荆州市最新初中数学—分式的基础测试题含答案

合集下载

最新最新初中数学—分式的基础测试题附答案解析(2)

最新最新初中数学—分式的基础测试题附答案解析(2)

一、选择题1.下列命题中:①已知两实数a、b,如果a>b,那么a2>b2;②同位角相等,两直线平行;③如果两个角是直角,那么这两个角相等;④如果分式332xx-+无意义,那么x=﹣23;这些命题及其逆命题都是真命题的是()A.①②B.③④C.①③D.②④2.小张在课外阅读中看到这样一条信息:“肥皂泡的厚度约为0.0000007m ”,请你用科学记数法表示肥皂泡的厚度,下列选项正确的是()A.0.7 ⨯10-6m B.0.7 ⨯10-7m C.7 ⨯10-7m D.7 ⨯10-6m3.若x2-6xy+9y2=0,那么x yx y-+的值为()A.12yB.12y-C.12D.12-4.已知212,,0.2532a b c--⎛⎫⎛⎫=-==⎪⎪ ⎪⎝⎭⎝⎭,a,b,c的大小关系是()A.a>b>c B.b>a>c C.c>a>b D.c>b>a 5.若(x2﹣ax﹣b)(x+2)的积不含x的一次项和二次项,则a b=()A.116B.-116C.16D.﹣166.已知x2-4xy+4y2=0,则分式x yx y-+的值为()A.13-B.13C.13yD.y31-7.与分式11aa-+--相等的式子是()A.11aa+-B.11aa-+C.11aa+--D.11aa--+8.如果把分式2++a ba b中的a和b都扩大为原来的10倍,那么分式的值()A.不变B.缩小10倍C.是原来的20倍D.扩大10倍9.下列运算结果最大的是()A.112-⎛⎫⎪⎝⎭B.02C.12-D.()12-10.下列等式从左到右的变形正确的是()A .22b by x xy= B .2ab b a a =C .22b b a a =D .11b b a a +=+ 11.下列变形中,正确的是( )A .2211x xy y-=-B .22m mn n=C .2()a b a ba b-=-- D .2233x x +=+ 12.0.000002019用科学记数法可表示为( )A .0.2019×10﹣5B .2.019×10﹣6C .20.19×10﹣7 D .2019×10﹣9 13.若m+2n =0,则分式22221m n m m mn m m n+⎛⎫+÷ ⎪--⎝⎭的值为( )A .32B .﹣3nC .﹣32n D .9214.下列各式:2a b -,3x x +,13,a b a b +-,1()x y m -中,是分式的共有( )A .1个B .2个C .3个D .4个15.用小数表示45.610-⨯为( )A .5.6000B .0.00056C .0.0056D .0.056 16.下列运算错误的是( ) A .235a a a ⋅= B .()()422ab ab ab ÷-= C .()222424ab a b -=D .3322aa -=17.若a=20180,b=2016×2018-20172,c=(23-)2016×(32)2017,则a ,b ,c 的大小关系正确的是( ) A .a<b<cB .a<c<bC .b<a<cD .c<b<a18.下列运算正确的是( ) A .1133a a﹣=B .2322a a a +=C .326()•a a a ﹣=﹣D .32()()a a a ÷﹣﹣=19.世界上最小的开花结果植物的果实像一个微小的无花果,质量只有0.000000076克,将0.000000076用科学记数法表示为( ) A .87.610⨯B .77.610-⨯C .87.610-⨯D .97.610-⨯20.下列运算正确的是( ) A .(﹣x 3)4=x 12B .x 8÷x 4=x 2 C .x 2+x 4=x 6D .(﹣x )﹣1=1x21.化简21211a aa a----的结果为( )A .11a a +- B .a ﹣1 C .a D .122.若x 取整数,则使分式6321x x +-的值为整数的x 值有( ) A .3个B .4个C .6个D .8个23.当x 为任意实数时,下列分式中,一定有意义的是( ) A .1xB .11x + C .11x - D .211x + 24.若把分式32aba b +中的a 、b 都缩小为原来的13 ,则分式的值( ) A .缩小为原来的13 B .扩大为原来的6倍 C .缩小为原来的19D .不变25.下列各分式中,最简分式是( )A .21x x +B .22m n m n -+C .22a b a b +-D .22x y x y xy ++【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】分别写出四个命题的逆命题,利用反例对①和它的逆命题进行判断;利用平行线的性质和判定对②和它的逆命题进行判断;利用直角的定义对③和它的逆命题进行判断;利用分式有意义的条件对④和它的逆命题进行判断. 【详解】解:①已知两实数a 、b ,如果a >b ,那么a 2>b 2;若a =1,b =﹣2,结论不成立,则命题为假命题,其逆命题为:已知两实数a 、b ,如果a 2>b 2,那么a >b ;若a =﹣2,b =1时,结论不成立,所以逆命题为假命题;②同位角相等,两直线平行;则命题为真命题,其逆命题为:两直线平行,同位角相等,所以逆命题为真命题;③如果两个角是直角,那么这两个角相等;此命题为真命题,其逆命题为:如果两个角相等,那么这两个角是直角,所以逆命题为假命题; ④如果分式332x x -+无意义,那么x =﹣23;此命题为真命题,其逆命题为:如果x =﹣2 3,那么分式332xx-+无意义,所以逆命题为真命题;故选:D.【点睛】此题主要考查命题的判断,解题的关键是熟知实数的性质、平行线的性质、直角的性质及分式的性质.2.C解析:C【解析】【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:0.000 000 7=7×10-7.故选C.【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.3.C解析:C【解析】【分析】根据完全平方公式求出x与y的关系,代入计算即可.【详解】x2-6xy+9y2=0,(x-3y)2=0,∴x=3y,则x yx y-+=3132y yy y-=+,故选:C.【点睛】本题考查的是求分式的值,掌握完全平方公式、分式的计算是解题的关键.4.C解析:C【解析】【分析】根据负整数指数幂和零指数幂法则计算,比较即可.【详解】2129==10.25=434a b c --⎛⎫=-== ⎪⎝⎭⎝⎭,,, ∵4>94>1, ∴c >a >b . 故选C . 【点睛】此题考查了负整数指数幂和零指数幂的运算,掌握其运算法则是解答此题的关键.5.A解析:A 【解析】 【分析】先把原式展开,再根据题意2()(2)x ax b x --+的积不含x 的一次项和二次项,得知20a -=,20a b +=,然后求解即可. 【详解】2322()(2)222x ax b x x x ax ax bx b --+=+---- 32(2)(2)2x a x a b x b =+--+-,2()(2)x ax b x --+的积不含x 的一次项和二次项,∴2020a ab -=⎧⎨+=⎩, 2a ∴=,4b =-,41216b a -∴==. 故选A . 【点睛】本题考查了多项式乘多项式,解题的关键是明确积不含x 的一次项和二次项,即它们的系数为零.6.B解析:B 【解析】试题解析:∵x 2-4xy+4y 2=0, ∴(x-2y )2=0, ∴x=2y , ∴133x y y x y y -==+. 故选B .7.B【分析】根据分式的基本性质即可得出:分式的分子、分母、分式本身的符号,改变其中的任意两个,分式的值不变,据此即可解答.【详解】解:原式=1)(1)aa--+-(=11aa-+故选:B.【点睛】本题考查分式的基本性质,解题关键是熟练掌握分式的基本性质.8.A解析:A【分析】根据分式的基本性质代入化简即可.【详解】扩大后为:102022=1010)a b a b a b a b a b a b+++=+++10()10(分式的值还是不变故选:A.【点睛】本题考查分式的基本性质,熟练掌握性质是关键.9.A解析:A【解析】【分析】直接利用负整数指数幂的性质和零指数幂的性质分别化简得出答案.【详解】∵11=22-⎛⎫⎪⎝⎭;02=1;12-=12;()12=2--,2>1>12>-2,∴运算结果最大的是112-⎛⎫⎪⎝⎭,故选A.【点睛】本题主要考查了负整数指数幂的性质和零指数幂的性质,正确化简各数是解题关键. 10.B解析:B根据分式的基本性质,无论是把分式的分子和分母扩大还是缩小相同的倍数,都不要漏乘(除)分子、分母中的任何一项,且扩大(缩小)的倍数不能为0,并且分式的值不变,由此即可判定选择项. 【详解】 A 、22b by x xy=,其中y≠0,故选项错误; B 、2ab baa =,其中左边隐含a≠0,故选项正确; C 、2b ab a a =,故选项错误. D 、根据分式基本性质知道11b b aa ++≠,故选项错误; 故选B . 【点睛】此题考查分式的基本性质,解题的关键是熟练掌握分式的基本性质.11.C解析:C 【分析】根据分式的性质分子分母同时乘(或除以)同一个不为零的整式,分式的值不变,进行判断选择即可. 【详解】A ,B ,D 均不符合分式分子分母同时乘(或除以)同一个不为零的整式,分式的值不变的性质,选项C 可以将分子分母同时除以(a-b )到()2a b a b a b-=--,故答案选择C.【点睛】本题考查的是分式的基本性质,熟知分式中分子分母同时乘(或除以)同一个不为零的整式,分式的值不变,是解题的关键.12.B解析:B 【解析】 【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a ×10﹣n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定. 【详解】0.000002019=2.019×10﹣6, 故选B . 【点睛】此题主要考查了用科学记数法表示较小的数,一般形式为a ×10﹣n ,其中1≤|a |<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.13.A解析:A 【分析】直接利用分式的混合运算法则进行化简,进而把已知代入求出答案. 【详解】解:原式=2()m n m n m m n ++--•(+)()m n m n m-=3()m m m n -•(+)()m n m n m-=3()m n m+, ∵m+2n =0, ∴m =﹣2n ,∴原式=32n n --=32.故选:A . 【点睛】此题主要考查分式的运算,解题的关键是熟知分式的运算法则.14.C解析:C 【分析】利用分式的概念:一般地,如果A ,B 表示两个整式,并且B 中含有字母,那么式子A B叫做分式,进行解答即可. 【详解】 解:在2a b -,3x x +,13,a b a b +-,1()x y m-中, 3x x +,a b a b +-,1()x y m -是分式,共3个, 故选:C . 【点睛】本题考查了分式,关键是掌握分式的分母必须含有字母,而分子可以含字母,也可以不含字母.15.B解析:B 【分析】把数据45.610-⨯中5.6的小数点向左移动4位就可以得到. 【详解】解:441=5.6=5.60.0001=0.0005615.6100-⨯⨯⨯. 故选B. 【点睛】本题考查写出用科学记数法表示的原数.(1)科学记数法a ×10n 表示的数,“还原”成通常表示的数,就是把a 的小数点向右移动n 位所得到的数.若科学记数法表示较小的数a ×10-n ,还原为原来的数,需要把a 的小数点向左移动n 位得到原数.(2)把一个数表示成科学记数法的形式及把科学记数法还原是两个互逆的过程,这也可以作为检查用科学记数法表示一个数是否正确的方法.16.B解析:B 【分析】直接运用同底数幂的乘法运算法则、单项式除以单项式运算法则、积的乘方与幂的乘方运算法则以及负整数指数幂的意义分别计算得出答案再进行判断即可. 【详解】A . 235a a a ⋅=,计算正确,不符合题意;B . ()()4222ab ab a b ÷-=,原选项计算错误,符合题意; C . ()222424ab a b -=,计算正确,不符合题意;D . 3322aa -=,计算正确,不符合题意. 故选:B . 【点睛】此题主要考查了幂的运算,熟练掌握运算法则是解题的关键.17.C解析:C 【分析】首先计算a 、b 、c 的值,再进行比较即可. 【详解】 a=20180=1,b=2016×2018-20172=222(20171)(20171)20172017120171-+-=--=-,20162017201620162016232332333()()()()()323223222c =-⨯=⨯⨯=⨯⨯=,∵-1<1<32, ∴b<a<c , 故选:C. 【点睛】此题考查零次幂定义,平方差公式,同底数幂乘法的逆运算,积的乘方的逆运算,掌握掌握各计算法则是解题的关键.18.D解析:D 【分析】直接利用负指数幂的性质以及同底数幂的乘除运算法则计算得出答案. 【详解】解:A 、133a a-=,故此选项错误; B 、22a a +,不是同类项无法合并;C 、()325aa a -⋅=-,故此选项错误; D 、()()32a a a -÷-=,正确;故选:D . 【点睛】此题考查负指数幂的性质以及同底数幂的乘除运算,正确掌握相关运算法则是解题关键.19.C解析:C 【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a ×10-n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定. 【详解】0.000000076用科学记数法表示为7.6×10-8. 故选:C . 【点睛】本题考查用科学记数法表示较小的数,一般形式为a ×10-n ,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.20.A解析:A 【分析】A 、根据积的乘方法则进行计算;B 、根据同底数幂的除法法则进行计算;C 、不是同类项,不能合并;D 、根据负整数指数幂的法则进行计算. 【详解】解:A 、(﹣x 3)4=x 12,所以此选项正确; B 、x 8÷x 4=x 4,所以此选项不正确;C 、x 2与x 4不是同类顶,不能合并,所以此选项不正确;D 、(﹣x )﹣1=111()x x-=-,所以此选项不正确; 故选:A .【点睛】 本题考查了幂的乘方和积的乘方等知识点,能求出每个式子的值是解题的关键.21.B解析:B【解析】分析:根据同分母分式加减法的运算法则进行计算即可求出答案.详解:原式=21211a a a a -+--, =2(1)1a a --, =a ﹣1故选B .点睛:本题考查同分母分式加减法的运算法则,解题的关键是熟练运用分式的运算法则,本题属于基础题型.22.B解析:B【分析】 首先把分式转化为6321x +-,则原式的值是整数,即可转化为讨论621x -的整数值有几个的问题.【详解】 6363663212121x x x x x +-+==+---, 当216x -=±或3±或2±或1±时,621x -是整数,即原式是整数. 当216x -=±或2±时,x 的值不是整数,当等于3±或1±是满足条件. 故使分式6321x x +-的值为整数的x 值有4个,是2,0和1±. 故选B .【点睛】 本题主要考查了分式的值是整数的条件,把原式化简为6321x +-的形式是解决本题的关键. 23.D解析:D【分析】根据分式有意义分母不为零分别进行分析即可.【详解】A 、当0x =时,分式无意义,故此选项错误;B 、当1x =-时,分式无意义,故此选项错误;C 、当1x =时,分式无意义,故此选项错误;D 、当x 为任意实数时,分式都有意义,故此选项正确;故选:D .【点睛】本题主要考查了分式有意义的条件,关键是掌握分式有意义的条件是分母不等于零.24.A解析:A【分析】 把分式32ab a b +中的a 用13a 、b 用13b 代换,利用分式的基本性质计算即可求解. 【详解】 把分式32ab a b +中的a 、b 都缩小为原来的13, 则分式变为1133311233a b a b ⨯⨯⨯+, 则:1133311233a b a b ⨯⨯⨯+=1332ab a b⨯+, 所以把分式32ab a b +中的a 、b 都缩小为原来的13时分式的值也缩小为原来的13. 故选:A .【点睛】本题考查了分式的基本性质:分式的分子与分母同乘(或除以)一个不等于0的整式,分式的值不变.25.A解析:A【分析】最简分式就是分式的分子和分母没有公因式,也可理解为分式的分子和分母的最大公因式为1.所以判断一个分式是否为最简分式,关键是要看分式的分子和分母的最大公因式是否为1.【详解】解:A. 21x x +,分子分母的最大公因式为1;B. 22m n m n-+,分子分母中含有公因式m+n; C.22a b a b +-,分子分母中含有公因式a+b ; D. 22x y x y xy ++,分子分母中含有公因式x+y 故选:A.【点睛】最简分式首先系数要最简;一个分式是否为最简分式,关键看分子与分母是不是有公因式,但表面不易判断,应将分子、分母分解因式.。

新最新初中数学—分式的基础测试题及答案

新最新初中数学—分式的基础测试题及答案

一、选择题1.当x =1时,下列分式中值为0的是( ) A .11x - B .222x x -- C .31x x -+ D .11x x -- 2.若分式||11x x -+的值为0,则x 的值为( ) A .1B .﹣1C .±1 D .无解3.下列判断错误..的是( ) A .当23x ≠时,分式132x x +-有意义 B .当a b 时,分式22aba b -有意义 C .当12x =-时,分式214x x+值为0D .当x y ≠时,分式22x yy x--有意义4.下列分式:24a 5b c ,23c 4a b ,25b2ac 中,最简公分母是 A .5abcB .2225a b cC .22220a b cD .22240a b c5.如果分式242x x --的值等于0,那么( )A .2x =±B .2x =C .2x =-D .2x ≠6.若a = (-0.4)2,b = -4-2,c =214-⎛⎫- ⎪⎝⎭,d =014⎛⎫- ⎪⎝⎭, 则 a 、b 、c 、d 的大小关系为( ) A .a <b <c <dB .b <a <d <cC .a <d <c <bD .c <a <d <b7.下列关于分式的判断,正确的是( ) A .当x =2时,12x x +-的值为零 B .无论x 为何值,231x +的值总为正数 C .无论x 为何值,31x +不可能得整数值 D .当x ≠3时,3x x-有意义 8.下列各式中,正确的是( ). A .1122b a b a +=++B .22142a a a -=-- C .22111(1)a a a a +-=-- D .11b ba a---=- 9.下列计算,正确的是( )A .2(2)4--=B 2=-C .664(2)64÷-=D =10.已知a <b ( )A B C .D .11.下面是一位同学所做的5道练习题: ①()325a a = ,②236a a a ⋅=,③22144m m -=, ④()()253aa a -÷-=-,⑤()3339a a -=-,他做对题的个数是 ( )A .1道B .2道C .3道D .4道12.下列关于分式的判断,正确的是( ) A .当x=2时,12x x +-的值为零 B .当x≠3时,3x x-有意义 C .无论x 为何值,31x +不可能得整数值 D .无论x 为何值,231x +的值总为正数 13.下列各式:2116,,4,,235x y xx y x π++-中,分式有( ) A .1个 B .2个C .3个D .4个14.计算()22ab ---的结果是( )A .42b a-B .42b aC .24a b -D .24a b15.(下列化简错误的是( )A )﹣1B =2C 52=± D )0=116.()()2323x y z x y z +++-的结果为( ) A .1B .33-+m m C .33m m +- D .33mm + 17.下列分式中:xy x ,2y x -,+-x yx y,22x y x y +-不能再约分化简的分式有( )A .1个B .2个C .3个D .4个18.分式b ax ,3c bx -,35acx的最简公分母是( ) A .5cx 3B .15abcxC .15abcx 3D .15abcx 519.每到四月,许多地方杨絮、柳絮如雪花般漫天飞舞,人们不堪其扰,据测定,杨絮纤维的直径约为0.0000105m ,该数值用科学记数法表示为( )A .51.0510⨯B .51.0510-⨯C .50.10510-⨯D .410.510-⨯20.甲、乙两人分两次在同一粮店内买粮食,两次的单价不同,甲每次购粮100千克,乙每次购粮100元.若规定:谁两次购粮的平均单价低,谁的购粮方式就合算.那么这两次购粮( ) A .甲合算 B .乙合算C .甲、乙一样D .要看两次的价格情况21.下列运算正确的是( ) A .a ﹣3÷a ﹣5=a 2 B .(3a 2)3=9a 5 C .(x ﹣1)(1﹣x)=x 2﹣1 D .(a+b)2=a 2+b 2 22.计算(16)0×3﹣2的结果是( ) A .32 B .9C .19-D .1923.若(x -2016)x =1,则x 的值是( ) A .2017 B .2015 C .0 D .2017或024.若()3231tt --=,则t 可以取的值有( )A .1个B .2个C .3个D .4个25.已知分式32x x +-有意义,则x 的取值范围是( ) A .x ≠-3B .x≠0C .x≠2D .x=2【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】考虑将x=1代入,使分式分子为0,分母不为0,即可得到结果. 【详解】解:当x=1时,下列分式中值为0的是222x x --. 故选B . 【点睛】此题考查了分式的值,熟练掌握运算法则是解本题的关键.2.A解析:A 【解析】试题解析:∵分式||11x x -+的值为0, ∴|x|﹣1=0,且x+1≠0, 解得:x=1. 故选A .3.B解析:B 【解析】A 、当分母3x-2≠0,即当x≠23时,分式x 13x 2+-有意义.故本选项正确; B 、当分母a 2-b 2≠0,即a≠±b 时,分式22aba b-有意义.故本选项错误; C 、当分子2x+1=0,即x =−12时,分式2x 14x+值为0.故本选项正确; D 、当分母y-x≠0,即x≠y 时,分式22x y y x--有意义.故本选项正确;故选:B .4.C解析:C 【解析】根据最简公分母的定义:“通常取各分母的系数的最小公倍数与各分母中所有字母因数的最高次幂的积作为各分母的公分母,这个公分母叫做这几个分式的最简公分母”可知,分式:24a 5b c ,23c 4a b ,25b2ac 的最简公分母是:22220a b c . 故选C.5.C解析:C 【解析】根据题意得:24020x x ⎧-=⎨-≠⎩,解得:x=−2. 故选C. 6.B解析:B 【解析】∵a=0.16;b=-214=-116;c =(211()4-)=16;d =1;故:b<a<d<c7.B解析:B 【解析】A 选项中,因为当2x =时,分式12x x +-无意义,所以本选项错误; B 选项中,因为无论x 取何值,21x +的值始终为正数,则分式231x +的值总为正数,所以本选项正确;C 选项中,因为当2x =时,分式311x =+,所以本选项说法错误; D 选项中,因为0x ≠时,分式3x x-才有意义,所以本选项说法错误; 故选B.8.C解析:C 【解析】解;A .分式的分子分母都乘或除以同一个不为零的整式,故A 错误; B .分子除以(a ﹣2),分母除以(a +2),故B 错误;C .分式的分子分母都乘或除以同一个不为零的整式,分式的值不变,故C 正确;D .分式的分子分母都乘或除以同一个不为零的整式,分式的值不变,故D 错误; 故选C .9.C解析:C 【解析】 【详解】 解:A .()2124--=,所以A 错误;B 2=,所以B 错误;C .()666664242264÷-=÷==,所以C 正确;D ==D 错误,故选C .10.D解析:D 【解析】因为a-ba a b-=-故选D.,0,0a aaa a≥⎧==⎨-<⎩,推广此时a可以看做是一个式子,式子整体大于等于0,把绝对值变为括号;式子整体小于0,把绝对值变为括号,前面再加负号.最后去括号,化简.11.A解析:A【解析】分析:原式各项利用幂的乘方,同底数幂的乘法,负整数指数幂法则,单项式除以单项式以及积的乘方计算得到结果,判断即可.详解:①236a a=(),故①错误;②235a a a⋅=,故②错误;③2244mm-=,故③错误;④523a a a-÷-=-()(),故④正确;⑤33327a a-=-().故⑤错误.故选A.点睛:本题考查了整式的除法,幂的乘方与积的乘方,零指数幂、负整数指数幂,熟练掌握运算法则是解答本题的关键.12.D解析:D【解析】A选项:当x=2时,该分式的分母x-2=0,该分式无意义,故A选项错误.B选项:当x=0时,该分式的分母为零,该分式无意义. 显然,x=0满足x≠3. 由此可见,当x≠3时,该分式不一定有意义. 故B选项错误.C选项:当x=0时,该分式的值为3,即当x=0时该分式的值为整数,故C选项错误.D选项:无论x为何值,该分式的分母x2+1>0;该分式的分子3>0. 由此可知,无论x为何值,该分式的值总为正数. 故D选项正确.故本题应选D.点睛:本题考查了与分式概念相关的知识. 分式有意义的条件是分式的分母不等于零,并不是分母中的x的值不等于零. 分式的值为零的条件是分式的分母不等于零且分式的分子等于零. 在分式整体的符号为正的情况下,分式值的符号由分子与分母的符号共同确定:若分子与分母同号,则分式值为正数;若分子与分母异号,则分式值为负数.13.A解析:A【解析】分析:判断分式的依据是看分母中是否含有字母,如果含有字母则是分式,如果不含有字母则不是分式.详解:216,,4,,23x y xx y π++的分母中均不含有字母,因此它们是整式,而不是分式.15x -的分母中含有字母,因此是分式. 故选A .点睛:本题主要考查分式的定义,注意π不是字母,6xπ是常数,所以不是分式,是整式.14.B解析:B 【解析】 【分析】根据负整数指数幂和幂的乘方和积的乘方解答. 【详解】 原式=(-1)-2a -2b 4 =21a•b 4=42b a. 故选B . 【点睛】本题主要考查了负整数指数幂,同时要熟悉幂的乘方和积的乘方.15.C解析:C 【解析】 【分析】分别利用负指数幂的性质以及二次根式的性质、零指数幂的性质分别化简得出答案. 【详解】A ﹣1=2,正确,不合题意;B ,正确,不合题意;C 52=,故此选项错误,符合题意;D 0=1,正确,不合题意; 故选:C . 【点睛】此题主要考查了负指数幂的性质以及二次根式的性质、零指数幂的性质,正确掌握相关运算法则是解题关键.16.A解析:A 【分析】先计算除法运算,然后进行减法运算即可得出答案. 【详解】原式=3m m +-6(3)(33)m -+× 32m -= 3m m ++ 33m += 33m m ++=1 故答案选A. 【点睛】本题考查的知识点是分式的混合运算,解题的关键是熟练的掌握分式的混合运算.17.B解析:B 【分析】找出各项中分式分子分母中有没有公因式,即可做出判断. 【详解】xyx=y, 22x y x y +-= ()()x y x y x y ++-= 1x y -所以,不能约分化简的有:- 22y x +-x yx y共两个, 故答案选B. 【点睛】本题考查的知识点是分式的约分,解题的关键是熟练的掌握分式的基本性质.18.C解析:C 【分析】要求分式的最简公分母,即取各分母系数的最小公倍数与字母因式的最高次幂的积. 【详解】最简公分母为3⨯5⨯a ⨯b ⨯c ⨯x 3=15abcx 3 故答案选:C. 【点睛】本题考查的知识点是最简公分母,解题的关键是熟练的掌握最简公分母.19.B解析:B 【解析】 【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】0.0000105=1.05×10-5,故选B.【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.20.B解析:B【解析】【分析】分别算出两次购粮的平均单价,用做差法比较即可.【详解】解:设第一次购粮时的单价是x元/千克,第二次购粮时的单价是y元/千克,甲两次购粮共花费:100x+100y,一共购买了粮食:100+100=200千克,甲购粮的平均单价是:1001002002x y x y++=;乙两次购粮共花费:100+100=200元,一共购买粮食:()100100100x yx y xy++=(千克),乙购粮的平均单价是:2xyx y+;甲乙购粮的平均单价的差是:()()()()22420 222x y xy x yx y xyx y x y x y>+--+-==+++,即22x y xyx y ++>,所以甲购粮的平均单价高于乙购粮的平均单价,乙的购粮方式更合算,故选B.【点睛】本题考查的知识点是做差法,解题关键是注意一个数的平方为非负数.21.A解析:A【解析】【分析】直接利用同底数幂的除法运算法则、积的乘方运算法则、完全平方公式分别化简得出答案.【详解】A.a﹣3÷a﹣5=a2,故此选项正确;B.(3a2)3=27a6,故此选项错误;C.(x﹣1)(1﹣x)=﹣x2+2x﹣1,故此选项错误;D.(a+b)2=a2+2ab+b2,故此选项错误.故选A.【点睛】本题考查了同底数幂的除法运算法则、积的乘方运算法则、完全平方公式等知识,正确掌握相关运算法则是解题的关键.22.D解析:D【解析】【分析】根据零指数幂的性质以及负指数幂的性质先进行化简,然后再进行乘法运算即可.【详解】(16)0×3﹣2=11199⨯=,故选D.【点睛】本题考查了实数的运算,涉及了零指数幂、负指数幂的运算,正确化简各数是解题关键.23.D解析:D【解析】【分析】根据零指数幂:a0=1(a≠0)和1的任何次幂都是1可得x=0或x-2016=1,再解即可.【详解】由题意得:x=0或x-2016=1,解得:x=0或2017.故选:D.【点睛】此题主要考查了零次幂和乘方,关键是掌握零指数幂:a0=1(a≠0).24.B解析:B【解析】【分析】根据任何非0数的零次幂等于1,1的任何次幂等于1,-1的偶数次幂等于1解答.【详解】当3-2t=0时,t=32,此时t-3=32-3=-32,(-32)0=1,当t-3=1时,t=4,此时3-2t=2-3×4=-6,1-6=1,当t-3=-1时,t=2,此时3-2t=3-2×2=-1,(-1)-1=-1,不符合题意,综上所述,t可以取的值有32、4共2个.故选:B.【点睛】本题考查了零指数幂,有理数的乘方,要穷举所有乘方等于1的数的情况.25.C解析:C【解析】分析:根据分式有意义的条件:分母不等于0即可求解.详解:根据题意得:x-2≠0,解得:x≠2.故选C..点睛:本题考查了分式有意义的条件,从以下三个方面透彻理解分式的概念:(1)分式无意义⇔分母为零;(2)分式有意义⇔分母不为零;(3)分式值为零⇔分子为零且分母不为零.。

最新初中数学—分式的基础测试题含答案(1)

最新初中数学—分式的基础测试题含答案(1)

