2015-2016年山东省临沂市平邑县八年级上学期期末数学试卷和答案
2015-2016学年度人教版八年级上学期数学期末试卷及答案(2套)
2015-2016学年度⼈教版⼋年级上学期数学期末试卷及答案(2套)2015-2016学年度⼋年级上学期数学期末试卷(⼀)⼀、选⼀选, ⽐⽐谁细⼼(本⼤题共12⼩题, 每⼩题3分, 共36分, 在每⼩题给出的四个选项中, 只有⼀项是符合题⽬要求的) 1.计算)A.2B.±2C.-2D.4 2.计算23()ab 的结果是() A.5abB.6abC.35a bD.36a b3,则x 的取值范围是() A.x >5B.x ≥5C.x ≠5D.x ≥04.如图所⽰,在下列条件中,不能..判断△ABD ≌△BAC 的条件是( ) A.∠D =∠C ,∠BAD =∠ABCB.∠BAD =∠ABC ,∠ABD =∠BACC.BD =AC ,∠BAD =∠ABCD.AD =BC ,BD =AC5.如图,六边形ABCDEF 是轴对称图形,CF 所在的直线是它的对称轴,若∠AFE+∠BCD =280°,则∠AFC+∠BCF 的⼤⼩是() A.80°B.140°C.160°D.180°6.下列图象中,以⽅程220y x --=的解为坐标的点组成的图象是()7.任意给定⼀个⾮零实数,按下列程序计算,最后输出的结果是()FEDCBAA.mB.1m +C.1m -D. 2m 8.已知⼀次函数(1)y a x b =-+的图象如图所⽰,那么a 的取值范围是( )A.1a >B.1a <C.0a >D.0a <9.若0a >且2x a =,3y a =,则x ya -的值为()A.1-B.1C.23D.3210.如图,已知△ABC 中,∠ABC=45°,AC=4,H 是⾼AD 和BE 的交点,则线段BH 的长度为()B.C.5D.411.如图,是某⼯程队在“村村通”⼯程中修筑的公路长度y (⽶)与时间x (天)之间的关系图象.根据图象提供的信息,可知该公路的长度是( )⽶. A.504 B.432 C.324 D.72012.直线y=kx+2过点(1,-2),则k 的值是() A .4 B .-4 C .-8 D .8⼆、填⼀填,看看谁仔细(本⼤题共10⼩题,每⼩题3分,共30分,请你将最简答案填在“ ”上)13.⼀个等腰三⾓形的⼀个底⾓为40°,则它的顶⾓的度数是 . 14.观察下列各式:2(1)(1)1x x x -+=-;23(1)(1)1x x x x -++=-;324(1)(1)1x x x x x -+++=-;……(第10题图)(第11题图)根据前⾯各式的规律可得到12(1)(1)n n n x x x x x ---+++++=… .15.计算: -28x 4y 2÷7x 3y =16.如图所⽰,观察规律并填空:.17.若a 42a y=a 19,则 y=_____________. 18.计算:(52)20083(-25)20093(-1)2007=_____________. 19.已知点A (-2,4),则点A 关于y 轴对称的点的坐标为_____________. 20. 2-2的相反数是,绝对值是 .21. 0.01的平⽅根是_____,-27的⽴⽅根是______,1_ _. 22. 16的平⽅根为_________.三、解⼀解,试试谁更棒(本⼤题共9⼩题,共72分.)17.(本题4分)计算:(8)()x y x y --.18.(本题5分)分解因式:3269x x x -+.19.(本题5分)已知:如图,AB=AD,AC=AE,∠BAC=∠DAE.求证:BC=DE.20.(4)先化简在求值,2()()()y x y x y x y x +++--,其中x = -2,y = 12.21.(本题5分)2008年6⽉1⽇起,我国实施“限塑令”,开始有偿使⽤环保购物袋.为了满⾜市场需求,某⼚家⽣产A B ,两种款式的布质环保购物袋,每天共⽣产4500个,两EDCBA种购物袋的成本和售价如下表,设每天⽣产A种购物袋x个,每天共获利y元.(1)求出y与x的函数关系式;(2)如果该⼚每天最多投⼊成本10000元,那么每天最多获利多少元?=的图象l是第⼀、三象限的23.(本题10分)如图,在平⾯直⾓坐标系中,函数y x⾓平分线.实验与探究:由图观察易知A(0,2)关于直线l的对称点A'的坐标为(2,0),请在图中分别标明B(5,3) 、C(-2,5) 关于直线l的对称点B'、C'的位置,并写出它们的坐标: B'、C';归纳与发现:结合图形观察以上三组点的坐标,你会发现:坐标平⾯内任⼀点P(m,n)关于第⼀、三象限的⾓平分线l的对称点P'的坐标为;参考答案及评分标准⼀、选⼀选,⽐⽐谁细⼼(每⼩题3分,共36分)⼆、填⼀填, 看看谁仔细(每⼩题3分,共12分)13. 100°. 14.11n x+-. 15. x >-2 . 16.105°三、解⼀解, 试试谁更棒(本⼤题共9⼩题,共72分)17.解:(8)()x y x y --=2288x xy xy y --+ ……………………………4分 =2298x xy y -+ ……………………………6分18.解:3269x x x -+=2(69)x x x -+ ……………………………3分 =2(3)x x - ……………………………6分 19.证明:∵∠BAD=∠CAE ∴∠BAC=∠DAE ……………………………1分在△BAC 和△DAE 中BA DA BAC DAE AC AE =??∠=∠??=?∴△BAC ≌△DAE …………………………………………………………4分∴BC=DE …………………………………………………………………6分20.解:原式22222x xy y x y x ??=-++-÷?? 222x xy x ??=-÷??22x y =- ………………………………………………5分当11,2x y =-=,原式=-3 ………………………………………………7分 21.解:⑴5152S x =-+ (06)x << ………………………………………4分⑵由515102x -+=,得x=2 ∴P 点坐标为(2,4) …………………………………………………8分22.解:(1)根据题意得:=(2.3-2)(3.53)(4500)y x x +--=0.2+2250x - ………………………………4分(2)根据题意得:23(4500)10000x x +-≤解得3500x ≥元0.20k =-< ,y ∴随x 增⼤⽽减⼩∴当3500x =时,0.2350022501550y =-?+=答:该⼚每天⾄多获利1550元. ………………………………………8分 23.解:(1)如图:(3,5)B ',(5,2)C '- …………………………………2分(2)(n,m) ………………………………………………………………3分 (3)由(2)得,D(0,-3) 关于直线l 的对称点D '的坐标为(-3,0),连接D 'E 交直线l 于点Q ,此时点Q 到D 、E 两点的距离之和最⼩ …………………4分设过D '(-3,0) 、E(-1,-4)的设直线的解析式为b kx y +=,则304k b k b -+=??-+=-?,.∴26k b =-??=-?,.∴26y x =--.由26y x y x =--??=?,.得22x y =-??=-?,.∴所求Q 点的坐标为(-2,-2)………………………………………9分24.解:⑴AFD DCA ∠=∠(或相等) ……………………………………2分(2)AFD DCA ∠=∠(或成⽴) ……………………………………3分理由如下:由△ABC ≌△DEF∴AB DE BC EF ==,,ABC DEF BAC EDF ∠=∠∠=∠,ABC FBC DEF CBF ∴∠-∠=∠-∠ ABF DEC ∴∠=∠在ABF △和DEC △中,AB DE ABF DEC BF EC =??∠=∠??=?,,,ABF DEC BAF EDC ∴∠=∠△≌△,BAC BAF EDF EDC FAC CDF ∴∠-∠=∠-∠∠=∠, AOD FAC AFD CDF DCA ∠=∠+∠=∠+∠AFD DCA ∴∠=∠ ………………………………………………………8分(3)如图,BO AD ⊥. …………………………………………………9分………………………………………………10分25.解:⑴等腰直⾓三⾓形 ………………………………………………1分∵2220a ab b -+= ∴2()0a b -= ∴a b =∵∠AOB=90° ∴△AOB 为等腰直⾓三⾓形 …………………4分⑵∵∠MOA+∠MAO=90°,∠MOA+∠MOB=90° ∴∠MAO=∠MOB ∵AM ⊥OQ ,BN ⊥OQ ∴∠AMO=∠BNO=90°在△MAO 和△BON 中MAO MOB AMO BNO OA OB ∠=∠??∠=∠??=?∴△MAO ≌△NOB ∴OM=BN,AM=ON,OM=BN∴MN=ON-OM=AM-BN=5 ……………………………………8分⑶PO=PD 且PO ⊥PDADO F CB (E ) G如图,延长DP 到点C ,使DP=PC,连结OP 、OD 、OC 、BC在△DEP 和△CBP DP PC DPE CPB PE PB =??∠=∠??=?∴△DEP ≌△CBP ∴CB=DE=DA,∠DEP=∠CBP=135°在△OAD 和△OBC DA CB DAO CBO OA OB =??∠=∠??=?∴△OAD ≌△OBC∴OD=OC,∠AOD=∠COB ∴△DOC 为等腰直⾓三⾓形∴PO=PD ,且PO ⊥PD. ……………………………………………12分2015-2016学年度⼋年级上学期数学期末试卷(⼆)⼀、选择题: 1.在0,31-, π,9这四个数中,是⽆理数的是() A .0 B .-31C. πD. 92.下列乘法中,不能运⽤平⽅差公式进⾏运算的是()A .(x +a )(x -a )B .(a+b )(-a -b )C .(-x -b )(x -b )D .(b +m )(m -b )3.在下列运算中,计算正确的是()A. a a a 326?=B. a a a 824÷=C. ()a a 235=D. ()ab a b 2224= 4. 如图,DEF ABC ??≌,点A 与D ,点B 与E 分别是对应顶点,BC=5cm ,BF=7cm ,则EC 的长为()A. 1cmB. 2cmC. 3cmD. 4cm5、点P (3,2)关于x 轴的对称点'P 的坐标是()A .(3,-2)B .(-3,2)C .(-3,-2)D .(3,2)AD G6.某同学⽹购⼀种图书,每册定价20元,另加书价的5%作为快递运费。
八年级上期末数学试题含答案
第1页 共3页2015-2016学年度第一学期八年级期末检测题数学试卷一、选择题(每小题3分,共18分) 1.下列计算正确的是(). A .()236aa = B . 22a a a =∙ C .326a a a += D .()3339a a =2.使分式有意义的x 的取值范围是( )3.某种生物孢子的直径为0.000 63m ,用科学记数法表示为( )4.一个等边三角形的对称轴共有( )5.已知三角形的两边长分别为4和9,则下列数据中能作为第三边长的是( )6.如图,则图中的阴影部分的面积是( )二、填空题(每小题3分,共24分) 7.分解因式:2a 2﹣4a+2= _________ .8.点(﹣3,﹣5)关于y 轴对称的点的坐标是 _________ . 9.计算:(4a ﹣3b )2= _________ . 10.分式方程﹣=0的解是 _________ .11.如图,点A 、D 、B 、E 在同一直线上,△ABC ≌△DEF ,AB=5,BD=2,则AE= ________. 12. 若x 2+(m ﹣3)x+16是完全平方式,则m=__________.13. 若一个多边形的每一个外角都等于40°,则这个多边形的边数是__________.14. 等腰三角形一腰上的高与另一腰的夹角为30°,则等腰三角形顶角的度数是________. 三、运算题(共26分) 15.计算(4X2=8分)(1)(a ﹣1)(a 2+a+1) (2)()()2211x x x ++-16.分解因式(4X2=8分) (1) ab 3-a 3b (2) a 3-4a17.解分式方程(5分) 18.先化简再求值(5分):223111x x x +=--x x x x x 2124222+⋅⎪⎪⎭⎫ ⎝⎛-+-,其中=x 2第2页 共3页四、解答题(共32分)19.(5分)如图,已知∠BAC=60°,D 是△ABC 的边BC 上的一点,且∠CAD=∠C ,∠ADB=80°.求∠B 的度数.20.(5分)如图,小河CD 边有两个村庄A 村、B 村,现要在河边建一自来水厂E 为A 村与B村供水,自来水厂建在什么地方到A 村、B 村的距离和最小? 请在下图中找出点E 的位置。
中学15—16学年上学期八年级期末考试数学试题(附答案)
