time delay control
仪表词汇
Criterion, 标准,准则,规律Known accuracy 已知的精度, substantial agreement,实质上的一致, established standard 现有标准, Multiple standard 多重标准Feasible可行的, Special limit 指定的限度Reference参考, Calibration校准, Certification证明, Calibration facility 校准装置, Equip装备 Environment control环境控制, performance check 性能检查, calibration facility校准装置, progressive drift 逐渐的漂移, tolerance limit, 公差极限, Key factor 关键因素, Due date 期限,到期日, Breakdown 故障,损坏, tweak 扭,捏,拧Range范围, Lower range limit 范围下限, Upper range limit 范围上限, Span 跨度, Resolution分辨率, Dead band死区, Threshold 门限,阈值,临限, Sensitivity 灵敏度, Increment of measurement, 测量值增量, Discrete step分离的步骤, Continuous manner 连续方式, Single step 单步,Output span 输出范围, Largest step, 最大的刻度, easured variable 被测变量,Static value 静态值, Sinusoidal signal正弦信号, Reliability 可靠度, Specified period 特定时期 A special set of condition 一系列的特定条件, Operating environment 操作环境, Amount of drift 漂移量, Overload 过载, Recovery time 回复时间,Saturation effect 饱和效应, Permanent change 永恒的变化, Reliability condition 可靠条件, Undesirable change 不期望的变化,Zero drift 零点漂移, Sensitivity drift 敏感性漂移第六单元, Control system 控制系统, Function 功能,作用, Elaborate control system 精细控制系统, Hypothalamus 丘脑下部, Celsius 摄氏的, Needle 针, Controller 控制器, Sensor 传感器,Disturbance 骚动,打扰,干扰, Component成分, Desired value 期望值,Variable 变量,可变的,变量的, Controlled variable 被控量, Manipulated variable 操作量, Elapse 消逝,过去, Unimaginable 想不到的,不可思议的, Servo system 伺服机构,Household普通的,平常的,家庭的, Closed-loop 闭环, Open-loop 开环,Feedback 反馈, Analog 模拟的, Digital 数字的, Continuous 连续的, Discrete离散的, Regulator system, 调节器系统, Follow-up system 随动系统, Setpoint 给定值, Process control system 过程控制系统, Machine control system 机器控制系统,Assemble product 装配产品, Distribute 分布,分发, Servomechanism 伺服机构(系统), Robotic机器人, Numerical control 数值控制, Batch control 批量控制,Sequential control 连续控制,Time-sequential control 时间顺序控制,Event-sequenced control 事件顺序控制, Programmable controller 可编程控制器, Regular system 调节系统Process control 过程控制, Central control room 中央控制室, Single control system 单回路控制系统, Block diagram方框图, Flow rate流通率, Pneumatic tube大气管道, Hydraulic tube 水力线, Mechanical linkage 机械连接体, Respond to 响应,做出反应, Time delay 时延, Correction 改正,修正, Output signal输出信号, Input signal 输入信号, Laplace transform 拉普拉斯变换,Control action 控制动作, Calibration procedure 标定过程,检验方法,Calibration curve 标定曲线, Pressure drop 压降, process output variable 过程输出变量, measuring mean 测量值, controller output控制器输出, setpoint value设定值, change in the load 负载变化, balanced condition 平衡条件Final control element 最终控制单元, Sense 检测,感知, Signal transducer 信号变送器, Temperature transmitter温度变送器, Flow transmitter 流量变送器,Pressure transmitter 压力变送器, Proportional mode 比例模型, Integral mode 积分模型, Derivative mode 微分模型, Intuitive understanding 直觉理解, Corrective effect 纠正作用Damper 阻尼阀, Fuel flow 燃料流量, Pneumatic control valve 气动控制阀, Diaphragm 振动膜, Air to close/open 气关/ 气开, Physical property 物理性质, Chemical property 化学性质, In contrast 比较, Conductivity 传导性,传导率, Composition 成分, Hardness 硬,硬度, Flexible 柔性的, Microcontroller微控制器, Versatility 多功能性, Manual control手动控制, External signal 外部信号, Pneumatic风力的, 汽力的,气胎,Local/remote setting, 本地远程设置, Annunciate 告示,通知,On-off control 开关控制, Direct input 直接输入, Cascade control串级控制, Bumpless transfer 无扰动切换Front panel 前面板, Adaptive gain适应性增益, Self-tuning 自调谐(校正),。
delay 效果 pedal 的使用说明说明书
MODEON footswitchSet the effect ON or OFF.Also while holding the footswitch down, it works as a SHIFT function button.Tap footswitchTap tempo over the Delay Time.When holding the TAP and the ON buttons down for 3 sec,you will save the current Algorithm’s state.Feedback KnobSet the Delay’s Feedback or the Number of the repeats.This is the main feedback control, but there areactually 2 feedback stages:One right after the delay line, called “Main Feedback”& the other is located after the effects of the delay lines (Filter and Pitch Shifter) called “Post Feedback”.Mix KnobControls the Dry/Wet balance of the effect.At 50% there is a 1:1 mix ratio.Time KnobDelay time from 50ms up to about 1 second.After 700ms, the repeats will start becoming LO-FI.NOTE: when used as a stereo output,the R channel will have an offset compared to the L channel,so as to achieve the stereo spread effect.MODE Toggle SwitchThis changes which parameter the Control knob affects.For more info check on the Algorithms section (page 3).Control knobDepending on the algorithm and the Mode switch position,this controls different parameters each time.For more info check on the Algorithms section (page 3).OutputAudio out , send to an amp,mixer or monitor.InputAudio, line or fretted instrument input.Accepts up to 2Vpp levels.9VDC center pin negativestandard effect pedals powerDreadbox Raindrops is a Hybrid Delay/Pitch Shifter/Reverb pedal that takes the concept of short echos on a different level. It is equipped with multiple delay stages and different chips and you can choose between 3 different play modes, where in each one you can have a whole new experience and alternative soundscapes. You can achieve from simple short echos, to long, dirty and lo-fi delays and from simple pitch shifting bursts to extensively lasting reverbs.VAT)Main Page ControlsThese are the hands on controls,that you can access without holding down the shift.On/Off Indicator Delay Time IndicatorThese are the SHIFT controls, that you can access while holding down the ON button. Remember, in order to store this so that the pedal remembers them the next time you power it, you must press and hold both footswitch-es for 3 seconds!TIME = EFFECT GAINControls the level of the signal going into the effect’s line. By default, this should be set at 50%, but in many cases, for example if you plug a hot signal instrument, you might need to set this lower, so that the effects do not peak.FEEDBACK = POST FEEDBACKThis will control the amount of feedback that is send after the effect’s section. For example, feedbacks after the Pitch Shifter will introduce the shimmer effect. Be carefully though, as this feedback control and the main one will add up and self-oscillation can be produced.NOTE: On the reverb’s algorithm, this control is deactivated. MIX = LOW PASS FILTERThis controls the Cut Off of a 1-pole Low Pass Filter.CONTROL = TAP DIVISIONSThis is actually a multiplication over the tap tempo. It has fixed areas over 4 selections and it’s X1, X2, X4, X8.MODE toggle switchTails ON/OFF ( ON = 2, OFF = 1). By setting this to ON, will allow the repeats of the delay to be kept on even when the effect is set to by pass.A. Send an Audio signal or an instrument to the input (mono signals it’s better to be send to the R INPUT)B. Connect the Output to an Amp or a Monitor (mono signals should to be pulled out of the L OUTPUT)C. Power the effect by using a 9VDC center pin negative power adapter (specialized for effect pedals)D. Press the ON footswitch to enable the effectE. Press both footswitches to change algorithmsF. To engage the secondary functions (SHIFT page) press and hold down the ON footswitch. While this is on hold, you have access to different parametersG. In order to save the current algorithm’s settings, press and hold both footswitches for 3 secondsMODEMODE- CMOS Buffered Bypass - 9VDC center pin negative supply 150mA at least -True stereo IN/OUT - All IN/OUT are TS unbal-anced 6.4mm jacks- dimensions: 14x10x5 cm - weight: 0,525 kgThere are 3 different algorithms offered into RAINDROPS. 1. A modulated delay 2. Pitch shifted delay 3. Large reverbOn each algorithm you can save a single preset, by holding down both footswitches for 3 seconds.This preset will be stored and each time you power off the effect, or you cycle through the algorithms, you will have these settings as default.A Modulated Delay is simply the effect where the Delay Ttime is modulated by an LFO.On this algorithm the MODE switch + CONTROL knob has the following functions:MODE = 1 —> CONTROL = LFO RATE MODE = 2 —> CONTROL = LFO AMOUNTThis algorithm has a Pitch Shifter as its Post Effect. The Pitch Shifter will control only the Wet signal. The Post Feedback can have a drastic effect here, as each repeat will be shifted again.On this algorithm the MODE switch + CONTROL knob has the following functions:MODE = 1 —> CONTROL = PITCH (from 0 to 12 semitones - none quantised)MODE = 2 —> CONTROL = PITCH SHIFT AMOUNTAdditionally to the Delay signal, a long tailed reverb is added .On this algorithm the MODE switch + CONTROL knob has the following functions:MODE = 1 —> CONTROL = REVERB DECAY MODE = 2 —> CONTROL = REVERB MIXCircuit: Analog signal, hybrid delay, Digital reverbBypass: Buffered opamp, a constant 3 to 4dB volume drop is expected and is compensated over the tremolo effect, to counter the “signal volume drop” feeling a tremolo has.。
继电器功能编号含义
继电器功能编号含义1--master element主要元件,是指控制开关等元件。
它直接地或间接地通过保护继电器、延时继电器等中间元件,使设备投入或撤出运行。
注:本编号通常用于手动操作的元件,若某一电气或机务元件无其它功能编号可表示则也可使用本编号。
2--time-delay starting or closing relay延时起动或闭合继电器,其功能是在切换程序或保护继电器系统动作之前或之后的任一时刻提供所希望的延时量。
功能号48,62,79及82定义的除外。
3--checking or interlocking relay校验或联锁继电器,在装置中,反映其它元件的工作位置或一些预定条件的元件,可用来确定一个工作程序是否继续进行,或停止或对一些元件的工作位置和一些预定条件进行校验。
4--master contactor主接触器是一种由元件1及其相当的元件、中间继电器、保护元件等控制的元件。
其工作是接通或断开必要的控制回路,以便在规定条件下使设备投入运行,或在其它条件和异常条件下,使之退出运行。
5--stopping device停机元件是一种控制元件,主要用来使一台设备停止运转和退出运行。
这一元件可手动或自动操作,但在发生异常情况时,它能闭锁电气功能(见元件86功能)6--starting circuit breaker启动断路器,其主要功能是在启动电压下将一台机器接入电源。
7--rate-of-change relay变化速率继电器。
当被测量的变化速率超过门限值时动作。
元件63定义的除外。
8--control power disconnecting device操作电源切断元件是一种隔离元件,如刀开关、断路器、或插入式熔丝等。
用于将控制母线或设备与操作电源接通或断开。
(操作电源中包括供给小型电机、加热器等设备的辅助电源。
)9--reversing device反向元件用于实现电机磁场的反向或完成其它任何反向功能。
仪表自动化英语
电缆英语词汇全共
REM 远方(Remote)RSD cr门(Roller Shutter Door)REQD 要求(Required)RES 电阻器(Resistor)REV 校正(Revision)RF 无线电频率(Radio Frequency)RM 室(Room)RMC 铁路维护电路(Rail Way Maintenance Circuit)RMT 远端多工终端机(Remote Multiplex Terminal)ROC 铁路行车电路(Railway Operation Circuit)rpm 每分转数(Revolutions Per Minute)RSC 钢导线管(Rigid Steel Conduit)RT 防雨(Rain Tight)RTD 热阻温度侦测器(Resistance Temperature Detector)RX 接收器 / 接收(Receiver / Receive)RECPT 插座(Receptacle)RV 降压起动器(Reduced Voltage Starter)S 秒(Second)SB 备用(Standby)SCC 短路容量(Short Circuit Capacity)SECT 断面 / 尺规(Section / Sector)SEQ 序列(Sequence)SF 叶片(Split Flap)SFB 叶片板(Split Flap Board)SFC 叶片控制器(Split Flap Controller)SH 分路(Shunt)SHLD 遮蔽(Shield)SLD 密封设施(Sealing Device)SIM 近似(Similar)SM c装(Surface Mounted)S/N 讯号杂音比(Signal To Noise Ratio)SOL 螺管(Solenoid)SP 备用品(Spare)SPEC 规格 / 规范(Specification)SPKR 扬声器(Speaker)SPDT 单极双投(Single Pole Double Throw)SPST 单极单投(Single Pole Single Throw)SPM 同步及并联模组(Synchronizing and Paralleling Module)SS 同步开关(Synchronizing Switch)ST 短延时(Short Time Delay)STA 站(Station)STD 标n(Standard)SUB 分站 / 变电站(Substation)SUPV 监督(Supervisory)SW 开关(Switch)SWR 开关器(Switcher)SWBO 开关箱(Switch Board)SWGR 开关设备(Switch Gear)SYM 图例(Symbol)SYMM 对称(Symmetrical)SYNC 同步化(Synchronize)SYS 系统(System)T1,T2 发射器(编号)(Transmitter Number of)TB 端子板(Terminal Board)TBX 端子箱(Terminal Box)TC 跳脱线圈(Trip Coil)TX 传送器 / 发射机(Transmitter)TYP 代表同样(Typical)TWR 塔(Tower)TIDS 列车资讯显示系统(Train Information Display System)TDM 分时多工(Time Division Multiplex)TCV 温度控制阀(Temperature Control Valve)TD 行车调度(Train Dispatching)TDC 延时闭路(Time Delay Closing)TDO 延时开路(Time Delay Opening)TDR 延时电[(Time Delay Relay)TEL,T 电话(Telephone)TELECOM 电信(Telecommunications)TEMP 温度(Temperature)TERM 端子(Terminal)THH 电信手孔(Telecommunications Hand-Hole)THRU 管槽(Through)TM 电视监视机(Television Monitor)TMH 电信人孔(Telecommunications Manhole)TOC 混凝土顶部(Top of Concrete)TPC 台湾电力公司(Taiwan Power Company)TPST 三极单投(Triple Pole Single Throw)TRT 列车无线电话系统(Train Radio Telephone System)TV 电视(Television)UCP 单元控制盘(Unit Control Panel)UF 地板下(Under Floor)UG 地下(Under Ground)UHF 超高频(Ultra High Frequency)UON 除另有?明者外(Unless Otherwise Noted)UPS 不断电系统(Uninterruptible Power Supply)UV 欠电压(Under Voltage)uV 微伏(Micro Volt)V 伏特(Volt)VA 伏安(Volt Ampere)VAC 交流电压(Volt Alternating Current)VCSS 语音通讯交换系统(Voice Communications Switching System)VDA 视讯分配放大器(Video Distribution Amplifier)VDC 直流电压 / 视讯显示控制(Volts Direct Current / Video Display Control)VDT 视讯显示终端机(Video Display Terminal)VENT 通风(Ventilation)VERT 垂直(Vertical)VF 音频(Voice Frequency)VHF 超高频(Very High Frequency)VID 视讯(Video)VM 电压表(Voltmeter)VS 电压切换(Voltmeter Switch)VSC 可变速控制器(Variable Speed Controller)VSWR 电压驻波比(Voltage Standing Wave Ratio)VT 防烟汽(Vaportight)VTR 录影机(Video Tape Recorder)W/ 含…/及…(With)W 瓦特 / 线(Watt / Wire)W/O 不含…(Without)WP 不受气候影响(Weatherproof)WT 防水(Watertight)XLP 交连聚氯乙烯(Cross Linked Polyethylene)XMIT 发送(Transmit)XFMR 变压器(Transformer)XMTR 发射器(Transmitter)H 时(Hour)HGT 高度(Height)HH 手孔(Hand Hole)HLT 热线电话(Hot Line Telephone)HOA 手动断开自动(Handoff Automatic)HORIZ 水平(Horizontal)HP 马力(Horse Power)HR 手动_┕椋Hand Reset)HTR 电热器(Heater)HV 高压(High Voltage)HVAC 暖气,通风与空调(Heating Ventilating and Air-conditioning)HZ 赫(Hertz)I/T 瞬时跳脱(Instantaneous Trip)I/F 界面(Interface)I/O 输入/输出(Input / Output)IAC 连锁ё暗缋拢Inter Locked Armored Cable)IC 界面箱(Interface Cabinet)ID 证实 / 正名(Identification)IDF 中间配线架(Intermediate Distribution Frame)IMP 阻抗(Impedance)INC 进入(Incoming)INST 瞬时的(Instantaneous)INSTR 仪器(Instrument)INT 内部(Interior)INTLK 连锁(Inter Lock)INV 换流器(Inverter)IT 隔离变压器(Isolating Transformer)ITR 反时电[(Inverse Time Relay)JB 接线盒(Junction Box)JT 接头 / 接合(Joint)KB 键盘(Keyboard)kg 公斤(Kilogram)kg/m 公斤/公尺(Kilogram Per Meter)kHz 千赫(Kilohertz)km 公里(Kilometer)KD 敲孔(Knockout)KS 闸刀开关(Knife Switch)KV 仟伏特(Kilovolt)KVA 仟伏安(Kilovolt Ampere)KVAH 仟伏安时(Kilovolt Ampere Hour)KVAR 无效仟伏安(Kilovolt Ampere Reactive)KW 仟瓦(Kilowatt)KWH 仟瓦时(Kilowatt Hour)KWHD 仟瓦时附需量计(Kilowatt Hour W/Demand)L 长度(Length)LA 避雷器(Lightning Arrester)LCD 液晶显示器(Liquid Crystal Display)LED 光二极体(Light Emitting Diode)LS 微动开关(Limit Switch)LT 长延时(Long Time Delay)LTG 照明(Lighting)LTNG 雷电(Lightning)LUM 灯具(Luminary)LV 低压(Low Voltage)LVL 水平(Level)LX 勒克斯(照度之公制单位)(Lux)M 马达(Motor)m 公尺(Meter)MAINT 维护(Maintenance)mA 毫安(Milliampere)MAN 手动(Manual)MANOP 手动操作(Manual Operated)MAX 极大值(Maximum)mB 毫巴(Millibar)MC ё / 主?(Metal Clad / Master Clock)MCC 马达控制中心(Motor Control Center)MDF 主配线架(Main Distribution Frame)MED 中间(Medium)MECH 机械的(Mechanical)MESS 杂项设备监视子系统(Miscellaneous Equipment Supervisory Subsystem)MEZZ 夹层(Mezzanine)MFR 造者(Manufacturer)MH 人孔(Manhole)MHZ 百万赫(Megahertz)MIC 微音器(Microphone)MIN 极小值(Minimum)min 分(Minute)MISC 杂项(Miscellaneous)mm 毫米(Millimeter)MON 监视器(Monitor)MR 复比(Multi Ratio)MRS 维护无线电台(Maintenance Radio Station)MSL 平均海平面(Mean Sea Level)MTD 装置(Mounted)MTG 装置(Mounting)MTS 手动切换开关(Manual Transfer Switch)MUX 多工器(Multiplexed)mV 毫伏(Milli Volt)MV 中压(Medium Voltage)MVA 百万伏安(Mega Volt Ampere)NA 不适用(Not Applicable)NC 常关(Normally Closed)NEG 负的(Negative)NET 网路(Network)NEUT 中性的(Neutral)NIC 非契约范围(Not In Contract)NMC 非金属导线管(Non Metallic Conduit)NO 数 / 常开(Number / Normally Open)NOM 名义 / 公称(Nominal)NORM 正常(Normal)NIS 未按比例(Not In Scale)OA 输出放大(Output Amplifier)OC 过电流(Over Current)OD 外径(Outside Diameter)OL 过载(Overload)OM 外部记号(Outer Marker)OTG 输出 / 引出(Outgoing)OV 过电压(Over Voltage)OCS 电车线系统(Overhead Contact System / Overhead Catenary System)PA 音播(Public Address)PABX 专用自动交换机(Private Automatic Branch Exchange)PAC 前置处理机及通讯控制器(Preprocessor and Communication Controller)PB 按钮 / 拉线箱(Push Button / Pull Box)PBSTA 按钮站(Push Button Station)PCM 脉码调变(Pulse Code Modulation)PF 功率因数(Power Factor)PLSC 电力与照明监控子系统(Power And Lighting Supervisory Control Subsystem)PM 脉冲调变(Pulse Modulation)PMC 电力维护电路(Power Maintenance Circuit)PNEU 气压式 / 气动(Pneumatic)PNL 配电盘(Panel)POS 正值 / 位置(Positive / Position)POT 电位(Potential)PR 一对(Pair)PRI 第一次(Primary)PRL 平行(Parallel)PS 电源供给器(Power Supply)PSS 电力监控系统(Power Supervisory System)PT 比压器(Potential Transformer)PTPA 月台电话及播音系统(Platform Telephone with Public Address Service)PTZ 水平转动/垂直转动/放大缩小(Pan / Tilt / Zoom)PUBT 公用电话(Public Telephone)PVC 聚氯乙烯(Polyvinyl Chloride)PWR 电力(Power)PWMT 电力维修电话(Power Maintenance Telephone)R 电[ / 半径 / 反转(Relay / Radius / Reversing)R1,R2 受讯机附编号(Receiver Number of)RAD 无线电(Radio)RC 隐藏式(Recessed)RCT 远端电脑终端机(Remote Computer Terminal)RCTL 遥控(Remote Control)RECT 整流器(Rectifier)RECV 接收(Receive)REF 参考(Reference)REG 调整器(Regulator)A 安培(Ampere,Amps)ABBR 缩写(Abbreviation)AC 交流电流(Alternating Current)ACB 空气无熔丝开关(Air Circuit Breaker)ADJ 可调式(Adjustable)AFC 自动频率控制(Automatic Frequency Control)Ah 安培小时(Ampere Hour)AL 铝(Aluminum)AM 安培表 / 调幅(Ammeter / Amplitude Modulation)AMPL 增幅器(Amplifier)ANN 警报器(Announciator)ANT 天线(Antenna)APP. 近似(Approximate)AS 安培计切换开关(Ammeter Switch)ATS 自动切换开关(Automatic Transfer Switch)AUD 音频(Audio)AUTO 自动(Automatic)AUTOTR 自动变压器(Auto Transformer)AUX 辅助(Auxiliary)AVG 平均(Average)AF 框架容量(Frame Size)AT 跳脱容量(Trip Rating)BAT 电池(Battery)BATCHG 电池充电机(Battery Charger)BCD 二进码十进制(Binary Coded Decimal)BET 之间(Between)BGM 背景音乐(Back Ground Music)BIL 基本绝缘水n(Basic Insulation Level)BLDG 建筑物(Building)BOT 底(层)(Bottom)C 导线管(Conduit)CA 电缆(Cable)CAB 配电箱(Cabinet)CAM 摄影机 / 空调辅助电表(Camera, Cooling Auxiliary Meter)CAP 电容器/电容(Capacitor/Capacitance)CAT 种类(Category)CB 断路器(Circuit Breaker)CCC 中央控制中心(Central Control Center)CCTV 闭路电视(Closed Circuit Television)CH 频道(Channel)CKT 电路/袈罚Circuit)CLG 天花板(Ceiling)CLK ?(Clock)CMC 母?(Central Master Clock)cm 公分(Centimeter)CDF 综合配线架(Combined Distribution Frame)COAX 同轴(Coaxial)COL 圆柱(Column)COMM 通讯(Communication)CONC 混凝土(Concrete)COND 导线(Conductor)CONN 接头 / 连接(Connector / Connection)CONS 控制台(Control Station)CONSTR 施工(Construction)CONT 连续 / 继续(Continue / Continuation)CPT 控制电源变压器(Control Power Transformer)CPU 中央处理(Central Processor Unit)CR 控制电[(Control Relay)CRT 阴极射线管(Cathode Ray Tube)CS 控制开关(Control Switch)CSRC 中央监控(Central Supervisory and Remote Control)CMPTR 电脑(Computer)CT 比流器(Current Transformer)CTL 控制(Control)CTR 中心(Center)CU 铜(Copper)CTY 电缆架(Cable Tray)D/C 类位/类比转换器(Digital To Analog Converter)DA 分散放大器(Distribution Amplifier)dB 分贝(Decibel)dBm 毫瓦分贝(A dB Referred To One Milliwatt)DC 直流(Direct Current)DD 数位类示(Digital Display)DDC 资料分配控制器(Data Distribution Controller)DDT 资料显示终端机(Data Display Terminal)DEPT 部门(Department)DET 详细图(Detail)DF 需量因素(Demand Factor)DGP 资料收集处理机(Data Gathering Processor)DGT 电信总局(Directorate General of Telecommunications)DIA 直径(Diameter)DIG 图(Diagram)DIFF 差别的(Differential)DIM 尺度(Dimension)DISC 分开 / 不接(Disconnect)DISTR 分布 / 分配(Distribution)DIV 参差因数(Diversity Factor)DM 需量表(Demand Meter)DN 向下(Down)DO 抽出(Draw Out)DP 双极(Double Pole)DPDT 双极双投(Double Pole Double Throw)DPST 双极单投(Double Pole Single Throw)DS 隔离开关(Disconnect Switch)DT 双投(Double Throw)DTG 防尘(Dust Tight)DRG 图(Drawing)E 紧急(Emergency)EA 每一(Each)EC 空导管(Empty Conduit)EL 高程(Elevation)ELEC 电机(Electric)ELV 电梯(Elevator)EM 能源管理(Energy Management)EMI 电磁干扰(Electromagnetic Interference)EMS 环境管理子系统(Environmental Management Subsystem)EMT 金属电导管(Electrical Metallic Tubing)ENCL 箱体(Enclosure)ENTR 入口(Entrance)EPR 乙烯丙烯橡胶(Ethylene Propylene Rubber)EQ 等化器(Equalizer)EQPT 设备(Equipment)ESC 电扶梯(Escalator)ET 紧急电话 / 经过时间(Emergency Telephone / Elapse Time)EXP.JT 伸缩缝(Expansion Joint)EXT 外部(Exterior)EX 交换机 / 交换线路(Exchange / Exchange Line)F,FI 频率(Frequency)FA 火灾报警机(Fire Alarm)FT 多功能电话(Feature Telephone)FAS 火警系统(Fire Alarm System)FB 熔线座(Fuse Block)FBO 非本工程范围(Furnished By Others)FDN 基础(Foundation)FDR 馈线(Feeder)FF 粉刷完成面(Finished Floor)FL 层(Floor)FLD 场(Field)FLEX 软性的(Flexible)FLS 火灾及安全辅助系统(Fire And Life Safety Subsystem)FLUOR 萤光灯(Fluorescent)FM 频率表 / 调频(Frequency Meter / Frequency Modulation)FO 光学纤维(Fiber Optic)FS 防火(Fire Stop)FSK 移频按键 / 频移键(Frequency Shift Key)FU 熔线(Fuse)FURN 提供(Furnished)FUT 未来(Future)GA 标n?