一、选择题1.氢原子的半径约为0.000 000 000 05m ,用科学记数法表示为( ) A .5×10﹣10m B .5×10﹣11m C .0.5×10﹣10m D .﹣5×10﹣11m 2.分式:22x 4- ,x42x- 中,最简公分母是 A .()()2x 4?42x --B .()()x 2x ?2+C .()()22x 2x 2-+-D .()()2x 2?x 2+-3.下列变形正确的是( ). A .1a b b ab b++= B .22x y x y-++=- C .222()x y x y x y x y --=++ D .23193x x x -=-- 4.已知有理式:4x 、4a 、1x y -、34x 、12x 2、1a +4,其中分式有 ( )A .2个B .3个C .4个D .5个5.已知a <b ,化简222a a ab b a b a-+-的结果是( )A .aB .a -C .a --D .a -6.下列选项中,使根式有意义的a 的取值范围为a <1的是( ) A .a 1-B .1a -C .()21a - D .11a- 7.若 a =20170,b =2015×2017﹣20162,c =(﹣23)2016×(32)2017,则下列 a ,b ,c 的大小关系正确的是( ) A .a <b <cB .a <c <bC .b <a <cD .c <b <a8.下列约分结果正确的是( ) A .2mgRBLB .a m ab m b+=+ C .22x y x y x y-=-- D .22111m m m m -+-=-+-9.2018年3月3日,新浪综合网报道:“中科院发明首个抗癌DNA 纳米机器人,可精准阻断肿瘤血管饿死肿瘤!”.中国科学家团队研发出的这种可编程、基于 DNA 折纸技术的纳米机器人大小只有90×60×2nm ,nm 是长度计量单位,1nm=0.000000001米,则2nm 用科学记数法表示为( )A .2×109米 B .20×10-8米 C .2×10-9米 D .2×10-8米 10.(下列化简错误的是( )A .(2)﹣1=22B .2(2)- =2C .25542=± D .(﹣2)0=111.若0x y y z z xabc a b c---===<,则点P(ab ,bc)不可能在第( )象限 A .一 B .二 C .三 D .四12.计算22193x x x+--的结果是( ) A .13x - B .13x + C .13x- D .2339x x +- 13.若,则用u 、v 表示f 的式子应该是( )A .B .C .D .14.下列分式是最简分式的是( ) A .2426a a -+B .1b ab a++C .22a ba b +-D .22a ba b ++15.甲、乙两人分两次在同一粮店内买粮食,两次的单价不同,甲每次购粮100千克,乙每次购粮100元.若规定:谁两次购粮的平均单价低,谁的购粮方式就合算.那么这两次购粮( ) A .甲合算 B .乙合算C .甲、乙一样D .要看两次的价格情况16.下列说法:①在一个装有2白球和3个红球的袋中摸3个球,摸到红球是必然事2(21)12a a +=--,则12a ≥-; 181822a ba b -+是最简分式;其中正确的有()个.A .1个B .2个C .3个D .4个17.计算(16)0×3﹣2的结果是( ) A .32 B .9C .19-D .1918.若(x -2016)x =1,则x 的值是( ) A .2017B .2015C .0D .2017或019.若a =-0.32,b =-3-2,c =(-13)-2,d =(-13)0,则它们的大小关系是( ) A .a<c<b<dB .b<a<d<cC .a<b<d<cD .b<a<c<d20.若一种DNA 分子的直径只有0.00000007cm ,则这个数用科学记数法表示为( ) A .90.710-⨯B .90.710⨯C .8710-⨯D .710⨯821.在12 ,2x y x - ,212x + ,m +13 ,-2x y - 中分式的个数有( ) A .2个B .3个C .4个D .5个22.分式212xy 和214x y的最简公分母是( )A .2xyB .2x 2y 2C .4x 2y 2D .4x 3y 323.如果把分式232x x y+中的x 和y 都扩大为原来的5倍,那么分式的值( )A .扩大为原来的5倍B .扩大为原来的10倍C .不变D .缩小为原来的1524.计算21424m m ++-的结果是( ) A .2m +B .2m -C .12m + D .12m - 25.()()2323x y z x y z +++-的结果为( ) A .1B .33-+m m C .33m m +- D .33mm +【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【解析】 【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a ×10﹣n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定. 【详解】0.00000000005=5×10﹣11. 故选B . 【点睛】本题考查了用科学记数法表示较小的数,一般形式为a ×10﹣n ,其中1≤|a |<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.2.D解析:D 【解析】∵2224(2)(2)x x x =-+-,422(2)x xx x =---, ∴分式22 442xx x --、的最简公分母是:2(2)(2)x x +-. 故选D.3.C解析:C 【解析】 选项A.a bab+ 不能化简,错误. 选项B.22x y x y-+-=-,错误. 选项C.()222x y x y x y x y --=++ ,正确. 选项D. 23193x x x -=-+,错误. 故选C.4.B解析:B 【解析】4a 、、34x 、12x 2的分母中均不含有字母,因此它们是整式,而不是分式. 4x、、1x y -、1a +4的分母中含有字母,因此是分式.所以B 选项是正确的.点睛:本题主要考查分式的概念,分式与整式的区别主要在于:分母中是否含有未知数.5.D解析:D 【解析】因为a-ba a b-=-故选D.,0,0a a a a a ≥⎧==⎨-<⎩,推广此时a 可以看做是一个式子,式子整体大于等于0,把绝对值变为括号;式子整体小于0,把绝对值变为括号,前面再加负号.最后去括号,化简.6.D解析:D 【解析】解:A .当a ≥1时,根式有意义. B .当a ≤1时,根式有意义. C .a 取任何值根式都有意义.D .要使根式有意义,则a ≤1,且分母不为零,故a <1. 故选D .点睛:判断一个式子是否有意义,应考虑分母上若有字母,字母的取值不能使分母为零,二次根号下字母的取值应使被开方数为非负数.易错易混点:学生易对二次根式的非负性和分母的不等于0混淆.7.C解析:C 【解析】 【详解】解:a =20170=1,b =2015×2017﹣20162=(2016﹣1)(2016+1)﹣20162=20162﹣1-20162=﹣1,c =(﹣23)2016×(32)2017=(﹣23×32)2016×32=32,则b <a <c .故选C . 点睛:本题考查了平方差公式,幂的乘方与积的乘方,以及零指数幂,熟练掌握运算法则及公式是解答本题的关键.8.D解析:D 【解析】 A.282123x x y xy = ,故A 选项错误;B. a m b m++已是最简分式,故B 选项错误;C.22x y x y x y -=+-,故C 选项错误;D. 22111m m m m -+-=-+-,正确, 故选D.9.C解析:C【解析】分析:绝对值小于1的正数也可以利用科学记数法表示,一般形式为a ×10﹣n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定. 详解:0.000000001×2=2×10﹣9. 故选C .点睛:本题考查了用科学记数法表示较小的数,一般形式为a ×10﹣n ,其中1≤|a |<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.10.C解析:C 【解析】 【分析】分别利用负指数幂的性质以及二次根式的性质、零指数幂的性质分别化简得出答案. 【详解】A ﹣1,正确,不合题意;B ,正确,不合题意;C 52=,故此选项错误,符合题意;D 0=1,正确,不合题意; 故选:C . 【点睛】此题主要考查了负指数幂的性质以及二次根式的性质、零指数幂的性质,正确掌握相关运算法则是解题关键.11.A解析:A 【解析】 【分析】根据有理数的乘法判断出a ,b ,c 中至少有一个是负数,另两个同号,然后求出三个数都是负数时x 、y 、z 的大小关系,得出矛盾,从而判断出a 、b 、c 不能同时是负数,确定出点P 不可能在第一象限. 【详解】 解:∵abc <0,∴a ,b ,c 中至少有一个是负数,另两个同号, 可知三个都是负数或两正数,一个是负数, 当三个都是负数时:若x yabc a-=, 则20x y a bc -=>,即x >y ,同理可得:y >z ,z >x 这三个式子不能同时成立, 即a ,b ,c 不能同时是负数, 所以,P (ab ,bc )不可能在第一象限. 故选:A. 【点睛】本题主要考查分式的基本性质和点的坐标的知识,熟悉点的坐标的基本知识是本题的解题关键,确定一个点所在象限,就是确定点的坐标的符号.12.B解析:B 【解析】 原式=()()2x x 3x 3+-−1 x 3-=()()()2x x 3x 3x 3-++-=()()x 3x 3x 3-+-=1x 3+.故选:B.13.B解析:B 【解析】 【分析】已知等式左边通分并利用同分母分式的加法法则计算,表示出f 即可. 【详解】,变形得:f=.故选B . 【点睛】此题考查了分式的加减法,熟练掌握运算法则是解本题的关键.14.D解析:D 【解析】 【分析】最简分式的标准是分子,分母中不含有公因式,不能再约分.判断的方法是把分子、分母分解因式,并且观察有无互为相反数的因式,这样的因式可以通过符号变化化为相同的因式从而进行约分. 【详解】A 、该分式的分子、分母中含有公因数2,则它不是最简分式.故本选项错误;B 、分母为a (b+1),所以该分式的分子、分母中含有公因式(b+1),则它不是最简分式.故本选项错误;C 、分母为(a+b )(a-b ),所以该分式的分子、分母中含有公因式(a+b ),则它不是最简分式.故本选项错误;D 、该分式符合最简分式的定义.故本选项正确. 故选D . 【点睛】本题考查了对最简分式,约分的应用,关键是理解最简分式的定义.15.B解析:B【分析】分别算出两次购粮的平均单价,用做差法比较即可. 【详解】解:设第一次购粮时的单价是x 元/千克,第二次购粮时的单价是y 元/千克,甲两次购粮共花费:100x+100y ,一共购买了粮食:100+100=200千克,甲购粮的平均单价是:1001002002x y x y++=;乙两次购粮共花费:100+100=200元,一共购买粮食:()100100100x y x y xy++=(千克),乙购粮的平均单价是:2xyx y+;甲乙购粮的平均单价的差是:()()()()22420222x y xy x y x y xy x y x y x y >+--+-==+++, 即22x y xyx y++>, 所以甲购粮的平均单价高于乙购粮的平均单价,乙的购粮方式更合算,故选B . 【点睛】本题考查的知识点是做差法,解题关键是注意一个数的平方为非负数.16.C解析:C 【解析】 【分析】根据必然事件的定义,二次根式的性质,最简分式的定义以及同类二次根式的定义进行判断. 【详解】①在一个装有2白球和3个红球的袋中摸3个球,摸到红球是必然事件,正确.②12a =--,则12a ≤-,错误;4== ④分式22a ba b-+是最简分式,正确; 故选:C . 【点睛】本题主要考查了随机事件、二次根式以及命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.把几个二次根式化为最简二次根式后,如果它们的被开方数相同,就把这几个二次根式叫做同类二次根式.解析:D【解析】【分析】根据零指数幂的性质以及负指数幂的性质先进行化简,然后再进行乘法运算即可.【详解】(16)0×3﹣2=11199⨯=,故选D.【点睛】本题考查了实数的运算,涉及了零指数幂、负指数幂的运算,正确化简各数是解题关键.18.D解析:D【解析】【分析】根据零指数幂:a0=1(a≠0)和1的任何次幂都是1可得x=0或x-2016=1,再解即可.【详解】由题意得:x=0或x-2016=1,解得:x=0或2017.故选:D.【点睛】此题主要考查了零次幂和乘方,关键是掌握零指数幂:a0=1(a≠0).19.B解析:B【解析】【分析】首先根据一个数的平方的计算方法,负整数指数幂的运算方法,以及零指数幂的运算方法,分别求出a、b、c、d的大小;然后根据实数大小比较的方法,判断出它们的大小关系即可.【详解】∵20 221110.30.09,3,9,1933a b c d--⎛⎫⎛⎫=-=-=-=-=-==-=⎪ ⎪⎝⎭⎝⎭,∴10.0919 9-<-<<,∴b<a<d<c.故选:B.【点睛】考查了负整数指数幂的运算,要熟练掌握,解答此题的关键是要明确:①a-p=1pa(a≠0,p为正整数);②计算负整数指数幂时,一定要根据负整数指数幂的意义计算;③当底数是分数时,只要把分子、分母颠倒,负指数就可变为正指数.(3)此题还考查了零指数幂的运算,要熟练掌握,解答此题的关键是要明确:①a0=1(a≠0);②00≠1.20.C解析:C【解析】【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:若一种DNA分子的直径只有0.00000007cm,则这个数用科学记数法表示为8710-⨯.故选:C.【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.21.A解析:A【解析】【分析】判断分式的依据是看分母中是否含有字母,如果含有字母则是分式,如果不含有字母则不是分式,找到分母中含有字母的式子的个数即可.【详解】解:式子2x yx-,-2x y-中都含有字母是分式.故选:A.【点睛】本题考查分式的概念,分式与整式的区别主要在于:分母中是否含有未知数.22.C解析:C【解析】【分析】确定最简公分母的方法是:(1)取各分母系数的最小公倍数;(2)凡单独出现的字母连同它的指数作为最简公分母的一个因式;(3)同底数幂取次数最高的,得到的因式的积就是最简公分母.【详解】分式212xy 和214x y的最简公分母是4x 2y 2. 故选C.【点睛】本题考查了最简公分母的知识,通分的关键是准确求出各个分式中分母的最简公分母,确定最简公分母的方法一定要掌握.23.A解析:A【解析】【分析】x ,y 都扩大为原来的5倍就是分别变成原来的5倍,变成5x 和5y .用5x 和5y 代替式子中的x 和y ,看得到的式子与原来的式子的关系.【详解】用5x 和5y 代替式子中的x 和y 得:()2255,151032x x x y x y=++ 则扩大为原来的5倍.故选:A.【点睛】考查分式的基本性质,掌握分式的基本性质是解题的关键. 24.D解析:D【解析】【分析】先通分,再加减.注意化简.【详解】21424124(2)(2)2m m m m m m -++==+-+-- 故选:D【点睛】考核知识点:异分母分式加减法.通分是关键.25.A解析:A【分析】先计算除法运算,然后进行减法运算即可得出答案.【详解】原式=3m m +-6(3)(33)m -+× 32m -= 3m m ++ 33m += 33m m ++=1 故答案选A.【点睛】本题考查的知识点是分式的混合运算,解题的关键是熟练的掌握分式的混合运算.。

新最新初中数学—分式的基础测试题含答案解析(1)

新最新初中数学—分式的基础测试题含答案解析(1)

一、选择题1.()()2323x y z x y z +++-的结果为( ) A .1B .33-+m m C .33m m +- D .33mm + 2.下列运算,正确的是 A .0a 0= B .11a a-=C .22a a b b=D .()222a b a b -=-3.在式子:2x、5x y + 、12a - 、1x π-、21xx +中,分式的个数是( ) A .2 B .3 C .4 D .5 4.下列各式从左到右的变形正确的是( )A .221188a a a a ---=-++B .()()221a b a b -+=-C .22x y x y x y+=++ D .052520.11y yx x++=-++5.下列变形正确的是( ).A .11a ab b+=+ B .11a ab b--=-- C .221a b a b a b-=-- D .22()1()a b a b --=-+ 6.下列计算,正确的是( )A .2(2)4--=B .222()-=-C .664(2)64÷-=D .826-=7.下列各式中的计算正确的是( )A .22b b a a=B .a ba b++=0 C .a c ab c b+=+ D .a ba b-+-=-1 8.已知a <b ,化简222a a ab b a b a-+-的结果是( )A .aB .a -C .a --D .a -9.下列分式中,最简分式是( )A .x yy x--B .211x x +-C .2211x x -+D .2424x x -+10.下列选项中,使根式有意义的a 的取值范围为a <1的是( ) A .a 1-B .1a -C .()21a - D .11a- 11.一种花粉颗粒直径约为0.0000065米,数字0.0000065用科学记数法表示为( ) A .0.65×10﹣5 B .65×10﹣7 C .6.5×10﹣6 D .6.5×10﹣5 12.下列关于分式的判断,正确的是( )A .当x=2时,12x x +-的值为零 B .当x≠3时,3x x-有意义 C .无论x 为何值,31x +不可能得整数值 D .无论x 为何值,231x +的值总为正数 13.(下列化简错误的是( ) A .(2)﹣1=22B .2(2)- =2C .25542=± D .(﹣2)0=114.下列各式变形正确的是() A .x y x yx y x y -++=---B .22a b a bc d c d --=++ C .0.20.03230.40.0545a b a bc d c d--=++D .a b b ab c c b--=-- 15.每到四月,许多地方杨絮、柳絮如雪花般漫天飞舞,人们不堪其扰,据测定,杨絮纤维的直径约为0.0000105m ,该数值用科学记数法表示为( ) A .51.0510⨯ B .51.0510-⨯C .50.10510-⨯D .410.510-⨯16.若,则用u 、v 表示f 的式子应该是( )A .B .C .D .17.下列计算正确的是( )A .3x x=xB .11a b ++=abC .2÷2﹣1=﹣1D .a ﹣3=(a 3)﹣118.下列运算正确的是( )A .a ﹣3÷a ﹣5=a 2 B .(3a 2)3=9a 5 C .(x ﹣1)(1﹣x)=x 2﹣1D .(a+b)2=a 2+b 219.下列分式中,最简分式是( )A .211x x +-B .2211x x -+C .236212x x -+D .()2--y x x y20.若一种DNA 分子的直径只有0.00000007cm ,则这个数用科学记数法表示为( ) A .90.710-⨯B .90.710⨯C .8710-⨯D .710⨯821.如果把分式232x x y+中的x 和y 都扩大为原来的5倍,那么分式的值( )A .扩大为原来的5倍B .扩大为原来的10倍C .不变D .缩小为原来的1522.下列分式从左到右的变形正确的是( ) A .2=2x x y yB .22=x x y yC .22=x x xx D .515(2)2xx23.函数2y x =-的取值范围是( ) A .x >2B .x ≥3C .x ≥3,且x ≠2D .x ≥-3,且x ≠224.下列计算正确的有①()011-=;②21333-⨯=;③()()33m m x x -=-;④2211224x x x ⎛⎫-=-+ ⎪⎝⎭;⑤()()22339a b b a a b ---=-.A .4个B .3个C .2个D .1个25.化简:32322012220122010201220122013-⨯-+-,结果是( ) A .20102013B .20102012C .20122013D .20112013【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】先计算除法运算,然后进行减法运算即可得出答案. 【详解】 原式=3m m +-6(3)(33)m -+× 32m -= 3m m ++ 33m += 33m m ++=1故答案选A. 【点睛】本题考查的知识点是分式的混合运算,解题的关键是熟练的掌握分式的混合运算.2.B解析:B 【解析】A 选项中,因为只有当0a ≠时,01a =,所以A 错误;B 选项中,11=a a-,所以B 正确; C 选项中,22a b的分子与分母没有公因式,不能约分,所以C 错误;D 选项中,222()2a b a ab b -=-+,所以D 错误; 故选B.3.B解析:B 【解析】 解:分式有2x 、12a-、21x x +共3个.故选B .点睛:此题主要考查了分式的定义,正确把握分式的定义是解题关键.4.B解析:B 【解析】解:A .原式=22(1)1(8)8a a a a -++=--- ,错误; B .原式=1,正确; C .原式为最简结果,错误; D .原式=520110yx+-+,错误.故选B .点睛:此题考查了分式的基本性质,熟练掌握分式的基本性质是解本题的关键.5.B解析:B 【解析】 A 选项中,11a b ++不能再化简,所以A 中变形错误; B 选项中,11a ab b--=--,所以B 中变形正确; C 选项中,221()()a b a b a b a b a b a b--==-+-+,所以C 中变形错误;D 选项中,2222()()1()()a b a b a b a b --+==++,所以D 中变形错误; 故选B.6.C解析:C 【解析】【详解】 解:A .()2124--=,所以A 错误;B 2=,所以B 错误;C .()666664242264÷-=÷==,所以C 正确;D ==D 错误,故选C .7.D解析:D 【解析】解:A . 22b b a a≠,故A 错误;B . a ba b++=1,故B 错误; C . a c ab c b+≠+,故C 错误; D .a ba b -+-=-1,正确. 故选D .8.D解析:D 【解析】因为a-ba a b-=-故选D.,0,0a a a a a ≥⎧==⎨-<⎩,推广此时a 可以看做是一个式子,式子整体大于等于0,把绝对值变为括号;式子整体小于0,把绝对值变为括号,前面再加负号.最后去括号,化简.9.C解析:C 【解析】 试题分析:A 、x yy x--=-1,不是最简分式; B 、21111(1)(1)1x x x x x x ++==-+--,不是最简分式; C 、2211x x -+分子、分母不含公因式,是最简分式;D、24(2)(2)2242(2)2x x x xx x-+--==++,不是最简分式.故选C.点睛:本题考查最简分式,解题的关键是明确最简分式的定义,即分子、分母不含公因式的分式.10.D解析:D【解析】解:A.当a≥1时,根式有意义.B.当a≤1时,根式有意义.C.a取任何值根式都有意义.D.要使根式有意义,则a≤1,且分母不为零,故a<1.故选D.点睛:判断一个式子是否有意义,应考虑分母上若有字母,字母的取值不能使分母为零,二次根号下字母的取值应使被开方数为非负数.易错易混点:学生易对二次根式的非负性和分母的不等于0混淆.11.C解析:C【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】解:0.0000065的小数点向右移动6位得到6.5,所以数字0.0000065用科学记数法表示为6.5×10﹣6,故选C.【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.12.D解析:D【解析】A选项:当x=2时,该分式的分母x-2=0,该分式无意义,故A选项错误.B选项:当x=0时,该分式的分母为零,该分式无意义. 显然,x=0满足x≠3. 由此可见,当x≠3时,该分式不一定有意义. 故B选项错误.C选项:当x=0时,该分式的值为3,即当x=0时该分式的值为整数,故C选项错误.D选项:无论x为何值,该分式的分母x2+1>0;该分式的分子3>0. 由此可知,无论x为何值,该分式的值总为正数. 故D选项正确.故本题应选D.点睛:本题考查了与分式概念相关的知识. 分式有意义的条件是分式的分母不等于零,并不是分母中的x的值不等于零. 分式的值为零的条件是分式的分母不等于零且分式的分子等于零. 在分式整体的符号为正的情况下,分式值的符号由分子与分母的符号共同确定:若分子与分母同号,则分式值为正数;若分子与分母异号,则分式值为负数.13.C解析:C【解析】【分析】分别利用负指数幂的性质以及二次根式的性质、零指数幂的性质分别化简得出答案.【详解】A﹣1=2,正确,不合题意;B,正确,不合题意;C52=,故此选项错误,符合题意;D0=1,正确,不合题意;故选:C.【点睛】此题主要考查了负指数幂的性质以及二次根式的性质、零指数幂的性质,正确掌握相关运算法则是解题关键.14.D解析:D【解析】【分析】根据分式的分子分母都乘以或除以同一个不为零的数或者同一个不为零的整式,分式的值不变,可得答案.【详解】A、原式x yx y-=+,所以A选项错误;B、原式=2a bc d-+(),所以B选项错误;C、原式=203405a bc d-+,所以C选项错误;D、a b b ab c c b--=--,所以D选项正确.故选D.【点睛】本题考查了分式基本性质,分式的分子分母都乘以或除以同一个不为零的数或者同一个不为零的整式,分式的值不变.15.B解析:B【解析】【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】0.0000105=1.05×10-5,故选B.【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.16.B解析:B【解析】【分析】已知等式左边通分并利用同分母分式的加法法则计算,表示出f即可.【详解】,变形得:f=.故选B.【点睛】此题考查了分式的加减法,熟练掌握运算法则是解本题的关键.17.D解析:D【解析】【分析】分子和分母同乘以(或除以)一个不为0的数,分数值不变.【详解】A、3xx=x2,错误;B 、11a b ++=+1+1a b ,错误; C 、2÷2﹣1=4,错误; D 、a ﹣3=(a 3)﹣1,正确; 故选D . 【点睛】此题考查分式的基本性质,关键是根据把分式的分子和分母扩大还是缩小相同的倍数,分式的值不变解答.18.A解析:A 【解析】 【分析】直接利用同底数幂的除法运算法则、积的乘方运算法则、完全平方公式分别化简得出答案. 【详解】A .a ﹣3÷a ﹣5=a 2,故此选项正确;B .(3a 2)3=27a 6,故此选项错误;C .(x ﹣1)(1﹣x )=﹣x 2+2x ﹣1,故此选项错误;D .(a +b )2=a 2+2ab +b 2,故此选项错误. 故选A . 【点睛】本题考查了同底数幂的除法运算法则、积的乘方运算法则、完全平方公式等知识,正确掌握相关运算法则是解题的关键.19.B解析:B 【分析】利用最简分式的定义判断即可. 【详解】 A 、原式=()()11111x x x x +=+--,不合题意;B 、原式为最简分式,符合题意;C 、原式=()()()666262x x x x +--=+,不合题意,D 、原式=()()2x y x yx x y x--=-,不合题意;故选B . 【点睛】此题考查了最简分式,最简分式为分式的分子分母没有公因式,即不能约分的分式.20.C解析:C【解析】【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:若一种DNA分子的直径只有0.00000007cm,则这个数用科学记数法表示为8710-⨯.故选:C.【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.21.A解析:A【解析】【分析】x,y都扩大为原来的5倍就是分别变成原来的5倍,变成5x和5y.用5x和5y代替式子中的x和y,看得到的式子与原来的式子的关系.【详解】用5x和5y代替式子中的x和y得:()2255, 151032x xx y x y=++则扩大为原来的5倍.故选:A.【点睛】考查分式的基本性质,掌握分式的基本性质是解题的关键. 22.D解析:D【分析】根据分式的基本性质逐项判断.【详解】解:A、当y=-2时,该等式不成立,故本选项错误;B、当x=-1,y=1时,该等式不成立,故本选项错误;C.22=x xx x--+-,故本选项错误;D、正确.故选D.本题考查分式的基本性质,属于基础题型,分式的分子和分母同时乘以(或除以)同一个不为0的整式,分式的值不变.23.D解析:D【解析】【分析】根据二次根式的性质和分式有意义的条件,被开方数大于或等于0,分母不等于0,可以求出x 的范围.【详解】根据题意得:3020x x +≥⎧⎨-≠⎩,解得:x ≥﹣3且x ≠2. 故选D .【点睛】函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.24.C解析:C【解析】【分析】根据零指数幂、同底数幂的乘法、负整数指数幂的意义、积的乘方、完全平方公式、平方差公式计算后判断各个选项即可.【详解】①()011-=,正确; ②2113333--⨯==,正确; ③当m 为偶数时,()()33m m x x -≠-,错误; ④221124x x x ⎛⎫-=-+ ⎪⎝⎭,错误; ⑤(a -3b )(-3b -a )=2222(3)9b a b a --=-,错误.故选C .【点睛】本题考查了零指数幂、同底数幂的乘法、负整数指数幂的意义、积的乘方、完全平方公式、平方差公式.熟练掌握运算法则是解题的关键. 25.A【分析】将所求式子的分子分母前两项提取20122,整理后分子提取2010,分母提取2013,约分后即可得到结果,选出答案.【详解】原式=32322012220122010201220122013-⨯-+-=2220122012220102012201212013--⨯+-()()=22201220102010201220132013⨯-⨯-=22201020121201320121--()()=20102013,故答案选A.【点睛】本题主要考查了因式分解的应用,是一道技巧性较强的题,熟练掌握因式分解的方法是解本题的关键.。

最新最新初中数学—分式的基础测试题含答案(1)

最新最新初中数学—分式的基础测试题含答案(1)

一、选择题1.下列命题中:①已知两实数a 、b ,如果a >b ,那么a 2>b 2;②同位角相等,两直线平行;③如果两个角是直角,那么这两个角相等;④如果分式332x x -+无意义,那么x =﹣23;这些命题及其逆命题都是真命题的是( ) A .①② B .③④C .①③D .②④2.设2222x 18n x 33x x 9+=+++--,若n 的值为整数,则x 可以取的值得个数是( ) A .5 B .4 C .3 D .2 3.0.000002019用科学记数法可表示为( )A .0.2019×10﹣5B .2.019×10﹣6C .20.19×10﹣7D .2019×10﹣9 4.若把分式x yxy+中的x 和y 都扩大2倍,那么分式的值( )A .扩大2倍B .不变C .缩小2倍D .缩小4倍5.若x 2-6xy +9y 2=0,那么x yx y-+的值为( )A .12yB .12y-C .12D .12-6.下列变形正确的是( )A .y x =22y xB .a ac b bc= C .ac a bc b= D .x m xy m y+=+ 7.将分式2x x y+中的x 、y 都扩大2倍,则分式值( )A .扩大为原来的2倍B .缩小为原来的2倍C .保持不变D .无法确定8.如果把分式2x y zxyz-+中的正数x ,y ,z 都扩大2倍,则分式的值( )A .不变B .扩大为原来的两倍C .缩小为原来的14D .缩小为原来的189.下列各分式的值可能为零的是( ).A .2211m m +-B .11m +C .211m m +-D .211m m -+10.已知11(1,2)a x x x =-≠≠,23121111,,,111n n a a a a a a -==⋯⋯=---,则2017a =( )A .21xx-- B .12x- C .1x - D .无法确定11.下列各分式中,最简分式是( )A .21x x +B .22m n m n -+C .22a b a b +-D .22x y x y xy ++12.化简a b a b b a+--22的结果是( ) A .1 B .+a bC .-a bD .22a b -13.函数 y=21x x --的自变量 x 的取值范围是( ) A .x > -1且x ≠ 1 B .x ≠ 1且x ≠ 2C .x ≥ -1且x ≠ 1D .x ≥ -114.下列各式中,正确的是( )A .22x y x y -++=-B .()222x y x y x y x y --=++ C .1a b b ab b++= D .23193x x x -=-- 15.下列结论正确的是( ) A .当23x ≠时,分式132x x +-有意义 B .当x y ≠时,分式222xyx y -有意义C .当0x =时,分式22+xx x的值为0D .当1x =-时,分式211x x --没有意义16.新冠肺炎疫情爆发以来,口罩成为需求最为迫切的防护物资.在这个关键时刻,我国某企业利用自身优势转产口罩,这背后不仅体现出企业强烈的社会责任感,更是我国人民团结一心抗击疫情的决心.据悉该企业3月份的口罩日产能已达到500万只,预计今后数月内都将保持同样的产能,则3月份(按31天计算)该企业生产的口罩总数量用科学记数法表示为( ) A .71.5510⨯只B .81.5510⨯只C .90.15510⨯只D .6510⨯只17.下列计算错误的是( ) A .()326327x x -=-B .()()325y y y --=-C .326-=-D .()03.141π-=18.若20.3a =-,23b -=-,021(3)3c d -⎛⎫=-=- ⎪⎝⎭,,则( )A .a b c d <<<B .b a d c <<<C .a d c b <<<D .c a d b <<<19.若222110.2,2,(),()22a b c d --=-=-=-=-,则它们的大小关系是( ) A .a b d c <<< B .b a d c <<< C .a d c b <<<D .c a d b <<<20.世界上最小的开花结果植物的果实像一个微小的无花果,质量只有0.000000076克,将0.000000076用科学记数法表示为( ) A .87.610⨯B .77.610-⨯C .87.610-⨯D .97.610-⨯21.下列等式成立的是( ) A .123a b a b+=+ B .212a b a b=++ C .2ab aab b a b=--D .a aa b a b=--++ 22.若115a b =,则a b a b-+的值是( ) A .25B .38C .35D .11523.已知1112a b -=,则ab a b-的值是( ) A .12B .12-C .2D .-224.若把分式32aba b +中的a 、b 都缩小为原来的13 ,则分式的值( ) A .缩小为原来的13 B .扩大为原来的6倍 C .缩小为原来的19D .不变25.老师设计了一个接力游戏,用小组合作的方式完成分式的运算,规则是:每人只能看见前一个人给的式子,并进行一步计算,再将结果传递给下一个人,最后完成计算.其中一个组的过程是:老师给甲,甲一步计算后写出结果给乙,乙一步计算后写出结果给丙,丙一步计算后写出结果给丁,丁最后算出结果.接力中,自己负责的一步出现错误的是( )A .甲B .乙C .丙D .丁【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】分别写出四个命题的逆命题,利用反例对①和它的逆命题进行判断;利用平行线的性质和判定对②和它的逆命题进行判断;利用直角的定义对③和它的逆命题进行判断;利用分式有意义的条件对④和它的逆命题进行判断. 【详解】解:①已知两实数a 、b ,如果a >b ,那么a 2>b 2;若a =1,b =﹣2,结论不成立,则命题为假命题,其逆命题为:已知两实数a 、b ,如果a 2>b 2,那么a >b ;若a =﹣2,b =1时,结论不成立,所以逆命题为假命题;②同位角相等,两直线平行;则命题为真命题,其逆命题为:两直线平行,同位角相等,所以逆命题为真命题;③如果两个角是直角,那么这两个角相等;此命题为真命题,其逆命题为:如果两个角相等,那么这两个角是直角,所以逆命题为假命题; ④如果分式332x x -+无意义,那么x =﹣23;此命题为真命题,其逆命题为:如果x =﹣23,那么分式332x x -+无意义,所以逆命题为真命题; 故选:D . 【点睛】此题主要考查命题的判断,解题的关键是熟知实数的性质、平行线的性质、直角的性质及分式的性质.2.B解析:B 【解析】 【分析】先通分,再加减,最后化简.根据化简结果为整数,确定x 的取值个数. 【详解】 n=222218339x x x x ++++-- =()()()()()()()()2323218333333x x x x x x x x x -++-++-+-+-=()()262621833x x x x x ---+++-=() ()() 2333xx x++-=23 x-当x-3=±1、±2,即x=4、2、1、5时分式23x-的值为整数.故选B.【点睛】本题考查了异分母分式的加减法及分式为整数的相关知识.解决本题的关键是根据化简结果得到分式值为整数的x的值.3.B解析:B【解析】【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】0.000002019=2.019×10﹣6,故选B.【点睛】此题主要考查了用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.4.C解析:C【解析】【分析】根据题意,分式中的x和y都扩大2倍,则222()2242x y x y x yx y xy xy+++==⋅;【详解】解:由题意,分式xyyx+中的x和y都扩大2倍,∴222()2242x y x y x yx y xy xy+++==⋅;分式的值是原式的12,即缩小2倍;故选C.【点睛】本题考查了分式的基本性质,分式的分子与分母同乘(或除以)一个不等于0的整式,分式的值不变,分子、分母、分式本身同时改变两处的符号,分式的值不变.5.C解析:C【解析】【分析】根据完全平方公式求出x与y的关系,代入计算即可.【详解】x2-6xy+9y2=0,(x-3y)2=0,∴x=3y,则x yx y-+=3132y yy y-=+,故选:C.【点睛】本题考查的是求分式的值,掌握完全平方公式、分式的计算是解题的关键.6.C解析:C【解析】试题解析:A、分式的乘方不等于原分式,故A错误;B、当c=0时,结果不成立,故B错误;C、分式的分子分母都乘或除以同一个不为零的整式,故C正确;D、分式的分子分母都加同一个不为零的数,结果发生变化,故D错误.故选C.7.A解析:A【分析】分别用2x和2y去代换原分式中的x和y,利用分式的基本性质化简与原分式比较即可得答案.【详解】∵将分式2xx y+中的x、y都扩大2倍,∴原式变为2(2)22xx y+=242()xx y+=2×2xx y+,∴扩大为原来的2倍,故选A.【点睛】此题考查的是对分式的性质的理解和运用,分式的分子和分母都乘以(或除以)同一个不等于零的整式,分式的值不变,熟练掌握分式的基本性质是解题关键.8.C解析:C 【分析】用2x 、2y ,2z 去替换原分式中的x 、y 和z ,利用分式的基本性质化简,再与原分式进行比较即可得到答案. 【详解】 ∵把分式2x y zxyz-+中的正数x ,y ,z 都扩大2倍, ∴222221222244x y z x y z x y zx y z xyz xyz-⨯+-+-+==⨯⋅⋅.∴分式的值缩小为原来的14. 故选:C. 【点睛】考查了分式的基本性质,解题关键把字母变化后的值代入式子中,然后化简,再与原式比较,得出结论.9.D解析:D 【分析】根据分式为零的条件进行计算即可. 【详解】解:∵分式有意义且它的值为零, ∴分子为0,分母不为0A. 2m +10≠,分式的值不可能为零,不符合题意;B. 10≠,分式的值不可能为零,不符合题意;C. 2m+1=0m -10⎧⎨≠⎩无解,分式的值不可能为零,不符合题意;D.当 2m -1=0m+10⎧⎨≠⎩,即m=1时,分式的值为零,符合题意;故选:D 【点睛】本题主要考查分式为零的条件,(1)分子的值为零;(2)分母的值不为零;两个条件必须同时具备,缺一不可.10.C解析:C 【分析】按照规定的运算方法,计算出前几个数的值,进一步找出数字循环的规律,利用规律得出【详解】解:∵11(1,2)a x x x =-≠≠,∴2111111(1)2a a x x ===----,321121111()2x a a xx -===----,34111211()1a x x a x===-----… ∴以x−1,12x -,21x x--为一组,依次循环, ∵2017÷3=672…1, ∴2017a 的值与a 1的值相同, ∴20171a x =-, 故选:C . 【点睛】此题考查数字的变化规律以及分式的运算,找出数字之间的运算规律,利用规律解决问题是解答此题的关键.11.A解析:A 【分析】最简分式就是分式的分子和分母没有公因式,也可理解为分式的分子和分母的最大公因式为1.所以判断一个分式是否为最简分式,关键是要看分式的分子和分母的最大公因式是否为1. 【详解】 解:A.21xx +,分子分母的最大公因式为1; B. 22m n m n-+,分子分母中含有公因式m+n;C.22a ba b +-,分子分母中含有公因式a+b ; D. 22x y x y xy ++,分子分母中含有公因式x+y故选:A. 【点睛】最简分式首先系数要最简;一个分式是否为最简分式,关键看分子与分母是不是有公因式,但表面不易判断,应将分子、分母分解因式.12.B解析:B【分析】原式变形后,利用同分母分式的减法法则计算,约分即可得到结果. 【详解】解:原式=22a b a b --=()()a b a b a b+--=a+b , 故选B . 【点睛】此题考查了分式的加减法,熟练掌握运算法则是解本题的关键.13.C解析:C 【分析】根据分母不能为零且被开方数是非负数,可得答案. 【详解】解:由题意得:x-1≠0且x+1≥0, 解得:x≥-1且x≠1. 故选C . 【点睛】本题考查了函数自变量的取值范围,利用分母不能为零且被开方数是非负数得出不等式是解题关键.14.B解析:B 【分析】根据分式的性质,对每个选项的式子一一判断正误即可. 【详解】22x y x y -+-=-,故A 选项错误; ()222()()()()x y x y x y x y x y x y x y x y --+-==++++,故B 选项正确; 1ba ba ab b ++=,故C 选项错误;23319(3)(3)3x x x x x x --==-+-+,故D 选项错误. 故选:B . 【点睛】本题主要考查分式的化简,熟记分式的性质是解题关键.15.A【分析】根据分式有意义,分母不等于0;分式的值等于0,分子等于0,分母不等于0对各选项分析判断后利用排除法求解. 【详解】A 、分式有意义,3x-2≠0,解得23x ≠,故本选项正确; B 、分式有意义,x 2-y 2≠0,解得x≠±y ,故本选项错误;C 、分式的值等于0,x=0且x 2+2x≠0,解得x=0且x≠0或-2,所以,x=0时分式无意义,故本选项错误;D 、分式没有意义,x-1=0,x=1,故本选项错误. 故选:A . 【点睛】此题考查分式有意义以及分式的值为零的条件,解题关键在于掌握(1)分式无意义⇔分母为零;(2)分式有意义⇔分母不为零;(3)分式值为零⇔分子为零且分母不为零.16.B解析:B 【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数. 【详解】500万×31=5000000×31=155000000=1.55×108(只), 故选:B . 【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.17.C解析:C 【分析】根据同底数幂的乘法法则,积的乘方法则、零次幂、负指数幂进行计算 【详解】 A . ()326327x x -=-,不符合题意;B . ()()325y y y --=-,不符合题意;C . -312=8,原选项错误,符合题意; D . ()03.141π-=,不符合题意;故选:C【点睛】本题考查了同底数幂的乘法法则,积的乘方法则、零次幂、负指数幂,掌握同底数幂的乘法法则,积的乘方法则、零次幂、负指数幂是解题的关键.18.B解析:B【分析】分别求出a 、b 、c 、d 的值,比较大小即可.【详解】20.30.09a =-=-2213139b -=-=-=- 01()3c =-=1 2211=(-3))9(3d -==- 故b a d c <<<故选:B【点睛】本题考查正指数与负指数的计算,注意负指数的运算规则.19.B解析:B【分析】根据负整数指数幂与正整数指数幂互为倒数,非零的零次幂等于1,可得答案.【详解】∵a=-0.22=-0.04;b=-2-2=-14=-0.25,c=(-12)-2=4,d=(-12)0=1, ∴-0.25<-0.04<1<4,∴b <a <d <c ,故选:B .【点睛】题考查了负整数指数幂,利用负整数指数幂与正整数指数幂互为倒数,非零的零次幂等于1是解题关键. 20.C解析:C【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a ×10-n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】0.000000076用科学记数法表示为7.6×10-8.故选:C .【点睛】本题考查用科学记数法表示较小的数,一般形式为a ×10-n ,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.21.C解析:C【分析】根据分式的运算,分别对各选项进行运算得到结果,即可做出判断.【详解】A 、221b b a ab a +=+,故A 错误; B 、22a b +,分子分母具有相同的因式才可以约分,故B 错误; C 、2()ab ab a ab b b a b a b ==---,故C 正确; D 、a a a b a b=--+-,故D 错误; 故选C .【点睛】本题主要考查了分式的运算,熟悉分式的通分以及约分的重要法则是解决本题的关键.22.B解析:B【分析】直接根据已知用含x 的式子表示出两数,进而代入化简得出答案.【详解】 解:∵115a b = ∴设11a x =,5b x = ∴11531158a b x x a b x x --==++ 故选:B【点睛】 此类化简求值题目,涉及到的字母a 、b 利用第三个未知数x 设出,代入后得到关于x 的式子进行约分化简即可.将两个字母转化为一个字母是解题的关键.23.D解析:D【分析】先把已知的式子变形为()2ab b a =-,然后整体代入所求式子约分即得答案.【详解】 解:∵1112a b -=, ∴()2ab b a =-, ∴()22b a ab a b a b-==---. 故选:D .【点睛】本题考查了分式的通分与约分,属于常考题目,掌握解答的方法是关键.24.A解析:A【分析】 把分式32ab a b +中的a 用13a 、b 用13b 代换,利用分式的基本性质计算即可求解. 【详解】 把分式32ab a b +中的a 、b 都缩小为原来的13, 则分式变为1133311233a b a b ⨯⨯⨯+, 则:1133311233a b a b ⨯⨯⨯+=1332ab a b⨯+, 所以把分式32ab a b +中的a 、b 都缩小为原来的13时分式的值也缩小为原来的13. 故选:A .【点睛】本题考查了分式的基本性质:分式的分子与分母同乘(或除以)一个不等于0的整式,分式的值不变.25.B解析:B【分析】找出题中出错的地方即可.【详解】乙同学的过程有误,应为()()22a ab ab b a b a b +-++-, 故选B .【点睛】此题考查了分式的混合运算,熟练掌握运算法则是解本题的关键.。

