= , 由12a ≥可知120a-≤ ,即10x ≤. ................................5分 ① 即12a =时,12120x x a=-==. 所以,2'2()0,(1,)2(1)x f x x x =-≤∈-+∞+, ................................6分 故()f x 的单调递减区间为(1,)-+∞ . ................................7分 ② 当112a <<时,1120a-<-<,即1210x x -<<=, 所以,在区间1(1,2)a--和(0,)+∞上,'()0f x <; ...............................8分在区间1(2,0)a-上,'()0f x >. .................................9分故 ()f x 的单调递减区间是1(1,2)a --和(0,)+∞,单调递增区间是1(2,0)a -. .........10分③当1a ≥时,1121x a=-≤-, 所以,在区间(1,0)-上()0f x '>; ................................11分在区间(0,)+∞上()0f x '< , ...............................12分 故()f x 的单调递增区间是(1,0)-,单调递减区间是(0,)+∞. ............................13分 综上讨论可得: 当12a =时,函数()f x 的单调递减区间是(1,)-+∞; 当112a <<时,函数()f x 的单调递减区间是1(1,2)a --和(0,)+∞,单调递增区间是1(2,0)a-; 当1a ≥时,函数()f x 的单调递增区间是(1,0)-,单调递减区间是(0,)+∞. 19. (共14分)解:(Ⅰ)抛物线22y px = (0)p >的准线为2px =-, .....................................1分 由抛物线定义和已知条件可知||1()1222p pMF =--=+=,解得2p =,故所求抛物线方程为24y x =. 2880y y b +-= ......................................3分 (Ⅱ)联立2124y x by x⎧=-+⎪⎨⎪=⎩,消x 并化简整理得.依题意应有64320b ∆=+>,解得2b >-. ..............................................4分 设1122(,),(,)A x y B x y ,则12128,8y y y y b +=-=-, .............................................5分 设圆心00(,)Q x y ,则应有121200,422x x y yx y ++===-. 因为以AB 为直径的圆与x 轴相切,得到圆半径为0||4r y ==, ........................6分又||AB =. 所以||28AB r ==, .........................................7分解得85b =-. .........................................8分所以12124822224165x x b y b y b +=-+-=+=,所以圆心为24(,4)5-. 故所求圆的方程为2224()(4)165x y -++=. ............................................9分 方法二:联立2124y x b y x⎧=-+⎪⎨⎪=⎩,消掉y 并化简整理得22(416)40x b x b -++=, 依题意应有2216(4)160b b ∆=+->,解得2b >-. ............................................4分 设1122(,),(,)A x y B x y ,则21212416,4x x b x x b +=+= . .............................................5分 设圆心00(,)Q x y ,则应有121200,422x x y yx y ++===-, 因为以AB 为直径的圆与x 轴相切,得到圆半径为0||4r y ==. .....................................6分又||AB =,又||28AB r ==8, .............................................7分解得85b =-, ..............................................8分所以12485x x +=,所以圆心为24(,4)5-. 故所求圆的方程为2224()(4)165x y -++=. .............................................9分 (Ⅲ)因为直线l 与y 轴负半轴相交,所以0b <,又l 与抛物线交于两点,由(Ⅱ)知2b >-,所以20b -<<,...........................................10分 直线l :12y x b =-+整理得220x y b +-=, 点O 到直线l的距离d , .................................................11分所以1||42AOB S AB d ∆==-= ..................................................12分令32()2g b b b =+,20b -<<,24()343()g b b b b b '=+=+,由上表可得()g b 最大值为432()327g -= . ...............................................13分所以当43b =-时,AOB ∆. ...............................................14分20.(共14分)解:(Ⅰ)当10n =时,集合{}1,2,3,,19,20A =L ,{}{}910,11,12,,19,20B x A x =∈>=L 不具有性质P . ...................................1分因为对任意不大于10的正整数m ,都可以找到该集合中两个元素110b =与210b m =+,使得12b b m -=成立................2分 集合{}*31,C x A x k k N =∈=-∈具有性质P . ................................................3分 因为可取110m =<,对于该集合中任意一对元素112231,31c k c k =-=-,*12,k k N ∈ 都有121231c c k k -=-≠. .....................................................................4分 (Ⅱ)当1000n =时,则{}1,2,3,,1999,2000A =L①若集合S 具有性质P ,那么集合{}2001T x x S =-∈一定具有性质P ....................5分 首先因为{}2001T x x S =-∈,任取02001,t x T =-∈ 其中0x S ∈, 因为S A ⊆,所以0{1,2,3,...,2000}x ∈,从而0120012000x ≤-≤,即,t A ∈所以T A ⊆. ...........................6分 由S 具有性质P ,可知存在不大于1000的正整数m , 使得对S 中的任意一对元素12,s s ,都有12s s m -≠. 对于上述正整数m ,从集合{}2001T x x S =-∈中任取一对元素11222001,2001t x t x =-=-,其中12,x x S ∈, 则有1212t t x x m -=-≠,所以集合{}2001T x x S =-∈具有性质P . .............................8分②设集合S 有k 个元素.由第①问知,若集合S 具有性质P ,那么集合{}2001T x x S =-∈一定具有性质P . 任给x S ∈,12000x ≤≤,则x 与2001x -中必有一个不超过1000, 所以集合S 与T 中必有一个集合中至少存在一半元素不超过1000,不妨设S 中有t 2k t ⎛⎫≥ ⎪⎝⎭个元素12,,,t b b b L 不超过1000.由集合S 具有性质P ,可知存在正整数1000m ≤, 使得对S 中任意两个元素12,s s ,都有12s s m -≠, 所以一定有12,,,t b m b m b m S +++∉L .又100010002000i b m +≤+=,故12,,,t b m b m b m A +++∈L , 即集合A 中至少有t 个元素不在子集S 中, 因此2k k +≤2000k t +≤,所以20002kk +≤,得1333k ≤, 当{}1,2,,665,666,1334,,1999,2000S =L L 时, 取667m =,则易知对集合S 中任意两个元素12,y y , 都有12||667y y -≠,即集合S 具有性质P ,而此时集合S中有1333个元素.因此集合S 元素个数的最大值是1333. .....................................14分说明:其它正确解法按相应步骤给分.。