/ 尺度(Gauge)GALV 镀锌(Galvanized)GB 接地S/流排(Ground Bus)GEN 发电机(Generator)G.F. 接地故障保护(Ground Fault Protection)GRS 无线电指引系统(Guide Radio System)G,GND 地面 / 接地 / 绿色(Ground / Green)湿式中拉机 medium wet drawing machine中拉机 medium wire drawing machine中拉 intermediate drawing中拉机 intermediate wire drawing machine中拉机、大拉机 coarse wire drawing machine粗-细线拉线机、中拉机 coarse-fine wire drawing machine多根拉线-退火-束线机组 multi-wire drawing-annealing-bunching line四节距束线机 four twist bunching machine双节距束线机 double twist buncher双节距束线机 double-twist bunch strander双节距[双倍]束线机 double-twist bunching machine双节距高速束线机 double-twist laying-up machine复合束线、复[混[合束线 compound bunch磨光机、束线机 buffing machine v束线、束绞 n束线 bunch v束线、束绞 bunch-strand束绞铜束线 bunch-stranded copper conductor束线、绞合线 bunched wire束线机 buncher束线机 bunching machine灌注 potting双面双层十六头纱包机 16- head double-side douoble-rosette cotton covering machine)立式双层鼓轮 vertical double draft bull block双层编包风雨线 weatherproof double braid双层挤出(机)头 twin (extruder) head双层鼓轮拉线机 twin capstan drawing machine双头挤出、双层挤出 twin-head extrusion双层的 twin-layer橡皮绝缘双层编包线 rubber-covered double braided双层环氧漆包圆铜电磁线 heavy epoxy-coated round copper magnet wire泡沫皮绝缘、泡沫/实心双层绝缘 foam skin insulation双层编织机 double tier type braiding machine双层钢丝铠装 double wire armour双层钢丝铠装电缆 double wire-armoured cable双层挤出(机)头 double(extruder)head双层编织的 double-braid双层编织式外导体同轴电缆 double-braid type coaxial cable双层鼓轮拉线机 double-capstan wire drawing machine双层滚筒六头拉线机 double-deck 6 head type machine双层鼓轮 double-deck bull block双层拉线鼓轮 double-deck drawing block双层绝缘的 double-insulated双层的 double-layer双层一次挤出(法) double-layer coating co-extrusion双层挤出(机)头 double-layer extrusion head双层纸 double-ply paper双丝包的、双层丝绝缘 double-silk covered双层挤出(机)头 dual (extruder) head泡沫/实心双层绝缘、泡沫绝缘 dual expanded plastic insulation双层挤出机 dual extruder双层绕包头 dual lapping head双层的 duplex双层纸 duplex paper双层护套、焊接的皱纹金属管护套 duplex sheath双层绕包头 duplicate lapping head双层铠装 double armo(u)ring双层鼓轮 double block双层鼓轮拉线机 double block drawing machine双层拉线鼓轮 double deck drawing capstan双层环氧漆包圆铜电磁线 double epoxy-coated round copper magnet wire 双层绝缘导线 double insulated condutor双层直角挤出机头 double layer crosshead双层钢带铠装 double layer of steel-tape armour双层钢带铠装 d.s.t.a.(double layer of steel-tape armour)双层护套电缆的内护套直径 DOIJ单层纸 simplex paper单层滚筒七头拉线机 single deck 7 heads type machine单层环氧漆包圆铜电磁线 single epoxy-coated round copper magnet wire 单层金属编织机 single tier type wire braiding machine单层的 single-layer单层电缆 single-layer cable单层绞线 single-layer strand单层纸包圆铜电磁线 single-paper-covered round copper magnet wire单层纸 single-ply paper单层纸 single-wire paper单层 monolayer单层甲板大帆船 galley管式绞线机、管绞机 tube strander管式绞线机、管绞机 tubular closer管绞机 tubular strander管式绞线机、管绞机 tubular stranding machine管绞机筒体 stranding rotor高速管绞机 high speed tubular stranding machine光纤拉丝 optical fibre drawing拉丝乳剂 drawing compounds拉丝润滑剂 drawing lubricants拉丝用皂 drawing soaps8模湿式拉丝机、八模湿拉机 wet drawing machine with 8 dies拉线、拉丝 wire drawing拉线模、拉丝模 wire drawing die拉丝润滑剂 wire drawing lubricant拉线机、拉丝机 wire drawing millv拉丝、拔丝 wire-draw拉丝机、拉丝工 wire-drawer拉丝架[机] wire-drawing bench拉丝设备[车间] wire-drawing plant拉丝、拔丝 wireddrawing拉丝模(板) wortle钻石拉丝模超声抛光 ultrasonic diamond die polishing钻石拉丝模超声抛光装置 ultrasonic diamond die polishing unit 超声波拉丝模打孔机 ultrasonic drawing die drilling machine超声波拉丝模加工机 ultrasonic drawing die working machine超声波拉丝机 ultrasonic drawing machine碳化钨(拉丝)模、硬质合金(拉线)模 tungsten-carbide(drawing) die 组合式辊压模、互成直角的四辊轮拉丝模装置 turks(-)head互成直角的四辊轮拉丝模装置 turks(head) roll串列式退火机、连续拉丝退火机 tandem annealer滑移式拉丝[线]机 slip drawing machine拉丝溶液 solution-drawing单道拉丝 single draft drawing单模拉丝机 single draft drawing machine单道拉丝 single-pass drawing(光纤)拉丝机 pulling machine拉丝模孔光洁度 profiloscope光纤拉丝塔 optical fiber drawing tower光纤拉丝机 optical fibre drawing machine多头拉丝、多模拉丝 multiple drawing多模拉丝机 multiple drawing machinen-模连续拉丝机 n-die continuous wiredrawer高性能拉丝生产线 high performance drawing line(拉丝模的)研磨 grinding光纤拉丝系统 fiber drawing system光缆拉丝机 fiber pulling machine光纤拉丝机 fiber-pulling machine双列[双重]拉丝机 double row wire drawing machine 拉丝[线]机]、拔杆机 draw bench拉丝机、拔杆机、拔管机 drawbench拉丝(润滑液)槽 drawing batch拉丝[线]机、拔杆机 drawing bench拉丝润滑剂 drawing compound拉丝塔轮、拉线鼓轮 drawing cone拉丝设备 drawing equipment拉丝[线]润滑液 drawing fluid拉丝[线]润滑液 drawing oil拉丝[线]润滑液 drawing solution拉丝模具 drawing tool拉丝配模、配模 dies arrangement直接拉丝 direct drawing(拉丝模)模座 die holder塔轮式拉丝[线]机 cone-type drawing machine拉丝模、拉丝机 bull block拉丝机、拉丝模 bull-block拉丝模、拉丝机 bullblock防滑动拉丝机 anti-slipping drawing machine立式单模大拉机、立式鼓轮 vertical bull block粗拉机、大拉机、开坯机 rod breakdown machine大拉 rod-breakdown大拉机 large drawing mill直线式单头大拉机 in-line bull block machine卧式单模大拉机、卧式鼓轮 horizontal bull block 大拉机 heavy drawing machine大拉 heavy rod drawing大拉机 heavy rod drawing machine拉线鼓轮、大拉机 drawing block大拉 coarse drawing中拉机、大拉机 coarse wire drawing machine单模大拉机 bull drawing block大拉机 bar drawblock小拉机 fine wire drawing细拉 mini-drawing细拉机 mini-drawing machine细拉 mini-fine drawing细拉 fine drawingvt拉细丝、细拉 finedraw细拉机 finishing block(铜杆)剥皮 shave铜杆剥皮 shaving of copper rod铜杆的压延 rolling of copper rod圆铜杆 round copper rod电工用圆铜杆 round copper rod for electrical purpose成圈铜杆放线架 pay-off stand for copper rods in coils热轧铜杆 hot-rolled copper rod铜杆 copper bar铜杆、(电缆头用)铜出线梗、接线柱 copper rod铜杆剥皮机 copper rod descaler铜杆拉出 copper rod withdrawal控制电缆 control cables自动带宽控制 ABC断线控制系统 wire break control system线张力控制 wire tension control线张力控制仪、紧线器 wire tensioner电压控制 voltage contro扭力控制装置 torsion control equipment热液控制、液体控温(法) thermal liquid control厚度(控制)仪、测厚仪 thickness gage色调控制孔径 toll-control aperture带子张力控制 tape tension control温度控制[调节] temperature control液体控温(法)、热液控制 temperature control by a liquid medium 温度控制仪 temperature control meter张力控制[调节]装置 tension control device张力控制装置 tension control unit张力控制放线装置 tension controlled pay-off张力控制仪 tensioner测试线、控制[操作、监视]线 testing conductor严格控制[检验、检查] strict control严格控制[检验、检查] stringent test监督、检验、检查、控制 supervision电场控制[调整]、应力控制 stress control应力控制带 stress control tape应力控制管 stress control tubing电[磁]场控制的、应力控制的 stress-controlling严格检验[检查、控制] severe control严格检验[检查、控制] severe test控制线路用多芯用电缆、船用控制电缆 shipboard multicore cable for control circuits 硅管外径控制器 silica tube outer diameter controller设定值、控制点 setpoint严格检验[检查、控制] rigid test严格检验[检查、控制] rigorous test自动控制收线装置 robot take-up垂度控制 sag control垂度控制器 sag controller垂度控制环 sag-control loop调节[控制]范围 regulating range调节[整]器、控制器 regulator按扭控制[操纵] push-button control质量控制[检验] quality control质量检验[控制] quality inspection生产过程控制、程序控制 process control工序控制检验 process control inspection生产过程控制 production control程序控制 programme control控制导线、辅助芯线 pilot控制线芯、监视线芯 pilot conductor导引绝缘线芯、控制线芯、监视线芯 pilot core控制线、操作线 pilot line压缩空气控制 pneumatic operation放线人工控制速度 pay off manual speed control放线自动控制微调 payoff automatic-control triment氢氧焰温度控制器 oxyhydrogen flame temperature controller控制板[配电盘]开关装置 panel switching equipment操作台、操纵盘、控制板 operator panel操作台、控制台 operator\'s desk噪声控制装置 noise control equipment非接触式线径控制仪 non-contact diameter monitor微处理机控制话缆四线组测试仪 microprocessor telephone quad tester 监测器--电容量控制 monitor-capacitance control监督、检验、检查、控制 monitoring灯光显示控制 luminous control panel生产过程控制 manufacturing control流量控制器 mass flow controller柔软云母材料 flexible mica material软管;套管 sleeving(柔软)复合材料;复合箔 combined (flexible)material软化温度;软化点 softening temperature;softening point软电缆 BX cable屈服[流动、软化、击穿]点 yield point(YP)屈服强度、软化强度 yield strength乙烯绝缘软电缆 vinyl cabtyre cable耐水软线 water-resistan cord热塑流试验、软化击穿试验 thermoplastic flow test三芯电力软线 three conductor power cord三芯软线 three-core cord三芯软线 three-way cord镀锡软铜绞线 tined soft copper stranded wire箔软线、塞线 tinsel cord电话软线 telephone cord电信软件 telesoftware电源软线 supply cord交换机电缆[塞子软线] switchboard cable退火(软)线 soft annealed wire退火、韧炼、软化退火 soft annealing软电缆 soft cable软陶瓷绝缘电磁线 soft ceramic insulated magnet wire软涂层 soft coating软拉 soft drawn软或退火铜线、软铜线 soft or annealed copper wire箔软线、塞线 tinsel cord电话软线 telephone cord电信软件 telesoftware电源软线 supply cord交换机电缆[塞子软线] switchboard cable退火(软)线 soft annealed wire退火、韧炼、软化退火 soft annealing软电缆 soft cable软陶瓷绝缘电磁线 soft ceramic insulated magnet wire软涂层 soft coating软拉 soft drawn软或退火铜线、软铜线 soft or annealed copper wire软橡胶 soft rubber软链段 soft segment软焊料钎焊、锡焊 soft soldering退火铜线、软铜线 soft-annealed copper wirev软焊料钎焊、锡焊 soft-solder软化剂 softener软化 softening软化剂 softening agent软化[退火]装置 softening plant软化点 softening point软化区、增塑区 softening region软钎焊(缝、点、头) soldered joint软钎焊(缝、点、头) soldering joint扁形(软线)接头 spade tag扇形(软线)接头 spade terminal螺旋芯软线、有弹簧的塞绳 spiral-conductor flexible cord星绞八芯软电缆 spiral-eight cable星绞四芯软电缆 spiral-four cable星绞四芯软电缆 spiral-four type cable船用软同轴电缆 shipboard flexible coaxial cable爆破[放炮]用软线 shot-fire cord丝包软线 silk-covered cord镀银软或退火铜线、镀银软铜线 silver-coated soft or annealed copper wire 单线软绳 single-wire cord可收缩软线、弹簧线 retractile cord橡套软电缆 rubber jacketed flexible cable橡胶素炼机、软胶机 rubber-homogenizer软拉 s.d.(soft drawn)游览车用软线 recreational-vehicle cord预装配的软电缆 pre-assembled flexible cable预装配的软电缆及软线 pre-assembled flexible cables and cords精密排列的扁形软电缆 precision-tiered flat flexible cable抽头、引线、软导线 pigtail超软细股线 pigtail wire塑料护套软线 plastic-sheathed flexible cord移动式软线 portable cord普通塑料护套软线 ordinary plastic-sheathed flexible cord普通型耐磨橡套软电缆 ordinary tough-rubber sheathed flexible cable普通耐磨橡套软线 ordinary tough-rubber sheathed flexible cord普通聚氯乙烯护套软线 ordinary(PVC-)sheathed flexible cord耐油软线 oil-proof cord耐油软线 oil-resistant cord光纤软线 optical fiber cord多芯软线 multicore cord多芯软线 multiple cord网络软件 network software镀镍软或退火铜线、镀镍软铜线 nickel-coated soft or annealed copper wire 麦克风[话筒]软线 microphone cord麦克风[话筒]软线 mike cord移动房屋用软线 mobile-home cord定型设计的电话软线、弹簧电话软线 modular telephone cord防潮双绞软线 moisture proof twisted cord单塞绳、单软线 monocord低温柔软性 low temperature flexibility低漏泄电流用户软线 low-leakage-current service cord轻型塑料护套软线 light plastic-sheathed flexible cord轻型聚氯乙烯护套软线 light(PVC) sheathed flexible cord电灯(软)线 lamp cord铅合金包覆软铜线 lead-alloy-coated soft copper wire铅包软铜线 lead-coated soft copper wire仪器用软线[塞绳] instrument cord绝缘软线 insulated flexible wire综合软件 integrated software高温软线 high-temperature flexibles素炼机、软胶机 homogenizing roller布线用线、安装线、跨接线、柔软连接线 hook-up wire软管、橡皮管 hose苛刻条件用软线 hard-service cord耐热护套软电缆 heat-resistant sheathed flexible cable重型耐磨橡套软电缆 heavy tough-rubber sheathed flexible cable镀锌软[低碳]钢丝 galvanized mild steel wire玻璃丝绝缘软线 glass-fiber-insulated flexibles馈电软线 feed cord一级软线 first class flexible cord扁形软电缆 flat flexible cable扁形双芯软线 flat twin flexible cord扁形双芯软线[塞绳] flat twin tinsel cord软线 flex conductor柔软性 flexibility柔软度试验 flexibility test软线、连接塞绳、软电缆确良 adj柔软的 flexible软电缆 flexible cable矿工帽灯用软线 flexible cable for miners\' cap lamps软接线 flexible circuit conductor软导体、柔软导体、软线 flexible conductor软线、连接塞绳 flexible cord电缆软接头 flexible joint移动式电力软线 flexible portable power cord电力软线 flexible power cord软绞线 flexible stranded conductor软绞线 flexible stranded wire软[花、皮]线 flexible wire软线布线 flexible wiring软线、软绳 flexibles弹性[延伸]软绳 extension cord特软绞线 extra-flexible stranded conductor极苛刻条件用软线双芯软线[塞绳] double conductor cord软化击穿 cut-through耐切通性、切通强度、耐软化击穿性能 cut-through resistance切通温度、软化击穿温度 cut-through temperature切通试验、软化击穿试验 cut-through test连接塞绳、软线 connecting cord铜芯聚氯乙烯绝缘平型软线 copper conductor PVC-insulated parallel flexible cord 铜芯聚氯乙烯绝缘绞型软线 copper conductor PVC-insulated twisted flexible cord 软线[绳]、电线电缆、塞绳 cord花线、装饰线路用软线 cord for decorative chains带有插塞的电话软线 cord setextra-hard-service cord成套塞绳、带有插塞的电话软线彩色软线 colour cord通信软件 communication software锥形软模具 cone-shaped flexible die同轴软线、同轴线塞绳 coaxial cord螺圈形软线 coiled cord橡皮绝缘(软)电缆、橡套[软件]电缆 cabtyre cable橡套电缆、软管电缆 cabtyre sheathed cable配套软件 bundled software软管电缆 cab-tire cable橡皮绝缘软线〔软塞绳〕 cab-tyre cord电缆软接头 cable flexible joint软连接用电缆 cable for flexible connections电缆软管 cable hose电缆软管夹托架 cable hose clamp bracket编织软绳 braided flexible cord退火、韧炼、软化 anneal肖飚(本软件开发者、电缆工艺工程师) XIAOBIAO屈服[流动、软化、击穿]点 YP(yield point)柔软控制电缆 FCC(flexible control cable)硬链段与软链段的嵌段共聚物 HYTREL挤出机 extruders挤出 extrusion挤气式挤出机 vent extruder通用回转式挤出机 versatile turret extruder立式连续挤出硫化机组 vertical continuous extruding and vulcanizing machine 立式挤出机 vertical extruder立式挤出 vertical extrusion二段式挤出机 two-stage extruder三层挤出机 triple extruder三层挤出(机)头 triple extruder head三层挤出(机)头 triple extrusion head双层挤出(机)头 twin (extruder) head双头挤出、双层挤出 twin-head extrusion双螺杆挤出机 twin-screw extruder三层挤出绝缘电缆 three-layer extruded cable(挤出机)模嘴、模芯、末端 tip串列式挤出机 tandem extruder挤出物料的脱节 starving of extrudate flow(挤出机)送料螺杆 stockscrew滤网 strainer剪切式挤出机头 shear-type extrusion head护套挤出机 sheathing machine单螺杆挤出机 single screw extruder(挤出机筒内)焦烧、早期硫化 scorching(in extruder cylinder)螺杆式挤出机 screw extruder半导体材料挤出机 semicon extruder挤出头、压力模座 press block压力型多层一次挤出模 pressure-type coextrusion die分段式挤出机 piggyback extruder行星齿轮式挤出机 planetary gear extruder(塑料)挤出机 plastic extruder制粒挤出机 pelletising extruder(挤出机)斜角机头 oblique head单段式挤出机 one-stage extruder光缆护套挤出生产线 optical cable sheathing line多色挤出机 multi-colour extruder多层挤出机 multi-layer extruder多级[多段]式挤出机 multi-stage extruder多根挤出法 multi-wire insulation process多头挤出装置 multiline extrusion system多层挤出 multiple extrusion(挤出机)螺杆的计量区 metering section of a screw混炼挤出机 mixer-extruder混炼、排气、挤出联合机 mixing ,venting and extruding machine 标色挤出机 marking extruder铅管挤出机 lead-pipe extrusion press内皮挤出机 inner skin extruder绝缘机头、挤出机头 insulating machine head高效挤出机 high output extruder高速挤出生产流水线 high speed tandemized extrusion line高发泡挤出 high-foaming extrusion高发泡挤出生产线 high-foaming extrusion line高速挤出生产流水线 high-speed tandemized extrusion line卧式挤出机 horizontal axis extruder卧式挤出机 horizontal extrusion press热挤出 hot extrusion热挤出用润滑剂 hot extrusion lubricant静液(压)挤出 hydrostatic extrusion模芯导向器(挤出机模子) guider tip注气体挤出机 gas-injection extruder铅管挤出机 lead-pipe extrusion press内皮挤出机 inner skin extruder绝缘机头、挤出机头 insulating machine head高效挤出机 high output extruder高速挤出生产流水线 high speed tandemized extrusion line高发泡挤出 high-foaming extrusion高发泡挤出生产线 high-foaming extrusion line高速挤出生产流水线 high-speed tandemized extrusion line卧式挤出机 horizontal axis extruder卧式挤出机 horizontal extrusion press热挤出 hot extrusion热挤出用润滑剂 hot extrusion lubricant静液(压)挤出 hydrostatic extrusion模芯导向器(挤出机模子) guider tip注气体挤出机 gas-injection extruder泡沫挤出生产线 foam extrusion line泡沫绝缘挤出 foam insulation extrusion前端驱动挤出机 front-end drive extruder光纤松套管-紧包缓冲层挤出生产线 fiber-optic loose tube-tight buffer 出线区、挤出区 exit zone挤出机 extr.可挤出性、可挤压性 extrudability挤出物、挤制材料 extrudate挤出物温度 extrudate temperaturev挤出[压、包、制] extrude挤出[压、包、制]的 extruded挤出型绝缘电缆 extruded cable挤出型绝缘电缆 extruded dielectric cable挤出机、挤压机 extruder挤出机筒体 extruder barrel挤出机机筒内径 extruder bore直角挤出机头 extruder crosshead挤出(机)模具 extruder dies挤出(机)头 extruder head挤出机挤出量 extruder output挤出机螺杆 extruder screw挤出[制、包、压] extruding挤出机 extruding machine挤出[制、包、压] extrusion挤出模具 extrusion die挤出(机)模具 extrusion dies挤出涂漆法 extrusion enamelling process挤出发泡 extrusion foaming挤出发泡法 extrusion foaming method挤出(机)头 extrusion head挤出指数 extrusion index挤出生产线速度 extrusion line speed挤出压力 extrusion pressure挤出[压、包、制]方法 extrusion process挤出工艺 extrusion processing挤出性能 extrusion property挤出量、挤出速度[量] extrusion rate挤出(机)螺杆 extrusion screw挤出技术、挤出工艺 extrusion technology挤出温度 extrusion temperature挤出机模芯 extrusion tip挤出模具 extrusion tool挤出速度 extrusion velocity挤出轮 extrusion wheel有壳挤出 extrusion with shell无壳挤出 extrusion without shell(漆包线的)挤出涂漆法 emailex method(漆包线的)挤出涂漆法 emailex process双螺杆挤出机 double screw extruder双层挤出(机)头 double(extruder)head双层一次挤出(法) double-layer coating co-extrusion双层挤出(机)头 double-layer extrusion head双层挤出(机)头 dual (extruder) head双层挤出机 dual extruder非连续性挤出 discontinuous extrusion双层直角挤出机头 double layer crosshead挤出机机头口型 die lips挤出机机头口型间隙 die lips gap(控制)压力挤出法 controlled pressure extrusion粉末涂敷 powder coating室温固化 cold curing cold setting十八盘两段卧式绞线成缆机18- bobbin 2-cage horizontal wire stranding and laying-up machine2/2芯单段成缆机2/2- core single cage laying-up machinev成缆、布[配]线、敷设电缆[线] wire未成缆光纤 uncabled fiber绞线成缆联合机 stranding and laying-up machine单节距成缆机 single twist cabler单节距[单绞式]成缆机 single-twist cabling machine刚性成缆机 rigid cabling machine行星式成缆机 planetary cabler行星式成缆机 planetary cabling machine。
Kutai TCS4P125 Automatic Transfer Switch Control U
KUTAI ELECTRONICS INDUSTRY CO., LTD.TCS4P125Automatic Transfer SwitchControl Unit for 3 Phase 4 Wire SystemOperation ManualThree Phase Four Wire 4P 125 Amp Rated Voltage 250 VacPatent Number : U.S. Pat. No. 7,557,683TABLE OF CONTENTSSection PageSECTION 1 : INTRODUCTION1.1 Safety Precautions (3)1.2 Products Overview (3)SECTION 2 : HARDWARE DESCRIPTION2.1 Front Panel (4)2.2 TCS4P125 Dimensions (5)2.3 Panel Cut-Out For The TC-V2 (5)SECTION 3 : FUNCTION DESCRIPTION3.1 General (6)3.2 TDNE Setting (6)3.3 TDEN Setting (6)3.4 TDEC Setting (6)3.5 TDES Setting (6)3.6 TD-OFF Setting (6)3.7 Plant Exerciser (6)3.8 Over / Under Voltage Sensing (6)3.9 Transfer Failure (6)SECTION 4 : OPERATION4.1 General (7)4.2 AUTO Mode (7)4.3 TEST Mode (7)4.4 Programming Mode (7)4.5 AC Voltage Display Adjustment (7)4.6 Specification Summary (7)4.7 System Setting Reference Table (8)SECTION 5 : INSTALLATION INSTRUCTIONS5.1 General (9)5.2 Installation On The Plate (9)5.3 TC-V2 Installation On The Door Panel (10)SECTION 6 : TYPICAL WIRING6.1 TCS4P125 Standard Wiring Diagram (11)SECTION 1 : INTRODUCTION1.1 Safety Precautions (WARNINGS)This manual covers the installation, operation and maintenance of the TCS4P125 Automatic Transfer Switch. It is intended for qualified personal only.1.2 Products OverviewThe TCS4P125 automatic transfer switch consist of two parts the TS4P125 switch and the TC-V2 electronic control unit :1.2.1 TS125 FeaturesThe contacts on the Kutai TS4P125 transfer switch are class PC, this means that it is capable of making and withstanding short circuits but is not intended for breaking short circuit current.●Rated operating Voltage:250 Vac●Rated operating Current:125 Amps●Number of poles:4P●Coil operating voltage:110 / 220 Vac +/- 20%●Compact size, light weight and low powerconsumption.●Electrically operated and mechanically held.●Manufactured using UL 94V-0 plastics.●Adjustable time delay in OFF position whentransferring.●Designed for cell-phone repeaters, and manyindustrial and home ATS applications.1.2.2 TC-V2 Digital ControllerThe TC-V2 digital control unit offers programming flexibility to customize the ATS to different customer requirements.The Controller:●Monitor normal source for full phase over and undervoltages.●Monitor emergency source for single phase overand under voltages.●Normal & emergency source voltage and frequencyparameter display.●TDEN, TDNE, TDEC and TD-OFF real timecountdown display.●Permit testing the transfer switch from the controlpanel.●Permit system testing the transfer switch with orwithout load from the front panel.●Built-in 1 to 4 weeks exerciser timer.●Permit customer plant exerciser test with / withoutload on a preset period.●Safely store customer / factory settings inpermanent memory.●Shows status and failure alarm LED’s on the frontpanel.●No need for PC connection and programmingsoftware. All settings can be made on site.