2018届河南省郑州市高三上学期第一次质量预测理科数学试题及答案
2018年河南省高考数学一模试卷(理科)
2018年河南省高考数学一模试卷(理科)一、选择题(本题共12小题,每小题5分,共60分)1.(5分)已知集合A={x|x2﹣2x﹣3>0},B=N,则集合(∁R A)∩B中元素的个数为()A.2B.3C.4D.52.(5分)若复数(a∈R,i为虚数单位)是纯虚数,则实数a的值为()A.﹣6B.13C.D.3.(5分)已知f(x)=sinx﹣tanx,命题p:∃x0∈(0,),f(x0)<0,则()A.p是假命题,¬p:∀x∈(0,),f(x)≥0B.p是假命题,¬p:∃x0∈(0,),f(x0)≥0C.p是真命题,¬p:∀x∈(0,),f(x)≥0D.p是真命题,¬p:∃x0∈(0,),f(x0)≥04.(5分)已知程序框图如图,则输出i的值为()A.7B.9C.11D.135.(5分)2018年元旦假期,高三的8名同学准备拼车去旅游,其中(1)班、(2)班,(3)班、(4)班每班各两名,分乘甲乙两辆汽车,每车限坐4名同学(乘同一辆车的4名同学不考虑位置),其中(1)班两位同学是孪生姐妹,需乘同一辆车,则乘坐甲车的4名同学中恰有2名同学是来自同一个班的乘坐方式共有()A.18种B.24种C.48种D.36种6.(5分)《九章算术》是我国古代数学名著,在《九章算术》中将底面为矩形且有一侧棱垂直于底面的四棱锥称为“阳马”,若某阳马”的三视图如图所示,其中正视图和侧视图是腰长为1的两个全等的等腰直角三角形,则该“阳马”的表面积为()A.1+B.1+2C.2+D.2+27.(5分)设不等式组表示的平面区域为D,若圆C:(x+1)2+y2=r2(r>0)不经过区域D上的点,则r的取值范围为()A.(0,)∪(,+∞)B.(,+∞)C.(0,)D.[,]8.(5分)若等边三角形ABC的边长为3,平面内一点M满足6﹣3=2,则•的值为()A.﹣B.﹣2C.2D.9.(5分)关于函数f(x)=3sin(2x﹣)+1(x∈R),下列命题正确的是()A.由f(x1)=f(x2)=1可得x1﹣x2是π的整数倍B.y=f(x)的表达式可改写成f(x)=3cos(2x+)+1C.y=f(x)的图象关于点(,1)对称D.y=f(x)的图象关于直线x=﹣对称10.(5分)设函数f(x)=mx2﹣mx﹣1,若对于x∈[1,3],f(x)<﹣m+4恒成立,则实数m的取值范围为()A.(﹣∞,0]B.C.D.11.(5分)设双曲线的方程为﹣=1(a>0,b>0),若双曲线的渐近线被圆M:x2+y2﹣10x=0所截得的两条弦长之和为12,已知△ABP的顶点A,B分别为双曲线的左、右焦点,顶点P在双曲线上,则的值等于()A.B.C.D.12.(5分)已知定义在R上的函数f(x)和g(x)分别满足f(x)=,e2x﹣2+x2﹣2f(0)•x,g′(x)+2g(x)<0,则下列不等式恒成立的是()A.g(2016)<f(2)•g(2018)B.f(2)•g(2016)<g(2018)C.g(2016)>f(2)•g(2018)D.f(2)•g(2016)>g(2018)二、填空题(本题共4小题,每小题5分,共20分)13.(5分)设a=(cosx﹣sinx)dx,则二项式(a﹣)6的展开式中含x2项的系数为.14.(5分)若函数f(x)=(a,b∈R)为奇函数,则f(a+b)的值为.15.(5分)已知三棱柱ABC﹣A1B1C1的底面是正三角形,侧棱AA1⊥底面ABC,若有一半径为2的球与三棱柱的各条棱均相切,则AA1的长度为.16.(5分)如图,OA,OB为扇形湖面OAB的湖岸,现欲利用渔网和湖岸在湖中隔出两个养殖区﹣区域I和区域Ⅱ,点C在上,∠COA=θ,CD∥OA,其中,半径OC及线段CD需要用渔网制成.