学生学业质量调查分析与反馈八 年 级 数 学(试卷分值100分,考试时间100分钟,考试形式:闭卷, )一、选一选,比比谁细心(本大题共8个小题,每小题2分,共16分. 在每小题给出的 四个选项中,只有一项是符合题目要求的,把这个正确的选项填在下面表格的相应位置)1.下列图形中,不是..轴对称图形的是( ▲ )ABCD2.下列调查中,适合普查的是( ▲ ) A .中学生最喜爱的电视节目 B .某张试卷上的印刷错误 C .质检部门对各厂家生产的电池使用寿命的调查 D .中学生上网情况3.在22、4π、722 、1.732、16这五个数中,无理数有( ▲ )个A .1B .2C .3D .44. 已知等腰三角形中一个角等于100o ,则它的顶角是( ▲ ) A .40oB .50oC .80oD .100o5.已知点M (1,a )和点N (2,b )是一次函数y=﹣2x+1图象上的两点,则a 与b 的 大小关系是( ▲ ) A .a >bB .a =bC .a <bD .以上都不对6.在元旦联欢会上, 3名小朋友分别站在△ABC 三个顶点的位置上,他们在玩抢凳子游戏,要求在他们中间放一个木凳,谁先抢坐到凳子上谁获胜,为使游戏公平,则凳子应放置的最适当的位置是在△ABC 的( ▲ ) A .三边中线的交点B .三条角平分线的交点C .三边垂直平分线的交点D .三边上高的交点7.若正比例函数y=kx (k≠0)的图象在第二、四象限,则一次函数y=x+k 的图象大致是( ▲ )ABCD8.在平面直角坐标系中,对于平面内任意一点(y x ,),若规定以下两种变换f 和g : ①f (y x ,)=(x y ,)如f (2,3)=(3,2) ②g (y x ,)=(y x --,)如g (2,3)=(﹣2,﹣3).按照以上变换有:f (g (2,3))=f (﹣2,﹣3)=(﹣3,﹣2),那么g (f (﹣6,7)) 等于( ▲ )A .(7,6)B .(7,﹣6)C .(﹣7,6)D .(﹣7,﹣6) 二、填一填,看看谁仔细(本大题共10小题,每小题2分,共20分) 9.3的平方根是 _____________.10.取2=1.4142135623731…的近似值,若要求精确到0.01,则≈2___________. 11.据统计,近几年全世界森林面积以每年约1700万公顷的速度消失,为了预测未来20年世界森林面积的变化趋势,可选用__________统计图来表示收集到的数据.(条形、扇形、折线中选填一个)12.如图,AC ⊥CB ,AD ⊥DB ,要使ΔABC ≌ΔABD ,可补充的一个条件是 ;第12题图 第13题图13.如图,已知函数)0(≠+=a b ax y 和)0(≠=k kx y 的图像交于点P ,则根据图像可得,二元一次方程组⎩⎨⎧=+=kxy bax y 的解是________________ .14.如图,在△ABC 中,AD ⊥BC 于点D ,BD=CD ,若BC=6, AD=5,则图中阴影部分的面积为________________.15.一个三角形三边长的比为3:4:5,它的周长是24cm .这个三角形的面积为_________ cm 2. 16.下列事件:①从装有1个红球和2个黄球的袋子中摸出的1个球是白球;②随意调查1位青年,他接受过九年制义务教育;③花2元买一张体育彩票,喜中500万大奖;④抛掷1个小石块,石块会下落.估计这些事件的可能性大小,并将它们的序号按从小到大排列:____________________________.17.小聪用刻度尺画已知角的平分线,如图,在∠MAN 两边上分别量取AB = AC ,AE = AF ,连接FC 、EB 交于点D ,作射线AD ,则图中全等的三角形共有____________对.第14题图 第17题图 第18题图18.如图,点M 是直线32+=x y 上的动点,过点M 作平行于y 轴的直线交x 轴于点N ,在y 轴上取一点P ,使△MNP 为等腰直角三角形,请写出符合条件的点P 坐标____________________________.三、解答题(本大题共有7小题,共64分.解答时应写出文字说明、推理过程或演算步骤) 19.计算:(每小题4分,共8分)(1)求x 的值: (x-1)2=25 (2)计算:4127)5(32+---20. (本题满分9分)为保证中小学生每天锻炼一小时,东台市某中学开展了形式多样的体育活动项目,小明对某班同学参加锻炼的情况进行了统计,并绘制了下面的统计图(1)和图(2).(1)某班同学的总人数为人;(2)请根据所给信息在图(1)中将表示“乒乓球”项目的图形补充完整;(3)扇形统计图(2)中表示”篮球”项目扇形的圆心角度数为.21.(本题满分9分) 如图是规格为8×8的正方形网格,每个小方格都是边长为1的正方形,请在所给网格中按下列要求操作:(1)在网格中建立平面直角坐标系,使A点坐标为(﹣2,4);(2)在第二象限内的格点(网格线的交点)上画一点C,使点C与线段AB组成一个以AB为底的等腰三角形,且腰长是无理数,则C点坐标是______________;(3)画出△ABC关于关于y轴对称的△A′B′C′.22.(本题满分8分)如图,△ABC中,AB=AC,AB的垂直平分线DE分别交AC、AB于点D、E.(1)若∠A=50°,求∠CBD的度数;(2)若AB=8,△CBD周长为13,求BC的长.23.(本题满分10分)数学实验:画∠AOB=90°,并画∠AOB 的平分线OC.(1)将一块足够大的三角尺的直角顶点落在OC 的任意一点P 上,使三角尺的两条直角边分别与OA 、OB 交于点E 、F (如图①).度量PE 、PF 的长度,PE ____PF (填>, <,=) (2)将三角尺绕点 P 旋转(如图②),①PE 与PF 相等吗?若相等请进行证明,若不相等请说明理由. ②若2OP ,请直接写出四边形OEPF 的面积:________________.24. (本题满分10分) 甲、乙两人商定举行一次远足活动, A 、B 两地相距10 千米,甲从 A 地出发匀速步行到 B 地,乙从 B 地出发匀速步行到 A 地.两人同时出发,相向而行,设步行时间为x 小时,甲、乙两人离 A 地的距离分别为1y 千米、2y 千米,1y 、2y 与x 的函数关系图像如图所示,根据图像解答下列问题: (1)直接写出1y 、2y 与x 的函数关系式;(2)求甲、乙两人出发后,几小时相遇?相遇时乙离 A 地多少千米? (3)甲、乙两人首次相距 4 千米时所用时间是多少小时?25.(本题满分10分)如图,在平面直角坐标系xOy中,已知点A(-1,0),点B(0,2),点C(3,0),直线a为过点D(0,-1)且平行于x轴的直线.(1)直接写出点B关于直线a对称的点E的坐标_______;(2)若P为直线a上一动点,请求出△PBA周长的最小值和此时P点坐标;(3)若M为直线a上一动点,且S△ABC=S△MAB,请求出M点坐标.2015-2016第一学期八年级数学期末考试答案一、选一选,比比谁细心二、填一填,看看谁仔细9.3±;10.1.41;11.折线;12.答案不唯一;13.⎩⎨⎧-=-=24y x ;14.215;15.24;16.①③②④;17.4; 18.(0,0),(0,43),(0,-3),(0,1).三、解答题19.(1)-4,6(一个2分);(2)4127)5(32+--- =5—(—3)+21(3分)对一个得1分 =8.5 (4分) 20.(1)50; (3分)(2)略,条形图上应标注5或有水平虚线表示对准纵坐标5;(3分) (3)144°. (3分)21. 解答: 解:(1)如图所示,建立平面直角坐标系;(3分) (2)点C 的坐标为(﹣1,1);(3分) (3)△A'B'C'如图所示.(3分)22.(1)∵AB=AC ,∠A=50°∴∠ABC=∠C=65°……………………..2分又∵DE 垂直平分AB∴ DA=DB ,∴∠ABD=∠A=50° ……………………..4分∴∠DBC=15° ……………………..5分(2)∵DE 垂直平分AB∴ DA=DB ,∴ DB+DC=DA+DC=AC …………………..7分又∵AB=AC=8,△CBD 周长为13∴BC=5 …………………..8分23.(1) = ………………..2分(2)解:①PE=PF ……………….3分过点P 作PM ⊥OA ,PN ⊥OB ,垂足是M ,N ,则∠PME=∠PNF=90°,∵OP 平分∠AOB ,∴PM=PN ,∵∠AOB=∠PME=∠PNF=90°,∴∠MPN=90°,∵∠EPF=90°,∴∠MPE=∠FPN ,在△PEM 和△PFN 中⎪⎩⎪⎨⎧∠=∠=∠=∠NPF MPE PNPM PNF PME∴△PEM ≌△PFN ,∴PE=PF .……………………………………………………….8分 ②若2=OP ,请直接写出四边形OEPF 的面积:___1___.………..10分24.解:(1)y 1=4x (0≤x ≤2.5),y 2= -5x+10(0≤x ≤2);………..4分(2)根据题意可知:两人相遇时,甲、乙离A 地的距离相等,即y 2=y 1, 由此得一元一次方程-5x+10=4x ,解这个方程,得x=(小时), 当x=时,y 2=-5×+10=(千米)。
2015-2016学年度第一学期期末八年级数学试题(含答案)
2015—2016学年度第一学期期末考试八 年 级 数 学 试 卷试卷说明:本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共4页,满分120分,考试时间100分钟。
答题前,学生务必将自己的姓名和学校、班级、学号等填写在答题卷上;答案必须写在答题卷各题目指定区域内的相应位置上;考试结束后,只需将答题卷交回。
第Ⅰ卷(选择题)一、选择题(本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项正确) 1、9的平方根是( ).A .3B .-3C .±3D .±32、将下列长度的三根木棒首尾顺次连接,能组成直角三角形的是( ).A .1、2、3B . 2、3、4C . 3、4、5D .4、5、63、下列说法:①实数与数轴上的点一一对应;②2a 没有平方根;③任何实数的立方根有且只有一个;④平方根与立方根相同的数是0和1.其中正确的有( ) A .1个 B .2个 C .3个 D .4个4、下列各组图形,可以经过平移变换由一个图形得到另一个图形的是( ).A B C D5、若一个多边形的内角和等于720°,则这个多边形的边数是( ). A .5 B .6 C .7 D .86、为筹备本班元旦联欢晚会,在准备工作中,班长对全班同学爱吃什么水果作了民意调查,再决定最终买哪种水果,下面的调查数据中,他最关注的是( ) A .中位数 B .平均数 C .加权平均数 D .众数7、如图,已知棋子“车”的坐标为(-2,3),棋子“马” 的坐标为 (1,3),则棋子“炮”的坐标为( ).A .(3,1)B .(2,2)C .(3,2)D .(-2,2)8.下列一次函数中,y 的值随着x 值的增大而减小的是( ). A .y =x B .y =-x C .y =x +1 D .y = x -19、如图所示,两张等宽的纸条交叉重叠在一起,则重叠部分ABCD 一定是( ). A .菱形 B .矩形 C .正方形 D .梯形10、一水池蓄水20 m 3,打开阀门后每小时流出5 m 3,放水后池内剩下的水的立方数Q (m 3)与放水时间t (时)的函数关系用图表示为( )A B C D(第9题图)(第7题图)第Ⅱ卷(非选择题)二、填空题(本大题共5小题,每小题3分,共15分,将答案填写在题中横线上) 11、比较大小:3(填“>”、“<”、或“=”).12、写出一个你所学过的既是轴对称又是中心对称图形的四边形: .13、如图,是用形状、大小完全相同的等腰梯形密铺成的图案,则这个图案中的等腰梯形的底角(指锐角)是 度.14、 如图,若直线l 1:32-=x y 与l 2:3+-=x y 相交于点P ,则根据图象可得,二元一次方程组⎩⎨⎧=+=-332y x y x 的解是 . 15、 如图,在直角坐标平面内的△ABC 中,点A 的坐标为(0,2),点C 的坐标为(5,5),要使以A 、B 、 C 、D 为顶点的四边形是平行四边形,且点D 坐标在第一象限,那么点D 的坐标是 .三、解答题(本大题共10小题,共75分。
(2021年整理)2015--2016学年八年级上册期末考试数学试题及答案【新课标人教版】
(完整)2015--2016学年八年级上册期末考试数学试题及答案【新课标人教版】编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整)2015--2016学年八年级上册期末考试数学试题及答案【新课标人教版】)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(完整)2015--2016学年八年级上册期末考试数学试题及答案【新课标人教版】的全部内容。
2015—2016学年度第一学期末测试一、选择题:1.如下书写的四个汉字,是轴对称图形的有( )个. A 。
1 B2 C.3 D.4 2。
与3—2相等的是( )A.91B.91- C.9D.-9 3。
当分式21-x 有意义时,x 的取值范围是( )A.x <2 B 。
x >2 C.x ≠2 D 。
x ≥2 4.下列长度的各种线段,可以组成三角形的是( ) A 。
1,2,3B.1,5,5 C 。
3,3,6 D 。
4,5,6 5.下列式子一定成立的是( )A 。
3232a a a =+B 。
632a a a =• C. ()623a a = D 。
326a a a =÷6.一个多边形的内角和是900°,则这个多边形的边数为( ) A.6 B 。
7 C.8 D 。
97。
空气质量检测数据pm2。
5是值环境空气中,直径小于等于2。
5微米的颗粒物,已知1微米=0。
000001米,2。
5微米用科学记数法可表示为( )米。
A 。
2。
5×106B.2.5×105C 。
2.5×10—5D 。
2.5×10-68。
