201X年春八年级数学下册 第16章 二次根式 16.1 二次根式 第1课时 二次根式练习 (新版)
人教版数学八年级下册16.1第1课时《 二次根式的概念》教学设计
人教版数学八年级下册16.1第1课时《二次根式的概念》教学设计一. 教材分析人教版数学八年级下册16.1第1课时《二次根式的概念》是初中数学的重要内容,主要让学生了解二次根式的概念,理解二次根式与有理数、实数之间的关系,为后续学习二次根式的运算和应用打下基础。
本节课的内容包括二次根式的定义、性质和运算方法,通过学习,让学生能够熟练掌握二次根式的相关知识,提高他们的数学素养。
二. 学情分析学生在学习本节课之前,已经掌握了实数、有理数等相关知识,具备一定的逻辑思维能力和运算能力。
但二次根式作为新的数学概念,对于部分学生来说可能较为抽象,难以理解。
因此,在教学过程中,要注重引导学生从实际问题中抽象出二次根式的概念,帮助他们建立直观的认识,从而更好地理解和掌握二次根式的相关知识。
三. 教学目标1.让学生了解二次根式的定义、性质和运算方法。
2.培养学生从实际问题中抽象出二次根式的能力。
3.提高学生的数学素养,培养他们的逻辑思维能力和运算能力。
四. 教学重难点1.二次根式的定义和性质。
2.二次根式的运算方法。
3.引导学生从实际问题中抽象出二次根式。
五. 教学方法1.情境教学法:通过创设实际问题情境,引导学生从实际问题中抽象出二次根式。
2.讲授法:讲解二次根式的定义、性质和运算方法。
3.实践操作法:让学生通过实际操作,掌握二次根式的运算方法。
4.小组讨论法:分组讨论,共同解决问题,提高学生的合作能力。
六. 教学准备1.教学课件:制作精美的课件,辅助讲解和展示二次根式的相关知识。
2.实际问题:准备一些与生活实际相关的问题,用于引导学生从实际问题中抽象出二次根式。
3.练习题:准备一些练习题,用于巩固所学知识。
七. 教学过程1.导入(5分钟)利用实际问题情境,引导学生从实际问题中抽象出二次根式。
例如,讲解一个物体从地面上升到最高点再下降到地面的过程,上升和下降的距离分别是3米和4米,求物体的最大高度。
2.呈现(10分钟)讲解二次根式的定义、性质和运算方法。
人教版数学八年级下册:习题word版:第十六章 二次根式
第十六章 二次根式16.1 二次根式第1课时 二次根式的概念基础题知识点1 二次根式的定义1.(2019·黔东南期末)下列式子中一定是二次根式的是( A )A . 2B .32C .-2D .x2.下列各式中,不一定是二次根式的为( A )A .a +1B .b 2+1C .0D .(a -b )23.小红说:“因为4=2,所以4不是二次根式.”你认为小红的说法对吗?错(填“对”或“错”).知识点2 二次根式有意义的条件 4.(2019·黔南期中联考)二次根式x +3有意义的条件是( C )A .x >3B .x >-3C .x ≥-3D .x ≥35.当x 为何值时,下列各式有意义?(1)-x ;解:由-x ≥0,得x ≤0. ∴当x ≤0时,-x 有意义.(2)5-2x ;解:由5-2x ≥0,得x ≤52. ∴当x ≤52时,5-2x 有意义.(3)x 2+1;解:由x 2+1≥0,得x 为任意实数.∴当x 为任意实数时,x 2+1都有意义.(4)14-3x. 解:由4-3x>0,得x<43. ∴当x<43时,14-3x有意义.知识点3 二次根式的实际应用6.已知一个表面积为12 dm 2的正方体,则这个正方体的棱长为( B )A .1 dm B. 2 dm C. 6 dm D .3 dm易错点 考虑不全造成答案不完整7.若式子a +1a -2有意义,则实数a 的取值范围是( C ) A .a ≥-1 B .a ≠2 C .a ≥-1且a ≠2 D .a >202 中档题8.(2019·毕节织金县期末)如果y =1-x +x -1+2,那么(-x)y 的值为( A )A .1B .-1C .±1D .0 9.(2020·遵义汇川区模拟)若x -1+2x -3在实数范围内有意义,则实数x 的取值范围是x ≥1且x ≠3. 10.要使二次根式2-3x 有意义,则x 的最大值是23. 11.若整数x 满足|x|≤3,则使7-x 为整数的x 的值是3或-2.(只需填一个)12.x 为何值时,下列各式在实数范围内有意义? (1)32x -1; 解:x>12.(2)21-x; 解:x ≥0且x ≠1.(3)1-|x|;解:-1≤x ≤1.(4)x -3+4-x.解:3≤x ≤4.03 综合题13.已知a ,b 分别为等腰三角形的两条边长,且a ,b 满足b =4+3a -6+32-a ,求此三角形的周长. 解:∵3a -6≥0,2-a ≥0,∴a =2,b =4.当边长为4,2,2时,不符合实际情况,舍去;当边长为4,4,2时,符合实际情况,4×2+2=10.综上,此三角形的周长为10.第2课时 二次根式的性质01 基础题知识点1 (a)2=a(a ≥0) 1.计算:(3)2=3;(49)2=49. 2.把下列非负数写成一个非负数的平方的形式:(1)5=(5)2; (2)3.4=( 3.4)2; (3)16=(16)2; (4)x =(x)2(x ≥0). 3.在实数范围内分解因式:x 2-5=(x +5)(x -5).知识点2 a 2=a(a ≥0)4.(2019·黔东南期末)计算:(-1)2=1.5.若(a -2)2=2-a ,则a 的取值范围是a ≤2.6.计算:(1)49;解:原式=72=7.(2)(-5)2;解:原式=52=5.(3)-(-13)2; 解:原式=-(13)2=-13.(4)4×10-4. 解:原式=(2×10-2)2=2×10-2.知识点3 代数式用基本运算符号(基本运算包括加、减、乘、除、乘方和开方)把数或表示数的字母连接起来的式子叫做代数式.7.下列式子中属于代数式的有( A )①0;②x ;③x +2;④2x ;⑤x =2;⑥x>2;⑦x 2+1;⑧x ≠2.A .5个B .6个C .7个D .8个8.若一个正方体的表面积为S ,则用含S 的代数式表示正方体的棱长a =S 6;当S =18时,a =3.知识点4 二次根式的非负性二次根式a的两个非负性:(1)被开方数a必须是非负数;(2)a的结果一定是非负数.9.已知x,y为实数,且x-1+3(y-2)2=0,则x-y的值为( D )A.3 B.-3 C.1 D.-110.当x=2_020时,式子2 021-x-2 020有最大值,且最大值为2_021.易错点运用a2=a(a≥0)时,忽略a≥011.计算:(1-2)2=2-1.02中档题12.下列等式正确的是( A )A.(3)2=3 B.(-3)2=-3 C.33=3 D.(-3)2=-3 13.化简二次根式(3.14-π)2,结果为( C )A.0 B.3.14-πC.π-3.14 D.0.114.(2020·呼伦贝尔)已知实数a在数轴上的对应点位置如图所示,则化简|a-1|-(a-2)2的结果是( D )A.3-2a B.-1 C.1 D.2a-315.若等式(x-2)2=(x-2)2成立,则字母x的取值范围是x≥2.16.计算下列各式:(1)13+23=3;(2)13+23+33=6;(3)13+23+33+43=10;(4)13+23+33+43+53=15;(5)13+23+33+…+203=210;(6)猜想13+23+33+…+n3=n(n+1)2.(用含n的代数式表示)17.比较211与35的大小.解:∵(211)2=22×(11)2=44,(35)2=32×(5)2=45,又∵44<45,且211>0,35>0,∴211<3 5.18.已知实数m满足(2-m)2+m-4=m2,求m的值.解:由题意,得m-4≥0,解得m≥4.∴原等式化为m-2+m-4=m.整理,得m-4=2,解得m=8.03综合题19.甲、乙两人同时解答题目:“化简并求值:a+1-6a+9a2,其中a=5.”甲、乙两人的解答不同,甲的解答是:a+1-6a+9a2=a+(1-3a)2=a+1-3a=1-2a=-9;乙的解答是:a+1-6a+9a2=a+(1-3a)2=a+3a-1=4a-1=19.(1)甲的解答是错误的;(2)(用公式表示)(3)模仿上题解答:化简并求值:|1-a|+1-8a+16a2,其中a=2.解:|1-a| +1-8a+16a2=|1-a|+(1-4a)2.∵a=2,∴1-a<0,1-4a<0.∴原式=a-1+4a-1=5a-2=8.16.2 二次根式的乘除第1课时 二次根式的乘法01 基础题知识点1 二次根式的乘法二次根式的乘法法则:a·b =ab(a ≥0,b ≥0).1.计算并化简8×2的结果为( C )A .16B . 4C .4D .162.下列各等式成立的是( D )A .45×25=8 5B .53×42=20 5C .43×32=7 5D .53×42=20 63.等式x +1·x -1=x 2-1成立的条件是( A )A .x ≥1B .x ≥-1C .-1≤x ≤1D .x ≥1或x ≥-1 4.计算:(1)12×8=2;(2)221×(-37)=-6.5.计算:(1)2×11;解:原式=22.(2)125×15; 解:原式=125×15=25 =5.(3)32×27;解:原式=3×2×2×7=614.(4)3xy·1y .解:原式=3xy·1y=3x.知识点2 积的算术平方根积的算术平方根的性质:ab=a·b(a≥0,b≥0).6.