现代电力电子
现代电力电子学培训课程
现代电力电子学培训课程现代电力电子学培训课程现代电力电子学是一个和日新月异的科技领域,它是连接电力系统和电通讯系统之间的桥梁。
现代电力电子学培训课程是为那些在电力电子学领域工作的以及那些对这个领域感兴趣的人提供的一种专业技术培训课程,其目的是通过理论和实践的结合,提高学生在电力电子学领域的知识和技能水平。
本文将介绍现代电力电子学培训课程的主要内容及其重要性。
一、现代电力电子学培训课程的内容1.基本概念和原理课程开始于电力电子的基本概念和原理的讲解。
课程包括功率半导体器件的应用,电机控制,电力电子拓扑,以及电力电子的软件和硬件控制等方面。
2.实验室实践实验室实践是电力电子培训课程中的一个非常重要的部分。
学生将学习如何在实验室中使用一些基础的电力电子器件和系统进行测试和调试,例如半导体器件模块的温度控制,整流器和逆变器电路的性能测试,以及故障诊断和修复等。
3.电力电子设计在电力电子课程的后期阶段,学生需要学习和掌握一些现代电力电子工业中的关键概念和理论,例如高功率因数电源转换器、双向变流器、多电平换流器等。
4.模拟和数字控制电力电子学的控制系统包括模拟控制和数字控制。
在现代电力电子学培训课程中,学生将学习如何使用各种控制策略来控制电力电子系统,从而实现优化性能、最小化能量损失、和减小系统的体积和成本等目的。
二、现代电力电子学培训课程的重要性1.提高学生的技能水平现代电力电子学培训课程有利于学生提高在电力电子领域的技能水平,通过理论和实践相结合的方式,他们将会学习到如何设计和实现电力电子系统,并且能够在工业和研究方面做出创新性的贡献。
2.解决行业问题现代电力电子技术在很多领域中被广泛应用,而这些应用中存在许多的问题。
现代电力电子学培训课程将帮助学生解决这些问题,从而促进电力电子技术的进步和发展。
3.带动行业发展现代电力电子学培训课程可以为电力电子工程师提供必要的技能,从而对电力电子产业带动作用,促进电力电子技术的发展和推广,为电力电子产业注入新的活力和动力。
现代电力电子技术-概述
绪-11
第二节. 电力电子技术的发展史
史前期 (黎明期)
晶体管诞生
晶闸管问 世,(“公元
元年”)
电子学
电力学
电力 电子学
连续、离散
控制 理论
全世界普遍接受。
图1 描述电力电子学的倒三角形
绪-8
三. 与相关学科的关系
与电子学(信息电子学)的关系 都分为器件和应用两大分支。 器件的材料、工艺基本相同,采用微电子技术。 应用的理论基础、分析方法、分析软件也基本相 同。 信息电子电路的器件可工作在开关状态,也可工 作在放大状态;电力电子电路的器件一般只工作 在开关状态。 二者同根同源。
绪-5
二. 两大分支
电力电子器件制造技术 是电力电子技术的基础。
变流技术(电力电子器件应用技术) 是电力电子技术的核心。 用电力电子器件构成电力变换电路和对其进行
控制的技术,以及构成电力电子装置和电力电子 系统的技术。
绪-6
二. 两大分支
变流技术
电力——交流和直流两种
从公用电网直接得到的是交流,从蓄电池和干电池 得到的是直流。
绪-13
第三节. 电力电子技术的应用
1.一般工业
数控机床
自动控制
绪-14
第三节. 电力电子技术的应用
2.交通运输
绪-15
第三节. 电力电子技术的应用
3.电力系统
柔性交流输电FACTS
高压直流装置HVDC
绪-16
第三节. 电力电子技术的应用
《现代电力电子技术》课件
交流调制技术
1
原理
用逆变器将直流电压转变为交流电压,再对交流电压进行调制,的信号与高频三角波叠加,得到PWM信号。
3
三角PWM控制
将需要控制的信号与低频三角波叠加,得到PWM信号。
开关电源技术
工作原理
利用功率开关器件的导通和断开, 将高频电源变换成低压稳定直流电 源。
现代电力电子技术
电力电子技术涉及电能的控制、变换和传输等方面,已经成为现代电力工业、 交通运输、通讯、计算机等各个领域中的关键技术。
概述
定义
电力电子技术是控制和变换电 力的一种新兴技术领域。
应用领域
广泛应用于交通运输、轨道交 通、新能源、家电、通讯和计 算机等领域。
发展历程
20世纪50年代发展并日渐成熟, 80年代达到高峰,90年代后进 入了新的发展阶段。
结语
1
电力电子技术的未来
电力电子技术将继续发挥更大的作用,推动新能源发展。
2
相关学科和领域介绍
电机与电器、电力系统、电力电子等学科和领域紧密相连。
3
总结
电力电子技术在现代社会中扮演着重要的角色,将会继续深入发展和应用。
滤波器设计与优化
电源滤波器、信号滤波器、噪声滤波器等滤波器都 可以用来消除共模噪声。
变频技术
基本原理
将恒定电压变为可调电压、可以调 制频率的交流电源。
电机驱动
变频器是电机驱动的核心装置,根 据不同的负载条件可以调整输出频 率和电压。
实际应用案例
应用于风能、太阳能、水能、地热 能等大规模新能源并驱动各种电动 机械设备。
电路设计
4
电路包括逆变电路、滤波电路和输出负载等 部分。
共模噪声抑制技术