已知等腰三角形的一个内角为50°,则这个等腰三角形的顶角为( )。
第一学期八年级数学期末试卷及答案
2015-2016学年度第一学期期末测试试卷参考答案和评分标准二、填空题(每小题3分,共18分)11. 2≠ 12.十 13.)9)(9(-+a a 14. 4 15. 100 16. 240三、解答题(一)(每小题5分,共15分) 17.解:原式=32422)31(24-•-•-y yx y x ————— 1分 =3328-•yy ————— 3分= 16 —————— 5分18.解:原式=)44(22y x x y +- —————— 2分=2)2(y x y - —————— 5分 19.解:设多边形的一个内角为x °,则一个外角为(x 31)°,依题意得: ———— 1分13518031==+x x x —————— 3分 8)13531(360=⨯÷∴或8)135-180(360=÷ —————— 4分答:多边形的边数是8 。
—————— 5分四、解答题(二)(每小题7分,共21分)20. 证明:∵ AE=CF∴ AE+EF=CF+FE即 AF=CE—————— 1分∵ AD ∥BC∴ ∠A=∠C —————— 2分在△ADF 和△CBE 中,AD=CB ∠A=∠CAF=CE ———— 4分 ∴△ADF ≌△CBE(SAS) ------------- 5分 ∴ DF=BE ------------- 6分21.解:原式=1)1111(2+÷-++x x x x =2111)1)(1(xx x x x +•-+-+ ———— 2分=221111xx x x +•-+- =11-+x x ———— 4分 当3=x 时,原式= 2241313==-+ ———— 7分22.解:(1)h AB S ABC •=∆21=3521⨯⨯=215————2分(2)△111C B A 为所求作的图形。
———— 4分 (3)1A (1,5),1B (1,0),1C (4,3) ———— 7分五、解答题(三)(每小题8分,共16分)23.解:设足球的单价是x 元,则篮球的单价为(40+x )元,依题意得: ———1分xx 900401500=+ ———4分 方程两边乘)40(+x x ,得 360009001500+=x x解得 60=x ———6分经检验,60=x 是原分式方程的解。
2015—2016学年度第一学期初二期末质量检测数学试卷附答案
2015—2016学年度第一学期初二期末质量检测数学试卷2016.1考生须知1.本试卷共6页,共三道大题,30道小题,满分120分.考试时间120分钟。
2.在试卷和答题卡上准确填写学校名称、姓名和准考证号。
3.试题答案一律填涂或书写在答题卡上,在试卷上作答无效。
4. 在答题卡上,选择题用2B 铅笔作答,其他试题用黑色字迹签字笔作答。
5. 考试结束,请将本试卷、答题卡一并交回。
一、选择题(本题共30分,每小题3分)下列各题均有四个选项,其中只有一个..是符合题意的. 1.9的算术平方根是 A .3B .-3C .±3D .±312. 若2x -表示二次根式,则x 的取值范围是 A .x ≤2 B. x ≥ 2 C. x <2 D.x >2 3.若分式21+-x x 的值为0,则x 的值是 A .-2 B .-1 C . 0 D .14.剪纸是我国最古老的民间艺术之一,被列入第四批《人类非物质文化遗产代表作名录》,下列剪纸作品中,是轴对称图形的为5.在下列二次根式中是最简二次根式的是 A.12B.4C. 3D. 86.下列各式计算正确的是A .235+=B .43331-=C .233363⨯=D .2733÷=7.在一个不透明的箱子里,装有3个黄球、5个白球、2个黑球,它们除了颜色之外没有其他区别. 从箱子里随意摸出1个球,则摸出白球的可能性大小为A.0.2B.0.5C. 0.6D. 0.88.如图,一块三角形玻璃损坏后,只剩下如图所示的残片,对图中的哪些A B C D尺规作图:作一个角等于已知角. 已知:∠AO B.求作:一个角,使它等于∠AO B.数据测量后就可到建材部门割取符合规格的三角形玻璃 A .∠A ,∠B ,∠C B .∠A ,线段AB ,∠BC .∠A ,∠C ,线段ABD .∠B ,∠C ,线段AD9.右图是由线段AB ,CD ,DF ,BF ,CA 组成的平面图形,∠D=28°,则∠A+∠B+∠C+∠F 的度数为 A .62°B .152°C .208°D .236°10.如图,直线L 上有三个正方形a b c ,,,若a c ,的面积分别为1和9,则b 的面积为A .8B .9 C.10 D.11二、填空题(本题共21分,每小题3分) 11.如果分式23x +有意义,那么x 的取值范围是____________. 12.若实数x y ,满足2-2(3)0x y +-=,则代数式+x y 的值是 .13.如果三角形的两条边长分别为23cm 和10cm ,第三边与其中一边的长相等,那么第三边的长为___________. 14.若a <1,化简2(1)1a --等于____________.15.已知112x y -=,则分式3232x xy yx xy y+---的值等于____________. 16.如图,在△ABC 中,AB =4,AC =3,AD 是△ABC 的角平分线,则△ABD 与△ACD 的面积之比是 .17.阅读下面材料:在数学课上,老师提出如下问题:G FEDCB Acb aLDCBA ODCBA(1)作射线O ′A ′;(2)以O 为圆心,任意长为半径作弧,交OA 于C ,交OB 于D ; (3)以O ′为圆心,OC 为半径作弧C ′E ′,交O ′A ′于C ′; (4)以C ′为圆心,CD 为半径作弧,交弧C ′E ′于D ′; (5)过点D ′作射线O ′B ′.所以∠A ′O ′B ′就是所求作的角.小强的作法如下:老师说:“小强的作法正确.”请回答:小强用直尺和圆规作图'''A O B AOB ∠=∠,根据三角形全等的判定方法中的_______,得出△'''D O C ≌△DOC ,才能证明'''A O B AOB ∠=∠.三、解答题(本题共69分,第18-27题,每小题5分,第28题6分,第29题7分,第30题6分)18.计算:03982-3-2-+-().19.计算:18312-2⨯÷.20.计算:(21)(63)+⨯-.21.计算: 11(1)1a a a a+-+⋅+.22.如图,在Rt △ABC 中,∠BAC =90°,点D 在BC 边上,且△ABD 是等边三角形.若AB =2,求BC 的长.E'O'D'C'B'A'23.解方程:12211x x x +=-+.24.如图,点C ,D 在线段BF 上,AB DE ∥,AB DF =,A F ∠=∠.求证:BC DE =.25. 先化简:22211a a a a a a --⎛⎫-÷ ⎪+⎝⎭,然后从-1,0,1,2中选一个你认为合适的a 值,代入求值.26.小红家最近新盖了房子,室内装修时,木工师傅让小红爸爸去建材市场买一块长3m ,宽2.2m 的薄木板用来做家居面,到了市场爸爸看到满足这个尺寸的木板有点大,买还是不买爸爸犹豫了,因为他知道他家门框高只有2m,宽只有1m ,他不知道这块木板买回家后能不能完整的通过自家门框.请你替小红爸爸解决一下难题,帮他算一算要买的木板能否通过自家门框进入室内.(备用图可供做题参考,薄木板厚度可以忽略不计)27.列方程解应用题李明和王军相约周末去怀柔图书馆看书,请根据他们的微信聊天内容求李明乘公交、王军骑自行车每小时各行多少公里?FED CBA 备用图HGF EDCBA门框薄木板28.已知:如图,ABC△中,45ABC∠=°,CD AB⊥于D,BE平分ABC∠,且BE AC⊥于E,与CD相交于点F H,是BC边的中点,连结DH与BE相交于点G.(1)判断AC与图中的那条线段相等,并证明你的结论;(2)若CE 的长为3,求BG的长.29.已知:在△ABC中,D为BC边上一点,B,C两点到直线AD的距离相等.(1)如图1,若△ABC是等腰三角形,AB=AC,则点D的位置在;(2)如图2,若△ABC是任意一个锐角三角形,猜想点D的位置是否发生变化,请补全图形并加以证明;(3)如图3,当△ABC是直角三角形,∠A=90°,并且点D满足(2)的位置条件,用等式表示线段AB,AC,AD之间的数量关系并加以证明.CBA图1AB C图2AB C图3HG F EDCBA图3lC ABP A 'D30.请阅读下列材料:问题:如图1,点,A B 在直线l 的同侧,在直线l 上找一点P ,使得AP BP +的值最小.小明的思路是:如图2所示,先做点A 关于直线l 的对称点A ',使点',A B 分别位于直线l 的两侧,再连接A B ',根据“两点之间线段最短”可知A B '与直线l 的交点P 即为所求.A 'P BAll图2图1AB请你参考小明同学的思路,探究并解决下列问题: (1)如图3,在图2的基础上,设AA '与直线l 的交点为C ,过点B 作BD ⊥l ,垂足为D . 若1CP =,1AC =,2PD =,直接写出AP BP +的值; (2)将(1)中的条件“1AC =”去掉,换成“4BD AC =-”,其它条件不变,直接写出此时AP BP +的值;(3)请结合图形,求()()223194m m -++-+的最小值.数学试卷答案及评分参考2016.1一、选择题(本题共30分,每小题3分)下列各题均有四个选项,其中只有一个..是符合题意的. 题 号 1 2 3 4 5 6 7 8 9 10 答 案 ABDBCDBBCC二、填空题(本题共21分,每小题3分) 题 号11121314151617答 案3x ≠-2+323cm -a 143SSS三、解答题(本题共69分,第18-27题,每小题5分,第28题6分,第29题7分,第30题6分) 18.解:原式=3-22-1+………………4分 =2………………………………5分19.解:原式=22412-2÷………………3分 =12-22………………………………4分 =122………………………………5分 20.解:原式=12663-+-………………3分=123-……………………………4分 =233-=3………………………………5分21.解:原式=211a a a-+…………………………3分=2a a…………………………4分a =…………………………5分22.解:∵△ABD 是等边三角形,∴∠B =∠BAD =∠AD B =60°, ∵AB =2,∴BD=AD=2.………………………2分∵∠BAC =90°,∴∠DA C =90°﹣60°=30°.………………………3分∵∠AD B =60°,∴∠C =30°.………………………4分 ∴AD =DC=2,∴B C=BD+DC=2+2=4. ∴BC 的长为4.………………………5分23.解:(1)2(1)2(1)(1)x x x x x ++-=+-. ················································· 2分 2212222x x x x ++-=-. ·························································· 3分 3x =. ································································ 4分 经检验3x =是原方程的解. 所以原方程的解是3x =. ····························································· 5分24.证明:∵AB ∥DE ∴∠B = ∠EDF ;在△ABC 和△F DE 中A F AB DFB EDF ∠=∠⎧⎪=⎨⎪∠=∠⎩…………………………3分 ∴△ABC ≌△FDE (ASA),…………………4分∴BC=DE. …………………………………5分25.解:原式=a 2-2a +1a ÷ 1-a 2a 2+a………………………………1分=(a -1)2a ·a (a +1)(1-a ) (a +1) …………………………3分=1-a …………………………………………………4分 当a=2时,原式=1-a=1-2=-1………………………5分26.解:连结HF ,…………..…………………1分 依题意∵FG=1,GH=2,∴在Rt △FGH 中,根据勾股定理:FH=2222=1+2=5FG HG +…………..…………………2分又∵BC=2.2= 4.84,…………..…………………3分 ∴FH >BC ,…………..…………………4分∴小红爸爸要买的木板能通过自家门框进入室内 …………..…………………5分 27.列方程解应用题解:设王军骑自行车的速度为每小时x 千米,则李明乘车的速度为每小时3x 千米. ………..…………………1分 根据题意,得3012032x x+=………..…………………3分解方程,得20x =………..…………………4分经检验,20x =是所列方程的解,并且符合实际问题的意义. 当20x =时,332060.x =⨯=答:王军骑自行车的速度为每小时20千米,李明乘车的速度为每小时60千米. ………..…5分28.(1)证明:CD AB ⊥∵,∴90BDC ∠=°, ∵45ABC ∠=°,BCD ∴△是等腰直角三角形.BD CD =∴.………..…………………2分 ∵BE AC ⊥于E ,∴90BEC ∠=°,FED CBA 薄木板门框ABCDEF GH备用图ABCDEFGH∵BFD EFC ∠=∠,DBF DCA ∠=∠∴. Rt Rt DFB DAC ∴△≌△.BF AC =∴.