化简40的结果是( B )A.10 B.210 C.4 5 D.20 7.化简:(1)(-3)2×6=36;(2)2y3=y2y.8.化简:(1)144×169;解:原式=144×169=12×13=156.(2)9x2y5z.解:原式=9·x2·y5·z=3x y4·y·z=3xy2yz.9.计算:(1)36×212;解:原式=662×2=36 2.(2)15ab2·10ab.解:原式=2a2b=a2b.易错点忽视被开方数不能小于零10.化简:(-4)×(-9).解:原式=-4×-9=(-2)×(-3)=6. 以上解答过程正确吗?若不正确,请改正.解:不正确.原式=36=6.02中档题11.已知m =(-33)×(-221),则有( A ) A .5<m <6 B .4<m <5 C .-5<m <-4 D .-6<m <-512.(教材P 16“阅读与思考”变式)已知三角形的三边长分别为a ,b ,c ,求其面积问题,中外数学家曾经进行过深入研究,古希腊的几何学家海伦(Heron ,约公元50年)给出求其面积的海伦公式S =p (p -a )(p -b )(p -c ),其中p =a +b +c 2;我国南宋时期数学家秦九韶(约1202-约1261)曾提出利用三角形的三边求其面积的秦九韶公式S =12a 2b 2-(a 2+b 2-c 22)2.若一个三角形的三边长分别为2,3,4,则其面积是( B ) A .3158 B .3154 C .3152 D .15213.(教材P5习题T9(2)变式)(2020·益阳)若计算12×m 的结果为正整数,则无理数m 写出一个符合条件的即可). 14.(2019·铜仁期末)计算:133x 3y 2·1212xy 2=x 2y 2. 15.化简:(1)75×20×12; 解:原式=25×3×4×5×3×4=60 5.(2)(-14)×(-112);解:原式=14×112 =2×72×42=2×72×42=28 2.(3)-32×45×2;解:原式=-3×16×22=-96 2.(4)200a 5b 4c 3(a >0,c >0).解:原式=2×102·(a 2)2·a ·(b 2)2·c 2·c=10a 2b 2c 2ac.16.将下列二次根式中根号外的因数或因式移至根号内:(1)35;解:原式=32×5=45.(2)-23;解:原式=-22×3=-12.(3)x-x.解:原式=-(-x)-x=-(-x)2·(-x)=--x3.17.交通警察通常根据刹车后车轮滑过的距离估计车辆行驶的速度,所用的经验公式是v=16df,其中v表示车速(单位:千米/时),d表示刹车后车轮滑过的距离(单位:米),f表示摩擦因数,在某次交通事故调查中,测得d=20米,f=1.2,肇事汽车的车速大约是多少?(6≈2.449 5,结果精确到0.01千米/时)解:当d=20米,f=1.2时,v=16df=16×20×1.2=1624=326≈78.38(千米/时).答:肇事汽车的车速大约是78.38千米/时.03综合题18.观察分析下列数据:0,-3,6,-3,23,-15,32,…,根据数据排列的规律得到第16个数据应是(结果需化简)第2课时 二次根式的除法01 基础题知识点1 二次根式的除法二次根式的除法法则:a b =a b(a ≥0,b>0). 1.计算:10÷2=( A )A . 5B .5C .52D .1022.下列运算正确的是( D ) A .50÷5=10B .10÷25=2 2C .32+42=3+4=7D .27÷3=3 3.计算:(1)40÷5; 解:原式=40÷5 =8=2 2.(2)322;解:原式=322=16=4.(3)45÷215; 解:原式=45÷215 =45×152= 6.(4)2a 3bab (a>0).解:原式=2a.知识点2 商的算术平方根商的算术平方根的性质:a b =a b (a ≥0,b>0). 4.下列各式成立的是( A )A .-3-5=35=35 B .-7-6=-7-6 C .2-9=2-9D .9+14=9+14=312 5.化简: (1)7100; 解:原式=7100=710.(2)11549; 解:原式=6449=6449=87.(3)25a 49b 2(b>0). 解:原式=25a 49b 2=5a 23b.知识点3 最简二次根式最简二次根式应有如下两个特点:(1)被开方数不含分母;(2)被开方数中不含能开得尽方的因数或因式.6.(2020·遵义汇川区模拟)下列各式中,是最简二次根式的是( C )A .12B .8C . 6D .0.37.把下列各个二次根式化为最简二次根式:(1)85; 解:原式=8×55×5 =22×1052 =22×1052(2)2 3;解:原式=2×3 3×3=6 3.(3)8a2b3(a>0).解:原式=8·a2·b3=22·a·b b=2ab2b.易错点忽视二次根式的被开方数为非负数8.小东在学习了ab=ab后,认为ab=ab也成立,因此他认为一个化简过程-27-3=-27-3=-3×9-3=9=3是正确的.你认为他的化简正确吗?若不正确,请指出错误,并给出正确的解答过程.解:不正确.-27-3≠-27-3.正确解答过程:-27-3=273=9=3.02中档题9.下列等式不成立的是( B )A.62×3=6 6 B.8÷2=4C.13=33D.8×2=410.计算212×34÷32的结果是( A )A.22B.33C.23D.3211.已知长方形的宽是32,它的面积是186,则它的长是12.不等式22x-6>0的解集是x>213.计算:(1)215;解:原式=115=115=11×55×5=555.(2)(2019·黔南期中)23÷223×25; 解:原式=23×38×25=1010.(3)0.9×121100×0.36. 解:原式=12140=11222×10=112110=112×1010=111020.14.先化简,再求值:x -1x 2-1÷x 2x 2+x,其中x = 3. 解:原式=x -1(x +1)(x -1)÷x 2x (x +1)=1x +1·x +1x=1x. 当x =3时,原式=13=33.15.如图,在Rt △ABC 中,∠ACB =90°,S △ABC =18 cm 2,BC = 3 cm ,AB =3 3 cm ,CD ⊥AB 于点D.求AC ,CD 的长.解:∵S △ABC =12AC·BC =12AB·CD , ∴AC =2S △ABC BC =2183=26(cm ), CD =2S △ABC AB =21833=236(cm ).03 综合题16.已知x -69-x =x -69-x,且x 为奇数,求(1+x)·x 2-2x +1x 2-1的值. 解:∵x -69-x =x -69-x , ∴⎩⎪⎨⎪⎧x -6≥0,9-x >0.∴6≤x <9. 又∵x 是奇数,∴x =7.∴原式=(1+x)·(x -1)2(x +1)(x -1) =(1+x)·x -1x +1=(x +1)(x -1)=(7+1)(7-1)=8×6=4 3.16.3 二次根式的加减第1课时 二次根式的加减01 基础题知识点1 可以合并的二次根式1.下列二次根式中,能与3合并的是( C ) A .8 B . 6 C .12 D .122.若最简二次根式2x +1和4x -3能合并,则x 的值为( C )A .-12B .34C .2D .5 3.若m 与18可以合并,则m 的最小正整数值是( D )A .18B .8C .4D .2知识点2 二次根式的加减二次根式加减时,可以先将二次根式化成最简二次根式,再将被开方数相同的二次根式进行合并.4.下列计算18-2的结果是( C )A .4B .3C .2 2D . 25.下列计算正确的是( C )A .2+3=2 3B .52-2=5C .52a +2a =62aD .y +2x =3xy6.(2019·遵义)计算35-20的结果是5.7.(2020·遵义红花岗区模拟)计算:27-313=23. 8.三角形的三边长分别为20 cm ,40 cm ,45 cm ,这个三角形的周长是(55+210)cm .9.计算:(1)(2020·遵义汇川区期末)27-12+32;解:原式=33-23+4 3=5 3.(2)6-32-23; 解:原式=6-62-63(3)(2019·黔南期中)8+23-(27-2);解:原式=22+23-33+ 2=32- 3.(4)45+45-8+4 2.解:原式=45+35-22+4 2=75+2 2.易错点错用运算法则致错10.计算:18+98+27.解:原式=32+72+33①=102+33②=(10+3)2+3③=13 5.④(1)以上解答过程中,从③开始出现错误;(2)请写出本题的正确解答过程.解:原式=32+72+3 3=102+3 3.02中档题11.若x与2可以合并,则x可以是( A )A.0.5 B.0.4 C.0.2 D.0.112.计算|2-5|+|4-5|的值是( B )A.-2 B.2 C.25-6 D.6-2 513.如图,在数学课上,老师用5个完全相同的小长方形在无重叠的情况下拼成了一个大长方形,已知小长方形的长为27,宽为12,下列是四位同学对该大长方形的判断,其中不正确的是( C )A.大长方形的长为6 3B.大长方形的宽为5 314.若a ,b 均为有理数,且8+18+18=a +b 2,则a =0,b =214.15.