综述现代电力电子技术在电力系统中的发展现状
综述现代电力电子技术在电力系统中的发展现状【摘要】现代电力电子技术在电力系统中扮演着重要的角色,其应用范围和深度不断扩大,对电力系统的稳定性、效率和可靠性产生了深远影响。
本文通过介绍现代电力电子技术的基本概念和电力系统的发展背景,探讨了电力电子技术在电力系统中的应用以及电力电子器件的发展现状。
分析了电力电子技术在电力系统中的优势和面临的挑战,展望了其未来的发展方向。
总结了电力电子技术对电力系统的影响和其发展前景。
随着科技的不断进步,电力电子技术将继续发挥着重要作用,推动电力系统的现代化和智能化发展。
【关键词】关键词:现代电力电子技术、电力系统、应用、器件、优势、挑战、发展方向、影响、发展前景1. 引言1.1 现代电力电子技术的基本概念现代电力电子技术是一种以电子器件和数字控制技术为基础,利用变流器、整流器、逆变器等设备实现电能转换和调节的技术。
在电力系统中,电力电子技术可以实现电能的高效转换、稳定控制和灵活调节,从而提高电力系统的运行效率和稳定性。
电力电子技术的基本概念包括以下几个方面:首先是功率器件,如晶闸管、场效应管、绝缘栅双极型晶体管等,这些器件可以实现电能的无级调节和快速开关;其次是控制技术,如PWM调制技术、谐波抑制技术、闭环控制技术等,这些技术可以实现对电能转换过程的精确控制;此外还包括电力电子拓扑结构设计、热管理技术等方面。
现代电力电子技术的发展使得电力系统具备了更高的智能化、灵活性和稳定性,为电力系统的高效运行和接入可再生能源提供了重要支撑。
随着电力需求的不断增加和新能源的大规模接入,电力电子技术在电力系统中的应用前景十分广阔。
1.2 电力系统的发展背景随着工业化和城市化的进程,电力需求逐渐增长,传统的电力系统已经不能满足日益增长的电力需求。
为了提高电力系统的效率和可靠性,同时减少对环境的影响,人们开始寻求新的技术手段来改善电力系统。
电力系统的发展背景可以追溯到19世纪末的工业革命时期,当时人们开始使用电力来驱动工厂和机器。
现代电力电子技术概述
现代电力电子技术学习报告姓名:csu学号:专业:电气工程班级:目录第一章现代电力电子技术的形成与发展 (1)1.1 电力电子技术的定义 (1)1.2 电力电子技术的历史 (1)1.3 电力电子技术的发展 (2)1.3.1 整流器时代 (2)1.3.2 逆变器时代 (2)1.3.3 变频器时代 (2)1.3.4 现代电力时代 (3)第二章现代电力电子计时研究的主要类容和控制技术 (4)2.1 直流输电技术 (4)2.2 灵活交流输电技术(FACTS) (4)2.3 定制电力技术(DFACTS) (5)2.4 高压变频技术 (5)2.5 仿真分析与试验手段 (5)第三章现在电力电子的应用领域 (6)3.1 工业领域 (6)3.2 交通运输 (6)3.3 传统产业 (6)3.4 家用电器 (7)3.5 电力系统 (7)第四章现代电力电子技术的发展趋势及其目前研究的热点问题 (8)4.1 国内发展趋势 (8)4.2 国外发展趋势 (8)4.3 热点问题 (8)第一章现代电力电子技术的形成与发展1.1 电力电子技术的定义电力电子技术,又称“功率电子学”(英文:Power Electronics),简称PE,是应用于电力领域,使用电力电子元件对电能进行变换和控制的电子技术。
电力电子技术分为电力电子元件制造技术和变流技术。
一般认为,1957年美国美国通用电气公司研制出第一个晶体管是电力电子技术诞生的标志。
1974年,美国的W. Newell提出:电力电子学是由电力学、电子学和控制理论三个学科交叉而行成。
这一观点被全世界普遍接受。
1.2 电力电子技术的历史随着1902年第一个整流器的问世,进而引入了功率电子学这个概念。
原始整流器是一个内含液态汞的阴极放电管。
这个汞蒸气型的整流器,可以将数千安培的交流电转换为直流电,其容忍电压也高达一万伏特以上。
从1930年开始,这种原始的整流器开始匹配一个类似于通管技术的点阵式(或晶格结构)类比控制器,从而实现了直流电流的可控制性(引燃管,闸流管)。
电力电子技术在现代电力系统中的应用
电力电子技术在现代电力系统中的应用电力电子技术是指利用电子器件和电子控制技术来处理、控制和转换电力的技术,广泛应用于现代电力系统中。
它的出现和发展,不仅大大提高了电力系统的运行效率和稳定性,还为新能源的接入和能量互联网的建设提供了可靠的支持。
本文将从电能的传输、转换和控制三个方面,介绍电力电子技术在现代电力系统中的具体应用。
一、电能的传输在现代电力系统中,电能的传输是电力电子技术的重要应用领域之一。
直流输电(DC)是其中的典型代表。
通过将交流电转换为直流电,再经过长距离传输后,再将直流电转换为交流电,可以大大减少线路损耗,提高电网的稳定性。
这种方式适用于远距离的电能传输,如跨海输电、大型水电站等。
此外,换流器技术也广泛应用于高压直流输电(HVDC),通过将交流电转换为直流电,再经过输电线路传输,再将直流电转换为交流电供应给用户,以提高能源利用效率。