若∠AOB=,OA=1,则所需渔网的最大长度为.三、解答题(共70分)17.(12分)已知S n为数列{a n}的前n项和,且a1<2,a n>0,6S n=+3a n+2,n∈N *.(1)求数列{a n}的通项公式;(2)若对∀n∈N*,b n=(﹣1)n,求数列{b n}的前2n项的和T2n.18.(12分)如图所示,在四棱锥P﹣ABCD中,底面ABCD为直角梯形,AB∥CD,∠BAD=90°,DC=DA=2AB=2,点E为AD的中点,BD∩CE=H,PH⊥平面ABCD,且PH=4.(1)求证:PC⊥BD;(2)线段PC上是否存在一点F,使二面角B﹣DF﹣C的余弦值是?若存在,请找出点F的位置;若不存在,请说明理由.19.(12分)某地区为了解学生学业水平考试的状况,从参加学业水平考试的学生中抽出160名,其数学组成绩(均为整数)的频率分布直方图如图所示.(1)估计这次考试数学成绩的平均分和众数;(2)假设在(90,100]段的学生中有3人得满分100分,有2人得99分,其余学生的数学成绩都不相同.现从90分以上的学生中任取4人,不同分数的个数为ξ,求ξ的分布列及数学期望E(ξ).20.(12分)已知椭圆C1:+=1(a>b>0)的离心率为,右焦点F是抛物线C2:y2=2px(p>0)的焦点,点(2,4)在抛物线C2上.(1)求椭圆C1的方程;(2)已知斜率为k的直线l交椭圆C1于A,B两点,M(0,2),直线AM与BM 的斜率乘积为﹣,若在椭圆上存在点N,使|AN|=|BN|,求△ABN的面积的最小值.21.(12分)已知函数f(x)=ae x+x2﹣bx(a,b∈R),其导函数为y=f′(x).(1)当b=2时,若函数y=f′(x)在R上有且只有一个零点,求实数a的取值范围;(2)设a≠0,点P(m,n)(m,n∈R)是曲线y=f(x)上的一个定点,是否存在实数x0(x0≠m)使得f(x0)﹣n=f′()(x0﹣m)成立?并证明你的结论.[选修4—4:坐标系与参数方程选讲]22.(10分)在直角坐标系xOy中,已知直线l1:(t为参数),l2:(t为参数),其中α∈(0,),以原点O为极点,x轴非负半轴为极轴,取相同长度单位建立极坐标系,曲线C的极坐标方程为ρ﹣4cosθ=0.(1)写出l1,l2的极坐标方程和曲线C的直角坐标方程;(2)设l1,l2分别与曲线C交于点A,B(非坐标原点),求|AB|的值.[选修4—5:不等式选讲]23.设函数f(x)=|x﹣a|(a>0).(1)当a=2时,解不等式f(x)≥1﹣2x;(2)已知f(x)+|x﹣1|的最小值为3,且m2n=a(m>0,n>0),求m+n的最小值.2018年河南省高考数学一模试卷(理科)参考答案与试题解析一、选择题(本题共12小题,每小题5分,共60分)1.【分析】可先求出集合A={x|x<﹣1,或x>3},然后进行交集、补集的运算即可.【解答】解:A={x|x<﹣1,或x>3};∴∁R A={x|﹣1≤x≤3};∴(∁R A)∩B={0,1,2,3}.故选:C.【点评】考查一元二次不等式的解法,以及描述法、列举法表示集合的概念,交集和补集的运算.2.【分析】利用复数的除法运算化简为a+bi(a,b∈R)的形式,由实部等于0且虚部不等于求解a的值.【解答】解:由复数==是纯虚数,则,解得a=﹣6.故选:A.【点评】本题考查了复数代数形式的乘除运算,考查了复数的基本概念,是基础的计算题.3.【分析】利用特称值,判断特称命题的真假,利用命题的否定关系,特称命题的否定是全称命题写出结果.【解答】解:f(x)=sinx﹣tanx,x∈(0,),当x=时,∴f(x)=,命题p:∃x0∈(0,),f(x0)<0,是真命题,命题p:∃x0∈(0,),f(x0)<0,则¬p:∀x∈(0,),f(x)≥0.