当y =23时,8y +4-5-4y 316.已知一个等腰三角形的周长为125,其中一边的长为25,则这个等腰三角形的腰长为17.计算: (1)(45+27)-(43+125); 解:原式=35+33-233-5 5 =733-2 5.(2)8-612+12-|2-3|; 解:原式=22-32+23+2- 3= 3.(3)18-22-82+(5-1)0; 解:原式=32-2-2+1=2+1.(4)254x +16x -9x ; 解:原式=52x +4x -3x =72x.(5)(30.5-513)-(20.125-20). 解:原式=(312-513)-(218-20) =322-533-22+2 5 =2-533+2 5.面积为800 cm2,另一张面积为450 cm2,他想如果再用金色细彩带把壁画的边镶上会更漂亮,他手上现有1.2 m长的金色细彩带,请你帮忙算一算,他的金色细彩带够用吗?如果不够用,还需买多长的金色细彩带?(2≈1.414,结果保留整数)解:镶壁画所用的金色细彩带的长:4×(800+450)=4×(202+152)=1402≈197.96(cm).因为1.2 m=120 cm<197.96 cm,所以小刚的金色细彩带不够用.197.96-120=77.96≈78(cm),即还需买78 cm的金色细彩带.03综合题19.若a,b都是正整数,且a<b,a与b可以合并,是否存在a,b,使a+b=75?若存在,请求出a,b的值;若不存在,请说明理由.解:∵a与b可以合并,a+b=75=53,且a,b都是正整数,a<b,∴a=3,b=43或a=23,b=33,即a=3,b=48或a=12,b=27.第2课时 二次根式的混合运算01 基础题知识点1 二次根式的混合运算二次根式的混合运算顺序:先算乘方,再算乘除,最后算加减,有括号先算括号里面的.1.下列计算错误的是( D )A .14×7=7 2B .60÷30= 2C .9a +25a =8 aD .32-2=32.(2020·朝阳)计算12-12×14的结果是( B )A .0B . 3C .3 3D .12 3.计算(515-245)÷(-5)的结果为( A )A .5B .-5C .7D .-7 4.计算:(1)(2019·南京)计算147-28的结果是0;(2)(2019·青岛)计算:24+82-(3)2=23-1.5.计算:(1)3(5-2);解:原式=3×5-3× 2=15- 6.(2)(2019·黔南期中)348-427÷23;解:原式=123-123÷2 3 =123-6.(3)(2+3)(2+2).解:原式=(2)2+32+22+6=2+52+6=8+5 2.乘法公式:(a +b)2=a 2+2ab +b 2;(a -b)2=a 2-2ab +b 2;(a +b)(a -b)=a 2-b 2.6.(2019·遵义桐梓县模拟)计算(5+4)(5-4)的结果是1.7.计算(25-2)2的结果是22-4108.计算:(1)(2019·黔东南期末)(7+43)(7-43); 解:原式=49-48=1.(2)(3-3)2.解:原式=(3)2-2×3×3+32=3-63+9=12-6 3.易错点 错用运算法则进行运算9.嘉淇计算12÷(34+233)时,想起分配律,于是她按分配律完成了下列计算: 解:原式=12÷34+12÷233=12×43+12×323 =11.她的解法正确吗?若不正确,请给出正确的解答过程.解:不正确,正确解答过程为: 原式=12÷(3312+8312) =12÷11312=23×12113 =2411.02 中档题10.计算(2+1)2 021(2-1)2 020的结果是( C )A .1B .-1C .2+1D .2-1A .14B .16C .8+5 2D .14+ 2 12.(2019·滨州)计算:(-12)-2-|3-2|+32÷118=2+43. 13.已知m =1+2,n =1-2,则代数式m 2+n 2-3mn 的值为3. 14.计算: (1)48÷3-12×12+24; 解:原式=48÷3-12×12+2 6 =4-6+2 6 =4+ 6.(2)(2019·黔东南期末)18-412+24÷3; 解:原式=32-22+24÷3 =2+2 2 =3 2.(3)(32+23)×(32-23)-(3-2)2.解:原式=(32)2-(23)2-[(3)2-2×3×2+(2)2] =18-12-(3-26+2) =6-5+2 6 =1+2 6.15.已知x =3+2,y =3-2,求x 3y -xy 3的值. 解:原式=xy(x 2-y 2)=xy(x +y)(x -y). 当x =3+2,y =3-2时, xy =1,x +y =23,x -y =2 2. ∴原式=1×23×22=4 6.16.先化简,再求值:(a -2a 2+2a -a -1a 2+4a +4)÷a -4a +2,其中a =2-1.解:原式=[a -2a (a +2)-a -1(a +2)2]·a +2a -4=a 2-4-a 2+a a (a +2)2·a +2a -4 =a -4a (a +2)2·a +2a -4=1a (a +2).当a =2-1时,原式=1(2-1)(2-1+2)=1.03 综合题17.(2019·遵义期末改编)观察下列运算: ①由(2+1)(2-1)=1,得12+1=2-1; ②由(3+2)(3-2)=1,得13+2=3-2; ③由(4+3)(4-3)=1,得14+3=4-3; …(1)通过观察你得出什么规律?用含n 的式子表示出来; (2)利用(1)中发现的规律计算:(12+1+13+2+14+3+…+12 020+ 2 019+12 021+ 2 020)×( 2 021+1). 解:(1)1n +1+n=n +1-n(n ≥0).(2)原式=(2-1+3-2+4-3+…+ 2 021- 2 020)×( 2 021+1) =(-1+ 2 021)×( 2 021+1) =( 2 021)2-1 =2 020.小专题(一) 二次根式的性质及运算类型1 二次根式的非负性1.已知a -b +|b -1|=0,则a +1=2.2.已知x ,y 为实数,且y =x -9+9-x +4,则x -y 的值为5. 3.当x =15时,5x -1+4的值最小,最小值是4.类型2 二次根式的运算 4.计算: (1)62×136;解:原式=(6×13)2×6=212 =4 3.(2)(-45)÷5145; 解:原式=-45÷(5×355)=-45÷3 5 =-43.(3)72-322+218; 解:原式=62-322+6 2 =2122. (4)(25+3)×(25-3). 解:原式=(25)2-(3)2 =20-3 =17.5.计算:(1)334÷(-12123); 解:原式=[3÷(-12)]34÷53=-6920 =-69×520×5=-95 5.(2)(6+10×15)×3; 解:原式=32+56× 3 =32+15 2 =18 2.(3)354×(-89)÷7115; 解:原式=3×(-1)×54×89÷7115=-348÷765=-3748×56=-6710.(4)(12-418)-(313-40.5); 解:原式=23-2-3+2 2 =3+ 2.(5)(32-6)2-(-32-6)2. 解:原式=(32-6)2-(32+6)2 =18+6-123-(18+6+123) =-24 3.6.计算:(1)(2019·南充)(1-π)0+|2-3|-12+(12)-1; 解:原式=1+3-2-23+ 2 =1- 3.(2)|2-5|-2×(18-102)+32. 解:原式=5-2-12+5+32=25-1.类型3 与二次根式有关的化简求值7.已知实数a ,b ,定义“★”运算规则如下:a ★b =⎩⎨⎧b (a ≤b ),a 2-b 2(a>b ),求7★(2★3)的值.解:由题意,得2★3= 3.∴7★(2★3)=7★3=7-3=2.8.已知x =3+1,求x 2-2x -3的值. 解:x 2-2x -3=x 2-2x +1-4 =(x -1)2-4. 当x =3+1时, 原式=(3+1-1)2-4 =3-4 =-1.9.已知x =1-2,y =1+2,求x 2+y 2-xy -2x +2y 的值. 解:∵x =1-2,y =1+2,∴x -y =-22,xy =(1-2)(1+2)=-1. ∴原式=(x -y)2-2(x -y)+xy =(-22)2-2×(-22)+(-1) =7+4 2.10.(2020·烟台)先化简,再求值:(y x -y -y 2x 2-y 2)÷xxy +y 2,其中x =3+1,y =3-1.解:原式=[y (x +y )(x +y )(x -y )-y 2(x +y )(x -y )]÷xy (x +y )=xy(x +y )(x -y )·y (x +y )x=y 2x -y. 当x =3+1,y =3-1时, 原式=(3-1)22=2- 3.11.小明在学习二次根式后,发现一些含根号的式子可以写成另一个式子的平方,如3+22=(1+2)2,善于思考的小明进行了以下探索:设a +b 2=(m +n 2)2(其中a ,b ,m ,n 均为正整数),则有a +b 2=m 2+2n 2+22mn , ∴a =m 2+2n 2,b =2mn.这样小明就找到了一种把a +b 2的式子化为平方式的方法. 