………..…………………3分(2)解:BE ∵平分ABC ∠,22.5ABE CBE ∠=∠=︒∴. ∵BE AC ⊥于E ,∴90BEA BEC ∠=∠=°, 又∵BE=BE,Rt Rt BEA BEC ∴△≌△. CE AE =∴.………..…………………4分连结CG .BCD ∵△是等腰直角三角形,BD CD =∴. 又H 是BC 边的中点,C ⊥∴DH B DH ∴垂直平分BC ,BG CG =∴. 22.5EBC ∠=︒ ,22.5GCB ∴∠=︒∴45EGC ∠=°,∴Rt CEG △是等腰直角三角形, ∵CE 的长为3,∴EG=3,利用勾股定理得:222CE GE GC +=,∴222(3)(3)GC +=, ∴6GC =,∴BG 的长为6.………..…………………6分 29.解:(1)BC 边的中点. ………..…………………1分 (2)点D 的位置没有发生变化. ………..…………………2分 证明:如图,∵BE AD ⊥于点E ,CF AD ⊥于点F , ∴∠3=∠4=90°.又∵∠1=∠2,BE=CF,BED CFD ∴△≌△.∴BD=DC.即点D 是BC 边的中点 ………..…………………4分.(3)AB ,AC ,AD 之间的数量关系为2224AC AB AD +=..………..…………………5分 证明:延长AD 到点H 使DH=AD ,连接HC. ∵点D 是BC 边的中点,∴BD=DC. 又∵DH=AD ,∠4=∠5,ABD HCD ∴△≌△.∴∠1=∠3,AB=CH.∵∠A=90°,∴∠1+∠2=90°.∴∠2+∠3=90°.∴∠ACH=90°.∴222AC CH AH +=. 又∵DH=AD ,∴222(2)AC AB AD +=.∴2224AC AB AD +=.………..…………………7分4321FED CBA54321HA BCD30.(1)32;(2)5;(3)解:设1AC =,CP=m-3, ∵A A ′⊥L 于点C ,∴AP=()231m -+,设2BD =,DP=9-m, ∵BD ⊥L 于点D ,∴BP=2(9)4m -+,∴()()223194m m -++-+的最小值即为A ′B 的长.即:A ′B=()()223194m m -++-+的最小值.如图,过A ′作A ′E ⊥BD 的延长线于点E. ∵A ′E=CD=CP+PD= m-3+9-m=6, BE=BD+DE=2+1=3, ∴A ′B=()()223194m m -++-+的最小值=22BE A E '+ =936+ =35 ∴()()223194m m -++-+的最小值为35.EA'LPD C BA。
2015——2016学年度第一学期期末教学质量测试八年级数学试卷附答案
2015——2016学年度第一学期期末教学质量测试八年级数学试卷一.选择题(每小题2分,共20分)1.下列各数中,属于无理数的是( )(A )﹣1 (B )3.1415 (C )12(D 2. 若一个有理数的平方根与立方根是相等的,则这个有理数一定是 ( ) (A) 0 (B) 1 (C) 0或1 (D) 0和±1 3.下列命题中,逆命题是真命题的是( )(A )直角三角形的两锐角互余. (B )对顶角相等. (C )若两直线垂直,则两直线有交点. (D )若21,1x x ==则.4.已知等腰三角形的一个内角为40°,则这个等腰三角形的顶角为( )(A )40°. (B )100°. (C )50°或70°. (D )40°或100°. 5.如图,图中的尺规作图是作( )(A )线段的垂直平分线. (B )一条线段等于已知线段. (C )一个角等于已知角. (D )角平分线.6.如图,将△ABC 沿直线DE 折叠后,使得点B 与点A 重合,已知AC=5cm, △ADC 的周长为17cm,则BC 的长为( )(A )7cm (B )10cm (C )12cm (D )22cm5题图 6题图 7题图7.如图是某手机店今年1—5月份音乐手机销售额统计图。
根据图中信息,可以判断相邻两个月音乐手机销售额变化最大的是( )(A )1月至2月 (B )2月至3月 (C )3月至4月 (D )4月至5月8. 若b 为常数,要使16x 2+bx+1成为完全平方式,那么b 的值是 ( )(A) 4 (B) 8 (C) ±4 (D) ±89题图 10题图9.如图,正方形网格中有△ABC ,若小方格边长为1,则△ABC 是( )(A )直角三角形. (B )锐角三角形. (C )钝角三角形. (D )以上都不对. 10.如图,点E 在正方形ABCD 内,满足∠AEB=90°,AE=6,BE=8,则阴影部分的面积是( )(A )48. (B )60. (C )76. (D )80.二、填空题(每小题2分,共18分)11.计算:25a a ⋅= .12.因式分解:24x y y -=__________________.13. 如图将4个长、宽分别均为a 、b 的长方形,摆成了一个大的正方形.利用面积的不同表示方法写出一个代数恒等式是__________________.13题图 14题图14.将一张长方形的纸片ABCD 按如图所示方式折叠,使C 点落在/C 处,/BC 交AD 于点E ,则△EBD 的形状是__________________.15.某校对1200名女生的身高进行了测量,身高在 1.58m ~1.63m 这一小组的频率为0.25,则该组共有_________人16. 如图,用圆规以直角顶点O为圆心,以适当半径画一条弧交两直角边于A、B两点,若再以A为圆心,以OA长为半径画弧,与弧AB交于点C,则∠AOC=_________度16题图 17题图17.如图,将一根长为20cm的筷子置于底面直径为5cm,高为12cm的圆柱形水杯中,筷子露在杯子外面的长度为_________cm18.如图是一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角形。
初二数学2015—2016学年度第一学期期末试卷
2015—2016学年度第一学期期末学业质量评估八年级数学试题(时间120分钟,满分120分)注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在试题卷上.2. 填空题和解答题答案用黑色或蓝黑色墨水钢笔、中性笔或圆珠笔书写.一、选择题(本题共12小题,在每小题给出的四个选项中,只有一个是正确的,请把正确的选项选出来填在下面的表格里,每小题选对得3分,满分36分.多选、不选、错选均记零分.)1.下列命题中真命题是A. 两边分别对应相等且有一角为30º的两个等腰三角形全等B. 两边和其中一边的对角分别对应相等的两个三角形全等C. 两个锐角分别对应相等的两个直角三角形全等D. 两角和一边分别对应相等的两个三角形全等2. 下列图形分别是桂林、湖南、甘肃、佛山电视台的台徽,其中为轴对称图形的是A.B.C.D.3. 某校在“校园十佳歌手”比赛上,六位评委给1号选手的评分如下:90,96,91,96,95,94.那么,这组数据的众数和中位数分别是A. 96,94.5B. 96,95C. 95,94.5D. 95,954. 如图,P在AB上,AE=AG,BE=BG,则图中全等三角形的组数一共有A.1 组B.2 组C.3组D.4组5. 等腰三角形的一个角是80°,则它的底角是A.50°B.80°C.20°或80°D.50°或80°6. 对于命题“如果∠1+∠2=90°,那么∠1≠∠2”,能说明它是假命题的反例是A.∠1=50°,∠2=40°B.∠1=50°,∠2=50°C.∠1=∠2=45°D.∠1=40°,∠2=40°7. 甲、乙两人在相同的条件下,各射靶10次,经过计算:甲、乙射击成绩的平均数都是8环,甲的方差是1.2,乙的方差是1.8.下列说法中不一定正确的是A.甲、乙射中的总环数相同B.甲、乙的众数相同C.乙的成绩波动较大D.甲的成绩稳定8. 如图,OP平分∠AOB,PC⊥OA于C,D在OB上,则PC与PD 的大小关系是A.PC≥PDB.PC=PDC.PC≤PDD.不能确定9. 已知2a =3b =4c ≠0,则c b a +的值为 A. 54 B. 45 C.2 D. 2110. 白浪河是潍坊的母亲河,为打造特色滨水景观区,现有一段河道整治任务由A 、B 两工程队完成.A 工程队单独整治该河道要16天才能完成;B 工程队单独整治该河道要24天才能完成.现在A 工程队单独做6天后,B 工程队加入合做完成剩下的工程,那么A 工程队一共做的天数是A .12B .13C .14D .1511. 已知a=2x ,b=2y ,x +y=100xy ,那么分式abba +的值等于 A. 200 B. 100 C. 50 D. 2512. 已知一组数据:-1,x ,0,1,-2的平均数是0,那么,这组数据的方差是 A.2 B.2 C.4 D.10二、填空题(本题共6小题,要求将每小题的最后结果填写在横线上. 每小题4分,满分24分)13.已知点A (3,﹣2),点B (a ,b )是A 点关于y 轴的对称点,则a+b=_________. 14. 老师为了了解学生周末利用网络进行学习的时间,随机调查了10名学生,其统计数据如下表,则这10名学生周末利用网络进行学习的平均时间是 h.全等三角形的对应边相等17. 如图,△ABC 中,DE 是AC 的垂直平分线,AE=3cm ,△ABD 的周长为13cm ,则△ABC 的周长等于________cm .18. 如图,AD 是∠BAC 的角平分线,E 是AB 上一点,AE=AC ,EF ∥BC 交AC 于F .下列结论①△ADC ≌△ADE ;②CE 平分∠DEF ;③AD 垂直平分CE .其中正确的是三、解答题(本题共6小题,共60分.解答应写出文字说明、证明过程或推演步骤.) 19.(本大题满分20分)(1)计算:①9122-m --32m ②-12a a -a -1(2(320.(本大题满分6分)已知:如图,A B∥DC,点E是BC上一点,∠1=∠2,∠3=∠4.求证:AE⊥DE王大伯几年前承包了甲、乙两片荒山,各栽了100棵杨梅树,成活率为98%,现已结果,经济效益初步显现,为了分析收成情况,他分别从两山上随意各采摘了4棵树上的杨梅,每棵的产量如折线统计图所示.(1)分别计算甲、乙两山样本的平均数,并估算出甲、乙两山杨梅的产量总和;(2)试通过计算说明,哪个山上的杨梅产量较稳定?22.(本大题满分8分)如图,在△ABC中,AB=AC,∠ABC=72°.(1)用直尺和圆规作∠ABC的平分线BD交AC于点D(保留作图痕迹,不要求写作法);(2)在(1)中作出∠ABC的平分线BD后,求∠BDC的度数.李明到离家2.1千米的学校参加初三联欢会,到学校时发现演出道具还放在家中,此时距联欢会开始还有42分钟,于是他立即匀速步行回家,在家拿道具用了1分钟,然后立即匀速骑自行车返回学校.已知李明骑自行车到学校比他从学校步行到家用时少20分钟,且骑自行车的速度是步行速度的3倍.(1)李明步行的速度(单位:米/分)是多少?(2)李明能否在联欢会开始前赶到学校?24.(本大题满分10分)已知:如图,点B,C,E三点在同一条直线上,CD平分∠ACE,DB=DA,DM⊥BE于M.(1)求证:AC=BM+CM;(2)若AC=2,BC=1,求CM的长.。
2015~2016学年第一学期期末考试卷八年级数学试题附答案
2015~2016学年第一学期期末考试卷 八年级数学试题 2016.1注意事项:1.本卷考试时间为100分钟,满分100分.其余结果均应给出精确结果.一、选择题:(本大题共8小题,每小题3分,共24分,在每小题所给出的四个选项中,只有一项是正确的,请把正确选项前的字母代号填在题后的括号内.)1.如图,下列图案中是轴对称图形的是-------------------------------------------------------( )A .(1)、(2) B .(1)、(3) C .(1)、(4) D .(2)、(3)2.下列实数中,是无理数的为--------------------------------------------------------------------( )AB .13C .0D .3-3.在△ABC 中和△DEF 中,已知BC =EF ,∠C =∠F ,增加下列条件后还不能判定△ABC ≌△DEF 的是-------------------------------------------------------------------------( ) A 、AC =DF B 、AB =DE C 、∠A =∠D D 、∠B =∠E 4.满足下列条件的△ABC 不是..直角三角形的是----------------------------------------------( ) A 、1=a 、2=b , 3=c B 、1=a 、2=b , 5=cC 、a ∶b ∶c =3∶4∶5D 、∠A ∶∠B ∶∠C =3∶4∶55.如图,直线l 是一条河,P ,Q 是两个村庄.计划在l 上的某处修建一个水泵站M ,向P ,Q 两地供水.现有如下四种铺设方案(图中实线表示铺设的管道),则所需管道最短的是------------------------------------------------------------------------------------------------------( ) A . B . C .D CB A6.设正比例函数mx y =的图象经过点)4,(m A ,且y 的值随x 值的增大而减小,则m 的值为-----------------------------------------------------------------------------------------------( )A.2B.-2C. 4D.-4 7.如图,在平面直角坐标系中,点P 坐标为(-4,3), 以点B (-1,0)为圆心,以BP 的长为半径画弧, 交x 轴的负半轴于点A ,则点A 的横坐标介于-----------( ) A 、-6和-5之间 B 、-5和-4之间 C 、-4和-3之间 D 、-3和-2之间8. 在平面直角坐标系中,点A(1,1),B(3,3),动点C 在x轴上,若以A 、B 、C 三点为顶点的三角形是等腰三角形,则点C 的个数为------------------------------------------------------( )B.3C.4D.5二、填空题:(本大题共11小题,每题2分,共22分)9.16的平方根是10.点A (—3,4)关于y 轴对称的点的坐标是 . 11.地球上七大洲的总面积约为149 480 000km 2,把这个数值精确到千万位,并用科学计数法表示为 .12. 函数2-=x y 中自变量x 的取值范围是_____ ________13. 如图,在等腰三角形ABC 中,AC AB =,DE 垂直平分AB ,已知∠ADE =40º,则∠DBC= ︒.14.如图,锐角△ABC 的高AD 、BE 相交于F ,若BF =AC ,BC =7,CD =2,则AF 的长为15.如图,已知△ABC 中,AB=17,AC=10,BC 边上的高AD=8.则△ABC 的周长为__________。