故选:C.【点评】本题考查命题的否定,特称命题与全称命题的否定关系,基本知识的考查.4.【分析】由已知中的程序框图可知:该程序的功能是利用循环结构计算并输出变量i的值,模拟程序的运行过程,可得答案.【解答】解:当S=1时,不满足退出循环的条件,故S=1,i=3;当S=1时,不满足退出循环的条件,故S=3,i=5;当S=3时,不满足退出循环的条件,故S=15,i=7;当S=15时,不满足退出循环的条件,故S=105,i=9;当S=105时,不满足退出循环的条件,故S=945,i=11;当S=945时,不满足退出循环的条件,故S=10395,i=13;当S=10395时,满足退出循环的条件,故输出的i=13,故选:D.【点评】本题考查的知识点是程序框图,当循环的次数不多,或有规律时,常采用模拟循环的方法解答.5.【分析】分类讨论,第一类,一班的2名同学在甲车上;第二类,一班的2名同学不在甲车上,再利用组合知识,问题得以解决.【解答】解:由题意,第一类,一班的2名同学在甲车上,甲车上剩下两个要来自不同的班级,从三个班级中选两个为C32=3,然后分别从选择的班级中再选择一个学生为C21C21=4,故有3×4=12种.第二类,一班的2名同学不在甲车上,则从剩下的3个班级中选择一个班级的两名同学在甲车上,为C31=3,然后再从剩下的两个班级中分别选择一人为C21C21=4,这时共有3×4=12种,根据分类计数原理得,共有12+12=24种不同的乘车方式,故选:B.【点评】本题考查计数原理的应用,考查组合知识,考查学生的计算能力,属于中档题.6.【分析】由三视图知该几何体是侧棱垂直于底面的四棱锥,画出图形结合图形求出它的表面积.【解答】解:由三视图知该几何体是侧棱垂直于底面的四棱锥,如图所示;正视图和侧视图是腰长为1的两个全等的等腰直角三角形,∴四棱锥的底面是正方形,且边长为1,其中一条侧棱PD⊥底面ABCD,且侧棱AD=1,∴四棱锥的四个侧面都为直角三角形,且PA=PC=,∴四棱锥的表面积为S=S底面ABCD+2S△SAD+2S△SAB=1+2××1×1+2××1×=2+.故选:C.【点评】本题考查了利用空间几何体的三视图求几何体表面积的应用问题,是基础题.7.【分析】作出题中不等式组表示的平面区域,得到如图的△MNP及其内部,而圆C表示以(﹣1,﹣1)为圆心且半径为r的圆.观察图形,可得半径r<CM或r>CP时,圆C不经过区域D上的点,由此结合平面内两点之间的距离公式,即可得到r的取值范围.【解答】解:作出不等式组表示的平面区域,得到如图的△MNP及其内部,其中M(1,1),N(2,2),P(1,3)∵圆C:(x+1)2+y2=r2(r>0)表示以C(﹣1,0)为圆心,半径为r的圆,∴由图可得,当半径满足r<CM或r>CP时,圆C不经过区域D上的点,∵CM==,CP==.∴当0<r<或r>时,圆C不经过区域D上的点,故选:A.【点评】本题给出动圆不经过已知不等式组表示的平面区域,求半径r的取值范围.着重考查了圆的标准方程、平面内两点间的距离公式、二元一次不等式组表示的平面区域等知识,属于中档题.8.【分析】根据条件可先求出,而由即可得出,这样即可用分别表示出,然后进行数量积的运算即可.【解答】解:等边三角形ABC的边长为3;∴;;∴;∴==,=;∴===﹣2.故选:B.【点评】考查向量数量积的运算及计算公式,以及向量的数乘运算,向量加法的几何意义.9.【分析】根据函数f(x)=3sin(2x﹣)+1(x∈R),结合三角函数的性质即可判断各选项.【解答】解:函数f(x)=3sin(2x﹣)+1(x∈R),周期T=,对于A:由f(x1)=f(x2)=1,可能x1与x2关于其中一条对称轴是对称的,此时x1﹣x2不是π的整数倍;∴A 不对.