●Controller can be installed next to switch orseparately on an enclosure panel.SECTION 2 : HARDWARE DESCRIPTION 2.1 Front Panel2.2 TCS4P125 Dimensions (Unit : mm)2.3 Panel Cut-Out for the TC-V2 (Unit : mm)SECTION 3 : FUNCTION DESCRIPTION3.1 GeneralOperation of the TCS4P125 electronic control.3.2 TDNE SettingsTDNE provides a time delay when transferring from N ormal to E mergency. Timing begins when the Emergency Source (generator) becomes available. TDNE:Adjustable from 0 to 99 seconds.3.3 TDEN SettingsTDEN provides a time delay when transferring from Emergency to Normal. This permits stabilization of the Normal Power before transferring back to normal. Timing begins when the Normal Power returns and becomes available and steady.TDEN:Adjustable from 0 to 99 seconds.3.4 TDEC SettingsTDEC timer keeps the generator running without load (E ngine C ool-down) after the ATS transfer back to Normal Power. Timing begins when the transfer back to normal is completed.TDEC:Engine Cool-down - from 0 to 99 sec.3.5 TDES SettingTDES is the time delay for Engine Start when the Normal Source voltage is in over or under-voltage (OV or UV). If power return to normal while timing, the TDES timer resets and starts again.TDES:Adjustable from 0 to 30 seconds.3.6 TD-OFF SettingTime Delay on OFF this timer keeps the switch in the center neutral OFF position (completely disengaged) before transferring to the other side. You can preset the switch in Neutral or OFF from 0 to 18 seconds (Normally 2 to 3 sec).TD-OFF:Adjustable from 1 to 20 seconds.3.7 Plant ExerciserThis feature provides for automatic test operation of the generator. The interval is fixed at once per 1 to 4 weeks with a specific test day and time. The exerciser can be set for either testing with load or without load. When the exerciser is activated the exerciser LED (EX) on the right side of display flashes and turns on during the exercise period.3.8 Over / Under Voltage SensingThe TC-V2 constantly monitors normal & emergency power. When power falls outside the programmed voltages this LED turns RED from GREEN and flashing to show OV / UV problems.Adjustable over voltage range:110 - 280 VacOver voltage reset:When voltage falls below 10 Vac of the OV setting.Adjustable under voltage range:80 - 230 VacUnder voltage reset:When voltage exceeds 10 Vac of the UV setting.3.9 Transfer FailureWhen a transfer is made the TS125 communicates it’s position to the TC-V2 controller by using two small internal micro-switches, if this signal is not received, it will try switching 3 more times every 2 seconds or until the connection is made. A flashing light indicator and a “FAIL” signa l displayed an incomplete transfer and that the ATS mechanism or wiring is defective.If the ATS fails, the TC-V2 controller stops all ATS functions and starts’ flashing until the failure is corrected and the control is reset.To reset the transfer fail alarm:1. Manually move the ATS to the correct position.2. Press any button (Auto, Program or Test) on thefront panel to reset the alarm.SECTION 4 : OPERATION4.1 GeneralThis section specifically describes the operation and functional use of the TC-V2 controller.4.2 AUTO ModeIn AUTO the TC-V2 controller automatically transfer and retransfers from source to source as directed by the pre-programmed instructions.In AUTO the controller monitors the condition of both normal and standby power sources providing the logic for the transfer operation.4.3 TEST ModeThe TC-V2 is equipped with a test pushbutton that simulates the loss of normal source. Pushing the Test key the TC-V2 will execute a test on the ATS. The TDES and TDNE programmed time delays will be performed as part of the test. There are two test modes:●Testing with load .●Testing without load4.4 Programming ModeThe TC-V2 controller is fully programmable from the front panel when in the Program Mode. The build-in program buttons have multiple functions:●Real time clock displaying●Programming mode operatingTo enter programming mode, push and hold Program button for 10 seconds. In the first 10 seconds the screen showing internal real time clock and then the word “ Vr 1.0” will appears on the front display window for 2 seconds indicating the version of the software.At this time start a line by line programming sequence. To advance to the next line, push the Program button on the front panel. To change each line’s programming parameters, press the increase (∧) and decrease (∨) buttons. When pressing and releasing the (∧) or (∨) key the displayed parameter can be increased or decreased by one. The parameter will continue to scroll if the (∧) or (∨) button is pressed and not released. Always push the “ Program” button to advance to the next line or until the word “ End” appears on the screen. To immediately end the programming mode, you simply push the “ Program” button for 4 seconds. Then the word “ End” shows on the screen indicating the end of the programming mode.If you like to return to factory settings, stay in programming mode and simultaneously press all 3 buttons (∧), (∨) and Program buttons for 4 seconds. The TC-V2 will now automatically program itself to factory settings and the word “ Au.Po” will appear on the display window.4.5 AC Voltage Display AdjustmentThe TC-V2 controller continually monitors normal & emergency power displaying volts and frequency on the front panel. (The voltage value is calibrated and adjusted at the factory). But when the ATS works on high capacitive or inductive loads the waveform distortion may cause the displayed to have slight differences from the users measuring instrument.You can adjust the display value to equal to the users own instruments, by entering the setting mode to perform adjustment the parameter. Once the adjustment is completed, the voltage sensing value will increase or decrease according to the adjusted value and display it on the screen. The TC-V2 over and under voltage protection follow the adjusted value as the actual system voltage and perform the monitoring according to the new parameter.See Table lines 2, 3, 4, 5 for voltage display setting. 4.6 Specification Summary4.7 System Setting Reference TableSECTION 5 : INSTALLATION INSTRUCTIONS5.1 GeneralThe TC-V2 controller is modular and is designed for installation next to switch or on the front door panel. A longer harness is required for door installation.5.2 Installation On The Plate5.3 Installation On The Door PanelSECTION 6 : TYPICAL WIRING6.1 TCS4P125 Standard Wiring Diagram (110 or 220V)___________________________________________________________________________________________ TCS4P125(TC-V2)11。
网络控制系统稳定性分析
2
华 中 科 技 大 学 硕 士 学 位 论 文
被控对象
传感器
执行器
…
传感器
执行器
现地工作站
现地工作站
操作员站
辅助工作站
图 1.1
分布式控制系统结构示意图
最早出现的 DCS 系统是 Honeywell 公司 1975 年开发的 TDC-2000 系统。在 DCS 系统中,现地工作站、操作员站以及一些其它辅助工作站等功能不同的计算机通过通 信网络实现互连,共同分担系统的工作。其中现地工作站主要用于过程控制,操作员 站用于操作员监视过程控制的情况,其它辅助工作站主要用于数据记录、系统优化等 功能。然而,在 DCS 系统中各个控制单元之间只是一种“松散”的连接关系,这是因 为绝大部分基本的控制任务(传感器采集、控制律计算、控制输出执行等)均在各个现 地工作站上独立完成,用于控制的实时信号并未经过网络进行传输。在 DCS 系统中, 仅仅只有一些简单的开关信号、报警信息、监视信息等通过网络共享。 上世纪 90 年代以来,微芯片的发展日新月异,其价格也逐日降低,同时网络技 术在人们的生产、生活中广为使用,这一切都为发展网络化的控制系统提供了良好的 契机。时至今天,基于现场总线等控制网络的网络控制系统(Networked Control Systems 简称 NCSs)已在各行各业得到了广泛的应用。网络控制系统的典型结构与信息流一般 如下图所示(其中虚线表示实时控制信息的传输):
Keywords:
NCSs, Switched system, Robust stability, LMI, Networked induced time-delay, Packets dropping.
II
独创性声明
本人声明所呈交的学位论文是我个人在导师指导下进行的研究工作及取得的研 究成果。尽我所知,除文中已经标明引用的内容外,本论文不包含任何其他个人或 集体已经发表或撰写过的研究成果。对本文的研究做出贡献的个人和集体,均已在 文中以明确方式标明。本人完全意识到,本声明的法律结果由本人承担。
电气专业英语单词
AC alternating current 交流电AC automatic control 自动控制ACA accident consequence assessment 事故后果评价ACB air circuit breaker 空气断路器ACC accident 故障、事故ACCUM accumulate accumulate 累计、蓄电池ACDS acoustic crack detection system 声裂纹检测系统ACT/S active side 带电部件、有功部件ACW anti-clockwise 反时针方向AD analog-digital 模拟-数字AEOD analysis and management of operational data 运行数据分析和管理AFC automatic frequency control automatic following control 自动频率控制:自动跟踪控制AI artificial intelligence 人工智能ALT alternate 交变的、交替的ALTNTR alternator 同步发电机AM ammeter 电流表AMP ampere 安培AN air natural cooled 空气自然冷却AOC automatic overload control 自动过载控制APC automatic plant coordinate control automatic power control 机组自动协调控制:自动功率控制APP appendix auxiliary power plant 附录:辅助电源设备APS accessory power supply 辅助电源APU auxiliary power unit 辅助动力装置:辅助电源设备ARM armature 电枢、衔铁ASR automatic speed run up 自动升速ASU automatic synchronizing unit 自动同步系统AT auxiliary transformer 辅助变压器AUS auxiliary switch 辅助开关AUX auxiliary 辅助、备用A VL automatic voltage control 自动电压控制A VR automatic voltage regulator 自动调压器BAT battery 电池BD block decrease 闭锁减BDUC bus duct 母线导管、母线沟BDV blowdown voltage 击穿电压BF back feed 反馈BHP brake horse power 制动马力BI block increase 闭锁增BKR breaker 断路器BOS back-out system 补偿系统BOT build-operate-tranfer 建造-运行-移交BR brush 电刷、刷子BRKG breaking 断开BYC battery charger 电池充电器CA compressed air 压缩空气CAOS completely automatic operate system 全自动操作系统CAP capactty 电容、出力、容量CAP capacity 容量、功率CA TS computer-aided trouble-shooting 计算机辅助故障查寻CB control buton circuit breaker circuit board 控制钮:线路断路器:电路板CBL line circuit breaker 线路断路器CC charactevistic curve 特性曲线CCW counter-clockwise 反时针CD control desk 控制台CEMF cownta electromotive force 反电动势CG center of gravity 重心CHGR charger 充电器CKT circuit 电路、线路CKW clockwise 顺时针方向CL center line 中心线CLSG closing 关闭、合闸CMR continuous maxinum rating 连续最大功率CNDN condition 工况、参数CO con-out 关闭、切断COEF coefficient 系数CONST constans construction 常数:构造、结构CONT contact control 接点:调节、控制CP control panel 控制板CPD capacitor potential device 电容器分压器CRT cathode-ray tube 阴极射线管CRT circuit 回路CS controlled switch controll signal 控制开关:控制信号CT current transformer 电流互感器CW clockwise 顺时针方向CY cycle 循环、周期DB distribution box 配电箱DBMS data base management system 数据库管理系统DC direct current 直流电DCAS data collection and analysis system 数据收集分析系统DE digital equipment display equipment 数字元件:显示设备DELIV deliver 供给、供电/输出DG diesel generator 柴油发电机DG diesel generator 柴油发电机DHP delivered horse power 输出功率DI data input 数据输入DISC disconnect 断开DISC SW disconnect swtich 隔离开关DISTR diatribution 分散、分配、配电DL data line 数据传输线DMM digital multimeter 数字万用表DMS data management system 数据管理系统DO diesel oil 柴油DO digital output 数字输入DOS dosing 量DPDT double-pole double-throw 双刀双掷开关DPST double-pole sigle-throw 双刀单掷开关DSCH discharge 放电DSL diesel 柴油机DSL line desconnect switch 隔离开关DT dawn time 故障停机时间DTS data transimission 数据传输系统DYNA dynamic analysis 动态分析E.U engineering units 工程单位E/P electrical to pneumatic converter 电动气动转换器EAF equivalent available factor 等效可运系数ECR economical continuous rating 经济连续出力EE electrical engineer 电气工程师EFF efficiency 效率EFFT effective 有效的EHV extra-high voltage 超高压ELEC electric 电气的EMER emergency 紧急、事故EMER emergency 事故保安EMF inductive electromotive force 感应电动势EMLON emergency condition 事故状态EMP eletromechanical power 机电功率EMS emergency switch 紧急开关、事故按钮ENCL enclose 封闭、包围ENER energize 励磁、使带电ENERD energized 已励磁的、已带电的ENG engage 发动机EP extreme power 极限功率ESD emergency shutdown 事故停机ESS essential service system 主要厂用系统ETS electrical trip solenoid 电气跳闸线圈EXC exciter 励磁机、励磁EXD external device 外部设备EY voltage transducer 电压变送器FB fuse block 保险盒FC fast closing 快关F-F flip-flop 触发器FL full load 满负荷FLF flip-flop 触发器FME frequency measuring equipment 频率计FP full power 满功率FREQ frequency 频率FU fuse 保险丝、熔断器FWR full-wave rectifier 全波整流器GEN generator 发电机GIS gas-insulated metal-enclosed switch gear 全封闭组合电器GPT generator potential transformer 发电机电压互感器GRD ground 接地GRD FLT ground fault 接地故障GT grounding transformer 接地变压器HC holding coil 保持线圈HF high frequency 高频HG harmonic generator 谐波发生器HIPOT high potential test 高电压实验HLDG holding 保持HP horse power 马力HS hand switch 手动开关HT high tension 高压HTN high tension 高电压HV high voltage 高电压HV high voltage high velocity 高压:高速HVDC high voltage direct current transmission system 高压直流输电系统HVPC high voltage power supply 高电压源I/O input/output 输入/输出IC integrated circuit input circuit 集成电路:输入电路ICL incoming line 引入线IMP impedance 阻抗IMPLS impulse 脉冲、冲动INDN induction 感应INIT initial 启动、励磁INITD initiated 已励磁的、已启动的INSUL insulate 绝缘、隔热INTMT intermediate 间断的、间歇的INVR inverter 逆变器、反相器ISLN isolation 隔离开关ISOL isolation 隔离的、绝缘的JY watt transduce 有功变送器K kilo 千KW kilowatt 千瓦KWH kilowatt-hour 度L electrical power line 电线LA lightening arrester 避雷器LC load centre 负荷中心LDS line disconnecting switch 线路隔离开关、线路断路器LN line 线路LOC local 就地LPC linear power controller 线性功率放大器LR line relay 线性继电器LSIC large scale integrated circuit 大规模集成电路LV low voltage 低电压MAG magnet 磁铁/磁场的MAN manual 手动的MC manual control magnet contactor 人工控制:磁铁开关MCB molded case circuit breaker 模板式断路器MCC motor control centre 马达控制中心MCC motor control center 马达控制中心MCR main control room maxium capacity rating maxium continuous rating 主控室:最大额定出力:最大连续出力MDS motor disconnect switch 马达隔离开关MG motor generator 电动发电机ML mechanical loss 机械损失MNXFMR main transformor 主变压器MO motor 马达MOD motor operated disconnect 电动断开MPR motor protrelay 电机保护继电器MSTR motor starter 马达启动器MWE megawatt electric 兆瓦电MWH megawatt-hour 兆瓦小时NADVD not advanced 滞后NEG negative 阴极的、负的NET network 网络NEUT neutral 中性的NGT neutral groundong transformer 中性点接地变压器NL noload 空载、无负荷NOM nominal 额定的NRP normal rated power 额定功率O&R overhaul and repair 大小修OA operator auto mode 运行人员监控下的自动控制运行方式OL motor overload device 电机过负荷装置OP output power operating procedure 输出功率:运行规程OPER operating 操作OR operating record 停运记录OVHL overhaul 大修P.O. power output 功率输出P.U. per unit 标幺值PA power amplifier 功率放大器PAMS post-accident montoring instrumentation 事故后监测仪表PB push button 按钮开关PC power center 动力中心PCB power circuit breaker 功率继电器PCC power conditioning and control 电力调节与控制PCM pulse-code modulation 脉冲编码调制PD potenial difference power driven 电位差:电动的PE power equipment 发电综合控制PF power factor indicator 功率因数PFI power factor indicator 功率因数表PGCC power generation control complex 相位PH phase 功率输入PI power input 峰值负荷PK peak 峰值PL plate 板、极板PL peak load 峰值负荷PLD payload 有效负载PM phase modulation 调相PO power operator 电动操作POH planned outage hours 计划停运小时POOH planned overhaul outage hours 计划大修停运小时POS positive 正的、正极的POS position 位置POT potential transformer 电势、电位计PP peak power 峰值功率PPS plant protective system primary protection system 电厂保护系统:一次保护系统PS power station power supply power system 电站:电源:电力系统PSS power support stabilizer 电力系统稳定器PT potential transformer 电压互感器PT pressure transducer 压力变送器PWR power 功率Q transistor 晶体管QA quick acting 快速动作QMQB quick-make quick-break 快通快断R rate rotor ratio 速率:转子:比率系数RA remote auto 远程自动RAM repair and maintenance 检修与维护RB run back 甩负荷RD run down 降负荷RF reserve free 备用ROT rate of turn reserve oil tank 转动速度:备用油箱RP rated power 额定功率RPM revolution per minute 转/分RPS revolution per second 转/秒RS resistor 电阻器RSV reserve 备用RTD resistance temperature device 电阻测量计RU run up 升负荷SC short circuit 短路SC semi-conductor 半导体SCR silicon-controlled rectifier 可控硅整流器SECT sectional 等级、分级SEN sensor 传感元件、传感器SERV service 工作、厂用SG standby generator 备用发电机SO shut-off 停机、遮断SOE sequence of events 事故顺序记录SOH scheduled outage hours 计划停机时间SOV solenoid -operated valve 电磁阀SP single pole spare 单极:备用SPC system power control 系统电源控制SPDT single-pole double-throw 单刀双掷SR speed reguletor standard rating silicon rectifier 调速器:额定容量:硅整流器SS station service 厂用SS stopping switch 停机开关SST station service transformer 厂用变压器ST starter startup transformer 启动器:启动变压器STA stationary 固定的STA T stator 定子STBY stand by 备用STR reserve station service transformer 厂用备用变压器SUBSTA substation 变点站SUPL supervisory 供电、电源SUR surge 冲击、波动SV solenoid valve 电磁阀、滑阀SW switch 开关、手把SW short wave switch 短波:开关SWBD switchboard 配电SWBD switchboard 开关板、配电盘SWC surge withstand capability 冲击电压承受能力SWGR switchyard 配电装置SWYD switchyard 开关场SY synchroscope 同步指示器SYM symmetrical system 对称系统SYNC synchronize 使---同步SYNCG synchronizing 同步SYNSCP synchroscope 同步指示器SYS system 系统SYST system 系统T&D transimission and distribution 输电与配电T&M testing and maintenance electrical trip and monitoring 实验与维修:电电气跳闸与监视系统TACH tachometer 转速表TASS technique assembly 装配工艺TB terminal board 端子板、终端板TBO time between overhaul 大修间隔TC thermocouple 热电偶TD time delay 延时TD technique data time delay 技术数据:时滞、延时TDC time delay closing 延时闭合TDD time delay on deenerization 延时失励TDE time delay energization 延时激励TDO time delay opening 延时打开TE thermoelectric test equipment 热电的:测试设备TH thermal element 热电偶、热偶元件TIS test instrumentation system thermal insulation system 测试仪表系统:绝缘系统TL total loss total load time limit 总损失:总负荷:时间限制TM time monitor 时间监视器TOT total 总共TP test point time pulse 实验点、测试点:时间脉冲TPDT triple-pole double-throw 三刀双掷开关TR test run transducer 试运行:变送器TRANS transport 运输TRC transmission and reception controller 传输及接收控制器TRIAC triode altermating current switch 三极管交流开关TRU transmit-receive unit 发送接收装置TSI turbine supervisory instrument 汽轮机监视仪表TVM transistor voltmeter 晶体管电压表U unit 机组UAT unit auxiliary transformer 厂用变压器UDF unit derating factor 机组降低出力系数UDG unit derating generation 机组降低出力少发电量UDH unit derating hours 机组降低出力小时UERS unusual event recording system 异常事故记录系统UNDH unit derating hours 机组降低出力小时UNIV universal 通用UNLD unloading 无载的、空载的UO unit operator 机组操作员UOF unplanned outage factor 非计划停运系数UOH unplanned outage hour 非计划停运小时UOR unplanned outage rate 非计划停运率UPS uninterrupted power supply 不停电电源URT unit run time 设备运行时间UST unit station service transformer 厂用变压器UV under voltage 电压不足、低电压UV 电压监察V AR variable 变量V ARHM garhour meter 无功电度表VC variable capacitor voltage comparator 可变电容:电压比较器VCB vacuum circuit breaker 真空断路器VCT voltage current transformer 电压电流互感器VENT ventilator 通风VF vriable frequency 可变频率VOLTREG voltage regularor 电压调节器VR variable resistor voltage regulator 可变电阻:稳压器VT vibration testing 振动实验VT voltage time to breakdown 击穿电压时间VTVM vacuum-tube voltmeter 真空管电压表W/O without 没有WDG winding 绕组、线圈WH watt-hour 瓦特小时WHM watthour meter 有功电度表WTR water 水WV working voltage 工作电压WZJ 绝缘监察XDCR transducer 变送器XFER transfer 转换XFMR transfoormer 变压器XMSN transmission 输电XMTR transmitter 变送器XS transfer switch 转换开关YD yard 工作场文章来源:建材机械设备网添加人:admin 添加时间:2005-9-2 22:19:32 点击:2056·变极调速speed governing by pole changing·电枢反应armature reaction·开环控制open loop control·闭环控制open loop control·遥控remote control·直接控制direct control·反接制动与反向plugging·电气间隙clearance·[开关电器的或熔断器的]分断能力breaking capacity (of a switching device or a fuse)·反馈控制feedback control·线性linearity·线性控制系统linear control system·非线性nonlinearity·非线性控制系统nonlinear control system·自动控制automatic control·自动控制系统automatic control system·连续系统continuous system·离散系统discrete system·恒值控制系统constant control system·自动调节系统automatic regulating system·自治调节autonomous control·随动系统servo system·最优控制optimum control·数字量digital quantity·模拟量analog quantity·连续控制continuous control·程序控制programmed control·数字显示digital display·自动保护装置automatic protection device·伺服机构servo mechanism·DTL电路DTL circuit·TTL电路TTL circuit·MOS电路MOS circuit·数字集成电路digital integrated circuit·可编程序控制器programmable logic controllers ·分相电动机split phase motor·分马力电动机fractional horsepower motor·小功率电动机small-power motor·自整角机synchro,selsyn·力矩电动机torque motor·测速发电机tachogenerator·步进电动机stepping motor·微电机micromotor·伺服电动机servomotor·感应同步器inductosyn·D触发器D filp flop·电子接近开关electronic approach switch·反馈回路feedback loop·电压反馈voltage feedback·电流反馈current feedback·逆变contravariant·调速speed regulation,speed governing·调速范围range of speed regulation·临界转速whirling speeds·同步转速synchronous speed·转差率slip·安匝ampere-turns·调速系统speed governing system·调压调速speed governing by voltage regulation·变频调速speed governing by frequency convertion·耐热等级temperature classification,thermal stability classification·[脉动电压或电流的]直流分量direct component(of a pulsating voltage or current)·[脉动电压或电流的]交流分量alternating component (of a pulsating voltage or current)·表现功率apparent power·有功功率active power·无功功率reactive power·功率因数power factor·屏蔽电缆shielded cable·[电缆的]载流量current rating (of cable)·长期工作制uninterrupted duty·短时工作制short-time duty·反复短时工作制intermittent periodic duty·通电持续率on-load factor·电路electric circuit·主电路main circuit·[开关电器的]辅助电路auxiliary circuit(of a switching device)·控制电器control circuit·信号电路signal circuit·保护电路protective circuit·稳压电路voltage stabilizing circuit·微分电路differentiator·积分电路integrator·半导体开关元件thyristor·半导体器件semiconductor devices·比较器comparator·PD调节器PD regulator·PI调节器PI regulator·PID调节器PID regulator·脉冲发生器pulser,pulse generator·逻辑电路logic circuit·检测装置detector·接地装置ground device·接地故障earth fault·安全电压safety voltage·接触电压contact voltage·跨步电压step vlotage·绝缘电阻insulation resistance·绝缘电阻的吸收比absorptance(absorption ratio) of insulation resistance·介质损耗dielectric loss·闪络flashover,arc-over·用电负荷率load rate·发光强度luminous intensity·照度illuminance·绕组winding·绕组联结圈connection diagram of windings·联结组标号connection symbol·气隙air gap·相位(位相,相角)phase·相序sequential order of the phases,phase sequence·中性点neutral point·地earth,ground·相位移phase displacement·三相三线制three-phase and three-wire sysyem·三相四线制three-phase and four-wire system·预防性试验prophylactic test·耐压试验puncture test·空载试验no-load test·负载试验(短路试验)load test and short-circuit test·气相色谱试验gas chromatograph test·氧化稳定性oxidation stability·热稳定性thermal stability本文转自建材机械设备网:/new_view.asp?id=1214。