2015~2016学年度上学期期末考试试卷八年级数学附答案
2015~2016学年度上学期期末考试试卷八年级数学一、选择题(每空3分,共30分)1、要使分式1x 有意义,则x 应满足的条件是( ) A .x ≠1B .x ≠﹣1C .x ≠0D .x >12、下列计算正确的是( ) A . 6a 3•6a 4=6a 7B .(2+a )2=4+2a + a 2C .(3a 3)2=6a 6D .(π﹣3.14)0=13、如图,为估计池塘岸边A 、B 两点的距离,小方在池塘的一侧选取一点O ,测得OA=15米,OB =10米,A 、B 间的距离不可能是( ) A .5米B .10米C .15米D .20米4、一张长方形按如图所示的方式折叠,若∠AEB ′=30°,则∠B ′EF=( ) A .60°B .65°C .75°D .95°5、如图,已知△ABC 中,AB=AC ,∠BAC =90°,直角∠EPF 的顶点P 是BC 中点,两边PE 、PF 分别交AB 、AC 于点E 、F ,当∠EPF 在△ABC 内绕顶点P 旋转时(点E 不与A 、B 重合),第3题EADCBFC ’B ’第4题AB C EF P第5题第9题第10题给出以下四个结论:①AE=CF ;②△EPF 是等腰直角三角形;③2S 四边形AEPF =S △ABC ;④BE +CF =EF .上述结论中始终正确的有( ) A .4个 B .3个C .2个D .1个6、如果2925x kx ++是一个完全平方式,那么k 的值是 ( ) A 、30B 、±30C 、15D 、±157、计算:()20162014133⎛⎫-⨯-= ⎪⎝⎭( )A .13B .13- C .﹣3D .198、点M (1,2)关于x 轴对称的点的坐标为( )A.(—1,2)B.(-1,-2)C.(1,-2)D.(2,-1)9、如图,两个正方形的边长分别为a 和b ,如果10a b +=,20ab =,那么阴影部分的面积是( ) A.20B .30C.40D .1010、如图,已知在△ABC 中,CD 是AB 边上的高线,BE 平分∠ABC ,交CD 于点E ,BC =5,DE =2,则△BCE 的面积等于( ) A .10 B .7 C .5 D .4二、填空题(每小题3分, 共18分)11、有四条线段,长分别是为3cm 、5cm 、7cm 、9cm,如果用这些线段组成三角形,可以组成 个三角形 。
2015-2016学年初二第一学期期末答案
初二数学期末学业水平质量检测参考答案一、选择题:(每题只有一个正确答案,共10道小题,每小题2分,共20分)1. C,2. D,3.A,4. D,5. C ,6.B,7. D,8. A,9.D, 10. C二、填空题:(共6道小题,第11~14小题,每小题3分,第15~16小题,每小题4分,共20分)11.2; 12.2)(3a b -; 13.360º; 14.③;15.1或3;16.三边分别相等的两个三角形全等,全等三角形对应角相等;3 .三、解答题(共11道小题,第17~24小题,每小题5分,第25~26小题,每小题6分,第27小题8分,共60分)17.23423)7(2102⨯+-+--⎪⎭⎫ ⎝⎛-π 解:原式=323214+-+-………………………………..(4分)=35+ ………………………………..(5分)18.计算:()()()3232322-+-- 解:原式=323622+-+-………………………………..(4分) =626-………………………………..(5分)19.计算:21422++-m m 解:原式=)2)(2(2)2)(2(2-+-+-+m m m m m …………………………..(2分) =)2)(2(22-+-+m m m ………………………………..(4分) =)2)(2(-+m m m ………………………………..(5分)20.解方程:116112=---+x x x 解: 1)1)(1(611=-++-+x x x x ………………………………..(1分) )1)(1(6)1(2-+=++x x x ……..(2分)161222-=+++x x x ………………………………..(3分)82-=x4-=x ………………………………..(4分)检验:把4-=x 带入最简公分母)1)(1(-+x x 中,最简公分母值不为零.∴4-=x 是原方程的解. ………………………………..(5分)21.已知:0232=-+x x ,求代数式)225(4232---÷--x x x x x 的值. 解:原式=)2425()2(232----÷--x x x x x x………………………………..(1分) =2)3)(3()2(23--+÷--x x x x x x ………………………………..(2分) =)3)(3(2)2(23x x x x x x -+-⋅-- =)3(21x x +………………………………..(3分) =)3(212x x + ………………………………..(4分) 0232=-+x x∴232=+x x原式=41 ………………………………..(5分)22.解: 第一个盒子摸出白球的可能性为531061==p ………………..(2分) 第二个盒子摸出白球的可能性为211262==p ………………..(3分) 21p p >………………..(4分)∴第一个盒子摸出白球的可能性大. ………………..(5分)23. 证明: DE BC //E ACB ∠=∠∴………………..(1分)在△ABC 和△DCE 中⎪⎩⎪⎨⎧=∠=∠=CD BC E ACB DE AC ∴△ABC ≅△DCE (SAS )………………..(4分) ∴ AB =CD ………………..(5分)24.解:设新购买的纯电动汽车每行驶1千米所需电费为x 元, 根据题意得:27108= ………………..(3分)25.(1)Rt △C AB '是Rt △ABC 关于直线l 轴对称的图形………………..(2分)B(2)证明: Rt △C AB '是Rt △ABC 关于直线l 轴对称的图形∴AC 垂直平分B B '………………………………..(3分)∴'AB AB =,'21BB BC =︒=∠30BAC∴︒=∠60B ∴△'ABB 为等边三角形………………………………..(5分) ∴'BB AB = '21BB BC =∴AB BC 21=………………………………..(6分)26.(1)l 即为所求作的直线………………………………..(2分)(2)①︒45≤ABC ∠<︒90………………………………..(3分)②图形在(1)的基础上完成………………………………..(4分) 证明: 线段AB 的垂直平分线为l∴ AB CD ⊥BE AE ⊥ ∴︒=∠=∠90BDC AEB∴︒=∠+∠=∠+∠90B BCD B BAE∴BCD BAE ∠=∠………………………………..(6分)27.(1)①……………………………..(1分)②垂直,相等.……………………………..(3分)(2)①……………………………..(4分)图2 图3②如图2成立,如图3不成立.证明: EF CD ⊥∴ ︒=∠90DCF︒=∠90ACB∴BCD ACB BCD DCF ∠+∠=∠+∠即BCF ACD ∠=∠………………………………..(6分)CF CD AC BC ==,∴△ACD ≅△BCF (SAS )∴ BF AD =,FBC BAC ∠=∠∴︒=∠+∠=∠+∠=∠90BAC ABC FBC ABC ABF即AD BF ⊥……………………………..(8分)A A。
2015-2016学年八年级上学期期末考试数学试题带答案
2015学年度第一学期期末初二质量调研 数 学 试 卷(2016.1)(时间90分钟,满分100分)一、填空题(本大题共有14题,每题2分,满分28分) 1.化简:()=>0182x x . 2.方程022=-x x 的根是 . 3.函数2-=x y 的定义域是 .4.某件商品原价为100元,经过两次促销降价后的价格为64元,如果连续两次降价的百分率相同,那么这件商品降价的百分率是 .5.在实数范围内分解因式:1322--x x = . 6.如果函数()12+=x x f ,那么()3f = .7.已知关于x 的一元二次方程012=+-x kx 有两个不相等的实数根,那么k 的取值范围是 .8.正比例函数x a y )12(-=的图像经过第二、四象限,那么a 的取值范围是 . 9.已知点),(11y x A 和点),(22y x B 在反比例函数xky =的图像上,如果当210x x <<,可得1y >2y ,那么0______k .(填“>”、“=”、“<”)10.经过定点A 且半径为2cm 的圆的圆心的轨迹是 . 11.请写出“等腰三角形的两个底角相等”的逆命题: . 12.如图1,在△ABC 中,︒=∠90C ,∠CAB 的平分线AD 交BC 于点D ,BC =8,BD =5,那么点D 到AB 的距离等于 .13.如果点A 的坐标为(3-,1),点B 的坐标为(1,4),那么线段AB 的长等于____________.学校_______________________ 班级__________ 学号_________ 姓名______________……………………密○………………………………………封○………………………………………○线………………………………………………图114.在Rt △ABC 中,︒=∠90C ,将这个三角形折叠,使点B 与点A 重合,折痕交AB 于点M ,交BC 于点N ,如果AC BN 2=,那么=∠B 度. 二、选择题(本大题共有4题,每题3分,满分12分)15.下列方程中,是一元二次方程的是 ……………………………………………………( ) (A )y x 342=; (B )15)1(2-=+x x x ; (C )6532-=-x x ; (D )01312=-+x x. 16.已知等腰三角形的周长等于20,那么底边长y 与腰长x 的函数解析式和定义域分别是…( )(A )x y 220-=)200(<<x ; (B )x y 220-=)100(<<x ; (C )x y 220-=)105(<<x ; (D )220xy -=)105(<<x . 17.下列问题中,两个变量成正比例的是………………………………………………… ( ) (A )圆的面积S 与它的半径r ; (B )正方形的周长C 与它的边长a ;(C )三角形面积一定时,它的底边a 和底边上的高h ;(D )路程不变时,匀速通过全程所需要的时间t 与运动的速度v .18.如图2,在△ABC 中,AB=AC ,∠A =120°,如果D 是BC 的中点,DE ⊥AB ,垂足是E ,那么 AE ︰BE 的值等于………………………………………………………………… ( ) (A )31; (B )33; (C )41; (D )51.三、(本大题共有7题,满分60分) 19.(本题满分7分)计算:)7581()3165.0(---.图220.(本题满分7分)用配方法解方程:01632=-+x x .21.(本题满分7分)已知21y y y +=,并且1y 与x 成正比例,2y 与x -2成反比例. 当1=x 时,1-=y ; 当3=x 时,5=y .求y 关于x 的函数解析式.……………………密○………………………………………封○…………………………………○线………………………………………………22.(本题满分8分)已知:如图3,在△ABC 中,45ACB ∠=︒,AD 是边BC 上的高,G 是AD 上一点,联结CG ,点E 、F 分别是AB 、CG 的中点,且DE DF =.求证:△ABD ≌△CGD .23.(本题满分8分)已知:如图4,在△ABC 中,∠ACB =90°, AD 为△ABC 的外角平分线,交BC 的 延长线于点D ,且∠B=2∠D . 