现代电力电子技术发展及其应用

合集下载

电力电子技术的应用研究及发展趋势

电力电子技术的应用研究及发展趋势

电力电子技术的应用研究及发展趋势电力电子技术是一种应用极广的技术,它涉及到包括电力系统、工业、交通、家电等领域的许多方面。

随着社会经济的发展和科技不断进步,电力电子技术的应用越发普遍,其应用领域也在不断扩大。

在这篇文章中,我将从电力电子技术的分类、应用研究和未来发展三个方面来谈谈电力电子技术的应用研究及发展趋势。

一、电力电子技术的分类电力电子技术根据其不同的功率等级、用途和原理等因素,可以分为多种不同的类别。

其中比较常见的主要有以下几种:1、直流-直流变换器直流-直流变换器可以将直流电压转换、升压或降压,常见的应用有开关电源、电动机驱动系统等。

直流-直流变换器具有简单的控制、高效率和稳定性,目前在交通、能源、石化、冶金等领域中得到了广泛的应用。

2、交流-直流变流器交流-直流变流器可以将交流电转换为直流电供电使用,常见的应用有风力发电、光伏发电等。

这种变换器具有高效、可靠和可控的特点,是现代电力系统中最重要的组成部分之一。

3、交流-交流变换器交流-交流变换器可以改变交流电的频率和电压等参数,常见的应用有电动机驱动系统、变频空调、UPS等。

交流-交流变换器在工业、家电等领域中应用广泛,目前已经成为了工业发展的关键技术之一。

二、电力电子技术的应用研究随着电力电子技术的不断发展和进步,其应用领域也在不断拓展。

在应用研究方面,电力电子技术主要有以下几个方向:1、高电压高功率应用随着电力系统的发展和能源消费增长,电力电子技术在高电压高功率领域的应用范围也在不断扩大。

高电压高功率应用主要包括超高压输电、逆变器、脉冲电源、高压直流输电等。

电力电子技术在这些领域中的应用,可以提高电力系统的可靠性、效率和稳定性,同时也可以改善电力系统的质量和环境问题。

2、新能源发电系统新能源发电系统是近年来最热门的电力电子技术应用之一。

新能源发电系统包括太阳能发电、风力发电、潮汐能发电等。

电力电子技术在新能源发电系统中的应用,可以将风、光等无法控制的能源转化为易于控制的电能,提高了整个发电系统的效率。

电力电子技术的发展与应用

电力电子技术的发展与应用

电力电子技术的发展与应用电力电子技术是电气工程领域中的一个重要分支,它涉及到电力转换、控制和调节等方面的研究与应用。

随着科技的不断进步和社会的不断发展,电力电子技术在能源转换、电力传输和工业自动化等领域的应用日益广泛,对于提高能源利用效率、改善电力质量和保障电力系统的稳定运行起到了关键作用。

一、电力电子技术的发展历程电力电子技术的发展可以追溯到20世纪60年代,当时主要用于直流输电和高压直流变压器的研究。

随着功率半导体器件的发展,如晶闸管、功率MOSFET和IGBT等,电力电子技术得以迅速发展。

在20世纪80年代,随着功率半导体器件的性能不断提高,电力电子技术逐渐应用于交流输电、电力变换和电机控制等领域。

到了21世纪,随着新型功率半导体器件的出现,如SiC和GaN等,电力电子技术迎来了新的发展机遇。

二、电力电子技术的应用领域1. 可再生能源发电系统随着可再生能源的快速发展,如风能、太阳能和潮汐能等,电力电子技术在可再生能源发电系统中的应用越来越重要。

电力电子技术可以实现可再生能源的高效转换和稳定输出,提高发电系统的可靠性和稳定性。

2. 电力传输与配电系统电力电子技术在电力传输与配电系统中的应用主要包括柔性交流输电、高压直流输电和智能配电网等。

柔性交流输电技术可以提高电力系统的稳定性和可靠性,高压直流输电技术可以实现长距离大容量的电力传输,智能配电网可以实现电力系统的自动化和智能化管理。

3. 电机控制与驱动系统电力电子技术在电机控制与驱动系统中的应用主要包括变频调速技术和电力电子变压器技术等。

变频调速技术可以实现电机转速的无级调节和高效能量转换,提高电机的运行效率和控制精度。

电力电子变压器技术可以实现电力系统的电压和频率调节,提高电力系统的稳定性和可靠性。

三、电力电子技术的未来发展趋势1. 高效能量转换技术随着能源短缺和环境保护的要求,电力电子技术将继续朝着高效能量转换的方向发展。

新型功率半导体器件的应用和拓扑结构的优化将进一步提高电力电子系统的能量转换效率。

电力电子技术在电力系统中的应用及发展

电力电子技术在电力系统中的应用及发展

电力电子技术在电力系统中的应用及发展首先,电力电子技术在电力系统中的应用非常广泛。

电力电子技术包含了各种电力电子器件和电路,如开关电源、逆变器、整流器、变频器等。

这些技术可以用于各种不同的应用,包括电力调节、变频调速、无停电切换、能量回馈等。

电力电子技术在电力系统中的应用主要有以下几个方面:1.电力调节:电力电子技术可以用来调节电力系统的电压和频率。

例如,电力电子技术可以用于调节输电线路的电压,以保证电力系统的稳定性和可靠性。

同时,它也可以用来调节电力系统的频率,以适应不同的负载条件。

2.变频调速:电力电子技术可以用于变频调速系统中,通过改变电机的供电频率来改变电机的转速。

这可以使电机在不同负载要求下,具备良好的性能特性。

变频调速系统广泛应用于工业、交通等领域。

3.无停电切换:电力电子技术可以实现无停电切换。

例如,在配电系统中,当发生故障时,电力电子技术可以实现对备用电源的无停电切换,以保证供电的连续性和可靠性。

4.能量回馈:电力电子技术可以实现能量的回馈。

例如,通过逆变器将太阳能等可再生能源转换为电能,然后回馈到电力系统中,减少对传统能源的依赖,提高能源利用效率。

除了以上应用,电力电子技术还可以用于电力系统的电力质量改善、电力系统的故障检测和故障定位等方面,为电力系统的稳定运行和安全性提供支持。

其次,电力电子技术在电力系统中的发展也非常迅速。

随着科技的不断进步和应用需求的不断增加,电力电子技术得到了广泛的研究和应用。

目前,电力电子技术正在向下列几个方向发展:1.高效率:提高电力电子设备的工作效率是当前的重要发展方向。

高效率的电力电子设备可以减少能量损失,提高能源利用效率。

2.高功率密度:提高电力电子设备的功率密度,使其在体积相同的情况下可以提供更大的功率输出。

这对于应用于空间有限的场合非常有用。

3.高可靠性:提高电力电子设备的可靠性,使其能够在恶劣的工作环境下稳定运行。

这对于电力系统的稳定性和可靠性非常重要。

电力电子技术的新进展及其应用

电力电子技术的新进展及其应用

电力电子技术的新进展及其应用电力电子技术是当今社会中非常重要的一个领域。

近年来,随着科技的不断进步和人们对环保、节能和高效的需求不断提高,电力电子技术也在不断发展与创新。

本文旨在介绍电力电子技术的新进展以及其在现代社会中的应用。

一、电力电子技术的新进展1、新型IGBT模块的研发IGBT(Insulated Gate Bipolar Transistor)是电力电子技术中非常重要的一种器件,广泛应用于交流变直流、电机控制、变频调速等领域。