Stability of Time-Delay Systems Equivalence between Lyapunov and Scaled Small-Gain Conditio
Stability of Time-Delay Systems:Equivalence between Lyapunov and Scaled Small-Gain ConditionsJianrong Zhang,Carl R.Knopse,and Panagiotis Tsiotras Abstract—It is demonstrated that many previously reported Lyapunov-based stability conditions for time-delay systems are equivalent to the ro-bust stability analysis of an uncertain comparison system free of delays via the use of the scaled small-gain lemma with constant scales.The novelty of this note stems from the fact that it unifies several existing stability results under the same framework.In addition,it offers insights on how new,less conservative results can be developed.Index Terms—Stability,time-delay systems.II.I NTRODUCTIONThe analysis of linear time-delay systems(LTDS)has attracted much interest in the literature over the half century,especially in the last decade.Two types of stability conditions,namely delay-inde-pendent and delay-dependent,have been studied[17].As the name implies,delay-independent results guarantee stability for arbitrarily large delays.Delay-dependent results take into account the maximum delay that can be tolerated by the system and,thus,are more useful in applications.One of the first stability analysis results was the polyno-mial criteria[8]–[10].An important result was later provided by[3], which gives necessary and sufficient conditions for efficient compu-tation of the delay margin for the linear systems with commensurate delays.This result only requires the computation of the eigenvalues and generalized eigenvalues of constant matrices.Unfortunately,it is not straightforward to extend this to many problems of interest, such as the stability of general(noncommensurate)delays systems, H1performance of LTDS with exogenous disturbances,robust stability of LTDS with dynamical uncertainties,and robust controller synthesis,etc.Recently,much effort has been devoted to developing frequency-domain and time-domain based techniques which may be extendable to such problems.The frequency-domain approaches include integral quadratic constraints[6],singular value tests[25], framework-based criteria[4],and other similar techniques.In[20], the traditional -framework was extended for time-delay systems to obtain a necessary and sufficient stability condition,which was then relaxed to a convex sufficient condition.Other recent stability analysis results have been developed in the time-domain,based on Lyapunov’s Second Method using either Lyapunov–Krasovskii functionals or Lyapunov–Razumikhin functions [26],[12],[13],[16],[22],[14],[17],[19].These results are formulated in terms of linear matrix inequalities(LMIs),and,hence,can be solved efficiently[1].While these results are often extendable to the systems with general multiple delays and/or dynamical uncertainties,they can be rather conservative and the corresponding Lyapunov functionals are complex.A formal procedure for constructing Lyapunov functionals for LTDS was proposed in[11],but a Lyapunov functional,in general, Manuscript received June10,1999;revised August10,2000.Recommended by Associate Editor J.Chen.This work was supported by the National Science Foundation under Grant DMI-9713488.J.Zhang and C.R.Knospe are with the Department of Mechanical and Aerospace Engineering,University of Virginia,Charlottesville,V A22904-4746 USA(e-mail:jz9n@;crk4y@).P.Tsiotras is with the School of Aerospace Engineering,Georgia Institute of Technology,Atlanta,GA30332-0150USA(e-mail:p.tsiotras@). Publisher Item Identifier S0018-9286(01)01015-7.does not provide direct information on how conservative the resultant condition may be in practice.In this note,we show that several existing Lyapunov-based results, both delay-independent and delay-dependent,are equivalent to the scaled small-gain condition for robust stability of a comparison system that is free of delay.This result provides a new frequency-domain in-terpretation to some common Lyapunov-based results in the literature. Via a numerical example,we investigate the potential conservatism of the stability conditions,and demonstrate that a major source of conservatism is the embedding of the delay uncertainties in unit disks that the comparison system employs.This source of conservatism is hidden in the Lyapunov-based framework but is quite apparent in the comparison system interpretation.These results also provide insight into how to reduce the conservatism of the stability tests.After a conference version of this note appeared in[28],we be-came aware of the results of[15]and[7]which are related to our approach.Unlike the model transformation class in[15],which con-tains distributed delays,the comparison system employed herein is a delay-free uncertain system stated in frequency domain and permits the immediate application of the standard frequency-domain techniques, such as the framework.The results in[7]are based on a special case of our comparison system,namely M=I n.Neither[15]nor[7]exam-ined the equivalence of existing Lyapunov-based criteria and the scaled small-gain conditions,which is the contribution of this note.The notation is conventional.Let n2m)be the set of all real(complex)n2mmatrices,[f1g,I n be n2n identity matrix,W T be the transpose of real matrix W,and RH1:=f H(s): H(s)2H1,H(s)is a real rational transfer matrix g.P>0indicates that P is a symmetric and positive definite matrix,and k1k1indicates the H1norm defined by k G k1:=sup!2n2n with respect to a block structure 3is defined by 3(M)=0if there is no323such that I0M3 is singular,and3(M)=[min f (3):det(I0M3)=0;323g]01 otherwise.We also define the set1r:=f diag[ 1I n,111, r I n and the closed norm-bounded set B1r:=f12 H1:k1k1 1;1(s)21r g.Finally,for linear time-invariant system P(s)and its input x(t),we define a signal P(s)[x](t)asP(s)[x](t):=L01[P(s)X(s)]where X(s)is the Laplace transform of x(t),and L01[1]is the inverse Laplace operator.III.C OMPARISON S YSTEMFor ease of exposition,we will examine the single-delay case. However,the Lyapunov stability conditions examined here may all be straightforwardly extended to the case of systems with multiple (noncommensurate)delays.Consider the linear time-delay system_x(t)=Ax(t)+A d x(t0 )(1) where A2n2n are constant matrices,and the delay is constant,unknown,but bounded by a known bound as0 . The following assumption is a necessary condition when investigating asymptotic stability of the system(1).Assumption1:The system(1)free of delay is asymptotically stable, that is,the matrix A:=A+A d is Hurwitz.Taking Laplace transforms of both sides,the system(1)can be ex-pressed in the s domain assX(s)=AX(s)+A d e0 s X(s):(2)0018–9286/01$10.00©2001IEEEFig.1.A system with uncertainty.The results of this note depend on the notion of robust stability of afeedback interconnection of a finite-dimensional,linear,time-invariant (FDLTI)system and an uncertain system with known uncertainty struc-ture.The following definition clarifies the type of robust stability used herein.More on this definition can be found in [32].Definition 1:Consider a linear,time-invariant (finite-dimensional)system G (s )interconnected with an uncertain block 1,as shown in Fig.1.The uncertain block 1belongs to a known,uncertainty structure set 121.Then,the system is said to be robustly stable if G (s )is internally stable and the interconnection is well posed and remains internally stable for all 121:To proceed with our analysis,we need the following preliminary results.Lemma 1:Let M2e 0s 01 s e 0s 01 s=A +MA d )X (s )+(I 0M )A d e0 s X (s )+d AX(s )+e 0 s1d A d X (s ):In view of the fact that k e 0 s k 1=1and k (e 0 s 01)=( s )k 1== 1,it follows from the above equation that (2)is a special case of the uncertain system (3)with 11=e 0 s I n ,and 12=(e 0 s 01)=( s )I n .Therefore,the robust stability of (3)guarantees that (1)is asymptotically stable for all 2[0; ].As shown in the next section,the comparison system (3)can be rewritten as an interconnection of an FDLTI system G (s )with a block 1,where 1=diag[11;12]2B 12.Hence,the analysis of the ro-bust stability of the system (3)may be performed via -analysis,since the small- theorem applies even to the case where the uncertainty is nonrational [23].Because the calculation of is NP-hard in general[2],its upper bound with D scales is typically used instead.In partic-ular,the interconnection in Fig.1is robustly stable if G (s )2RH1is internally stable andsup !2(j!)D 01n 2n;D i =D 3i >0g :The test (4),although a convex optimization problem,requires a fre-quency sweep.Alternatively,the analysis of robust stability may be performed without the frequency sweep by solving an LMI.The fol-lowing lemma states this result.Additional conservatism is introduced in this formulation,however,since it implies satisfaction of (4)with the same constant real scaling matrix used for all frequencies.Lemma 2[21](Scaled Small-Gain LMI)1:Consider the system in-terconnection shown in Fig.1where the plant G (s )is FDLTI and the uncertainty block is such that 12B 1r .Let (A;B;C;D )be a min-imal realization of G (s )withG (s )=:Then,the closed-loop system is robustly stable if there exist matricesX >0and Q =diag[Q 1,Q 2,111,Qr ]>0,Qi 22nXA d AXA d A dA T A T d X011XA T d A T dX012X>0(7)where =0 01[(A +A d )T X +X (A +A d )]0( 011+ 012)X .b)[13]There exist matrices P >0;P 1>0and P 2>0satisfyingH P A T P A T dAP 0 P 10 A dP0 P 2<0(8)1Thesmall gain theorem applies to the case where the uncertainty blockscontain infinite dimensional dynamic systems [32].where H=P(A+A d)T+(A+A d)P+ A d(P1+ P2)A T d.c)[19]There exist matrices X>0;U>0;V>0and Wsatisfying10W A d A T A T d V (W+X)0A T d W T0U A T d A T d V0V A d A V A d A d0V0000V<0(9)where 1=(A+A d)T X+X(A+A d)+W A d+A T d W T+U.The following proposition shows that all of above conditions areequivalent to the SSGS conditions for the special case of the compar-ison system(3).Proposition1:For the comparison system(3),if M=0,the SSGScondition is equivalent to the condition(6),2and,if M=I n,the SSGScondition is equivalent to the condition(8)and can also be reducedto the condition(7).Moreover,the delay-dependent condition(9)isequivalent to the SSGS condition for(3)with M as a free-matrix vari-able.Proof:First,let M=0,then the comparison system(3)becomessX(s)=AX(s)+11A d X(s)112B11which can be described as the following closed-loop system:_x=Ax+A d uy=xu=11[y](t):WithG(s)=t h e S S G S c o n d i t i o n b e c o m e s(6).N e x t,w e l e tM=I n a n d13=1112.Equation(3)then becomessX(s)=(A+A d)X(s)+12 A d AX(s)+13 A d A d X(s)(10)with diag[12;13]2B12.The last equation can be rewritten as theclosed-loop system_x=(A+A d)x+ A d u1+ A d u2y1=Axy2=A d xu1=12[y1](t)u2=13[y2](t):Then,by applying Lemma2withG(s)=AA dw e s e e t h a t t h e s y s t e m(1)i s a s y m p t o t i c a l l y s t a b l e f o r a n y c o n s t a n t,0 ,i f t h e r e e x i s tX>0and Q=diag[Q1;Q2]>0suchthatR XA d XA d A T Q1A T d Q2A T d X0Q1000A T d X00Q200Q1A000Q10Q2A d0000Q2<02Similar observations can also be found,for example,in[26]and[4].where R=(A+A d)T X+X(A+A d).Multiplying bydiag[X01;I;I; Q011; Q012]on both sides and using Schurcomplements,the above inequality is equivalenttoH XA d A XA d A dA T A T d X0Q10A T d A T d X00Q2<0X>0;Q1>0;Q2>0(12)where H=(A+A d)T X+X(A+A d)+Q1+Q2.Now,lettingQ1= 011X and Q2= 012X,where constants 1>0and2>0,(12)is reduced to(7).Finally,consider the general case of(3)and rewrite it as the fol-lowing:_x=(A+MA d)x+(I0M)A d u2+ Mu1y1=A d Ax+A d A d u2y2=xu1=12[y1](t)u2=11[y2](t):(13)Therefore,applying Lemma2withG(s)=w h e r e^A=A+MA d,^B=[ M(I0M)AA I]Fig.2.Delay margin versus K.(1)Nyquist Criterion.(2) upper bound withfrequency-dependent D scaling.(3)Condition of[19].(4)Condition of[13].(5)Condition of[16].(6)Condition of[25],[26]for K<Kc o n t r o l o f u n c e r t a i n l i n e a r13t h I F A C W o r l d C o n g r.,1996,p p.113–118.d e l a y s y s t e m s,”i n[14]S.-I.N i c u l e s c u,“O n t h e s t a b i l i t y a n d s t a b i lw i t h d e l a y e d s t a t e,”P h.D.d i s s e r t a t i o n,L a b o r aG r e n o b l e,I N P G,1996.[15]S.-I.Niculescu and J.Chen,“Frequency sweeping tests for asymptoticstability:A model transformation for multiple delays,”in Proc.38th IEEE Conf.Decision Control,1999,pp.4678–4683.[16]S.-I.Niculescu,o,J.-M.Dion,and L.Dugard,“Delay-depen-dent stability of linear systems with delayed state:An LMI approach,”in Proc.34th IEEE Conf.Decision Control,1995,pp.1495–1497. [17]S.-I.Niculescu,E.I.Verriest,L.Dugard,and J.-M.Dion,“Stability androbust stability of time-delay systems:A guided tour,”in Stability and Robust Control of Time Delay Systems.New York:Springer-Verlag, 1997,pp.1–71.[18] A.Packard and J.C.Doyle,“The complex structured singular value,”Automatica,vol.29,no.1,pp.77–109,1993.[19]P.Park,“A delay-dependent stability criterion for systems with uncer-tain time-invariant delays,”IEEE Trans.Automat.Contr.,vol.44,pp.876–877,Apr.1999.[20]G.Scorletti,“Robustness analysis with time-delays,”in Proc.36th IEEEConf.Decision Control,1997,pp.3824–3829.[21]R.E.Skelton,T.Iwasaki,and K.Grigoriadis,A Unified Algebraic Ap-proach to Linear Control Design.New York:Taylor&Francis,1998.[22] E.Tissir and A.Hmamed,“Further results on stability of_x(t)=Ax(t)+Bx(t0 ),”Automatica,vol.32,no.12,pp.1723–1726,1996.[23] A.L.Tits and M.K.H.Fan,“On the small- theorem,”Automatica,vol.31,no.8,pp.1199–1201,1995.[24]J.Tlusty,“Machine dynamics,”in Handbook of High Speed MachiningTechnology,R.I.King,Ed.New York:Chapman&Hall,1985,pp.48–153.[25] E.I.Verriest,M.K.H.Fan,and J.Kullstam,“Frequency domain robuststability criteria for linear delay systems,”in Proc.32nd IEEE Conf.Decision Control,1993,pp.3473–3478.[26] E.I.Verriest and A.F.Ivanov,“Robust stability of systems with delayedfeedback,”Circuits,Syst.Signal Processing,vol.13,pp.213–222,1994.[27]M.Vidyasagar,Nonlinear Systems Analysis,2nd ed.EnglewoodCliffs,NJ:Prentice-Hall,1993.[28]J.Zhang,C.R.Knospe,and P.Tsiotras,“A unified approach to time-delay system stability via scaled small gain,”in Proc.Amer.Control Conf.,1999,pp.307–308.[29],“Toward less conservative stability analysis of time-delay sys-tems,”in Proc.38th IEEE Conf.Decision Control,1999,pp.2017–2022.[30],“Stability of linear time-delay systems:A delay-dependent cri-terion with a tight conservatism bound,”in Proc.2000Amer.Control Conf.,2000.[31],“Asymptotic stability of linear systems with multiple time-in-variant state-delays,”in Proc.2nd IFAC Workshop Linear Time Delay Systems,to be published.[32]K.Zhou,J. C.Doyle,and K.Glover,Robust and Optimal Con-trol.Englewood-Cliffs,NJ:Prentice-Hall,1996.Bounded Stochastic Distributions Control forPseudo-ARMAX Stochastic SystemsHong Wang and Jian Hua ZhangAbstract—Following the recently developed algorithms for the control of the shape of the output probability density functions for general dy-namic stochastic systems[6]–[8],this note presents the modeling and con-trol algorithms for pseudo-ARMAX systems,where,different from all the existing ARMAX systems,the considered system is subjected to any arbi-trary bounded random input and the purpose of the control input design is to make the output probability density function of the system output as close as possible to a given distribution function.At first,the relationship between the input noise distribution and the output distribution is estab-lished.This is then followed by the description on the control algorithm de-sign.A simulated example is used to demonstrate the use of the algorithm and encouraging results have been obtained.IndexTerms—i=1v i(k)B i(y)y2[a;b](1)whereu k control input;(y;u)measured probability density function of the system output;V(k)=(v1;v2;...;v M)T,weight vector;B i(y)pre-specified basis functions for the approximation of(y;u)[2];A andB constant matrices.Although there are several advantages in using this type of model to de-sign the required control algorithm,it is difficult to link such a model structure to a physical system.In particular,the key assumption that the control input only affects the weights of the output probability density function is strict for some applications.As such,it would be ideal if aManuscript received March30,2000;revised July31,2000.Recommended by Associate Editor Q.Zhang.This work was supported in part by the U.K. EPSRC under Grant(GB/K97721),and in part by the Overseas Scholarship Committee of the P.R.China.H.Wang is with the Department of Paper Science,Affiliated Member of Con-trol Systems Centre,University of Manchester Institute of Science and Tech-nology,Manchester M601QD,U.K.H.Zhang is on leave from the Department of Power Engineering,North China University of Electrical Power,Beijing,P.R.China.Publisher Item Identifier S0018-9286(01)01014-5.0018–9286/01$10.00©2001IEEE。
时滞系统的控制方法研究
图1-4对象调节通道含有纯滞后的闭环系统
同理可以得到:
C(s)一 G。(s)G。(5)e1 R(s) 1+G。(s)G。(s)日0弦一
∽ 即D
C(引一
G。(s)
三(s) 1+Gc(J)G。(s)Ⅳ(s)P1
∽扣动
它们的特征方程式都可以表示为:
l+Gc(s)G。(5)日(5)P一=0
(1-2—6)
3.反馈通道有纯滞后
此外若仅反馈通道中测量元件H(s)具有纯滞后, 此时闭环传递函数为:
皇盟: 鱼!!狂盟
R(5) 1+G。(5)G0(s)H(s)e1
(卜2—7)
C(s)
G。(s)
L(s) l+G。O)G。(s)日(s弦1
(1-2—8)
其特征方程式的形式与式(1-2—6)相同。
后和控制存在滞后的时滞系统的变结构控制。仿真研究均说明了所设计的模糊自
适应控制算法和变结构控制算法的有效性。最后论文讨论了电厂锅炉过热汽温的 模糊控制系统,并设计了其硬件电路实现图。
关键词: 纯滞后 模糊控制 变结构控制 锅炉
塑更查兰堡主兰堡笙茎
Abstraet
Time-delay system is the important field for the application ofthe control theory.