最新最新初中数学—分式的基础测试题附答案解析

最新最新初中数学—分式的基础测试题附答案解析

一、选择题1.(下列化简错误的是( ) A)﹣1=2B=2 C52=± D)0=12.下列判断错误..的是( ) A .当23x ≠时,分式132x x +-有意义 B .当ab 时,分式22aba b -有意义 C .当12x =-时,分式214x x+值为0D .当x y ≠时,分式22x yy x--有意义3.下列各式中,正确的是( ) A .a m ab m b+=+ B .a b0a b+=+ C .ab 1b 1ac 1c 1--=-- D .22x y 1x y x y-=-+4.计算22193x x x+--的结果是( ) A .13x - B .13x + C .13x - D .2339x x +- 5.下列运算正确的是( ) A .2-3=-6B .(-2)3=-6C .(23)-2=49 D .2-3=186.计算32-的结果是( ) A .-6B .-8C .18-D .187.下列变形正确的是( ).A .11a ab b +=+ B .11a ab b--=-- C .221a b a b a b-=-- D .22()1()a b a b --=-+ 8.如果112111S t t =+,212111S t t =-,则12S S =( ) A .1221t t t t +-B .2121t t t t -+C .1221t t t t -+D .1212t t t t +-9.下列变形正确的是( ). A .1a b bab b++= B .22x y x y-++=- C .222()x y x y x y x y --=++ D .23193x x x -=--10.下列变形正确的是( ).A .1x yx y-+=-- B .x m mx n n+=+ C .22x y x y x y +=++ D .632x x x= 11.生物学家发现一种病毒的长度约为0.00 004mm ,0.00 004用科学记数法表示是( ) A .40.410-⨯B .5410-⨯C .54010-⨯D .5410⨯12.下列分式是最简分式的是( )A .22a aab+B .63xyaC .211x x -+D .211x x ++13.一种花粉颗粒直径约为0.0000065米,数字0.0000065用科学记数法表示为( )A .0.65×10﹣5 B .65×10﹣7 C .6.5×10﹣6 D .6.5×10﹣5 14.下列关于分式的判断正确的是 ( ) A .无论x 为何值,231x +的值总为正数 B .无论x 为何值,31x +不可能是整数值 C .当x =2时,12x x +-的值为零 D .当x ≠3时3x x-,有意义 15.下列分式中:xy x ,2y x -,+-x yx y,22x y x y +-不能再约分化简的分式有( )A .1个B .2个C .3个D .4个16.已知12x y-=3,分式4322x xy yx xy y +-+-的值为( )A .32B .0C .23D .9417.氢原子的半径约为0.000 000 000 05m ,用科学记数法表示为( )A .5×10﹣10m B .5×10﹣11m C .0.5×10﹣10m D .﹣5×10﹣11m18.已知m ﹣1m ,则1m+m 的值为( )A .BC .D .1119.计算(16)0×3﹣2的结果是( ) A .32 B .9C .19-D .1920.下列分式中,最简分式是( )A .211x x +-B .2211x x -+C .236212x x -+D .()2--y x x y21.在12 ,2x y x - ,212x + ,m +13 ,-2x y - 中分式的个数有( ) A .2个B .3个C .4个D .5个22.如果把分式2+mm n中的m和n都扩大2倍,那么分式的值()A.扩大4倍B.缩小2倍C.不变D.扩大2倍23.3--2的倒数是()A.-9B.9C.19D.-1924.计算()22ab---的结果是( )A.42ba-B.42baC.24ab-D.24ab25.如果把分式2xx y-中的x与y都扩大2倍,那么分式的值()A.不变B.扩大2倍C.缩小2倍D.扩大4倍【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】【分析】分别利用负指数幂的性质以及二次根式的性质、零指数幂的性质分别化简得出答案.【详解】A﹣1,正确,不合题意;B,正确,不合题意;C52=,故此选项错误,符合题意;D0=1,正确,不合题意;故选:C.【点睛】此题主要考查了负指数幂的性质以及二次根式的性质、零指数幂的性质,正确掌握相关运算法则是解题关键.2.B解析:B【解析】A 、当分母3x-2≠0,即当x≠23时,分式x 13x 2+-有意义.故本选项正确; B 、当分母a 2-b 2≠0,即a≠±b 时,分式22aba b -有意义.故本选项错误; C 、当分子2x+1=0,即x =−12时,分式2x 14x+值为0.故本选项正确; D 、当分母y-x≠0,即x≠y 时,分式22x y y x--有意义.故本选项正确;故选:B .3.D解析:D 【解析】A.在分式的分子、分母上同时加上或减去同一个非0的数或式子分式的值要改变,故A 错误;B.a ba b++=1,故B 错误; C.a 不是分子、分母的因式,故C 错误; D.22x y x y --=()()x y x y x y -+-=1x y+;故D 正确.故选D.4.B解析:B 【解析】原式=()()2x x 3x 3+-−1 x 3-=()()()2x x 3x 3x 3-++-=()()x 3x 3x 3-+-=1x 3+.故选:B.5.D解析:D 【解析】选项A. 2-3=18,A 错. 选项B. (-2)3=-8,B 错.选项C. (23)-2=94 ,C 错误. 选项D. 2-3=18,正确 .所以选D. 6.D解析:D【解析】3311228-==. 故选D. 7.B解析:B 【解析】 A 选项中,11a b ++不能再化简,所以A 中变形错误; B 选项中,11a ab b--=--,所以B 中变形正确; C 选项中,221()()a b a b a b a b a b a b--==-+-+,所以C 中变形错误;D 选项中,2222()()1()()a b a b a b a b --+==++,所以D 中变形错误; 故选B.8.B解析:B 【解析】 ∵112111S t t =+,212111S t t =-, ∴S 1=1212t t t t +,S 2=1221t t t t -,∴12112211221221t t s t t t t t t s t t t t +-==+-, 故选B .【点睛】本题考查了分式的混合运算,熟练掌握运算法则是解题的关键.9.C解析:C 【解析】 选项A.a bab+ 不能化简,错误. 选项B.22x y x y-+-=-,错误. 选项C.()222x y x y x y x y --=++ ,正确.选项D. 23193x x x -=-+,错误. 故选C.10.A解析:A 【解析】试题解析:()1x y x y x y x y-+--==---. 故选A.11.B解析:B 【解析】解:0.00 004=5410-⨯.故选B .12.D解析:D 【解析】A 选项中,分式的分子、分母中含有公因式a ,因此它不是最简分式.故本选项错误;B 选项中,分式的分子、分母中含有公因数3,因此它不是最简分式.故本选项错误;C 选项中,分子可化为(x +1)(x -1),所以该分式的分子、分母中含有公因式(x +1),因此它不是最简分式.故本选项错误;D 选项中,分式符合最简分式的定义.故本选项正确. 故选:D .点睛:最简分式的标准是分子,分母中不含有公因式,不能再约分.判断的方法是把分子、分母分解因式,看分子和分母中有无公因式,并且观察有无互为相反数的因式,这样的因式可以通过符号变化化为相同的因式从而进行约分.13.C解析:C 【解析】 【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数. 【详解】解:0.0000065的小数点向右移动6位得到6.5, 所以数字0.0000065用科学记数法表示为6.5×10﹣6, 故选C . 【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.14.A解析:A 【解析】 【分析】根据分式有意义的条件、分式值为0的条件、分式值是正负等逐一进行分析即可得. 【详解】A 、分母中x 2+1≥1,因而23x 1+的值总为正数,故A 选项正确; B 、当x+1=1或-1时,3x 1+的值是整数,故B 选项错误; C 、当x=2时,分母x-2=0,分式无意义,故C 选项错误; D 、当x=0时,分母x=0,分式无意义,故D 选项错误, 故选A . 【点睛】本题考查了分式的值为零的条件,分式的定义,分式有意义的条件,注意分式的值是正数的条件是分子、分母同号,值是负数的条件是分子、分母异号.15.B解析:B 【分析】找出各项中分式分子分母中有没有公因式,即可做出判断. 【详解】xyx=y, 22x y x y +-= ()()x y x y x y ++-= 1x y -所以,不能约分化简的有:- 22y x +-x yx y共两个, 故答案选B. 【点睛】本题考查的知识点是分式的约分,解题的关键是熟练的掌握分式的基本性质.16.A解析:A 【解析】 【分析】先根据题意得出2x-y=-3xy ,再代入原式进行计算即可. 【详解】解:∵12x y-=3,∴2x-y=-3xy ,∴原式=()()2232x y xyx y xy-+-+,=633xy xyxy xy -+-+,=32xyxy --, =32, 故选A . 【点睛】本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键.17.B解析:B 【解析】 【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a ×10﹣n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定. 【详解】0.00000000005=5×10﹣11. 故选B . 【点睛】本题考查了用科学记数法表示较小的数,一般形式为a ×10﹣n ,其中1≤|a |<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.18.A解析:A 【分析】根据完全平方公式即可得到结果. 【详解】1m-=m21m-=7m ⎛⎫∴ ⎪⎝⎭, 221m -2+=7m ∴,221m +=9m∴,22211m+=m +2+=11m m ⎛⎫∴ ⎪⎝⎭,1m+m ∴=.故选A. 【点睛】本题主要考查完全平方公式,熟悉掌握公式是关键.19.D解析:D 【解析】 【分析】根据零指数幂的性质以及负指数幂的性质先进行化简,然后再进行乘法运算即可. 【详解】(16)0×3﹣2=11199⨯=, 故选D . 【点睛】本题考查了实数的运算,涉及了零指数幂、负指数幂的运算,正确化简各数是解题关键.20.B解析:B 【分析】利用最简分式的定义判断即可. 【详解】A 、原式=()()11 111x x x x +=+--,不合题意;B 、原式为最简分式,符合题意;C 、原式=()()()666262x x x x +--=+,不合题意,D 、原式=()()2x y x y x x y x--=-,不合题意;故选B . 【点睛】此题考查了最简分式,最简分式为分式的分子分母没有公因式,即不能约分的分式.21.A解析:A 【解析】 【分析】判断分式的依据是看分母中是否含有字母,如果含有字母则是分式,如果不含有字母则不是分式,找到分母中含有字母的式子的个数即可. 【详解】 解:式子2x yx- ,-2x y -中都含有字母是分式.故选:A . 【点睛】本题考查分式的概念,分式与整式的区别主要在于:分母中是否含有未知数.22.C解析:C 【解析】 【分析】根据分式的分子分母都乘以(或除以)同一个不为零的数(或整式),分式的值不变,可得答案. 【详解】 分式2+m m n 中的m 和n 都扩大2倍,得4222m mm n m n=++,∴分式的值不变, 故选A . 【点睛】本题考查了分式的基本性质,分式的分子分母都乘以(或除以)同一个不为零的数(或整式),分式的值不变.23.A解析:A 【解析】 【分析】 首先计算3--2=-19,再根据倒数的定义求解即可. 【详解】 ∵3--2=213-=-19,-19的倒数是-9, ∴3--2的倒数是-9, 故选A. 【点睛】此题考查了倒数和负整数指数幂,掌握倒数的定义是本题的关键.24.B解析:B 【解析】 【分析】根据负整数指数幂和幂的乘方和积的乘方解答.【详解】原式=(-1)-2a -2b 4 =21a •b 4 =42b a. 故选B .【点睛】本题主要考查了负整数指数幂,同时要熟悉幂的乘方和积的乘方.25.A解析:A【解析】分析:解答此题时,可将分式中的x ,y 用2x ,2y 代替,然后计算即可得出结论. 详解:依题意得:2222x x y ⨯-=222x x y ⋅⋅-()=原式.故选A . 点睛:本题考查的是对分式的性质的理解和运用,扩大或缩小n 倍,就将原来的数乘以n 或除以n .。

新最新初中数学—分式的基础测试题含解析(1)

新最新初中数学—分式的基础测试题含解析(1)

一、选择题1.每到四月,许多地方杨絮、柳絮如雪花般漫天飞舞,人们不堪其扰,据测定,杨絮纤维的直径约为0.0000105m ,该数值用科学记数法表示为( ) A .51.0510⨯B .51.0510-⨯C .50.10510-⨯D .410.510-⨯2.下列各式中,正确的是( ) A .a m ab m b+=+ B .a b0a b+=+ C .ab 1b 1ac 1c 1--=-- D .22x y 1x y x y-=-+3.分式x 5x 6-+ 的值不存在,则x 的取值是 A .x ?6=-B .x 6=C .x 5≠D .x 5=4.下列式子中,错误的是 A .1a a 1a a --=- B .1a a 1a a ---=- C .1a 1aa a---=- D .1a 1aa a+---= 5.分式:22x 4- ,x42x- 中,最简公分母是 A .()()2x 4?42x --B .()()x 2x ?2+C .()()22x 2x 2-+-D .()()2x 2?x 2+-6.若a = (-0.4)2,b = -4-2,c =214-⎛⎫- ⎪⎝⎭,d =014⎛⎫- ⎪⎝⎭, 则 a 、b 、c 、d 的大小关系为( ) A .a <b <c <dB .b <a <d <cC .a <d <c <bD .c <a <d <b7.已知有理式:4x 、4a 、1x y -、34x 、12x 2、1a +4,其中分式有 ( )A .2个B .3个C .4个D .5个8.下列各式中的计算正确的是( )A .22b b a a=B .a ba b++=0 C .a c ab c b+=+ D .a ba b-+-=-1 9.若 a =20170,b =2015×2017﹣20162,c =(﹣23)2016×(32)2017,则下列 a ,b ,c 的大小关系正确的是( ) A .a <b <cB .a <c <bC .b <a <cD .c <b <a10.下面是一位同学所做的5道练习题: ①()325a a = ,②236a a a ⋅=,③22144mm-=,④()()253aa a -÷-=-,⑤()3339a a -=-,他做对题的个数是 ( )A .1道B .2道C .3道D .4道11.把分式2x-y2xy中的x 、y 都扩大到原来的4倍,则分式的值( ) A .扩大到原来的16倍 B .扩大到原来的4倍 C .缩小到原来的14D .不变12.下列分式是最简分式的是( )A .22a a ab+B .63xy aC .211x x -+D .211x x ++13.函数y =x 的取值范围是( ) A .x ≥﹣2B .x ≥﹣2且x ≠1C .x ≠1D .x ≥﹣2或x ≠114.下列各式变形正确的是()A .x y x yx y x y-++=---B .22a b a bc d c d--=++ C .0.20.03230.40.0545a b a bc d c d --=++D .a b b ab c c b--=--15.已知m ﹣1m ,则1m+m 的值为( )A .B C . D .1116.下列运算正确的是( ) A .a ﹣3÷a ﹣5=a 2 B .(3a 2)3=9a 5 C .(x ﹣1)(1﹣x)=x 2﹣1D .(a+b)2=a 2+b 217.下列说法:①在一个装有2白球和3个红球的袋中摸3个球,摸到红球是必然事12a =--,则12a ≥-; 22a ba b -+是最简分式;其中正确的有()个.A .1个B .2个C .3个D .4个18.若a =-0.32,b =-3-2,c =(-13)-2,d =(-13)0,则它们的大小关系是( ) A .a<c<b<d B .b<a<d<c C .a<b<d<c D .b<a<c<d 19.若一种DNA 分子的直径只有0.00000007cm ,则这个数用科学记数法表示为( ) A .90.710-⨯B .90.710⨯C .8710-⨯D .710⨯820.如果把分式232x x y+中的x 和y 都扩大为原来的5倍,那么分式的值( )A .扩大为原来的5倍B .扩大为原来的10倍C .不变D .缩小为原来的1521.下列计算正确的有①()011-=;②21333-⨯=;③()()33m m x x -=-;④2211224x x x ⎛⎫-=-+ ⎪⎝⎭;⑤()()22339a b b a a b ---=-.A .4个B .3个C .2个D .1个22.3--2的倒数是( )A .-9B .9C .19D .-1923.若()3231tt --=,则t 可以取的值有( )A .1个B .2个C .3个D .4个24.计算()22ab ---的结果是( )A .42b a -B .42b aC .24a b -D .24a b25.在实数范围内有意义,则a 的取值范围是( )A .4a ≠-B .4a ≥-C .4a >-D .4a >-且0a ≠【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【解析】 【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定. 【详解】0.0000105=1.05×10-5, 故选B .【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10-n ,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.2.D解析:D 【解析】A.在分式的分子、分母上同时加上或减去同一个非0的数或式子分式的值要改变,故A 错误;B.a ba b++=1,故B 错误; C.a 不是分子、分母的因式,故C 错误; D.22x y x y --=()()x y x y x y -+-=1x y+;故D 正确.故选D.3.A解析:A 【解析】 ∵分式56x x -+的值不存在, ∴分式56x x -+无意义, ∴60x +=,解得:6x =-. 故选A.4.B解析:B 【解析】 A 选项中,1(1)1a a a a a a ----==--,所以A 正确; B 选项中,1(1)1a a a a a a -----=-=---,所以B 错误; C 选项中,11a aa a ---=-,所以C 正确; D 选项中,11a aa a+---=,所以D 正确. 故选B.5.D解析:D 【解析】∵2224(2)(2)x x x =-+-,422(2)x xx x =---, ∴分式22 442xx x --、的最简公分母是:2(2)(2)x x +-. 故选D.6.B解析:B 【解析】∵a=0.16;b=-214=-116;c =(211()4-)=16;d =1;故:b<a<d<c7.B解析:B 【解析】4a 、、34x 、12x 2的分母中均不含有字母,因此它们是整式,而不是分式. 4x、、1x y -、1a +4的分母中含有字母,因此是分式.所以B 选项是正确的.点睛:本题主要考查分式的概念,分式与整式的区别主要在于:分母中是否含有未知数.8.D解析:D 【解析】解:A . 22b b a a≠,故A 错误;B . a ba b++=1,故B 错误; C . a c ab c b+≠+,故C 错误; D .a ba b -+-=-1,正确. 故选D .9.C解析:C 【解析】 【详解】解:a =20170=1,b =2015×2017﹣20162=(2016﹣1)(2016+1)﹣20162=20162﹣1-20162=﹣1,c =(﹣23)2016×(32)2017=(﹣23×32)2016×32=32,则b <a <c .故选C . 点睛:本题考查了平方差公式,幂的乘方与积的乘方,以及零指数幂,熟练掌握运算法则及公式是解答本题的关键.10.A解析:A 【解析】分析:原式各项利用幂的乘方,同底数幂的乘法,负整数指数幂法则,单项式除以单项式以及积的乘方计算得到结果,判断即可.详解:①236a a =() ,故①错误;②235a a a ⋅=,故②错误; ③2244mm -=,故③错误; ④523a a a -÷-=-()(),故④正确;⑤33327a a -=-().故⑤错误.故选A .点睛:本题考查了整式的除法,幂的乘方与积的乘方,零指数幂、负整数指数幂,熟练掌握运算法则是解答本题的关键.11.C解析:C 【解析】分析:把原分式中的x .y 都扩大到原来的4倍后,再约分化简. 详解:因为()422441224416242x y x y x y x y xy xy ---⨯⨯==,所以分式的值缩小到原来的14.故选C .点睛:分数可以约分,分式与分数类似,也可以约分,根据分式的基本性质把一个分式的分子与分母的公因式或公因数约去,这种变形称为分式的约分.12.D解析:D 【解析】A 选项中,分式的分子、分母中含有公因式a ,因此它不是最简分式.故本选项错误;B 选项中,分式的分子、分母中含有公因数3,因此它不是最简分式.故本选项错误;C 选项中,分子可化为(x +1)(x -1),所以该分式的分子、分母中含有公因式(x +1),因此它不是最简分式.故本选项错误;D 选项中,分式符合最简分式的定义.故本选项正确. 故选:D .点睛:最简分式的标准是分子,分母中不含有公因式,不能再约分.判断的方法是把分子、分母分解因式,看分子和分母中有无公因式,并且观察有无互为相反数的因式,这样的因式可以通过符号变化化为相同的因式从而进行约分.13.B解析:B【分析】根据二次根式、分式有意义的条件可得关于x的不等式组,解不等式组即可得.【详解】解:由题意得:2010xx+≥⎧⎨-≠⎩,解得:x≥﹣2且x≠1,故选B.【点睛】本题考查的是函数自变量取值范围的求法.函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数为非负数.14.D解析:D【解析】【分析】根据分式的分子分母都乘以或除以同一个不为零的数或者同一个不为零的整式,分式的值不变,可得答案.【详解】A、原式x yx y-=+,所以A选项错误;B、原式=2a bc d-+(),所以B选项错误;C、原式=203405a bc d-+,所以C选项错误;D、a b b ab c c b--=--,所以D选项正确.故选D.【点睛】本题考查了分式基本性质,分式的分子分母都乘以或除以同一个不为零的数或者同一个不为零的整式,分式的值不变.15.A解析:A【分析】根据完全平方公式即可得到结果.【详解】1m-=m21m-=7m ⎛⎫∴ ⎪⎝⎭, 221m -2+=7m ∴, 221m +=9m∴,22211m+=m +2+=11m m ⎛⎫∴ ⎪⎝⎭,1m+m ∴=.故选A. 【点睛】本题主要考查完全平方公式,熟悉掌握公式是关键.16.A解析:A 【解析】 【分析】直接利用同底数幂的除法运算法则、积的乘方运算法则、完全平方公式分别化简得出答案. 【详解】A .a ﹣3÷a ﹣5=a 2,故此选项正确;B .(3a 2)3=27a 6,故此选项错误;C .(x ﹣1)(1﹣x )=﹣x 2+2x ﹣1,故此选项错误;D .(a +b )2=a 2+2ab +b 2,故此选项错误. 故选A . 【点睛】本题考查了同底数幂的除法运算法则、积的乘方运算法则、完全平方公式等知识,正确掌握相关运算法则是解题的关键.17.C解析:C 【解析】 【分析】根据必然事件的定义,二次根式的性质,最简分式的定义以及同类二次根式的定义进行判断. 【详解】①在一个装有2白球和3个红球的袋中摸3个球,摸到红球是必然事件,正确.②12a =--,则12a ≤-,错误;== ④分式22a ba b -+是最简分式,正确;故选:C . 【点睛】本题主要考查了随机事件、二次根式以及命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.把几个二次根式化为最简二次根式后,如果它们的被开方数相同,就把这几个二次根式叫做同类二次根式.18.B解析:B 【解析】 【分析】首先根据一个数的平方的计算方法,负整数指数幂的运算方法,以及零指数幂的运算方法,分别求出a 、b 、c 、d 的大小;然后根据实数大小比较的方法,判断出它们的大小关系即可. 【详解】∵2221110.30.09,3,9,1933a b c d --⎛⎫⎛⎫=-=-=-=-=-==-= ⎪ ⎪⎝⎭⎝⎭, ∴10.09199-<-<<, ∴b <a <d <c . 故选:B . 【点睛】考查了负整数指数幂的运算,要熟练掌握,解答此题的关键是要明确:①a -p =1p a(a≠0,p 为正整数);②计算负整数指数幂时,一定要根据负整数指数幂的意义计算;③当底数是分数时,只要把分子、分母颠倒,负指数就可变为正指数.(3)此题还考查了零指数幂的运算,要熟练掌握,解答此题的关键是要明确:①a 0=1(a≠0);②00≠1.19.C解析:C 【解析】 【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:若一种DNA 分子的直径只有0.00000007cm ,则这个数用科学记数法表示为8710-⨯.故选:C. 【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10-n ,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.20.A解析:A 【解析】 【分析】x ,y 都扩大为原来的5倍就是分别变成原来的5倍,变成5x 和5y .用5x 和5y 代替式子中的x 和y ,看得到的式子与原来的式子的关系. 【详解】用5x 和5y 代替式子中的x 和y 得:()2255,151032x xx y x y=++则扩大为原来的5倍. 故选:A. 【点睛】考查分式的基本性质,掌握分式的基本性质是解题的关键.21.C解析:C 【解析】 【分析】根据零指数幂、同底数幂的乘法、负整数指数幂的意义、积的乘方、完全平方公式、平方差公式计算后判断各个选项即可. 【详解】①()011-=,正确; ②2113333--⨯==,正确;③当m 为偶数时,()()33mm x x -≠-,错误;④221124x x x ⎛⎫-=-+ ⎪⎝⎭,错误; ⑤(a -3b )(-3b -a )=2222(3)9b a b a --=-,错误.故选C . 【点睛】本题考查了零指数幂、同底数幂的乘法、负整数指数幂的意义、积的乘方、完全平方公式、平方差公式.熟练掌握运算法则是解题的关键.22.A解析:A【解析】【分析】首先计算3--2=-19,再根据倒数的定义求解即可. 【详解】∵3--2=213-=-19,-19的倒数是-9, ∴3--2的倒数是-9,故选A.【点睛】此题考查了倒数和负整数指数幂,掌握倒数的定义是本题的关键.23.B解析:B【解析】【分析】根据任何非0数的零次幂等于1,1的任何次幂等于1,-1的偶数次幂等于1解答.【详解】当3-2t=0时,t=32,此时t-3=32-3=-32,(-32)0=1, 当t-3=1时,t=4,此时3-2t=2-3×4=-6,1-6=1, 当t-3=-1时,t=2,此时3-2t=3-2×2=-1,(-1)-1=-1,不符合题意, 综上所述,t 可以取的值有32、4共2个. 故选:B .【点睛】本题考查了零指数幂,有理数的乘方,要穷举所有乘方等于1的数的情况. 24.B解析:B【解析】【分析】根据负整数指数幂和幂的乘方和积的乘方解答.【详解】原式=(-1)-2a -2b 4 =21a•b 4=42ba.故选B.【点睛】本题主要考查了负整数指数幂,同时要熟悉幂的乘方和积的乘方.25.C解析:C【解析】分析:根据二次根式与分式有意义的条件和分式有意义的条件即可求出a的范围.详解:由题意可知:a+4>0∴a>-4故选C.点睛:解题的关键是正确理解二次根式有意义的条件和分式有意义的条件,本题属于基础题型.。