二、电能的转换电力电子技术在电能转换方面的应用主要体现在变频器、逆变器、整流器等装置中。
变频器是将交流电转换为可调频率的交流电的装置,广泛应用于变频调速、风能、光能转换等领域。
逆变器则是将直流电转换为交流电的装置,常用于太阳能发电系统和电动汽车充电等方面。
整流器则是将交流电转换为直流电的装置,在电力系统中起到整流电能、滤波等作用,降低电网对谐波的敏感程度,提高电能的稳定性。
三、电能的控制电力电子技术在电能控制方面的应用体现在电力调节器上,如静止无功补偿装置(SVC)、静止有功发电机励磁调节器(AVR)等。
静止无功补偿装置是一种通过电力电子设备对电流和电压进行调节,从而改善电力系统的功率因数,提高电力系统能效的装置。
静止有功发电机励磁调节器是根据负荷的需求,对发电机的励磁电流进行控制,保持电力系统的频率和电压稳定。
此外,电力电子技术还广泛用于电网的保护和控制系统,如故障检测、自愈能力等方面,提供可靠的保护和控制手段。
总结起来,电力电子技术在现代电力系统中的应用十分广泛。
现代电力电子技术
现代电力电子技术现代电力电子技术【1】摘要:电力电子技术是利用电力电子器件对电能转换技术的控制。
如果微电子技术是信息处理技术,电力电子技术就是电力处理技术。
电力电子技术是衔接控制、电子和电力的三大电气工程技术的交叉科学的融合。
由于新型的功率电子器件的广泛使用,使电子技术的发展大大超出信息处理和信息传输为主的弱电范围。
而在交流电源的电压和频率变换技术方面,得到进一步开发。
并且日益普及应用于工业生产中,使电子技术开辟了新的技术领域一一电力电子技术.随着工业设备机电一体化的技术改造,将使工业生产呈现新的面貌。
关键词:浅谈现代电力电子技术现如今的高新技术有很多都是和电网的相位、电压、电流和频率等基本参数的转换与控制相关。
现代电力电子技术能实现对这些参数的高效处理与精确控翻,对大功率的电能频率的变换能够得到很好的实现,这样可以支持多项高新技术的发展。
1现代电力电子技术的内涵现如今电力电子技术主要是处理的对象时功率,主要是来实现高效率和高品质的用电。
电力电子技术主要通过电力半导体器件和自动控制技术、计算机和电磁技术的三者综合运用来实现获取、传输、变换和利用。
在各种高质量、高效和高可靠性的电源中能够起到非常重要的作用,可以让当代的电力电子技术得到很充分的运用。
功率IGBT和MOSFET是非常具有代表性,其功率半导体复合器件主要具有高频、高压和大电流等的特点。
这类的特点也意味着传统的电力电子技术不能够适应现如今的社会发展,电力电子技术已经进入了一个全新的高速发展的时代。
具有功能驱动、节能明显和先进等特点的IGBT,MOSFET等新型电力电子器件,所以可以在新型家电、感应加热、通信、计算机电源和电动交通工具等领域中有很好的发展前景。
2现代电力电子技术的历史沿革电子技术和微电子技术在80年代以来在各自的发展滞后得到了有效的结合,也就产生了全新概念的全控型的高频化电力电子集成器件。
可关断晶体管(GTO)电力晶体管(GTR)以及此类晶体管的模块也得到了实用化。
现代电力电子及电源技术的发展
现代电力电子及电源技术的发展随着电子技术的飞速发展,电力电子和电源技术已成为现代工业制造的核心技术之一。
它们的发展不仅推动了现代工业的发展,也为人们的生活带来了更加便捷和高效的电力服务。
本文将着重介绍现代电力电子及电源技术的发展历程,以及当前行业的最新趋势和未来的发展方向。
电力电子技术的发展历程电力电子技术是指将电力和电子技术相结合,研究电力信号的能量转换、控制和调节技术,以实现各种电力设备的高效运行和能源利用。
它的发展可以追溯到20世纪60年代以前,主要应用于和电力相关的简单控制系统和转换电路。
随着半导体技术的进步,电力电子器件得到了大规模的发展,并逐渐渗透到各个领域,成为人们生活中最为关键的技术之一。
具体来看,电力电子技术的发展历程可以分为以下几个阶段。
第一阶段(20世纪60年代前期)该阶段主要是研究电力电子的基础理论和电路结构。
在此期间,人们发明了钳位式开关、交直流变换器和电容式稳压器等电路,这都进一步推动了电力电子技术的应用和发展。
第二阶段(20世纪60年代后期到80年代)在这个阶段,人们开始了解电力电子系统的控制问题。
随着数字控制技术的应用,电力电子系统的控制精度得到了进一步提高。
同时还出现了各种新型电力电子器件,如可控硅管、二极管、MOSFET、IGBT、MCT、MOSFET和GTO等。
这些器件不仅有着更高的工作频率、更高的稳定性、更低的漏电流和更高的体积密度,而且也可以更好地控制电力系统的运作。
第三阶段(90年代到现在)这个阶段主要是电力电子技术进一步应用于各行各业,如航空、汽车、机械制造和消费电子等。
在这个阶段,研究重点主要是电力电子系统的可靠性、稳定性和节能性等课题。
电源技术的发展趋势电源技术是指为电子设备提供稳定电源的技术。
随着物联网、云计算和消费电子的不断发展,电源技术也在不断发展。