(全优试卷)北京市海淀区高三上学期期末考试数学(理)试题Word版含答案

(全优试卷)北京市海淀区高三上学期期末考试数学(理)试题Word版含答案

海淀区高三年级第一学期期末练习数学(理科) 2018.1第一部分(选择题共40分)一、选择题共8小题,每小题5分,共40分。

在每小题列出的四个选项中,选出符合题目要求的一项。

(1A. B. C.2)在极坐标系A. B. C. D.(3A.4B.5C.6D.7(4的曲线为双曲线”的A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件(5A. B. C. D.(6)从编号分别为1,2,3,4,5,6的六个大小完全相同的小球中,随机取出三个小球,则恰有两个小球编号相邻的概率为A. B. C. D.(7)某三棱锥的三视图如图所示,则下列说法中:②三棱锥的四个面全是直角三角形所有正确的说法是A. ①B. ①②C. ②③D. ①③(8..的是A.4个B.4个C. 4个D. 4个第二部分(非选择题共110分)二、填空题共6小题,每小题5分,共30分。

(9的渐近线的距离是 .(10)已知公差为1100项和为 .(11(12)各项系数的和与各项二项式系数的和之比为64:1,(13)长度的最小值为 .(14的取值范围是;的取值范围为 .三、解答题共6小题,共80分。

解答应写出文字说明,演算步骤或证明过程。

(15)(本小题13分).(16)(本小题13分)据中国日报网报道:2017年11月13日,TOP500发布的最新一期全球超级计算机500强榜单显示,中国超算在前五名中占据两席,其中超算全球第一“神威太湖之光”完全使用了国产品牌处理器。

为了了解国产品牌处理器打开文件的速度,某调查公司对两种国产品牌处理器进行了12次测试,结果如下(数值越小.......,速度越快.,单位是MIPS)(Ⅰ)从品牌A的12次测试中,随机抽取一次,求测试结果小于7的概率;(Ⅱ)从12次测试中,随机抽取三次,记X为品牌A的测试结果大于品牌B的测试结果的次数,求X的分布列和数学期望E(X);(Ⅲ)经过了解,前6次测试是打开含有文字和表格的文件,后6次测试是打开含有文字和图片的文件.请你依据表中数据,运用所学的统计知识,对这两种国产品牌处理器打开文件的速度进行评价.(17)(本小题14分)如题1.将2.(图中未画出)的体积大小,并说明理由.(18)(本小题13分).(19)(本小题14分).(只需写出结论)(20)(本小题13分),,,.7项;(Ⅲ)求证:条件。

海淀区高三年级第一学期期末练习数学(理科)

海淀区高三年级第一学期期末练习数学(理科)

当 4 4a 0 ,即 a 1时,不等式①在定义域内恒成立,所以此时函数
f ( x) 的
单调递增区间为 ( , 1) 和 ( 1, ) .
……………….8 分
当 4 4a 0 ,即 a 1时,不等式①的解为 x 1 1 a 或 x 1 1 a , ……………….10 分
又 因 为 x 1 , 所 以 此 时 函 数 f (x) 的 单 调 递 增 区 间 为 ( , 1 1 a ) 和
海淀区高三年级第一学期期末练习
数 学 (理科)
2010.1
一、 选择题:本大题共 8 小题 ,每小题 5 分,共 40 分.在每小题列出的四个选项中 , 选出符合题目要求的一项 .
1. 函数 y x 1 ( x 0) 的值域为 x
A. 2,
B. (2, )
C. (0, )
D. , 2 U 2,
2.如图, PAB 、 PC 分别是圆 O 的割线和切线( C 为切点),若 PA AB 3 ,则 PC 的长为
4
11. 24 12
12. 10100
3
13.
4
14 .②③ ;28
三、解答题 ( 本大题共 6 小题 , 共 80 分 )
15.(本小题满分 13 分)
解:(Ⅰ)由已知, C , b 5 , 3
因为
1 S ABC ab sin C ,
2

1 10 3 a 5sin

2
3
解得 a 8 .
由余弦定理可得 : c2 64 25 80cos 49 , 3
(Ⅱ)已知二面角
P-BF-C 的余弦值为
6 ,求四棱锥 P-ABCD 的体积 . 6
P
D F