请你仿照小明的方法探索并解决下列问题:(1)当a ,b ,m ,n 均为正整数时,若a +b 3=(m +n 3)2,用含m ,n 的式子分别表示a ,b ,得a =m 2+3n 2,b =2mn ;(2)利用所探索的结论,找一组正整数a ,b ,m ,n 填空:4+(1+2;(答案不唯一) (3)若a +43=(m +n 3)2,且a ,m ,n 均为正整数,求a 的值.解:根据题意,得⎩⎪⎨⎪⎧a =m 2+3n 2,4=2mn.∵2mn =4,且m ,n 为正整数, ∴m =2,n =1或m =1,n =2. ∴a =7或13.章末复习(一)二次根式01分点突破知识点1二次根式的相关概念二次根式有意义的条件:(1)1A有意义⇒A>0;(2)A+1B有意义⇒⎩⎪⎨⎪⎧A≥0,B≠0.1.(2019·黔东南期末)在二次根式a-2中,a能取到的最小值为( C ) A.0 B.1 C.2 D.2.52.(2019·毕节模拟)使代数式2x-13-x有意义的x的取值范围是x≥12且x≠3.知识点2二次根式的性质3.若a-1+(b-2)2=0,则ab的值等于( D )A.-2 B.0 C.1 D.2 4.若xy<0,则x2y化简后的结果是( D )A.x y B.x-y C.-x-y D.-x y 5.(2019·黔东南期末)若m=n-2+2-n+5,则m n=25.6.如图,数轴上点A表示的数为a,化简:a+a2-4a+4=2.知识点3二次根式的运算在二次根式的运算中,最后结果一般要求分母中不含二次根式,具体化简方法如下:(1)ab=a·bb·b=abb(a≥0,b>0);(2)abb=a(b)2b=a b(b>0).7.与-5可以合并的二次根式的是( C )A.10B.15C.20D.25 8.下列计算正确的是( D )A.3+5=8B.2÷5=2 5C.23×33=6 3 D.7-27=-79.计算: (1)68-32; 解:原式=122-4 2 =8 2. (2)27-13+12; 解:原式=33-33+2 3 =1433.(3)212×34÷2; 解:原式=2×14×12×3×12=322. (4)(48+20)-(12-5). 解:原式=43+25-23+ 5 =23+3 5.02 易错题集训10.下列计算正确的是( D )A .2+5=7B .2+2=2 2C .32-2=3D .2-12=2211.计算:23÷5×15. 解:原式=23×15×15=235.12.小明在学习中发现了一个“有趣”的现象:∵23=22×3=22×3=12,①-23=(-2)2×3=(-2)2×3=12,② ∴23=-2 3.③ ∴2=-2.④(1)上面的推导过程中,从第②步开始出现错误(填序号); (2)写出该步的正确结果.解:-23=-22×3=-22×3=-12.03 常考题型演练13.(2019·遵义期中)下列式子是最简二次根式的是( D ) A .8 B .3m 2 C .12D . 6 14.(2020·遵义汇川区模拟)下列运算正确的是( C )A .x -2x =xB .(xy)2=xy 2C .2×3= 6D .(-2)2=4 15.(2019·遵义期中)下列各式计算错误的是( C ) A .(3-2)(3+2)=1 B .2×3= 6 C .55-25=3 D .18÷2=316.(2019·黔东南期末)已知x =5+1,y =5-1,则x 2+2xy +y 2的值为( A ) A .20 B .16 C .2 5 D .4 517.已知实数a ,b 在数轴上的位置如图所示,化简:(a +1)2+(b -1)2-|a -b|=-2.18.观察下列各式:1+13=213,2+14=314,3+15=415,…,请你将发现的规律用含自然数n(n ≥1)的代数式表达出来n +1n +2=(n +1)1n +2(n ≥1). 19.计算: (1)(24-12)-(18+6); 解:原式=26-22-24- 6 =6-324.(2)6×13-16×18;解:原式=2-4×3 2=2-12 2=-11 2.(3)(5+3)2-(5+3)(5-3);解:原式=5+3+215-(5-3)=6+215.(4)48÷3-12×12+24;解:原式=43÷3-22×23+2 6=4-6+2 6 =4+ 6.(5)18-22-(5-1)0-82.解:原式=32-2-1- 2=2-1.20.(2019·遵义期中)先化简,再求值:a+1-2a+a2,其中a=1 010.如图是小亮和小芳的解答过程.(1)小亮的解法是错误的,错误的原因在于未能正确地运用二次根式的性质:a2=-a(a<0);(2)先化简,再求值:x+2x2-4x+4,其中x=-2 019.解:x+2x2-4x+4=x+2(x-2)2.∵x=-2 019,∴x-2<0.∴原式=x+2(-x+2)=x-2x+4=-x+4=2 019+4=2 023.。
初二数学二次根式教案
初二数学二次根式教案【篇一:新人教版八年级数学下册第16章二次根式教案】课题:16.1二次根式1 课型:新授一、学习目标1、了解二次根式的概念,能判断一个式子是不是二次根式。
2、掌握二次根式有意义的条件。
3、掌握二次根式的基本性质:a?0(a?0)和(a)?a(a?0)二、学习重点、难点重点:二次根式有意义的条件;二次根式的性质.难点:综合运用性质a?0(a?0)和(a)?a(a?0)。
三、学习过程(一)自学导航(课前预习)(1)已知x?a,那么a是x的______;x是a的______, 记为_____,a一定是____数。
(2)4的算术平方根为2,用式子表示为;正数a的算术平方根为4_______,0的算术平方根为_______;式子a?0(a?0)的意义是。
(二)合作交流(小组互助)(1)的平方根是;(2)一个物体从高处自由落下,落到地面的时间是t(单位:秒)与开始下落时的高度h(单位:米)满足关系式h?5t。
如果用含h的式子表示t,则t;(3)圆的面积为s,则圆的半径是;(4)正方形的面积为b?3,则边长为。
思考:,2222hs ,,?3等式子的实际意义.说一说他们的共同特征. ?5a(a?0)叫做二次根式,a叫做_____________。
定义: 一般地我们把形如1、试一试:判断下列各式,哪些是二次根式?哪些不是?为什么?,?,4a(a?0),x2?1 32、当a为正数时a指a的,而0的算术平方根是,负数,只有非负数a才有算术平方根。
所以,在二次根式a中,字母a必须满足 , 1a才有意义。
3、根据算术平方根意义计算: (1) (4)2 (2)((3)(.5) (4)()2根据计算结果,你能得出结论:(a)2?________,其中a?0,4、由公式(a)?a(a?0),我们可以得到公式a=(a)2 ,利用此公式可以把任意一个非负数写成一个数的平方的形式。
如()=5;也可以把一个非负数写成一个数的平方形式,如5=(). 22212) 32练习:(1)把下列非负数写成一个数的平方的形式:6 0.35(2)在实数范围内因式分解x2?74a2-11(三)展示提升(质疑点拨)例:当x是怎样的实数时,x?2在实数范围内有意义?解:由x?2?0,得x?2当x?2时,x?2在实数范围内有意义。
最新人教版八年级数学下册第16章二次根式全套课件PPT(完美版)
A≥0且B≠0.
A 1有意义的条件:
B
巩固练习
2. x取何值时,下列二次根式有意义?
(1) x 1
x≥1
(4) 1 x x>0
(2) 3x
x≤0
(5) x3
x≥0
(3) 4x2
x为全体实数
(6) 1 x2 x≠0
(7)
x 1 x3
(
x
2)0
(8)
x 2 (9) x2 1
x
∴当x=1时, x2 2x 1 在实数范围内有意义. (2)∵无论x为任何实数,-x2-2x-3=-(x+1)2-2<0, ∴无论x为任何实数, x2 2x 3 在实数范围内都无意义.
归纳小结:被开方数是多项式时,需要对组成多项式的项 进行恰当分组凑成含完全平方的形式,再进行分析讨论.
探究新知
归纳总结
一般地,我们把形如 a (a 0) 的式子叫做二 次根式. “ ”称为二次根号.
注意:a可以是数,也可以是式.
两个必备特征
①外貌特征:含有“ ” ②内在特征:被开方数a ≥0
探究新知
素养考点 1 利用二次根式的定义识别二次根式
例1 下列各式中,哪些是二次根式?哪些不是?
(1) 14 ; (2)81; (3) - 0.8 ;(4)-3x (x 0)
(1) 32
是
(2) -12 不是
(3)3 8
(4)4 a2
不是
不是
(5) - m (m 0) 是
(8) - x2 1
不是
(6) 2a 1 不是
(9)4 2
是
(7) a2 2a 3
是
1
最新人教版八年级下册数学培优训练第十六章二次根式第一节第一课时 二次根式的定义
5.【教材P3练习T2变式】【2021·襄阳】若二次根式 在实数范围内有意义,则x的取值范围是( A ) A.x≥-3 B.x≥3 C.x≤-3 D.x>-3
x+3
新知基本功
6.【2021·绥化】若式子 xx+0 1在实数范围内有意义,则x的 取值范围是( C )
A.x>-1 B.x≥-1且x≠0
∴y=2
024.∴xy=22
024 023.
素质一练通 (1)若x,y为实数,且y> x-3+ 3-x+2,化简:|1y--1y|;
解:由x3- -3x≥ ≥00, ,得 x=3, ∴y>2.∴|1y--1y|=yy--11=1.