In this paper,intelligent control and variable structure control for time-delay system is
introduced in order to increase the robustness ofthe general time—delay control system.
仪表自动化英语
《化工仪表及自动化》课程部分“专业英语”词汇泵Pumps变速泵variable-speed Pumps定排量泵positive-displacement Pumps计量泵metering Pumps离心泵centrifugal Pumps闭合回路Closed loop反馈~feedback ~前馈~feedforward~比例带Proportional band比例控制(调节) Proportional control液位~~of liquid 1evel比例—时间控制Proportional-time control 比值单元Ratio station比值控制Ratio control燃料—空气~~of fuel and air变量配对Pairing variables精馏过程的~~in distillation变送器误差Transmitter error变送器增益Transmitter gain标准差Standard deviation波形Waves采样正弦波sampled sine~方波square~截顶正弦波clipped sinc锯齿波saw-tooth ~三角波triangular~正弦波sinc~补偿反馈complementary feedback(see M odel-based controller)不对称调节器Asymmetric controller不稳定过程Unstated processCv:阀门流量系数flow coeffi ci ent of val ve采样环节Sampling element采样间隔Sample interval采样调节器Sampling controller残差,偏差Offset比例~proportional~串级控制的~~in cascade control积分(累积)~integral批量过程的~~in batch processes前馈系统的~~in feed forward systems 数字控制的~~in digital control死区的~~in dead zone体积~volume~选择性控制的~~in selective control测试方法Test procedures 非线性环节的~~for nonlinear elements 批量过程的~~for batch processes适应性控制的~~in adaptive control差动间隙(见“滞环") Differential gap(see D ead band)差分方程Difference equations差压测量Differential-pressure measurement s精馏过程的~~in distillation流量的~~in flow压缩机的~~in compressors产品质量控制Product-quality control超驰(也见“选择性控制") Over rides(see Se lective contro1)超调,超调量Overshoot批量过程的~~in batch processes自整定调节器的~~with self-tuning contr ollers乘法器Multipliers比值控制的~~in ratio control解耦系统的~~in decoupling systems前馈系统的~~in feedforward systems 增益补偿~~for gain compensation成分控制Composition control迟延Dead time~补偿~compensat ion~与容积~and capacity等效~:effective~除法器Dividers比值控制的~~in ratio control过程模型的~~in process model适应性控制的~in adaptive control增益补偿~~for gain compensation串级控制Cascade control串级比值控制~of ratio串级阀位控制~of valve position串级流量控制~of flow串级温度控制~of temperature传热Heat transfer~系数coefficients for~反应器的~~in reactors直接接触~direct-contact~传输线Transmission lines穿越时间Cross o ver time催化剂CatalystDDC(直接数字控制) DDC(Direct Digital C ontro1)DMC(动态矩阵控制) DMC(Dynamic Matri x Contro1)单容过程Single-capacity process导前Lead导前—滞后补偿lead-lag compensation等百分比阀Equal-percentage valves电磁流量计Magnetic flow meter定时器Timer定位器,阀门~Positioners,Valve~动态补偿Dynamic compensation干燥器的~~for dryers锅炉燃烧的~~for boiler firing解耦的~~in decoupling精馏的~for distillation汽包水位控制的~~for drum-level contro l热交换器的~~for heat exchangers热流量计算的~~for heat-flow calculatio n优化器的~in optimizers蒸发器的~~for evaporators动态补偿器Dynamic compensators动态矩阵控制(DMC) Dynamic matrix cont rol动态增益Dynamic gain抖动Dither多变量过程Multivariable processes多变量调节器Multivariable controllers多变量系统的分解Decomposing multivaria te systems多容过程Multi-capacity processes多输出系统Multiple-output systems阀门Valves电磁~solenoid~电动~electric~气动~pneumatic~三通~three-way~调节阀control~阀门的可调范围Valve range ability阀门定位器Valve positioners阀门顺序动作Valve sequencing利用定位器实现~~using positioners利用选择器实现一~using selectors阀门特性Valve characteristics阀门响应Valve response阀门增益Valve gain阀位控制Valve-position control反馈Feedback串级系统的~~in cascade systems负~negative~干燥器控制系统的~~in dryer control sy stems关联系统的~~in interacting systems解耦系统的~~in decoupling systems 正~positive~反向响应Inverse response反应器Reactors反应速度Reaction rate非线性Nonlinearity变送器的~~in transmitters传热的~~in heat transfer阀门的~~in Valve非线性环节Nonlinear elements动态~dynamic~静态~steady-state~非线性调节器Nonlinear controllers非线性PID调节器PID~开关~on-off~三位~three-state~非自衡Non-self-regulation分布式控制Distributed control分析仪Analyzers采样~sampling~峰值位置Peak location浮动压力控制Floating pressure control负反馈Negative feedback符号Symbols负荷Load零~zero~负荷分布Load distribution负荷扰动(干扰) Load disturbances~的作用点point sofentry for~供应侧~supply-side需求侧~demand—side~负荷响应Load responsePI控制下的~~with PI controlPID控制下的~~with PID control副回路Secondary loop傅里叶序列Fourior series复式控制Dual-mode control干扰灵敏度Sensitivity tO disturbances周期性~periodic~干燥器Dryers功Work功率Power电~electric~热~thermal~水~hydraulic~关联,相互作用,相互干扰Interaction回路间的~~between loops回路间的局部~partial~between loops 控制作用之间的~~between control mod es惯性Inertia过程增益Process gain锅炉控制Boiler control~的干扰disturbances to~锅炉多变量控制multiple~回路增益Loop gain闭环~closed ~串级系统的~~in cascade systems非线性系统的~~in nonlinear systems开环~open~混合Mixing混合系统Blending systems火焰温度Flametem peratureIAE(绝对误差积分) IAE( Integrated absolu te error)IE(误差积分) Integrated ErrorISE(误差平方积分) Integral Square Error ITAE(时间绝对误差积分) Integral of Time and Absolute Error积分饱和Windup积分饱和防护,抗积分饱和Windup protec tion积分反馈Integral feedback积分过程Integrating process积分控制(调节) Integral control积分器Integrator积分调节器Integral controllers极限环Limit cycle热交换器heat exchangers基于矩阵的控制Matrix-based control基于模型的调节器Model—based controlle rs监控Supervisory control减温Attemperation间歇控制Batch control搅拌(见“混") Agitation(see Mixing)解耦Decoupling通过选择变量~~by choosing variables 适应性~adaptive~~的相对增益relative gain of ~绝对误差积分(1AE) Integrated Absolute Er ror均方根误差Root-mean-square(rms)error开方器Square-root extractor开关控制On-off control抗喘振控制Antis urge control抗积分饱和Anti windup可变结构Variable structuring可调范围Range ability变速泵的~~of variable-speed pumps阀门的~~of valves孔板流量计Orifice meter空气流量控制Air flow control控制的经济效益Economics of control 控制间隔Control interval控制难度Control difficulty控制算法Control algorithm冷凝器Condensers流量比Flow ratio~的调整manipulation of~~控制controlof~流量计Flow meter流量计的精度Accuracy of flow meter流量控制Flow control流阻Resistance to flow炉Furnace鲁棒性Robustness滤波器Filter非线性~nonlinear~数字~digital~马达Motor电动~:electric ~恒速电动~constant-speed ~变速电动~variable-speed气动~pneumatic~马力Horsepower模型Models动态~dynamic~能量平衡Energy balance前馈控制中的~~in feed forward control稳态~steady-state~能量转换Energy conversion耦合Coupling频率响应分析Frequency-response analysis平衡Equilibrium汽包锅炉假水位Shrink and swell in drum boilers气动调节器Pneumatic controllers前馈控制Feed forward control燃料—空气比控制Fuel-air ratio control 燃烧Combustion扰动,干扰Disturbances负荷~load~热力学Thermodynamics热流量计算Heat-flow calculation热流量控制Heat-flow control容积Capacity单容single~多容multiple~非自衡~non self-regulating~双容double~自衡~self-regulating~冗余仪表Redundant instrumentation三冲量水位控制Three-element level contr ol三位调节器Three-state controller设定值初始化Set-point initialization设定值响应Set-point response斜坡~ramp~湿度控制Moisture control时间常数Time constant等效~effective~时间迟后Time delay时间滞后Time lag时滞Lag传输~transport~多级~multiple~二阶~second-order~分布~distributed~负~negative~手动控制Manual control数字控制Digital control数字系统的分辨率Resolution in digital sy stems衰减Damping临界~critical~衰减比Decay ratio双容过程Two-capacity process速度控制Speed control速率限制Velocity limiting调节阀Control valves调节量Manipulated variable~的选择selection of~调节器Controllers调节器的饱和Saturation of controllers调节器的跟踪Tracking in controllers调节器的误差Error in controllers调节器动作Controller action调节器调整Controlleral adjustment调节器增益Controller gain调节作用,控制方式Control mode微分Derivative流量控制的~~in flow control微分方程Differential equations微分器Differentiators稳定性裕量Stability margin温度传感器Temperature sensor涡流流量计Vortex flow meter涡轮流量计Turbine meter限幅器Limiters相对干扰增益Relative disturbance gain相位裕量Phase margin斜坡补偿Ramp compensation斜坡扰动Ramp disturbances 信号选择器Signal selectors性能准则Performance crite rion压力补偿Pressure compensation压力控制Pressure control压缩机的喘振防护Surge protection of co mpressors烟道气体成分Flue-gas composition氧气分析仪Oxygen analyzer液面控制Level control液位控制Liquid-level control引风控制Draft control预热器Pre heaters增益补偿Gain compensation增益矩阵Gain matrix增益裕量Gain margin振荡Oscillation不衰减~undamped~等幅振荡Constant-amplitude~发散~expanding~衰减~damped ~振荡周期Period of oscillation整定Tuning蒸汽Steam过热~superheated~~加热heating with~~流量计~flow meter蒸汽压力Vapor pressure中值选择器Median selector自动—手动切换Auto/manual transfer自衡Self-regulation。
FL7760 D高频LED驱动器高端感应恒定电流降压控制器数据表说明书
DATA SHEET High-Side SensingConstant Current BuckController for HighSwitching Frequency LED DriverFL7760The FL7760 is a constant current step−down CCM controller for wide output power LED lighting applications. The FL7760 adapts hysteretic reference architecture that accurately regulates LED current by sensing voltage across an external high side sense resistor. This control scheme can stabilize LED current against input voltage and output load transient condition and implement optimal PWM and analog dimming control. Time delay control method widens analog dimming range down to less than 5%.FL7760 has low 200mV reference voltage to maximize system efficiency and high frequency driving capability so that system profile can be minimized in wide scale power ranges.The FL7760 implements PWM and analog dimming together through a DIM pin and provides thermal shutdown (TSD), and under−voltage lockout (UVLO) protections.Features•Wide Input Range (8 VDC~70 VDC)•Continuous Conduction Mode Operation•Hysteretic LED Current Control•Wide analog dimming range down to 5%•Wide PWM dimming duty range to 0.2% at 2 kHz PWM freq.•High switching frequency up to 1 MHz•High source / sink current of 1.5 A / 2.5 A•Cycle−by−Cycle Peak Current Limit•Low Operating Current (300 uA)•Low Stand−by Current (240 uA)Typical Applications•LED Lighting SystemSOT23−6LDCASE 527AJMARKING DIAGRAMSee detailed ordering and shipping information on page 4 of this data sheet.ORDERING INFORMATION(Top View)VIN GND60:Production Identifierx :Version (A or B)T:Wafer Lot CodeWeek CodeYear CodeFigure 1. Application Schematic for Analog or PWM DimmingTable 1. PIN FUNCTION DESCRIPTIONPin Pin Name Function Description1VIN IC Input Connect to the high voltage input line and supply current to the IC.2GND Ground Ground of IC.3DIM Analog / PWM / Hybrid /Dimming DIM voltage determines LED current regulation reference and switching is terminated when DIM voltage is 0 V. If dimming function is not used, it is recommended to add a 0.1 m F bypass capacitor between DIM and GND.4DRV Driver Output Connect to the MOSFET gate.5VCC IC Supply Supply pin for IC operation.6SEN Current Sense The SEN pin is used to set the output LED current regulation.VINSEN GNDVCC VINSEN GNDVCC Figure 2. Block Diagrama) A Version (with Time Delay Control)b) B Version (without Time Delay Control)Table 2. MAXIMUM RATINGSSymbol Rating Value Unit VIN(MAX)Maximum VIN Pin Voltage Range−0.3 to 70V SEN(MAX)Maximum SEN Pin Voltage Range−0.3 to 70V VCC(MAX)VCC Pin Voltage Range−0.3 to 5.5V VDIM(MAX)DIM Pin Voltage Range−0.3 to 5.5V VDRV(MAX)DRV Pin Voltage Range−0.3 to 5.5V VCC(PULSE)Maximum VCC Pin Pulse Voltage at t PULSE < 20 ns8V VDRV(PULSE)Maximum DRV Pin Pulse Voltage at t PULSE < 20 ns8V T J(MAX)Maximum Junction Temperature150°C T STG Storage Temperature Range−65 to 150°C R q JA Junction−to−Ambient Thermal Impedance263°C/W P D Power Dissipation247mW ESD HBM ESD Capability, Human Body Model (Note 2) 1.2kV ESD CDM ESD Capability, Charged Device Model (Note 2)2kV Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.1.Refer to ELECTRICAL CHARACTERISTICS, RECOMMENDED OPERATING RANGES and/or APPLICATION INFORMATION for SafeOperating parameters2.This device series incorporates ESD protection and is tested by the following methodsESD Human Body Model tested per AEC−Q100−002 (EIA/JESD22−A114)ESD Machine Model tested per AEC−Q100−003 (EIA/JESD22−A115)Latchup Current Maximum Rating: v150 mA per JEDEC standard: JESD78Table 3. ORDERING INFORMATIONDevice Package Shipping†FL7760AM6X6LD,SOT23, JEDEC MO−178 VARIATION AB, 1.6MM WIDE Tape & ReelFL7760BM6X6LD,SOT23, JEDEC MO−178 VARIATION AB, 1.6MM WIDE Tape & ReelTable 4. RECOMMENDED OPERATING RANGESRating Symbol Min Max Unit Ambient Temperature T A−40125°C Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability.Table 5. ELECTRICAL CHARACTERISTICS(V CC = 5V, For typical values T j = 25°C, for min/max values T j = −40°C to +125°C, Max T j = 150°C, unless otherwise noted)Characteristics Condition Symbol Min Typ Max Unit VIN SECTIONSelf BIAS Start Threshold Voltage V CC = 5 V V IN,ON7.057.57.95V Self BIAS Stop Threshold Voltage V CC = 5 V V IN,OFF 6.5577.45V Self BIAS Current for Startup (Note 3)I ST2mA Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.3.This item is guaranteed by design.4.This is only a recommended specification and there is no limit to the PWM Dimming frequency.5.Drift after IC reliability test (JEDEC JESD22−A08) is not included.6.This value indicates the change in internal reference voltage with temperature change and indicates the rate of change based on 25 °Cambient temperature. This item is guaranteed by design.Table 5. ELECTRICAL CHARACTERISTICS(V CC = 5V, For typical values T j = 25°C, for min/max values T j = −40°C to +125°C, Max T j = 150°C, unless otherwise noted) Characteristics UnitMaxTypMinSymbolConditionVCC SECTIONVCC Regulator Output Voltage V VIN= 24 V DC V CC 4.55 5.5V IC Start Threshold Voltage V CC Increasing V CC,ON 4.04 4.50 4.95V IC Stop Threshold Voltage V CC Decreasing V CC,OFF 3.03 3.50 3.96V UVLO Hysteresis V CC,HYS0.505 1.000 1.485V Operation Current No Switching I CC51300495uA Stand−by Current (Note 3)No Switching I stby0.10.240.4mA GATE SECTIONGate High Voltage V GATE,H 4.55 5.5V Gate Low Voltage V GATE.L0.5V Peak Pull−up Current (Note 3)V CC = 5 V I GATE,pullup 1.5A Peak Pull−down Current (Note 3)V CC = 5 V I GATE,pulldown 2.5A Recommended Maximum Operating Frequency (Note 4)F SW,MAX1MHz CURRENT−SENSE AND REFERENCE SECTIONInternal Reference Voltage V DIM = 3.5 V(T J = 25°C)V FB,DC192200208mVInternal Reference Voltage Drift (Note 5)V DIM = 3.5 V(T J = 25°C)V FB,DC,R196200204mVVariation of V FB,DC for Temperature (Note 6)V DIM = 3.5 V V FB,DC,T±118.2uV/°C Feedback Reference Voltage Hysteresis V DIM = 3.5 V V FB,HYS±30mV SWITCHING SECTIONMinimum On−Time (Note 3)t ON,MIN200ns Minimum Off−Time (Note 3)t OFF,MIN200ns DIMMING SECTIONMaximum Effective Dimming Voltage(Note 3)V DIM,MAX 2.7 3.0 3.3VMinimum Effective Dimming Voltage V DIM>V DIM,R thendecreased V DIM,MIN0.400.450.50VDimming Recovery Voltage V DIM,R0.450.500.55V Internal Sourcing Current Pull up to 3V I pull up,DIM567uA Delay Time at 0.5 V DIM(A version only, Note 3)V DIM = 0.5 V T Delay.max 5.00 5.35 5.70us Delay Time at 3 V DIM(A version only, Note 3)V DIM = 3 V T Delay.min28.530.031.5ns Blanking Time for Standby Mode (Note 3)V DIM = 0 V T Blank.stby283440ms THERMAL SHUT DOWN SECTIONThermal Shutdown Temperature (Note 3)140150°C Hysteresis Temperature of TSD (Note 3)30°C Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.3.This item is guaranteed by design.4.This is only a recommended specification and there is no limit to the PWM Dimming frequency.5.Drift after IC reliability test (JEDEC JESD22−A08) is not included.6.This value indicates the change in internal reference voltage with temperature change and indicates the rate of change based on 25 °Cambient temperature. This item is guaranteed by design.TYPICAL CHARACTERISTICSFigure 3. V CC vs. Temperature Figure 4. V CC−ON vs. TemperatureFigure 5. V CC−OFF vs. Temperature Figure 6. I CC vs. TemperatureFigure 7. V FB−HIGH vs. Temperature Figure 8. V FB−LOW vs. Temperature01234567V C C (V )01234567V C C −O N (V )01234567V C C −O F F (V )0.00.10.20.30.40.50.60.7I C C (m A )050100150200250300350V F B −H I G H (m V )050100150200250300350V F B −L O W (m V )T J , JUNCTION TEMPERATURE (°C)T J , JUNCTION TEMPERATURE (°C)T J , JUNCTION TEMPERATURE (°C)T J , JUNCTION TEMPERATURE (°C)T J , JUNCTION TEMPERATURE (°C)T J , JUNCTION TEMPERATURE (°C)TYPICAL CHARACTERISTICS (Continued)1015202530354045V F B −H Y S (±m V )0.00.10.20.30.40.50.60.7V D I M −M I N (m V )0.00.10.20.30.40.50.60.7V D I M −R (m V )6.66.87.07.27.47.67.88.08.28.48.6V I N −O N (V )6.06.26.46.66.87.07.27.47.67.88.0V I N −O F F (V )0.00.10.20.30.40.50.60.70.80.91.0V I N −H Y S (V )Figure 9. V FB−HYS vs. Temperature Figure 10. V DIM−MIN vs. TemperatureFigure 11. V DIM−R vs. TemperatureFigure 12. V IN−ON vs. TemperatureFigure 13. V IN−OFF vs. Temperature Figure 14. V IN−HYS vs. TemperatureT J , JUNCTION TEMPERATURE (°C)T J , JUNCTION TEMPERATURE (°C)T J , JUNCTION TEMPERATURE (°C)T J , JUNCTION TEMPERATURE (°C)T J , JUNCTION TEMPERATURE (°C)T J , JUNCTION TEMPERATURE (°C)APPLICATION INFORMATIONGeneralThe FL7760 is a step down hysteretic LED current controller that is easily configured in varies input voltage range from 8V to 70V . The converter employs a high side current sensing resistor to detect and regulate the LED current. Analog, PWM and hybrid dimming can be easily implemented with single DIM pin. In addition, the time delay control operation can realize analog dimming less than 5%.Continuous Conduction Mode RegulationThe FL7760 employs hysteretic reference architecture that accurately regulates LED current by detecting an external high−side current−sense resistor voltage. The voltage across the current sensing resistor is kept measured and regulated in 200 mV ±15% range. This control scheme performs stable LED current regulation at input voltage and load transient conditions..Figure 15. CCM Operation with HysteresisVIN biasing at startupInternal VIN biasing circuit quickly charges external VCC capacitor to begin IC operation. During the initial start−up, the VCC pin voltage gradually increases, and