求证:AB+AC=CD .图 3DCBA图424.(本题满分11分)如图5,在平面直角坐标系xOy 中,已知直线x y 3=与反比例函数)0(≠=k xky 的图像交于点A ,且点A 的横坐标为1,点B 是x 轴正半轴上一点,且AB ⊥OA . (1)求反比例函数的解析式; (2)求点B 的坐标;(3)先在AOB ∠的内部求作点P ,使点P 到AOB ∠的两边OA 、OB 的距离相等,且PA PB =;再写出点P 的坐标.(不写作法,保留作图痕迹,在图上标注清楚点P )学校_____________________ 班级__________ 学号_________ 姓名______________……………………密○………………………………………封○………………………………………○线………………………………………………图525.(本题满分12分)如图6,在△ABC 中,D 是AB 的中点,E 是边AC 上一动点,联结DE ,过点D 作DF ⊥DE 交边BC 于点F (点F 与点B 、C 不重合),延长FD 到点G ,使DF DG =,联结EF 、AG ,已知10=AB ,6=BC ,8=AC . (1)求证: AG AC ⊥;(2)设x AE =,y CF =,求y 与x 的函数解析式,并写出定义域; (3)当△BDF 是以BF 为腰的等腰三角形时,求AE 的长.GFEDCBA 图62015学年度第一学期期末初二质量调研数学试卷参考答案一、填空题(本大题共14题,每题2分,满分28分) 1.x 23; 2.21,021==x x ; 3.x ≥2; 4.20%; 5.)4173)(4173(2--+-x x ; 6.13-; 7.41<k 且0≠k ;8.a <21; 9.>; 10.以点A 为圆心,2cm 为半径的圆; 11.有两个角相等的三角形是等腰三角形(写两个“底角”相等不给分); 12.3; 13.5; 14.15二、选择题(本大题共4题,每题3分,满分12分)15.B ; 16.C ; 17.B ; 18.A .三、简答题(本大题共5题,每题7分,满分35分) 19.解:原式= )3542()3222(---················································· (4分) =35423222+-- ······················································· (1分) =3342+. ···································································· (2分) 20.解:移项,得1632=+x x . ································································· (1分) 二次项系数化为1,得3122=+x x . ················································ (1分) 配方,得131122+=++x x , 34)1(2=+x . ······························································· (2分)利用开平方法,得3321±=+x .解得 33211+-=x ,33211--=x . ··············································· (2分) 所以,原方程的根是33211+-=x ,33211--=x . ··························· (1分)21.解:由1y 与x 成正比例,可设111(0)y k x k =≠··········································· (1分) 由2y 与x -2成反比例,可设222(0)2k y k x =≠-. ································· (1分) ∵21y y y +=,∴221-+=x k x k y . ··············································· (1分) 把1=x ,1-=y 和3=x ,5=y 分别代入上式,得 ⎩⎨⎧=+-=-.53,12121k k k k ······································································ (1分)解得⎩⎨⎧==.2,121k k ··········································································· (2分)所以 y 关于x 的函数解析式是22-+=x x y . ·································· (1分)22.证明:∵AD ⊥BC ,E 是AB 的中点,∴AB DE 21=(直角三角形斜边上的中线等于斜边的一半). ··········· (2分) 同理:CG DF 21=. ······························································· (1分)∵ DF DE =,∴ CG AB =. ·················································· (1分) ∵AD ⊥BC ,︒=∠45ACB ,∴︒=∠45DAC . ·························· (1分) ∴DAC ACD ∠=∠. ································································ (1分) ∴ CD AD = . ······································································· (1分) 在Rt △ABD 和Rt △CGD 中,⎩⎨⎧==.,CG AB CD AD∴Rt △ABD ≌Rt △CGD (H .L ). ············································· (1分)23.证明:过点D 作DE ⊥AB ,垂足为点E . ················································ (1分)又∵∠ACB =90°(已知)∴DE =DC (在角的平分线上的点到这个角的两边的距离相等). ········ (2分) 在Rt △ACD 和Rt △AED 中DE =DC (已证) AD =AD (公共边)∴Rt △ACD ≌Rt △AED (H.L ). ··················································· (1分) ∴AC =AE ,∠CDA=∠EDA . ······················································· (1分) ∵∠B=2∠D (已知),∴∠B=∠BDE . ············································ (1分) ∴BE =DE . ·············································································· (1分) 又∵AB +AE =BE ,∴AB+AC=CD .········································································ (1分)24. 解:(1)由题意,设点A 的坐标为(1,m ),∵点A 在正比例函数x y 3=的图像上,∴3=m . ∴点A 的坐标为)3,1(. ········································ (1分) ∵点A 在反比例函数xky =的图像上, ∴13k=,解得3=k . ······················································ (1分) ∴反比例函数的解析式为xy 3=. ············································· (1分) (2)过点A 作AC ⊥OB ,垂足为点C ,可得1=OC ,3=AC .∵AC ⊥OB ,∴∠90=ACO °.由勾股定理,得2=AO . ······················································· (1分) ∴AO OC 21=. ∴∠30=OAC °.∴∠60=AOC °.∵AB ⊥OA ,∴∠90=OAB °.∴∠30=ABO °. ································································ (1分) ∴OA OB 2=.∴4=OB . ·········································································· (1分) ∴点B 的坐标是)0,4(. ··························································· (1分) 【说明】其他方法相应给分.(3)作图略. ··············································································· (2分) 点P的坐标是3(. ····························································· (2分) 25.(1)证明:∵6=BC ,8=AC ,∴100643622=+=+AC BC .∵1002=AB , ∴222AB AC BC =+.∴△ABC 是直角三角形,且∠ACB =90°(勾股定理的逆定理). ·· (1分)∵D 是AB 的中点,∴BD AD =.在△ADG 和△BDF 中,⎪⎩⎪⎨⎧=∠=∠=.,,DF DG BDF ADG BD AD∴△ADG ≌△BDF (S.A.S ).∴B GAB ∠=∠. ································································· (1分) ∵︒=∠90ACB ,∴︒=∠+∠90B CAB (直角三角形的两个锐角互余). ················· (1分) ∴︒=∠+∠90GAB CAB .∴︒=∠90EAG . ···························· (1分) 即:AG AC ⊥.(2)联结EG .∵x AE =,8=AC ,∴x EC -=8.∵︒=∠90ACB ,由勾股定理,得222)8(y x EF +-=. ···································· (1分) ∵△ADG ≌△BDF ,∴BF AG =.∵y CF =,6=BC ,∴y BF AG -==6.∵︒=∠90EAG ,由勾股定理,得222)6(y x EG -+=. ···································· (1分)∵DF DG =,DF ⊥DE ,∴EG EF =.∴22)8(y x +-22)6(y x -+=. ············································· (1分) ∴374-=x y ,定义域:74<x <254. ································· (1+1分) (3)1°当DB BF =时,56=-y ,∴1=y .∴3741-=x .∴25=x .即25=AE . ····································· (1分) 2°当FB DF =时,联结DC ,过点D 作FB DH ⊥,垂足为点H . 可得y FB DF -==6.∵︒=∠90ACB ,D 是AB 的中点,∴5==DB DC .∵FB DH ⊥,6=BC ,∴3==HB CH .∴y FH -=3.∵FB DH ⊥,由勾股定理,得4=DH .在Rt △DHF 中,可得222)3(4)6(y y -+=-.解得611=y . ··································································· (1分) ∴374611-=x .解得825=x ,即825=AE . ··············································· (1分) 综上所述,AE 的长度是25,825.。
临沂市平邑县2015-2016学年八年级上期末数学试卷含答案解析
A.边边边 B.边角边 C.角边角 D.角角边 7.下列计算正确的是( )
第 5 页(共 17 页)
2.下列各式中能用平方差公式是( ) A.(x+y)(y+x) B.(x+y)(y﹣ x) C.(x+y)(﹣ y﹣ xD).(﹣ x+y)(y﹣ x) 【分析】利用平方差公式的结构特征判断即可得到结果. 【解答】解:能用平方差公式是(x+y)(y﹣ x)=y2﹣ x2, 故选 B 【点评】此题考查了平方差公式,熟练掌握公式是解本题的关键.