对于B:由诱导公式,3sin(2x﹣)+1=3cos[﹣(2x﹣)]+1=3cos(2x﹣)+1.∴B不对.对于C:令x=,可得f()=3sin(2×﹣)+1=﹣1=,∴C不对,对于D:当x=﹣时,可得f()=3sin(﹣﹣)+1=﹣1×3+1=﹣2,f(x)的图象关于直线x=﹣对称.故选:D.【点评】本题主要考查利用y=Asin(ωx+φ)的信息特征,判断各选项的正误,属于中档题.10.【分析】利用分离参数法,再求出对应函数在x∈[1,3]上的最大值,即可求m 的取值范围.【解答】解:由题意,f(x)<﹣m+4,可得m(x2﹣x+1)<5.∵当x∈[1,3]时,x2﹣x+1∈[1,7],∴不等式f(x)<0等价于m<.∵当x=3时,的最小值为,∴若要不等式m<恒成立,则必须m<,因此,实数m的取值范围为(﹣∞,),故选:D.【点评】本题考查恒成立问题,考查分离参数法的运用,解题的关键是分离参数,正确求最值,属于中档题.11.【分析】根据垂径定理求出圆心到直线的距离为d=4,再根据点到直线的距离公式可得=4,得到5b=4c,即可求出a=c,根据正弦定理可得===【解答】解:双曲线的一条渐近线方程为y=x,双曲线的渐近线被圆M:x2+y2﹣10x=0,即(x﹣5)2+y2=25所截得的两条弦长之和为12,设圆心到直线的距离为d,则d==4,∴=4,即5b=4c,即b=c∵a2=c2﹣b2=c2,∴a=c,∴|AP﹣BP|=2a,由正弦定理可得===2R,∴sinB=,sinA=,sinP=,∴===,故选:C.【点评】本题考查了双曲线的简单性质以及圆的有关性质和正弦定理,属于中档题12.【分析】f(x)=e2x﹣2+x2﹣2f(0)•x,令x=0,则f(0)=.由f′(x)=f′(1)•e2x﹣2+2x﹣2f(0),令x=1,可得f(0).进而得出f′(1),f(x),f (2).令h(x)=e2x g(x),及其已知g′(x)+2g(x)<0,可得h′(x)=e2x[g′(x)+2g(x)]<0,利用函数h(x)在R上单调递减,即可得出.【解答】解:f(x)=e2x﹣2+x2﹣2f(0)•x,令x=0,则f(0)=.∵f′(x)=f′(1)•e2x﹣2+2x﹣2f(0),令x=1,则f′(1)=f′(1)+2﹣2f(0),解得f(0)=1.∴f′(1)=2e2.∴f(x)=e2x+x2﹣2x,∴f(2)=e4.令h(x)=e2x g(x),∵g′(x)+2g(x)<0,∴h′(x)=e2x g′(x)+2e2x g(x)=e2x[g′(x)+2g(x)]<0,∴函数h(x)在R上单调递减,∴h(2016)>h(2018),∴e2016×2g(2016)>e2018×2g(2018),可得:g(2016)>e4g(2018).∴g(2016)>f(2)g(2018).故选:C.【点评】本题考查了利用导数研究函数的单调性极值与最值、构造法、方程与不等式的解法,考查了推理能力与计算能力,属于难题.二、填空题(本题共4小题,每小题5分,共20分)13.【分析】根据微积分基本定理首先求出a的值,然后再根据二项式的通项公式求出r的值,问题得以解决.【解答】解:由于a=(cosx﹣sinx)dx=(sinx+cosx)|=﹣1﹣1=﹣2,∴(﹣2﹣)6=(2+)6的通项公式为T r+1=26﹣r C6r•x3﹣r,令3﹣r=2,求得r=1,故含x2项的系数为26﹣1C61=192.故答案为:192【点评】本题主要考查定积分、二项式定理的应用,二项式展开式的通项公式,属于基础题.14.【分析】由已知中函数f(x)为奇函数,f(﹣x)=﹣f(x)恒成立,可得a,b的值,进而可得f(a+b)的值.【解答】解:∵函数f(x)==为奇函数,故f(﹣x)=﹣f(x)恒成立,故.