2017年高考真题——数学(浙江卷)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
绝密★启用前
2017年普通高等学校招生全国统一考试(浙江卷)
数学
本试题卷分选择题和非选择题两部分。全卷共4页,选择题部分1至2页,非选择题部分3至4页。满分150分。考试用时120分钟。 考生注意:
1.答题前,请务必将自己的姓名、准考证号用黑色字迹的签字笔或钢笔分别填在试题卷和答题纸规定的位置上。
2.答题时,请按照答题纸上“注意事项”的要求,在答题纸相应的位置上规范作答,在本试题卷上的作答一律无效。 参考公式:
球的表面积公式 锥体的体积公式
24S R =π
13
V Sh =
球的体积公式
其中S 表示棱锥的底面面积,
h 表示棱锥的高 34
3
V R =π
台体的体积公式
其中R 表示球的半径 1
()3
a b V h S S =
柱体的体积公式
其中S a ,S b 分别表示台体的上、下底
面积 V =Sh
h 表示台体的
其中S 表示棱柱的底面面积,h 表示棱柱的高
选择题部分(共40分)
一、选择题:本大题共10小题,每小题4分,共40分。在每小题给出的四个选项中,只有
一项是符合题目要求的。
1.已知}11|{<<-=x x P ,}02{<<-=x Q ,则=Q P
A .)1,2(-
B .)0,1(-
C .)1,0(
D .)1,2(-- 【答案】A
【解析】取Q P ,所有元素,得=Q P )1,2(-.
2.椭圆22
194
x y +=的离心率是 A
.
3
B
.
3
C .
23
D .
59
【答案】B
【解析】e =
=
,选B. 3.某几何体的三视图如图所示(单位:cm ),则该几何体的体积(单位:cm 3)是
A .
π
2
+1 B .
π
2
+3 C .
3π2
+1 D .
3π2
+3 【答案】A 【解析】2
π1211π3(21)1322
V ⨯=
⨯⨯+⨯⨯=+,选A. 4.若x ,y 满足约束条件0
3020x x y x y ≥⎧⎪
+-≥⎨⎪-≤⎩
,则z =x +2y 的取值范围是
A .[0,6]
B .[0,4]
C .[6,+∞]
D .[4,+∞]
【答案】D
【解析】可行域为一开放区域,所以直线过点(2,1)时取最小值4,无最大值,选D. 5.若函数f (x )=x 2+ ax +b 在区间[0,1]上的最大值是M ,最小值是m ,则M – m
A .与a 有关,且与b 有关
B .与a 有关,但与b 无关
C .与a 无关,且与b 无关
D .与a 无关,但与b 有关
【答案】B
【解析】因为最值在2
(0),(1)1,()24
a a f
b f a b f b ==++-=-中取,所以最值之差一定与b
无关,选B.
6.已知等差数列[a n ]的公差为d ,前n 项和为S n ,则“d >0”是“S 4 + S 6”>2S 5的
A .充分不必要条件
B .必要不充分条件
C .充分必要条件
D .既不充分也不必要条件
【答案】C
【解析】4652S S S d +-=,所以为充要条件,选C.
7.函数y=f (x )的导函数()y f x '=的图像如图所示,则函数y=f (x )的图像可能是
【答案】D
【解析】原函数先减再增,再减再增,因此选D.
8.已知随机变量ξ1满足P (1ξ=1)=p i ,P (1ξ=0)=1—p i ,i =1,2.若0
2
,则 A .1E()ξ<2E()ξ,1D()ξ<2D()ξ B .1E()ξ<2E()ξ,1D()ξ>2D()ξ C .1E()ξ>2E()ξ,1D()ξ<2D()ξ
D .1E()ξ>2E()ξ,1D()ξ>2D()ξ
8.【答案】A 【解析】
112212(),(),()()E p E p E E ξξξξ==∴<
111222121212()(1),()(1),()()()(1)0D p p D p p D D p p p p ξξξξ=-=-∴-=---<,选
A.
9.如图,已知正四面体D –ABC (所有棱长均相等的三棱锥),PQR 分别为AB ,BC ,CA 上
的点,AP=PB ,2BQ CR
QC RA ==,
分别记二面角D –PR –Q ,D –PQ –R ,D –QR –P 的平面较为α,β,γ,则
A .γ<α<β
B .α<γ<β
C .α<β<γ
D .β<γ<α
【答案】B
【解析】设O 为三角形ABC 中心,则O 到PQ 距离最小,O 到PR 距离最大,O 到RQ 距离居中,而高相等,因此αγβ<<所以选B
10.如图,已知平面四边形ABCD ,AB ⊥BC ,AB =BC =AD =2,CD =3,AC 与BD 交于点O ,
记1·I OAOB
=,2·I OB OC =,3·I OC OD =,则
A .I 1
B .I 1
C . I 3
D .I 2
【答案】C 【
解
析
】
因
为
90
AOB COD ∠=∠> ,所以
0(,O B O C O A O B O C O D O A
⋅
>>⋅>⋅<< 选C
非选择题部分(共110分)
二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分。