新最新初中数学—分式的基础测试题及答案解析(1)

新最新初中数学—分式的基础测试题及答案解析(1)

一、选择题1.已知为整数,且分式的值为整数,则可取的值有( )A .1个B .2个C .3个D .4个2.一艘轮船在静水中的最大航速为30千米/时,它沿江以最大航速顺流航行100千米所用时间,与以最大航速逆流航行60千米所用时间相等,江水的流速为多少?设江水的流速为x 千米/时,则可列方程( ) A . B . C . D .3.下列分式变形中,正确的是( ).A . b a b a b a +=++22B .1-=++-y x y xC . ()()m n n m m n -=--23D .bm am b a = 4.已知:分式的值为零,分式无意义,则的值是( ) A .-5或-2 B .-1或-4C .1或4D .5或25.若分式的值为零,则x 的值为( )A .0B .﹣2C .2D .﹣2或26.如果23,a -=- 20.3b =-, 213c -⎛⎫=- ⎪⎝⎭, 015d ⎛⎫=- ⎪⎝⎭那么,,a b c ,d 三数的大小为( )A .a b c d <<<B .b a d c <<<C .a d c b <<<D .a b d c <<< 7.下列各式从左到右的变形正确的是 ( )A .220.220.33a a a a a a--=-- B .11x x x y x y+--=-- C .116321623a a a a --=++D .22b a a b a b-=-+8.若分式23x x --有意义,则x 满足的条件是( )A .x ≠0B .x ≠2C .x ≠3D .x ≥39.若a =-0.3-2,b =-3-2,c =(-13)-2,d =(-13)0,则( ) A .a <d <c <b B .b <a <d <c C .a <d <c <b D .a <b <d <c10.化简21(1)211x x x x ÷-+++的结果是( ) A .11x + B .1x x+ C .x +1 D .x ﹣111.分式(a ,b 均为正数),字母的值都扩大为原来的2倍,则分式的值( )A .扩大为原来2倍B .缩小为原来倍C .不变D .缩小为原来的12.计算1÷11m m+-(m 2-1)的结果是( ) A .-m 2-2m -1 B .-m 2+2m -1C .m 2-2m -1D .m 2-113.已知空气的单位体积质量是0.001239g /cm 3,则用科学记数法表示该数为( )g /cm 3. A .1.239×10﹣3 B .1.2×10﹣3C .1.239×10﹣2D .1.239×10﹣4 14.如果为整数,那么使分式22221m m m +++的值为整数的的值有( )A .2个B .3个C .4个D .5个15.下列各式的约分,正确的是 A .1a b a b --=- B .1a ba b--=-- C .22a b a b a b -=-+ D .22a b a b a b-=++ 16.有个花园占地面积约为 800000平方米,若按比例尺 1 : 2000缩小后,其面积大约相当于( )A .一个篮球场的面积B .一张乒乓球台台面的面积C .《钱江晚报》一个版面的面积D .《数学》课本封面的面积 17.已知115ab a b =+,117bc b c =+,116ca c a =+,则abcab bc ca++的值是( ) A .121 B .122 C .123 D .12418.在,,中,是分式的有( )A .0个B .1个C .2个D .3个 19.下列49227,π,30,其中无理数是( )A .9B .227C .πD .(3)020.若将分式(a ,b 均为正数)中a ,b 的值分别扩大为原来的3倍,则分式的值( ) A .扩大为原来的3倍 B .缩小为原来的 C .不变 D .缩小为原来的 21.下列分式中,最简分式是( ) A .B .C .D .22.在标准大气压下氢气的密度为0.00009g/cm 3 ,用科学记数法表示0.00009正确的是( )A .5910⨯B .5910-⨯C .4910-⨯D .40.910⨯ 23.如果把中的x 和y 都扩大到5倍,那么分式的值( )A .扩大5倍B .不变C .缩小5倍D .扩大4倍 24.下列语句:①任何数的零次方都等于1;②如果两条直线被第三条直线所截,那么同位角相等;③一个图形和它经过平移所得的图形中,两组对应点的连线平行且相等; ④平行线间的距离处处相等. 说法错误的有( )A .1个B .2个C .3个D .4个25.H7N9禽流感病毒的直径大约是0.000 000 076米,用科学记数法可表示为( )米.A .7.6×10﹣11B .7.6×10﹣8C .7.6×10﹣9D .7.6×10﹣5【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【详解】==,由题意可知x-1=1,-1,-2,2为整数,且x≠±1,解得:x=2,0,3 故选:C.2.A解析:A【解析】试题分析:因为轮船在静水中的最大航速为30千米/时,江水的流速为x 千米/时,所以轮船在顺流航行中的航速为(30+x )千米/时,轮船在逆流航行的航速为(30-x )千米/时,根据以最大航速顺流航行100千米所用时间,与以最大航速逆流航行60千米所用时间相等,可得:,故选A .考点:列分式方程.3.C解析:C 【解析】试题分析:分式的约分首先将分子和分母进行因式分解,然后约去公共的因式.A 、B 无法进行约分,C 正确;D 需要保证m 不能为零. 考点:分式的约分4.A解析:A 【分析】当分式的分子为零,且分母不为零时,则分式的值为零;当分式的分母为零时,则分式无意义. 【详解】 根据题意可得:,=0,解得:x=-3,y=1或-2,则x+y=-2或-5.【点睛】考核知识点:分式的性质.5.B解析:B 【解析】试题分析:要使分式的值为0,必须分式分子的值为0并且分母的值不为0. 解:由分子x 2﹣4=0解得:x=±2.当x=2时分母x 2﹣2x=4﹣4=0,分式没有意义;当x=﹣2时分母x 2﹣2x=4+4=8≠0.所以x=﹣2.故选B .6.D解析:D【解析】试题解析:因为a=-3-2=-211=-39, b=-0.32=-0.09,c=(-13)-2=21913=⎛⎫- ⎪⎝⎭, d=(-15)0=1, 所以c >d >a >b . 故选D .【点睛】本题主要考查了(1)零指数幂,负整数指数幂和有理数的乘方运算:负整数指数为正整数指数的倒数;任何非0数的0次幂等于1.(2)有理数比较大小:正数>0;0>负数;两个负数,绝对值大的反而小.7.C解析:C 【详解】 解:A. 220.21020.3103a a a a a a--=--,故原选项错误; B. 11x x x y x y+--=--,故原选项错误; C.116321623aa a a --=++,故此选项正确; D.22b a b a a b-=-+,故原选项错误,故选C .8.C解析:C【解析】试题分析:根据分式有意义的条件,分母不等于0,可得x-3≠0,解得x≠3. 故选:C.9.D解析:D【解析】根据有理数的乘方、负整数指数幂、零指数幂的意义化简a 、b 、c 、d 的值,然后比较大小.由a=−0.09,b=−19,c=9,d=1,得到:c>d>a>b , 故选B.10.A解析:A 【分析】根据分式混合运算法则计算即可. 【详解】解:原式=2211(1)1(1)1x x x x x x x x x +÷=⋅=++++ .故选:A . 【点睛】本题考查的是分式的混合运算,熟知分式混和运算的法则是解答本题的关键.11.B解析:B 【解析】试题分析:当a 和b 都扩大2倍时,原式=,即分式的值缩小为原来的.考点:分式的值12.B解析:B 【解析】 1÷11m m +-·(m 2-1)=1×11m m-+(m +1)·(m -1)=-(m -1)2=-m 2+2m -1. 13.A解析:A 【解析】根据绝对值小于1的正数也可以利用科学记数法表示方法(一般形式为a×10-n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定)可得:0.001239 =1.239×0.001=1.239×10﹣3,故选A .14.C解析:C 【解析】 原式=()()()2111m m m +++=21m +,当m =-3时,原式=-1;当m =-2时,原式=-2;当m =0时,原式=2;当m =1时,原式=1.m 的值有4个. 故选C.15.C解析:C . 【解析】试题分析:根据分式的基本性质作答. 试题解析:A .()1a b a b a b a b---+=≠--,故该选项错误;B.()1a b a ba b a b---+=≠---,故该选项错误;C .22()()a b a b a ba ba b a b-+-==-++,故该选项正确;D.22()()a b a b a ba b a ba b a b-+-==-≠+++,故该选项错误.故选C.考点:约分.16.C解析:C【解析】试题解析:设其缩小后的面积为xm2,则x:800000=(1:2000)2,x=0.2m2,其面积相当于报纸的一个版面的面积,故选C.考点:数学常识.17.D解析:D【解析】试题解析:由已知得:1115a b+=,1117b c+=,1116c a+=,∴11124 a b c++=,∴原式=11 11124a b c=++,故选D.考点:分式的运算.18.C解析:C【解析】解:的分母中不含有字母,因此它们是整式,而不是分式.,的中分母中含有字母,因此是分式.故选:C.19.C解析:C【解析】9,227是无限循环小数,π是无限不循环小数,31=,所以π是无理数,故选C.20.B解析:B【解析】由题意得==,缩小为原来的故选B21.B解析:B【解析】试题分析:选项A,原式=,所以A选项错误;选项B,是最简分式,所以B选项正确;选项C,原式=,所以C选项错误;选项D,原式=,所以D选项错误.故选B.考点:最简分式.22.B解析:B【解析】根据科学记数法的书写规则,易得B.23.B解析:B【解析】试题解析:,即分式的值不变.故选B.24.C解析:C【解析】改正:①任何非0数的零次方都等于1;②如果两条平行的直线被第三条直线所截,那么同位角相等;③一个图形和它经过平移所得的图形中,两组对应点的连线平行(或共线)且相等;④正确.故选C.25.B解析:B【解析】0.000 000 076用科学记数法可表示为7.6×10﹣8.故选B.。

最新最新初中数学—分式的基础测试题及答案解析

最新最新初中数学—分式的基础测试题及答案解析

一、选择题1.下列约分结果正确的是( ) A .2mgRBLB .a m ab m b+=+ C .22x y x y x y-=-- D .22111m m m m -+-=-+-2.下列各式中,正确的是( ) A .a m ab m b+=+ B .a b0a b+=+ C .ab 1b 1ac 1c 1--=-- D .22x y 1x y x y-=-+3.下列分式:24a 5b c ,23c 4a b ,25b2ac 中,最简公分母是 A .5abcB .2225a b cC .22220a b cD .22240a b c4.下列运算,正确的是 A .0a 0= B .11a a-=C .22a a b b=D .()222a b a b -=-5.在式子:2x、5x y + 、12a - 、1x π-、21xx +中,分式的个数是( )A .2B .3C .4D .56.如果分式242x x --的值等于0,那么( )A .2x =±B .2x =C .2x =-D .2x ≠7.下列关于分式的判断,正确的是( ) A .当x =2时,12x x +-的值为零 B .无论x 为何值,231x +的值总为正数 C .无论x 为何值,31x +不可能得整数值 D .当x ≠3时,3x x-有意义 8.下列各式从左到右的变形正确的是( )A .221188a a a a ---=-++ B .()()221a b a b -+=-C .22x y x y x y+=++ D .052520.11y yx x++=-++9.计算32-的结果是( )A .-6B .-8C .18-D .1810.下列变形正确的是( ).A .11a ab b +=+ B .11a ab b--=-- C .221a b a b a b-=-- D .22()1()a b a b --=-+ 11.如果112111S t t =+,212111S t t =-,则12S S =( ) A .1221t t t t +-B .2121t t t t -+C .1221t t t t -+D .1212t t t t +-12.若分式||11x x -+的值为0,则x 的值为( ) A .1B .﹣1C .±1 D .无解13.已知a <b( )ABC. D.14.使分式224x x +-有意义的取值范围是( ) A .2x =- B .2x ≠-C .2x =D .2x ≠15.若 ()1311xx --=,则 x 的取值有 ()A .0 个B .1 个C .2 个D .3 个16.已知分式32x x +-有意义,则x 的取值范围是( ) A .x ≠-3 B .x≠0C .x≠2D .x=217.函数y =x 的取值范围是( ) A .x ≥﹣2B .x ≥﹣2且x ≠1C .x ≠1D .x ≥﹣2或x ≠118.纳米是一种长度单位,1纳米=10-9米,已知某种植物花粉的直径约为35000纳米,那么用科学记数法表示该种花粉的直径为( ) A .43.510⨯米 B .43.510-⨯米C .53.510-⨯米D .93.510-⨯米19.若0x y y z z xabc a b c---===<,则点P(ab ,bc)不可能在第( )象限 A .一 B .二 C .三 D .四 20.下列分式中,最简分式是( )A .211x x +-B .2211x x -+C .236212x x -+D .()2--y x x y21.若(1-x )1-3x =1,则x 的取值有( )个.A .1个B .2个C .3个D .4个22.若a =-0.32,b =-3-2,c =(-13)-2,d =(-13)0,则它们的大小关系是( ) A .a<c<b<dB .b<a<d<cC .a<b<d<cD .b<a<c<d23.下列计算正确的有①()011-=;②21333-⨯=;③()()33m m x x -=-;④2211224x x x ⎛⎫-=-+ ⎪⎝⎭;⑤()()22339a b b a a b ---=-.A .4个B .3个C .2个D .1个24.下列运算错误的是( )A 4=B .12100-=C 3=-D 2=25.下列变形正确的是( ).A .1x yx y-+=-- B .x m mx n n+=+ C .22x y x y x y +=++ D .632x x x=【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【解析】 A.282123x x y xy = ,故A 选项错误;B. a mb m++已是最简分式,故B 选项错误;C. 22x y x y x y -=+-,故C 选项错误;D. 22111m m m m -+-=-+-,正确, 故选D.2.D解析:D 【解析】A.在分式的分子、分母上同时加上或减去同一个非0的数或式子分式的值要改变,故A 错误;B.a ba b++=1,故B 错误; C.a 不是分子、分母的因式,故C 错误;D.22x y x y --=()()x y x y x y -+-=1x y+;故D 正确.故选D.3.C解析:C 【解析】根据最简公分母的定义:“通常取各分母的系数的最小公倍数与各分母中所有字母因数的最高次幂的积作为各分母的公分母,这个公分母叫做这几个分式的最简公分母”可知,分式:24a 5b c ,23c 4a b ,25b2ac 的最简公分母是:22220a b c . 故选C.4.B解析:B 【解析】A 选项中,因为只有当0a ≠时,01a =,所以A 错误;B 选项中,11=a a-,所以B 正确; C 选项中,22a b的分子与分母没有公因式,不能约分,所以C 错误;D 选项中,222()2a b a ab b -=-+,所以D 错误; 故选B.5.B解析:B 【解析】 解:分式有2x 、12a-、21x x +共3个.故选B .点睛:此题主要考查了分式的定义,正确把握分式的定义是解题关键.6.C解析:C 【解析】根据题意得:24020x x ⎧-=⎨-≠⎩,解得:x=−2. 故选C. 7.B解析:B 【解析】A 选项中,因为当2x =时,分式12x x +-无意义,所以本选项错误;B 选项中,因为无论x 取何值,21x +的值始终为正数,则分式231x +的值总为正数,所以本选项正确;C 选项中,因为当2x =时,分式311x =+,所以本选项说法错误; D 选项中,因为0x ≠时,分式3x x-才有意义,所以本选项说法错误; 故选B.8.B解析:B 【解析】 解:A .原式=22(1)1(8)8a a a a -++=--- ,错误;B .原式=1,正确;C .原式为最简结果,错误;D .原式=520110yx+-+,错误.故选B .点睛:此题考查了分式的基本性质,熟练掌握分式的基本性质是解本题的关键.9.D解析:D 【解析】3311228-==. 故选D. 10.B解析:B 【解析】 A 选项中,11a b ++不能再化简,所以A 中变形错误; B 选项中,11a ab b--=--,所以B 中变形正确; C 选项中,221()()a b a b a b a b a b a b--==-+-+,所以C 中变形错误;D 选项中,2222()()1()()a b a b a b a b --+==++,所以D 中变形错误; 故选B.11.B解析:B【解析】∵112111S t t =+,212111S t t =-, ∴S 1=1212t t t t +,S 2=1221t t t t -, ∴12112211221221t t s t t t t t t s t t t t +-==+-, 故选B .【点睛】本题考查了分式的混合运算,熟练掌握运算法则是解题的关键.12.A解析:A 【解析】试题解析:∵分式||11x x -+的值为0, ∴|x|﹣1=0,且x+1≠0, 解得:x=1. 故选A .13.D解析:D 【解析】因为a-ba a b-=-故选D.,0,0a a a a a ≥⎧==⎨-<⎩,推广此时a 可以看做是一个式子,式子整体大于等于0,把绝对值变为括号;式子整体小于0,把绝对值变为括号,前面再加负号.最后去括号,化简.14.D解析:D 【解析】 【分析】根据分式有意义分母不为零可得2x-4≠0,再解即可. 【详解】解:由题意得:2x-4≠0, 解得:x≠2, 故选:D . 【点睛】此题主要考查了分式有意义的条件,关键是掌握分式有意义的条件是分母不等于零.15.C解析:C【分析】直接利用零指数幂的性质以及有理数的乘方运算法则得出答案.【详解】解:∵(1-x)1-3x=1,∴当1-3x=0时,原式=1,当x=0时,原式=1,故x的取值有2个.故选C.【点睛】此题主要考查了零指数幂的性质以及有理数的乘方运算,正确掌握运算法则是解题关键.16.C解析:C【解析】分析:根据分式有意义的条件:分母不等于0即可求解.详解:根据题意得:x-2≠0,解得:x≠2.故选C..点睛:本题考查了分式有意义的条件,从以下三个方面透彻理解分式的概念:(1)分式无意义⇔分母为零;(2)分式有意义⇔分母不为零;(3)分式值为零⇔分子为零且分母不为零. 17.B解析:B【分析】根据二次根式、分式有意义的条件可得关于x的不等式组,解不等式组即可得.【详解】解:由题意得:2010xx+≥⎧⎨-≠⎩,解得:x≥﹣2且x≠1,故选B.【点睛】本题考查的是函数自变量取值范围的求法.函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数为非负数.18.C解析:C【解析】【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定. 【详解】35000纳米=35000×10-9米=3.5×10-5米. 故选C . 【点睛】此题主要考查了用科学记数法表示较小的数,一般形式为a×10-n ,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.19.A解析:A 【解析】 【分析】根据有理数的乘法判断出a ,b ,c 中至少有一个是负数,另两个同号,然后求出三个数都是负数时x 、y 、z 的大小关系,得出矛盾,从而判断出a 、b 、c 不能同时是负数,确定出点P 不可能在第一象限. 【详解】 解:∵abc <0,∴a ,b ,c 中至少有一个是负数,另两个同号, 可知三个都是负数或两正数,一个是负数, 当三个都是负数时:若x yabc a-=, 则20x y a bc -=>,即x >y ,同理可得:y >z ,z >x 这三个式子不能同时成立, 即a ,b ,c 不能同时是负数, 所以,P (ab ,bc )不可能在第一象限. 故选:A. 【点睛】本题主要考查分式的基本性质和点的坐标的知识,熟悉点的坐标的基本知识是本题的解题关键,确定一个点所在象限,就是确定点的坐标的符号.20.B解析:B 【分析】利用最简分式的定义判断即可. 【详解】A 、原式=()()11 111x x x x +=+--,不合题意;B、原式为最简分式,符合题意;C、原式=()()()666262x x xx+--=+,不合题意,D、原式=()()2x y x yx x y x--=-,不合题意;故选B.【点睛】此题考查了最简分式,最简分式为分式的分子分母没有公因式,即不能约分的分式.21.B解析:B【分析】利用零指数幂,乘方的意义判断即可.【详解】解:∵(1-x)1-3x=1,∴1-x≠0,1-3x=0或1-x=1,解得:x=13或x=0,则x的取值有2个,故选B【点睛】本题考查了零指数幂,以及有理数的乘方,熟练掌握运算法则是解题的关键.22.B解析:B【解析】【分析】首先根据一个数的平方的计算方法,负整数指数幂的运算方法,以及零指数幂的运算方法,分别求出a、b、c、d的大小;然后根据实数大小比较的方法,判断出它们的大小关系即可.【详解】∵20 221110.30.09,3,9,1933a b c d--⎛⎫⎛⎫=-=-=-=-=-==-=⎪ ⎪⎝⎭⎝⎭,∴10.0919 9-<-<<,∴b<a<d<c.故选:B.【点睛】考查了负整数指数幂的运算,要熟练掌握,解答此题的关键是要明确:①a-p=1pa(a≠0,p为正整数);②计算负整数指数幂时,一定要根据负整数指数幂的意义计算;③当底数是分数时,只要把分子、分母颠倒,负指数就可变为正指数.(3)此题还考查了零指数幂的运算,要熟练掌握,解答此题的关键是要明确:①a 0=1(a≠0);②00≠1.23.C解析:C 【解析】 【分析】根据零指数幂、同底数幂的乘法、负整数指数幂的意义、积的乘方、完全平方公式、平方差公式计算后判断各个选项即可. 【详解】①()011-=,正确; ②2113333--⨯==,正确;③当m 为偶数时,()()33mm x x -≠-,错误;④221124x x x ⎛⎫-=-+ ⎪⎝⎭,错误; ⑤(a -3b )(-3b -a )=2222(3)9b a b a --=-,错误.故选C . 【点睛】本题考查了零指数幂、同底数幂的乘法、负整数指数幂的意义、积的乘方、完全平方公式、平方差公式.熟练掌握运算法则是解题的关键.24.B解析:B 【解析】 【分析】分别根据立方根及算术平方根的定义对各选项进行逐一解答即可. 【详解】A 、∵42=16=4,故本选项正确;B 、12100-110,故本选项错误;C 、∵(-3)3=-273=-,故本选项正确;D =2,故本选项正确.故选B . 【点睛】本题考查的是立方根及算术平方根,熟知立方根及算术平方根的定义是解答此题的关键.25.A解析:A 【解析】试题解析:()1 x y x yx y x y-+--==---.故选A.。

新最新初中数学—分式的基础测试题及答案解析(1)

新最新初中数学—分式的基础测试题及答案解析(1)

一、选择题1.下面是一位同学所做的5道练习题: ①()325a a = ,②236a a a ⋅=,③22144m m -=, ④()()253aa a -÷-=-,⑤()3339a a -=-,他做对题的个数是 ( )A .1道B .2道C .3道D .4道2.下列关于分式的判断,正确的是( ) A .当x=2时,12x x +-的值为零 B .当x≠3时,3x x-有意义 C .无论x 为何值,31x +不可能得整数值 D .无论x 为何值,231x +的值总为正数 3.分式x 5x 6-+ 的值不存在,则x 的取值是 A .x ?6=- B .x 6=C .x 5≠D .x 5=4.下列分式:24a 5b c ,23c 4a b ,25b2ac中,最简公分母是 A .5abcB .2225a b cC .22220a b cD .22240a b c5.下列变形正确的是( ).A .11a a b b +=+ B .11a ab b--=-- C .221a b a b a b-=-- D .22()1()a b a b --=-+ 6.如果112111S t t =+,212111S t t =-,则12S S =( ) A .1221t t t t +-B .2121t t t t -+C .1221t t t t -+D .1212t t t t +-7.下列各式中的计算正确的是( )A .22b b a a=B .a ba b++=0 C .a c ab c b+=+ D .a ba b-+-=-1 8.下列变形正确的是( ).A .1x yx y-+=-- B .x m mx n n+=+ C .22x y x y x y +=++ D .632x x x= 9.使分式293x x -+的值为0,那么x ( ).A .3x ≠-B .3x =C .3x =±D .3x ≠10.下列分式中,最简分式是( )A .x y y x--B .211x x +-C .2211x x -+D .2424x x -+11.下列选项中,使根式有意义的a 的取值范围为a <1的是( ) A .a 1- B .1a -C .()21a - D .11a- 12.3x +在实数范围内有意义,则x 的取值范围为( ) A .x<-3B .x ≥-3C .x>2D .x ≥-3,且x ≠213.下列各式计算正确的是( )A .a x ab x b+=+ B .112a b a b+=+C .22()a a b b=D .11x y x y-=-+- 14.下列关于分式的判断正确的是 ( ) A .无论x 为何值,231x +的值总为正数 B .无论x 为何值,31x +不可能是整数值 C .当x =2时,12x x +-的值为零 D .当x ≠3时3x x-,有意义 15.已知分式32x x +-有意义,则x 的取值范围是( ) A .x ≠-3B .x≠0C .x≠2D .x=216.(下列化简错误的是( ) A 2)﹣12 B 2(2)- =2 C 25542=± D 2)0=117.纳米是一种长度单位,1纳米=10-9米,已知某种植物花粉的直径约为35000纳米,那么用科学记数法表示该种花粉的直径为( ) A .43.510⨯米B .43.510-⨯米C .53.510-⨯米D .93.510-⨯米18.下列分式中:xy x ,2y x -,+-x yx y,22x y x y +-不能再约分化简的分式有( )A .1个B .2个C .3个D .4个19.分式b ax ,3c bx -,35acx 的最简公分母是( ) A .5cx 3B .15abcxC .15abcx 3D .15abcx 520.每到四月,许多地方杨絮、柳絮如雪花般漫天飞舞,人们不堪其扰,据测定,杨絮纤维的直径约为0.0000105m ,该数值用科学记数法表示为( ) A .51.0510⨯B .51.0510-⨯C .50.10510-⨯D .410.510-⨯21.甲、乙两人分两次在同一粮店内买粮食,两次的单价不同,甲每次购粮100千克,乙每次购粮100元.若规定:谁两次购粮的平均单价低,谁的购粮方式就合算.那么这两次购粮( ) A .甲合算B .乙合算C .甲、乙一样D .要看两次的价格情况22.若a =-0.32,b =-3-2,c =(-13)-2,d =(-13)0,则它们的大小关系是( ) A .a<c<b<d B .b<a<d<cC .a<b<d<cD .b<a<c<d23.函数y =的取值范围是( ) A .x >2B .x ≥3C .x ≥3,且x ≠2D .x ≥-3,且x ≠224.3--2的倒数是( )A .-9B .9C .19D .-1925.将分式()0,0xyx y x y≠≠-中的x .y 扩大为原来的3倍,则分式的值为:( ) A .不变;B .扩大为原来的3倍C .扩大为原来的9倍;D .减小为原来的13【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【解析】分析:原式各项利用幂的乘方,同底数幂的乘法,负整数指数幂法则,单项式除以单项式以及积的乘方计算得到结果,判断即可.详解:①236a a =() ,故①错误;②235a a a ⋅=,故②错误; ③2244mm -=,故③错误; ④523a a a -÷-=-()(),故④正确; ⑤33327a a -=-().故⑤错误.故选A .点睛:本题考查了整式的除法,幂的乘方与积的乘方,零指数幂、负整数指数幂,熟练掌握运算法则是解答本题的关键.2.D解析:D 【解析】A 选项:当x =2时,该分式的分母x -2=0,该分式无意义,故A 选项错误.B 选项:当x =0时,该分式的分母为零,该分式无意义. 显然,x =0满足x ≠3. 由此可见,当x ≠3时,该分式不一定有意义. 故B 选项错误.C 选项:当x =0时,该分式的值为3,即当x =0时该分式的值为整数,故C 选项错误.D 选项:无论x 为何值,该分式的分母x 2+1>0;该分式的分子3>0. 由此可知,无论x 为何值,该分式的值总为正数. 故D 选项正确. 故本题应选D. 点睛:本题考查了与分式概念相关的知识. 分式有意义的条件是分式的分母不等于零,并不是分母中的x 的值不等于零. 分式的值为零的条件是分式的分母不等于零且分式的分子等于零. 在分式整体的符号为正的情况下,分式值的符号由分子与分母的符号共同确定:若分子与分母同号,则分式值为正数;若分子与分母异号,则分式值为负数.3.A解析:A 【解析】 ∵分式56x x -+的值不存在, ∴分式56x x -+无意义, ∴60x +=,解得:6x =-. 故选A.4.C解析:C 【解析】根据最简公分母的定义:“通常取各分母的系数的最小公倍数与各分母中所有字母因数的最高次幂的积作为各分母的公分母,这个公分母叫做这几个分式的最简公分母”可知,分式:24a 5b c ,23c 4a b ,25b2ac 的最简公分母是:22220a b c . 故选C.5.B解析:B 【解析】 A 选项中,11a b ++不能再化简,所以A 中变形错误; B 选项中,11a ab b--=--,所以B 中变形正确; C 选项中,221()()a b a b a b a b a b a b--==-+-+,所以C 中变形错误;D 选项中,2222()()1()()a b a b a b a b --+==++,所以D 中变形错误;故选B.6.B解析:B 【解析】 ∵112111S t t =+,212111S t t =-, ∴S 1=1212t t t t +,S 2=1221t t t t -,∴12112211221221t t s t t t t t t s t t t t +-==+-, 故选B .【点睛】本题考查了分式的混合运算,熟练掌握运算法则是解题的关键.7.D解析:D 【解析】解:A . 22b b a a≠,故A 错误;B . a ba b++=1,故B 错误; C . a c ab c b+≠+,故C 错误; D .a ba b -+-=-1,正确. 故选D .8.A解析:A 【解析】 试题解析:()1x y x y x y x y-+--==---. 故选A.9.B解析:B 【解析】∵由题意可得:2903x x -=+,∴29030x x ⎧-=⎨+≠⎩, ∴3x =±且3x ≠-, ∴3x =. 故选B .点睛:分式中字母的取值使分式的值为0,需同时满足两个条件:(1)字母的取值使分子的值为0;(2)字母的取值使分母的值不为0.10.C解析:C 【解析】 试题分析:A 、x yy x--=-1,不是最简分式; B 、21111(1)(1)1x x x x x x ++==-+--,不是最简分式; C 、2211x x -+分子、分母不含公因式,是最简分式;D 、24(2)(2)2242(2)2x x x x x x -+--==++,不是最简分式. 故选C .点睛:本题考查最简分式,解题的关键是明确最简分式的定义,即分子、分母不含公因式的分式.11.D解析:D 【解析】解:A .当a ≥1时,根式有意义. B .当a ≤1时,根式有意义. C .a 取任何值根式都有意义.D .要使根式有意义,则a ≤1,且分母不为零,故a <1. 故选D .点睛:判断一个式子是否有意义,应考虑分母上若有字母,字母的取值不能使分母为零,二次根号下字母的取值应使被开方数为非负数.易错易混点:学生易对二次根式的非负性和分母的不等于0混淆.12.D解析:D 【分析】根据二次根式有意义的条件和分式有意义的条件得到x+3≥0且x-2≠0,然后求出两个不等式的公共部分即可. 【详解】根据题意得x+3≥0且x−2≠0, 所以x 的取值范围为x ≥−3且x≠2. 故答案选D. 【点睛】本题考查的知识点是二次根式有意义的条件,分式有意义的条件,解题的关键是熟练的掌握二次根式有意义的条件,分式有意义的条件.13.D解析:D 【解析】根据分式的基本性质,可知A 不正确;根据异分母的分式相加,可知11a b +=b a a b ab ab ab ++=,故不正确;根据分式的乘方,可知2a b ⎛⎫= ⎪⎝⎭22a b ,故不正确;根据分式的性质,可知11x y x y-=-+-,故正确. 故选:D.14.A解析:A 【解析】 【分析】根据分式有意义的条件、分式值为0的条件、分式值是正负等逐一进行分析即可得. 【详解】A 、分母中x 2+1≥1,因而23x 1+的值总为正数,故A 选项正确; B 、当x+1=1或-1时,3x 1+的值是整数,故B 选项错误; C 、当x=2时,分母x-2=0,分式无意义,故C 选项错误; D 、当x=0时,分母x=0,分式无意义,故D 选项错误, 故选A . 【点睛】本题考查了分式的值为零的条件,分式的定义,分式有意义的条件,注意分式的值是正数的条件是分子、分母同号,值是负数的条件是分子、分母异号.15.C解析:C 【解析】分析:根据分式有意义的条件:分母不等于0即可求解. 详解:根据题意得:x-2≠0, 解得:x≠2. 故选C..点睛:本题考查了分式有意义的条件,从以下三个方面透彻理解分式的概念:(1)分式无意义⇔分母为零;(2)分式有意义⇔分母不为零;(3)分式值为零⇔分子为零且分母不为零. 16.C解析:C【解析】【分析】分别利用负指数幂的性质以及二次根式的性质、零指数幂的性质分别化简得出答案.【详解】A﹣1=2,正确,不合题意;B,正确,不合题意;C52=,故此选项错误,符合题意;D0=1,正确,不合题意;故选:C.【点睛】此题主要考查了负指数幂的性质以及二次根式的性质、零指数幂的性质,正确掌握相关运算法则是解题关键.17.C解析:C【解析】【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】35000纳米=35000×10-9米=3.5×10-5米.故选C.【点睛】此题主要考查了用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.18.B解析:B【分析】找出各项中分式分子分母中有没有公因式,即可做出判断.【详解】xyx=y, 22x y x y +-= ()()x y x y x y ++-= 1x y - 所以,不能约分化简的有:- 22y x +-x yx y共两个, 故答案选B. 【点睛】本题考查的知识点是分式的约分,解题的关键是熟练的掌握分式的基本性质.19.C解析:C 【分析】要求分式的最简公分母,即取各分母系数的最小公倍数与字母因式的最高次幂的积. 【详解】最简公分母为3⨯5⨯a ⨯b ⨯c ⨯x 3=15abcx 3 故答案选:C. 【点睛】本题考查的知识点是最简公分母,解题的关键是熟练的掌握最简公分母.20.B解析:B 【解析】 【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定. 【详解】0.0000105=1.05×10-5, 故选B . 【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10-n ,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.21.B解析:B 【解析】 【分析】分别算出两次购粮的平均单价,用做差法比较即可. 【详解】解:设第一次购粮时的单价是x 元/千克,第二次购粮时的单价是y 元/千克,甲两次购粮共花费:100x+100y ,一共购买了粮食:100+100=200千克,甲购粮的平均单价是:1001002002x y x y++=;乙两次购粮共花费:100+100=200元,一共购买粮食:()100100100x yx y xy++=(千克),乙购粮的平均单价是:2xyx y+;甲乙购粮的平均单价的差是:()()()()22420 222x y xy x yx y xyx y x y x y>+--+-==+++,即22x y xyx y ++>,所以甲购粮的平均单价高于乙购粮的平均单价,乙的购粮方式更合算,故选B.【点睛】本题考查的知识点是做差法,解题关键是注意一个数的平方为非负数.22.B解析:B【解析】【分析】首先根据一个数的平方的计算方法,负整数指数幂的运算方法,以及零指数幂的运算方法,分别求出a、b、c、d的大小;然后根据实数大小比较的方法,判断出它们的大小关系即可.【详解】∵20 221110.30.09,3,9,1933a b c d--⎛⎫⎛⎫=-=-=-=-=-==-=⎪ ⎪⎝⎭⎝⎭,∴10.0919 9-<-<<,∴b<a<d<c.故选:B.【点睛】考查了负整数指数幂的运算,要熟练掌握,解答此题的关键是要明确:①a-p=1pa(a≠0,p为正整数);②计算负整数指数幂时,一定要根据负整数指数幂的意义计算;③当底数是分数时,只要把分子、分母颠倒,负指数就可变为正指数.(3)此题还考查了零指数幂的运算,要熟练掌握,解答此题的关键是要明确:①a0=1(a≠0);②00≠1.23.D解析:D【解析】【分析】根据二次根式的性质和分式有意义的条件,被开方数大于或等于0,分母不等于0,可以求出x 的范围.【详解】根据题意得:3020x x +≥⎧⎨-≠⎩,解得:x ≥﹣3且x ≠2. 故选D .【点睛】函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.24.A解析:A【解析】【分析】首先计算3--2=-19,再根据倒数的定义求解即可. 【详解】∵3--2=213-=-19,-19的倒数是-9, ∴3--2的倒数是-9,故选A.【点睛】此题考查了倒数和负整数指数幂,掌握倒数的定义是本题的关键.25.B解析:B【解析】 解:把分式xy x y +中的x 、y 扩大为原来的3倍后为3333x y x y ⋅+=3xy x y+,即将分式00xy x y x y≠≠-(,)中的x 、y 扩大为原来的3倍后分式的值为原来的分式的值的3倍.故选B .。