为提高IGBT模块的效率和稳定性,在多项研究中,人们开始关注IGBT模块的结构、工艺和材料等方面的改进。

一种新的IGBT模块是全极面键合技术(full-surface wire bonding technology)制造的。

与传统机械键合技术相比较,全极面键合技术能够提供更大的可靠性和更强的耐久性,其结构也更为简单,更容易集成其他模块或器件。

同时,全极面键合技术也能够提供更高的解决方案种类,以及单一模块上高达12个IGBT芯片的压缩。

这种新型IGBT模块的问世极大程度地提高了电力电子设备的效率与可靠性。

2、新型功率半导体器件的应用功率半导体器件是电力电子技术中最常用的器件之一。

最近在这方面的研究中,可以看到针对某些特殊的应用场合,出现了一些新型的功率半导体器件。

例如,一款新型的硅基氮化镓(GaN)晶体管已经被研制出来,该器件相比传统硅制器件具备更高的开关速度、更高的工作频率、更低的开关噪声、更高的开关效率和更低的导通电阻等优点。

这种器件还能够在800V DC电压、15A的高压、高温环境下稳定工作。

这种新型功率半导体器件的应用,大大提高了电力电子设备的创新能力和发展速度。

二、电力电子技术的应用1、交流变直流电源在交流变直流电源的应用方面,在工业制造和家庭用电方面都有广泛的应用。

利用交流斩波技术,交流电源可以转化成稳定的直流电源,从而为电子设备的正常功能提供电力支持。

电力电子技术的研究进展及应用

电力电子技术的研究进展及应用

电力电子技术的研究进展及应用随着现代科学技术的迅猛发展,电力电子技术作为其中一个重要分支,在国家经济和社会发展中扮演着不可或缺的角色。

本文将从电力电子技术的定义、研究进展以及应用方面进行探讨。

一、电力电子技术的定义电力电子技术是电力系统中电能的处理与控制技术,是研究通过半导体元件实现交、直流的能量转移、传递、匹配以及电能的调节、变换、变频的新型电气工程技术,具有诸多特点,如高效、精确、可靠、无噪音、无污染等。

因此,电力电子技术是目前国家十三五规划中电力转型的核心技术之一,广泛应用于今天的工业制造、信息通讯和公共基础设施等领域。

下面将详细讲述电力电子技术的研究进展。

二、电力电子技术的研究进展随着电力电子技术的不断发展,其研究取得了丰硕的成果。

在电力电子器件、电力电子拓扑与控制、电力电子应用等方向上都有着日益丰富的研究进展。

在电力电子器件方面,功率半导体电子器件得到了长足的发展。

压缩机封装车间生产的功率半导体器件已经进入行业标准化生产,其特点是具有低损耗、高速度、高电压、大电流、高耐受放热量和温度等特点,越来越能够满足各种场合的需求。

在电力电子拓扑与控制方面,电力电子系统的拓扑结构和控制策略得到了日益完善,已经从传统的整流、逆变结构转变为集成于一体的多功能电力电子拓扑结构。

电力电子系统的控制技术不断发展,已经实现了全数字化、高速、高精度的控制。

例如,目前双向DC-DC转换器及其控制技术已经得到了广泛的应用。

新型的电气系统如智能家居、新能源分布式发电等,对于双向变换器的研究和应用成为了热点。

在电力电子应用方面,电力电子技术在新能源、半导体照明和交通运输等领域得到了广泛的应用。

其中,新能源是电力电子技术应用领域的一大亮点,电力电子技术在太阳能、风能、氢能等新能源的开发利用中发挥了巨大的作用,能够有效提高能源的利用效率。

电力电子技术的应用范围之广,使其成为了当今高新技术的代表之一。

接下来,本文将从电力电子技术应用的实际案例进行分析,探讨其在各个领域中的应用。

现代电力电子技术的发展趋势及应用分析

现代电力电子技术的发展趋势及应用分析

现代电力电子技术的发展趋势及应用分析摘要:科技在迅猛发展,社会在不断进步,随着智能电网的发展与进步,使得信息化、自动化以及数字化的技术应用空间越来越大。

电力电子是建设智能化电网的基础所在,也是满足NB-IoT市场经济发展的重要技术所在。

因此,为了满足社会的发展,就需要对电力系统进行全面改革,使先进的电力电子技术应用到智能电网中。

关键词:电子技术;发展趋势;应用引言开展电力电子化新一代电力系统动态问题研究是保障电网安全稳定运行的重大需求。

装备是构成电力系统的基本要素,装备变革意味着客观研究对象的变革。

装备动态特性的变化意味着电力系统动力学现象及机理的变化,传统电力系统动态问题基础理论和关键技术的适应性面临重大挑战,装备替代的量变势将引起系统动态问题的质变。

开展新一代电力系统动态问题的研究是电网运行的迫切和重大的需求。

1基本概念首先针对电子技术,该项技术主要依靠电子设备对电力进行控制,可实现电力开闭控制、转换控制等,故在不同的控制要求下,电子技术又可以分为多种形式,诸如电力技术、转换器技术等。

因此本质上可以将电子技术视作一种元件控制技术,能够通过电力供给与切断、电力类型转换、电力强弱调整等方式使元件作出对应的动作,促使电气装置依照用户需求运作,实现控制目的。

同时电子技术在元件控制中会生成对应的数据,即电力数据,依照电力数据可知当前电力运作是否正常,也能判断电力的故障、安全水平等,便于及时处理异常,保障电力运作稳定。

其次针对电气控制,此概念的主要意义在于开发电气能源的利用价值,诸如利用弱电控制强电,再通过强电控制设备,最后设备运作满足需求,且随着控制技术的发展,电气控制不仅实现了自动化运作,控制对象也越来越多,故电气控制能够满足人们在生活或工作中的多种需求。

关于电气控制的自动化原理,从当前技术角度出发,主要是利用信号收发装置连接计算机与电气控制系统,用户可以从计算机上拟定指令,并发出信号,信号将被收发装置接收,随即发送给电气控制系统的控制单元,该单元将依照信号指令逐步控制设备,待指令执行完毕,控制目的达成。

电力电子技术的发展与应用

电力电子技术的发展与应用

电力电子技术的发展与应用电力电子技术是指利用电力电子器件和电力电子系统来转换和控制电能的技术。

随着科技的发展和人们对电力需求的不断增长,电力电子技术在能源转换、电力传输、能效提升等方面起着重要的作用。

本文将详细介绍电力电子技术的发展与应用,并分点列出相关步骤。

一、电力电子技术的发展历程1. 从早期的整流器到现代的逆变器- 20世纪初,电力电子技术主要用于电力系统中的整流器,将交流电转换成直流电;- 随着电力电子器件的发展,逆变器成为新的研究方向,可以将直流电转换成交流电。

2. 电力电子器件的发展- 二极管、晶闸管、可控硅等电力电子器件的问世,为电力电子技术的应用提供了重要基础;- 随着半导体材料和工艺的不断改进,新型电力电子器件的性能得到提升,如功率场效应管(IGBT)、金属氧化物半导体场效应管(MOSFET)等。