when the voltage reaches 4.5V , the IC starts operating by VCC good signal.Figure 16. Start Up and RegulationThereafter, the internal current source in the DIM pin pulls up the DIM voltage and internal hysteresis reference is enabled with gate switching. Although the gate signal isgenerated and the MOSFET is turned on, the LED current is still close to zero in the crossover distortion area where the input voltage is lower than the LED forward voltage.Soft StartThe hysteric reference voltage to regulate LED current is proportional to DIM voltage. Internal current source [6 uA]charges an external capacitor connected at DIM pin and soft start time can be programmable with capacitances. Soft start time can be calculated as below equation.T SoftStart +C DIM 3V6uA(eq. 1)Figure 17. Soft Start with DIM pin ResistorFigure 18. Soft Start with DIM pin CapacitorAlthough soft start is not preferred, small filtering capacitor (~ hundreds pF) at DIM pin is recommended for noise immunity. PWM dimming signal delivered from an external PWM generator can be filtered by the capacitor, so the capacitor value needs to be carefully selected by considering an output impedance of PWM signal generator.Analog DimmingWhen DIM voltage is higher than 3V , hysteretic reference voltage is set to 200mV ±30mV . This hysteretic reference condition limits LED current ripple spec of ±15% without storage capacitor in parallel with the LED string.The control range of the DIM pin in analog dimming is from 3V to 0.5V . As DIM voltage decreases, hystereticreferences are reduced accordingly with the fixed +/−30mV hysteresis. To perform wide analog dimming range to less than 5%, the FL7760 has Time Delay Control (built in version A) with hysteresis control. In this delay control method, gate is not turned on during the delay time determined by DIM voltage once V VIN − V SEN reaches to the low reference. Therefore, operating mode is entered into DCM (Discontinuous Current Mode) that makes non−linear dimming curve in low DIM voltage range.Therefore, for analog dimming application with wide dimming requirement, version A is recommended and for PWM dimming application with linear dimming curve,version B is preferred.010203040506070809010000.511.522.533.5L E D C u r r e n t R a t i o [%]Analog Dimming Voltage[V]Figure 19. Analog Dimming CurvePWM DimmingIf the DIM pin voltage is less than 0.45V for 1 us blanking time, FL7760 stops switching. When the DIM voltage is up again over 0.5V for the blanking time, switching begins.Based on the blanking time, the minimum duty ratio for PWM dimming can be calculated as 0.2% for a 2kHz dimming signal.VT Figure 20. PWM DimmingHybrid DimmingThe FL7760 can implement hybrid dimming by adjusting amplitude and duty ratio of the single DIM signal providedat DIM pin. It provides wide dimming range with good dimming linearity.VI V Figure 21. Hybrid DimmingStandby OperationWhen the voltage of the DIM pin falls below 0.45V for 34 ms, standby mode is entered and the power consumption of the control circuitry is minimized. Standby mode is terminated once DIM voltage is over 0.5V .VT modeFigure 22. Standby ModeThermal Shut DownIf internal junction temperature is higher than 150°C, TSD protection is triggered and released with 30°C hysteresis.Selection the Input CapacitorA low ESR input capacitor reduces the surge current and switching noise drawn from the front end power supply.Ceramic capacitors (100 ~ 120 nF) closely connected to VIN and GND pin can be effective in bypassing switching noise generated from front−end power stage and FL7760 buck converter stage.Single layer PCB layout guidancePG(Power GND)(Signal GND)C IN bypass capacitor is closely connected to VIN and GND pins.C DIM bypass capacitor is closely connected to DIM and GND pins.Sensing resistor is connected close at VIN and SEN pins.VCC capacitor is connected close at VCC pin.SG and PG are combined and connected close at GND pin.Figure 23. Single layer PCB layout guidanceSOT −23, 6 Lead CASE 527AJ ISSUE BDATE 29 FEB 2012DETAIL AcSCALE 2:11XXX M GG XXX = Specific Device Code M = Date Code G = Pb −Free Package*This information is generic. Please refer to device data sheet for actual part marking.Pb −Free indicator, “G” or microdot “ G ”,may or may not be present.GENERICMARKING DIAGRAM*DIM MIN MAX MILLIMETERS A10.000.15A20.90 1.30b 0.200.50c 0.080.26D 2.70 3.00E 2.50 3.10E1 1.30 1.80e 0.95 BSC L20.25 BSCL NOTES:1.DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.2.CONTROLLING DIMENSION: MILLIMETERS.3.DATUM C IS THE SEATING PLANE.0.200.60(Note: Microdot may be in either location)A --- 1.45*For additional information on our Pb −Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.SOLDERING FOOTPRINT*6XDIMENSIONS: MILLIMETERSRECOMMENDEDMECHANICAL CASE OUTLINEPACKAGE DIMENSIONSON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries.ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.© Semiconductor Components Industries, LLC, 2019PUBLICATION ORDERING INFORMATIONTECHNICAL SUPPORTNorth American Technical Support:Voice Mail: 1 800−282−9855 Toll Free USA/Canada Phone: 011 421 33 790 2910LITERATURE FULFILLMENT :Email Requests to:*******************onsemi Website: Europe, Middle East and Africa Technical Support:Phone: 00421 33 790 2910For additional information, please contact your local Sales Representative◊。
音响专业术语
AFL=After-fader Listen 衰减后监听(推子后监听),这个模式下,监听输出的信号是来自于通道电平推杆以后的信号Aux. =Auxiliary 辅助Aux.return 辅助返回(或Aux.RTN.或Aux.RET.)用于接收音频处理设备(如效果器,激励器)处理后的音频信号与主输出信号加以混合。
Aux.send 辅助送出,一般用于输出信号供信号处理设备进行处理,或输出舞台监听信号。
Balance 平衡,一般用于立体声输入通道,确定两路输入信号各自的平衡。
Bus 母线,公共线,调音台内部的信号线路流程,多路信号汇合到某个线路上,这条线路就是母线,一般的辅助和编组都是母线结构Clip 削波指示,此指示灯点亮或信号电平指示表达到这个位置,表明输入或输出信号已经达到顶点。
Cue 提示,监听,按下后可以在监听耳机或监听通道监听此路的信号。
Direct 直接的(输出)插口Effect 效果EQ=Equalizer 均衡器,调音台的均衡一般分三段或四段,有些具有扫频功能,可以对选定的频段进行电平的提升或衰减。
Fader 衰减器,推子Foldback 返送Gain 增益,放大量Group 编组HF=High Frequency 高频段HP=Headphone=Phones 耳机INS. =Insert 断点插入插口,也称又出又进插口,这个插座一般用于将一个信号处理设备直接插入到调音台的某个输入或者输出通道,对该通道的音频信号进行更精细的处理。
Level 电平LF=Low Frequency 低频段Limit 限制Line in线路或高阻抗设备输入插口LMF=Low-Mid Frequency 中低频段Low cut 低频切除(例如切去100Hz以下频率成分)L-R=Left-Right 左-右Main Sum 混合单声道,这个输出插座输出调音台内部混合好的单声道信号。
Master 主控,主输出。
时延离散网络系统的均方指数稳定控制
时延离散网络系统的均方指数稳定控制姚合军【摘要】针对带有随机时延和数据包丢失的不确定离散网络系统,得到了系统的均方指数稳定控制器设计策略.通过把网络诱导时延和数据包丢失看作满足Bernoulli 分布的等价时延,并结合等价时延在不同区间上的概率取值,建立了更加切合实际的网络系统数学模型,并在此基础上,结合Lyapunov稳定性理论,对网络系统的均方指数稳定性进行分析,同时给出了输出反馈鲁棒控制器设计方法.仿真算例说明了该方法的有效性.【期刊名称】《科学技术与工程》【年(卷),期】2019(019)011【总页数】5页(P178-182)【关键词】网络控制系统;时延;指数均方稳定;随机;数据丢失【作者】姚合军【作者单位】安阳师范学院数学与统计学院,安阳455000【正文语种】中文【中图分类】TP273网络系统是指由通信网络连接传感器,执行器和控制器的控制系统[1]。
与传统的点对点控制系统相比较,网络控制系统具有连线少,高性能,低成本,易于维护等优点。
因此,近二十年来,对网络控制系统的研究成果不断出现,网络控制系统已经成为控制界研究的重要分支之一[2—6]。
由于通信信号是通过网络进行传输,因此不可避免地会在系统中存在时延,数据包丢失,网络拥塞等现象,从而使得对网络系统的研究难度不断加大[7—12]。
信息在传感器、执行器和控制器之间传输过程中,以及控制器中的计算过程中不可避免地会出现网络诱导时延。
众所周知时延的存在常常会使系统性能变差,甚至不稳定[13—16]。
另一个区别于传统点对点系统的是由于不确定性和外部干扰的影响,网络系统中常常会存在数据丢失现象。
为分析网络诱导时延和丢包对系统性能影响,高会军给出了一个网络控制系统镇定的新方法,并给出了使闭环系统稳定的控制器设计方法[17]。
Huang通过分析随机时延与数据包丢失对系统的影响,建立了随机网络控制系统的数学模型,并通过设计系统的状态观测器,给出了系统的动态输出反馈控制器设计方法[18]。
电气工程常见英文缩写(2)
AC alternating current 交流电AC automatic control 自动控制ACA accident consequence assessment 事故后果评价ACB a ir circuit breaker 空气断路器ACC accident 故障、事故ACCUM accumulate accumulate 累计、蓄电池ACDS acourtic crack detection system 声裂纹检测系统ACT/S active side 带电部件、有功部件ACW anti-clockwise 反时针向ACW anti-clockwise 反时针向AD analog-digital 摹拟-数字AEOD analysis and evaluation of operational data 运行数据分析和管理AFC automatic frequency control automatic following control 自动频率控制:自动跟踪控制AI artificial i ntelligence人工智能ALT alternate 交变的、交替的ALTNTR alternator 同步发机电AM ammeter 电流表AMP ampere 安培AN air natural cooled 空气自然冷却AOC automatic overload control 自动过载控制APC a utomatic p lant coordinate control automatic power control机组自动协调控制:自动功率控制APP appendi* au*iliary power plant 附录:辅助电源设备APS acessory power supply 辅助电源APU au*iliary power unit 辅助动力装置:辅助电源设备ARM armature 电枢、衔铁ASR automatic speed run up 自动升速ASU automatic synchronizing unit 自动同步系统AT a u*iliary transformer 辅助变压器AUS au*iliary switch 辅助开关AU* au*iliany 辅助、备用AVL automatic voltage control 自动电压控制AVR automatic voltage regulator 自动调压器BAT battery 电池BD block decrease 闭锁减BDUC bus duct 母线导管、母线沟BDV blowdown voltage 击穿电压BF back feed 反响BHP brake horse power 制动马力BI block increase 闭锁增BKR breaker 断路器BOS back-out system 补偿系统BOT build-operate-tranfer 建造-运行-移交BR brush 电刷、刷子BRKG breaking 断开BYC battery charger 电池充电器CA pressed air 压缩空气CAOS pletely automatic operate system 全自动操作系统CAP capactty 电容、出力、容量 CAP capacity 容量、功率CATS puter-aided trouble-shooting 计算机辅助故障查寻CB control buton circuit breaker circuit board 控制钮:路线断路器:电路板CBL line circuit breaker 路线断路器CC charactevistic curve 特性曲线CCW counter-clockwise 反时针CD control desk 控制台CEMF cownta electromotive force 反电动势CG center of gravity 重心CHGR charger 充电器CKT circuit 电路、路线CKW clockwise 顺时针向CL center line 中心线CLSG closing 关闭、合闸CMR continuous ma*inum rating 连续最大功率DN condition 工况、参数CO con-out 关闭、切断COEF coefficient 系数CONST constans construction 常数:构造、构造CONT contact control 接点:调节、控制CP control panel 控制板CPD c apacitor potential device 电容器分压器CRT cathode-ray tube 阴极射线管CRT circuit 回路CS c ontrolled switch controll signal 控制开关:控制信号CT current transformer 电流互感器CW clockwise 顺时针向 CY cycle 循环、期DB distribution bo* 配电箱DBMS data base management system 数据库管理系统 DC direct current 直流电DCAS data collection and analysis system 数据采集分析系统DE digital equipment display equipment 数字元件:显示设备DELIV deliver 供给、供电/输出DG diesel generator 柴油发机电DG diesel generator 柴油发机电DHP delivered horse power 输出功率DI data input 数据输入DISC disconnect 断开DISC SW disconnect swtich 隔离开关DISTR diatribution 分散、分配、配电DL data line 数据传输线DMM digital multimeter 数字万用表DMS data management system 数据管理系统DO diesel oil 柴油DO digital output 数字输入DOS dosing 量DPDT double-pole double-throw 双刀双掷开关DPST double-pole sigle-throw 双刀单掷开关DSCH discharge 放电DSL diesel 柴油机DSL line desconnect switch 隔离开关DT dawn time 故障停机时间DTS data transimission 数据传输系统DYNA dynamic analysis 动态分析E.U engineering units 工程单位E/P electrical to pneumatic converter 电动气动转换器EAF e quivalent available factor 等效可运系数ECR economical continuous rating 经济连续出力EE electrical engineer 电气工程师EFF efficiency 效率EFFT effective 有效的EHV e*tra-high voltage 超高压ELEC electric 电气的EMER emergency 紧急、事故EMER emergency 事故保安EMF inductive electromotive force 感应电动势EMLON emergency condition 事故状态EMP eletromechanical power 机电功率EMS emergency switch 紧急开关、事故按钮ENCL enclose 封闭、包围ENER energize 励磁、使带电ENERD energized 已励磁的、已带电的ENG engage 发动机EP e*treme power 极限功率ESD emergency shutdown 事故停机ESS essential service system 主要厂用系统ETS electrical trip solenoid 电气跳闸线圈E*C e*citer 励磁机、励磁E*D e*ternal device 外部设备EY voltage transducer 电压变送器FB fuse block 保险盒FC fast closing 快关F-F flip-flop 触发器FL full load 满负荷FLF flip-flop 触发器FME frequency measuring equipment 频率计FP full power 满功率FREQ frequency 频率FU fuse 保险丝、熔断器FWR full-wave rectifier 全波整流器GEN generator 发机电GIS gas-insulated metal-enclosed switch gear 全封闭组合电器GPT generator potential transformer 发电机电压互感器GRD ground 接地GRD FLT ground fault 接地故障GT grounding transformer 接地变压器HC holding coil 保持线圈HF high frequency 高频HG harmonic generator 谐波发生器 HIPOT high potential test 高电压实验HLDG holding 保持HP horse power 马力HS hand switch 手动开关HT high tension 高压HTN high tension 高电压HV high voltage 高电压HV high voltage high velocity 高压:高速HVDC high voltage direct current transmission system 高压直流输电系统HVPC high voltage power supply 高电压源I/O input/output 输入/输出IC integrated circuit input circuit 集成电路:输入电路ICL ining line 引入线IMP impedance 阻抗IMPLS impulse 脉冲、冲动INDN induction 感应INIT initial 启动、励磁INITD initiated 已励磁的、已启动的INSUL insulate 绝缘、隔热INTMT intermediate 连续的、间歇的INVR inverter 逆变器、反相器ISLN isolation 隔离开关ISOL isolation 隔离的、绝缘的JY watt transduce 有功变送器K kilo 千KW kilowatt 千瓦KWH kilowatt-hour 度L electrical p ower l ine电线LA l ightening arrester 避雷器LC load centre 负荷中心LC load center 负荷中心LDS line disconnecting switch 路线隔离开关、路线断路器LN line 路线LOC local 就地LPC linear power controller 线性功率放大器LR line relay 线性继电器LSIC large scale integrated circuit 大规模集成电路LV low voltage 低电压MAG magnet 磁铁/磁场的MAN manual 手动的MC manual control magnet contactor 人工控制:磁铁开关MCB molded case circuit breaker 模板式断路器MCC motor control centre 马达控制中心MCC motor control center 马达控制中心MCR main control room ma*ium capacity rating ma*ium continuous rating 主控室:最大额定出力:最续出力MDS motor disconnect switch 马达隔离开关MG motor generator 电动发机电ML mechanical loss 机械损失MN*FMR main transformor 主变压器MO motor 马达MOD motor operated disconnect 电动断开MPR motor protrelay 机电保护继电器MSTR motor starter 马达启动器MWE megawatt electric 兆瓦电MWH megawatt-hour 兆瓦小时NADVD not advanced 滞后NEG negative 阴极的、负的NET network 网络NEUT neutral 中性的NGT neutral groundong transformer 中性点接地变压器NL noload 空载、无负荷NOM nominal 额定的NRP normal rated power 额定功率O&R overhaul and repair 大小修OA operator auto mode 运行人员监控下的自动控制运行式OL motor overload device 机电过负荷装置OP output power operating procedure 输出功率:运行规程OPER operating 操作OR operating record 停运记录OVHL overhaul 大修P.O. power output 功率输出P.U. per unit 标幺值PA power amplifier 功率放大器PAMS post-accident montoring instrumentation 事故后监测仪表PB push button 按钮开关PC power center 动力中心PCB power circuit breaker 功率继电器PCC power conditioning and control 电力调节与控制PCM pulse-code modulation 脉冲编码调制PD potenial difference power driven 电位差:电动的PE power equipment 发电综合控制PF p ower factor indicator 功率因数PFI power factor indicator 功率因数表PGCC power generation control ple* 相位PH phase 功率输入PI power input 峰值负荷PK peak 峰值PL plate 板、极板PL peak load 峰值负荷PLD payload 有效负载PM phase midulation 调相PO power operator 电动操作POH planned outage hours 方案停运小时POOH planned overhaul outage hours 方案大修停运小时POS positive 正的、正极的POS position 位置POT potential transformer 电势、电位计PP peak power 峰值功率PPS plant protective system primary protection system 电厂保护系统:一次保护系统 PS power station power supply power system 电站:电源:电力系统PSS power support stabilizer 电力系统稳定器PT potential transformer 电压互感器PT potential transformer 电压互感器PT pressure transducer 压力变送器PWR power 功率Q transistor 晶体管QA quick acting 快速动作QMQB quick-make quick-break 快通快断R rate rotor ratio 速率:转子:比率系数RA remote auto 远程自动RAM repair and maintenance 检修与维护RB run back 甩负荷RD run down 降负荷RF reserve free 备用ROT rate of turn reserve oil tank 转动速度:备用油箱RP rated power 额定功率RPM revolution per minute 转/分RPS revolution per second 转/秒RS resistor 电阻器RSV reserve 备用RTD resistance temperature device 电阻测量计RU run up 升负荷RU run up 升负荷S/C short circuit 短路SC short circuit 短路SC semi-conductor 半导体SCR s ilicon-controlled rectifier 可控硅整流器SECT sectional 等级、分级SEN sensor 传感元件、传感器SERV service 工作、厂用SG standby generator 备用发机电SO shut-off 停机、遮断SOE sequence of events 事故顺序记录SOH scheduled outage hours 方案停机时间SOV solenoid -operated valve 电磁阀SP single pole spare 单极:备用SPC system power control 系统电源控制SPDT single-pole double-throw 单刀双掷SR speed reguletor standard rating silicon rectifier 调速器:额定容量:硅整流器 SS station service 厂用SS stopping switch 停机开关SST station service transformer 厂用变压器ST starter startup transformer 启动器:启动变压器STA stationary 固定的STAT stator 定子STBY standby 备用STBY stand by 备用STR reserve station service transformer 厂用备用变压器SUBSTA substation 变点站SUPL supervisory 供电、电源SUR surge 冲击、波动SV solenoid valve 电磁阀、滑阀SW switch 开关SW switch 开关、手把SW short wave switch 短波:开关SWBD switchboard 配电SWBD switchboard 开关板、配电盘SWC surge withstand capability 冲击电压承受能力SWGR switchyard 配电装置SWYD switchyard 开关场SY synchroscope 同步指示器SYM symmetrical system 对称系统SYNC synchronize 使--- 同步SYNCG synchronizing 同步SYNSCP synchroscope 同步指示器SYS system 系统SYST system 系统T&D transimission and distribution 输电与配电T&M testing and maintenance electrical trip and monitoring 实验与维修:电电气跳闸与监视系统TACH tachometer 转速表TASS technique assembly 装配工艺TB therminal board 端子板、终端板TBO time between overhaul 大修间隔TC thermocouple 热电偶TD time delay 延时TD technique data time delay 技术数据:时滞、延时TDC time delay closing 延时闭合TDD time delay on deenerization 延时失励TDE time delay energization 延时鼓励TDO time delay opening 延时翻开TE thermoelectric test equipment 热电的:测试设备TH thermal element 热电偶、热偶元件TIS test instrumentation system thermal insulation system 测试仪表系统:绝缘系统 TL totalloss total load time limit 总损失:总负荷:时间限制TM time monitor 时间监视器TOT total 总共TP test point time pulse 实验点、测试点:时间脉冲TPDT triple-pole double-throw 三刀双掷开关TR test run transducer 试运行:变送器TRANS transport 运输TRC transmission and reception controller 传输及接收控制器TRIAC triode altermating current switch 三极管交流开关TRU transmit-receive unit 发送接收装置TSI turbine supervisory instrument 汽轮机监视仪表TVM transistor voltmeter 晶体管电压表U unit 机组UAT unit au*iliary transformer 厂用变压器UDF unit derating factor 机组降低出力系数UDG unit derating generation 机组降低出力少发电量UDH unit derating hours 机组降低出力小时UERS unusual event recording system 异常事故记录系统UNDH unit derating hours 机组降低出力小时UNIV universal 通用UNLD unloading 无载的、空载的UO unit operator 机组操作员UOF unplanned outage factor 非方案停运系数UOH unplanned outage hour 非方案停运小时UOR unplanned outage rate 非方案停运率UPS uninterrupted power supply 不停电电源URT unit run time 设备运行时间UST unit station service transformer 厂用变压器UV under voltage 电压缺乏、低电压UV 电压监察VAR variable 变量VARHM garhour meter 无功电度表VC v ariable capacitor voltage parator 可变电容:电压比较器VCB vacuum circuit breaker 真空断路器VCT voltage current transformer 电压电流互感器VENT ventilator 通风VF vriable frequency 可变频率VOLTREG voltage regularor 电压调节器VR variable resistor voltage regulator 可变电阻:稳压器VT vibration testing 振动实验VT voltage time to breakdown 击穿电压时间VTVM vacuum-tube voltmeter 真空管电压表W/O without 没有WDG winding 绕组、线圈WH watt-hour 瓦特小时WHM watthour meter 有功电度表WTR water 水WV working voltage 工作电压WZJ 绝缘监察*DCR transducer 变送器*FER transfer 转换*FMR transfoormer 变压器*MSN transmission 输电*MTR transmitter 变送器*S transfer switch 转换开关YD yard 工作场。