当前,电源技术的发展主要表现在以下几个方面。
高效节能随着人们对节能环保的要求日益提高,高效节能也成为了电源技术的主题。
现代电力电子技术概述
现代电力电子技术学习汇报姓名: csu学号:专业: 电气工程班级:目录第一章现代电力电子技术旳形成与发展 (3)1.1 电力电子技术旳定义 (3)1.2 电力电子技术旳历史 (3)1.3 电力电子技术旳发展 (5)1.3.1 整流器时代 (5)1.3.2 逆变器时代 (5)1.3.3 变频器时代 (6)1.3.4 现代电力时代 (6)第二章现代电力电子计时研究旳重要类容和控制技术 (7)2.1 直流输电技术 (8)2.2 灵活交流输电技术(FACTS) (8)2.3 定制电力技术(DFACTS) (9)2.4 高压变频技术 (9)2.5 仿真分析与试验手段 (9)第三章目前电力电子旳应用领域 (10)3.1 工业领域 (10)3.2 交通运送 (10)3.3 老式产业 (10)3.4 家用电器 (11)3.5 电力系统 (11)第四章现代电力电子技术旳发展趋势及其目前研究旳热点问题 (12)4.1 国内发展趋势 (13)4.2 国外发展趋势 (13)4.3 热点问题 (14)第一章现代电力电子技术旳形成与发展1.1 电力电子技术旳定义电力电子技术, 又称“功率电子学”(英文: Power Electronics), 简称PE, 是应用于电力领域, 使用电力电子元件对电能进行变换和控制旳电子技术。
电力电子技术分为电力电子元件制造技术和变流技术。
一般认为, 1957年美国美国通用电气企业研制出第一种晶体管是电力电子技术诞生旳标志。
1974年,美国旳W.Newell提出:电力电子学是由电力学、电子学和控制理论三个学科交叉而行成。
这一观点被全世界普遍接受。
1.2 电力电子技术旳历史伴随1923年第一种整流器旳问世,进而引入了功率电子学这个概念。
原始整流器是一种内含液态汞旳阴极放电管。
这个汞蒸气型旳整流器,可以将数千安培旳交流电转换为直流电,其容忍电压也高达一万伏特以上。
从1930年开始,这种原始旳整流器开始匹配一种类似于通管技术旳点阵式(或晶格构造)类比控制器,从而实现了直流电流旳可控制性(引燃管,闸流管)。
现代电力电子技术及应用
现代电力电子技术及应用电力电子技术是指以半导体器件为核心,应用电子技术来实现电力转换、控制和保护的技术。
电力电子技术的发展,不仅加速了电力系统的进步,而且也成为现代电子技术应用领域中的重要组成部分。
本文将以电力电子技术的发展、应用和前景为主线,进行以下详细阐述。
一、电力电子技术的发展电力电子技术的发展始于20世纪60年代,主要是针对电力变频调速和谐波污染这两个问题。
20世纪70年代到80年代,随着电力电子器件如晶闸管、功率场效应管(MOSFET)和可控硅(SCR)等的出现,电力电子技术逐渐成熟,并在电力系统中得到广泛应用。
在这个阶段,电力电子技术主要应用于电动机的调速控制、输电线路电力因数补偿、谐波抑制等方面。
20世纪90年代以来,随着高压直流输电(HVDC)技术、柔性交流输电(FACTS)技术和电能质量(PQ)控制技术的发展,电力电子技术获得了更大的应用空间。
其中,HVDC技术不仅弥补了交流传输中输电线路对环境的影响,还提高了长距离输电效率;FACTS技术则通过直接控制交流输电系统的电压、电流和相位等参数,实现对电力系统的灵活控制,提高电力系统的可靠性和稳定性。
此外,电能质量控制技术也在消除电路中的谐波、尖峰电流和点状变压器等方面发挥了重要作用。
二、电力电子技术的应用在电力系统中,电力电子技术已经广泛应用于能源转换、输配电和工业自动化等领域。
下面将重点介绍电力电子技术在这些领域中的应用。
1、能源转换应用电力电子技术在能源转换中的应用包括风力发电、太阳能电池和燃料电池等方面。
其中,风力发电和太阳能电池都属于可再生能源,将电力电子技术应用于其控制系统中可以提高其发电效率和可靠性;燃料电池则可将化学能转化为电能,成为能源转换领域的理想选择。
2、输配电应用电力电子技术在输配电领域中的应用主要有功率因数补偿技术、电网稳频技术和电网无功控制技术等。
其中,功率因数补偿技术是指通过电容器、静态无功补偿器等设备将系统的功率因数提高到合理的范围,降低输电损耗,提高系统效率和稳定性;电网稳频技术是通过调节负载和电压控制器的频率和电压,使系统频率和电压保持稳定;电网无功控制技术则主要是调节无功电力来维持系统的电压稳定和电能质量。
《现代电力电子技术》课件
电力电子技术的未来发展方向
高效化
智能化
未来电力电子技术将更加注重能效的提高 ,不断推动能源转换和利用效率的提升。
随着人工智能和物联网技术的发展,电力 电子技术将更加智能化,能够实现自适应 控制和远程监控等功能。
集成化
绿色化
未来电力电子技术将更加注重集成化设计 ,实现多功能、高集成度的电力电子系统 。
05
CATALOGUE
电力电子技术的挑战与未来发 展
电力电子技术的挑战
01
02
03
技术更新换代快