素质一练通 (2)已知x,y是等腰三角形的两条边长,且x,y满足y=4+
人教版 八年级下
第十六章 二次根式
16.1 二次根式 第1课时 二次根式的定义
习题链接
提示:点击 进入习题
1 (1) 2C
(2)a≥0
3 见习题 算术平方根;非负
4 数;a≥0
5A
6C 7 见习题 8 算术;≥;≥ 9A 10 B
答案显示
习题链接
11 见习题 12 见习题 13 见习题 14 见习题
10.【中考·宿迁】若实数m,n满足等式|m-2|+ n-4 = 0,且m,n恰好是等腰三角形ABC的两条边的长,则 △ABC的周长是( B )
A.12 B.10 C.8 D.6 【点拨】根据|m-2|+ n-4 =0得m=2,n=4,再根 据三角形三边关系得:三角形三边长分别为4,4,2, 故周长为10.
新知基本功
2.下列各式中不·是·二次根式的是( C )
A. x2+1
B. 0
C. -2
人教版八年级数学下册第16章 二次根式 教案
第十六章 二次根式16.1 二次根式第1课时 二次根式的概念1.理解二次根式的概念.2.≥0)的意义解答具体题目.自学指导:阅读教材第2页至3页,完成下列的问题.知识探究平方根的性质:正数有2个平方根,它们互为相反数;0的平方根是0;负数没有平方根.思考:用带有根号的式子填空,看看写出的结果有什么特点:(1)面积为S 的正方形的边长为__________;(2)要修建一个面积为6.28 m 2的圆形喷水池,它的半径约为__________m ;(3)一个物体从高处自由落下,落到地面所用的时间t(单位:s)与开始落下时的高度h(单位:m)满足关系h=5t 2如果用含有h 的式子表示t ,则t=__________...开平方时,被开方数a 的取值范围是a ≥0(为什么?)自学反馈(1)下列式子,哪些是二次根式?哪些不是二次根式?1x 、、1x y +≥0,y ≥0).判断二次根式的依据是一个形式一个条件,二者缺一不可.(2)当a 是怎样的实数时,下列各式在实数范围内有意义?a≥1a≥-3 2a≤3a≥0a≤0任意实数a>3任意实数任意实数二次根式中求字母的取值范围的依据是:被开方数大于等于零.活动1 小组讨论例1 当x?解:x≥2.例2当x11x+在实数范围内有意义?解:x≥-32且x≠-1.有二次根式的要考虑二次根式的被开方数大于等于零,有分母的要考虑分母不为零.例3已知,求xy的值.解:2 5 .当被开方数互为相反数时被开方数只能为零.活动2 跟踪训练1.要画一个面积为18的长方形,使它的长宽之比为3∶2,它的长宽应取多长?解:长:2.用代数式表示:(1)面积为S的圆的半径.(2)面积为S且两条邻边的比为2∶3的长方形的长和宽.解:(2)3.教材第3页上框练习.活动3 课堂小结1.二次根式的概念.2.二次根式的判断方法.3.怎样求二次根式的被开方数中字母的取值范围.第2课时 二次根式的性质1.≥0)是一个非负数.2.理解二次根式的两个性质)2=a(a ≥0)≥0).3.会运用上述两个性质进行有关计算和化简.自学指导:阅读教材第3页至4页,完成下列的问题.知识探究(—)当a>0a ;当a=00概括:≥0)是一个非负数.知识探究(二)根据算术平方根的意义填空:)2=4;)2=2;2=13;)2=0.概括:一般地:2=a (a ≥0)知识探究(三)=2;=0.01;23=0.=a (a ≥0)二次根式的三个性质:≥0)是一个非负数;)2=a(a ≥0);≥0).自学反馈1.计算:2 )2 2 )2 解:(1)32;(2)45;(3)56;(4)74. 2.化简:解:(1)3;(2)4;(3)5;(4)3.3.代数式的概念:用基本运算符号(基本运算符号包括加、减、乘、除、开方等)把数和表示数的字母连接起来的式子,我们称这样的式子为代数式.活动1 小组讨论例1 计算:(1) 2 (2)2解:(1)1.5;(2)20.例2 化简:( 2 (2解:(1)16;(2)5.一个非负数的算术平方根的平方等于它本身.一个负数的平方的算术平方根等于这个负数的相反数.例3 =0,求a2013+b2013的值.解:≥00,∴a=-1,b=1.∴a2013+b2013=0.二次根式本身具有非负性.活动2 跟踪训练1.计算:2)2解:(1)3;(2)18.2.说出下列各式的值:解:(1)0.3;(2)17;(3)-π;(4)-10.3.计算:22解:(1)5;(2)0.2;(3)0.6;(4)2 3 .4.教材第4页下框练习.活动3 课堂小结二次根式的性质:≥0)是一个非负数.2=a(a≥0)=a(a≥0)16.2 二次根式的乘除第1课时二次根式的乘法1.≥0,b≥0)并运用它进行计算.2.(a≥0,b≥0)并运用它进行解题和化简.自学指导:阅读教材第6页至7页,并完成预习内容.知识探究请同学们完成填空:=6,=6;=20,=20;=60,=60.参考上面的结果,用“>、<或=”填空.归纳:(a≥0,b≥0)反过来(a≥0,b≥0)自学反馈1.计算:解:.2.化简:解:(1)12;;(3)3|xy|;.活动1 小组讨论例1计算:×解:例2 化简:解:(2)36;;.(1)开方后可以移到根号外的因数或因式叫开得尽方的因数或因式.例3 计算:解:;;14写成7×2,同样(2)中写成10=5×2,方便开方.例4判断下列各式是否正确,不正确的请予以改正:=4.解:(1)不正确.(2)不正确..带分数的整数部分和分数部分是相加的关系,而不是相乘的关系.活动2 跟踪训练1.计算:解:(2)6;2.化简:解:(1)77;(2)15;3.和cm,则这个长方形的面积为4.教材第7页下框练习.活动3 课堂小结掌握二次根式的乘法规定和积的算术平方根的性质:≥0,b≥0)(a≥0,b≥0)及应用.第2课时 二次根式的除法1.≥0,b>0)(a ≥0,b>0)及利用它们进行计算和化简. 2.利用具体数据,通过学生练习活动,发现规律,归纳出除法规定,并用逆向思维写出逆向等式及利用它们进行计算和化简.自学指导:阅读教材第8页至10页,并完成预习内容.知识探究请同学们完成填空:对二次根式的除法规定:两个二次根式相除,根指数不变,被开放数相除.自学反馈1.计算:解:(1)2;(2)2.下面利用这个规律来计算和化简一些题目.2.化简:解:(1)8;(2)83b a ;.活动1 小组讨论例1 计算:解:;(1)除了用除法公式外,还可进行分母有理化.例2 化简:解:. 例3 计算:(可以用两种方法计算)解:(1)5;(2)3(3)a.观察上面各小题的最后结果,比如等,这些二次根式有哪些特点: (1)被开方数的因数是整数,因式是整式;(2)被开方数不含能开得尽方的因数或因式.满足以上两点的二次根式,就叫做最简二次根式.在二次根式的运算中,一般要把最后结果化为最简,且结果的分母中不含二次根式.活动2 跟踪训练1.化简:解:(1)2;. 2.如图,在Rt △ABC 中,∠C=90°,AC=2.5cm ,BC=6cm ,求AB 的长.解:6.5cm.3.教材第10页的中框练习.活动3 课堂小结1.二次根式的除法规定.2.逆用法则.3.最简二次根式的概念.16.3 二次根式的加减第1课时二次根式的加减1.使学生知道怎样将根式化为最简二次根式.2.使学生通过合并被开方数相同的二次根式,会进行二次根式的加法与减法运算.自学指导:阅读教材第12页至13页的部分,完成以下问题.知识探究1.合并同类项:(1)2x+3x (2)2x2-3x2+5x2解:(1)5x;(2)4x2.这几道题你是运用什么知识做的?加减法则2.化简:(1(2(3解:(1;(2)(3)3.如何进行二次根式的加减计算?先化简,再合并.自学反馈计算:解:;;;活动1 小组讨论例1 计算:解:;.比较二次根式的加减与整式的加减,你能得出什么结论?例2计算:解:进行二次根式的加减运算时,必须先将其化简,是被开方数相同的二次根式才可合并. 活动2 跟踪训练1.下列计算是否正确?为什么?解:(1)不正确.此式结果为.(2)不正确.此式结果为5.(3)正确.2.计算:(6)a解:;;;(6)17a(7)0;. 3.教材第13页下框练习.计算结果中的二次根式必须是最简二次根式.活动3 课堂小结怎样进行二次根式的加减计算.第2课时 二次根式的混合运算1.含有二次根式的式子进行乘除运算和含有二次根式的多项式乘法公式的应用.2.复习整式运算知识并将该知识运用于含有二次根式的式子的乘除、乘方等运算.自学指导:阅读教材第14页的部分,完成以下问题.知识探究1.计算:(1)(2x+y)·zx (2)(2x 2y+3xy 2)÷xy解:(1)2x 2z+xyz ;(2)2x+3y.2.计算:(1)(2x+3y)(2x-3y) (2)(2x+1)2+(2x-1)2解:(1)4x 2-9y 2;(2)8x 2+2.思考:如果把上面的x 、y 、z 改写成二次根式呢?以上的运算规律是否仍成立呢?仍成立.整式运算中的x 、y 、z 是一种字母,它的意义十分广泛,可以代表所有一切,当然也可以代表二次根式,所以整式中的运算规律也适用于二次根式.3.计算:))·) 2解:(1)43;(3)-6;在二次根式的运算中,多项式乘法法则和乘法公式仍然适用.活动1 小组讨论例1 计算:)÷解:;(2)2-32例2 计算:-5) )解:;(2)2.活动2 跟踪训练1.计算:)2)2解:+;;(4)a-b;(5)9;(6)4;在进行二次根式加减混合运算时能用乘法公式的,运用公式会使计算简便.2.已知+1,,求下列各式的值:(1)x2+2xy+y2(2)x2-y2解:(1)12;这类计算的简便方法是先变形,再代入求值.3.教材第14页下框练习.活动3 课堂小结1.如何计算二次根式加减混合运算.2.计算结果中的二次根式必须是最简二次根式.。
人教版数学八年级下册二次根式(第1课时)教学课件
(3) 3 8
(4) 4 a2
不是(bù shi)
不是
不是
(5) - m (m 0)
是
(8) - x2 1
不是
(6) 2a 1
不是
(9)4 2
是
(7) a2 2a 3
是 1 (10) 3
是
第九页,共三十页。
探究新知
素养考点 2 利用二次根式有意义的条件(tiáojiàn)求字母的取值范 例2 当x是怎围样的实数时, x 2 在实数范围内有意义?