最新最新初中数学—分式的基础测试题及答案解析

最新最新初中数学—分式的基础测试题及答案解析

一、选择题1.下列变形中,正确的是( )A .2211x xy y-=-B .22m m n n=C .2()a b a ba b-=-- D .2233x x +=+ 2.若a =﹣0.22,b =﹣2-2,c =(﹣12)-2,d =(﹣12)0,则它们的大小关系是( ) A .a <b <c <d B .b <a <d <c C .a <d <c <b D .c <a <d <b3.如果把5xy x y+中的x 和y 都扩大为原来的10倍,那么这个分式的值( )A .不变B .扩大为原来的50倍C .扩大为原来的10倍D .缩小为原来的1104.若把分式x yxy+中的x 和y 都扩大2倍,那么分式的值( ) A .扩大2倍B .不变C .缩小2倍D .缩小4倍5.若代数式()11x --有意义,则x 应满足( ) A .x = 0 B .x ≠ 0C .x ≠ 1D .x = 16.把分式2aa b+中a 、b 都扩大2倍,则分式的值( ) A .扩大4倍B .扩大2倍C .缩小2倍D .不变7.将分式2x x y+中的x 、y 都扩大2倍,则分式值( )A .扩大为原来的2倍B .缩小为原来的2倍C .保持不变D .无法确定8.若代数式1xx +有意义,则实数x 的取值范围是( ) A .0x = B .1x =-C .1x ≠D .1x ≠-9.与分式11a a -+--相等的式子是( ) A .11a a +- B .11a a -+ C .11a a +-- D .11a a --+ 10.下列运算正确的是( )A 3=B .0(2)1-=C .2234a a a +=D .2325a a a ⋅=11.下列各式:351,,,,12a b x y a b x a b xπ-+++--中,是分式的共有( ) A .1个B .2个C .3个D .4个12.目前,世界上能制造出的小晶体管的长度只有0.00000004m 将0.00000004用科学记数法表示为( ) A .3410-⨯B .80.4 10⨯C .8410⨯D .8410-⨯13.化简22222a ab b a b++-的结果是( ) A .a ba b+- B .b a b- C .a a b+ D .b a b+ 14.已知1112a b -=,则ab a b-的值是( ) A .12B .12-C .2D .-215.将分式2a bab+中的a 、b 都扩大为原来的2倍,则分式的值( ) A .缩小到原来的12倍 B .扩大为原来的2倍 C .扩大为原来的4倍 D .不变16.计算33x yx y x y---的结果是( ) A .1B .0C .3D .617.下列变形正确的是( ) A .()23524a a -=- B .22220x y xy -=C .23322b ab a a-÷=- D .()()222222x y x y x y +-=-18.下列结论正确的是( ) A .当23x ≠时,分式132x x +-有意义 B .当x y ≠时,分式222xyx y -有意义C .当0x =时,分式22+xx x的值为0 D .当1x =-时,分式211x x --没有意义19.下列运算错误的是( ) A .235a a a ⋅= B .()()422ab ab ab ÷-= C .()222424ab a b -=D .3322aa -=20.下列计算错误的是( )A .()326327x x -=-B .()()325y y y --=-C .326-=-D .()03.141π-=21.下列运算正确的是( ) A .2x -2 =212x B .a 6÷a 3 =a 2 C .(a 2)3 =a 5 D .a 3·a =a 4 22.下列计算中错误的是( )A .020181=B .224-=C 2=D .1133-=23.下列运算正确的是( ) A .(﹣x 3)4=x 12B .x 8÷x 4=x 2 C .x 2+x 4=x 6D .(﹣x )﹣1=1x24.下列等式成立的是( ) A .123a b a b+=+ B .212a b a b=++ C .2ab aab b a b =--D .a aa b a b=--++ 25.如果把分式2++a ba b中的a 和b 都扩大为原来的10倍,那么分式的值( ) A .不变B .缩小10倍C .是原来的20倍D .扩大10倍【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】根据分式的性质分子分母同时乘(或除以)同一个不为零的整式,分式的值不变,进行判断选择即可. 【详解】A ,B ,D 均不符合分式分子分母同时乘(或除以)同一个不为零的整式,分式的值不变的性质,选项C 可以将分子分母同时除以(a-b )到()2a b a b a b-=--,故答案选择C.【点睛】本题考查的是分式的基本性质,熟知分式中分子分母同时乘(或除以)同一个不为零的整式,分式的值不变,是解题的关键.2.B解析:B【解析】【分析】根据负整数指数幂与正整数指数幂互为倒数,非零的零次幂等于1,可得答案.【详解】∵a=﹣0.22=﹣0.04;b=﹣2﹣2=﹣14=﹣0.25,c=(﹣12)﹣2=4,d=(﹣12)0=1,∴﹣0.25<﹣0.04<1<4,∴b<a<d<c,故选B.【点睛】本题考查了负整数指数幂,熟练掌握负整数指数幂与正整数指数幂互为倒数,非零的零次幂等于1是解题关键.3.C解析:C【解析】【分析】首先分别判断出x与y都扩大为原来的10倍后,分式的分子、分母的变化情况,然后判断出这个代数式的值和原来代数式的值的关系即可.【详解】解:∵x与y都扩大为原来的10倍,∴5xy扩大为原来的100倍,x+y扩大为原来的10倍,∴5xyx y+的值扩大为原来的10倍,即这个代数式的值扩大为原来的10倍.故选:C.【点睛】本题考查分式的基本性质:分式的分子与分母同乘(或除以)一个不等于0的整式,分式的值不变,要熟练掌握,解答此题的关键是分别判断出分式的分子、分母的变化情况.4.C解析:C【解析】【分析】根据题意,分式中的x和y都扩大2倍,则222()2242x y x y x yx y xy xy+++==⋅;【详解】解:由题意,分式xyyx+中的x和y都扩大2倍,∴222()2242x y x y x yx y xy xy+++==⋅;分式的值是原式的12,即缩小2倍;故选C.【点睛】本题考查了分式的基本性质,分式的分子与分母同乘(或除以)一个不等于0的整式,分式的值不变,分子、分母、分式本身同时改变两处的符号,分式的值不变.5.C解析:C【解析】【分析】代数式中有0指数幂和负整数指数的底数不能为0,再求x的取值范围;【详解】解:根据题意可知,x-1≠0且解得x≠1.故选:C.【点睛】本题考查负整数指数幂和0指数幂的底数不能为0.6.D解析:D【解析】【分析】根据题意进行变形,发现实质上是分子、分母同时扩大2倍,根据分式的基本性质即可判断.【详解】根据题意,得把分式2aa b+中的a、b都扩大2倍,得2222222()a aa b a b⋅⋅=++,根据分式的基本性质,则分式的值不变.故选D.【点睛】此题考查了分式的基本性质.7.A解析:A【分析】分别用2x和2y去代换原分式中的x和y,利用分式的基本性质化简与原分式比较即可得答案.【详解】∵将分式2x x y +中的x 、y 都扩大2倍,∴原式变为2(2)22x x y +=242()x x y +=2×2x x y +,∴扩大为原来的2倍, 故选A. 【点睛】此题考查的是对分式的性质的理解和运用,分式的分子和分母都乘以(或除以)同一个不等于零的整式,分式的值不变,熟练掌握分式的基本性质是解题关键.8.D解析:D 【解析】 【分析】根据分式有意义的条件即分母不等于零可得x+1≠0,从而得解. 【详解】解:由题意得:x+1≠0, 解得:x≠-1, 故选:D . 【点睛】本题考查分式有意义的条件,解题关键是掌握分式有意义的条件:分母不等于零.9.B解析:B 【分析】根据分式的基本性质即可得出:分式的分子、分母、分式本身的符号,改变其中的任意两个,分式的值不变,据此即可解答. 【详解】 解:原式= 1)(1)a a --+-( =11a a -+故选:B . 【点睛】本题考查分式的基本性质,解题关键是熟练掌握分式的基本性质.10.B解析:B 【分析】直接利用立方根,零指数幂,合并同类项法则同底数幂的乘法法则化简得出答案. 【详解】3≠,无法计算,故此选项错误; B. 0(2)1-=,故此选项正确;C. 22234a a a +=,故此选项错误;D. 2326a a a ⋅=,故此选项错误; 故选:B. 【点睛】此题考查合并同类项,零指数幂,立方根,解题关键在于掌握运算法则.11.C解析:C 【解析】 【分析】根据分式的定义逐一进行判断即可. 【详解】31,,1x a b x a b x ++--是分式 故选:C. 【点睛】本题考查分式的定义,熟练掌握定义是关键.12.D解析:D 【解析】 【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数. 【详解】解:0.000 000 04=4×10-8, 故选:D . 【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.13.A解析:A 【分析】利用完全平方公式和平方差公式化简约分即可. 【详解】222222()=()()a ab b a b a ba b a b a b a b++++=-+--. 故选A. 【点睛】此题主要考查了分式的约分,解题的关键是正确地把分子、分母分解因式.14.D解析:D 【分析】先把已知的式子变形为()2ab b a =-,然后整体代入所求式子约分即得答案. 【详解】 解:∵1112a b -=, ∴()2ab b a =-, ∴()22b a ab a b a b-==---. 故选:D . 【点睛】本题考查了分式的通分与约分,属于常考题目,掌握解答的方法是关键.15.A解析:A 【分析】用2a ,2b 分别替换掉原分式中的a 、b ,进行计算后与原分式对比即可得出答案. 【详解】用2a ,2b 分别替换掉原分式中的a 、b ,可得:()2221=222822+++=⨯⨯⨯a b a ba b a b ab ab,所以分式缩小到原来的12倍, 故选A. 【点睛】本题考查了分式的基本性质,关键是根据条件正确的替换原式中的字母,然后化简计算.16.C解析:C 【分析】根据同分母的分式加减的法则进行计算即可. 【详解】解:()333=3x y x y x y x y x y--=--- 故选C. 【点睛】本题考查了分式的加减法,掌握分式运算的法则是解题的关键.17.C解析:C 【分析】原式各项计算得到结果,即可作出判断. 【详解】A 、原式=4a 6,错误;B 、原式不能合并,错误;C 、原式=−232a,正确; D 、原式=2x 2−4xy +xy−2y 2=2x 2−3xy−2y 2,错误. 故选:C . 【点睛】此题考查了分式的乘除法,合并同类项,幂的乘方与积的乘方,以及整式的乘法,熟练掌握公式及运算法则是解本题的关键.18.A解析:A 【分析】根据分式有意义,分母不等于0;分式的值等于0,分子等于0,分母不等于0对各选项分析判断后利用排除法求解. 【详解】A 、分式有意义,3x-2≠0,解得23x ≠,故本选项正确; B 、分式有意义,x 2-y 2≠0,解得x≠±y ,故本选项错误;C 、分式的值等于0,x=0且x 2+2x≠0,解得x=0且x≠0或-2,所以,x=0时分式无意义,故本选项错误;D 、分式没有意义,x-1=0,x=1,故本选项错误. 故选:A . 【点睛】此题考查分式有意义以及分式的值为零的条件,解题关键在于掌握(1)分式无意义⇔分母为零;(2)分式有意义⇔分母不为零;(3)分式值为零⇔分子为零且分母不为零.19.B解析:B 【分析】直接运用同底数幂的乘法运算法则、单项式除以单项式运算法则、积的乘方与幂的乘方运算法则以及负整数指数幂的意义分别计算得出答案再进行判断即可. 【详解】A . 235a a a ⋅=,计算正确,不符合题意;B . ()()4222ab ab a b ÷-=,原选项计算错误,符合题意; C . ()222424ab a b -=,计算正确,不符合题意;D . 3322aa -=,计算正确,不符合题意.故选:B . 【点睛】此题主要考查了幂的运算,熟练掌握运算法则是解题的关键.20.C解析:C 【分析】根据同底数幂的乘法法则,积的乘方法则、零次幂、负指数幂进行计算 【详解】 A . ()326327x x -=-,不符合题意;B . ()()325y y y --=-,不符合题意;C . -312=8,原选项错误,符合题意; D . ()03.141π-=,不符合题意; 故选:C 【点睛】本题考查了同底数幂的乘法法则,积的乘方法则、零次幂、负指数幂,掌握同底数幂的乘法法则,积的乘方法则、零次幂、负指数幂是解题的关键.21.D解析:D 【分析】根据负指数幂、同底数幂的乘法和除法以及幂的乘方的运算法则逐项排除即可. 【详解】解:A. 2x -2 = 22x ,故选项A 错误; B. a 6÷a 3 =a 3,故选项B 错误; C. (a 2)3 =a 6,故选项C 错误;D. a 3·a =a 4 ,D 正确; 故答案为D . 【点睛】本题考查了负指数幂、同底数幂的乘法和除法以及幂的乘方的运算法则,掌握相关运算法则是解答本题的关键.22.B解析:B 【分析】根据零指数幂、指数幂、平方根、负整数指数幂的定义分别验证四个选项即可得到答案. 【详解】解:A 、020181=,任何非零数的零次方都等于1,故A 不是答案;B 、224-=-,故B 是答案;C 2=,故C 不是答案;D 、1133-=,故D 不是答案; 故选:B .【点睛】本题主要考查了零指数幂、指数幂、平方根、负整数指数幂的定义,熟练掌握各知识点是解题的关键.23.A解析:A【分析】A 、根据积的乘方法则进行计算;B 、根据同底数幂的除法法则进行计算;C 、不是同类项,不能合并;D 、根据负整数指数幂的法则进行计算.【详解】解:A 、(﹣x 3)4=x 12,所以此选项正确;B 、x 8÷x 4=x 4,所以此选项不正确;C 、x 2与x 4不是同类顶,不能合并,所以此选项不正确;D 、(﹣x )﹣1=111()x x-=-,所以此选项不正确; 故选:A .【点睛】本题考查了幂的乘方和积的乘方等知识点,能求出每个式子的值是解题的关键. 24.C解析:C【分析】根据分式的运算,分别对各选项进行运算得到结果,即可做出判断.【详解】A 、221b b a ab a +=+,故A 错误; B 、22a b +,分子分母具有相同的因式才可以约分,故B 错误; C 、2()ab ab a ab b b a b a b ==---,故C 正确; D 、a a a b a b=--+-,故D 错误; 故选C .【点睛】本题主要考查了分式的运算,熟悉分式的通分以及约分的重要法则是解决本题的关键.25.A解析:A【分析】根据分式的基本性质代入化简即可.【详解】扩大后为:102022=1010)a b a b a b a b a b a b+++=+++10()10(分式的值还是不变故选:A.【点睛】本题考查分式的基本性质,熟练掌握性质是关键.。

最新最新初中数学—分式的基础测试题含解析(1)

最新最新初中数学—分式的基础测试题含解析(1)

一、选择题1.每到四月,许多地方杨絮、柳絮如雪花般漫天飞舞,人们不堪其扰,据测定,杨絮纤维的直径约为0.0000105m ,该数值用科学记数法表示为( ) A .51.0510⨯ B .51.0510-⨯C .50.10510-⨯D .410.510-⨯2.计算22193x x x+--的结果是( ) A .13x - B .13x + C .13x -D .2339x x +- 3.分式 x 5x 6-+ 的值不存在,则x 的取值是A .x ?6=-B .x 6=C .x 5≠D .x 5=4.下列各式从左到右的变形正确的是( ) A .221188a a a a ---=-++B .()()221a b a b -+=-C .22x y x y x y+=++ D .052520.11y yx x++=-++5.分式a x ,22x y x y +-,2121a a a --+,+-x y x y 中,最简分式有( ). A .1个B .2个C .3个D .4个6.若 a =20170,b =2015×2017﹣20162,c =(﹣23)2016×(32)2017,则下列 a ,b ,c 的大小关系正确的是( ) A .a <b <c B .a <c <bC .b <a <cD .c <b <a7.已知分式32x x +-有意义,则x 的取值范围是( ) A .x ≠-3B .x≠0C .x≠2D .x=28.将分式2x x y+中的x 、y 的值同时扩大3倍,则 扩大后分式的值( )A .扩大3倍B .缩小3倍C .保持不变D .无法确定9.函数y =x 的取值范围是( ) A .x ≥﹣2 B .x ≥﹣2且x ≠1 C .x ≠1 D .x ≥﹣2或x ≠1 10.一种花粉颗粒直径约为0.0000065米,数字0.0000065用科学记数法表示为( )A .0.65×10﹣5 B .65×10﹣7 C .6.5×10﹣6 D .6.5×10﹣5 11.(下列化简错误的是( )A )﹣1=2B =2C 52=± D )0=112.下列关于分式的判断,正确的是( ) A .当x=2时,12x x +-的值为零 B .当x≠3时,3x x-有意义 C .无论x 为何值,31x +不可能得整数值 D .无论x 为何值,231x +的值总为正数 13.()()2323x y z x y z +++-的结果为( ) A .1B .33-+m m C .33m m +- D .33mm + 14.如果把分式2mnm n-中的m.n 都扩大3倍,那么分式的值( ) A .扩大9倍 B .扩大3倍C .扩大6倍D .不变15.已知12x y-=3,分式4322x xy y x xy y +-+-的值为( )A .32 B .0C .23D .9416.下列分式中,最简分式是( )A .211x x +-B .2211x x -+C .236212x x -+D .()2--y x x y17.若(x -2016)x =1,则x 的值是( )A .2017B .2015C .0D .2017或018.若一种DNA 分子的直径只有0.00000007cm ,则这个数用科学记数法表示为( ) A .90.710-⨯ B .90.710⨯C .8710-⨯D .710⨯819.分式212xy 和214x y的最简公分母是( ) A .2xyB .2x 2y 2C .4x 2y 2D .4x 3y 320.如果2310a a ++=,那么代数式229263a a a a ⎛⎫++⋅ ⎪+⎝⎭的值为( ) A .1B .1-C .2D .2-21.下列计算正确的有①()011-=;②21333-⨯=;③()()33m mx x -=-;④2211224x x x ⎛⎫-=-+ ⎪⎝⎭;⑤()()22339a b b a a b ---=-.A .4个B .3个C .2个D .1个22.3--2的倒数是( )A .-9B .9C .19D .-1923.若()3231tt --=,则t 可以取的值有( )A .1个B .2个C .3个D .4个24.计算21424m m ++-的结果是( ) A .2m +B .2m -C .12m + D .12m - 25.纳米是一种长度单位,1纳米=10-9米,已知某种植物花粉的直径约为35000纳米,那么用科学记数法表示该种花粉的直径为( ) A .43.510⨯米B .43.510-⨯米C .53.510-⨯米D .93.510-⨯米【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【解析】 【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定. 【详解】0.0000105=1.05×10-5, 故选B . 【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10-n ,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.2.B解析:B 【解析】 原式=()()2x x 3x 3+-−1 x 3-=()()()2x x 3x 3x 3-++-=()()x 3x 3x 3-+-=1x 3+.故选:B.3.A解析:A 【解析】 ∵分式56x x -+的值不存在, ∴分式56x x -+无意义, ∴60x +=,解得:6x =-. 故选A.4.B解析:B 【解析】 解:A .原式=22(1)1(8)8a a a a -++=--- ,错误;B .原式=1,正确;C .原式为最简结果,错误;D .原式=520110yx+-+,错误.故选B .点睛:此题考查了分式的基本性质,熟练掌握分式的基本性质是解本题的关键.5.B解析:B 【解析】 试题解析:a x,+-x y x y 是最简分式, 221()()x y x y x y x y x y x y ++==-+--,2211121(1)1a a a a a a --==-+--.故选B.6.C解析:C 【解析】 【详解】解:a =20170=1,b =2015×2017﹣20162=(2016﹣1)(2016+1)﹣20162=20162﹣1-20162=﹣1,c =(﹣23)2016×(32)2017=(﹣23×32)2016×32=32,则b <a <c .故选C . 点睛:本题考查了平方差公式,幂的乘方与积的乘方,以及零指数幂,熟练掌握运算法则及公式是解答本题的关键.7.C解析:C【解析】分析:根据分式有意义的条件:分母不等于0即可求解.详解:根据题意得:x-2≠0,解得:x≠2.故选C..点睛:本题考查了分式有意义的条件,从以下三个方面透彻理解分式的概念:(1)分式无意义⇔分母为零;(2)分式有意义⇔分母不为零;(3)分式值为零⇔分子为零且分母不为零.8.A解析:A【解析】试题分析:==;故选A.考点:分式的基本性质.9.B解析:B【分析】根据二次根式、分式有意义的条件可得关于x的不等式组,解不等式组即可得.【详解】解:由题意得:2010xx+≥⎧⎨-≠⎩,解得:x≥﹣2且x≠1,故选B.【点睛】本题考查的是函数自变量取值范围的求法.函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数为非负数.10.C解析:C【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】解:0.0000065的小数点向右移动6位得到6.5,所以数字0.0000065用科学记数法表示为6.5×10﹣6,故选C.【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.11.C解析:C【解析】【分析】分别利用负指数幂的性质以及二次根式的性质、零指数幂的性质分别化简得出答案.【详解】A﹣1,正确,不合题意;B,正确,不合题意;C52=,故此选项错误,符合题意;D0=1,正确,不合题意;故选:C.【点睛】此题主要考查了负指数幂的性质以及二次根式的性质、零指数幂的性质,正确掌握相关运算法则是解题关键.12.D解析:D【解析】A选项:当x=2时,该分式的分母x-2=0,该分式无意义,故A选项错误.B选项:当x=0时,该分式的分母为零,该分式无意义. 显然,x=0满足x≠3. 由此可见,当x≠3时,该分式不一定有意义. 故B选项错误.C选项:当x=0时,该分式的值为3,即当x=0时该分式的值为整数,故C选项错误.D选项:无论x为何值,该分式的分母x2+1>0;该分式的分子3>0. 由此可知,无论x为何值,该分式的值总为正数. 故D选项正确.故本题应选D.点睛:本题考查了与分式概念相关的知识. 分式有意义的条件是分式的分母不等于零,并不是分母中的x的值不等于零. 分式的值为零的条件是分式的分母不等于零且分式的分子等于零. 在分式整体的符号为正的情况下,分式值的符号由分子与分母的符号共同确定:若分子与分母同号,则分式值为正数;若分子与分母异号,则分式值为负数.13.A解析:A 【分析】先计算除法运算,然后进行减法运算即可得出答案. 【详解】原式=3m m +-6(3)(33)m -+× 32m -= 3m m ++ 33m += 33m m ++=1 故答案选A. 【点睛】本题考查的知识点是分式的混合运算,解题的关键是熟练的掌握分式的混合运算.14.B解析:B 【解析】 【分析】根据分式的基本性质即可求出答案. 【详解】原式=1862333mn mn mnm n m n m n ==⨯---故选B . 【点睛】本题考查分式的基本性质,解题的关键是熟练运用分式的基本性质.15.A解析:A 【解析】 【分析】先根据题意得出2x-y=-3xy ,再代入原式进行计算即可. 【详解】解:∵12x y-=3,∴2x-y=-3xy , ∴原式=()()2232x y xyx y xy-+-+,=633xy xyxy xy -+-+,=32xyxy--,=32, 故选A . 【点睛】本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键.16.B解析:B 【分析】利用最简分式的定义判断即可. 【详解】A 、原式=()()11 111x x x x +=+--,不合题意;B 、原式为最简分式,符合题意;C 、原式=()()()666262x x x x +--=+,不合题意,D 、原式=()()2x y x y x x y x--=-,不合题意;故选B . 【点睛】此题考查了最简分式,最简分式为分式的分子分母没有公因式,即不能约分的分式.17.D解析:D 【解析】 【分析】根据零指数幂:a 0=1(a≠0)和1的任何次幂都是1可得x=0或x-2016=1,再解即可. 【详解】由题意得:x=0或x-2016=1, 解得:x=0或2017. 故选:D . 【点睛】此题主要考查了零次幂和乘方,关键是掌握零指数幂:a 0=1(a≠0).18.C解析:C 【解析】 【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:若一种DNA 分子的直径只有0.00000007cm ,则这个数用科学记数法表示为8710-⨯.故选:C. 【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10-n ,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.19.C解析:C 【解析】 【分析】确定最简公分母的方法是: (1)取各分母系数的最小公倍数;(2)凡单独出现的字母连同它的指数作为最简公分母的一个因式; (3)同底数幂取次数最高的,得到的因式的积就是最简公分母. 【详解】 分式212xy 和214x y的最简公分母是4x 2y 2. 故选C. 【点睛】本题考查了最简公分母的知识,通分的关键是准确求出各个分式中分母的最简公分母,确定最简公分母的方法一定要掌握.20.D解析:D 【分析】根据分式的加法和乘法可以化简题目中的式子,然后根据a 2+3a+1=0,即可求得所求式子的值. 【详解】229263a a a a ⎛⎫++⋅ ⎪+⎝⎭, =22962•3a a a a a +++ =()2232•3a a a a ++ =2a (a+3) =2(a 2+3a ), ∵a 2+3a+1=0, ∴a 2+3a=-1,∴原式=2×(-1)=-2, 故选D . 【点睛】本题考查分式的化简求值,解答本题的关键是明确分式化简求值的方法.21.C解析:C 【解析】 【分析】根据零指数幂、同底数幂的乘法、负整数指数幂的意义、积的乘方、完全平方公式、平方差公式计算后判断各个选项即可. 【详解】①()011-=,正确; ②2113333--⨯==,正确;③当m 为偶数时,()()33mm x x -≠-,错误;④221124x x x ⎛⎫-=-+ ⎪⎝⎭,错误; ⑤(a -3b )(-3b -a )=2222(3)9b a b a --=-,错误. 故选C . 【点睛】本题考查了零指数幂、同底数幂的乘法、负整数指数幂的意义、积的乘方、完全平方公式、平方差公式.熟练掌握运算法则是解题的关键.22.A解析:A 【解析】 【分析】 首先计算3--2=-19,再根据倒数的定义求解即可. 【详解】 ∵3--2=213-=-19,-19的倒数是-9, ∴3--2的倒数是-9, 故选A. 【点睛】此题考查了倒数和负整数指数幂,掌握倒数的定义是本题的关键.23.B解析:B【解析】【分析】根据任何非0数的零次幂等于1,1的任何次幂等于1,-1的偶数次幂等于1解答.【详解】当3-2t=0时,t=32,此时t-3=32-3=-32,(-32)0=1, 当t-3=1时,t=4,此时3-2t=2-3×4=-6,1-6=1, 当t-3=-1时,t=2,此时3-2t=3-2×2=-1,(-1)-1=-1,不符合题意, 综上所述,t 可以取的值有32、4共2个. 故选:B .【点睛】本题考查了零指数幂,有理数的乘方,要穷举所有乘方等于1的数的情况. 24.D解析:D【解析】【分析】先通分,再加减.注意化简.【详解】21424124(2)(2)2m m m m m m -++==+-+-- 故选:D【点睛】考核知识点:异分母分式加减法.通分是关键.25.C解析:C【解析】【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】35000纳米=35000×10-9米=3.5×10-5米.故选C .【点睛】此题主要考查了用科学记数法表示较小的数,一般形式为a×10-n ,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.。