即,∴f(x)=,∴f(a+b)=f(1)=1﹣2=﹣1,故答案为:﹣1.【点评】本题考查的知识点是分段函数的应用,函数的奇偶性,函数求值,难度中档.15.【分析】由题意求出正三棱柱的高、底面边长,即可求出AA1的长度.【解答】解:由题意,△ABC的外接圆即为球的大圆,r=2,设底面△ABC外接圆圆心G,即GA=GB=GC=2,从而正三角形ABC边长2,设球心O,由题意,E、D在球面上,OE=OD=2,F为DE中点,则OF⊥DE,OF=GD=GC=1,在Rt△OEF中,OE=2,OF=1,∴EF=,∴DE=2,∴AA1=2.故答案为:2.【点评】本题考查正三棱柱的内切球与正三棱柱的关系,通过二者的关系求出正三棱柱的体积,考查计算能力,逻辑推理能力.16.【分析】确定∠COD,在△OCD中利用正弦定理求得CD的长度,根据所需渔网长度,即图中弧AC、半径OC和线段CD长度之和,确定函数的解析式,利用导数确定函数的最值,求得所需渔网长度的最大值.【解答】解:由CD∥OA,∠AOB=,∠AOC=θ,得∠OCD=θ,∠ODC=,∠COD=﹣θ;在△OCD中,由正弦定理,得CD=sin(﹣θ),θ∈(0,),设渔网的长度为f(θ),可得f(θ)=θ+1+sin(﹣θ),所以f′(θ)=1﹣cos(﹣θ),因为θ∈(0,),所以﹣θ∈(0,),令f′(θ)=0,得cos(﹣θ)=,所以﹣θ=,所以θ=.θ(0,)(,)f′(θ)+0﹣f(θ)极大值所以f(θ)∈(2,].故所需渔网长度的最大值为.【点评】本题考查了正弦定理的应用问题,也考查了函数模型的构建与最值应用问题,是难题.三、解答题(共70分)17.【分析】(1)6S n=+3a n+2,n∈N*.n≥2时,6a n=6S n﹣6S n﹣1,化为(a n+a n﹣1)(a n﹣a n﹣1﹣3)=0,由a n>0,可得a n﹣a n﹣1=3,n=1时,6a1=+3a1+2,且a1<2,解得a1.利用等差数列的通项公式可得a n.(2)b n=(﹣1)n=(﹣1)n(3n﹣2)2.b2n﹣1+b2n=﹣(6n﹣5)2+(6n﹣2)2=3(12n﹣7)=36n﹣21.利用分组求和即可得出.【解答】解:(1)6S n=+3a n+2,n∈N*.n≥2时,6a n=6S n﹣6S n﹣1=+3a n+2﹣(+2),化为:(a n+a n﹣1)(a n﹣a n﹣1﹣3)=0,∵a n>0,∴a n﹣a n﹣1=3,n=1时,6a1=+3a1+2,且a1<2,解得a1=1.∴数列{a n}是等差数列,首项为1,公差为3.∴a n=1+3(n﹣1)=3n﹣2.(2)b n=(﹣1)n=(﹣1)n(3n﹣2)2.+b2n=﹣(6n﹣5)2+(6n﹣2)2=3(12n﹣7)=36n﹣21.∴b2n﹣1∴数列{b n}的前2n项的和T2n=36(1+2+……+n)﹣21n=﹣21n=18n2﹣3n.【点评】本题考查了数列递推关系、等差数列的定义通项公式与求和公式、分组求和方法,考查了推理能力与计算能力,属于中档题.18.(1)推导出△BAD≌△EDC,∠DBA=∠DEH,从而BD⊥EC,由PH⊥平面ABCD,【分析】得BD⊥PH,由此能证明BD⊥平面PEC,从而PC⊥BD.(2)推导出PH、EC、BD两两垂直,建立以H为坐标原点,HB、HC、HP所在直线分别为x,y,z轴的坐标系,利用向量法能求出线段PC上存在一点F,当点F 满足CF=3时,二面角B﹣DF﹣C的余弦值是.【解答】证明:(1)∵AB∥CD,∠BAD=90°,∴∠EDC=∠BAD=90°,∵DC=DA=2AB,E为AD的中点,∴AB=ED,∴△BAD≌△EDC,∴∠DBA=∠DEH,∵∠DBA+∠ADB=90°,∴∠DEH+∠ADB=90°,∴BD⊥EC,又∵PH⊥平面ABCD,BD⊂平面ABCD,∴BD⊥PH,又∵PH∩EC=H,且PH,EC⊂平面PEC,∴BD⊥平面PEC,又∵PC⊂平面PEC,∴PC⊥BD.