随着科技的不断进步,电 力电子技术需要不断更新 换代,以满足更高的性能 和效率要求。
节能环保压力
随着能源危机和环境问题 的日益严重,电力电子技 术在节能环保方面面临更 大的压力。
市场竞争激烈
电力电子市场参与者众多 ,竞争激烈,企业需要不 断提升技术水平和产品创 新能力。
详细描述
在DC/DC转换电路中,开关电源的作用是通过控制开关 管的通断时间来调节输出电压的大小。当输入电压通过开 关管时,通过控制开关管的占空比,可以调节输出电压的 大小,从而实现将一种直流电压转换为另一种直流电压。
总结词
DC/DC转换电路的应用
详细描述
DC/DC转换电路广泛应用于各种需要不同电压等级的场 合,如通信设备、计算机、仪器仪表等。通过DC/DC转 换电路,可以将较高或较低的电压转换为所需的稳定直流 电压,满足各种设备的用电需求。
电力电子技术的应用
电力系统
电力系统中的电力电子技术应用主要涉及发 电、输电和配电环节。通过使用电力电子设 备,如可编程逻辑控制器(PLC)和智能传 感器,可以实现电网的智能化控制和优化管 理,提高电力系统的稳定性和可靠性。
现代电力电子技术基础
现代电力电子技术基础引言现代电力电子技术是一门涉及电力系统和电子器件的交叉学科,通过将电力与电子器件相结合,实现对电能的高效控制和转换。
它在电力系统中的应用越来越广泛,对能源的高效利用和电力系统的稳定运行起着重要的作用。
本文将介绍现代电力电子技术的基础知识,包括电力电子器件、电力电子调制技术以及电力电子应用领域等。
电力电子器件功率半导体器件功率半导体器件是现代电力电子技术中最常用的器件之一。
常见的功率半导体器件包括晶闸管、二极管、场效应管和绝缘栅双极结型晶体管等。
它们可以在高频率下进行开关操作,实现电能的控制和转换。
晶闸管晶闸管是一种控制型的功率半导体器件,可以用于直流和交流电路。
它具有可控性,在保持电压小于一定值的情况下可以进行开关操作。
晶闸管广泛应用于交流调速、变频器、逆变器等电力电子设备中。
二极管二极管是一种非控制型的功率半导体器件,只能实现单向导电。
它具有快速恢复和高温工作能力等优点,被广泛应用于整流电路中。
场效应管场效应管是一种将电场效应转化为电流控制的器件。
它具有低导通电阻和可控性等特点,在电力电子设备中常用于功率放大器、开关电源等部分。
绝缘栅双极结型晶体管绝缘栅双极结型晶体管是一种具有绝缘层的双极结型晶体管,它可以控制绝缘层与晶体层之间的导电程度。
它具有高压大功率、低损耗和高频等优点,在高压直流输电系统等领域得到广泛应用。
电力电子调制技术电力电子调制技术是电力电子技术的核心内容,其目的是将输入电能以适当的方式进行调制,从而得到需要的输出电能。
脉宽调制脉宽调制是电力电子调制技术中常用的一种方式,通过调整开关器件的导通时间来控制电能输出的大小。
脉宽调制可以实现直流到交流、交流到直流等电能的转换。
多电平调制多电平调制是一种在特定时间点上输出多种电平的调制方式,可以降低谐波含量,提高电能的质量。
这种调制方式被广泛应用于高压直流输电系统和逆变器等电力电子设备。
电力电子应用领域电力传输和配电系统电力传输和配电系统是电力电子技术的主要应用领域之一。
电力电子技术的发展史
电力电子技术的发展史电子技术是根据电子学的原理,运用电子器件设计和制造某种特定功能的电路以解决实际问题的科学,包括信息电子技术和电力电子技术两大分支。
信息电子技术包括 Analog (模拟) 电子技术和 Digital (数字) 电子技术。
电子技术是对电子信号进行处理的技术,处理的方式主要有:信号的发生、放大、滤波、转换。
目录电力电子技术现代电力电子技术高频开关电源的发展趋势半导体器件基础电路发展1.电力电子技术发展现代电力电子技术的发展方向,是从以低频技术处理问题为主的传统电力电子学,向以高频技术处理问题为主的现代电力电子学方向转变。
电力电子技术起始于五十年代末六十年代初的硅整流器件,其发展先后经历了整流器时代、逆变器时代和变频器时代,并促进了电力电子技术在许多新领域的应用。
八十年代末期和九十年代初期发展起来的、以功率MOSFET和IGBT为代表的、集高频、高压和大电流于一身的功率半导体复合器件,表明传统电力电子技术已经进入现代电力电子时代。
整流器时代大功率的工业用电由工频(50Hz)交流发电机提供,但是大约20%的电能是以直流形式消费的,其中最典型的是电解(有色金属和化工原料需要直流电解)、牵引(电气机车、电传动的内燃机车、地铁机车、城市无轨电车等)和直流传动(轧钢、造纸等)三大领域。
大功率硅整流器能够高效率地把工频交流电转变为直流电,因此在六十年代和七十年代,大功率硅整流管和晶闸管的开发与应用得以很大发展。
当时国内曾经掀起了-股各地大办硅整流器厂的热潮,目前全国大大小小的制造硅整流器的半导体厂家就是那时的产物。
逆变器时代七十年代出现了世界范围的能源危机,交流电机变频调速因节能效果显着而迅速发展。
变频调速的关键技术是将直流电逆变为0~100Hz的交流电。