3. 电力电子系统的发展- 从单个电力电子器件到集成电路的应用,电力电子系统的规模不断扩大;- 电力电子技术在交通运输、工业生产、能源管理等领域得到广泛应用。

二、电力电子技术的应用1. 新能源发电系统- 光伏发电系统:光伏逆变器将光能转换成电能,并通过电网馈送;- 风力发电系统:风力逆变器将风能转换成电能,实现风电接入电网。

2. 电动交通工具- 电动汽车:电力电子技术用于电动汽车的驱动系统,实现电能转化和控制;- 城市轨道交通:地铁、轻轨等城市轨道交通系统中广泛应用电力电子技术。

3. 变频调速控制- 工业生产中的电机控制:电力电子变频器用于控制电机的转速和运行状态,提高能源利用效率和生产效率;- 家电领域:变频空调、洗衣机等家电产品通过电力电子技术实现节能和控制。

4. 电力传输与配电- 高压直流输电技术:通过高压直流逆变器实现交流与直流电能的互相转换;- 电力系统中的谐波控制:电力电子技术用于控制电网中的谐波,确保电力质量。

三、电力电子技术的应用步骤1. 系统需求分析- 根据电力应用的需求,确定需要进行能量转换和控制的电路系统。

电力电子设备新技术及应用

电力电子设备新技术及应用

电力电子设备新技术及应用一、引言随着电力电子技术的迅猛发展和全球环保意识的增强,电力电子设备越来越受到人们的重视。

作为现代工业化生产的重要支撑,电力电子设备的新技术及应用将在工业化、城市化、智慧化等方面发挥重大作用。

二、新技术1.半导体器件技术随着半导体技术的不断创新,半导体器件的性能得到了很大提高。

目前,IGBT、MOSFET、SiC等功率半导体器件已经成为电力电子设备的主要组成部分,其无磁场控制、低损耗、高控制精度、小体积等优点促进了电力电子设备的发展。

2.磁性元件技术电力电子设备中大量使用的磁性元件,传统的变压器、电感等元件制造成本高、重量大、体积大,对系统的稳定性、效率、品质等方面的影响也很大。

目前,采用新型的磁性材料、新工艺的磁性元件,如钠镁铁氧体、软磁合金材料等,可以有效地降低电力电子设备的成本和体积,提升设备的效率和品质。

3.控制技术电力电子设备中的控制技术对设备的性能和稳定性具有重要影响,如电压控制、电流控制、功率控制等。

目前,采用数字控制技术、信号处理技术和通讯技术等,可以实现更加智能化和自动化的电力电子设备控制。

三、应用场景1.新能源随着新能源的发展,电力电子设备成为新能源领域的重要组成部分。

如风力发电、太阳能发电系统中的逆变器、整流器等电力电子设备,其能够将直流电转换成交流电,提供了给电网稳定、高品质的电能。

2.工业控制电力电子设备在工业控制中的应用范围也越来越广泛。

如变频器、伺服系统等的控制,采用电力电子器件和控制技术,可以实现对电机运行的精细控制和高效转换,提升工业生产的效率和品质。

3.家用电器随着智能家居的发展,电力电子设备在家用电器中的应用必将越来越广泛。

如电视、冰箱、空调等家用电器的控制,可以通过采用电力电子器件和控制技术,实现更加智能化、节能化的家居生活。

四、结论电力电子设备的新技术和应用,不仅推动了工业、城市化、智慧化等方面的发展,也促进了电力系统的高效、稳定和可靠运行。

电力电子技术的发展及应用

电力电子技术的发展及应用


逐年 猛增 , 与此 同时化 石能 源 日益枯 竭 , 对 全 世界 的 电力 能源 带来 了不小 的压 力。 还有 部分 发展 中 国家用 电手 段不够 合理 、 浪 费严 重 、 用 电效率 低 , 日益 增加 了对 电力行业 的压 力 。 然而 , 电力 与现代 工业能 源相结 合的越 来越密 切 , 电力体 现 出来 的稳定 、 清洁、 利用 率高 等特 点使 它在 现代工 业 的各个 领域 得到 了广 泛 利用 。 解 决世 界能 源不 足 问题 是 当前急 需解 决 的问题 之一 , 通 过降 低 电能 消耗 解决 能源 消耗 问题 是最有 效 的方法 。 因此 , 我们 必须 运用 现代 电力 电子技 术来 降低 电源 消耗 , 提 高 电源效率 , 只有 这样 才能 降低 电能 消耗 、 节约 原材料 并优化 性 能。 电力 电子技 术在 电力 节能 中的应 用 已经得 到科 学世界 认 可 , 从 此 可以看 出, 现代 电力 电子技 术对 世界 能源 安全 及 其重要 。 ( 二) 电力 电子技术在 再生 能源 发电 中的应 用 。 目前 全世界化石 能源 日益枯 竭, 人们对 于可再 生能 源的探索 随之进 步 , 并且得 到 了很多令 人喜悦 的结果 。 根
应 用 技 术
C hi n a S C i e n c e a nd T e c h n o l o g y Re vi e w
■I
电 力 电 子 技 ቤተ መጻሕፍቲ ባይዱ 的 发 展 及 应 用
吉振云 秦智 贤 马军校
陕西 成阳 7 1 2 0 2 1 陕西 金 山 电器 有 限公 司
电力 电子技 术 的发 展 ( 一) 整流器 时代 。 1 9 5 6 年晶 闸管 的见 世 , 标志 了 电力 电子技 术的开 端 , 电力 电子技 术 的发展最 先 经历 了整流 器时 代。 工 业用 电只有 2 0 % 的 电能是 以直 流 电 的形 式消费 , 最 典型 的三大 领域是 电解 、 牵 引和直 流传动 。 6 0 年代和 7 0 g代大 功 率 整流器 能够 将工频 交流 电转变 成直流 电 , 提 高了 工频交流 电转变 为直 流 电的 效率 。 从此开 始 , 晶 闸管和大 功率硅 整流管 的开 发得到 发展 , 使晶 闸管和 大功率 硅整 流管 大规模 应 用 。 与此 同时 , 国 内掀起 了大 办硅 整流 器厂 的热 潮 , 因此 , 这 时期 可称 之为 电力 电子 技术 的 整流器 时 代 。 ( 二) 逆变 器 时代 。 将直 流 电逆变 为0  ̄ 1 0 0 Hz 的交 流 电是交 流 电机 变 频调速 的主要特 点 , 其节 能功 能显著 , 减 少 了7 O 年代 世界性 能源 危机 , 从而得 到 了迅 速 发展 。 所 以, 2 O 世纪7 0 年代 可 以称 为 电力 电子技术 的逆变 器时 代 , 当时 电气 自动 化 领域 普遍 使用 变频 调速 装置 , 主 要使 用 巨型功率 晶体管 、 大 功率逆 变 用的 晶 闸管及 门极可 关断 晶闸管等 电力 电子器件 , 使 这些 电子器件 变成 了当代 重要 的 电力 电子器件 。 当时的 电力 电子技术 发展迅速 , 能够实 现逆变 和整 流 , 但 是仅局 限于 中低 频范 围 , 工 作效 率很 低 。 ( 三) 变 频器 时代 。 2 O 世纪8 0 年代 末出现 的集成 电路技 术 向高频技 术处理 问 题 发展 , 它 的工作 效率较 高 , 能够 给交流 电机变频 调速 提供较 高的 频率 , 完全 掩 盖 了逆变 器时 代出现 的 电力 电子 技术的缺 陷 。 当时 的巨大变 化为 现代 电力 电子 学 的转变 创造 了条件 , 性 能完善 可靠 的新型 电子器件 推动 现代 电力 电子 技术 向 高频化 发展 的速 度 , 从 而为 用 电设 备 实现小 型轻量 化 、 高 效节 能节 材提 供了重 要 的技 术 基础 。 = ,电力 电子 技术 的应 用 电力 电子技 术是一 门节 能 、 改善 工作条 件 和减小 环境 污染 的高 技术学 科 , 目前 电力 电子 技术在 高新技 术产 业和传统 工业领 域利 用率高 , 在这 些领 域 电力 电子 技术 发挥着 非 常重要 的作 用 。 下面 详细 介绍 电力 电子 技术在 电力 节 能 、 再 生能源 发 电、 家 用 电器 等 领域 中 的应用 。 ( 一) 电力 电子 技术在 电力 节能 中的应用 。 当今 世界很 多国家 工业用 电 总量