北京市海淀区高三上学期期末数学理科试题

北京市海淀区高三上学期期末数学理科试题

数学(理科)一、选择题:本大题共8小题,每小题5分,共40分.二、填空题:本大题共6小题,每小题5分,共30分.说明:第9,14题第一空3分,第二空2分 三、解答题: 本大题共6小题,共80分.15.解:(Ⅰ)因为π()sin()14f x x x =-+cos )]1x x x =-+ …………………………….1分2cos (sin cos )1x x x =-+22cos sin 2cos 1x x x =-+ …………………………….5分(两个倍角公式,每个各2分)sin2cos2x x =-π)4x =- …………………………….6分 所以函数()f x 的最小正周期2ππ||T ω==. …………………………….7分(Ⅱ)因为ππ[]126x ∈,,所以ππ2[]63x ∈,,所以πππ(2)[]41212x -∈-,. (8)分当ππ2412x -=-时,函数()f x 取得最小值π)12-; …………………………….10分 当ππ2412x -=时,函数()f x 取得最大值π12, …………………………….12分ππ)sin()01212-=, 所以函数()f x 在区间ππ[]126,上的最大值与最小值的和为0. (13)分16.解:(Ⅰ)设持续i 天为事件,1,2,3,4i A i =,用药持续最多一个周期为事件B , …………………………….1分所以2312341121212()()()()()()3333333P A P A P A P A ==⋅=⋅=⋅,,,, …………………………….5分 则123465()(()()()81P B P A P A P A P A =+++=). …………………………….6分法二:设用药持续最多一个周期为事件B ,则B 为用药超过一个周期, …………………………….1分 所以4216()()381P B ==, …………………………….3分 所以4265()1()381P B =-=. …………………………….6分(Ⅱ)随机变量η可以取1,2, …………………………….7分 所以33441211(1)()()3339P C η==+=,18(2)199P η==-=, …………………………….11分所以181712999E η=⋅+⋅=. …………………………….13分17.解:(Ⅰ)过点F 作FH AD ,交PA 于H ,连接BH ,因为13PF PD =,所以13HF AD BC ==. …………………………….1分又FH AD ,AD BC ,所以HF BC . …………………………….2分 所以BCFH为平行四边形, 所以CFBH . (3)分又BH ⊂平面PAB ,CF ⊄平面PAB , ………………….4分(一个都没写的,则这1分不给) 所以CF平面PAD . …………………………….5分(Ⅱ)因为梯形ABCD 中,AD BC ,AD AB ⊥, 所以BC AB ⊥.因为PB ⊥平面ABCD ,所以PB AB PB BC ⊥⊥,, 如图,以B 为原点,,,BC BA BP所在直线为,,x y z 轴建立空间直角坐标系, …………………………….6分HFADCBPPBCDAF yzx所以(1,0,0),(3,3,0),(0,3,0),(0,0,3)C D A P .设平面BPD 的一个法向量为(,,)n x y z =,平面APD 的一个法向量为(,,)m a b c =, 因为(3,3,3),(0,0,3),PD BP =-=所以00PD n BP n ⎧⋅=⎪⎨⋅=⎪⎩,即333030x y z z +-=⎧⎨=⎩, …………………………….7分 取1x =得到(1,1,0)n =-, …………………………….8分 同理可得(0,1,1)m =, …………………………….9分 所以1cos ,2||||n m n m n m ⋅<>==-, …………………………….10分因为二面角B PD A --为锐角, 所以二面角B PD A--为π3. …………………………….11分(Ⅲ)假设存在点M ,设(3,3,3)PM PD λλλλ==-, 所以(13,3,33)CM CP PM λλλλ=+=-+-, …………………………….12分 所以93(33)0PA CM λλ⋅=-+-=,解得12λ=, …………………………….13分 所以存在点M,且12PM PD ==. …………………………….14分18.解:(Ⅰ)因为1()(1)ln f x kx k x x=-+-, 所以22211(1)1'()k kx k x f x k x x x +-++=-+=, …………………………….1分 当12k =时,21(2)(1)2'()x x f x x--=. …………………………….2分令21(2)(1)2'()0x x f x x --== , 得121,2x x ==, (3)分所以'(),()f x f x 随x 的变化情况如下表:…………………………….6分所以()f x 在1x =处取得极大值1(1)2f =-,在2x =处取得极小值13(2)ln 222f =-. …………………………….7分函数()f x 的单调递增区间为(0,1),(2,)+∞, ()f x 的单调递减区间为(1,2).…………………………….8分(Ⅱ)证明:不等式()1f x >在区间[1,e]上无解,等价于()1f x ≤在区间[1,e]上恒成立, 即函数()f x 在区间[1,e]上的最大值小于等于1.因为21()(1)'()k x x k f x x--=, 令'()0f x =,得121,1x x k==.…………………………….9分 因为01k <<时,所以11k>. 当1e k≥时,'()0f x ≤对[1,e]x ∈成立,函数()f x 在区间[1,e]上单调递减,……………………….10分所以函数()f x 在区间[1,e]上的最大值为(1)11f k =-<, 所以不等式()1f x >在区间[1,e]上无解; …………………………….11分 当1e k<时,'(),()f x f x 随x 的变化情况如下表:所以函数()f x 在区间[1,e]上的最大值为(1)f 或(e)f . ……………………………….12分此时(1)11f k =-<, 1(e)e (1)ef k k =-+-, 所以1(e)1e (1)1ef k k -=-+--111(e 1)2(e 1)2e 30e e ek =---<---=--< .综上,当01k <<时,关于x 的不等式()1f x >在区间[1,e]上无解. …………………………….13分19.解:(Ⅰ)因为椭圆W 的左顶点A 在圆22:16O x y +=上, 令0y =,得4x =±,所以4a =. …………………………….1分又离心率为,所以e c a ==,所以c =分所以2224b a c =-=, …………………………….3分所以W 的方程为221164x y +=.…………………………….4分 (Ⅱ)法一:设点1122(,),(,)P x y Q x y ,设直线AP的方程为(4)y k x =+, …………………………….5分与椭圆方程联立得22(4)1164y k x x y =+⎧⎪⎨+=⎪⎩,化简得到2222(14)3264160k x k x k +++-=,…………………………….6分因为4-为上面方程的一个根,所以21232(4)14k x k -+-=+,所以21241614k x k -=+. …………………………….7分所以||AP =.…………………………….8分 因为圆心到直线AP的距离为d =, (9)分 所以||AQ ===, …………………………….10分 因为||||||||1||||||PQ AQ AP AQ AP AP AP -==-, …………………………….11分 代入得到22222||1433113||111PQ k k AP k k k +==-==-+++. …………………………….13分 显然23331k-≠+,所以不存在直线AP,使得||3||PQ AP =. …………………………….14分法二: 设点1122(,),(,)P x y Q x y ,设直线AP的方程为4x my =-, …………………………….5分与椭圆方程联立得2241164x my x y =-⎧⎪⎨+=⎪⎩化简得到22(4)80m y my +-=, 由2640m ∆=>得0m ≠. (6)分显然0是上面方程的一个根,所以另一个根,即1284my m =+. …………………………….7分由1||0|AP y =-=, …………………………….8分 因为圆心到直线AP的距离为d =, …………………………….9分所以||AQ===……………….10分因为||||||||1||||||PQ AQ AP AQAP AP AP-==-,…………………………….11分代入得到222||4311||11PQ mAP m m+=-=-=++, …………………………….13分若2331m=+,则0m=,与0m≠矛盾,矛盾,所以不存在直线AP,使得||3||PQAP=. ……………………………. 14分法三:假设存在点P,使得||3||PQAP=,则||4||AQAP=,得||4||QPyy=. …………………………….5分显然直线AP的斜率不为零,设直线AP的方程为4x my =-, …………………………….6分由2241164x my x y =-⎧⎪⎨+=⎪⎩,得 22(4)80m y my +-=,由2640m ∆=>得0m ≠, …………………………….7分 所以284P m y m =+. …………………………….9分 同理可得281Q my m =+, …………………………….11分所以由||4||Q P y y =得22441m m +=+, …………………………….13分则0m =,与0m ≠矛盾, 所以不存在直线AP,使得||3||PQ AP =. (1)4分20.解:(Ⅰ)因为{}n a 是P 数列,且10a =,所以3202||||a a a a =-=, 所以43222a a a a a =-=-,所以221a a -=,解得212a =-, …………………………….1分所以354311,||22a a a a ==-=. …………………………….3分(Ⅱ) 假设P 数列{}n a 的项都是正数,即120,0,0n n n a a a ++>>>,所以21n n n a a a ++=-,3210n n n n a a a a +++=-=-<,与假设矛盾.故P 数列{}n a 的项不可能全是正数, …………………………….5分 假设P 数列{}n a 的项都是负数,则0,n a <而210n n n a a a ++=->,与假设矛盾, …………………………….7分故P 数列{}n a 的项不可能全是负数.(Ⅲ)由(Ⅱ)可知P 数列{}n a 中项既有负数也有正数, 且最多连续两项都是负数,最多连续三项都是正数. 因此存在最小的正整数k 满足10,0k k a a +<>(5k ≤). 设1,(,0)k k a a a b a b +=-=>,则2345,,,k k k k a b a a a a b a b a ++++=+==-=-.678910,,,,k k k k k a b a b a b a a a a b a a a b +++++=-+=-+=-=-=, 故有9k k a a +=, 即数列{}n a 是周期为9的数列 …………………………….9分由上可知18,,,k k k a a a ++⋅⋅⋅这9项中4,k k a a +为负数,5,8k k a a ++这两项中一个为正数,另一个为负数,其余项都是正数.因为20169224=⨯,所以当1k =时,2243672m =⨯=;当25k ≤≤时,121,,,k a a a -⋅⋅⋅这1k -项中至多有一项为负数,而且负数项只能是1k a -,记12016,,,k k a a a +⋅⋅⋅这2007k -项中负数项的个数为t ,当2,3,4k =时,若10,k a -< 则11k k k k b a a a a a +-==->=,故8k a +为负数, 此时671t =,671+1=672m =; 若10,k a ->则11k k k k b a a a a a +-==-<=,故5k a +为负数. 此时672t =,672m =,当5k =时,1k a -必须为负数,671t =,672m =, (12)分 综上可知m 的取值集合为{672}. …………………………….13分说明:1. 正确给出m 的值,给1分2. 证明中正确合理地求出数列{}n a 的周期给2分,但是通过特例说明的不给分3. 正确合理说明m 取值情况给2分。