在七十年代到八十年代,随着变频调速装置的普及,大功率逆变用的晶闸管、巨型功率晶体管(GTR)和门极可关断晶闸管(GT0)成为当时电力电子器件的主角。
现代电力电子学
研究生学位课程《现代电力电子学》的学习提纲与要求一.本课程的目的与意义目前电力电子技术已成为国家经济领域中不可缺少的基础技术和重要手段,大至兆瓦级的高电压大电流的电气工程直流输电,小Array至家用的各种电器,无不渗透电力电子技术。
国际上公认电力电子技术的诞生是以1957年第一个晶闸管问世为标志的。
电力电子这一名称迟至60年代才出现1974年,美国W.E.Newell用右图的倒三角形对电力电子学进行了描述。
认为电力电子学是电力学,电子学和控制理论三个学科交叉结合形成的一门新型学科,随着科学技术的发展电力电子技术又与控制理论、材料科学、图一描述电力电子学的倒三角电机工程、微电子技术、计算机技术等许多领域密切相关。
目前,电力电子技术逐步发展成为一门多学科相互渗透的中和性学科。
可以将电力电子技术定义为:以电力为对象,利用电力电子器件对电能进行控制和转换的学科,若认为微电子技术的信息处理技术,那么电力电子技术就是电力处理技术。
电力电子学除涵括技术和应用外,还有电力电子技术和相关学科的理论问题。
目前,许多高新技术均与电网的电流、电压、频率和相位等基本参数的转换与控制相关。
现代电力电子技术能够实现对这些参数的精确控制和高效率的处理。
特别是能够实现大功率电能的频率变换,为多项新技术的发展提供了有力的支持。
因此,现代电力电子技术不仅本身是一项高新技术,而且是其它高新技术的发展基础,电力电子技术可应用到各工业、电力、交通、冶金、化工、电信、国防、家电等各个领域,尤其与微电子、计算机技术、现代控制理论相结合,其应用面越广,自动化水平,快速性和可靠性发展越来越快,技术水平越来越高,为现代生产和现代生活带来了深远的影响。
简而言之,电力电子技术应包含电力电子器件,电力电子电路,电力电子装置及其系统三方面的内容,这三者有着密不可分的关系,随着器件的不断发展,电路和装置乃至系统,更容易发展。
更加现代化。
现代电力电子技术有如下特点:1)集成化,2)高频化,3)全控化,4)电路弱电化,5)控制技术数字化,6)多功能化。
现代电力电子技术理论 Snubber
现代电力电子技术理论 Snubber什么是 Snubber?在电路中,Snubber 又称为降压电路,用于消除开关电路中峰值电压的过冲和过流。
Snubber 能够有效地减少电路中储能电容和电感的运动。
它主要是通过加入电容来稳定电压,消除过冲和过流现象,从而保护开关管和半导体器件。
Snubber 的工作原理在开关管的关闭瞬间,由于开关管引起的电感的储能,将会产生电压峰值。
这个电压峰值可能会超出开关管的击穿电压,导致开关管被烧毁。
Snubber 回路主要的作用是消除这个过冲电压。
Snubber 回路由电阻和电容器组成,并在开关管的引脚中间串联一个电压限制器电阻,使得开关管在断开时不会被强大的电压击穿。
在电压限制器电阻的帮助下,Snubber 回路能够消除过冲电压并保护开关管。
Snubber 的应用场景Snubber 回路在电子设备中的应用十分广泛,如:1.逆变器输出过滤回路中2.稳压电源输出滤波回路中3.电力电子变流器输出回路中4.交流电机启动回路中5.直流电机刹车回路中等Snubber 回路在控制开关电路中起着至关重要的作用,它可以消除电压过冲和过流现象,保护电子设备和电路元件,提高电路的可靠性和稳定性。
Snubber 回路的优缺点Snubber 回路的优点主要体现在以下方面:1.可以消除电路中的峰值电压,保护半导体器件2.在稳定各种电路时十分有效3.可以降低电路中噪音干扰Snubber 回路的缺点同样存在,主要包括:1.Snubber 回路会消耗一部分电源能量,从而导致损失2.Snubber 回路的设计需要考虑到额外的元件和电路布局的复杂性,这会增加设计和制造成本Snubber 回路的设计方法Snubber 回路的设计方法一般包括:1.根据 circuit requirements 确定电感和电容的值2.选取正确的电容和电压等级,以满足电路要求3.定义一个大小合适的电阻,以限制电压过冲4.最后进行电路布局和元件放置Snubber 回路的设计方法需要考虑到电路的性能特点,包括频率、功率、损耗等等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《现代电力电子技术》教学心得学院(系)电子信息工程学院专业电力电子与电力传动班级研 1206姓名江心利学号 S2*******2013 年 3 月 6 日《现代电力电子技术》教学心得摘要:随着大功率半导体器件的发明和发展,产生了利用这类器件作为工具实现电能变换与控制的技术——电力电子技术。
电力电子技术横跨“电力”、“电子”与“控制”三个领域,是电力电子技术的基础之一,已被广泛地应用在工农业生产、国防、交通等各个领域,有着极其广阔的应用前景。