电力电子技术的应用与发展

电力电子技术的应用与发展

电力电子技术的应用与发展一、电力电子技术概述电力电子技术是将半导体器件应用于电力系统的控制和变换技术,通过改变电路的拓扑结构和控制策略,实现电力信号的变换和控制,从而满足不同电力系统的要求。

近年来,随着能源危机的日益严峻,电力电子技术的应用与发展变得越来越重要。

二、电力电子技术的应用1. 高压直流输电技术高压直流输电技术是一种利用半导体器件实现电力直流输送的技术,具有输电长距离、损耗小等优点,适用于电压等级高、距离远的场合。

2. 电力电子变频技术电力电子变频技术是一种将交流电转换为可调频率的交流电的技术。

它可以适应不同频率的电力输入,控制输出电力的频率、电压、相位等参数,具有广泛的应用前景。

3. 电力电子调速技术电力电子调速技术是一种通过改变电机输入电压的大小和相位,改变电机的转速,从而实现电机调速的技术。

电力电子调速技术具有调速精度高、动态响应快等优点,被广泛应用于工业生产中。

4. 电力电子换流技术电力电子换流技术是一种利用电力电子器件控制交流电的电压和电流方向,实现交流电变换为直流电或直流电变换为交流电的技术。

它被广泛应用于大型高压电力变电站和电网中。

三、电力电子技术的发展趋势随着科技进步和社会需求的不断增加,电力电子技术也在不断发展。

未来电力电子技术的发展趋势主要体现在以下几个方面:1. 高压高功率电力电子器件的研发现有的电力电子器件能够承受的电压和功率有限,限制了电力电子技术的应用范围。

因此,研发高压高功率电力电子器件是电力电子技术未来的发展方向。

2. 电力电子技术的智能化发展智能化是时代的发展趋势,电力电子技术也不例外。

未来电力电子技术将会更加智能化,如利用人工智能技术优化电力系统的控制和调节。

3. 电力电子技术的集成化发展电力电子技术是由多个电力电子器件组成的,未来电力电子技术将会向器件集成的方向发展,达到更小、更轻、更节能的效果。

四、总结电力电子技术的应用和发展是推动电力系统进步的重要因素之一。

新型电力电子技术的研究现状和应用

新型电力电子技术的研究现状和应用

新型电力电子技术的研究现状和应用随着当代科技的迅猛发展,新型电力电子技术也越来越成为人们议论的焦点。

在工业、交通、家庭等各个领域,新型电力电子技术都应用得越来越广泛,其作用越来越突出。

下面我们将就新型电力电子技术的研究现状和应用进行一番探讨。

一、新型电力电子技术研究现状从技术的角度来看,新型电力电子技术的研究主要涉及到三大方向:控制技术、转换技术和电子元器件技术。

1、控制技术电力电子技术的控制技术一直是研究的重要方向。

例如,功率因数校正技术、PWM调制技术、矢量控制技术等都是控制技术方面的热门研究领域。

随着控制技术的不断发展和创新,新型控制技术也不断涌现,使电力电子技术的控制更加灵活、高效。

2、转换技术电力电子技术的转换技术是针对电能进行转换的技术。

例如,电力变换器、逆变器、整流器等,在电能的传输、转换过程中发挥着至关重要的作用。

随着转换技术的不断创新和发展,电力电子技术的转换效率也得到了进一步提高,能够更好地满足人们的实际需求。

3、电子元器件技术电子元器件技术是电力电子技术发展的基础和前提。

众所周知,电子元器件的品质和性能对电力电子器件的工作效率和稳定性有着非常重要的影响。

因此,电子元器件技术的创新和发展对于提升电力电子技术水平具有十分重要的作用。

二、新型电力电子技术的应用1、家庭领域在现代家庭中,人们使用电力电子技术的方式多种多样。

例如,许多家庭开始使用LED灯来取代传统的白炽灯,使用智能家居系统进行家居控制,安装新型的家用空调、电视、冰箱等等。

这些家电的应用促进了家庭生活的舒适度和便利性的提高。

2、工业领域在工业领域,新型电力电子技术的应用也越来越广泛。

例如,在电力系统中,高压直流输电、智能电网等应用越来越普遍;在工业生产中,电动汽车、电动机、电动工具和光伏发电等新型设备的使用也为工业生产带来了很大的便利和经济效益。

3、交通运输领域在交通运输领域,新型电力电子技术的应用也十分广泛。

例如,电动汽车和混合动力汽车的普及,提高了交通运输的能效和环保性,未来的高速铁路、磁悬浮列车等技术也使用了新型的电力电子技术。

电力电子技术的发展和应用

电力电子技术的发展和应用

电力电子技术的发展和应用随着电力电子技术的快速发展,它在能源转换、电力调节、能量存储等方面的应用日益广泛,并成为当今工业制造业中不可或缺的一环。

本文将从发展历程、技术分类、应用领域等方面来探讨电力电子技术的发展和应用。

一、发展历程电力电子技术是在运用电子技术将交流电转换为直流电的过程中逐渐形成的。

由于交流电源在供应长距离输电时,无法达到高效稳定的要求,而直流电源更适合远距离输电,且易于调节电压和电流。

自20世纪60年代开始,电力电子技术逐步发展成熟,进入了成熟发展阶段。

20世纪30年代,晶体管被发明出来,从而奠定了电力电子技术的基础。

自此以后,电力电子技术在电源和驱动技术、变频技术、电力控制等方面获得了广泛的应用,特别是随着半导体技术、微电子技术、数字控制等技术的快速发展,电力电子技术得到了更为广泛的应用。