解:(2)由(1)可知△DHE∽△DAB,由题意得BD=EC=5,AB=DE=,∴,∴EH=1,HC=4,DH=2,HB=3,∵PH、EC、BD两两垂直,建立以H为坐标原点,HB、HC、HP所在直线分别为x,y,z轴的坐标系,H(0,0,0),B(3,0,0),C(0,4,0),D(﹣2,0,0),P(0,0,4),假设线段PC上存在一点F满足题意,∵与共线,∴存在唯一实数λ,(0≤λ≤1),满足=λ,解得F(0,4﹣4λ,4λ),设向量=(x,y,z)为平面CPD的一个法向量,且=(0,﹣4,4),=(﹣2,﹣4,0),∴,取x=2,得=(2,﹣1,﹣1),同理得平面CPD的一个法向量=(0,λ,λ﹣1),∵二面角B﹣DF﹣C的余弦值是,∴|cos<>|===,由0≤λ≤1,解得λ=,∴=,∵CP=4,∴线段PC上存在一点F,当点F满足CF=3时,二面角B﹣DF﹣C的余弦值是.【点评】本题考查线线垂直垂直的证明,考查二面角的余弦值的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,考查函数与方程思想,是中档题.19.【分析】(1)把组中值看作各小组的平均数,根据加权平均数公式计算;(2)根据组合数公式计算各种情况的概率,得出分布列.【解答】解:(1)=45×0。
郑州市2018年高中毕业班第一次质量预测理科数学试卷含答案
2018年高中毕业年级第一次质量预测 参考答案理科数学 一、选择题二、填空题10512??-1; 14. ?x.?y;0,; 16. 13. 15. ??2235??三、解答题:解答应写出文字说明,证明过程或演算步骤.25??a ?a 2a ?5d ,5a ???1521.2?a ?3n ? 分17.解析:(1),求得...............6??n 55?a ?5a ?10dS ?5,3d ???53111111???(?).b )2 (...............8分n2n ?13n ?(3n ?1)(3n ?2)331a(3n ?)n n11.?T ??? ...............12分n)?2(3n69n ?62意由题(1)18.解析:141?134?119?126?(120?x )?132?105?107?113115?122? ,108x ? 解得...............4分;?0,1,2,3,4.的所有取值有(2)随机变量22CC2??43;p(??4)??分....9 的分布列为:72791122??0)E ??(?3?1??2????4 分 (12)5225452253225 222.,90,?4,BD2AD ?DE ??ABACB ? AC ?BC ?,由题意知)证明:连接19.(1 222AC ?AD ??CD ABCD ? ,,...............2分则ABC ?平面平面PAB ,PD 平面CD ?PAB,?CD ? ,所以又因为CD,AC ABC PD ?AC 内,因为都在平面,ABC ?PD ;所以...............4平面分xyzDAB ?PD,CD, 2()由(1)知两两互相垂直,建立如图所示的直角坐标系,?ABC4PD ?PA 所成的角为,有 且,与平面4),4),B(0,2,0P(0,0),,C4(A0,?,0),(220,0 则CB ?(?22,2,0),AC ?(22,4,0),PA ?(0,?4,?4) ∴AD?2DB,CE?2EB,?DE//AC,因为CB?,BCAC?ABC?PD DEP分...............8平面,∴平面)知1由(.)CB?