正是由于其这样的作用,更应该教导学生们深入地理解地学习这门课程,本文从其发展和应用的领域等相关角度分析说明了这门课程的重要性,使同学们能够积极地学习,同时也介绍了一些对学生们学习而有用的方法。
关键词:半导体;电能变换与控制;电力电子;学习方法Abstract:With the invention and development of high power semiconductor devices, the use of such devices as a tool to achieve power conversion and control technology --the power electronic technology. Power electronic technology across the “power”,”electronic”and “control” three areas, it is one of the bases of power electronic technology, has been widely used in various industrial and agricultural production, national defense,traffic and other fields, has a very broad application prospects. It is precisely because of its such a role, this paper analyzes the development and application of field and other related aspects. The importance of the subject, so that the students can actively learning, at the same time, the method and some useful for students learning is also introduced.Keyword: Semiconductor; The power converter and control; Power electronics; Learning method电力电子技术是建立在电子学、电工原理和自动控制三大学科上的新兴学科。
因它本身是大功率的电技术,又大多是为应用强电的工业服务的,故常将它归属于电工类。
电力电子技术的内容主要包括电力电子器件、电力电子电路和电力电子装置及其系统。
电力电子器件以半导体为基本材料,最常用的材料为单晶硅;它的理论基础为半导体物理学;它的工艺技术为半导体器件工艺。
近代新型电力电子器件中大量应用了微电子学的技术。
电力电子电路吸收了电子学的理论基础,根据器件的特点和电能转换的要求,又开发出许多电能转换电路。
这些电路中还包括各种控制、触发、保护、显示、信息处理、继电接触等二次回路及外围电路。
利用这些电路,根据应用对象的不同,组成了各种用途的整机,称为电力电子装置。
这些装置常与负载、配套设备等组成一个系统。
电子学、自动控制、信号检测处理等技术常在这些装置及其系统中大量应用。
利用电力电子器件实现工业规模电能变换的技术,有时也称为功率电子技术。
一般情况下,它是将一种形式的工业电能转换成另一种形式的工业电能。
例如,将交流电能变换成直流电能或将直流电能变换成交流电能;将工频电源变换为设备所需频率的电源;在正常交流电源中断时,用逆变器(见电力变流器)将蓄电池的直流电能变换成工频交流电能。
应用电力电子技术还能实现非电能与电能之间的转换。
例如,利用太阳电池将太阳辐射能转换成电能。
与电子技术不同,电力电子技术变换的电能是作为能源而不是作为信息传感的载体。
因此人们关注的是所能转换的电功率。
一·什么是电力电子技术电力电子技术是一门新兴的应用于电力领域的电子技术,就是使用电力电子器件(如晶闸管,GTO,IGBT等)对电能进行变换和控制的技术。
电力电子技术所变换的“电力”功率可大到数百MW甚至GW,也可以小到数W甚至1W以下,和以信息处理为主的信息电子技术不同电力电子技术主要用于电力变换。
利用电力电子开关器件组成电力开关电路,利用集成电路和微处理器构成信号处理和控制系统,对电力开关电路进行实时、适式的控制,经济有效地实现开关模式的电力变换和电力控制,包括电压(电流)的大小、频率、相位和波形的变换和控制,是综合了电子技术、控制技术和电力技术的新兴交叉学科。
电力电子技术分为电力电子器件制造技术和交流技术(整流,逆变,斩波,变频,变相等)两个分支。
现已成为现代电气工程与自动化专业不可缺少的一门专业基础课,在培养该专业人才中占有重要地位。
二·现代电力电子技术的主要内容和教学要求结合工程应用实际与现状,电力电子技术内容主要包括:电力电子器件应用知识,交流-直流变换、直流-直流变换、直流-交流变换和交流-交流变换四大类变换技术;课程知识以PWM开关技术为主干,对于软开关技术、多电平变换技术等较复杂的内容进行了概要性介绍,适当压缩了相控变换技术方面的内容。