二、技术分类电力电子技术可分为直流电源技术、交流电源技术、变频技术、电力控制技术、光电转换技术等多个方面。

1. 直流电源技术直流电源技术主要应用于直流电驱动领域,包括直流电机、直流电动车辆、电力机车等领域。

2. 交流电源技术交流电源技术是将交流电转换为直流电的技术。

常用于电气设备的稳定供电,如电脑、电视、冷气等家用电器。

在高压输电系统中,电力电子变流器已成为控制能量流的关键技术。

3. 变频技术变频技术主要针对交流电源,并可以调节电源的频率与电压,以达到更好的能耗效率,因此被广泛应用在空调、电风扇、冰箱等家电上,以及工业生产中的变频控制系统,如水泵、电机、压缩机等。

4. 电力控制技术电力控制技术主要涉及电力电子设备的关键芯片、组件和系统的设计、制造、选择和运行。

电力控制技术的发展促进了节能减排,提高了电能利用率,减少了损耗,节约了成本。

5. 光电转换技术光电转换技术是将光能转化成电能的技术,是电力电子技术的重要分支之一,主要应应用于能量采集和存储等环节,如太阳能电池板、光伏电站、数码相机等。

三、应用领域1. 能源转换电力电子技术在能源转换方面的应用越来越广泛。

电力电子技术在现代电力系统中的应用

电力电子技术在现代电力系统中的应用

电力电子技术在现代电力系统中的应用电力电子技术是指利用电子器件和电子控制技术来处理、控制和转换电力的技术,广泛应用于现代电力系统中。

它的出现和发展,不仅大大提高了电力系统的运行效率和稳定性,还为新能源的接入和能量互联网的建设提供了可靠的支持。

本文将从电能的传输、转换和控制三个方面,介绍电力电子技术在现代电力系统中的具体应用。

一、电能的传输在现代电力系统中,电能的传输是电力电子技术的重要应用领域之一。

直流输电(DC)是其中的典型代表。

通过将交流电转换为直流电,再经过长距离传输后,再将直流电转换为交流电,可以大大减少线路损耗,提高电网的稳定性。

这种方式适用于远距离的电能传输,如跨海输电、大型水电站等。

此外,换流器技术也广泛应用于高压直流输电(HVDC),通过将交流电转换为直流电,再经过输电线路传输,再将直流电转换为交流电供应给用户,以提高能源利用效率。

二、电能的转换电力电子技术在电能转换方面的应用主要体现在变频器、逆变器、整流器等装置中。

变频器是将交流电转换为可调频率的交流电的装置,广泛应用于变频调速、风能、光能转换等领域。

逆变器则是将直流电转换为交流电的装置,常用于太阳能发电系统和电动汽车充电等方面。

整流器则是将交流电转换为直流电的装置,在电力系统中起到整流电能、滤波等作用,降低电网对谐波的敏感程度,提高电能的稳定性。

三、电能的控制电力电子技术在电能控制方面的应用体现在电力调节器上,如静止无功补偿装置(SVC)、静止有功发电机励磁调节器(AVR)等。

静止无功补偿装置是一种通过电力电子设备对电流和电压进行调节,从而改善电力系统的功率因数,提高电力系统能效的装置。

静止有功发电机励磁调节器是根据负荷的需求,对发电机的励磁电流进行控制,保持电力系统的频率和电压稳定。

此外,电力电子技术还广泛用于电网的保护和控制系统,如故障检测、自愈能力等方面,提供可靠的保护和控制手段。

总结起来,电力电子技术在现代电力系统中的应用十分广泛。

现代电力电子技术的发展及其应用

现代电力电子技术的发展及其应用

件结 构模 块化 、 制技 术数 字化 、 品性 能绿 色化 的 方 向发展 。本 文浅析 了电力 电子 技 术 的 构成 、 展 和 应 控 产 发
用。分析和认识现代 电力电子技术的发展及其应用对进一步应用和研 究电力电子技 术具有十分重要的指导
意义 。
关键 词 : 电力 电子 技 术 ; 发展 ; 用 ; 应 高频化 ; 块 化 ; 字化 ; 色化 模 数 绿 中图分 类号 : 3 TN 6 文献 标识 码 : A 文章编 号 :6 1 5 82 0 )3 1 4 17 —65 (0 60 —0 —0
K ywod : we l t nctc nq e ;dv l me t p l t n ig r un y mo uai t n ii la e rs p re cr i eh iu o e o s ee p n ;a pi i ;h hfe e c ; d l z i ;dgt i — o a c o 【 q r o a az
以电力为处理对象的电子技术称为电力 电子技 术, 它是一门利用 电力 电子器件对电能进行控制 和 转换的学科 , 电力、 是 电子 、 控制三大 电气工程技术 领域之间的交叉学科 , 是一 门多学科相互渗透的综 合性学科。图 1 所示 的倒三角形表征 了电力电子技
术 学科 的构 成 : 力技 术 ( 电机 、 压 器 等 各 种 电 电 发 变

20 06
现代 电力 电子 技 术 的发 展 及 其 应 用
刘莉宏 2 ,
(. 1 中国矿业 大学 ( 京校 区 )北京 108 ;. 京 工业 职业 技术 学 院 , 北 , 0 03 2北 北京 104 ) 0 0 2 摘 要: 当前 , 电力 电子技 术作 为节 能 、 节材 、 自动化 、 能化 、 电一体 化 的基础 , 朝 着应 用技 术 高频 化 、 智 机 正 硬

电力电子技术的发展趋势与应用前景

电力电子技术的发展趋势与应用前景

电力电子技术的发展趋势与应用前景随着科技的飞速发展,电力电子技术成为了当前发展中最受瞩目的技术之一,被广泛应用于工业、通信、医疗、交通等众多领域。

本文将探讨电力电子技术的发展趋势与应用前景。

一、电力电子技术的基础与发展历程电力电子技术指的是将电力与电子技术相结合所形成的一种技术。

它将电力转换与电子器件相结合,可实现供电系统的高效、智能化、精密控制等特点。

电力电子技术的应用范围极为广泛,包括了电源、电器、动力、照明、控制等方面。

电力电子技术的发展历程,草根于20世纪60年代,起初被用作不间断电源,进一步发展为无线输能电源、热补偿电源等。

到了21世纪,电力电子技术由于其高效节能、智能化、低耗能等特征,被广泛应用于新能源、智能电网、电动汽车等领域,成为推动技术进步的重要一环。

二、电力电子技术的发展趋势1、反义变流器将大规模普及反义变流器是电力电子技术的一个重要分支。

它可将交流电转换成直流电,再将直流电转变成交流电。

反义变流器在智能电网中起到了至关重要的作用,优点是能够对电力进行高效的流量控制,从而实现电力系统的高效、快速响应。

预计未来反义变流器将会大规模普及,满足对能源的更高要求。

2、微网将得到普及微网是由一组分布式电源、负荷和能量存储装置组成,通过电力互联,形成一种近似于小型电力网的电力系统。

微网技术能够将电力设备智能控制、自主组网和协同运行等技术集成起来,为用户提供优质的电力服务。

预计未来,微网技术将越来越普及,符合能源调节和能源转型发展趋势。

3、电力互联网的新型拓扑结构电力互联网是一种新型的能源调控方案,它将分布式电源、负荷、电池储能、高压直流输电等纳入一个交互网中,构成一种基于互联网和计算机技术的新型能源系统。