课堂小结
二次根式
(gēnshì)有意 义的条件和 非负性
二次根式
(gēnshì)的
定
义
在有意义
条件下求
字母的取
值范围
形如 a (a 0)的式子叫做 二次根式
抓住被开方数必须为非负数, 从而建立不等式或不等式组
求出其解集
二次根式
的双重非 负性
二次根式 a中,a≥0且
a ≥0
第二十九页,共三十页。
课后作业(zuòyè)
3.当x=__-_1_时,二次根式 x 1取最小值,其最小值
为_____0_.
第二十三页,共三十页。
课堂检测
4.(1)若式子
x 1 2
在实数范围内有意义,则x的取值
范围是__x_≥_1___;
(2)若式子
1 x2
x
在实数范围内有意义,则x的取
值范围是___x_≥_0_且_x_≠_2__.
第二十四页,共三十页。
第十五页,共三十页。
探究新知
归纳总结
二次根式的实质是表示一个(yī ɡè)非负数(或式)的算术平方
根.对于任意一个二次根式 ,必须a满足以下两条:
人教版八下数学16.1 课时1二次根式的概念教案+学案
人教版八年级下册数学第16章二次根式16.1 二次根式课时1 二次根式的概念教案【教学目标】1.理解二次根式的概念;2.掌握二次根式有意义的条件;3.会利用二次根式的非负性解决相关问题【教学重点】能理解二次根式的概念及有意义的条件.【教学难点】会利用二次根式的有意义的条件及其非负性解题.。
【教学过程设计】一、情境导入问题1:你能用带有根号的式子填空吗?(1)面积为3的正方形的边长为________,面积为S的正方形的边长为________.(2)一个长方形围栏,长是宽的2倍,面积为130m2,则它的宽为________m.(3)一个物体从高处自由落下,落到地面所用的时间t(单位:s)与落下的高度h(单位:m)满足关系h=5t2,如果用含有h的式子表示t,则t=______.问题2:上面得到的式子3,S,65,h5分别表示什么意义?它们有什么共同特征?二、合作探究探究点一:二次根式的定义例 1 下列各式中,哪些是二次根式,哪些不是二次根式?(1)11;(2)-5;(3)(-7)2;(4)313;(5)15-16;(6)3-x(x≤3);(7)-x(x≥0);(8)(a-1)2;(9)-x2-5;(10)(a -b )2(ab ≥0).解析:要判断一个根式是不是二次根式,一是看根指数是不是2,二是看被开方数是不是非负数.解:因为11,(-7)2,15-16=130,3-x (x ≤3),(a -1)2,(a -b )2(ab ≥0)中的根指数都是2,且被开方数为非负数,所以都是二次根式.313的根指数不是2,-5,-x (x ≥0),-x 2-5的被开方数小于0,所以不是二次根式.方法总结:判断一个式子是不是二次根式,要看所给的式子是否具备以下条件:(1)带二次根号“ ”;(2)被开方数是非负数.探究点二:二次根式有意义的条件【类型一】 根据二次根式有意义求字母的取值范围 例 2 求使下列式子有意义的x 的取值范围. (1)14-3x;(2)3-x x -2;(3)x +5x .解析:根据二次根式的性质和分式的意义,被开方数大于或等于0且分母不等于0,列不等式(组)求解.解:(1)由题意得4-3x >0,解得x <43.当x <43时,14-3x有意义; (2)由题意得⎩⎨⎧3-x ≥0,x -2≠0,解得x ≤3且x ≠2.当x ≤3且x ≠2时,3-xx -2有意义;(3)由题意得⎩⎨⎧x +5≥0,x ≠0,解得x ≥-5且x ≠0.当x ≥-5且x ≠0时,x +5x 有意义.方法总结:含二次根式的式子有意义的条件:(1)如果一个式子中含有多个二次根式,那么它们有意义的条件是各个二次根式中的被开方数都必须是非负数;(2)如果所给式子中含有分母,则除了保证二次根式中的被开方数为非负数外,还必须保证分母不为零.【类型二】 利用二次根式的非负性求解例 3 (1)已知a 、b 满足2a +8+|b -3|=0,解关于x 的方程(a +2)x +b 2=a -1;(2)已知x 、y 都是实数,且y =x -3+3-x +4,求y x 的平方根. 解析:(1)根据二次根式的非负性和绝对值的非负性求解即可;(2)根据二次根式的非负性即可求得x 的值,进而求得y 的值,进而可求出y x 的平方根.解:(1)根据题意得⎩⎨⎧2a +8=0,b -3=0,解得⎩⎨⎧a =-4,b = 3.则(a +2)x +b 2=a -1,即-2x +3=-5,解得x =4;(2)根据题意得⎩⎨⎧x -3≥0,3-x ≥0,解得x =3.则y =4,故y x =43=64,±64=±8,∴y x的平方根为±8.方法总结:二次根式和绝对值都具有非负性,几个非负数的和为0,这几个非负数都为0.探究点三:和二次根式有关的规律探究性问题 例 4 先观察下列等式,再回答下列问题. ①1+112+122=1+11-11+1=112;②1+122+132=1+12-12+1=116;③1+132+142=1+13-13+1=1112.(1)请你根据上面三个等式提供的信息,写出1+142+152的结果;(2)请你按照上面各等式反映的规律,试写出用 含n 的式子表示的等式(n 为正整数).解析:(1)从三个等式中可以发现,等号右边第一个加数都是1,第二个加数是个分数,设分母为n ,第三个分数的分母就是n +1,结果是一个带分数,整数部分是1,分数部分的分子也是1,分母是前项分数的分母的积;(2)根据(1)找的规律写出表示这个规律的式子.解:(1)1+142+152=1+14-14+1=1120;(2)1+1n2+1(n+1)2=1+1n-1n+1=11n(n+1)(n为正整数).方法总结:解答规律探究性问题,都要通过仔细观察找出字母和数之间的关系,通过阅读找出题目隐含条件并用关系式表示出来.【板书设计】16.1 二次根式课时1 二次根式的概念1.二次根式的定义一般地,我们把形如a(a≥0)的式子叫做二次根式.2.二次根式有意义的条件被开方数(式)为非负数;a有意义⇔a≥0.【教学反思】通过将新知识与旧知识进行联系与对比,随后由学生熟悉的实际问题出发,用已有的知识进行探究,由此引入二次根式.在教学过程中让学生感受到研究二次根式是实际的需要,体会到数学与实际生活间的紧密联系,以此充分激发学生学习的兴趣.人教版八年级下册数学第16章二次根式16.1 二次根式课时1 二次根式的概念学案【学习目标】1.理解二次根式的概念;2.掌握二次根式有意义的条件;3.会利用二次根式的非负性解决相关问题【学习重点】能理解二次根式的概念及有意义的条件.【学习难点】会利用二次根式的有意义的条件及其非负性解题.。
最新人教版八年级下册数学16章16.1二次根式第一课时
创设情境
提出问题
电视塔越高,从塔顶发射的电磁波传得越远,从 而能收看到电视节目的区域越广,电视塔高h(单位: km)与电视节目信号的传播半径 r(单位:km)之间 存在近似关系 r = 2 Rh,其中地球半径R≈6 400 km. 如果两个电视塔的高分别是h1 km、h2 km,那么它们 的传播半径之比是 式子
创设情境
提出问题
问题: (2)一个长方形围栏,长是宽的2 倍,面积为130 65 m. m2,则它的宽为______
(2)中得到的式子有什么意义?
创设情境
提出问题
问题: (3)一个物体从高处自由落下,落到地面所用的 时间 t(单位:s)与开始落下的高度h(单位:m)满 足关系 h =5t2,如果用含有h 的式子表示 t ,则 h t= 5 . _____ (3)中当h 的值分别为0,10,15,20,25时,得 h 到的结果分别是什么? 表示的数怎样变化? 5
合作探究 形成知识
h 上面问题中,得到的结果分别是: 3 , S , 65 , . 5
(1)这些式子分别表示什么意义? (2)这些式子有什么共同特征?
h 分别表示3,S,65, 的算术平方根. 5 这些式子的共同特征是: 都表示一个非负数(包括字母或式子表示的非负 数)的算术平方根.