北京市海淀区高三第一学期期末理科数学试题

北京市海淀区高三第一学期期末理科数学试题

海淀区高三年级第一学期期末练习数学(理科)第一部分(选择题 共40分)一、选择题共8小题,每小题5分,共40分。

在每小题列出的四个选项中,选出符合题目要求的一项。

(1)复数12ii+= A. 2i - B. 2i + C. 2i -- D. 2i -+ (2)在极坐标系中Ox ,方程2sin ρθ=表示的圆为A. B. C. D.(3)执行如图所示的程序框图,输出的k 值为 A.4 B.5 C.6 D.7(4)设m 是不为零的实数,则“0m f ”是“方程221x y m m-=表示 的曲线为双曲线”的A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件(5)已知直线0x y m -+=与圆22:1O x y +=相交于,A B 两点,且AOB ∆为正三角形,则实数m 的值为A. 3B. 6C. 3或3-D.6或6-(6)从编号分别为1,2,3,4,5,6的六个大小完全相同的小球中,随机取出三个小球,则恰有两个小球编号相邻的概率为 A. 15 B. 25 C. 35 D. 45(7)某三棱锥的三视图如图所示,则下列说法中: ①三棱锥的体积为16②三棱锥的四个面全是直角三角形 ③三棱锥的四个面的面积最大的是3所有正确的说法是A. ①B. ①②C. ②③D. ①③(8)已知点F 为抛物线2:2(0)C y px p =f 的焦点,点K 为点F 关于原点的对称点,点M在抛物线C 上,则下列说法错误..的是 A.使得MFK ∆为等腰三角形的点M 有且仅有4个 B.使得MFK ∆为直角三角形的点M 有且仅有4个 C. 使得4MKF π∠=的点M 有且仅有4个 D. 使得6MKF π∠=的点M 有且仅有4个第二部分(非选择题 共110分)二、填空题共6小题,每小题5分,共30分。