电力互联网的发展是电力电子技术的最新成果,通过加强电力电子器件的功能和智能控制系统的升级,实现了电力分布式化、智能化和网络化,从而更高效的管理和分配电力资源。

三、电力电子技术的应用前景电力电子技术已经广泛应用于工业、家庭、交通运输、车辆和航空航天等领域中。

电力电子技术的发展与应用

电力电子技术的发展与应用

电力电子技术的发展与应用电力电子技术是指通过电子元器件的放大、开关、调节等功能,将电能进行变换、控制、调节和保护的技术。

它从诞生到成熟,经历了漫长的历史过程,如今已广泛应用于各个领域,为人们的生活和工作提供了诸多便捷和效益。

一、电力电子技术的发展历程电力电子技术的起源可以追溯到20世纪初。

当时,人们对电子元器件和电力系统的相互作用有了更深入的认识和研究,先后出现了半导体整流器、大功率晶闸管、可控硅等电子元器件,为电力电子技术的发展提供了坚实的基础。

20世纪50年代,电力电子技术迎来了飞速发展的阶段。

当时,欧洲和美国率先开展了电力电子技术的研究和应用,涌现出了直流输电、交流输电、成组技术等一系列创新,为电力系统提供了更高效、更先进的技术手段。

20世纪70年代,电力电子技术成为了电力工业最具活力和潜力的领域之一。

当时,先进国家开始着手开发和应用交流电势能转换、电荷-电流倍增和电荷-电压倍增等技术,推动了电力电子技术的跨越式发展。

21世纪以来,随着信息技术、通信技术、能源技术等各个领域的快速发展,电力电子技术也开始向高效、智能、节能、环保等方向进军,不断推动电力工业的创新和升级。

二、电力电子技术的应用领域现代社会中,电力电子技术已经渗透到了各个领域。

以下是其中的几个典型应用领域:1. 电压变换器:电压变换器是电力电子技术的一个典型应用,它可以将一种电压转换为另外一种电压,并在电网上进行无级调节。

电压变换器一般应用于高压直流输电、列车牵引、风力发电等领域,为这些领域提供了高效、稳定的电力支持。

2. 电力电子器件:电力电子器件是电力电子技术的核心部件,它包括可控硅、晶闸管、新型功率半导体等等。

这些电子器件被广泛应用于电磁炉、变频空调、UPS电源等家用电器中,可以实现节能、环保的效果。

3. 电力器件保护:电力电子技术不仅可以进行电力转换和控制,还可以实现电力器件的保护。

例如,钳式电流互感器可以保护晶闸管,降低其损坏的风险;电力电容器则可以有效防止设备的故障和损坏。

现代电力电子技术的发展与应用

现代电力电子技术的发展与应用
判断电能质量的因素有:电压、谐波、频率和不对称度等,此外还需有效抑制各种波动和干扰。电力电子技术在配电环节的应用,主要以用户电力技术和FACTS技术的形式来实现,通过电力电子技术保证配电系统输出高质量的电能。
(一)整流器时代
整流器时代主要是指二十世纪六、七时年代的电力电子发展阶段,整流器时代最具代表性的电子元器件是大功率硅整流管和晶闸管的开发和应用。当时工业用电大多数采用工频交流发电机来提供,于是,如何将交流电转换成直流电成为当时的热门研究。1958年,美国通用电气宣布研发出晶闸管,世界上第一只晶闸管的问世,标志着电力电子技术的开始,也标志着电能的控制和转换进入了整流器时代。最初的电力电子器件主要以二极管和晶闸管为主,属于半控型电子技术。整流是指将电力由交流(AC)转换为直流(DC)的过程,包括可控整流和非可控整流,其中可控整流是通过晶闸管作为控制元器件来实现的。可控硅整流装置的广泛使用,标志着电能转换进入了电力电子技术的整流器时代。
工业生产中会大量使用各种交流、直流电动机,这些电动机均属于电力电子技术范畴。利用电力电子元器件进行工业规模电能的转换,将一种形式的工业电能转换成另一种形式的工业电能,最常见的电能转换有:利用元器件将直流电能转换成交流电能,或者逆之转换;将工频电源转换成工业生产所用设备所需频率的电源。
此外,电力电子技术还广泛地应用于冶金工业和电化学工业中。冶金工业中的加热电源、直流弧炉电源以及高中频感应淬火电源;在电化学工业中,电解铝、电解食盐水等工艺都大量地使用大容量整流电源。
关键词:电力电子技术发展应用
电力电子技术是一种新型现代化技术,它结合了电力、电子和控制的技术,具有专业性、系统性和综合性的特点。随着电力电子技术的日臻完善,电力电子技术被广泛应用于各个领域,为人们的生产生活提供了极大地便利。

现代电力电子技术及应用

现代电力电子技术及应用

现代电力电子技术及应用电力电子技术是指以半导体器件为核心,应用电子技术来实现电力转换、控制和保护的技术。

电力电子技术的发展,不仅加速了电力系统的进步,而且也成为现代电子技术应用领域中的重要组成部分。

本文将以电力电子技术的发展、应用和前景为主线,进行以下详细阐述。

一、电力电子技术的发展电力电子技术的发展始于20世纪60年代,主要是针对电力变频调速和谐波污染这两个问题。

20世纪70年代到80年代,随着电力电子器件如晶闸管、功率场效应管(MOSFET)和可控硅(SCR)等的出现,电力电子技术逐渐成熟,并在电力系统中得到广泛应用。

在这个阶段,电力电子技术主要应用于电动机的调速控制、输电线路电力因数补偿、谐波抑制等方面。

20世纪90年代以来,随着高压直流输电(HVDC)技术、柔性交流输电(FACTS)技术和电能质量(PQ)控制技术的发展,电力电子技术获得了更大的应用空间。

其中,HVDC技术不仅弥补了交流传输中输电线路对环境的影响,还提高了长距离输电效率;FACTS技术则通过直接控制交流输电系统的电压、电流和相位等参数,实现对电力系统的灵活控制,提高电力系统的可靠性和稳定性。

此外,电能质量控制技术也在消除电路中的谐波、尖峰电流和点状变压器等方面发挥了重要作用。

二、电力电子技术的应用在电力系统中,电力电子技术已经广泛应用于能源转换、输配电和工业自动化等领域。

下面将重点介绍电力电子技术在这些领域中的应用。

1、能源转换应用电力电子技术在能源转换中的应用包括风力发电、太阳能电池和燃料电池等方面。

其中,风力发电和太阳能电池都属于可再生能源,将电力电子技术应用于其控制系统中可以提高其发电效率和可靠性;燃料电池则可将化学能转化为电能,成为能源转换领域的理想选择。

2、输配电应用电力电子技术在输配电领域中的应用主要有功率因数补偿技术、电网稳频技术和电网无功控制技术等。

其中,功率因数补偿技术是指通过电容器、静态无功补偿器等设备将系统的功率因数提高到合理的范围,降低输电损耗,提高系统效率和稳定性;电网稳频技术是通过调节负载和电压控制器的频率和电压,使系统频率和电压保持稳定;电网无功控制技术则主要是调节无功电力来维持系统的电压稳定和电能质量。

综述现代电力电子技术在电力系统中的发展现状

综述现代电力电子技术在电力系统中的发展现状

综述现代电力电子技术在电力系统中的发展现状随着电力系统的不断发展,电力电子技术作为其重要组成部分之一,也在不断创新、发展,为电力系统的稳定运行和优化提供了更加有效的手段。