合作探究 形成知识
八年级
下册
16.1 二次根式(1)
课件说明
• 本课通过现实问题提出二次根式要研究的问题,通 过用字母表示算术平方根中的被开方数,把算术平 方根一般化,得到二次根式的概念、二次根式有意 义的条件、二次根式的非负性.
课件说明
• 学习目标: 1.根据算术平方根的意义了解二次根式的概念;知 道被开方数必须是非负数的理由; 2.能用二次根式表示实际问题中的数量和数量关系. • 学习重点: 从算术平方根的意义出发理解二次根式的概念.
人教版数学八年级下册说课稿:第16章二次根式(一)
人教版数学八年级下册说课稿:第16章二次根式(一)一. 教材分析人教版数学八年级下册第16章《二次根式》是中学数学中非常重要的一个章节。
它不仅是学习高中数学的基础,也是解决实际问题的重要工具。
本章主要介绍了二次根式的概念、性质和运算。
通过本章的学习,学生可以掌握二次根式的基本知识,提高解决实际问题的能力。
二. 学情分析八年级的学生已经掌握了实数的基本概念,具备了一定的逻辑思维能力。
但是,对于二次根式这一概念,学生可能初次接触,理解起来有一定难度。
因此,在教学过程中,需要教师耐心引导,帮助学生建立起对二次根式的直观认识。
三. 说教学目标1.知识与技能:让学生掌握二次根式的概念、性质和运算方法,能够熟练运用二次根式解决实际问题。
2.过程与方法:通过观察、实验、猜想、验证等方法,引导学生主动探索二次根式的性质,培养学生的动手操作能力和思维能力。
3.情感态度与价值观:激发学生对数学的兴趣,培养学生的团队合作精神,使学生感受到数学在生活中的重要性。
四. 说教学重难点1.重点:二次根式的概念、性质和运算方法。
2.难点:二次根式的混合运算和实际应用。
五. 说教学方法与手段1.采用问题驱动的教学方法,引导学生主动探究二次根式的性质。
2.利用多媒体辅助教学,直观展示二次根式的运算过程,提高学生的学习兴趣。
3.小组讨论,培养学生的团队合作精神。
4.结合生活实际,让学生感受数学的应用价值。
六. 说教学过程1.导入新课:通过复习实数的基本概念,引出二次根式的概念。
2.探究二次根式的性质:引导学生进行实验、观察、猜想、验证,总结出二次根式的性质。
3.学习二次根式的运算:让学生通过自主学习,掌握二次根式的运算方法。
4.实际应用:结合生活实际,让学生运用二次根式解决实际问题。
5.总结提升:对本章内容进行总结,强化学生对二次根式的理解和运用。
七. 说板书设计板书设计要简洁明了,突出二次根式的概念、性质和运算方法。
可以采用流程图、等形式,帮助学生直观地理解二次根式的相关知识。
初中数学人教版八年级下册第十六章 二次根式16.1 二次根式-章节测试习题(1)
章节测试题1.【答题】若与互为相反数,则x+y的值=______。
【答案】27【分析】互为相反数的两个数之和等于0.【解答】根据题意得+=0,∵≥0 且≥0∴=0 且=0∴且解得∴x+y=15+12=272.【答题】实数a在数轴上的位置如图,化简+a=______.【答案】1【分析】根据二次根式的性质,可化简二次根式,根据整式的加法,可得答案.【解答】解:+a=1﹣a+a=1,3.【答题】函数中自变量的取值范围______.【答案】x≥2【分析】根据被开方数非负来解.【解答】根据被开方数非负,得到关于x的不等式,x-2≥0求解即可.4.【答题】若在实数范围内有意义,则x的取值范围是______.【答案】x≥3【分析】被开方数或被开方式是非负数【解答】由于被开方数或被开方式是非负数得x﹣3≥0,即x≥35.【答题】要使有意义,则x的取值范围是______.【答案】x≥4【分析】根据算术平方根的意义,可知其被开方数为非负数.【解答】根据算术平方根的意义,可知其被开方数为非负数,因此可得x-4≥0,解得x≥4.故答案为:x≥4.方法总结:此题主要考查了平方根的意义,解题时要注意被开方数为非负数的条件,然后列不等式求解即可,是一个中考常考的简单题.6.【题文】想一想:将等式=3和=7反过来的等式3=和7=还成立吗?式子:9==和4==成立吗?仿照上面的方法,化简下列各式:(1)2(2)11(3)6【答案】成立,、、【分析】当a≥0时,a=,所以对于有理数与二次根式相乘的形式的化简,可以将根号外的非负数通过这样的变形后,再用二次根式的乘法法则化简.【解答】解:等式3=和7=成立,9==和4==成立.(1);(2);(3).方法总结:本题主要考查了二次根式的非负性,二次根式有双重非负性,即二次根式的被开方数是非负数,二次根式的值是非负数,所以每一个非负数都可以根据二次根式的双重非负性写成二次根式的形式.7.【题文】若y=++3,求xy的值。
人教初中数学八年级下册 16.1《二次根式》二次根式的概念和性质课件1
通常把形如 m a(a 0)的式子也叫做二
次根式,如 3 2, 2a b2 1 等. 24
例题1 化简二次根式:
1 72; 2 12a3; 3 18x2 x 0.
注意判断根号 内字母的取值 范围,
25
例题2 化简二次根式:
1 a;
3
2 5 ;
2x
3 b2 b 0;
aa 0.
29
9a
4 a 1.
a
注意判断根号内 字母的取值范围,
26
写出下列等式成立的条件:
1 (x 2)(x 6) x 2 x 6
2 y 2 y 2
6 y 6 y
27
小结
1.掌握化简二次根式的两个基本步骤: ⑴ 将二次根式中的分母化去; ⑵ 把二次根式中所含的完全平方因式移
不要忽略 4
说一说:
下列各式是二次根式吗?
(1) 32, (2) 6, (3) 12, (4) - m (m≤0), (5) xy (x,y 异号), (6) a2 1 , (7) 3 5
在实数范围内,负数没有平方根
5
a2 1
3 -2
2a 1
a
a 12
你能用魔法师变出的这些代数式 作为被开方数构造二次根式吗?
6
例 1 x是怎样的实数时,式子 x 3
在实数范围内有意义?
试一试(2) x是怎样的实数时,下列各式 在实数范围内有意义?
(1) 2x ; (2) 2x 5 ; (3) 3 x
7
1、 x取何值时,下列二次根式有意义?
(1) x 1 x 1 (2) 3x x 0
(3) 4x2x为全体实数(4) 1 x
八年级数学下册第16章二次根式第1课时二次根式的定义学案新人教版
第1课时 二次根式的定义学习目标: 了解二次根式的概念,理解二次根式有意义的条件,并会求二次根式中所含字母的取值范围。
理解二次根式的非负性学习重难点:二次根式有意义的条件和非负性的理解和应用学法指导:小组合作交流 一对一检查过关导: 看书后填空:二次根式应满足两个条件:(1)形式上必须是a 的形式。
(2)被开方数必须是 数。
判断下列格式哪些是二次根式? ⑴ 3.0 ⑵ 3- ⑶ 2)21(- ⑷ ()223≥-a a ⑸ 12+a ⑹ 3+a ⑺ a ⑻()02〈-x x学:代数式有意义应考虑以下三个方面:(1)二次根式的被开方数为非负数。
(2)分式的分母不为0.(3)零指数幂、负整数指数幂的底数不能为0当x 是怎样实数时,下列各式在实数范围内有意义?2-x ⑵x -21⑶13-+-x x ⑷2x ⑸3x (6)()01-a (1)常见的非负数有:a a a ,,2(2)几个非负数之和等于 0,则这几个非负数都为0.已知:0242=-++b a ,求a,b 的值。
巩固练习:已知(),03122=-++b a 求a,b 的值 2.已知053232=--+--y x y x 则y x 8-的值为练:1.下列各式中:①52+-x ②2009 ③33 ④π ⑤22a - ⑥3+-x 其中是二次根式的有 。
2.若1213-+-x x 有意义,则x 的取值范围是 。
3.已知122+-+-=x x y ,则=y x4.函数x y +=2中,自变量x 的取值范围是()(A ) X>2 (B) X ≥2 (C) X>-2 (D) X ≥-25.若式子ab a 1+-有意义,则P (a,b )在第( )象限(A )一 (B)二 (C)三 (D)四6.若,011=-++b a 则=+20112011b a7.方程084=--+-m y x x ,当y>0时,m 的取值范围是8.已知01442=-+++-y x y y ,求xy 的值展:小组展示成果,提出质疑评:1. 组内互助,解决质疑并进行小组评价。
八年级下册第16章二次根式
-50-
14.计算: (1) 53× 152; = 35×152 =12
-51-
(2) 5× 15× 12; = 5×15×12 = 52× 32× 22 =5×3×2 =30
-52-
(3) a3b× ab; = a3b×ab =ab
-53-
1 (4)3
45×12
20.