(9)点(2,0)到双曲线2214x y -=的渐近线的距离是 . (10)已知公差为1的等差数列{}n a 中,1a ,2a ,4a 成等比数列,则{}n a 的前100项和为 .(11)设抛物线2:4C y x =的顶点为O ,经过抛物线C 的焦点且垂直于x 轴的直线和抛物线C 交于,A B 两点,则OA OB +=u u u r u u u r.(12)已知(51)nx -的展开式中,各项系数的和与各项二项式系数的和之比为64:1,则n = .(13)已知正方体1111ABCD A B C D -的棱长为M 是棱BC 的中点,点P 在底面ABCD 内,点Q 在线段11A C 上,若1PM =,则PQ 长度的最小值为 .(14)对任意实数k ,定义集合20(,)20,0k x y D x y x y x y R kx y ⎧⎫-+≥⎧⎪⎪⎪=+-≤∈⎨⎨⎬⎪⎪⎪-≤⎩⎩⎭. ①若集合k D 表示的平面区域是一个三角形,则实数k 的取值范围是 ; ②当0k =时,若对任意的(,)k x y D ∈,有(3)1y a x ≥+-恒成立,且存在(,)k x y D ∈,使得x y a -≤成立,则实数a 的取值范围为 .三、解答题共6小题,共80分。

度海淀区高三年级第一学期期末练习数学试题(理)

度海淀区高三年级第一学期期末练习数学试题(理)

海淀区高三年级第一学期期末练习数学试题(理科)一、选择题:本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.设集合{|12},{|}.A x x B x x a ==≤≤≥若A B ⊆,则a 的范围是 ( )A .1a <B .1a ≤C .2a <D .2a ≤ 2.函数⎪⎭⎫⎝⎛+=34cos πx y 图象的两条相邻对称轴间的距离为( ) A .8π B .4πC .2πD .π 3.在边长为2的正三角形ABC 中,设a c c b b a b a c ⋅+⋅+⋅===则,,,等于( )A .3-B .0C .1D . 3 4.设i 为虚数单位,则()41i +展开式中的第三项为 ( )A .4 iB .4i -C .6D . 6-5.设m 、n 是不同的直线,α、β、γ是不同的平面,有以下四个命题:① 若//,//,αβαγ 则//βγ ②若αβ⊥,//m α,则m β⊥③ 若,//m m αβ⊥,则αβ⊥ ④若//,m n n α⊂,则//m α其中真命题的序号是( )A . ①④B . ②③C . ②④D . ①③6.已知点()0,A b ,B 为椭圆22x a +22y b=1()0a b >>的左准线与x 轴的交点,若线段AB 的中点C 在椭圆上,则该椭圆的离心率为( )AB C D 7.已知函数)()(),1(1)(12x f x f x x x f 为-≥-=,的反函数,则函数)(||1x fy x y -==-与与在同一坐标系中的图象为( )A B C D8.已知函数)(x f y =是定义在[a,b]上的增函数,其中a b R b a -<<∈0,,且设函数)(,)]([)]([)(22x F x f x f x F 且--=不恒等于0,则对于)(x F 有如下说法:①定义域为[-b,b] ②是奇函数 ③最小值为0 ④在定义域内单调递增 其中正确说法的个数有 ( )A .4个B .3个C .2个D .1个二、填空题:本大题共6小题,每小题5分,共30分.把答案填在题中横线上.9.双曲线14922=-y x 的一个焦点到一条渐近线的距离是 . 10.在△ABC 中,A+C=2B ,BC=5,且△ABC 的面积为310,则B ;AB= .11.已知函数⎩⎨⎧>-≤+-=),0(1),0(|1|)(2x x x x x f 那么不等式0)(<x f 的解集为 .12.设不等式组⎪⎩⎪⎨⎧≤-≤-≤-220302||y x y x 所表示的平面区域为S,则S 的面积为 ;若A ,B 为S内的两个点, 则|AB|的最大值为 .13.已知P ,A ,B ,C 是以O 为球心的球面上的四个点,PA ,PB ,PC ,两两垂直,且PA=PB=PC=2,则球O 的半径为 ;球心O 到平面ABC 的距离为14.在100,101,102,…,999这些数中,各位数字按严格递增(如“145”)或严格递减(如“321”)顺序排列的数的个数是 个. 把符合条件的所有数按从小到大的顺序排列,则321是第____个数. (用数字作答)三、解答题: 本大题共6小题,共80分.解答应写出文字说明, 演算步骤或证明过程. 15.(本小题共12分)已知向量(cos 2sin ,sin ),(cos sin ,2cos ),x x x x x x =+=-a b 设函数()f x =⋅a b .(I )求函数)(x f 的单调递增区间;(II )求函数)(x f 的最大值及取得最大值时x 的集合. 16.(本小题共14分)如图,在四棱锥S ABCD -中,底面ABCD 是正方形,SA ⊥底面ABCD ,SA AB =, 点M 是SD 的中点,AN SC ⊥,且交SC 于点N .SNMDCBA(I ) 求证: //SB 平面ACM ; (II ) 求二面角D AC M --的大小; (III )求证:平面SAC ⊥平面AMN . 17.(本小题共12分)某城市有30﹪的家庭订阅了A 报,有60﹪的家庭订阅了B 报,有20﹪的家庭同时订阅了A 报和B 报,从该城市中任取4个家庭.(Ⅰ)求这4个家庭中恰好有3个家庭订阅了A 报的概率; (Ⅱ)求这4个家庭中至多有3个家庭订阅了B 报的概率; (Ⅲ)求这4个家庭中恰好有2个家庭A,B 报都没有订阅的概率. 18.(本小题共14分)已知抛物线S 的顶点在坐标原点,焦点在x 轴上,ABC ∆的三个顶点都在抛物线上,且ABC ∆的重心为抛物线的焦点,若BC 所在直线l 的方程为4200.x y +-= (I )求抛物线S 的方程;(II )若O 是坐标原点,P 、Q 是抛物线S 上的两动点,且满足PO OQ ⊥.试说明动直线PQ 是否过一个定点.19.(本小题共14分)设1x 、2x )(21x x ≠是函数)0()(223>-+=a x a bx ax x f 的两个极值点.(I )若2,121=-=x x ,求函数)(x f 的解析式; (II )若22||||21=+x x ,求b 的最大值;(III )设函数)()(')(1x x a x f x g --=,12(,)x x x ∈,当a x =2时,求证:21()(32)12g x a a +≤. 20.(本小题共14分)已知定义在R 上的函数()f x 满足:,5(1)2f =,且对于任意实数,x y ,总有 ()()()()f x f y f x y f x y =++-成立.(I )求(0)f 的值,并证明函数()f x 为偶函数; (II )定义数列{}n a :2(1)()(1,2,3,)n a f n f n n =+-=,求证:{}n a 为等比数列;(III )若对于任意非零实数y ,总有()2f y >.设有理数12,x x 满足12||||x x <,判断1()f x 和2()f x 的大小关系,并证明你的结论.。