在过去几十年中,电力电子技术已经发生了很大的变化。

从最早的晶闸管、thyristor等器件,到如今的IGBT、MOSFET等高性能晶体管,电力电子器件的性能和可靠性都得到了提升。

与此同时,电力电子技术在功率变换、电力调节和控制等方面的应用也越来越广泛。

目前,在电力系统中,电力电子技术主要应用于以下几个方面:1. 电力变换和传输:电力电子器件和系统可以将交流电变换成直流电或者将直流电变为交流电,从而实现电力的传输和电网的稳定运行。

2. 电力调节和控制:电力电子技术可以通过控制电力系统中的各种器件,实现对电力信号的调节和控制。

例如,可通过电力发电系统的控制器来管理电力压力、频率等参数。

3. 电力质量控制:通过电力电子技术,可以对电力质量进行调整。

补偿电装置(SVC)可以对电力系统中的电压波动和电力失调等现象进行补偿,从而实现电力的质量控制。

4. 新能源开发:电力电子技术的应用还可促进新能源的开发,如风力和太阳能。

5. 智能电网和微电网:电力电子技术也可以促进智能电网和微电网的发展,提高电网运行的智能性和可靠性。

因此,电力电子技术在电力系统中有着广泛的应用前景。

未来,随着电力自动化程度的不断提高,电力电子技术将继续发挥着重要作用,成为电力系统高效运行和优化的重要手段。

总之,现代电力电子技术在电力系统中的发展已经取得了很大进展,其应用可以改善电力质量、提高电网运行效率、促进新能源开发和智能电网建设等目标的实现。

在未来的发展中,电力电子技术将继续推动电力系统的发展,实现电力工业和社会经济的可持续发展。

论电力电子技术的发展与应用前景

论电力电子技术的发展与应用前景

论电力电子技术的发展与应用前景近年来,随着人们生活水平的不断提高,电力电子技术日益得到广泛应用。

它是现代电气技术和信息技术相结合的产物,使得电力系统更加智能化、高效化和安全可靠,是实现能源转型和绿色发展的核心技术之一。

本文旨在探讨电力电子技术的发展与应用前景。

一,电力电子技术的发展历程电力电子技术,又称为能量电子技术,其诞生可以追溯到20世纪60年代。

20世纪70年代,我国开始研制大功率半导体器件,并于80年代初成功研制出全国第一台百万瓦级大型水平轴风力发电机组,标志着我国电力电子技术走上了一个新的高度。

随着半导体材料和制造工艺的不断完善,大功率寿命的提高,电力电子产品的性能不断刷新,逐渐得到广泛应用。

目前,电力电子技术已经进入了一个全新的发展阶段,使得电力变换器、电力控制器等成为电力系统的核心部件。

在全球经济一体化的背景下,电力电子技术正处于一个高速发展的时期。

二,电力电子技术的优势1.提高电源利用率。

电力电子技术克服了传统电力交换方式所存在的很多问题,它具有快速开关、大功率密度、高效性等优势,这些特点使得电力系统的变换效率得到了提高,能够更加高效的利用电能。

2.提高产品的可靠性。

电力电子技术产生的电能比传统技术产生的电能更加可靠,因为它单个单元失效,整个系统不会失灵,从而大幅度提高了电力系统的可靠性。

3.提高电路系统的安全性。

电力电子技术制造的电路系统能够实现快速切换,从而避免传统电路系统所遇到的振荡问题,并且具有过流、过电压保护,为电力系统的安全运行提供了保障。

三,电力电子技术的应用前景1. 新能源发电系统在新的经济环境下,传统化石燃料的资源越来越紧缺,新能源发电逐渐受到各个国家的重视。

而电力电子技术对于新能源发电系统的建设起到了重要的作用。

如风力发电、太阳能发电等,这些能源的输出电压是阶段性的和不连续的,需要通过电力电子技术进行变换,以适应现代电气系统的要求。

2.交通运输电力电子技术也可以应用于交通运输中,如:高速火车、磁悬浮列车等领域。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

现代电力电子技术发展及其应用摘要:电力电子技术是研究采用电力电子器件实现对电能的控制和变换的科学,是介于电气工程三大主要领域——电力、电子和控制之间的交叉学科,在电力、工业、交通、航空航天等领域具有广泛的应用。

电力电子技术的应用已经深入到工业生产和社会生活的各个方面,成为传统产业和高新技术领域不可缺少的关键技术,可以有效地节约能源。

一、引言自上世纪五十年代末第一只晶闸管问世以来,电力电子技术开始登上现代电气控制技术舞台,标志着电力电子技术的诞生。

究竟什么是电力电子技术呢?电力电子技术就是采用功率半导体器件对电能进行转换、控制和优化利用的技术,它广泛应用于电力、电气自动化及各种电源系统等工业生产和民用部门。

它是介于电力、电子和控制三大领域之间的交叉学科。

目前,电力电子技术的应用已遍及电力、汽车、现代通信、机械、石化、纺织、家用电器、灯光照明、冶金、铁路、医疗设备、航空、航海等领域。

进入21世纪,随着新的理论、器件、技术的不断出现,特别是与微控制器技术的日益融合,电力电子技术的应用领域也必将不断地得以拓展,随之而来的必将是智能电力电子时代。

二、电力电子技术的发展现代电力电子技术的发展方向,是从以低频技术处理问题为主的传统电力电子学,向以高频技术处理问题为主的现代电力电子学方向转变。

电力电子技术起始于五十年代末六十年代初的硅整流器件,其发展先后经历了整流器时代、逆变器时代和变频器时代,并促进了电力电子技术在许多新领域的应用。

八十年代末期和九十年代初期发展起来的、以功率MOSFET和IGBT为代表的、集高频、高压和大电流于一身的功率半导体复合器件,表明传统电力电子技术已经进入现代电力电子时代。

1、整流器时代大功率的工业用电由工频(50Hz)交流发电机提供,但是大约20%的电能是以直流形式消费的,其中最典型的是电解(有色金属和化工原料需要直流电解)、牵引(电气机车、电传动的内燃机车、地铁机车、城市无轨电车等)和直流传动(轧钢、造纸等)三大领域。

大功率硅整流器能够高效率地把工频交流电转变为直流电,因此在六十年代和七十年代,大功率硅整流管和晶闸管的开发与应用得以很大发展。

当时国内曾经掀起了-股各地大办硅整流器厂的热潮,目前全国大大小小的制造硅整流器的半导体厂家就是那时的产物。

2、逆变器时代七十年代出现了世界范围的能源危机,交流电机变频惆速因节能效果显著而迅速发展。

变频调速的关键技术是将直流电逆变为0~100Hz的交流电。

在七十年代到八十年代,随着变频调速装置的普及,大功率逆变用的晶闸管、巨型功率晶体管(GTR)和门极可关断晶闸管(GT0)成为当时电力电子器件的主角。

类似的应用还包括高压直流输出,静止式无功功率动态补偿等。

这时的电力电子技术已经能够实现整流和逆变,但工作频率较低,仅局限在中低频范围内。

3、变频器时代进入八十年代,大规模和超大规模集成电路技术的迅猛发展,为现代电力电子技术的发展奠定了基础。

将集成电路技术的精细加工技术和高压大电流技术有机结合,出现了一批全新的全控型功率器件、首先是功率M0SFET的问世,导致了中小功率电源向高频化发展,而后绝缘门极双极晶体管(IGBT)的出现,又为大中型功率电源向高频发展带来机遇。