=16× 32× 52× 22 =16×3×5×2 =5
-16-
19.阅读下面的文字,解答问题. 大家知道 2是无理数,而无理数是无限不循环小数,因此 2的小数部 分我们不可能全部地写出来,但是由于 1< 2<2,所以 2的整数部分为 1, 则 2减去其整数部分 1,差就是小数部分 2-1. 根据以上的内容,解答下面的问题: (1) 5的整数部分是__2_,小数部分是__5_-__2_; (2)1+ 2的整数部分是_2__,小数部分是__2_-__1_;
-26-
忽视题设条件而出错 9.化简: 4x2+12x+9+ 4x2-20x+25,其中-32≤x≤52. 解:∵-32≤x≤52,∴-3≤2x≤5, ∴原式= (2x+3)2+ (2x-5)2=2x+3+5-2x=8.
-27-
10.若点(a,b)在第三象限,则 (a+b)2-1 的值为( D )
A
B
C
D
6.当 x__>__12__时,式子 2x1-1有意义.
-6-
二次根式的非负性
同步考点手册 P1
7.已知 x,y 为实数,且 x-1+(y-2)2=0,则 x-y 的值为( D )
A.3
B.-3
C.1
D.-1
8.若|x+y+4|+ (x-2)2=0,则 3x+2y=_-__6__.
人教版八年级数学下册16.1.1二次根式的概念教案
一、教学内容
人教版八年级数学下册16.1.1节,本节课主要围绕二次根式的概念进行教学。内容包括:
1.二次根式的定义:形如√a(a≥0)的式子,称为二次根式。
2.二次根式的性质:
(1)当a≥0时,√a为非负实数;
(2)√a(a≥0)的平方等于a,即(√a)^2=a;
五、教学反思
今天在教授二次根式的概念这一章节时,我发现学生们对新的数学概念表现出了一定的兴趣,但也遇到了一些挑战。在课堂上,我尝试通过生活中的实例导入新课,希望能让学生感受到数学与生活的紧密联系。从学生的反应来看,这个方法还是有效的,他们能够更直观地理解二次根式的意义。
在理论讲解环节,我注意到了一些学生在理解二次根式定义时出现了困惑,尤其是在处理绝对值符号的情况。这让我意识到,对于这类抽象概念的教学,需要更多的具体例子和直观演示。在接下来的教学中,我打算增加一些互动环节,比如让学生自己举例,并上台来展示他们的思考过程,这样既能帮助他们加深理解,也能提高课堂的参与度。
在学生小组讨论的环节,我尽量让自己成为一个观察者和引导者,而不是直接给出答案。这种方法让学生们有更多的机会去自主探索和发现,但我也意识到,对于一些基础较弱的学生来说,可能需要更多的个别辅导和支持。因此,我计划在课后安排一些辅导时间,帮助学生巩固课堂上未完全掌握的知识。
最后,今天的总结回顾环节,我鼓励学生提出自己的疑问,这有助于我发现他们在学习过程中的盲点。我感到欣慰的是,学生们敢于提问,这表明他们有意愿去理解新知识。但在回答问题时,我发现自己有时候解释得不够简洁明了,以后我需要在这方面多加改进,尽量用更易懂的语言来解释复杂的数学概念。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解二次根式的基本概念。二次根式是形如√a(a≥0)的数学表达式,它是表示非实数平方根的一种方式。它在数学运算和解题中具有重要地位。
人教版八年级下册数学精品教学课件 第十六章 二次根式 二次根式的乘除 第1课时 二次根式的乘法
5
2
=20,
3
3
2 =32
3 2 =27,
又∵20<27,
∴ 2 5 2 < 3 3 2,即 2 5<3 3 .
(2) 2 13与-3 6.
解:∵ 2 13= 22 13= 52,
3 6= 32 6= 54, 又∵52<54,
∴ 52< 54 ,
两个负数比较 大小,绝对值 大的反而小
讲授新课
一 二次根式的乘法 计算下列各式:
(1) 4 9 = __2_×_3__=__6__; 4 9 =___3_6___6__;
(2) 16 25 __4_×_5__=__2_0_; 16 25 =__4_0_0___2_0_; (3) 25 36= __5_×_6__=__3_0_; 25 36 =__9_0_0___30__.
( 2 ) 6 12 = __6__2___ ;
( 3 ) 32 2 __2_6__.
4. 比较下列两组数的大小(在横线上填“>”“<” 或“=”):
(1)5 4 > 4 5;(2) 4 2 < 2 7.
5.计算: ( 1 ) 2 3 5 21 ;
解: (1) 2 35 21
25 321 10 327 30 7;
3
解: (1) 3 5 15;
(2) 1 27 1 27 9 3.
3
3
可先用乘法结合 律,再运用二次 根式的乘法法则
(3) 2 3 5 ( 2 3) 5 6 5 30.
归纳 (3)只需其中两个结合就可实现转化进行计算, 说明二次根式乘法法则同样适合三个及三个以上的二
次根式相乘,即 a b k a b k(a 0,b 0,k 0) .
3.如果因式中有平方式(或平方数),应用关系式 a2 = a 把这个因式(或因数)开出来,将二次根 式化简 .
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课时作业(一)
[16.1 第1课时 二次根式的概念]
1.下列各式:①-2;②13
;③x 2+1;④34;⑤2x .其中二次根式有( ) A .1个 B .2个 C .3个 D .4个 2.要使二次根式x -4有意义,x 必须满足( )
A .x ≤4
B .x ≥4
C .x <4
D .x >4
3.使代数式x
3x -1有意义的x 的取值范围是( )
A .x ≥0
B .x ≠1
3
C .x 为一切实数
D .x ≥0且x ≠1
3
4.下列代数式能作为二次根式被开方数的是( )
A .3-π
B .a
C .a 2+1
D .2x +4
5.下列四个式子中,x 的取值范围为x ≥2的是( ) A.x -2
x -2 B.1x -2
C.x -2
D.2-x
6.估计13+1的值在( )
A .2和3之间
B .3和4之间
C .4和5之间
D .5和6之间
7.已知实数a 满足|xx -a |+a -2019=a ,那么a -xx 2的值是 (
) A .xx B .xx C .xx D .2019
二、填空题
8.xx·白银 使得代数式1
x -3有意义的x 的取值范围是________.
9.若12-n 是正整数,则实数n 的最大值为________.
10.物体自由下落的高度h (米)与下落时间t (秒)之间的函数表达式为h =12
gt 2(g 是常数),则一物体从3s 米的高处自由下落到地面所用的时间是________秒.
11.使代数式2x +1x
有意义的x 的最小整数值是________. 12.若y =x -3+3-x +2,则x y =________.
三、解答题
13.下列各式:a ,x +1,-4,9,310,a 2+2,m +1(m ≥-1),其中哪些
是二次根式?哪些不是?
14.x为何值时,下列式子在实数范围内有意义?
(1)x+1;(2)3x-2;(3)
3
2x+1;
(4)x-1 3
.
探究题已知等腰三角形的三边长a,b,c满足a-14+b+14-a-b+c=6,求此三角形的三边长.
详解详析
【课时作业】
[课堂达标]
1.[答案] B
2.[答案] B
3.[解析] D 根据题意,得x ≥0且3x -1≠0,所以x ≥0且x ≠13
.故选D . 4.[答案] C
5.[解析] C 选项A 和B 首先满足x -2≥0,因为分母不能为零,所以x >2.选项C 满足x -2≥0,即x ≥2.选项D 满足2-x ≥0,即x ≤2.因此选C .
[点评] 只考虑到被开方数的取值范围而忽视分母不能为零是解答此类题目常犯的错误.
6.[解析] C ∵3<13<4,∴4<13+1<5.故选C .
7.[解析] D ∵a -2019≥0,∴a ≥2019,
∴原方程可化为a -xx +a -2019=a , ∴a -2019=xx ,
∴a -2019=xx 2,∴a -xx 2=2019.
8.[答案] x>3
[解析] ∵代数式1
x -3有意义, ∴x -3>0,∴x >3,∴x 的取值范围是x >3.
9.[答案] 11
10.[答案]
6s g 11.[答案] 1
[解析] 要使2x +1x 有意义,必须使2x +1≥0且x ≠0,解得x ≥-12
且x ≠0.所以使代数式
2x +1x
有意义的x 的最小整数值是1. 12.[答案] 9
[解析] 由题意得x -3≥0,3-x ≥0,所以x =3,故y =2,所以x y =9. 13.解:9,a 2+2,m +1(m ≥-1)是二次根式,a ,x +1,-4,310不是二
次根式.
14.(1)x ≥-1 (2)x ≥23 (3)x>-12
(4)x ≥1
[素养提升]
[解析] 根据二次根式有意义的条件,可以得出a 与b 的和,从而求出c 的值,然后分情况讨论.
解: 由⎩⎨⎧a -14+b ≥0,14-a -b ≥0,
得a +b =14, 所以c =6.
因为此三角形为等腰三角形,
若a =b ,则a =b =7,c =6,满足三角形的三边关系,三角形成立;
若a≠b,则b=c=6,a=8或a=c=6,b=8,满足三角形的三边关系,三角形成立.即此三角形的三边长为a=7,b=7,c=6或a=8,b=6,c=6或a=6,b=8,c=6.感谢您的支持,我们会努力把内容做得更好!。