最新初中数学分式基础测试题附答案解析

最新初中数学分式基础测试题附答案解析

最新初中数学分式基础测试题附答案解析一、选择题1.化简(a ﹣1)÷(1a ﹣1)•a 的结果是( ) A .﹣a 2B .1C .a 2D .﹣1 【答案】A【解析】分析:根据分式的混合运算顺序和运算法则计算可得.详解:原式=(a ﹣1)÷1a a-•a =(a ﹣1)•()1a a --•a =﹣a 2,故选:A .点睛:本题主要考查分式的混合运算,解题的关键是掌握分式的混合运算顺序和运算法则.2.乐乐所在的四人小组做了下列运算,其中正确的是( )A .2193-⎛⎫-=- ⎪⎝⎭B .()23624a a -=C .623a a a ÷=D .236236a a a ? 【答案】B【解析】【分析】 根据负整数指数幂计算法则,积的乘方计算法则,同底数幂除法法则,单项式乘以单项式计算法则依次判断.【详解】A 、2913-⎛⎫- ⎪⎭=⎝,故错误; B 、()23624a a -=正确;C 、624a a a ÷=,故错误;D 、235236a a a =⋅,故选:B.【点睛】此题考查整式的计算,正确掌握负整数指数幂计算法则,积的乘方计算法则,同底数幂除法法则,单项式乘以单项式计算法则是解题的关键.3.若(x ﹣1)0=1成立,则x 的取值范围是( )A .x =﹣1B .x =1C .x≠0D .x≠1 【答案】D【解析】试题解析:由题意可知:x-1≠0,x ≠1故选D.4.要使分式81x -有意义,x 应满足的条件是( )A .1x ≠-B .0x ≠C .1x ≠D .2x ≠ 【答案】C【解析】【分析】直接利用分式有意义的条件得出答案.【详解】 要使分式81x -有意义,则x-1≠0,解得:x≠1.故选:C .【点睛】此题考查分式有意义的条件,正确把握分式的定义是解题关键.5.下列分式中,无论a 取何值,分式总有意义的是( )A .2311a a -+ B .21aa + C .211a -D .2a a -【答案】A【解析】【分析】根据分式有意义的条件是分母不等于零判断.【详解】解:A 、∵a 2≥0,∴a 2+1>0, ∴2311a a -+总有意义;B 、当a =−12时,2a +1=0,21aa +无意义;C 、当a =±1时,a 2−1=0,211a -无意义; D 、当a =0时,无意义;2a a-无意义; 故选:A .【点睛】 本题考查的是分式有意义的条件,掌握分式有意义的条件是分母不等于零是解题的关键.6.数字0.00000005m ,用科学记数法表示为( )m .A .70.510-⨯B .60.510-⨯C .7510-⨯D .8510-⨯ 【答案】D【解析】【分析】科学记数法的表示形式为n a 10⨯的形式,其中1a 10≤<,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值1>时,n 是正数;当原数的绝对值1<时,n 是负数.【详解】将0.00000005用科学记数法表示为8510-⨯.故选D .【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为n a 10⨯的形式,其中1a 10≤<,n 为整数,表示时关键要正确确定a 的值以及n 的值.7.下列运算错误的是( )A .235a a a ⋅=B .()()422ab ab ab ÷-=C .()222424ab a b -=D .3322a a -= 【答案】B【解析】【分析】直接运用同底数幂的乘法运算法则、单项式除以单项式运算法则、积的乘方与幂的乘方运算法则以及负整数指数幂的意义分别计算得出答案再进行判断即可.【详解】A . 235a a a ⋅=,计算正确,不符合题意;B . ()()4222ab ab a b ÷-=,原选项计算错误,符合题意;C . ()222424ab a b -=,计算正确,不符合题意;D . 3322a a -=,计算正确,不符合题意. 故选:B .【点睛】此题主要考查了幂的运算,熟练掌握运算法则是解题的关键.8.000 071 5=57.1510-⨯ ,故选D.9.已知17x x -=,则221x x +的值是( ) A .49B .48C .47D .51 【答案】D【解析】【分析】将已知等式两边平方,利用完全平方公式展开即可得到所求式子的值.【详解】 已知等式17x x -=两边平方得:22211()249x x x x -=+-=, 则221x x+=51. 故选D .【点睛】此题考查了分式的混合运算,熟练掌握运算法则是解本题的关键.10.生物学家发现某种花粉的直径约为0.0000036毫米,数据0.0000036用科学记数法可表示为( )A .63.610-⨯B .50.3610-⨯C .73610-⨯D .60.3610-⨯【答案】A【解析】【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】11.把分式a ab +中的,a b 的值同时扩大为原来的10倍,则分式的值( ) A .不变 B .缩小为原来的110C .扩大为原来的10倍D .扩大为原来的100倍 【答案】A【解析】【分析】 根据分式的基本性质,把分式a a b+中的x 、y 的值同时扩大为原来的10倍得:1010=101010()a a a a b a b a b=+++,即可得到答案. 【详解】 把分式a a b+中的x 、y 的值同时扩大为原来的10倍得: 1010=101010()a a a a b a b a b=+++, 即分式a a b+的值不变, 故选:A .【点睛】 本题考查了分式的基本性质,正确掌握分式的基本性质是解题的关键.12.某种病毒变异后的直径为0.000000102米,将这个数写成科学记数法是( ) A .61.0210-⨯B .60.10210-⨯C .71.0210-⨯D .810210-⨯【答案】C【解析】【分析】用科学记数法表示比较小的数时,n 的值是第一个不是0的数字前0的个数,包括整数位上的0.【详解】解:0.000000102=71.0210-⨯.故选:C .【点睛】此题考查科学记数法表示较小的数,解题关键在于掌握一般形式为a×10-n ,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.13.计算11-+x x x 的结果是( ) A .2x x + B .2x C .12 D .1【答案】D【解析】原式=11x x-+=x x =1, 故选D . 【点睛】本题考查了同分母分式的加减法,熟记法则是解题的关键.14.056用科学记数法表示为:0.056=-25.610⨯,故选B.15.计算211a a a -+-的正确结果是( ) A .211a a -- B .211a a --- C .11a - D .11a -- 【答案】A【解析】【分析】 先将后两项结合起来,然后再化成同分母分式,按同分母分式加减的法则计算就可以了.【详解】 211a a a -+-, =2(1)1a a a --- =222111a a a a a -+--- =211a a --. 故选:A.【点睛】 本题考查了数学整体思想的运用,分式的通分和约分的运用,解答的过程中注意符号的运用以及完全平方公式的运用.16.计算-12的结果为( )A .2B .12C .-2D .1-2 【答案】B【解析】【分析】利用幂次方计算公式即可解答.【详解】解:原式=12.答案选B.【点睛】本题考查幂次方计算,较为简单.17.计算2111x x x x -+-+的结果为( ) A .-1B .1C .11x +D .11x - 【答案】B【解析】【分析】先通分再计算加法,最后化简.【详解】2111x x x x -+-+ =221(1)11x x x x x --+-- =2211x x -- =1,故选:B.【点睛】此题考查分式的加法运算,正确掌握分式的通分,加法法则是解题的关键.18.老师设计了接力游戏,用合作的方式完成分式化简,规则是:每人只能看到前一人给的式子,并进行一步计算,再将结果传递给下一人,最后完成化简.过程如图所示:接力中,自己负责的一步出现错误的是( )A .只有乙B .甲和丁C .乙和丙D .乙和丁【答案】D【解析】【分析】根据分式的乘除运算步骤和运算法则逐一计算即可判断. 【详解】∵22211x x x x x-÷--=2221·1x x x x x--- =()2212·1x x x x x---- =()()221·1x x x x x ---- =()2x x -- =2x x -, ∴出现错误是在乙和丁,故选D .【点睛】本题考查了分式的乘除法,熟练掌握分式乘除法的运算法则是解题的关键.19.00519=5.19×10-3.故选B .【点睛】此题主要考查了用科学记数法表示较小的数,一般形式为a×10-n ,其中1||10a ≤<,n 由原数左边起第一个不为零的数字前面的0的个数所决定.20.测得某人一根头发的直径约为0.000 071 5米,该数用科学记数法可表示为( ) A .0.715×104B .0.715×10﹣4C .7.15×105D .7.15×10﹣5【答案】D【解析】。

最新初中数学—分式的基础测试题及答案解析

最新初中数学—分式的基础测试题及答案解析

一、选择题1.生物学家发现一种病毒的长度约为0.00 004mm ,0.00 004用科学记数法表示是( ) A .40.410-⨯ B .5410-⨯C .54010-⨯D .5410⨯2.若分式||11x x -+的值为0,则x 的值为( ) A .1B .﹣1C .±1 D .无解3.下列分式是最简分式的是( )A .22a aab +B .63xy aC .211x x -+D .211x x ++4.下列各式中,正确的是( )A .a m ab m b+=+ B .a b0a b+=+ C .ab 1b 1ac 1c 1--=-- D .22x y 1x y x y-=-+5.计算: ()332xy ?-一 的结果是A .398x y --B .398x y ---C .391x y 2---D .361x y 2---6.若a = (-0.4)2,b = -4-2,c =214-⎛⎫- ⎪⎝⎭,d =014⎛⎫- ⎪⎝⎭, 则 a 、b 、c 、d 的大小关系为( ) A .a <b <c <dB .b <a <d <cC .a <d <c <bD .c <a <d <b7.下列等式成立的是( )A .|﹣2|=2B ﹣1)0=0C .(﹣12)﹣1=2 D .﹣(﹣2)=﹣28.下列计算,正确的是( )A .2(2)4--=B 2=-C .664(2)64÷-=D =9.下列变形正确的是( ). A .1a b bab b++= B .22x y x y-++=- C .222()x y x y x y x y --=++ D .23193x x x -=-- 10.下列变形正确的是( ).A .1x yx y-+=-- B .x m mx n n+=+ C .22x y x y x y +=++ D .632x x x=11.已知a <b ( )A B C .D .12.下列关于分式的判断,正确的是( ) A .当x=2时,12x x +-的值为零 B .当x≠3时,3x x-有意义 C .无论x 为何值,31x +不可能得整数值 D .无论x 为何值,231x +的值总为正数 13.若 a =20170,b =2015×2017﹣20162,c =(﹣23)2016×(32)2017,则下列 a ,b ,c 的大小关系正确的是( ) A .a <b <cB .a <c <bC .b <a <cD .c <b <a14.若a =-0.32,b =-3-2,c =(-13)-2,d =(-13)0,则它们的大小关系是( ) A .a<c<b<d B .b<a<d<c C .a<b<d<c D .b<a<c<d 15.下面是一位同学所做的5道练习题:①()325a a = ,②236a a a ⋅=,③22144m m-=, ④()()253aa a -÷-=-,⑤()3339a a -=-,他做对题的个数是 ( )A .1道B .2道C .3道D .4道16.把分式 2x-y2xy中的x 、y 都扩大到原来的4倍,则分式的值( )A .扩大到原来的16倍B .扩大到原来的4倍C .缩小到原来的14D .不变17.在实数范围内有意义,则a 的取值范围是( ) A .4a ≠-B .4a ≥-C .4a >-D .4a >-且0a ≠18.(下列化简错误的是( )A )﹣1=2B =2C 52=± D )0=119.纳米是一种长度单位,1纳米=10-9米,已知某种植物花粉的直径约为35000纳米,那么用科学记数法表示该种花粉的直径为( ) A .43.510⨯米 B .43.510-⨯米C .53.510-⨯米D .93.510-⨯米20.已知12x y-=3,分式4322x xy yx xy y +-+-的值为( )A .32B .0C .23D .9421.氢原子的半径约为0.000 000 000 05m ,用科学记数法表示为( )A .5×10﹣10m B .5×10﹣11m C .0.5×10﹣10m D .﹣5×10﹣11m 22.甲、乙两人分两次在同一粮店内买粮食,两次的单价不同,甲每次购粮100千克,乙每次购粮100元.若规定:谁两次购粮的平均单价低,谁的购粮方式就合算.那么这两次购粮( ) A .甲合算 B .乙合算C .甲、乙一样D .要看两次的价格情况23.已知m ﹣1m ,则1m+m 的值为( )A .BC .D .11 24.若(x -2016)x =1,则x 的值是( )A .2017B .2015C .0D .2017或025.人体中红细胞的直径约为0.000 007 7 m ,用科学记数法表示该数据为 ( ) A .7.7×106 B .7.7×107 C .7.7×10-6 D .7.7×10-7【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【解析】解:0.00 004=5410-⨯.故选B .2.A解析:A 【解析】试题解析:∵分式||11x x -+的值为0, ∴|x|﹣1=0,且x+1≠0, 解得:x=1. 故选A .3.D解析:D 【解析】A 选项中,分式的分子、分母中含有公因式a ,因此它不是最简分式.故本选项错误;B 选项中,分式的分子、分母中含有公因数3,因此它不是最简分式.故本选项错误;C 选项中,分子可化为(x +1)(x -1),所以该分式的分子、分母中含有公因式(x +1),因此它不是最简分式.故本选项错误;D 选项中,分式符合最简分式的定义.故本选项正确.故选:D .点睛:最简分式的标准是分子,分母中不含有公因式,不能再约分.判断的方法是把分子、分母分解因式,看分子和分母中有无公因式,并且观察有无互为相反数的因式,这样的因式可以通过符号变化化为相同的因式从而进行约分.4.D解析:D 【解析】A.在分式的分子、分母上同时加上或减去同一个非0的数或式子分式的值要改变,故A 错误;B.a ba b++=1,故B 错误; C.a 不是分子、分母的因式,故C 错误; D.22x y x y --=()()x y x y x y -+-=1x y+;故D 正确.故选D.5.B解析:B 【解析】3333939(2)=(-2)8xy x y x y -------=-.故选B.6.B解析:B 【解析】∵a=0.16;b=-214=-116;c =(211()4-)=16;d =1;故:b<a<d<c7.A解析:A 【解析】根据绝对值、零指数幂及负整数指数幂的运算法则,可得: A 、|﹣2|=2,计算正确,故本选项正确;B﹣1)0=1,原式计算错误,故本选项错误;C 、(﹣12)﹣1=﹣2,原式计算错误,故本选项错误; D 、﹣(﹣2)=2,原式计算错误,故本选项错误; 故选:A .点睛:此题主要考查了绝对值、零指数幂及负整数指数幂的运算法则,灵活运用绝对值、零指数幂及负整数指数幂的运算法则进行计算是解决此类题目的关键.8.C解析:C 【解析】 【详解】 解:A .()2124--=,所以A 错误;B 2=,所以B 错误;C .()666664242264÷-=÷==,所以C 正确;D ==D 错误,故选C .9.C解析:C 【解析】 选项A.a bab+ 不能化简,错误. 选项B.22x y x y-+-=-,错误. 选项C.()222x y x y x y x y --=++ ,正确. 选项D. 23193x x x -=-+,错误. 故选C.10.A解析:A 【解析】 试题解析:()1x y x y x y x y-+--==---. 故选A.11.D解析:D 【解析】因为a-ba a b-=-故选D.,0,0a a a a a ≥⎧==⎨-<⎩,推广此时a 可以看做是一个式子,式子整体大于等于0,把绝对值变为括号;式子整体小于0,把绝对值变为括号,前面再加负号.最后去括号,化简.12.D解析:D【解析】A选项:当x=2时,该分式的分母x-2=0,该分式无意义,故A选项错误.B选项:当x=0时,该分式的分母为零,该分式无意义. 显然,x=0满足x≠3. 由此可见,当x≠3时,该分式不一定有意义. 故B选项错误.C选项:当x=0时,该分式的值为3,即当x=0时该分式的值为整数,故C选项错误.D选项:无论x为何值,该分式的分母x2+1>0;该分式的分子3>0. 由此可知,无论x为何值,该分式的值总为正数. 故D选项正确.故本题应选D.点睛:本题考查了与分式概念相关的知识. 分式有意义的条件是分式的分母不等于零,并不是分母中的x的值不等于零. 分式的值为零的条件是分式的分母不等于零且分式的分子等于零. 在分式整体的符号为正的情况下,分式值的符号由分子与分母的符号共同确定:若分子与分母同号,则分式值为正数;若分子与分母异号,则分式值为负数.13.C解析:C【解析】【详解】解:a=20170=1,b=2015×2017﹣20162=(2016﹣1)(2016+1)﹣20162=20162﹣1-20162=﹣1,c=(﹣23)2016×(32)2017=(﹣23×32)2016×32=32,则b<a<c.故选C.点睛:本题考查了平方差公式,幂的乘方与积的乘方,以及零指数幂,熟练掌握运算法则及公式是解答本题的关键.14.B解析:B【解析】【分析】首先根据一个数的平方的计算方法,负整数指数幂的运算方法,以及零指数幂的运算方法,分别求出a、b、c、d的大小;然后根据实数大小比较的方法,判断出它们的大小关系即可.【详解】∵20 221110.30.09,3,9,1933a b c d--⎛⎫⎛⎫=-=-=-=-=-==-=⎪ ⎪⎝⎭⎝⎭,∴10.0919 9-<-<<,∴b<a<d<c.【点睛】考查了负整数指数幂的运算,要熟练掌握,解答此题的关键是要明确:①a -p =1pa (a≠0,p 为正整数);②计算负整数指数幂时,一定要根据负整数指数幂的意义计算;③当底数是分数时,只要把分子、分母颠倒,负指数就可变为正指数.(3)此题还考查了零指数幂的运算,要熟练掌握,解答此题的关键是要明确:①a 0=1(a≠0);②00≠1.15.A解析:A 【解析】分析:原式各项利用幂的乘方,同底数幂的乘法,负整数指数幂法则,单项式除以单项式以及积的乘方计算得到结果,判断即可.详解:①236a a =() ,故①错误;②235a a a ⋅=,故②错误; ③2244mm -=,故③错误; ④523a a a -÷-=-()(),故④正确;⑤33327a a -=-().故⑤错误.故选A .点睛:本题考查了整式的除法,幂的乘方与积的乘方,零指数幂、负整数指数幂,熟练掌握运算法则是解答本题的关键.16.C解析:C 【解析】分析:把原分式中的x .y 都扩大到原来的4倍后,再约分化简. 详解:因为()422441224416242x y x y x y x y xy xy ---⨯⨯==,所以分式的值缩小到原来的14.故选C .点睛:分数可以约分,分式与分数类似,也可以约分,根据分式的基本性质把一个分式的分子与分母的公因式或公因数约去,这种变形称为分式的约分.17.C解析:C 【解析】分析:根据二次根式与分式有意义的条件和分式有意义的条件即可求出a 的范围. 详解:由题意可知:a+4>0 ∴a >-4 故选C .点睛:解题的关键是正确理解二次根式有意义的条件和分式有意义的条件,本题属于基础18.C解析:C【解析】【分析】分别利用负指数幂的性质以及二次根式的性质、零指数幂的性质分别化简得出答案.【详解】A﹣1,正确,不合题意;B,正确,不合题意;C52=,故此选项错误,符合题意;D0=1,正确,不合题意;故选:C.【点睛】此题主要考查了负指数幂的性质以及二次根式的性质、零指数幂的性质,正确掌握相关运算法则是解题关键.19.C解析:C【解析】【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】35000纳米=35000×10-9米=3.5×10-5米.故选C.【点睛】此题主要考查了用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.20.A解析:A【解析】【分析】先根据题意得出2x-y=-3xy,再代入原式进行计算即可.【详解】解:∵12x y-=3,∴2x-y=-3xy,∴原式=()()2232x y xyx y xy-+-+,=633xy xyxy xy-+-+,=32xyxy --,=32,故选A.【点睛】本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键.21.B解析:B【解析】【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】0.00000000005=5×10﹣11.故选B.【点睛】本题考查了用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.22.B解析:B【解析】【分析】分别算出两次购粮的平均单价,用做差法比较即可.【详解】解:设第一次购粮时的单价是x元/千克,第二次购粮时的单价是y元/千克,甲两次购粮共花费:100x+100y,一共购买了粮食:100+100=200千克,甲购粮的平均单价是:1001002002x y x y++=;乙两次购粮共花费:100+100=200元,一共购买粮食:()100100100x y x y xy++=(千克),乙购粮的平均单价是:2xyx y+; 甲乙购粮的平均单价的差是:()()()()22420222x y xy x y x y xy x y x y x y >+--+-==+++, 即22x y xyx y++>, 所以甲购粮的平均单价高于乙购粮的平均单价,乙的购粮方式更合算,故选B . 【点睛】本题考查的知识点是做差法,解题关键是注意一个数的平方为非负数.23.A解析:A 【分析】根据完全平方公式即可得到结果. 【详解】1m-=m21m-=7m ⎛⎫∴ ⎪⎝⎭, 221m -2+=7m ∴,221m +=9m∴,22211m+=m +2+=11m m ⎛⎫∴ ⎪⎝⎭,1m+m ∴=. 故选A. 【点睛】本题主要考查完全平方公式,熟悉掌握公式是关键.24.D解析:D 【解析】 【分析】根据零指数幂:a 0=1(a≠0)和1的任何次幂都是1可得x=0或x-2016=1,再解即可. 【详解】由题意得:x=0或x-2016=1,解得:x=0或2017.故选:D.【点睛】此题主要考查了零次幂和乘方,关键是掌握零指数幂:a0=1(a≠0).25.C解析:C【解析】绝对值小于1的数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定,0.000 007 7=7.7×10-6,故选C.。

新最新初中数学—分式的基础测试题及答案

新最新初中数学—分式的基础测试题及答案

一、选择题1.若分式的值为0,则x 的值为A .B .C .D.不存在2.如图,设k=甲图中阴影部分面积乙图中阴影部分面积(a>b>0),则有()甲乙甲(A )k >2 (B )1<k <2 (C )121<<k (D )210<<k 3.分式的值为0,则x 的值为A .4B .-4C .D .任意实数4.下列各式、、、+1、中分式有( )A .2个B .3个C .4个D .5个5.已知(x ﹣y )(2x ﹣y )=0(xy ≠0),则+的值是( ) A .2 B .﹣2 C .﹣2或﹣2 D .2或2 6.若分式12+-x x 的值为0,则x 的值为( ) A .2或-1 B .0 C .-1 D . 2 7.已知,则的值是( )A .B .﹣C .2D .﹣2 8.下列等式成立的是( )A .212x y x y=++ B .2(1)(1)1x x x ---=-乙甲C .x xx y x y=--++ D .22(1)21x x x --=++ 9.分式(a 、b 均为正数),字母的值都扩大为原来的2倍,则分式的值( )A .扩大为原来的2倍B .缩小为原来的C .不变D .缩小为原来的 10.用科学记数方法表示0.0000907,得( ) A .49.0710-⨯B .59.0710-⨯C .690.710-⨯D .790.710-⨯11.如果23,a -=- 20.3b =-, 213c -⎛⎫=- ⎪⎝⎭, 015d ⎛⎫=- ⎪⎝⎭那么,,a b c ,d 三数的大小为( )A .a b c d <<<B .b a d c <<<C .a d c b <<<D .a b d c <<< 12.如果把223yx y-中的x 和y 都扩大5倍,那么分式的值( )A.扩大5倍B.不变C.缩小5倍D.扩大10倍13.12⎛⎫- ⎪⎝⎭-2的正确结果是( ) A .14B .14-C .4D .-4 14.如果为整数,那么使分式22221m m m +++的值为整数的的值有( )A .2个B .3个C .4个D .5个15.下列计算正确的是( ). A .32b b b x x x+= B .0a a a b b a -=-- C .2222bc a a b c ab⋅=D .22()1aa a a a -÷=- 16.将分式3aba b-中的a 、b 都扩大到3倍,则分式的值 ( ) A .不变 B .扩大3倍 C .扩大9倍 D .扩大6倍17.已知空气的单位体积质量是0.001239g /cm 3,则用科学记数法表示该数为( )g /cm 3. A .1.239×10﹣3B .1.2×10﹣3C .1.239×10﹣2D .1.239×10﹣418.下列各式的约分,正确的是 A .1a b a b --=- B .1a ba b--=--C .22a b a b a b -=-+ D .22a b a b a b-=++ 19.下列式子:22222213,,,,,x y a x x a b a xy yπ----其中是分式的个数( ). A .2B .3C .4D .520.已知0≠-b a ,且032=-b a ,则ba ba -+2的值是( ) A .12- B . 0 C .8 D .128或 21.若分式的值为0,则x 的值是( ) A .3 B -3 C .4 D .-422.(2015秋•郴州校级期中)当x=3,y=2时,代数式的值是( )A .﹣8B .8C .D .23.(2015秋•郴州校级期中)下列计算正确的是( ) A .B .•C .x÷y•D .24.在式子x y 3,πa ,13+x ,31+x ,a a 2中,分式有A .1个B .2个C .3个D .4个25.下列算式,计算正确的有( )①10-3=0.0001; ②(0.0001)0=1; ③3a -2=213a; ④(-2)3÷(-2)5=-2-2. A .1个 B .2个 C .3个 D .4个【参考答案】***试卷处理标记,请不要删除一、选择题 1.B解析:B 【解析】 ∵分式的值为0, ∴ ,解得:,故选B.点睛:求使分式值为0的字母的取值时,要注意需同时满足两点:(1)分子的值为0;(2)分母的值不为0.2.C解析:C 【解析】试题分析:甲图中阴影部分的面积=22a b -,乙图中阴影部分的面积= ()a a b -,22()1a a b a b k a b a b a b -===--++,∵a >b >0∴0<b a b +<12,∴ 121<<k . 考点:分式的约分. 3.A解析:A 【解析】试题分析:根据分式的值为零的条件可以求出x 的值. 试题解析:若分式的值为0,则|x|-4=0且x+4≠0.得x 1=4,x 2=-4.当x=-4时,分母为0,不合题意,舍去. 故x 的值为4. 故选A .考点:分式的值为零的条件.4.A解析:A 【解析】试题分析:根据分式的定义进行解答即可. 试题解析:这一组数数中,与是分式,共2个.故选A.考点:分式的定义.5.D解析:D 【解析】试题分析:根据题意可得:x-y=0或2x-y=0,则x=y 或2x=y ,当x=y 时,原式=1+1=2;当2x=y 时,原式=21+2=221. 考点:(1)、分式的计算;(2)、分类讨论思想6.D解析:D 【解析】试题分析:当分式的分子为零,分母不为零时,则分式的值为零,根据题意可得:x-2=0,解得:x=2. 考点:分式的意义7.D解析:D 【解析】试题分析:观察已知和所求的关系,容易发现把已知通分后,再求倒数即可. 解:∵, ∴﹣=, ∴, ∴=﹣2.故选D .8.D解析:D 【分析】此题考查了分式的基本性质,解答此类题一定要熟练掌握分式的基本性质是解题的关键.根据分式的基本性质无论是把分式的分子和分母扩大还是缩小相同的倍数,都不要漏乘(除)分子、分母中的任何一项,且扩大(缩小)的倍数不能为0,即可得出答案. 【详解】 A 、2122x y x y =++,22x y +≠1x y+,不符合题意;B 、(-x-1)(1-x )=[-(x+1)](1-x )=-(1-x 2)=x 2-1,不合题意;C 、x x y -+=--x x y ,x x y -+≠-+x x y,不合题意;D 、(-x-1)2=x 2+2x+1,符合题意. 故选D.考点:分式的基本性质.9.B解析:B【解析】,分式的值缩小为原来的 .故选B .10.B解析:B 【详解】解:根据科学记数法的表示—较小的数为10n a ⨯,可知a=9.07,n=-5,即可求解. 故选B 【点睛】本题考查科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.11.D解析:D【解析】试题解析:因为a=-3-2=-211=-39, b=-0.32=-0.09, c=(-13)-2=21913=⎛⎫- ⎪⎝⎭, d=(-15)0=1, 所以c >d >a >b . 故选D .【点睛】本题主要考查了(1)零指数幂,负整数指数幂和有理数的乘方运算:负整数指数为正整数指数的倒数;任何非0数的0次幂等于1.(2)有理数比较大小:正数>0;0>负数;两个负数,绝对值大的反而小.12.B解析:B 【解析】 试题分析:如果把223yx y -中的x 和y 都扩大5倍,则变为()()()252253523y y x y x y=--,分式的值没改变,所以选B 考点:分式点评:本题考查分式,本题的关键是掌握分式的性质,本题难度不大,属基础题13.C解析:C 【解析】试题分析:根据负整指数幂的性质1(0)pp a a a -=≠计算,可得12⎛⎫- ⎪⎝⎭2141()2==-. 故选C14.C解析:C 【解析】 原式=()()()2111m m m +++=21m +,当m =-3时,原式=-1;当m =-2时,原式=-2;当m =0时,原式=2;当m =1时,原式=1.m 的值有4个. 故选C.15.C解析:C 【解析】 A 选项:∵334b b b b b x x x x++==,∴A 错误; B 选项:∵2a a a a aa b b a a b a b a b -=+=-----,∴B 错误; C 选项:∵2222bc a a b c ab⋅=,故C 正确; D 选项:∵221()(1)(1)1a a a a a a a a a--÷=-⋅=--,∴D 错误; 故选C.16.B解析:B 【解析】将分式3ab a b -中的a 、b 都扩大到3倍,则为3333333a b aba b a b ⨯⨯=⨯--,所以分式的值扩大3倍. 故选B .17.A解析:A 【解析】根据绝对值小于1的正数也可以利用科学记数法表示方法(一般形式为a×10-n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定)可得:0.001239 =1.239×0.001=1.239×10﹣3,故选A .18.C解析:C . 【解析】试题分析:根据分式的基本性质作答. 试题解析:A .()1a b a b a b a b---+=≠--,故该选项错误; B .()1a b a b a b a b---+=≠---,故该选项错误; C .22()()a b a b a b a b a b a b -+-==-++,故该选项正确; D .22()()a b a b a b a b a b a b a b -+-==-≠+++,故该选项错误. 故选C . 考点:约分.19.B解析:B 【解析】试题分析:根据分式的概念,分母中含有字母的式子,因此可知2a,22x y xy -,21x y -是分式,共三个. 故选B考点:分式的概念20.C解析:C 【解析】试题分析:因为032=-b a ,所以3a=b 2,所以234=83122a b b b ba b b b b++==--,故选:C . 考点:分式的化简求值.21.A解析:A 【解析】试题分析:当x-3=0时,分式的值为0,所以x=3,故选:A .考点:分式的值为0的条件.22.C解析:C 【解析】试题分析:先根据分式混合运算的法则把原式进行化简,再把x=3,y=2代入进行计算即可.解:原式=•=﹣,当x=3,y=2时,原式=﹣=﹣.故选C .考点:分式的化简求值.23.B解析:B 【解析】试题分析:原式各项计算得到结果,即可做出判断. 解:A 、原式=•=,错误;B 、原式=,正确;C 、原式=,错误;D 、原式==,错误,故选B .考点:分式的乘除法.24.C解析:C 【解析】试题分析:分式是指分母含有字母的代数式. 考点:分式的定义25.A解析:A【解析】分析:本题考查的是负指数幂的运算.解析:①10-3=0.00001,故①错误;②(0.0001)0=1正确;③3a -2=23a,故③错误;④(-2)3÷(-2)5=2-2,故④错误.故选A.。

最新最新初中数学—分式的基础测试题及答案解析(2)

最新最新初中数学—分式的基础测试题及答案解析(2)