(优辅资源)北京市海淀区高三上学期期末考试数学(理)试题Word版含答案

(优辅资源)北京市海淀区高三上学期期末考试数学(理)试题Word版含答案

海淀区高三年级第一学期期末练习数学(理科) 2018.1第一部分(选择题共40分)一、选择题共8小题,每小题5分,共40分。

在每小题列出的四个选项中,选出符合题目要求的一项。

(1A. B. C.2)在极坐标系A. B. C. D.(3A.4B.5C.6D.7(4的曲线为双曲线”的A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件(5A. B. C. D.(6)从编号分别为1,2,3,4,5,6的六个大小完全相同的小球中,随机取出三个小球,则恰有两个小球编号相邻的概率为A. B. C. D.(7)某三棱锥的三视图如图所示,则下列说法中:②三棱锥的四个面全是直角三角形所有正确的说法是A. ①B. ①②C. ②③D. ①③(8..的是A.4个B.4个C. 4个D. 4个第二部分(非选择题共110分)二、填空题共6小题,每小题5分,共30分。

(9的渐近线的距离是 .(10)已知公差为1100项和为 .(11(12)各项系数的和与各项二项式系数的和之比为64:1,(13)长度的最小值为 .(14的取值范围是;的取值范围为 .三、解答题共6小题,共80分。

解答应写出文字说明,演算步骤或证明过程。

(15)(本小题13分).(16)(本小题13分)据中国日报网报道:2017年11月13日,TOP500发布的最新一期全球超级计算机500强榜单显示,中国超算在前五名中占据两席,其中超算全球第一“神威太湖之光”完全使用了国产品牌处理器。

为了了解国产品牌处理器打开文件的速度,某调查公司对两种国产品牌处理器进行了12次测试,结果如下(数值越小.......,速度越快.,单位是MIPS)(Ⅰ)从品牌A的12次测试中,随机抽取一次,求测试结果小于7的概率;(Ⅱ)从12次测试中,随机抽取三次,记X为品牌A的测试结果大于品牌B的测试结果的次数,求X的分布列和数学期望E(X);(Ⅲ)经过了解,前6次测试是打开含有文字和表格的文件,后6次测试是打开含有文字和图片的文件.请你依据表中数据,运用所学的统计知识,对这两种国产品牌处理器打开文件的速度进行评价.(17)(本小题14分)如题1.将2.(图中未画出)的体积大小,并说明理由.(18)(本小题13分).(19)(本小题14分).(只需写出结论)(20)(本小题13分),,,.7项;(Ⅲ)求证:条件。

2019海淀区高三年级第一学期期末练习数 学(理科)

2019海淀区高三年级第一学期期末练习数  学(理科)