结合现代工程应用实际,在传统内容基础上加强了应用相关的内容电力电子技术的理论教学传统上一直偏重于介绍电路结构、工作原理、电路工作过程分析,本书针对现代工程应用实际,加强了如下内容。
(1)在有关电力电子器件应用知识方面,增加电力电子器件主要参数、器件典型驱动电路结构、典型缓冲吸收电路结构及设计方法等内容的介绍。
(2)在电路分析过程中,加强电路核心元器件的电流、电压等应力的分析,为元器件的合理选择打下基础。
(3)根据电力电子技术应用现状,压缩相控整流部分内容,重点介绍开关整流APFC 技术的原理及分析方面的内容,并概要介绍不控整流、倍压整流、倍流整流、自同步整流等内容。
(4)针对SPWM逆变技术实际应用的需要,增加LC滤波器设计的内容,并作为了解性知识,简要介绍了电压空间矢量PWM变换技术。
(5)为了使读者对电力电子新技术有所了解,增加软开关技术、多电平变换技术等内容的简要介绍。
以工程应用需要为导向面向应用型人才培养,以工程应用需要为导向,教学内容组织体现系统性、基础性、应用性相结合,具体体现在如下几个方面。
(1)在介绍电力电子器件应用知识时,适当简化器件物理方面的内容,以动静态特性、器件主要参数、驱动控制方法的介绍为主。
(2)对于变换技术,重点介绍直流-直流变换、直流-交流变换、交流-直流变换方面的内容,而适当压缩交流-交流变换方面的内容。
(3)对于直流-交流变换方面的内容,以单、三相方波逆变和单、三相SPWM逆变为核心进行介绍。
(4)对于相控整流方面的内容,主要介绍桥式全控电路纯阻负载、大电感负载和反电动势负载三种典型负载的应用分析,大幅度加强PWM整流技术的介绍。
(5)对于交流-交流变换方面的内容,以相控、斩控调压、周波控制为核心,简要介绍交-交变频、矩阵式变频等内容。
三·现代电力电子技术的应用和发展展望在电力电子技术的应用及各种电源系统中,开关电源技术均处于核心地位。
对于大型电解电镀电源,传统的电路非常庞大而笨重,如果采用高顿开关电源技术,其体积和重量都会大幅度下降,而且可极大提高电源利用效率、节省材料、降低成本。
在电动汽车和变频传动中,更是离不开开关电源技术,通过开关电源改变用电频率,从而达到近于理想的负载匹配和驱动控制。
高频开关电源技术,更是各种大功率开关电源(逆变焊机、通仪电源、高频加热电源、激光器电源、电力操作电源等)的核心技术。
高频化高频化理论分析和实践经验表明,电气产品的变压器、电感和电容的体积重量与供电频率的平方根成反比,所以当我们把频率从工频50Hz提高到20kHz,提高400倍的话,用电设备的体积重量大体下降至工频设计的5% ̄l0%。
无论是逆变式整流焊机,还是通仪电源用的开关式整流器,都是基于这一原理。
同样,传统“整流行业”的电镀、电解、电加工、充电、浮充电、电力合闸用等各种直流电源也可以根据这一原理进行改造,成为“开关变换类电源”,其主要材料可以节约90%或更高,还可节电30%或更多。
由于功率电子器件工作频率上限的逐步提高,促使许多原来采用电子管的传统高频设备固态化,带来显著节能、节水、节约材料的经济效益,更可体现技术含量的价值。
模块化模块化随着电源频率的不断提高,致使引线寄生电感、寄生电容的影响愈加严重,对器件造成更大的电应力(表现为过电压、过电流毛刺)。
为了提高电源的可靠性,国际上一些研究机构正在开发“用户专用”功率模块,把一台整机的几乎所有硬件都以芯片的形式安装到一个模块中,使元器件之间不再有传统的引线连接,这样的模块经过严格、合理的热、电、机械方面的设计,达到优化完美的境地。
它类似于微电子中的用户专用集成电路(ASIC)。
只要把控制软件写入该模块中的微处理器芯片,再把整个模块固定在相应的散热器上,就构成一台新型的开关电源装置。
另外,大功率电源装置,由于器件容量的限制和增加冗余提高可靠性方面的考虑,一般采用多个独立的模块单元并联工作,采用均流技术,所有模块共同分担负载电流,一旦其中某个模块失效,其他模块再平均分担负载电流。
这种多单元并联方式已经从直流电源延伸到UPS系统,多台(可达到8台)UPS并联,可以组成容量更大的电源系统。
通过增加相对整个系统来说功率很小的冗余电源单元,可以大幅度提高整个电源系统的可靠性和可用性。
数字化数字化在20世纪六七十年代,电力电子技术完全是建立在模拟电路基础上的。
随着微电子技术的发展,数字信号处理技术日趋完善成熟,显示出越来越多的优点:便于计算机处理控制、避免模拟信号的畸变失真、减小杂散信号的干扰(提高抗干扰能力)、便于自诊断等。
以UPS和变频器为例,早期产品的控制部分主要依靠模拟电路,在20世纪90年代,开始逐渐采用单片微处理器进行控制,目前已开始采用数字信号处理器(digitalsignalprocessor,简称DSP)进行控制。
而静止无功补偿装置(SVC)、静止无功发生器(SVG)、电力有源滤波器等电源装置,需要对各种信号进行处理、运算,更离不开高性能的微处理器。