一、选择题1.下列各分式中,最简分式是( )A .21x x +B .22m n m n-+C .22a ba b+- D .22x yx y xy ++2.0.000002019用科学记数法可表示为( )A .0.2019×10﹣5B .2.019×10﹣6C .20.19×10﹣7 D .2019×10﹣9 3.小张在课外阅读中看到这样一条信息:“肥皂泡的厚度约为0.0000007m ”,请你用科学记数法表示肥皂泡的厚度,下列选项正确的是( ) A .0.7 ⨯10-6 mB .0.7 ⨯10-7mC .7 ⨯10-7mD .7 ⨯10-6m4.若(x 2﹣ax ﹣b )(x +2)的积不含x 的一次项和二次项,则a b =( ) A .116B .-116C .16D .﹣165.纳米是一种长度单位,1纳米810-=米,己知某种植物花粉的直径约为35000纳米,那么用科学记数法表示该种花粉的直径为( ) A .43.510⨯米B .43.510-⨯米C .33.510-⨯米D .93.510-⨯6.已知x 2-4xy +4y 2=0,则分式x yx y-+的值为( ) A .13- B .13C .13yD .y 31-7.如果把分式2x y zxyz-+中的正数x ,y ,z 都扩大2倍,则分式的值( ) A .不变B .扩大为原来的两倍C .缩小为原来的14D .缩小为原来的188.下列运算结果最大的是( )A .112-⎛⎫ ⎪⎝⎭B .02C .12-D .()12-9.化简22222a ab b a b++-的结果是( ) A .a ba b+- B .b a b- C .a a b+ D .b a b+ 10.函数y =的自变量x 的取值范围是( ) A .3x >-B .3x ≥-C .3x ≠-D .3x ≤-11.若a +b =0, 则ba的值为( ) A .-1B .0C .1D .-1或无意义12.如果把5xy x y+中的x 和y 都扩大为原来的10倍,那么这个分式的值( )A .不变B .扩大为原来的50倍C .扩大为原来的10倍D .缩小为原来的11013.如图是数学老师给玲玲留的习题,玲玲经过计算得出的正确结果为( )A .1B .2C .3D .414.下列各式:2a b -,3x x +,13,a b a b +-,1()x y m -中,是分式的共有( )A .1个B .2个C .3个D .4个15.1372x x-+-x 的取值范围是( ) A .3<x <72B .3≤x <72C .3≤x ≤72D .x ≥316.若分式21x -有意义,则( ) A .1x ≠ B .1x =C .0x ≠D .0x =17.下列计算错误的是( )A .()326327x x -=-B .()()325y y y --=-C .326-=-D .()03.141π-=18.若把分式x xy2中的x 和y 同时扩大为原来的3倍,则分式的值( ) A .扩大3倍B .缩小6倍C .缩小3倍D .保持不变19.若222110.2,2,(),()22a b c d --=-=-=-=-,则它们的大小关系是( ) A .a b d c <<< B .b a d c <<< C .a d c b <<<D .c a d b <<<20.下列计算中错误的是( ) A .020181=B .224-=C 42=D .1133-=21.下列等式成立的是( )A .123a b a b +=+B .212a b a b =++ C .2ab aab b a b=--D .a aa b a b=--++ 22.计算下列各式①(a 3)2÷a 5=1;②(-x 4)2÷x 4=x 4;③(x -3)0=1(x ≠3);④(-a 3b )3÷5212a b =-2a 4b 正确的有( )题 A .4 B .3C .2D .123.若115a b =,则a ba b-+的值是( ) A .25B .38C .35D .11524.化简21211a aa a----的结果为( ) A .11a a +- B .a ﹣1 C .a D .125.下列变形中,正确的是( )A .2211x xy y-=-B .22m m n n=C .2()a b a ba b-=-- D .2233x x +=+【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】最简分式就是分式的分子和分母没有公因式,也可理解为分式的分子和分母的最大公因式为1.所以判断一个分式是否为最简分式,关键是要看分式的分子和分母的最大公因式是否为1. 【详解】 解:A.21xx +,分子分母的最大公因式为1; B. 22m n m n-+,分子分母中含有公因式m+n;C.22a ba b+-,分子分母中含有公因式a+b ;D.22x yx y xy ++,分子分母中含有公因式x+y故选:A. 【点睛】最简分式首先系数要最简;一个分式是否为最简分式,关键看分子与分母是不是有公因式,但表面不易判断,应将分子、分母分解因式.2.B解析:B 【解析】 【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a ×10﹣n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定. 【详解】0.000002019=2.019×10﹣6, 故选B . 【点睛】此题主要考查了用科学记数法表示较小的数,一般形式为a ×10﹣n ,其中1≤|a |<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.3.C解析:C 【解析】 【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定. 【详解】解:0.000 000 7=7×10-7. 故选C . 【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10-n ,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.4.A解析:A 【解析】 【分析】先把原式展开,再根据题意2()(2)x ax b x --+的积不含x 的一次项和二次项,得知20a -=,20a b +=,然后求解即可.【详解】2322()(2)222x ax b x x x ax ax bx b --+=+---- 32(2)(2)2x a x a b x b =+--+-,2()(2)x ax b x --+的积不含x 的一次项和二次项,∴2020a ab -=⎧⎨+=⎩, 2a ∴=,4b =-,41216b a -∴==. 故选A . 【点睛】本题考查了多项式乘多项式,解题的关键是明确积不含x 的一次项和二次项,即它们的系数为零.5.B解析:B 【解析】 【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定. 【详解】35000纳米=35000×10-8米=3.5×10-4米. 故选:B . 【点睛】此题主要考查了用科学记数法表示较小的数,一般形式为a×10-n ,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.6.B解析:B 【解析】试题解析:∵x 2-4xy+4y 2=0, ∴(x-2y )2=0, ∴x=2y , ∴133x y y x y y -==+. 故选B .7.C解析:C 【分析】用2x 、2y ,2z 去替换原分式中的x 、y 和z ,利用分式的基本性质化简,再与原分式进行比较即可得到答案. 【详解】 ∵把分式2x y zxyz-+中的正数x ,y ,z 都扩大2倍, ∴222221222244x y z x y z x y zx y z xyz xyz-⨯+-+-+==⨯⋅⋅.∴分式的值缩小为原来的14. 故选:C. 【点睛】考查了分式的基本性质,解题关键把字母变化后的值代入式子中,然后化简,再与原式比较,得出结论.8.A解析:A 【解析】 【分析】直接利用负整数指数幂的性质和零指数幂的性质分别化简得出答案. 【详解】∵11=22-⎛⎫ ⎪⎝⎭;02=1;12-=12;()12=2--, 2>1>12>-2, ∴运算结果最大的是112-⎛⎫ ⎪⎝⎭, 故选A. 【点睛】本题主要考查了负整数指数幂的性质和零指数幂的性质,正确化简各数是解题关键.9.A解析:A 【分析】利用完全平方公式和平方差公式化简约分即可. 【详解】222222()=()()a ab b a b a ba b a b a b a b++++=-+--. 故选A. 【点睛】此题主要考查了分式的约分,解题的关键是正确地把分子、分母分解因式.解析:A【分析】根据根式和分母有意义进行判断即可.【详解】要使得该函数有意义分母不能为0且根号内不能为负∴30x+>解得:3x>-故选:A.【点睛】本题主要考查根式和分式的意义,熟练掌握判断有意义的条件是关键. 11.D解析:D【分析】互为相反数两个数的和为0,同时要考虑到0+0=0,从而进行判断.【详解】解:∵a+b=0∴a=-b或a=0,b=0∴ba的值为-1或无意义,故选:D.【点睛】掌握互为相反数的两个数的和为0和0+0=0,是本题的解题关键.12.C解析:C【解析】【分析】首先分别判断出x与y都扩大为原来的10倍后,分式的分子、分母的变化情况,然后判断出这个代数式的值和原来代数式的值的关系即可.【详解】解:∵x与y都扩大为原来的10倍,∴5xy扩大为原来的100倍,x+y扩大为原来的10倍,∴5xyx y+的值扩大为原来的10倍,即这个代数式的值扩大为原来的10倍.故选:C.【点睛】本题考查分式的基本性质:分式的分子与分母同乘(或除以)一个不等于0的整式,分式的值不变,要熟练掌握,解答此题的关键是分别判断出分式的分子、分母的变化情况.解析:C 【分析】先将原式通分,可以得到222b a ab ab++,再将分子用完全平方公式进行变形,即可得到()222a b abab +-+,最后代入数值计算即可.【详解】因为2b aa b++ ()2222222222323233b a ab ab b a ab a b abab =+++=++-=+-⨯=+=所以选C. 【点睛】本题考查的是分式的通分和完全平方公式的变形,能够熟练掌握完全平方公式的变形是解题的关键.14.C解析:C 【分析】利用分式的概念:一般地,如果A ,B 表示两个整式,并且B 中含有字母,那么式子AB叫做分式,进行解答即可. 【详解】解:在2a b -,3x x +,13,a b a b +-,1()x y m-中, 3x x +,a b a b +-,1()x y m -是分式,共3个, 故选:C . 【点睛】本题考查了分式,关键是掌握分式的分母必须含有字母,而分子可以含字母,也可以不含字母.15.B解析:B根据二次根式的性质,被开方数大于等于0;分母中有字母,分母不为0. 【详解】由题意,得:x ﹣3≥0且7﹣2x >0,解得:3≤x 72<. 故选B . 【点睛】本题考查了二次根式有意义的条件,正确解不等式是解题的关键.16.A解析:A 【解析】 【分析】根据分式有意义的条件是分母不等于零求解即可. 【详解】 解:∵要使分式21x -有意义 ∴10x -≠1x ∴≠ 故选A.【点睛】本题考查了分式有意义的条件,熟练掌握分式有意义的条件是分母不等于零是解题的关键.17.C解析:C 【分析】根据同底数幂的乘法法则,积的乘方法则、零次幂、负指数幂进行计算 【详解】 A . ()326327x x -=-,不符合题意;B . ()()325y y y --=-,不符合题意;C . -312=8,原选项错误,符合题意; D . ()03.141π-=,不符合题意; 故选:C 【点睛】本题考查了同底数幂的乘法法则,积的乘方法则、零次幂、负指数幂,掌握同底数幂的乘法法则,积的乘方法则、零次幂、负指数幂是解题的关键.18.D【分析】 根据题意把分式x xy2中的x 和y 同时扩大为原来的3倍,将其化简后与原分式进行比价即可做出判断. 【详解】 解:∵分式x xy2中的x 和y 同时扩大为原来的3倍∴()23322333x x xx y x y x y⋅⋅==+++则分式的值保持不变. 故选:D 【点睛】本题考查了分式的基本性质,属于基础题型,能够熟练掌握分式的基本性质是解决问题的关键.19.B解析:B 【分析】根据负整数指数幂与正整数指数幂互为倒数,非零的零次幂等于1,可得答案. 【详解】∵a=-0.22=-0.04;b=-2-2=-14=-0.25,c=(-12)-2=4,d=(-12)0=1,∴-0.25<-0.04<1<4, ∴b <a <d <c , 故选:B . 【点睛】题考查了负整数指数幂,利用负整数指数幂与正整数指数幂互为倒数,非零的零次幂等于1是解题关键.20.B解析:B 【分析】根据零指数幂、指数幂、平方根、负整数指数幂的定义分别验证四个选项即可得到答案. 【详解】解:A 、020181=,任何非零数的零次方都等于1,故A 不是答案; B 、224-=-,故B 是答案;C 2=,故C 不是答案;D 、1133-=,故D 不是答案;故选:B .【点睛】本题主要考查了零指数幂、指数幂、平方根、负整数指数幂的定义,熟练掌握各知识点是解题的关键.21.C解析:C【分析】根据分式的运算,分别对各选项进行运算得到结果,即可做出判断.【详解】A 、221b b a ab a +=+,故A 错误; B 、22a b+,分子分母具有相同的因式才可以约分,故B 错误; C 、2()ab ab a ab b b a b a b==---,故C 正确; D 、a a a b a b=--+-,故D 错误; 故选C .【点睛】本题主要考查了分式的运算,熟悉分式的通分以及约分的重要法则是解决本题的关键.22.B解析:B【分析】根据整数指数幂的运算法则解答即可.【详解】解:①(a 3)2÷a 5=a 6÷a 5=a ,故原式错误;②(-x 4)2÷x 4=x 8÷x 4=x 4,故原式正确;③因为x ≠3,所以x -3≠0,(x -3)0=1,故原式正确;④(-a 3b )3÷12a 5b 2=-a 9b 3÷12a 5b 2=-2a 4b ,故原式正确. 所以正确的有3个,故选:B .【点睛】本题主要考查了整数指数幂的运算,熟记法则是解决此题的关键.23.B解析:B【分析】直接根据已知用含x 的式子表示出两数,进而代入化简得出答案.【详解】解:∵115a b = ∴设11a x =,5b x = ∴11531158a b x x a b x x --==++ 故选:B【点睛】 此类化简求值题目,涉及到的字母a 、b 利用第三个未知数x 设出,代入后得到关于x 的式子进行约分化简即可.将两个字母转化为一个字母是解题的关键.24.B解析:B【解析】分析:根据同分母分式加减法的运算法则进行计算即可求出答案.详解:原式=21211a a a a -+--, =2(1)1a a --, =a ﹣1故选B .点睛:本题考查同分母分式加减法的运算法则,解题的关键是熟练运用分式的运算法则,本题属于基础题型.25.C解析:C【分析】根据分式的性质分子分母同时乘(或除以)同一个不为零的整式,分式的值不变,进行判断选择即可.【详解】A ,B ,D 均不符合分式分子分母同时乘(或除以)同一个不为零的整式,分式的值不变的性质,选项C 可以将分子分母同时除以(a-b )到()2a b a b a b-=--,故答案选择C.【点睛】 本题考查的是分式的基本性质,熟知分式中分子分母同时乘(或除以)同一个不为零的整式,分式的值不变,是解题的关键.。

荆州市初中数学分式基础测试题含答案

荆州市初中数学分式基础测试题含答案

荆州市初中数学分式基础测试题含答案一、选择题1.下列各数中最小的是( )A .22-B .C .23-D 【答案】A【解析】【分析】先根据有理数的乘方、算术平方根、立方根、负整数指数幂进行计算,再比较数的大小,即可得出选项.【详解】解:224-=-,2139-=2=-, 14329-<-<-<Q , ∴最小的数是4-,故选:A .【点睛】本题考查了实数的大小比较法则,能熟记实数的大小比较法则的内容是解此题的关键.2.乐乐所在的四人小组做了下列运算,其中正确的是( )A .2193-⎛⎫-=- ⎪⎝⎭B .()23624a a -=C .623a a a ÷=D .236236a a a ? 【答案】B【解析】【分析】 根据负整数指数幂计算法则,积的乘方计算法则,同底数幂除法法则,单项式乘以单项式计算法则依次判断.【详解】A 、2913-⎛⎫- ⎪⎭=⎝,故错误; B 、()23624a a -=正确;C 、624a a a ÷=,故错误;D 、235236a a a =⋅,故选:B.【点睛】此题考查整式的计算,正确掌握负整数指数幂计算法则,积的乘方计算法则,同底数幂除法法则,单项式乘以单项式计算法则是解题的关键.3.下列运算中,不正确的是( )A .a b b a a b b a --=++B .1a b a b--=-+ C .0.55100.20.323a b a b a b a b++=-- D .()()221a b b a -=-【答案】A【解析】【分析】根据分式的基本性质分别计算即可求解.【详解】 解:A.a b b a a b b a--=-++,故错误. B 、C 、D 正确.故选:A【点睛】 此题主要考查分式的基本性质,熟练利用分式的基本性质进行约分是解题关键.4.如果分式||11x x -+的值为0,那么x 的值为( ) A .-1B .1C .-1或1D .1或0【答案】B【解析】【分析】根据分式的值为零的条件可以求出x 的值.【详解】根据题意,得|x|-1=0且x+1≠0,解得,x=1.故选B .【点睛】本题考查了分式的值为零的条件.若分式的值为零,需同时具备两个条件:(1)分子为0;(2)分母不为0.这两个条件缺一不可.5.若x 满足2220x x --=,则分式231211x x x ⎛⎫--÷ ⎪--⎝⎭的值是( )A .1B .12C .1-D .32- 【答案】A【解析】【分析】 首先将式子231211x x x ⎛⎫--÷ ⎪--⎝⎭按照分式的运算法则进一步化简,然后通过2220x x --=得出222x x -=,最后将其代入之前化简所得的式子中进一步计算即可.【详解】 由题意得:2223132212211111x x x x x x x x x ⎛⎫---+--÷=⋅=-- ⎪---⎝⎭,又∵2220x x --=,∴222x x -=,∴原式211=-=,故选:A .【点睛】本题主要考查了分式的化简求值,熟练掌握相关运算法则是解题关键.6.在下列四个实数中,最大的数是( )A .B .0C .12-D .13【答案】C【解析】【分析】根据实数的大小比较法则即可得.【详解】1122-=则四个实数的大小关系为11023-<<<因此,最大的数是12-故选:C .【点睛】本题考查了实数的大小比较法则,掌握大小比较法则是解题关键.7.化简2442x xx x ---得结果是( )A .26x x -+B .2x x +C .2x x -+D .2x x - 【答案】C【解析】【分析】 先通分,再按照分式的减法法则化简出最简结果即可得答案.【详解】2442x x x x --- =4(2)(2)(2)(2)(2)x x x x x x x +-+-+- =242(2)(2)x x x x x --+- =(2)(2)(2)x x x x --+- =2x x -+. 故选:C .【点睛】 本题考查分式的减法,同分母分式相加减,只把分子相加减,分母不变;异分母分式相加减,先通分变为同分母分式,再按同分母分式相加减的法则运算.8.生物学家发现了一种病毒的长度约为0.00000432毫米.数据0.00000432用科学记数法表示为( )A .0.432×10-5B .4.32×10-6C .4.32×10-7D .43.2×10-7【答案】B【解析】【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为10n a -⨯,这里1<a <10,指数n 是由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解: 0.00000432=4.32×10-6,故选B .【点睛】本题考查科学记数法.9.如果a 2+3a ﹣2=0,那么代数式() 的值为( )A .1B .C .D .【答案】B【解析】【分析】 原式括号中两项通分并利用同分母分式的加法法则计算,约分得到最简结果,把已知等式代入计算即可求出值.【详解】 原式=,由a 2+3a ﹣2=0,得到a 2+3a =2, 则原式=,故选B .【点睛】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.10.如果2220m m +-=,那么代数式2442m m m m m +⎛⎫+⋅ ⎪+⎝⎭的值是()n n A .2-B .1-C .2D .3【答案】C【解析】 分析:先把括号内通分,再把分子分解后约分得到原式22m m =+,然后利用2220m m +-=进行整体代入计算. 详解:原式2222244(2)(2)222m m m m m m m m m m m m m +++=⋅=⋅=+=+++, ∵2220m m +-=,∴222m m ,+= ∴原式=2.故选C.点睛:考查分式的混合运算,掌握运算法则是解题的关键.注意整体代入法的应用.11.计算21133x x x ⎛⎫-•⎪+⎝⎭的结果是( ) A .13x x - B .13x x -- C .13x x + D .13x x+- 【答案】A【解析】【分析】先计算括号内的运算,然后根据分式乘法的运算法则进行计算,即可得到答案.【详解】 解:21133x x x ⎛⎫-• ⎪+⎝⎭ =22133x x x x ⎛⎫-• ⎪+⎝⎭=2(1)(1)3(1)x x x x x +-•+ =13x x-; 故选:A .【点睛】本题考查了分式的化简,以及分式的混合运算,解题的关键是熟练掌握运算法则进行计算.12.下列各式:①2193-⎛⎫= ⎪⎝⎭;②031-=;③()232639-=-ab a b ;④()2221243x y xy x y -÷=-; ⑤()2018201920182232--=⨯;其中运算正确的个数有( )个. A .1B .2C .3D .4 【答案】B【解析】【分析】分别利用负整数指数幂、零指数幂、积的乘方、同底数幂的除法等对各式进行运算,即可做出判断.【详解】解:①22111913193-⎛⎫=== ⎪⎝⎭⎛⎫ ⎪⎝⎭,故①正确; ②031-=-,故②错误;③()232232263(3)()9-=-=ab a b a b ,故③错误; ④()21243-÷=-x y xy x ,故④错误;⑤()2018201920182019201820182018222222232--=+=+⨯=⨯,故⑤正确;∴运算正确的个数有2个,故选:B .【点睛】本题主要考查了负整数指数幂、零指数幂、积的乘方和同底数幂的除法,熟练掌握相关的运算法则是解题的关键.13.计算22222a b a b a ba b a b ab⎛⎫+---⨯⎪-+⎝⎭的结果是 ( )A.1a b-B.1a b+C.a-b D.a+b【答案】B【解析】【分析】先算小括号里的,再算乘法,约分化简即可.【详解】解:2222a b a b a ba b a b ab⎛⎫+---⨯⎪-+⎝⎭=()()()2222a b a b a ba b a b ab+---⨯+-=1a b+故选B.【点睛】本题考查分式的混合运算.14.式子12aa-+有意义,则实数a的取值范围是()A.a≥-1 B.a≤1且a≠-2 C.a≥1且a≠2D.a>2【答案】B【解析】【分析】直接利用二次根式有意义的条件分析得出答案.【详解】式子1a-有意义,则1-a≥0且a+2≠0,解得:a≤1且a≠-2.故选:B.【点睛】此题主要考查了二次根式有意义的条件,正确把握二次根式的定义是解题关键.15.分式可变形为()A.B.C.D.【答案】B【解析】【分析】根据分式的基本性质进行变形即可.【详解】=.故选B.【点睛】此题主要考查了分式的基本性质,正确利用分式的基本性质求出是解题关键.16.老师设计了接力游戏,用合作的方式完成分式化简,规则是:每人只能看到前一人给的式子,并进行一步计算,再将结果传递给下一人,最后完成化简.过程如图所示:接力中,自己负责的一步出现错误的是()A.只有乙B.甲和丁C.乙和丙D.乙和丁【答案】D【解析】【分析】根据分式的乘除运算步骤和运算法则逐一计算即可判断.【详解】∵22211x x x x x -÷--=2221·1x x x x x ---=() 2212·1xx xx x----=()()221·1x x xx x----=()2xx --=2xx-,∴出现错误是在乙和丁,故选D.【点睛】本题考查了分式的乘除法,熟练掌握分式乘除法的运算法则是解题的关键.17.有意义时,a 的取值范围是( ) A .a ≥2 B .a >2 C .a ≠2 D .a ≠-2【答案】B【解析】解:根据二次根式的意义,被开方数a ﹣2≥0,解得:a ≥2,根据分式有意义的条件:a ﹣2≠0,解得:a ≠2,∴a >2.故选B .18.计算b a a b b a +--的结果是 A .a-bB .b-aC .1D .-1【答案】D【解析】【分析】将第二个式子提出一个负号,即可使分母一样,然后化简即可得出答案.【详解】 b a b --a a b - =b a a b--=-1,所以答案选择D. 【点睛】本题考查了分式的化简,熟悉掌握计算方法是解决本题的关键.19.已知23x y =,那么下列式子中一定成立的是 ( ) A .5x y +=B .23x y =C .32x y =D .23x y = 【答案】D【解析】【分析】 根据比例的性质对各个选项进行判断即可.【详解】A. ∵23x y =,∴3x =2y ,∴ 5x y += 不成立,故A 不正确; B. ∵23x y =,∴3x =2y ,∴ 23x y =不成立,故B 不正确; C. ∵23x y =,∴23x y =y ,∴ 32x y =不成立,故C 不正确; D. ∵23x y =,∴23x y =,∴ 23x y =成立,故D 正确; 故选D.【点睛】本题考查的是比例的性质,掌握内项之积等于外项之积及更比性质是解题的关键. 更比性质:在一个比例里,更换第一个比的后项与第二个比的前项的位置后,仍成比例,或者更换第一个比的前项与第二个比的后项的位置后,仍成比例,这叫做比例中的更比定理.对于实数a ,b ,c ,d ,且有b ≠0,d ≠0,如果a c b d=,则有a b c d =.20.计算()22b a a -⨯的结果为 A .bB .b -C . abD .b a 【答案】A【解析】【分析】先计算(-a )2,然后再进行约分即可得.【详解】()22b a a -⨯=22b a a ⨯=b ,故选A.【点睛】本题考查了分式的乘法,熟练掌握分式乘法的运算法则是解题的关键.。

最新最新初中数学—分式的基础测试题及答案

最新最新初中数学—分式的基础测试题及答案

一、选择题1.在代数式,,+,,中,分式有( )A .1个B .2个C .3个D .4个2.若要使分式23363(1)x x x -+-的值为整数,则整数x 可取的个数为( )A .5个B .2个C .3个D .4个3.下列分式变形中,正确的是( ).A . b a b a b a +=++22B .1-=++-y x y xC . ()()m n n m m n -=--23D .bm am b a = 4.把分式22x yx y -+中的x 、y 都扩大到原来的4倍,则分式的值( )A .扩大到原来的8倍B .扩大到原来的4倍C .缩小到原来的14 D .不变5.若a =-0.3-2,b =-3-2,c =(-13)-2,d =(-13)0,则( ) A .a <d <c <b B .b <a <d <c C .a <d <c <b D .a <b <d <c6.12⎛⎫- ⎪⎝⎭-2的正确结果是( ) A .14B .14-C .4D .-47.下列各式变形正确的是( ) A .B .C .D .8.PM 2.5是指大气中直径小于或等于2.5μm (1μm =0.000001m )的颗粒物,也称为可入肺颗粒物,它们还有一定量的有毒、有害物质,对人体健康和大气环境质量有很大影响.2.3μm 用科学记数法可表示为( ) A .23×10﹣5m B .2.3×10﹣5mC .2.3×10﹣6mD .0.23×10﹣7m9.分式中,最简分式个数为( )个. A .1B .2C .3D .410.已知为整数,且分式的值为整数,则可取的值有( )A .1个B .2个C .3个D .4个11.函数122y x x =+--的自变量x 的取值范围是( ) A .2x ≥ B .2x >C .2x ≠D .2x ≤12.计算23x 11x+--的结果是 A .1x 1- B .11x- C .5x 1- D .51x- 13.已知实数a ,b ,c 均不为零,且满足a +b +c=0,则222222222111b c a c a b a b c+++-+-+-的值是( ) A .为正 B .为负 C .为0 D .与a ,b ,c 的取值有关 14.下列变形正确的是( )A .x y y xx y y x--=++ B .222()x y x y y x x y +-=-- C .2a a a ab b+=D .0.250.25a b a ba b a b++=++15.式子①,②,③,④中,是分式的是( )A .①②B .③④ C.①③ D.①②③④ 16.下列运算错误的是 A . B .C .D .17.在同一段路上,某人上坡速度为a ,下坡速度为b ,则该人来回一趟的平均速度是( ). A .a B .b C .2a b + D .2aba b+18.若已知分式22169x x x ---+的值为0,则x ﹣2的值为( ).A .19或﹣1 B .19或1 C .﹣1 D .1 19.下列4个分式:①;②;③;④中最简分式有( )A .1个B .2个C .3个D .4个20.已知一粒大米的质量约为0.0000021千克,这个数用科学记数法表示为( ) A .0.21×10-5 B .2.1×10-5 C .2.1×10-6 D .21×10-6 21.化简-的结果是( ) A .B .C .D .22.若a >-1,则下列各式中错误..的是( ) A .6a >-6B .2a >-12C .a +1>0D .-5a <-523.雾霾已经成为现在生活中不得不面对的重要问题,PM2.5是大气中直径小于或等于0.000 002 5米的颗粒物,将0.000 002 5用科学记数法表示为( ) A .2.5×10﹣6B .0.25×10﹣6C .2.5×10﹣5D .0.25×10﹣524.把分式2210x y xy+中的x y ,都扩大为原来的3倍,分式的值( )A .不变B .扩大3倍C .缩小为原来的13D .扩大9倍 25.已知115ab a b =+,117bc b c =+,116ca c a =+,则abcab bc ca++的值是( ) A .121 B .122 C .123 D .124【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【解析】试题分析:依据分式的定义进行判断即可. 解:分母中不含字母,故不是分式;分母中含有字母是分式; +分母不含字母,故不是分式;分母中含有字母是分式;中π是数字,不是字母,故不是分式.故选B2.C解析:C【解析】试题分析:根据x为整数,且分式23363(1)x xx-+-的值为整数,可得3是(x-1)的倍数,可得答案.试题解析:由题意得,x-1=-3,1,3,故x-1=-3,x=-2;x-1=1,x=2;x-1=3,x=4,故选C.考点:分式的值.3.C解析:C【解析】试题分析:分式的约分首先将分子和分母进行因式分解,然后约去公共的因式.A、B无法进行约分,C正确;D需要保证m不能为零.考点:分式的约分4.D解析:D.【解析】试题解析:根据题意得:844(2)2844(2y)2x y x y x yx y x x y---==+++,即和原式的值相等,故选D.考点:分式的基本性质.5.D解析:D【解析】根据有理数的乘方、负整数指数幂、零指数幂的意义化简a、b、c、d的值,然后比较大小.由a=−0.09,b=−19,c=9,d=1,得到:c>d>a>b,故选B.6.C解析:C试题分析:根据负整指数幂的性质1(0)ppa aa-=≠计算,可得12⎛⎫-⎪⎝⎭2141()2==-.故选C 7.D解析:D 【解析】试题分析:因为x y x yx y x y-+-=--+,所以A错误;因为2a bc d-+不能再化简,所以B错误;因为0.20.032030.40.05405a b a bc d c d--=++,所以C错误;因为,所以D正确;故选:D.考点:分式的性质.8.C解析:C【详解】解:2.3μm=2.3×0.000001m=2.3×10﹣6m,故选C.【点睛】本题考查科学记数法—表示较小的数.9.C解析:C【解析】根据最简分式的定义——分子和分母没有公因式的分式.易得共3个是最简分式:,,故选C.10.C解析:C【详解】==,由题意可知x-1=1,-1,-2,2为整数,且x≠±1,解得:x=2,0,3故选:C.11.B解析:B【详解】解:根据题意得:x﹣2≥0且x﹣2≠0,解得:x>2.故选B.本题考查函数自变量的取值范围.12.B解析:B 【解析】试题分析:先通分,再根据同分母的分式相加减的法则进行计算伯出判断:2323231x 11x 1x 1x 1x 1x-++=-+==------.故选B . 13.C解析:C . 【解析】试题解析:∵a +b +c=0,∴a=-(b +c ),∴a 2=(b +c )2,同理b 2=(a +c )2,c 2=(a +b )2.∴原式=11111()022a b cbc ac ab abc++-++=-⨯=, 故选C .考点:分式的运算.14.D解析:D 【解析】 A 选项错误,x y x y -+=-y xy x-+;B 选项错误, x y y x +-=x y y x y x y x +---()()()()=()222y xx y --;C 选项错误,2a a ab+=1a a ab +()=1a b +;D 选项正确. 故选D.点睛:分式的性质:分式的分子分母乘以或者除以同一个不为零的整式,分式的值不变.15.C解析:C 【解析】试题分析:判断分式的依据是看分母中是否含有字母,如果含有字母则是分式,如果不含有字母则不是分式. 解:①,③是分式,②,④是整式,故选:C .【点评】本题主要考查分式的定义,注意π不是字母,是常数,所以不是分式,是整式.16.D解析:D 【解析】根据分式的基本性质作答,分子分母同时扩大或缩小相同的倍数,分式的值不变,即可得出答案. 解:A 、==1,故本选项正确; B 、==﹣1,故本选项正确;C 、,故本选项正确;D 、,故本选项错误;故选D .17.C解析:C . 【解析】试题分析:直接表示出上下坡所用时间,进而利用总路程÷总时间=平均速度,进而得出答案.设总路程为x ,由题意可得:22211x abx x a ba ba b==+++. 故选:C .考点:列代数式(分式).18.D解析:D . 【解析】试题分析:根据分式值为零的条件可得:|x ﹣2|﹣1=0,且269x x -+≠0,再解即可.由题意得:|x ﹣2|﹣1=0,且269x x -+≠0,解得:x=1. 故选:D .考点:分式的值为零的条件;负整数指数幂.19.B解析:B 【解析】①是最简分式;②,不是最简分式;③=,不是最简分式;④是最简分式;最简分式有①④,共2个; 故选:B.20.C解析:C【解析】0.0000021=2.1×10-6,故选C .21.D解析:D 【解析】试题分析:根据分式的加减运算,先确定最简公分母,再通分,然后计算即可,即22(1)(1)(1)111a a a a a a a a +--+=----221111a a a a -+==--. 故选:D22.D解析:D 【解析】根据不等式的基本性质可知, A. 6a >−6,正确; B.2a>12- , 正确; C. a +1>0,正确;D. 根据性质3可知,a >−1两边同乘以−5时,不等式为−5a <5,故D 错误; 故选D.23.A解析:A 【解析】由科学记数法知0.0000025=2.5×10−6, 故选A.24.A解析:A 【解析】将2210x y xy +中的x 、y 都扩大为原来的3倍得到:22331033x y x y +()()()()=229990x y xy +=2210x y xy+.故选A.点睛:用3x、3y代换原式中的x、y,然后用分式性质化简即可. 25.D解析:D【解析】试题解析:由已知得:1115a b+=,1117b c+=,1116c a+=,∴11124 a b c++=,∴原式=11 11124a b c=++,故选D.考点:分式的运算.。

荆州市八年级数学上册第五单元《分式》检测题(有答案解析)

荆州市八年级数学上册第五单元《分式》检测题(有答案解析)