·海淀区高三年级第一学期期末练习数 学(理科) 2019.01本试卷共4页,150分。

考试时长120分钟。

考生务必将答案答在答题卡上,在试卷上 作答无效。

考试结束后,将本试卷和答题卡一并交回。

第一部分(选择题 共40分)一、选择题共8小题,每小题5分,共40分。

在每小题列出的四个选项中,选出符合题目要求的一项。

(1)双曲线x y -=22122的左焦点的坐标为(A )(,)-20 (B)()0 (C ) (,)-10 (D )(,)-40 (2)已知向量(,),(,)t ==201a b ,且||⋅=a b a ,则,a b 的夹角大小为 (A )π6 (B )π4 (C )π3 (D )5π12(3)已知等差数列{}n a 满足12a =,公差d ≠0,且125,,a a a 成等比数列,则d = (A )1 (B )2 (C )3 (D )4(4)直线y kx =+1被圆x y +=222截得的弦长为2,则k 的值为(A )0 (B )12±(C )1± (D) (5)以正六边形的6个顶点中的3个作为顶点的三角形中,等腰三角形的个数为 (A )6 (B )7 (C )8 (D )12 (6)已知函数()ln af x x x=+ ,则“a <0”是“函数()f x 在区间(,)+∞1 上存在零点”的 (A )充分而不必要条件 (B )必要而不充分条件 (C )充分必要条件(D )既不充分也不必要条件(11)某三棱锥的三视图如上图所示,则这个三棱锥 中最长的棱与最短的棱的长度分别为 , .(13)在ABC △中,b =,且c o s c o s A B =2,则cos A = . (15)(本小题满分13分)已知函数π()cos()cos22f x a x x =--,其中a >0. (Ⅰ)比较ππ()()62f f ,的大小;(Ⅱ)求函数()f x 在区间ππ[,]22-上的最小值.主视图俯视图补充15.(本小题满分13分) 在ABC ∆中, 3a =,b =2B A =.(Ⅰ)求cos A 的值; (Ⅱ)试比较B ∠与C ∠的大小.(17)(本小题满分14分)在四棱锥P ABCD -中, 平面ABCD ⊥平面PCD , 底面ABCD 为梯形,AB CD ,AD PC ⊥,且,,AB AD DC DP PDC ====∠=12120o . (Ⅰ)求证:AD ⊥平面PCD ; (Ⅱ)求二面角B PD C --的余弦值;(Ⅲ)若M 是棱PA 的中点,求证:对于棱BC 上任意一点F ,MF 与PC 都不平行.P(19)(本小题满分13分)已知函数()xax x f x -=e 2.(Ⅰ)当a =-1时,求曲线()y f x =在点(,())f 11处的切线方程;(Ⅱ)当0a >时,求证:2()ef x >-对任意的(,)x ∈+∞0成立.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

海淀区高三年级第一学期期末练习数学(理科)2016.1本试卷共4页,150分。

考试时长120分钟。

考生务必将答案答在答题卡上,在试卷上作答无效。

考试结束后,将本试卷和答题卡一并交回。

一、选择题共8小题,每小题5分,共40分。

在每小题列出的四个选项中,选出符合题目要求的一项。

1. 已知,则的值为A. B. C. D.2. 抛物线的准线与轴的交点的坐标为A. B. C. D.3. 如图,正方形中,为的中点,若,则的值为A. B. C. D.4. 某程序框图如图所示,执行该程序,若输入的值为1,则输出的值为A. B. C. D.5. 已知数列,其中, 则满足的不同数列一共有A. 个B. 个C. 个D. 个6. 已知圆, 直线,若被圆所截得的弦的长度之比为,则的值为A. B.1 C. D.7. 若满足则的最大值为A. B. C. D.8. 已知正方体,记过点与三条直线所成角都相等的直线条数为, 过点与三个平面所成角都相等的直线的条数为,则下面结论正确的是A. B.C. D.二、填空题共6小题,每小题5分,共30分。

9. 已知双曲线的一条渐近线过点,则其离心率为10. 在的展开式中,常数项为____.(用数字作答)11. 已知等比数列的公比为,若,则12. 某四棱锥的三视图如图所示,则该四棱锥中最长棱的棱长为13. 已知函数若的最小值是,则14. 已知,若存在,满足,则称是的一个“友好”三角形.(i) 在满足下述条件的三角形中,存在“友好”三角形的是____:(请写出符合要求的条件的序号)①;②;③.(ii) 若等腰存在“友好”三角形,且其顶角的度数为___.三、解答题共6小题,共80分。

解答应写出文字说明、演算步骤或证明过程。

15. (本小题满分13分)已知函数.(Ⅰ)求函数的最小正周期;(Ⅱ)求函数在区间上的最大值与最小值的和.16. (本小题满分13分)已知某种动物服用某种药物一次后当天出现A症状的概率为. 为了研究连续服用该药物后出现A症状的情况,做药物试验.试验设计为每天用药一次,连续用药四天为一个用药周期. 假设每次用药后当天是否出现A症状的出现与上次用药无关.(Ⅰ)如果出现A症状即停止试验”,求试验至多持续一个用药周期的概率;(Ⅱ)如果在一个用药周期内出现3次或4次A症状,则这个用药周期结束后终止试验,试验至多持续两个周期. 设药物试验持续的用药周期数为,求的期望.17. (本小题满分14分)如图,在四棱锥中,底面,底面为梯形,,,且.(Ⅰ)若点为上一点且,证明:平面;(Ⅱ)求二面角的大小;(Ⅲ)在线段上是否存在一点,使得?若存在,求出的长;若不存在,说明理由.18. (本小题满分13分)已知函数.(Ⅰ)当时,求函数的单调区间和极值;(Ⅱ)求证:当时,关于的不等式在区间上无解.(其中)19. (本小题满分14分)已知椭圆的离心率为,其左顶点在圆上.(Ⅰ)求椭圆的方程;(Ⅱ)若点为椭圆上不同于点的点,直线与圆的另一个交点为. 是否存在点,使得?若存在,求出点的坐标;若不存在,说明理由.20. (本小题满分13分)若实数数列满足,则称数列为“数列”.(Ⅰ)若数列是数列,且,求,的值;(Ⅱ) 求证:若数列是数列,则的项不可能全是正数,也不可能全是负数;(Ⅲ) 若数列为数列,且中不含值为零的项,记前项中值为负数的项的个数为,求所有可能取值.海淀区高三年级第一学期期末练习参考答案数学(理科)2016.1阅卷须知:1.评分参考中所注分数,表示考生正确做到此步应得的累加分数。