MOSFET和IGBT的相继问世,是传统的电力电子向现代电力电子转化的标志。

据统计,到1995年底,功率M0SFET和GTR在功率半导体器件市场上已达到平分秋色的地步,而用IGBT代替GTR在电力电子领域巳成定论。

新型器件的发展不仅为交流电机变频调速提供了较高的频率,使其性能更加完善可靠,而且使现代电子技术不断向高频化发展,为用电设备的高效节材节能,实现小型轻量化,机电一体化和智能化提供了重要的技术基础。

三、电力电子技术的应用1、一般工业工业中大量应用各种交直流电动机。

直流电动机有良好的调速性能,给其供电的可控整流电源或直流斩波电源都是电力电子装置。

近年来,由于电力电子变频技术的迅速发展,使得交流电机的调速性能可与直流电机相媲美,交流调速技术大量应用并占据主导地位。

大至数千kW的各种轧钢机,小到几百W的数控机床的伺服电机,以及矿山牵引等场合都广泛采用电力电子交直流调速技术。

一些对调速性能要求不高的大型鼓风机等近年来也采用了变频装置,以达到节能的目的。

还有些不调速的电机为了避免起动时的电流冲击而采用了软起动装置,这种软起动装置也是电力电子装置。

电化学工业大量使用直流电源,电解铝、电解食盐水等都需要大容量整流电源。

电镀装置也需要整流电源。

电力电子技术还大量用于冶金工业中的高频、中频感应加热电源、淬火电源及直流电弧炉电源等场合。

2、交通运输电气化铁道中广泛采用电力电子技术。

电气机车中的直流机车中采用整流装置,交流机车采用变频装置。

直流斩波器也广泛用于铁道车辆。

在未来的磁悬浮列车中,电力电子技术更是一项关键技术。

除牵引电机传动外,车辆中的各种辅助电源也都离不开电力电子技术。

电动汽车的电机靠电力电子装置进行电力变换和驱动控制,其蓄电池的充电也离不开电力电子装置。

一台高级汽车中需要许多控制电机,它们也要靠变频器和斩波器驱动并控制。

飞机、船舶需要很多不同要求的电源,因此航空和航海都离不开电力电子技术。

如果把电梯也算做交通运输,那么它也需要电力电子技术。

以前的电梯大都采用直流调速系统,而近年来交流变频调速已成为主流。

3、电力系统电力电子技术在电力系统中有着非常广泛的应用。

据估计,发达国家在用户最终使用的电能中,有60%以上的电能至少经过一次以上电力电子变流装置的处理。

电力系统在通向现代化的进程中,电力电子技术是关键技术之一。

可以毫不夸张地说,如果离开电力电子技术,电力系统的现代化就是不可想象的。

直流输电在长距离、大容量输电时有很大的优势,其送电端的整流阀和受电端的逆变阀都采用晶闸管变流装置。

近年发展起来的柔性交流输电(FACTS)也是依靠电力电子装置才得以实现的。

无功补偿和谐波抑制对电力系统有重要的意义。

晶闸管控制电抗器(TCR)、晶闸管投切电容器(TSC)都是重要的无功补偿装置。

近年来出现的静止无功发生器(SVG)、有源电力滤波器(APF)等新型电力电子装置具有更为优越的无功功率和谐波补偿的性能。

在配电网系统,电力电子装置还可用于防止电网瞬时停电、瞬时电压跌落、闪变等,以进行电能质量控制,改善供电质量。

在变电所中,给操作系统提供可靠的交直流操作电源,给蓄电池充电等都需要电力电子装置。

4、电子装置用电源各种电子装置一般都需要不同电压等级的直流电源供电。

通信设备中的程控交换机所用的直流电源以前用晶闸管整流电源,现在已改为采用全控型器件的高频开关电源。

大型计算机所需的工作电源、微型计算机内部的电源现在也都采用高频开关电源。

在各种电子装置中,以前大量采用线性稳压电源供电,由于高频开关电源体积小、重量轻、效率高,现在已逐渐取代了线性电源。

因为各种信息技术装置都需要电力电子装置提供电源,所以可以说信息电子技术离不开电力电子技术。

5、家用电器照明在家用电器中占有十分突出的地位。

由于电力电子照明电源体积小、发光效率高、可节省大量能源,通常被称为“节能灯”,它正在逐步取代传统的白炽灯和日光灯。

变频空调器是家用电器中应用电力电子技术的典型例子。

电视机、音响设备、家用计算机等电子设备的电源部分也都需要电力电子技术。

此外,有些洗衣机、电冰箱、微波炉等电器也应用了电力电子技术。

电力电子技术广泛用于家用电器使得它和我们的生活变得十分贴近。

6、其他不间断电源(UPS)在现代社会中的作用越来越重要,用量也越来越大,在电力电子产品中已占有相当大的份额。

航天飞行器中的各种电子仪器需要电源,载人航天器中为了人的生存和工作,也离不开各种电源,这些都必需采用电力电子技术。

传统的发电方式是火力发电、水力发电以及后来兴起的核能发电。

能源危机后,各种新能源、可再生能源及新型发电方式越来越受到重视。

其中太阳能发电、风力发电的发展较快,燃料电池更是备受关注。

太阳能发电和风力发电受环境的制约,发出的电力质量较差,常需要储能装置缓冲,需要改善电能质量,这就需要电力电子技术。

当需要和电力系统联网时,也离不开电力电子技术。

为了合理地利用水力发电资源,近年来抽水储能发电站受到重视。

其中的大型电动机的起动和调速都需要电力电子技术。

超导储能是未来的一种储能方式,它需要强大的直流电源供电,这也离不开电力电子技术。

核聚变反应堆在产生强大磁场和注入能量时,需要大容量的脉冲电源,这种电源就是电力电子装置。

科学实验或某些特殊场合,常常需要一些特种电源,这也是电力电子技术的用武之地。

以前电力电子技术的应用偏重于中、大功率。

现在,在1kW以下,甚至几十W以下的功率范围内,电力电子技术的应用也越来越广,其地位也越来越重要。

这已成为一个重要的发展趋势,值得引起人们的注意。

四、结论总之,电力电子技术的应用范围十分广泛。

从人类对宇宙和大自然的探索,到国民经济的各个领域,再到我们的衣食住行,到处都能感受到电力电子技术的存在和巨大魅力。

这也激发了一代又一代的学者和工程技术人员学习、研究电力电子技术并使其飞速发展。

电力电子装置提供给负载的是各种不同的直流电源、恒频交流电源和变频交流电源,因此也可以说,电力电子技术研究的也就是电源技术。

电力电子技术对节省电能有重要意义。

特别在大型风机、水泵采用变频调速方面,在使用量十分庞大的照明电源等方面,电力电子技术的节能效果十分显著,因此它也被称为是节能技术。

相关文档
最新文档