A.32=6 B.3﹣=1 3﹣
0
﹣1
C.3 =0 D.3 =
8.已知 y2+10y+m 是完全平方式,则 m 的值是( )
A.25 B.±25 C.5 D.±5 9.如图,△ABC 中,AB=AC,∠A=36°,AB 的垂直平分线 DE 交 AC 于 D,交 AB 于
ቤተ መጻሕፍቲ ባይዱ
E,则∠BDC 的度数为( )
第 1 页(共 17 页)
23.从 2014 年春季开始,我县农村实行垃圾分类集中处理,对农村环境进行综合整治,靓 化了我们的家园.现在某村要清理一个卫生死角内的垃圾,若用甲、乙两车运送,两车各 运 15 趟可完成,已知甲、乙两车单独运完此堆垃圾,乙车所运趟数是甲车的 3 倍,求甲、 乙两车单独运完此堆垃圾各需运多少趟? 24.常用的分解因式的方法有提取公因式法、公式法及到了高中还要学习的十字相乘法, 但有更多的多项式只用上述方法就无法分解,x2﹣ 4y2﹣ 2x+4y,我们细心观察这个式子就会 发现,前两项符合平方差公式,后两项可提取公因式,前后两部分分别分解因式后会产生 公因式,然后提取公因式就可以完成整个式子的分解因式了.过程为:x2﹣ 4y2﹣ 2x+4y= (x+2y)(x﹣ 2y)﹣ 2(x﹣ 2y)=(x﹣ 2y)(x+2y﹣ 2)这种分解因式的方法叫分组分解法.利 用这种方法解决下列问题: (1)分解因式:a2﹣ 4a﹣ b2+4; (2)△ABC 三边 a,b,c 满足 a2﹣ ab﹣ ac+bc=0,判断△ABC 的形状.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2015-2016学年山东省临沂市平邑县八年级(上)期末数学试卷一、选择题(共12小题,每小题3分,满分36分)1.(3分)要使分式有意义,x的取值范围满足()A.x=0 B.x≠0 C.x>0 D.x<02.(3分)下列各式中能用平方差公式是()A.(x+y)(y+x)B.(x+y)(y﹣x)C.(x+y)(﹣y﹣x)D.(﹣x+y)(y ﹣x)3.(3分)下列计算结果正确的是()A.x•x2=x2B.(x5)3=x8C.(ab)3=a3b3D.a6÷a2=a34.(3分)下列长度的三条线段,哪一组不能构成三角形()A.3,3,3 B.3,4,5 C.5,6,10 D.4,5,95.(3分)如图,CD,CE,CF分别是△ABC的高、角平分线、中线,则下列各式中错误的是()A.AB=2BF B.∠ACE=∠ACB C.AE=BE D.CD⊥BE6.(3分)如图,将两根等长钢条AA′、BB′的中点O连在一起,使AA′、BB′可以绕着点O自由转动,就做成了一个测量工件,则AB的长等于容器内径A′B′,那么判定△OAB≌△OA′B′的理由是()A.边边边B.边角边C.角边角D.角角边7.(3分)下列计算正确的是()A.32=6 B.3﹣1=﹣3 C.30=0 D.3﹣1=8.(3分)已知y2+10y+m是完全平方式,则m的值是()A.25 B.±25 C.5 D.±59.(3分)如图,△ABC中,AB=AC,∠A=36°,AB的垂直平分线DE交AC于D,交AB于E,则∠BDC的度数为()A.72°B.36°C.60°D.82°10.(3分)在△ABC中,AD是∠BAC的平分线,且AB=AC+CD,若∠BAC=75°,则∠ABC的大小为()A.25°B.35°C.37.5°D.45°11.(3分)若分式,则分式的值等于()A.﹣ B.C.﹣ D.12.(3分)若x2+cx+6=(x+a)(x+b),其中a,b,c为整数,则c的取值有()A.1个 B.2个 C.4个 D.8个二、填空题(共7小题,每小题4分,满分28分)13.(4分)计算3a2b3•(﹣2ab)2=.14.(4分)分解因式:a2b﹣b3=.15.(4分)如图,∠AOP=∠BOP=15°,PC∥OA,PQ⊥OA,若PC=4,则PQ=.16.(4分)如图,将一张长方形纸片折叠成如图所示的形态,∠CBD=40°,则∠ABC=.17.(4分)如图,点E为等边△ABC中AC边的中点,AD⊥BC,且AD=5,P为AD上的动点,则PE+PC的最小值为.18.(4分)若关于x的分式方程无解,则m的值是.19.(4分)如图,在等边△ABC中,AC=3,点O在AC上,且AO=1.点P是AB 上一点,连接OP,以线段OP为一边作正△OPD,且O、P、D三点依次呈逆时针方向,当点D恰好落在边BC上时,则AP的长是.三、解答题(共5小题,满分56分)20.(20分)解答下列各题:(1)分解因式:4a2﹣8ab+4b2﹣16c2(2)计算:(2a+b)(2a﹣b)+b(2a+b)﹣8a2b÷2b(3)化简求值:(﹣)÷,其中x=﹣3(4)解分式方程:﹣1=.21.(8分)如图,在四边形ABCD中,AD∥BC,E为CD的中点,连接AE、BE,BE⊥AE,延长AE交BC的延长线于点F.求证:(1)FC=AD;(2)AB=BC+AD.22.(8分)如图:已知等边△ABC中,D是AC的中点,E是BC延长线上的一点,且CE=CD,DM⊥BC,垂足为M,求证:M是BE的中点.23.(10分)从2014年春季开始,我县农村实行垃圾分类集中处理,对农村环境进行综合整治,靓化了我们的家园.现在某村要清理一个卫生死角内的垃圾,若用甲、乙两车运送,两车各运15趟可完成,已知甲、乙两车单独运完此堆垃圾,乙车所运趟数是甲车的3倍,求甲、乙两车单独运完此堆垃圾各需运多少趟?24.(10分)常用的分解因式的方法有提取公因式法、公式法及到了高中还要学习的十字相乘法,但有更多的多项式只用上述方法就无法分解,x2﹣4y2﹣2x+4y,我们细心观察这个式子就会发现,前两项符合平方差公式,后两项可提取公因式,前后两部分分别分解因式后会产生公因式,然后提取公因式就可以完成整个式子的分解因式了.过程为:x2﹣4y2﹣2x+4y=(x+2y)(x﹣2y)﹣2(x﹣2y)=(x﹣2y)(x+2y﹣2)这种分解因式的方法叫分组分解法.利用这种方法解决下列问题:(1)分解因式:a2﹣4a﹣b2+4;(2)△ABC三边a,b,c满足a2﹣ab﹣ac+bc=0,判断△ABC的形状.2015-2016学年山东省临沂市平邑县八年级(上)期末数学试卷参考答案与试题解析一、选择题(共12小题,每小题3分,满分36分)1.(3分)要使分式有意义,x的取值范围满足()A.x=0 B.x≠0 C.x>0 D.x<0【解答】解:根据题意得,x≠0.故选B.2.(3分)下列各式中能用平方差公式是()A.(x+y)(y+x)B.(x+y)(y﹣x)C.(x+y)(﹣y﹣x)D.(﹣x+y)(y ﹣x)【解答】解:能用平方差公式是(x+y)(y﹣x)=y2﹣x2,故选B3.(3分)下列计算结果正确的是()A.x•x2=x2B.(x5)3=x8C.(ab)3=a3b3D.a6÷a2=a3【解答】解:A、x•x2=x2同底数幂的乘法,底数不变指数相加,故本选项错误;B、(x5)3=x15,幂的乘方,底数不变指数相乘,故本选项错误.C、(ab)3=a3b3,故本选项正确;D、a6÷a2=a3同底数幂的除法,底数不变指数相减,故本选项错误.故选C.4.(3分)下列长度的三条线段,哪一组不能构成三角形()A.3,3,3 B.3,4,5 C.5,6,10 D.4,5,9【解答】解:A、3+3>3,符合三角形的三边关系定理,故本选项错误;B,3+4>5,3+5>4,5+4>3,符合三角形的三边关系定理,故本选项错误;C、5+6>10,5+10>6,6+10>5,符合三角形的三边关系定理,故本选项错误;D、4+5=9,不符合三角形的三边关系定理,故本选项正确;故选D.5.(3分)如图,CD,CE,CF分别是△ABC的高、角平分线、中线,则下列各式中错误的是()A.AB=2BF B.∠ACE=∠ACB C.AE=BE D.CD⊥BE【解答】解:∵CD,CE,CF分别是△ABC的高、角平分线、中线,∴CD⊥BE,∠ACE=∠ACB,AB=2BF,无法确定AE=BE.故选C.6.(3分)如图,将两根等长钢条AA′、BB′的中点O连在一起,使AA′、BB′可以绕着点O自由转动,就做成了一个测量工件,则AB的长等于容器内径A′B′,那么判定△OAB≌△OA′B′的理由是()A.边边边B.边角边C.角边角D.角角边【解答】解:∵AA′、BB′的中点O连在一起,∴OA=OA′,OB=OB′,又∵∠AOB=∠A′OB′,∴△OAB≌△OA′B′的理由是“边角边”.故选B.7.(3分)下列计算正确的是()A.32=6 B.3﹣1=﹣3 C.30=0 D.3﹣1=【解答】解:A、32=9,故本选项错误;B、3﹣1=,故本选项错误;C、30=1,故本选项错误;D、3﹣1=,故本选项正确;故选D.8.(3分)已知y2+10y+m是完全平方式,则m的值是()A.25 B.