2.其它正确解法可以参照评分标准按相应步骤给分。

一、选择题:本大题共8小题,每小题5分,共40分.题号 1 2 3 4 5 6 7 8答案 A B D C A C D D二、填空题:本大题共6小题,每小题5分,共30分.题号9 10 11 12 13 14答案②;说明:第9,14题第一空3分,第二空2分三、解答题: 本大题共6小题,共80分.15.解:(Ⅰ)因为…………………………….1分…………………………….5分(两个倍角公式,每个各2分)…………………………….6分所以函数的最小正周期. …………………………….7分(Ⅱ)因为,所以,所以. ………………………….8分当时,函数取得最小值; …………………………….10分当时,函数取得最大值, …………………………….12分因为,所以函数在区间上的最大值与最小值的和为. …………………………….13分16.解:(Ⅰ)设持续天为事件,用药持续最多一个周期为事件,…………………………….1分所以,…………………………….5分则. …………………………….6分法二:设用药持续最多一个周期为事件,则为用药超过一个周期,…………………………….1分所以, …………………………….3分所以. …………………………….6分(Ⅱ)随机变量可以取,…………………………….7分所以, , …………………………….11分所以. …………………………….13分17.解:(Ⅰ)过点作,交于,连接,因为,所以.…………………………….1分又,,所以.…………………………….2分所以为平行四边形, 所以.…………………………….3分又平面,平面,………………….4分(一个都没写的,则这1分不给)所以平面. …………………………….5分(Ⅱ)因为梯形中,,,所以.因为平面,所以,如图,以为原点,所在直线为轴建立空间直角坐标系,…………………………….6分所以.设平面的一个法向量为,平面的一个法向量为,因为所以,即,…………………………….7分取得到,…………………………….8分同理可得,…………………………….9分所以,…………………………….10分因为二面角为锐角,所以二面角为.…………………………….11分(Ⅲ)假设存在点,设,所以,…………………………….12分所以,解得,…………………………….13分所以存在点,且.…………………………….14分18.解:(Ⅰ)因为,所以,…………………………….1分当时,.…………………………….2分令,得,…………………………….3分所以随的变化情况如下表:极大值极小值…………………………….6分所以在处取得极大值,在处取得极小值.…………………………….7分函数的单调递增区间为,, 的单调递减区间为.…………………………….8分(Ⅱ)证明:不等式在区间上无解,等价于在区间上恒成立,即函数在区间上的最大值小于等于1.因为,令,得. …………………………….9分因为时,所以.当时,对成立,函数在区间上单调递减,……………………….10分所以函数在区间上的最大值为,所以不等式在区间上无解;…………………………….11分当时,随的变化情况如下表:↘极小值↗所以函数在区间上的最大值为或.……………………………….12分此时, ,所以.综上,当时,关于的不等式在区间上无解.…………………………….13分19.解:(Ⅰ)因为椭圆的左顶点在圆上,令,得,所以. …………………………….1分又离心率为,所以,所以,…………………………….2分所以,…………………………….3分所以的方程为. …………………………….4分(Ⅱ)法一:设点,设直线的方程为,…………………………….5分与椭圆方程联立得,化简得到, …………………………….6分因为为上面方程的一个根,所以,所以.…………………………….7分所以. …………………………….8分因为圆心到直线的距离为,…………………………….9分所以,…………………………….10分因为,…………………………….11分代入得到.…………………………….13分显然,所以不存在直线,使得. …………………………….14分法二:设点,设直线的方程为,…………………………….5分与椭圆方程联立得化简得到,由得. …………………………….6分显然是上面方程的一个根,所以另一个根,即.…………………………….7分由,…………………………….8分因为圆心到直线的距离为,…………………………….9分所以.…………………………….10分因为,…………………………….11分代入得到,…………………………….13分若,则,与矛盾,矛盾,所以不存在直线,使得. …………………………….14分法三:假设存在点,使得,则,得. …………………………….5分显然直线的斜率不为零,设直线的方程为,…………………………….6分由,得,由得,…………………………….7分所以.…………………………….9分同理可得,…………………………….11分所以由得,…………………………….13分则,与矛盾,所以不存在直线,使得. …………………………….14分20.解:(Ⅰ)因为是数列,且所以,所以,所以,解得, …………………………….1分所以. …………………………….3分(Ⅱ) 假设数列的项都是正数,即,所以,,与假设矛盾.故数列的项不可能全是正数,…………………………….5分假设数列的项都是负数,则而,与假设矛盾,…………………………….7分故数列的项不可能全是负数.(Ⅲ)由(Ⅱ)可知数列中项既有负数也有正数,且最多连续两项都是负数,最多连续三项都是正数.因此存在最小的正整数满足().设,则.,故有, 即数列是周期为9的数列…………………………….9分由上可知这9项中为负数,这两项中一个为正数,另一个为负数,其余项都是正数. 因为,所以当时,;当时,这项中至多有一项为负数,而且负数项只能是,记这项中负数项的个数为,当时,若则,故为负数,此时,;若则,故为负数.此时,,当时,必须为负数,,,…………………………….12分综上可知的取值集合为.…………………………….13分说明:1. 正确给出的值,给1分2. 证明中正确合理地求出数列的周期给2分,但是通过特例说明的不给分3. 正确合理说明取值情况给2分。

相关文档
最新文档