一、选择题1.若整数a使得关于x的方程3222ax x -=--的解为非负数,且使得关于y的一元一次不等式组32222210y yy a--⎧+>⎪⎪⎨-⎪≤⎪⎩至少有3个整数解,则所有符合条件的整数a的和为()A.23 B.25 C.27 D.282.如图,在数轴上表示2224411424x xx x x x-++÷-+的值的点是()A.点P B.点Q C.点M D.点N3.若关于x的方程144m xx x--=--无解,则m的值是()A.2-B.2 C.3-D.34.若a=1,则2933aa a-++的值为()A.2 B.2-C.12D.12-5.2020年新冠肺炎疫情影响全球,某企业临时增加甲、乙两个厂房生产口罩,甲厂房每天生产的数量是乙厂房每天生产数量的2倍,两厂房各加工6000箱口罩,甲厂房比乙厂房少用5天.则甲、乙两厂房每天各生产的口罩箱数为()A.1200,600 B.600,1200 C.1600,800 D.800,16006.张明与李强共同清点一批图书,已知张明清点完200本图书所用的时间与李强清点完300本图书所用的时间相同,且李强平均每分钟比张明多清点10本,则张明平均每分钟清点图书()A.20本B.25本C.30本D.35本7.若分式293xx-+的值为0,则x的值为()A.4B.4-C.3或-3 D.38.分式242xx-+的值为0,则x的值为()A.2-B.2-或2C.2D.1或29.计算221(1)(1)xx x+++的结果是()A .1B .1+1xC .x +1D .21(+1)x 10.2222x y x y x y x y-+÷+-的结果是( ) A .222()x y x y ++ B .222()x y x y +- C .222()x y x y -+ D .222()x y x y ++ 11.2a ab b a++-的结果是( ). A .2a - B .4a C .2b a b -- D .b a- 12.已知有理数a ,b 满足:1ab =,1111M a b =+++,11a b N a b=+++,则M ,N 的关系为( ) A .M N >B .M N <C .M N =D .M ,N 的大小不能确定二、填空题13.方程31x x x x -=+的解是______. 14.计算22a b a b a b-=-- _________. 15.已知13x x-=,则21x x ⎛⎫+= ⎪⎝⎭________.16.23()a -=______(a≠0),2-=______,1-=______.17.223(3)a b -=______,22()a b ---=______.18.H 7N 9病毒直径为30纳米(1纳米=10-9米),用科学记数法表示这个病毒直径的大小为________米.19.关于x 的方程53244x mx x x++=--无解,则m =________. 20.已知:4a b +=,2210a b +=,求11a b+=______. 三、解答题21.计算:(1)(2)(2)4(21)x x x -+--;(2)2221111a a a a ++⎛⎫+÷ ⎪--⎝⎭. 22.水果店在批发市场购买某种水果销售,第一次用2000元购进若干千克,并以每千克9元出售,很快售完.由于水果畅销,第二次购买时,每千克的进价比第一次提高了20%,用2496元所购买的水果比第一次多20千克,以每千克10元售出100千克后,因出现高温天气,水果不易保鲜,为减少损失,便降价50%售完剩余的水果.(1)第一次水果的进价是每千克多少元?(2)该水果店在这两次销售中,总体上是盈利还是亏损?盈利或亏损了多少元?23.为了安全与方便,某自助加油站只提供两种自助加油方式:“每次定额只加200元”与“每次定量只加40升”.自助加油站规定每辆车只能选择其中一种自助加油方式,那么哪种加油方式更合算呢?请以两种加油方式各加油两次予以说明.(分析问题)“更合算”指的是两次加油后平均油价更低由于汽油单价会变,不妨设第一次加油时油价为x元/升,第二次加油时油价为y元/升.①两次加油,每次只加200元的平均油价为:_______________元/升.②两次加油,每次只加40升的平均油价为:_______________元/升.(解决问题)请比较两种平均油价,并用数学语言说明哪种加油方式更合算.24.分式计算与解方程:(1)21211a aa a----;(2)121221xx x+=-+.25.今年双11期间开州区紫水豆干凭借过硬的质量、优质的口碑大火,豆干店的王老板用2500元购进一批紫水豆干,很快售完;王老板又用4400元购进第二批紫水豆干,所购数量是第一批的2倍,由于进货量增加,进价比第一批每千克少了3元.(1)第一批紫水豆干每千克进价多少元?(2)该老板在销售第二批紫水豆干时,售价在第二批进价的基础上增加了%a,售出80%后,为了尽快售完,决定将剩余紫水豆干在第二批进价的基础上每千克降价325a元进行促销,结果第二批紫水豆干的销售利润为1520元,求a的值.(利润=售价-进价)26.解方程:312(2) xx x x-=--【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】表示出不等式组的解集,由不等式至少有3个整数解确定出a的值,再由分式方程的解为非负数以及分式有意义的条件求出满足题意整数a的值,进而求出之和.解:322222010y y y a --⎧+>⎪⎪⎨-⎪≤⎪⎩, 不等式组整理得:2y y a -⎧⎨≤⎩>, 由不等式组至少有3个整数解,得到-2<y≤a ,解得:a≥1,即整数a=1,2,3,4,5,6,…,3222a x x-=--, 去分母得:2(x-2)-3=-a ,解得:x=72a -, ∵72a -≥0,且72a -≠2, ∴a≤7,且a≠3,由分式方程的解为非负数以及分式有意义的条件,得到a 为1,2,4,5,6,7, 之和为1+2+4+5+6+7=25.故选:B .【点睛】此题考查了解分式方程,以及解一元一次不等式组,熟练掌握运算法则是解本题的关键. 2.C解析:C【分析】先进行分式化简,再确定在数轴上表示的数即可.【详解】 解:2224411424x x x x x x-++÷-+ 2(2)14(2)(2)(2)x x x x x x -=+⨯+-+, 2422x x x -=+++, 242x x -+=+, 22x x +=+, =1, 在数轴是对应的点是M ,【点睛】本题考查了分式化简和数轴上表示的数,熟练运用分式计算法则进行化简是解题关键. 3.D解析:D【分析】 根据方程1044m x x x--=--无解,得出方程有增根,利用增根的定义可求得x =4,并把x =4代入转化后的整式方程m +1−x =0,即可求出m 的值.【详解】解:去分母得:m +1−x =0, ∵方程1044m x x x--=--无解, ∴x =4是方程的增根,∴m =3.故选:D .【点睛】 本题考查了分式方程无解问题,解题的关键是理解增根的定义,并能准确求出增根. 4.B解析:B【分析】根据同分母分式减法法则计算,再将a=1代入即可求值.【详解】2933a a a -++=293a a -+=a-3, 当a=1时,原式=1-3=-2,故选:B .【点睛】此题考查分式的化简求值,掌握因式分解及同分母分式的减法计算法则是解题的关键. 5.A解析:A【分析】先设乙厂房每天生产x 箱口罩,则甲厂房每天生产2x 箱口罩,根据工作时间=工作总量÷工作效率且两厂房各加工6000箱口罩时甲厂房比乙厂房少用5天,可得出关于x 的分式方程,解方程即可得出结论.【详解】解:设乙厂房每天生产x 箱口罩,则甲厂房每天生产2x 箱口罩, 依题意得:6000600052x x-=,解得:x=600,经检验,x=600是原分式方程的解,且符合题意,∴2x=1200.故答案选:A.【点睛】该题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.6.A解析:A【分析】设张明平均每分钟清点图书的数量为x,则李强平均每分钟清点图书的数量为x+10,由张明清点完200本图书所用的时间与李强清点完300本图书所用的时间相等这个条件可列分式方程,求解即可.【详解】设张明平均每分钟清点图书x本,则李强平均每分钟清点(10)x+本,依题意,得:20030010x x=+,解得:20x,经检验,20x是原方程的解,所以张明平均每分钟清点图书20本.故选:A.【点睛】本题考查了分式方程的应用.找到题中的等量关系,列出分式方程,注意分式方程一定要验根.7.D解析:D【分析】先根据分式的值为0可得290x,再利用平方根解方程可得3x=±,然后根据分式的分母不能为0即可得.【详解】由题意得:293xx-=+,则290x,即29x=,由平方根解方程得:3x=±,分式的分母不能为0,30x∴+≠,解得3x≠-,则x的值为3,故选:D.【点睛】本题考查了分式的值、分式有意义的条件、利用平方根解方程,掌握理解分式的值是解题关键.8.C解析:C【分析】分式的值为零时,分子等于零,分母不等于零.【详解】解:依题意,得x 2-4=0,且x+2≠0,所以x 2=4,且x≠-2,解得,x=2.故选:C .【点睛】本题考查了求一个数的平方根,分式的值为零的条件.若分式的值为零,需同时具备两个条件:(1)分子为0;(2)分母不为0.这两个条件缺一不可.9.B解析:B【分析】根据同分母分式加法法则计算.【详解】221(1)(1)x x x +++=211(1)1x x x +=++, 故选:B .【点睛】此题考查同分母分式加法,熟记加法法则是解题的关键.10.C解析:C【分析】根据分式的除法法则计算即可.【详解】2222x y x y x y x y -+÷+-()()22x y x y x y x y x y +--=⨯++222()x y x y -=+ 【点睛】此题考查分式的除法法则:先把除式的分子分母颠倒位置,再化为最简分式即可. 11.C解析:C【分析】根据分式的加减运算的法则计算即可.【详解】222()()a a b a b a b a b b a a b a b a b+-++=-=-----. 故选:C【点睛】本题考查了分式加减运算的法则,熟记法则是解题的关键.12.C解析:C【分析】先通分,再利用作差法可比较出M 、N 的大小即可.【详解】解:∵1111M a b=+++ ()()1111b a a b +++=++()()211b aa b ++=++,()()()()()()1121111a b b a a ab b N a b a b +++++==++++, ∴()()()()221111b a a ab b M N a b a b ++++-=-++++()()2211a b a ab b a b ++---=++ ()()2211aba b -=++,∵1ab =,∴220ab -=,∴0M N -=,即M N .故选:C.【点睛】本题考查的是分式的加减法及分式比较大小的法则,分式比较大小可以利用作差法、作商法等. 二、填空题13.【分析】两边同时乘以x(x+1)化分式方程为整式方程求解即可【详解】∵∴(x+1)(x-3)=∴-2x-3=∴2x+3=0∴x=经检验x=是原方程的解故填【点睛】本题考查了分式方程的解法熟练把分式方 解析:32-. 【分析】 两边同时乘以x(x+1),化分式方程为整式方程求解即可.【详解】 ∵31x x x x -=+, ∴(x+1)(x-3)= 2x ,∴2x -2x-3= 2x ,∴2x+3=0,∴x=32-, 经检验,x=32-是原方程的解, 故填32-. 【点睛】 本题考查了分式方程的解法,熟练把分式方程转化为整式方程是解题的关键,验根是解题的一个重要环节,不能忽视.14.【分析】根据分式运算的性质结合平方差公式计算即可得到答案【详解】故答案为:【点睛】本题考查了分式平方差公式的知识;解题的关键是熟练掌握分式加减运算平方差公式的性质从而完成求解解析:+a b【分析】根据分式运算的性质,结合平方差公式计算,即可得到答案.【详解】22a b a b a b ---()()22a b a b a b a b a b a b+--===+-- 故答案为:+a b .【点睛】本题考查了分式、平方差公式的知识;解题的关键是熟练掌握分式加减运算、平方差公式的性质,从而完成求解.15.13【分析】把已知等式两边分别平方适当变形后再将所求代数式展开整体代入求解【详解】解:∵∴即∴故答案为:13【点睛】此题主要考查了分式的求值以及完全平方公式正确运用公式是解题关键解析:13【分析】把已知等式两边分别平方适当变形后,再将所求代数式展开整体代入求解.【详解】解:∵13x x-=, ∴2211()29x x x x -=+-=,即22111x x +=, ∴22211211213x x x x ⎛⎫+=++=+= ⎪⎝⎭, 故答案为:13.【点睛】此题主要考查了分式的求值以及完全平方公式,正确运用公式是解题关键.16.【分析】根据负整数指数幂的运算法则计算即可【详解】=;;【点睛】此题考查了负整数指数幂:a-n=也考查了分母有理化解析:61a 13+ 【分析】 根据负整数指数幂的运算法则计算即可.【详解】23()a -=661a a -==;2-==13;1-=== 【点睛】 此题考查了负整数指数幂:a -n =1(0)n a a ≠.也考查了分母有理化. 17.【分析】(1)首先利用积的乘方以及幂的乘方法则计算然后根据负指数次幂的意义化成正指数次幂即可;(2)首先利用积的乘方以及幂的乘方法则计算然后根据负指数次幂的意义化成正指数次幂即可【详解】;【点睛】本 解析:6627a b 42a b【分析】(1)首先利用积的乘方以及幂的乘方法则计算,然后根据负指数次幂的意义化成正指数次幂即可;(2)首先利用积的乘方以及幂的乘方法则计算,然后根据负指数次幂的意义化成正指数次幂即可.【详解】()632266627327a a b a b b --==; 422422()a a b a b b----==. 【点睛】 本题考查了负整数指数幂,利用了积的乘方等于乘方的积,单项式的乘法,负整数指数幂与正整数指数幂互为倒数.18.【分析】根据题意列得这个病毒直径为计算并用科学记数法表示即可【详解】故答案为:【点睛】此题考查实数的乘法计算科学记数法正确理解题意列式并会用科学记数法表示结果是解题的关键解析:8310-⨯【分析】根据题意列得这个病毒直径为93010-⨯,计算并用科学记数法表示即可.【详解】983010310--⨯=⨯,故答案为:8310-⨯ .【点睛】此题考查实数的乘法计算,科学记数法,正确理解题意列式并会用科学记数法表示结果是解题的关键.19.3或【分析】分式方程无解即化成整式方程时无解或者求得的x 能令最简公分母为0据此进行解答【详解】解:方程两边都乘以(x-4)得整理得:当时即m=3方程无解;当时∵分式方程无解∴x-4=0∴x=4∴解得解析:3或174. 【分析】分式方程无解,即化成整式方程时无解,或者求得的x 能令最简公分母为0,据此进行解答.【详解】解:方程两边都乘以(x-4)得, 5(3)2(4)x mx x -+=-,整理,得:(3)5m x -=-当30m -=时,即m=3,方程无解;当30m -≠时,53x m =-, ∵分式方程无解,∴x-4=0,∴x=4,∴543m =-, 解得,174m =. 故答案为:3或174. 【点睛】 本题考查了分式方程的解,分式方程无解分两种情况:整式方程本身无解;分式方程产生增根.20.【分析】根据a2+b2=(a+b )2-2ab 把相应数值代入即可求解【详解】解:∵a+b=4∴a2+b2=(a+b )2-2ab=10即42-2ab=10解得ab=3∴故答案为:【点睛】本题主要考查了完 解析:43【分析】根据a 2+b 2=(a+b )2-2ab ,把相应数值代入即可求解.【详解】解:∵a+b=4,∴a 2+b 2=(a+b )2-2ab=10,即42-2ab=10,解得ab=3. ∴1143a b a b ab ++== 故答案为:43. 【点睛】 本题主要考查了完全平方公式以及分式的运算,熟记公式是解答本题的关键.三、解答题21.(1)28x x -;(2)11a +. 【分析】(1)由整式的混合运算,先去括号,然后合并同类项,即可得到答案;(2)先计算括号内的运算,然后计算分式除法运算,即可得到答案.【详解】解:(1)(2)(2)4(21)x x x -+--=2484x x --+=28x x -;(2)2221111a a a a ++⎛⎫+÷ ⎪--⎝⎭=21(1)11a a a a ++÷-- =2111(1)a a a a +-⨯-+ =11a +. 【点睛】 本题考查了整式的混合运算,分式的混合运算,解题的关键是掌握运算法则进行解题. 22.(1)第一次水果进价是每千克4元;(2)该水果店在这两次销售中,总体上是盈利,且盈利3104元【分析】(1)设第一次水果的进价是每千克x 元,则第二次水果的进价是每千克1.2x 元,根据数量=总价÷单价结合第二次比第一次多购进20千克,即可得出关于x 的分式方程,解之经检验后即可得出结论;(2)利用数量=总价÷单价可求出第一次购进水果数量,由总利润=每千克利润×销售数量可求出第一次购进水果的销售利润,同理可求出第二次购进水果的销售利润,将二者相加即可得出结论.【详解】解:(1)设第一次水果进价为每千克x 元,则第二次水果进价为每千克1.2x 元. 依题意列方程得,2000249620 1.2x x+= 解得,4x =经检验,4x =是方程的根,且符合题意. ∴第一次水果进价是每千克4元.(2)第一次售完水果盈利为:()20009425004-⨯=(元) 第二次售完水果盈利为:()()200010 4.81005 4.8(20100)6044-⨯+-⨯+-=(元) 25006043104+=(元)∴该水果店在这两次销售中,总体上是盈利,且盈利3104元.【点睛】本题考查了分式方程的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)根据数量关系,列式计算.23.【分析问题】①2xy x y +;②2x y +;【解决问题】22x y xy x y +≥+,当x y =时,两种加油方式均价相等;当x y ≠时,每次加200元更合算【分析】分析问题:①计算出两次加油的总价400元,总的加油量为200200+x y ⎛⎫ ⎪⎝⎭升,从而得到两次加油的平均价格;②计算出两次加油的总价()4040x y +元,总的加油量为80升,从而得到两次加油的平均价格; 解决问题:利用作差法可得22x y xy x y +-+()()22x y x y -=+,再判断()()22x y x y -+的符号,从而可得结论.【详解】解:分析问题:① 第一次加油时油价为x 元/升, ∴ 第一次加油的数量为:200x升,第二次加油时油价为y 元/升,∴ 第二次加油的数量为:200y 升, 所以两次加油的平均价格为每升:()200+2004004002200200200200200xy xy x y x y x y x y xy===++++(元) 故答案为:2xy x y+ ②两次加油,每次只加40升的总价分别为:40x 元,40y 元, 所以两次加油的平均价格为每升:()40404080802x y x y x y +++==元, 故答案为:2x y +. 解决问题:()()()()()222422422x y x y x y xy xy x y x xy y x y x y +++-=--=++++()()22x y x y -=+ x ,y 为两次加油的汽油单价,故0x y +>,()20x y -≥ ()()22022x y x y xy x y x y -+∴-=≥+-,即22x y xy x y +≥+. 结论:当x y =时,两种加油方式均价相等;当x y ≠时,每次加200元更合算.【点睛】本题考查的是列代数式,分式的化简,分式的加减运算的应用,分式除法的应用,代数式的值的大小比较,掌握以上知识是解题的关键.24.(1)1a -;(2)13x =【分析】(1)先对分式变形化成同分母的分式,然后利用同分母分式的运算法则运算即可; (2)利用分式的性质,将分式方程化成整式方程,然后再求解,最后验根得出结果.【详解】解:(1)21211a a a a ----21211a a a a -=+--2211a a a -+=-()211a a -=-1a =-; (2)121221x x x +=-+ 方程两边同乘()()221x x -+,得:()()()()2122122x x x x x ++-+=- 解得:13x =, 检验:当13x =时,()()2210x x -+≠, 所以,原方程的解为13x =. 【点睛】 本题考查分式的加减运算及解分式方程,熟练掌握分式运算的法则及解分式方程的方法是解题的关键.25.(1)第一批紫水豆干每千克进价是25元;(2)a 的值是50.【分析】(1)设第一批紫水豆干每千克进价是x 元,则第二批每件进价是(x-3)元,再根据等量关系:第二批所购数量是第一批的2倍列方程求解即可;(2)根据第一阶段的利润+第二阶段的利润=1520列方程求解即可.【详解】解:(1)设第一批紫水豆干每千克进价x 元, 根据题意,得:2500440023x x ⨯=-, 解得:x=25,经检验,x=25是原方程的解且符合题意;答:第一批紫水豆干每千克进价是25元.(2)第二次进价:25-3=22(元),第二次紫水豆干的实际进货量:4400÷22=200千克,第二次进货的第一阶段出售每千克的利润为:22×a %元, 第二次紫水豆干第二阶段销售利润为每千克325a -元, 由题意得:322%20080%200(180%)152025a a ⨯⨯⨯-⨯-=,解得:a=50,即a的值是50.【点睛】本题考查了分式方程的应用,分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.26.32 x=【分析】按照解分式方程的步骤先去分母,再解整式方程,最后检验即可.【详解】解:方程两边乘()2x x-,得()223x x x--=.解得32x=,检验:当32x=时,()20x x-≠.∴原分式方程的解为32x=.【点睛】本题考查了分式方程的解法,熟练掌握分式方程解题步骤是解题关键,注意:解分式方程一定要检验.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、选择题1.下列各分式的值可能为零的是( ).A .2211m m +-B .11m +C .211m m +-D .211m m -+2.如果把5xy x y+中的x 和y 都扩大为原来的10倍,那么这个分式的值( )A .不变B .扩大为原来的50倍C .扩大为原来的10倍D .缩小为原来的1103.设2222x 18n x 33x x 9+=+++--,若n 的值为整数,则x 可以取的值得个数是( ) A .5B .4C .3D .24.若把分式x yxy+中的x 和y 都扩大2倍,那么分式的值( )A .扩大2倍B .不变C .缩小2倍D .缩小4倍5.若代数式()11x --有意义,则x 应满足( ) A .x = 0B .x ≠ 0C .x ≠ 1D .x = 16.若(x 2﹣ax ﹣b )(x +2)的积不含x 的一次项和二次项,则a b =( ) A .116B .-116C .16D .﹣167.把分式a2a b+中的a 、b 都扩大2倍,则分式的值( ) A .缩小14 B .缩小12C .扩大2倍D .不变8.PM2.5是指大气中直径小于或等于2.5微米的颗粒物,也称为可入肺颗粒物。

2.5微米等于0.0000025米,把0.0000025用科学记数法表示为( ) A .0.25×10–5米 B .2.5×10–7米 C .2.5×10–6米 D .25×10–7米9.下列运算中,正确的是( )A .;B .;C .;D .;10.下列变形正确的是( )A .y x =22y xB .a acb bc= C .ac a bc b= D .x m xy m y+=+11.与分式11a a -+--相等的式子是( ) A .11a a +- B .11a a -+ C .11a a +-- D .11a a --+ 12.若a =﹣0.22,b =﹣2-2,c =(﹣12)-2,d =(﹣12)0,则它们的大小关系是( ) A .a <b <c <d B .b <a <d <c C .a <d <c <bD .c <a <d <b13.如果把分式2x y zxyz-+中的正数x ,y ,z 都扩大2倍,则分式的值( )A .不变B .扩大为原来的两倍C .缩小为原来的14D .缩小为原来的1814.下列分式中,属于最简分式的是( ) A .42xB .11xx -- C .211x x +- D .224x x - 15.在某次数学小测中,老师给出了5个判断题.如图为张晓亮的答卷,每个小题判断正确得20分,他的得分应是( )A .100分B .80分C .60分D .40分16.将分式2a bab+中的a 、b 都扩大为原来的2倍,则分式的值( ) A .缩小到原来的12倍 B .扩大为原来的2倍 C .扩大为原来的4倍 D .不变17.1372x x-+-x 的取值范围是( ) A .3<x <72B .3≤x <72C .3≤x ≤72D .x ≥318.若分式21x -有意义,则( ) A .1x ≠ B .1x = C .0x ≠ D .0x = 19.将0.00086用科学记数法表示为( )A .8.6×104 B .8.60×104 C .8.6×10-4 D .8.6×10-620.若20.3a =-,23b -=-,021(3)3c d -⎛⎫=-=- ⎪⎝⎭,,则( ) A .a b c d <<< B .b a d c <<< C .a d c b <<< D .c a d b <<<21.若分式242x x --的值为0,则x 等于( )A .±2 B .±4 C .-2D .222.世界上最小的开花结果植物的果实像一个微小的无花果,质量只有0.000000076克,将0.000000076用科学记数法表示为( ) A .87.610⨯B .77.610-⨯C .87.610-⨯D .97.610-⨯23.下列等式成立的是( ) A .123a b a b +=+ B .212a b a b =++ C .2ab aab b a b=--D .a aa b a b=--++ 24.若把分式32aba b +中的a 、b 都缩小为原来的13,则分式的值( ) A .缩小为原来的13B .扩大为原来的6倍C .缩小为原来的19D .不变25.下列运算正确的是( )A 3=B .0(2)1-=C .2234a a a +=D .2325a a a ⋅=【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】根据分式为零的条件进行计算即可. 【详解】解:∵分式有意义且它的值为零, ∴分子为0,分母不为0A. 2m +10≠,分式的值不可能为零,不符合题意;B. 10≠,分式的值不可能为零,不符合题意;C. 2m+1=0m -10⎧⎨≠⎩无解,分式的值不可能为零,不符合题意;D.当 2m -1=0m+10⎧⎨≠⎩,即m=1时,分式的值为零,符合题意;故选:D 【点睛】本题主要考查分式为零的条件,(1)分子的值为零;(2)分母的值不为零;两个条件必须同时具备,缺一不可.2.C解析:C 【解析】 【分析】首先分别判断出x 与y 都扩大为原来的10倍后,分式的分子、分母的变化情况,然后判断出这个代数式的值和原来代数式的值的关系即可. 【详解】解:∵x 与y 都扩大为原来的10倍,∴5xy 扩大为原来的100倍,x+y 扩大为原来的10倍,∴5xy x y+的值扩大为原来的10倍, 即这个代数式的值扩大为原来的10倍. 故选:C . 【点睛】本题考查分式的基本性质:分式的分子与分母同乘(或除以)一个不等于0的整式,分式的值不变,要熟练掌握,解答此题的关键是分别判断出分式的分子、分母的变化情况.3.B解析:B 【解析】 【分析】先通分,再加减,最后化简.根据化简结果为整数,确定x 的取值个数. 【详解】 n=222218339x x x x ++++-- =()()()()()()()()2323218333333x x x x x x x x x -++-++-+-+-=()()262621833x x x x x ---+++-=()()()2333x x x ++-=23 x-当x-3=±1、±2,即x=4、2、1、5时分式23x-的值为整数.故选B.【点睛】本题考查了异分母分式的加减法及分式为整数的相关知识.解决本题的关键是根据化简结果得到分式值为整数的x的值.4.C解析:C【解析】【分析】根据题意,分式中的x和y都扩大2倍,则222()2242x y x y x yx y xy xy+++==⋅;【详解】解:由题意,分式xyyx+中的x和y都扩大2倍,∴222()2242x y x y x yx y xy xy+++==⋅;分式的值是原式的12,即缩小2倍;故选C.【点睛】本题考查了分式的基本性质,分式的分子与分母同乘(或除以)一个不等于0的整式,分式的值不变,分子、分母、分式本身同时改变两处的符号,分式的值不变.5.C解析:C【解析】【分析】代数式中有0指数幂和负整数指数的底数不能为0,再求x的取值范围;【详解】解:根据题意可知,x-1≠0且解得x≠1.故选:C.【点睛】本题考查负整数指数幂和0指数幂的底数不能为0.6.A解析:A【解析】先把原式展开,再根据题意2()(2)x ax b x --+的积不含x 的一次项和二次项,得知20a -=,20a b +=,然后求解即可. 【详解】2322()(2)222x ax b x x x ax ax bx b --+=+---- 32(2)(2)2x a x a b x b =+--+-,2()(2)x ax b x --+的积不含x 的一次项和二次项,∴2020a a b -=⎧⎨+=⎩,2a ∴=,4b =-,41216b a -∴==. 故选A . 【点睛】本题考查了多项式乘多项式,解题的关键是明确积不含x 的一次项和二次项,即它们的系数为零.7.D解析:D 【解析】 【分析】根据题意进行变形,发现实质上是分子、分母同时扩大2倍,根据分式的基本性质即可判断. 【详解】 根据题意,得 把分式a2a b+中的a 、b 都扩大2倍,得2a 2a a 22a 2b 2(2a b)2a b ==⨯+++,根据分式的基本性质,则分式的值不变. 故选D . 【点睛】此题考查了分式的基本性质.8.C解析:C 【解析】 【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a ×10﹣n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.由此即可解答.0.0000025=2.5×10﹣6,故选C.【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.9.D解析:D【解析】【分析】根据二次根式的加减运算法则、二次根式的性质、幂的运算性质和立方根的性质对各项进行分析判断即可得出答案.【详解】解:A项,,故本选项错误;B项,,由于不知x的正负,故本选项错误;C项,,故本选项错误;D项,,正确;故答案为D.【点睛】本题考查了幂的运算性质、二次根式的性质和运算、立方根的性质,熟知幂的运算性质、二次根式的性质和运算法则是解题的关键.10.C解析:C【解析】试题解析:A、分式的乘方不等于原分式,故A错误;B、当c=0时,结果不成立,故B错误;C、分式的分子分母都乘或除以同一个不为零的整式,故C正确;D、分式的分子分母都加同一个不为零的数,结果发生变化,故D错误.故选C.11.B解析:B【分析】根据分式的基本性质即可得出:分式的分子、分母、分式本身的符号,改变其中的任意两个,分式的值不变,据此即可解答.【详解】解:原式=1)(1)aa--+-(=11aa-+故选:B.本题考查分式的基本性质,解题关键是熟练掌握分式的基本性质.12.B解析:B【解析】【分析】根据负整数指数幂与正整数指数幂互为倒数,非零的零次幂等于1,可得答案.【详解】∵a=﹣0.22=﹣0.04;b=﹣2﹣2=﹣14=﹣0.25,c=(﹣12)﹣2=4,d=(﹣12)0=1,∴﹣0.25<﹣0.04<1<4,∴b<a<d<c,故选B.【点睛】本题考查了负整数指数幂,熟练掌握负整数指数幂与正整数指数幂互为倒数,非零的零次幂等于1是解题关键.13.C解析:C【分析】用2x、2y,2z去替换原分式中的x、y和z,利用分式的基本性质化简,再与原分式进行比较即可得到答案.【详解】∵把分式2x y zxyz-+中的正数x,y,z都扩大2倍,∴2222212 22244x y z x y z x y zx y z xyz xyz-⨯+-+-+==⨯⋅⋅.∴分式的值缩小为原来的1 4 .故选:C.【点睛】考查了分式的基本性质,解题关键把字母变化后的值代入式子中,然后化简,再与原式比较,得出结论.14.D解析:D【分析】根据最简分式的定义即可判断.【详解】解:42=2x x,故A选项错误;()11=111x x x x ---=---,故B 选项错误; ()()2111==1111x x x x x x ++-+--,故C 选项错误; 224xx -,故D 选项正确. 故选:D 【点睛】本题主要考查的是最简分式的定义,正确的掌握最简分式的定义是解题的关键.15.B解析:B 【分析】依据分式的化简,无理数定义,平方根定义,实数的大小比较方法依次判断各小题正确与否即可确定他的得分. 【详解】 因为c ac b++是最简分式不能在进行化简,故第1小题错误,他判断正确得20分; 因为227是分数属于有理数,不是无理数,所以第2小题错误,他判断正确得20分;因为0.6=-,所以第3小题错误,他判断错误不得分;因为23<<,所以112<<,所以第4小题正确,他判断正确得20分;数轴上的点可以表示无理数,故第5小题错误,他判断正确得20分. 故他应得80分,选择B 【点睛】此题考察分式的化简,无理数定义,平方根定义,实数的大小比较方法,熟练掌握才能正确判断.16.A解析:A 【分析】用2a ,2b 分别替换掉原分式中的a 、b ,进行计算后与原分式对比即可得出答案. 【详解】用2a ,2b 分别替换掉原分式中的a 、b ,可得:()2221=222822+++=⨯⨯⨯a b a ba b a b ab ab,所以分式缩小到原来的12倍, 故选A. 【点睛】本题考查了分式的基本性质,关键是根据条件正确的替换原式中的字母,然后化简计算.17.B解析:B【分析】根据二次根式的性质,被开方数大于等于0;分母中有字母,分母不为0.【详解】由题意,得:x﹣3≥0且7﹣2x>0,解得:3≤x72<.故选B.【点睛】本题考查了二次根式有意义的条件,正确解不等式是解题的关键.18.A解析:A【解析】【分析】根据分式有意义的条件是分母不等于零求解即可.【详解】解:∵要使分式21x-有意义∴10x-≠1x∴≠故选A.【点睛】本题考查了分式有意义的条件,熟练掌握分式有意义的条件是分母不等于零是解题的关键.19.C解析:C【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】将8600用科学记数法表示为:8.6×10-4.故选:C.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.20.B解析:B【分析】分别求出a 、b 、c 、d 的值,比较大小即可.【详解】20.30.09a =-=-2213139b -=-=-=- 01()3c =-=1 2211=(-3))9(3d -==- 故b a d c <<<故选:B【点睛】本题考查正指数与负指数的计算,注意负指数的运算规则.21.C解析:C【分析】根据分式为零的条件得到x 2-4=0且x-2≠0,然后分别解方程和不等式即可得到x 的值.【详解】 ∵分式242x x --的值为0, ∴x 2-4=0且x-2≠0,∴x=-2.故选:C .【点睛】本题考查了分式为零的条件:当分式的分子为零且分母不为零时,分式的值为零.22.C解析:C【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a ×10-n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】0.000000076用科学记数法表示为7.6×10-8.故选:C .【点睛】本题考查用科学记数法表示较小的数,一般形式为a ×10-n ,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.23.C解析:C【分析】根据分式的运算,分别对各选项进行运算得到结果,即可做出判断.【详解】A 、221b b a ab a +=+,故A 错误; B 、22a b +,分子分母具有相同的因式才可以约分,故B 错误; C 、2()ab ab a ab b b a b a b ==---,故C 正确; D 、a a a b a b=--+-,故D 错误; 故选C .【点睛】本题主要考查了分式的运算,熟悉分式的通分以及约分的重要法则是解决本题的关键.24.A解析:A【分析】 把分式32ab a b +中的a 用13a 、b 用13b 代换,利用分式的基本性质计算即可求解. 【详解】 把分式32ab a b +中的a 、b 都缩小为原来的13, 则分式变为1133311233a b a b ⨯⨯⨯+, 则:1133311233a b a b ⨯⨯⨯+=1332ab a b⨯+, 所以把分式32ab a b +中的a 、b 都缩小为原来的13时分式的值也缩小为原来的13. 故选:A .【点睛】本题考查了分式的基本性质:分式的分子与分母同乘(或除以)一个不等于0的整式,分式的值不变.25.B解析:B【分析】直接利用立方根,零指数幂,合并同类项法则同底数幂的乘法法则化简得出答案.【详解】3≠,无法计算,故此选项错误;B. 0(2)1-=,故此选项正确;C. 22234a a a +=,故此选项错误;D. 2326a a a ⋅=,故此选项错误;故选:B.【点睛】此题考查合并同类项,零指数幂,立方根,解题关键在于掌握运算法则.。

相关文档
最新文档