时滞光电跟踪系统鲁棒内模PID控制器设计
时滞光电跟踪系统鲁棒内模PID控制器设计赵志诚;刘志远;张井岗【摘要】针对时滞光电跟踪提出了一种内模PID(IMC-PID)控制器设计与参数整定的解析方法.首先建立了系统的一阶时滞积分(FODI)模型,并用二阶加时滞(SOPDT)模型进行逼近,然后利用一阶Taylor表达式代替系统模型中的时滞项,导出了控制器参数的整定规则.特别是为了保证系统的鲁棒性,可以根据最大灵敏度解析计算内模PID控制器的可调参数λ_n.仿真结果表明,与常规方法相比,所提方法不仅提供了较好的设定值跟踪和扰动抑制特性,而且对于系统参数摄动具有更好的鲁棒性.另外,实验结果也证实了该方法能够提高系统跟踪性能和跟踪精度.【期刊名称】《光电工程》【年(卷),期】2010(037)001【总页数】7页(P30-36)【关键词】内模PID;光电跟踪系统;时滞系统【作者】赵志诚;刘志远;张井岗【作者单位】哈尔滨工业大学控制科学与工程系,哈尔滨,150001;太原科技大学自动化系,太原,030024;哈尔滨工业大学控制科学与工程系,哈尔滨,150001;太原科技大学自动化系,太原,030024【正文语种】中文【中图分类】V5560 IntroductionOpto-electronic tracking system is a complex equipment which mainly includes photoelectric detection,signal processing, control systems, precision machinery and other parts. It is widely applied in the filed of civilian and military industry such as NC machine tools, astronomical observation, shooting range measurement, weapons control, and flight simulators etc[1]. For opto-electronic tracking system, a good servo performance, such as high-accuracy, high-speed, non-overshoot and no vibration, is necessary [2]. Furthermore, in order to keep stability for parameter perturbation system, a high robustness is also very important.In other words, it is expected to achieve both performance and robustness in opto-electronic tracking system. However, considering the disturbance and uncertainty in the system, the conventional PID control is difficult to meet the requirement of the control performance effectively.So, based on the PID control, many improved PID type control schemes are researched in [1][3][4],respectively. A multi-mode control algorithm was proposed in [3]. The algorithm is expressed as follows: if the error is large, the saturation control is adopted; if the error is medium, the square root control is adopted; and if the error is small, the PID control is adopted. Paper [4]proposed a fuzzy-PID control approach, which could shorten the transient time, reduce the overshoot and improve the tracking accuracy and robustness of control system. Paper[1]proposed a single neuron fuzzy PID control method. Thus the trackingsystem not only has the capability of learning and self-adaptation, but also has better dynamic performance and steady-state performance than that of PID control. But in the above-mentioned schemes, the measurement time-delay of image tracker is not considered.To deal with the measurement time-delay, various advanced control approaches are presented. Paper [5]proposed an adaptive prediction and compensation method, which applied LMS algorithm and an adaptive filter with transverse structure to delay prediction compensation. The simulation results demonstrated the effectiveness of the method. Paper [6]introduced the method of predictive filtering in opto-electronic tracking system. Paper [7]adopted a state prediction and estimation method based on robust H∞ filter for opto-electronic tracking system.The experimental results show that the proposed method has high accuracy and good robustness. Whereas, the predictive filtering method needs complex calculation, and it easily causes the arithmetic to diverge.To find a simple design method of the PID type controller with a significant performance improvement has become an important research issue for control engineers. Because of the simplicity and improved performance of the IMC-based tuning rules, the analytically derived IMC-PID tuning methods have attracted the attention of industrial users [8]. The IMC-PID tuning rule has only one user-defined tuning parameter, which is directly related to the closed-loop performance and robustness of the system. The PID controller design has been discussed extensively in the literature for first-order plus delay time and second-order plus delay timestable/unstable process[8-10]. But the design of a simple and robust controller with improved performance has not yet been fully achieved. This paper focuses on the design of IMC-PID controller for an opto-electronic tracking system with time-delay. The system can be represented by a first-order delayed integrating (FODI)model. According to the principle of IMC, an analytical design approach of PID controller is proposed. Then, the tuning method of the controller parameter is given. Moreover, the maximum sensitivity can be applied to guarantee the robustness of the system. The simulation and experimental results show that this scheme is easy to be realized and has better performance than the conventional approach.1 Design of IMC-PID Controller for Time-delay SystemThe block diagram of IMC system is shown in Fig.1, where Q(s)is the internal model controller, G(s)is the process, M(s)is the model, and R(s),Y(s), D(s)is the set point, output and external disturbance of the system respectively. According to the design procedure for IMC system, the model is factorized asWhere M-(s) and M+(s)are the portions of the model inverted and not inverted, respectively. M+(s)is usually a non-minimum phase and contains delay time and/or right half plane zeros of M(s), while M-(s)is stable and of minimum phase with no predictors. The IMC controller Q(s)takes the formWhere f(s)is a user specified low-pass filter and usually chosen asWhere r is sufficiently large in order to guarantee that the IMC controller Q(s)is proper. Also, λ is the time constant, determined by the expected system performance. A smaller λ provides faster closed-loop response, while a l arger λ is also less sensitive to model mismatches.Fig.1 Block diagram of IMCFig.2 Equivalent block diagram of IMCIMC structure in Fig.1 can be reduced to the equivalent classic feedback structure shown in Fig.2. Gc(s)is a feedback controller. The relation between the feedback controller Gc(s)and the internal model controller Q(s)can be expressed as follows:System dynamics are often approximated by low order transfer function models for ease in controller design.The dynamics of a large number of industrial controlled objects can be represented by FOPDT and SOPDT transfer function models of the forms:The IMC filter structure exploited here is given asSo, the IMC controller can be obtained, and the corresponding feedback controller isIn order to make the resulting controller in Eq.(9)has a PID controller structure, the time-delay term is approximated by the simple first orderTaylor expansion.Let the forms of the PI and PID controllers beWhere Kp, Ti and Td are the proportional gain, the integral time constant and the derivative time constant,respectively. Table 1 shows the IMC-based PI/PID controller settings for the FOPDT and SOPDT models, where λn = λ/θ.Table 1 Settings of the controller for FOPDT and SOPDT modelsM(s)Kp Ti Td τ τ K s τs 1 e+-θK(λ+θ)=θ(λ+)k τ n 1-θ e s τs+2 22 K s ξτ+1K(λξτ 2ξτ 2+2ξτ θ)=θ(λ+)Kn 1ξ τ22 Design of IMC-PID Controller for Opto-electronic Tracking System2.1 Model of Opto-electronic Tracking SystemUsually, a high accuracy opto-electronic tracking system is a speed-position control system constituted of two closed-loops, which is annexed a position loop on the base of the speed governing system. The configuration of opto-electronic tracking system is shown in Fig.3. TheTV/IR tracker includes cameras and signal processing circuit. The module picks and separates the targets in visible-field according to the standard phase alternating line,and provides the target coordinates of current point. Taking into account the image processing, the measurement time-delay can not be ignored. So the image tracker can be depicted by a proportion plus time-delay model. The speed controller adopts proportion-integral (PI)algorithm, and the speed feedback device is an opto-electronicencoder. In practice the speed control loop can be approximated to a first-order inertia unit due to the high crossover frequency. The reduction ratio of the reducer is i: 1. The transfer function from the angular velocity of the motor to the output of the system can be represented by an integrator, and the integral time is i. So the dynamic structure of opto-electronic tracking system is shown in Fig.4. Namely, the position tracking system can be represented by a first-order delayed integrating (FODI)model:Fig.3 Block diagram of opto-electronic tracking systemFig.4 Dynamic structure of opto-electronic tracking system2.2 Design of IMC-PID controllerConsider the FODIP model of the opto-electronic tracking system as Eq.(13). It can be approximated as SOPDT model, and becomesWhere φ is an arbitrary constant with a sufficiently large value. Thus, the IMC-PID controller is the same as that for the SOPDT. According to the PID tuning rules listed in Table 1, the parameters of the PID are given asWhere λn = λ/θ.3 Tuning of the Parameter of the ControllerGain and phase margins are two well known measures of robustness and simple analytical formulas to tune PI/PID controller for stable/unstable FOPDT and SOPDT models to meet user defined gain and phase margins have been proposed. However, the gain and phase margin specificationsgive poor results for systems with unusual frequency response curve and may fail to give reasonable bounds on the sensitivity functions [11]. The maximum sensitivity (Ms)is the inverse of the shortest distance from the Nyquist curve of the open loop transfer function to the critical point (-1, j0), and is defined asMs measures the closeness of the Nyquist curve from the critical point at all frequencies and not just the two frequencies as associated with gain and phase margins, so it can serve as a better measure of system robustness. A small value of Ms indicates that the stability margin of the control system is large. Typical values of Ms are in the range of 1.2∼2.0.A first order Pade approximation is used to replace the delay term of the loop transfer function, and the sensitivity function can be written. For 1/ Ms to be the minimum distance of the Nyquist curve from the critical point, the Nyquist curve of the loop transfer function should touch the circle with centre (-1, j0)and radius 1/ Ms.According to the repeated roots condition of the sensitivity function, the relation between the adjustable parameter λn of IMC-PID controller and the maximum sensitivity Ms can be get [11]Where, λn = λ/θ. The λn can be obtained by solving (17)f or various values of Ms.4 Simulation and Experiment ResultsTo demonstrate the effectiveness of the proposed method, simulation studies are carried out. Suppose the model for an opto-electronic trackingsystem is represented as the following FODI model, which can be approximated by the SOPDT mode asThe maximum sensitivity Ms = 1.2 is chosen. Hence, the adjustable parameter λn of IMC-PID controller can be calculated via Eq.(17), and the parameters of the controller can be tuned via Eq.(15). In addition, the parameters of a conventional PID controller can be found by using the Z-N method. The system is simulated with a unit step reference at t= 0 and a step output disturbance with value of 0.2 at t = 2.When the model is accurate, the simulation result is shown in Fig.5. For the conventional method, although the response is faster than the proposed method, but the response has a large overshoot. Hence, the proposed method not only provides a better set-point tracking, but also has a steadier disturbance rejection response.Fig.5 Step response with a nominal modelFig.6 Step response with +50%mismatches in gainFig.7 Step response with +50%mismatches in time constantFig.8 Step response with +100%mismatches in delay timeThe robustness of the controller is evaluated by inserting a perturbation uncertainty of +50% in the static gain K, the time constant T and +100% in the delay time θ to yield the model mismatch, respectively. The simulation results for the proposed and conventional tuning rules are shown in Fig.6∼Fig. 8. When all three parameters vary simultaneously, the response shown in Fig.9 exhibits the worst-case model mismatchIn addition, the proposed method was applied to an opto-electronic tracking system to track an air target and the effect was compared with conventional approach. The target flies at an altitude of 1 000 meters with v=150 m/s. The range of azimuth and elevation is from 1 439 mil to 570 mil and from 542 mil to 1 385 mil,respectively. During this process, the maximum angular velocity and acceleration of azimuth tracking is 60 °/s and 80 °/s2, respectively.Correspondingly, the maximum angular velocity and acceleration of elevation tracking is 7.5 °/s and 7 °/s2,respectively. The sampling cycle of the control system is 20 ms. The tracking error curves of the proposed method are shown in Fig.10. Obviously, the error variety is steady and undistinguishable. Fig.11, which is got from conventional method, shows that the error variety is obvious and the tracking error is larger. So the conclusion can be drawn that the proposed method can bring better tracking property and higher accuracy.Fig.9 Step response with mismatches in all parameters simultaneously Fig.10 Tracking error with the proposed methodFig.11 Tracking error with the conventional method5 ConclusionAiming at an opto-electronic tracking system with time-delay, an analytical design method and parameters tuning approach of IMC-PID controller is presented. Firstly, a FODI model for the system is built, and the model can be approximated by the SOPDT mode. On the basis of the simple first-order Taylor approximant for the time-delay term, the tuning rules of the controller parameter are provided. Especially the adjustable parameter λnof IMC-PID controller can be calculated by choosing the maximum sensitivity to guarantee robustness of the system. The simulation results show that the proposed method not only provides a better dynamic performance of both the command tracking and disturbance rejection, but also is more robust against the parameters perturbation.In addition, the experimental result demonstrates the method can bring better tracking property and higher accuracy.References:[1]王婵娟,王强,傅承毓. 单神经元模糊PID控制在光电跟踪系统中的应用 [J]. 光电工程,2006,33(2):33-36.WANG Chan-juan,WANG Qiang,FU Cheng-yu. Single neuron fuzzy PID control application in photoelectric tracking system[J]Opto-Electronic Engineering,2006,33(2):33-36.[2]Fujimoto H,Hori Y,Kawamura A. Prefect tracking control based on multirate feedforword control with generalized sampling periods [J]. IEEE Transactions on Industrial Electronics(S0278-0046),2001,48(3):636-644.[3]冯培业,董宁,张宇河. 天地景投影伺服系统控制算法的改进 [J]. 北京理工大学学报,2002,22(3):351-354.FENG Pei-ye,DONG Ning,ZHANG Yu-he. Improvement of the control algorithm of a servo system for background projection system [J]. Transactions of Beijing Institute of Technology,2002,22(3):351-354.[4]侯宏录,周德云,王伟. 模糊PID 控制在光电跟踪控制系统中的应用 [J]. 光电工程,2006,33(5):12-16.HOU Hong-lu,ZHOU De-yun,WANG Wei. Application of fuzzy-PID control in system of photo-electric tracking [J].Opto-Electronic Engineering,2006,33(5):12-16.[5]王连明,葛文奇,李杰. 跟踪系统中跟踪延迟的自适应预测补偿方法 [J]. 光电工程,2002,29(4):13-16.WANG Lian-ming,GE Wen-qi,LI Jie. Adaptive prediction and compensation method for delay of tracker in tracking system[J]. Opto-Electronic Engineering,2002,29(4):13-16.[6]杨秀华,吉桐伯,陈娟. 预测滤波技术在光电跟踪系统的应用 [J]. 电光与控制,2003,10(3):11-15.YANG Xiu-hua,JI Tong-bo,CHEN Juan. Applicationof predicting filter in electro-optical tracking system [J]. Electronics Optics &Control,2003,10(3):11-15.[7]许波,姬伟. 基于鲁棒H∞滤波的光电跟踪机动目标状态预测估计[J]. 光电工程,2008,35(1):5-10.XU Bo,JI Wei. State prediction and estimation foropto-electronic tracking maneuvering targets based on robust H∞ Filter [J]Opto-Electronic Engineering,2008,35(1):5-10.[8]Shamsuzzoha M,Moonyong Lee. Design of advanced PID controller for enhanced disturbance rejection of second-order processes with time delay [J]. American Institute of Chemical Engineers(S0001-1541),2008,54(6):1526-1536.[9]Raymond Gorez. New design relations for 2-DOF PID-like control systems [J]. Automatica(S0005-1098),2003,39(5):901-908.[10]Rames C Panda,Cheng-Ching Yu,Hsiao-Ping Huang. PID tuning rules for SOPDT systems:review and some new results [J].ISA Transactions(S0019-0578),2004,43(2):283-295.[11]Ahmad Ali,Somanath Majhi. PI/PID controller design based on IMC and percentage overshoot specification to controller set-point change [J].ISA Transactions(S0019-0578),2009,48(1):10-15.。