±25 C.5 D.±5【解答】解:∵y2+10y+m是完全平方式,∴y2+10y+m=(y+5)2=y2+10y+25,故m=25.故选:A.9.(3分)如图,△ABC中,AB=AC,∠A=36°,AB的垂直平分线DE交AC于D,交AB于E,则∠BDC的度数为()A.72°B.36°C.60°D.82°【解答】解:∵AB=AC,∠A=36°,∴∠ABC=∠C===72°,∵DE垂直平分AB,∴∠A=∠ABD=36°,∴∠BDC=∠A+∠ABD=36°+36°=72°.故选A.10.(3分)在△ABC中,AD是∠BAC的平分线,且AB=AC+CD,若∠BAC=75°,则∠ABC的大小为()A.25°B.35°C.37.5°D.45°【解答】解:在AB上取AC′=AC,在△ACD和△AC′D中,,∴△ACD≌△AC′D(SAS),又∵AB=AC+CD,得AB=AC′+C′D,∴BC′=C′D,∴∠C=∠AC'D=2∠B,又∵∠B+∠C=180°﹣∠BAC=105°,∴∠B=35°.故选B.11.(3分)若分式,则分式的值等于()A.﹣ B.C.﹣ D.【解答】解:整理已知条件得y﹣x=2xy;∴x﹣y=﹣2xy将x﹣y=﹣2xy整体代入分式得====.12.(3分)若x2+cx+6=(x+a)(x+b),其中a,b,c为整数,则c的取值有()A.1个 B.2个 C.4个 D.8个【解答】解:x2+cx+6=(x+a)(x+b)=x2+(a+b)x+ab,可得c=a+b,ab=6,即a=1,b=6,此时c=1+6=7;a=2,b=3,此时c=2+3=5;a=﹣3,b=﹣2,此时c=﹣3﹣2=﹣5;a=﹣1,b=﹣6,此时c=﹣1﹣6=﹣7,则c的取值有4个.故选C二、填空题(共7小题,每小题4分,满分28分)13.(4分)计算3a2b3•(﹣2ab)2=12a4b5.【解答】解:3a2b3•(﹣2ab)2=3a2b3•4a2b2=12a4b5.故答案为:12a4b5.14.(4分)分解因式:a2b﹣b3=b(a+b)(a﹣b).【解答】解:原式=b(a2﹣b2)=b(a+b)(a﹣b),故答案为:b(a+b)(a﹣b)15.(4分)如图,∠AOP=∠BOP=15°,PC∥OA,PQ⊥OA,若PC=4,则PQ=2.【解答】解:过点P作PM⊥OB于M,∵PC∥OA,∴∠COP=∠CPO=∠POQ=15°,∴∠BCP=30°,∴PM=PC=2,∵PQ=PM,∴PQ=2.16.(4分)如图,将一张长方形纸片折叠成如图所示的形态,∠CBD=40°,则∠ABC=70°.【解答】解:∵∠CBD=40°,∴∠CBC′=180°﹣40°=140°,根据折叠可得∠CBA=∠C′BA,∴∠ABC=140°÷2=70°,故答案为:70°.17.(4分)如图,点E为等边△ABC中AC边的中点,AD⊥BC,且AD=5,P为AD上的动点,则PE+PC的最小值为5.【解答】解:∵△ABC是等边三角形,AD⊥BC,且AD=5,∴AB===,连接BE,线段BE的长即为PE+PC最小值,∵点E是边AC的中点,∴CE=AB=×=cm,∴BE====5,∴PE+PC的最小值是5.故答案为:5.18.(4分)若关于x的分式方程无解,则m的值是3.【解答】解:去分母,得m﹣3=x﹣1,x=m﹣2.∵关于x的分式方程无解,∴最简公分母x﹣1=0,∴x=1,当x=1时,得m=3,即m的值为3.故答案为3.19.(4分)如图,在等边△ABC中,AC=3,点O在AC上,且AO=1.点P是AB 上一点,连接OP,以线段OP为一边作正△OPD,且O、P、D三点依次呈逆时针方向,当点D恰好落在边BC上时,则AP的长是2.【解答】解:∵∠C=∠A=∠DOP=60°,OD=OP,∴∠CDO+∠COD=120°,∠COD+∠AOP=120°,∴∠CDO=∠AOP.∴△ODC≌△POA.∴AP=OC.∴AP=OC=AC﹣AO=2.故答案为:2.三、解答题(共5小题,满分56分)20.(20分)解答下列各题:(1)分解因式:4a2﹣8ab+4b2﹣16c2(2)计算:(2a+b)(2a﹣b)+b(2a+b)﹣8a2b÷2b(3)化简求值:(﹣)÷,其中x=﹣3(4)解分式方程:﹣1=.【解答】解:(1)原式=4(a2﹣2ab+b2﹣4c2)=4[(a2﹣2ab+b2)﹣4c2]=4[(a﹣b)2﹣4c2]=4(a﹣b+2c)(a﹣b﹣2c);(2)原式=4a4﹣b2+2ab+b2﹣4a2=2ab;(3)原式=[﹣]÷=•﹣•=﹣=====1;(4)方程两边同时乘以(x+2)(x﹣2)得,x(x+2)﹣(x2﹣4)=8,去括号,得x2+2x﹣x2﹣4=8,解得:x=6,检验:当x=6时,(x+2)(x﹣2)=8×4=32≠0.则x=6是方程的解.21.(8分)如图,在四边形ABCD中,AD∥BC,E为CD的中点,连接AE、BE,BE⊥AE,延长AE交BC的延长线于点F.求证:(1)FC=AD;(2)AB=BC+AD.【解答】证明:(1)∵AD∥BC(已知),∴∠ADC=∠ECF(两直线平行,内错角相等),∵E是CD的中点(已知),∴DE=EC(中点的定义).∵在△ADE与△FCE中,,∴△ADE≌△FCE(ASA),∴FC=AD(全等三角形的性质).(2)∵△ADE≌△FCE,∴AE=EF,AD=CF(全等三角形的对应边相等),∴BE是线段AF的垂直平分线,∴AB=BF=BC+CF,∵AD=CF(已证),∴AB=BC+AD(等量代换).22.(8分)如图:已知等边△ABC中,D是AC的中点,E是BC延长线上的一点,且CE=CD,DM⊥BC,垂足为M,求证:M是BE的中点.【解答】证明:连接BD,∵在等边△ABC,且D是AC的中点,∴∠DBC=∠ABC=×60°=30°,∠ACB=60°,∵CE=CD,∴∠CDE=∠E,∵∠ACB=∠CDE+∠E,∴∠E=30°,∴∠DBC=∠E=30°,∴BD=ED,△BDE为等腰三角形,又∵DM⊥BC,∴M是BE的中点.23.(10分)从2014年春季开始,我县农村实行垃圾分类集中处理,对农村环境进行综合整治,靓化了我们的家园.现在某村要清理一个卫生死角内的垃圾,若用甲、乙两车运送,两车各运15趟可完成,已知甲、乙两车单独运完此堆垃圾,乙车所运趟数是甲车的3倍,求甲、乙两车单独运完此堆垃圾各需运多少趟?【解答】解:设甲车单独运完此堆垃圾需运x趟,则乙车单独运完此堆垃圾需运3x趟,根据题意得:+=1,解得:x=20,经检验:x=20是方程的解,且符合题意,则20×3=60(趟).答:甲车单独运完此堆垃圾需运20趟,乙车单独运完此堆垃圾需运60趟.24.(10分)常用的分解因式的方法有提取公因式法、公式法及到了高中还要学习的十字相乘法,但有更多的多项式只用上述方法就无法分解,x2﹣4y2﹣2x+4y,我们细心观察这个式子就会发现,前两项符合平方差公式,后两项可提取公因式,前后两部分分别分解因式后会产生公因式,然后提取公因式就可以完成整个式子的分解因式了.过程为:x2﹣4y2﹣2x+4y=(x+2y)(x﹣2y)﹣2(x﹣2y)=(x﹣2y)(x+2y﹣2)这种分解因式的方法叫分组分解法.利用这种方法解决下列问题:(1)分解因式:a2﹣4a﹣b2+4;(2)△ABC三边a,b,c满足a2﹣ab﹣ac+bc=0,判断△ABC的形状.【解答】解:(1)a2﹣4a﹣b2+4=a2﹣4a+4﹣b2=(a﹣2)2﹣b2=(a+b﹣2)(a﹣b﹣2);(2)a2﹣ab﹣ac+bc=0,∴a2﹣ab﹣(ac﹣bc)=0,∴a(a﹣b)﹣c(a﹣b)=0,∴(a﹣b)(a﹣c)=0,∴a﹣b=0,或者a﹣c=0,即:a=b,或者a=c∴△ABC是等腰三角形.赠送初中数学几何模型【模型一】“一线三等角”模型:图形特征:运用举例:1.如图,若点B在x轴正半轴上,点A(4,4)、C(1,-1),且AB=BC,AB⊥BC,求点B的坐标;2.如图,在直线l 上依次摆放着七个正方形(如图所示),已知斜放置的三个正方形的面积分别是1、2、3,正放置的四个正方形的面积依次是1S 、2S 、3S 、4S ,则14S S += .ls 4s 3s 2s 13213. 如图,Rt △ABC 中,∠BAC =90°,AB =AC =2,点D 在BC 上运动(不与点B ,C 重合),过D 作∠ADE =45°,DE 交AC 于E . (1)求证:△ABD ∽△DCE ;(2)设BD =x ,AE =y ,求y 关于x 的函数关系式,并写出自变量x 的取值范围; (3)当△ADE 是等腰三角形时,求AE 的长.B4.如图,已知直线112y x =+与y 轴交于点A ,与x 轴交于点D ,抛物线212y x bx c =++与直线交于A 、E 两点,与x 轴交于B 、C 两点,且B 点坐标为 (1,0)。