时滞动力学与控制研究进展
第21卷第8期2023年8月动力学与控制学报J O U R N A L O FD Y N AM I C SA N DC O N T R O LV o l .21N o .8A u g.2023文章编号:1672G6553G2023G21(8)G001G005D O I :10.6052/1672G6553G2023G105㊀2022G08G17收到第1稿,2022G09G06收到修改稿.∗国家自然科学基金资助项目(12072068,11972223,12272167),N a t i o n a lN a t u r a lS c i e n c eF o u n d a t i o no fC h i n a (12072068,11972223,12272167).†通信作者E Gm a i l :y .ya n @u e s t c .e d u .c n 时滞动力学与控制研究进展∗严尧1†㊀张丽2㊀陈龙祥3(1.电子科技大学航空航天学院,成都㊀611731)(2.南京航空航天大学航空学院,南京㊀210016)(3.上海交通大学船舶海洋与建筑工程学院,上海㊀200240)摘要㊀与一般动力系统不同,无穷维时滞系统的研究方法并不成熟,使得时滞系统的分析和控制都很困难.与此同时,时滞广泛存在于包括神经网络㊁人工智能㊁机械加工㊁多智能体㊁机器人控制等众多领域,使得时滞动力学与控制的研究至关重要.因此,本专刊聚焦时滞引起的稳定性㊁非线性动力学和控制问题,着重讨论了神经㊁网络㊁机械和减振等领域的时滞动力学问题,希望能为相关领域的学者提供一些借鉴和参考.关键词㊀时滞,㊀动力学与控制,㊀非线性,㊀分岔与混沌,㊀无穷维中图分类号:O 328文献标志码:AP r o g r e s s i nD y n a m i c s a n dC o n t r o l o fT i m e Gd e l a y e dS ys t e m s ∗Y a nY a o 1†㊀Z h a n g L i 2㊀C h e nL o n g x i a n g3(1.S c h o o l o fA e r o n a u t i c s a n dA s t r o n a u t i c s ,U n i v e r s i t y o fE l e c t r o n i c S c i e n c e a n dT e c h n o l o g y o f C h i n a ,C h e n g d u ㊀611731,C h i n a )(2.C o l l e g e o fA e r o s p a c eE n g i n e e r i n g ,N a n j i n g U n i v e r s i t y o fA e r o n a u t i c s a n dA s t r o n a u t i c s ,N a n j i n g㊀210016,C h i n a )(3.S c h o o l o fN a v a lA r c h i t e c t u r e ,O c e a n &C i v i l E n g i n e e r i n g ,S h a n g h a i J i a o t o n g U n i v e r s i t y ,S h a n g h a i ㊀200240,C h i n a )A b s t r a c t ㊀U n l i k eo r d i n a r y d i f f e r e n t i a ls y s t e m s ,d e l a y e ds y s t e m sd on o th a v ea m a t u r ei n v e s t i ga t i o n m e t h o d ,m a k i n g i t s a n a l y s i s a n d c o n t r o l v e r y h a r d .M e a n w h i l e ,d e l a y w i d e l y e x i s t s i n s ys t e m s o f n e u r a l n e t w o r k s ,a r t i f i c i a l i n t e l l i g e n c e ,m a c h i n i n g ,m u l t i a g e n t s ,r o b o t i c c o n t r o l ,w h i c he n h a n c e s t h es i gn i f i Gc a n c e o f s t u d i e s o f t i m e Gd e l a y e d s y s t e m s .T h e r e f o r e ,t h i s s pe c i a l i s s u ef o c u s e s o n t h e p r o b l e m s o f s t a b i l i Gt y ,n o n l i n e a r d y n a m i c s a n dc o n t r o l d e t e r m i n e db y t i m ed e l a y ,e s p e c i a l l y i nn e u r a l s ys t e m s ,n e t w o r k s ,m a c h i n e r i e s ,a n dv i b r a t i o n m i t i g a t i o n w i t hd e l a y s ,e x p e c t i n g t o p r o v i d es o m ev a l u a b l er e f e r e n c e sf o r s c h o l a r s i n t e r e s t e d i n r e l a t e d t o pi c s .K e y wo r d s ㊀t i m ed e l a y ,㊀d y n a m i c sa n dc o n t r o l ,㊀n o n l i n e a r i t y ,㊀b i f u r c a t i o na n dc h a o s ,㊀i n f i n i t ed i Gm e n s i o n引言从动物种群演化到人体平衡,从计算机网络到车辆道路交通,从金属切削到机械臂控制,时滞效应无处不在,对自然㊁社会㊁工程等动力系统的演化发展产生了广泛而深刻的影响.针对这些系统的早期研究常常在忽略㊁近似㊁补偿的基础上套用经典的动力系统分析和控制方法,然而时滞系统具有无穷维解空间,与常微分系统有本质的不同.近20年来,以时滞为中心的动力学与控制研究取得了长足Copyright ©博看网. All Rights Reserved.动㊀力㊀学㊀与㊀控㊀制㊀学㊀报2023年第21卷的发展和丰硕的成果,人们陆续揭示了时滞效应对C o v i dG19的传播与防治㊁神经元活动和大脑疾病㊁计算机网络和道路拥塞㊁再生加工颤振和机器人运动误差的决定性影响.与此同时,许多学者还在积极开发时滞效应的应用,主动引入时滞控制实现宽频隔振㊁分岔和混沌控制㊁网络拥塞调控等.然而,时滞动力学与控制的研究依然面临诸多困难,例如系统的固有时滞辨识没有可借鉴的方法,多时滞高维系统的稳定性分析和高余维分岔研究非常困难,时滞反馈设计没有统一的理论框架,时滞多稳态分析不能基于经典的吸引盆定义等.为了及时总结各类时滞系统中的动力学与控制研究最新成果,我们特在«动力学与控制学报»组织了 时滞动力学与控制 专刊,旨在征集和汇报时滞动力学与控制在相关领域的创新性研究和工程应用成果,获得了国内学者的积极响应.然而,由于期刊对于篇幅的限制,本次专刊只能汇总其中的一部分成果,期望将来有更多的成果在«动力学与控制学报»上不断发表,促进时滞动力学与控制的发展.总体而言,本次特刊包括综述论文1篇,由孙中奎和金晨[1]总结了时滞系统非线性动力学的发展,其余论文大体上可归纳为神经系统时滞动力学2篇,时滞网络动力学2篇,机械与控制系统中的时滞动力学3篇,以及时滞减振4篇(包括能量采集1篇).1㊀神经系统时滞动力学神经元动力学一直是脑科学㊁人工智能等领域的研究热点,虽然单个神经元不具有智能,但研究表明多个神经元构成的神经系统中的群体同步和去同步等复杂放电行为通常与神经系统正常和病态功能密切相关[2].目前已知的神经元同步包括多种状态,如完全同步(c o m p l e t es y n c h r o n i z a t i o n)㊁滞后同步(l a g s y n c h r o n i z a t i o n),广义同步(g e n e rGa l i z e ds y n c h r o n i z a t i o n)等[3].此外,由于信号传输速度的有限性和神经递质释放的滞后,神经系统中信息的传递通常不是瞬时的,即在神经网络中普遍存在信息传递的时间滞后,并且时滞可以诱发多种不同的同步放电模式,为此有很多学者对具有时滞的神经系统动力学展开了大量研究[4].袁韦欣等[5]将两个单向耦合的F i t z H u g hGN a g u m o神经元之间的滞后同步视为一种特殊的广义同步,并通过辅助系统方法来获得滞后同步发生的条件.关利南等[6]研究了含时滞和I h流的抑制耦合水蛭神经元系统的同步簇放电活动,发现合适的时滞和耦合强度都可以产生神经元的多种同步放电模式,并通过快慢变分析发现快子系统的鞍结分岔点和鞍同宿轨分岔点之间的参数范围会随着I h流电导的增大而缩小,从而使得簇内峰数减少,诱导多种同步放电模式.2㊀具有时滞的人工网络除了生命智能所具有的自然神经网络,各种人造网络在近些年也获得了蓬勃的发展,特别是在人工智能领域取得了革命性的突破.卷积神经网络[7]㊁循环神经网络[8]和对抗生成网络[9],分别在图像识别精度,时序的自然语言处理和虚拟图像生成领域取得了显著的成就.其中广泛用于时序数据处理的循环神经网络具有典型的时间滞后特征,其采用历史记忆和当前输入可对未来时序进行有效预测.徐一宸和刘建明[10]在一类特殊的循环神经网络,回声状态神经网络中,引入注意力机制以体现样本之间的差异与交互,可以有效地实现对混沌系统的时序预测,有望应用在通讯加密解密等方面.另一类典型的具有时滞的人工网络是多智能体系统,其中的分布式同步和一致性控制是动力学与控制等诸多领域的热点课题[11].这之中的E u l e rGL a g r a n g e(E L)系统的合作行为与协调控制备受关注,这是因为它可以描述包括机械臂㊁无人车辆和航天器等诸多智能体,在大规模集成化生产过程中,具有独特的灵活性㊁并行性㊁可操作性和可拓展性.郑斌等[12]在研究一类具有通讯时滞的网络化欠驱动E L系统的一致性问题时,提出一致性能量整形方案,有机地整合了系统欠驱动和驱动部分以及控制器三部分能量,并构造相应的L y a p u n o v函数,充分确保网络化欠驱动E L系统达到所期望的分布式一致性.3㊀具有时滞的机械与控制系统时间滞后以再生效应的形式广泛存在于各类机械加工动力学中.以单刀刃车削为例,刀刃划过工件表面留下的切痕会影响下一轮切削时刀刃切2Copyright©博看网. All Rights Reserved.第8期严尧等:时滞动力学与控制研究进展入工件的深度,使得切削深度和切削力与前一个旋转周期时的状态相关,由此工件表面再生引入的时滞被称为再生时滞,对切削稳定性具有决定性的作用.在此基础上,多刀刃的钻削和铣削会导致多时滞效应,而磨削中砂轮的表面再生则会导致双时滞效应.针对多刀刃钻削问题,侯祥雨等[13]建立了4自由度钻杆动力学模型,考虑钻头跳动现象引起的多重时滞问题,基于半离散法得到了系统的稳定性判据,并通过优化的顶部柔顺边界实现了振动抑制,为钻柱纵扭耦合振动的抑制提供一种简单有效的思路.小车倒立摆系统是一类经典的控制对象,主要包括起摆控制和稳摆控制两种,起摆控制通常使用基于能量的控制律,稳摆控制可采用经典的P I D 控制[14].冯欣炜等[15]同时考虑了回路中的时滞对于起摆和稳摆控制的影响,基于L y a p u n o v函数证明了时滞可以优化非线性起摆控制阶段的能量输入,同时采用定积分法分析了稳摆控制的稳定性,发现时滞先是增强稳摆稳定性,但时滞的进一步增大会弱化稳定性并导致系统失稳.无人驾驶是智能车辆的重要发展方向,其中的最优经济性驾驶策略已成为重要的课题之一.刘灿昌和孙亮[16]以无人驾驶汽车整车控制问题为研究对象,基于车辆智能网思想,用负时滞体现对未来路况的预判,建立车辆坡道行驶的预见性驾驶动力学模型,分析了加速控制参数与坡道高度关系规律,发现合适的控制参数和时滞可以有效设计冲坡㊁下坡速度,降低油耗.4㊀时滞减振为了抑制结构在外载荷作用下的振动,人们提出了多种控制方法,近些年非线性动力吸振器与时滞主动控制的方案受到了大家的关注,非线性可以拓宽吸振器带宽,而时滞反馈可以提升控制效果以适应复杂工况[17].针对建筑结构的减振问题,管明杰等[18]提出一种含时滞的非线性轨道动力吸振器,通过谐波平衡法得到了系统的频响曲线,发现被动控制时的非线性具有软弹簧特性,而时滞反馈可以消除这种特性并降低共振幅值,从而有效改善振动抑制效果.张国荣等[19]研究了时滞反馈P D控制对于电磁轴承系统的减振效果,发现合适的时滞会使得轴承在面内的振动相较于无时滞状态明显减小,还可以消除多稳态㊁突跳等非线性现象.这一特征也正是能量采集这一当下的研究热点所关心的对象,即采用非线性多稳态可以提升带宽,采用时滞反馈可以调节振动系统的分岔特征,从而使得能量采集器可以从振动主系统中提取更多的机械能转化为电能.孙成佳等[20]设计了一套具有时滞反馈控制的双稳态压电-电磁式俘能器,将随机的振动能量转化为电能,发现通过联合位移和速度的反馈时滞特性有利于取得更好的能量采集效率.此外,魏梦可和韩修静[21]还讨论了一类广义上的 时滞 问题,即由慢变参数导致的分岔延迟问题,这是吸引子的一种延迟失稳现象,即当吸引子失稳变成排斥子时,系统的轨线继续在排斥子上停留一段时间,然后再离开排斥子的现象.这种延迟效应已经成为可以诱发簇发振荡的有效机制之一.他们发现簇发振荡的延迟与初始时间无关,而取决于系统的参数.5㊀结语时滞动力学与控制的应用范围非常广泛,涉及生命㊁神经系统㊁网络㊁人工智能㊁机械㊁控制㊁交通等众多领域,深刻影响着自然㊁社会㊁工程的演化发展.限于篇幅,此次专刊仅仅刊登了时滞动力学与控制在神经系统动力学㊁网络动力学㊁机械与控制㊁减振和能量采集领域的应用.本文也同样只简单地讨论了相关领域的进展.除了本文涉及的范畴,时滞动力学与控制的发展还在帮助我们解决疾病传播㊁计算机网络和交通网络拥塞㊁机器人本体和集群控制等众多领域的难题.除了应用,时滞系统的理论基础也有待进一步发展,其具有独特的无穷维状态空间,分析和计算的理论难度都很大,而时滞与非光滑和多稳态问题的耦合会进一步加剧问题的分析难度,乃至没有合适的计算方法或工具,因此,时滞动力学与控制的理论发展更是至关重要.参考文献[1]孙中奎,金晨.时滞系统非线性动力学研究进展[J].动力学与控制学报,2023,21(8):6-18.S U NZ K,J I N C.A d v a n c e s i nn o n l i n e a rd y n a m i c sf o r d e l a y e ds y s t e m s[J].J o u r n a lo fD y n a m i c sa n d3Copyright©博看网. All Rights Reserved.动㊀力㊀学㊀与㊀控㊀制㊀学㊀报2023年第21卷C o n t r o l,2023,21(8):6-18.(i nC h i n e s e) [2]WO U A P IK M,F O T S I NBH,L O U OD O PFP,e ta l.V a r i o u s f i r i n g a c t i v i t i e s a n d f i n i t eGt i m e s y n c h r o n iGz a t i o no f a n i m p r o v e dH i n d m a r s hGR o s e n e u r o nm o dGe l u n d e r e l e c t r i cf i e l de f f e c t[J].C og n i t i v eN e u r o d yGn a m i c s,2020,14:375-397[3]K I M SY,L I M W.E f f e c t o f i n h i b i t o r y s p i k eGt i m i n gd e p e n d e n t p l a s t i c i t y o nf a s ts p a r s e l y s y n c h r o n i z e dr h y t h m si n as m a l lGw o r l d n e u r o n a ln e t w o r k[J].N e u r a lN e t w o r k s,2018,106:50-66[4]G U H G,Z HA O Z G.D y n a m i c so f t i m ed e l a yGi nGd u ce d m u l t i p l es y n c h r o n o u sb e h a v i o r si ni n h i b i t o r yc o u p l ed ne u r o n s[J].P l o s O n e,2015,10(9):e0138593[5]袁韦欣,镇斌,徐鉴.单向耦合F i t z H u g hGN a g u m o 神经元的滞后同步研究[J].动力学与控制学报,2023,21(8):19-23.Y U A N W,Z H E N B,X UJ.T h es t u d y f o r l a g s y nGc h r o n i z a t i o nb e t w e e n t w oF i t z h u g hGN a g u m on e u r o n sw i t hu n i d i r e c t i o n a l c o u p l i n g[J].J o u r n a l o fD y n a mGi c s a n dC o n t r o l,2023,21(8):19-23.(i nC h i n e s e) [6]关利南,张新景,申建伟.含时滞和I h流的神经元的同步放电行为[J].动力学与控制学报,2023,21(8):24-30.G U A NL,Z HA N GX,S H E NJ.S y n c h r o n o u s f i r i n gb e h a v i o r s o f n e u r o n sw i t ht i m ed e l a y a n d I hc u r r e n t[J].J o u r n a l o fD y n a m i c s a n dC o n t r o l,2023,21(8):24-30.(i nC h i n e s e)[7]L E C U N Y,B O S E RB,D E N K E RJS,e t a l.H a n dGw r i t t e n d i g i tr e c o g n i t i o n w i t h a b a c k p r o p a g a t i o nn e t w o r k[C].I nP r o c e e d i n g sA d v a n c e s i nN e u r a l I nGf o r m a t i o nP r o c e s s i ng S y s t e m s,1990,396-404[8]C HU N GJ,G U L C E H R EC,C HO K,e t a l.G a t e df e e d b a c k r e c u r r e n t n e u r a l n e t w o r k s[C].I nP r o c e e dGi n g s o f t h e32t h I n t e r n a t i o n a l C o n f e r e n c e o nM a c h i n eL e a r n i n g,2015,37,2067-2075[9]Z HA N G H,G O O D F E L L OW I,M E T A X A SD,e ta l.S e l fGa t t e n t i o n g e n e r a t i v e a d v e r s a r i a l n e t w o r k s[C].I nP r o c e e d i n g so f t h e36t hI n t e r n a t i o n a lC o nGf e r e n c e o nM a c h i n eL e a r n i n g,2019,97,L o ng B e a c h,C A[10]徐一宸,刘建明.基于注意力机制回声状态神经网络的混沌系统预测[J].动力学与控制学报,2023,21(8):31-37.X U Y,L I UJ.C h a o t i c s y s t e m s p r e d i c t i o nu s i n g t h ee c h os t a t en e t w o r k w i t ha t t e n t i o n m e c h a n i s m[J].J o u r n a l o fD y n a m i c s a n dC o n t r o l,2023,21(8):31-37.(i nC h i n e s e)[11]G A O C,WA N G Z,H E X,e ta l.F a u l tGt o l e r a n tc o n s e n s u sc o n t r o l f o r m u l t ia g e n ts y s t e m s:a ne nGc r y p t i o nGde c r y p t i o ns c h e m e[J].I E E E T r a n s a c t i o n so nA u t o m a t i cC o n t r o l,2021,67(5):2560-2567[12]郑斌,苗中华,周进.基于能量整形方案实现具有通讯时滞欠驱动E u l e rGL a g r a n g e网络的一致性[J].动力学与控制学报,2023,21(8):38-43.Z H E N GB,M I A O Z,Z HO U J.C o n s e n s u so fn e tGw o r k e du n d e r a c t u a t e dE u l e rGL a g r a n g ew i t hc o mm uGn i c a t i o nd e l a y sb a s e do n e n e r g yGs h a p i n g s c h e m e[J].J o u r n a l o fD y n a m i c s a n dC o n t r o l,2023,21(8):38-43.(i nC h i n e s e)[13]侯祥雨,刘显波,龙新华等.复杂变时滞作用下的钻头纵扭耦合非线性振动[J].动力学与控制学报,2023,21(8):50-62.HO U X,L I U X,L O N G X,e ta l.N o n l i n e a ra x i a lGt o r s i o n a l v i b r a t i o n s o f a d r i l l s t r i n g w i t h c o m p l e x d eGl a y[J].J o u r n a lo fD y n a m i c sa n dC o n t r o l,2023,21(8):50-62.(i nC h i n e s e)[14]A S T R OM KJ,F U R U T A K.S w i n g i n g u p a p e n d uGl u mb y e n e r g y c o n t r o l.A u t o m a t i c a,2000,36(2):287-295[15]冯欣炜,胥奇,杨正兵等.一类小车倒立摆的起摆稳摆时滞控制研究[J].动力学与控制学报,2023,21(8):77-86.F E NG X,X U Q,Y A N GZ,e t a l.D e l a y e d s w i n g u pa n d s t ab i l i t yc o n t r o l o f a c l a s s o f c a r tGp e nd u l u ms y sGt e m[J].J o u r n a l o fD y n a m i c sa n dC o n t r o l,2023,21(8):77-86.(i nC h i n e s e)[16]刘灿昌,孙亮.基于负时滞控制有效性的车辆坡道预见性驾驶[J].动力学与控制学报,2023,21(8):87-93.L I N C,S U N L.P r e d i c t i v ed r i v i n g o nv e h i c l er a m p sb a s e do n e g a t i v e t i m e d e l a yc o n t r o l e f f e c t i v e n e s s[J].J o u r n a l o fD y n a m i c s a n dC o n t r o l,2023,21(8):87-93.(i nC h i n e s e)[17]M E N G H,S U N X,X UJ,e t a l.T h e g e n e r a l i z a t i o n o fe q u a lGp e a k m e t h o d f o r d e l a yGc o u p l e d n o n l i n e a rs y s t e m.P h y s i c a D:N o n l i n e a r P h e n o m e n a,2020,403:132340.[18]管明杰,茅晓晨.含时滞轨道吸振器的建筑结构的动力学分析[J].动力学与控制学报,2023,21(8):63-4Copyright©博看网. All Rights Reserved.第8期严尧等:时滞动力学与控制研究进展69.G U A N M,MA OX.D y n a m i c a l a n a l y s i s o f a b u i l d i n gs t r u c t u r ew i t ha t i m eGd e l a y t r a c kv i b r a t i o na b s o r b e r[J].J o u r n a l o fD y n a m i c s a n dC o n t r o l,2023,21(8):63-69.(i nC h i n e s e)[19]张国荣,王希奎,邹瀚森等.转子-电磁轴承非线性系统时滞减振研究[J].动力学与控制学报,2023,21(8):94-104.Z HA N G G,WA N G X,Z O U H,e ta l.V i b r a t i o ns u p p r e s s i o no f t i m ed e l a y i nr o t o rGm a g n e t i cb e a r i n gn o n l i n e a r s y s t e m[J].J o u r n a l o fD y n a m i c s a n dC o nGt r o l,2023,21(8):94-104.(i nC h i n e s e)[20]孙成佳,靳艳飞,张艳霞.具有时滞反馈控制的双稳态压电-电磁式俘能器的随机动力学[J].动力学与控制学报,2023,21(8):70-76.S U NC,J I N Y,Z HA N GY,e t a l.S t o c h a s t i c d y n a mGi c so f t h eb i s t a b l e p i e z o e l e c t r i ca n de l e c t r o m a g n e t i ch y b r i de n e r g y h a r v e s t e rw i t ht i m eGd e l a y e df e e d b a c kc o n t r o l[J].J o u r n a l o fD y n a m i c s a n dC o n t r o l,2023,21(8):70-76.(i nC h i n e s e)[21]魏梦可,韩修静.慢变参数激励D u f f i n g系统中的延迟分岔现象及其诱发的簇发振荡[J].动力学与控制学报,2023,21(8):44-49.W E I M,HA N X.B i f u r c a t i o nd e l a y b e h a v i o r sa n db u r s t i n g o sc i l l a t i o n s i n a p a r a m e t r i c a l l y e x c i t e dD u f fGi n g s s y s t e m[J].J o u r n a l o fD y n a m i c s a n dC o n t r o l,2023,21(8):44-49.(i nC h i n e s e)5Copyright©博看网. All Rights Reserved.。
控制原理专业词汇
自动控制automatic control;cybernation自动控制系统automatic control system自动控制理论automatic control theory经典控制理论classical control theory现代控制理论modern control theory智能控制理论intelligent control theory开环控制open-loop control闭环控制closed-loop control输入量input输出量output给定环节given unit/element比较环节comparing unit/element放大环节amplifying unit/element执行环节actuating unit/element控制环节controlling unit/element被控对象(control) plant反馈环节feedback unit/element控制器controller扰动/干扰perturbance/disturbance前向通道forward channel反馈通道feedback channel恒值控制系统constant control system随动控制系统servo/drive control system程序控制系统programmed control system连续控制系统continuous control system离散控制系统discrete control system线性控制系统linear control system非线性控制系统nonlinear control system定常/时不变控制系统time-invariant control system 时变控制系统time-variant control system稳定性stability快速性rapidity准确性accuracy数学模型mathematical model微分方程differential equation非线性特性nonlinear characteristic线性化处理linearization processing泰勒级数Taylor series传递函数transfer function比例环节proportional element积分环节integrating element一阶惯性环节first order inertial element二阶惯性环节second order inertial element二阶震荡环节second order oscillation element微分环节differentiation element一阶微分环节first order differentiation element二阶微分环节second order differentiation element 延迟环节delay element动态结构图dynamic structure block串联环节serial unit并联环节parallel unit信号流图signal flow graph梅逊增益公式mason’s gain formula时域分析法time domain analysis method性能指标performance index阶跃函数step function斜坡函数ramp function抛物线函数parabolic function /acceleration function 冲击函数impulse function正弦函数sinusoidal function动态/暂态响应transient response静态/稳态响应steady-state response延迟时间delay time上升时间rise time峰值时间peak time调节时间settling time最大超调量maximum overshoot稳态误差steady-state error无阻尼undamping欠阻尼underdamping过阻尼overdamping特征根eigen root极点pole零点zero实轴real axis虚轴imaginary axis稳态/静态分量steady-state component瞬态/暂态/动态分量transient component运动模态motion mode衰减attenuation系数coefficient初相角initial phase angle响应曲线response curve主导极点dominant pole劳斯稳定判据Routh stability criterionS平面S plane胡尔维茨稳定判据Hurwitz stability criterion测量误差measurement error扰动误差agitation error结构性误差structural error偏差deviation根轨迹root locus常规根轨迹routine root locus根轨迹方程root locus equation幅值magnitude幅角argument对称性symmetry分离点separation point会合点meeting point渐近线asymptote出射角emergence angle入射角incidence angle广义根轨迹generalized root locus零度根轨迹zero degree root locus偶极子dipole频域分析法frequency-domain analysis method频率特性frequency characteristic极坐标系polar coordinate system直角坐标系rectangular coordinate system幅频特性magnitude-frequency characteristic相频特性phase-frequency characteristic幅相频率特性magnitude-phase frequency characteristic最小相位系统minimum phase system非最小相位系统nonminimum phase system奈奎斯特稳定判据Nyquist stability criterion伯德定理Bode theorem稳定裕度stability margin幅值裕度magnitude margin相位/相角裕度phase margin对数幅频特性log magnitude-frequency characteristic无阻尼自然震荡角频率undamped oscillation angular frequency 阻尼震荡角频率damped oscillation angular frequency阻尼角damping angle带宽频率bandwidth frequency穿越/截止频率crossover/cutoff frequency谐振峰值resonance peak系统校正system compensation超前校正lead compensation滞后校正lag compensation自激震荡self-excited oscillation死区特性dead zone characteristic饱和特性saturation characteristic间隙特性backlash characteristic描述函数法describing function method相平面法phase plane method采样控制系统sampling control system 数字控制系统digital control system频谱frequency spectrum采样定理sampling theorem信号重现signal recurrence拉氏变换Laplace transformZ变换Z transform终值定理final-value theorem差分方程difference equation迭代法iterative method脉冲传递函数pulse transfer function零阶保持器zero-order holder映射mapping方框图block diagram伯德图Bode diagram特征方程characteristic equation可控性controllability临界阻尼critical damping阻尼常数damping constant阻尼比damping ratio初始状态initial state初值定理initial-value theorem反Z变换inverse Z-transformation负反馈negative feedback正反馈positive feedback尼科尔斯图Nichols chart部分分式展开partial fraction expansion 幅角原理argument principle相对稳定性relative stability共振频率resonant frequency劳斯表Routh tabulation/array奇点singularity渐进稳定性asymptotic stability控制精度control accuracy临界稳定性critical stability耦合coupling解耦decoupling。