(?22,2,0DEP∴的一个法向量为平面.?,?ACn????PACzxn?,y,设平面的法向量为,则?,?PAn??0y?22x?41??x?2,y1z?...............10分,令,则,∴?0??4y?4z?PAC),1n?(2,?1的一个法向量.为平面∴32?4?.?cos?n,CB???∴212?43PAC PDE的锐二面角的余弦值为与平面, 故平面2 PAC30PDE的锐二面角为与平面分所以平面................12ab3?222222222c?).ab?)?(a?3abb?c4(a)(?4b1,即)由题意(20.解析:22ba4?222?e?ba?2分所以,................4224PQF?,24a?4,?a?2的周长为,所以2()因为三角形22x221??y)0,),F(1F(?1,01?b,椭圆方程为1)知,且焦点,由(21222xl?l,?1x??1,P),Q(?1,?)(轴,方程为斜率不存在,则可得,①若直线22722?Q?FFP)?2,?2,),FQ?F(?P(?,故分................62222222ll)?1y?k(x 的方程为,②若直线斜率存在,设直线),?1y?k(x?22220?)?1x?4kx?2k?2(2k y得,由消去?222?x?2y?222?k2k4?,xx?.?x?x)y,y),Q(xP(x,,则设...............8分21212112221?2k?12k222.?k1?x)k?FQ?(??1)xx?(kx?1)(PF则22211222297k74k?2k1?2222)?1Q?(k1)(?)?k????,FP?F??(k1代入韦达定理可得77)?Q?(1,FP?F]1,FQ?(?FP?2k0k?由,不存在时的情况,得,222222)k1k??12k?122(22k1?2结合当可得2222227FP?FQ最大值是所以分 (12)?????0a???xf0,0?)(xf上的单调递增函数;2221?ax??)(fx,(?0)x)121.解析:(2ax恒成立,所以函数时,当是ax?11???0?a?x?0?fx时,当,得,2aax1ax?1??x0?(fx)?0?,得,2aax11).0(,??,(),减区间为函数单调递增区间为aa????0a?.0,x??f.综上所述,当时,函数增区间为110?a).,)(0(,??,减区间为时,函数单调递增区间为分...............4当a a1x m?e?x?g(x)(lnx?1)]x?[,e,函数2)∵的零点,(e x mx?x?1)e?(ln即方程的根.1????????xx?xexh?x1??ln?h1ex?1.?lnx?,令................6分??x??11????????1?a0?f?1,ef1x)[,11?xf?x?ln递减,在上递增,∴.时,在由(1)知当e x11],x?[e0?lnx?1?在∴上恒成立.e x1????x?00h?x???lnx?1e1?1?∴分,...............8??x??1????x x?elnx?1hx?]e[x?,.上单调递增在∴e111??????h??2hex e)?h(x e..........10,分∴??maxmin ee??1111e ??2e ??m ??2e ?m e ?m ee 所以当...............12分时有一个零点时,没有零点,当.或 ee ?,cos1?tx ??.t 为参数)(l 直线22.(1)? 的参数方程为:?sin ?ty ?分 ……2?8cos 2222?????????.sin8?8xcos,?sin即?8cosy,?? ,分 5 ……2?sin? 2,1?tx ????2??,为参数)(tl 直线2)当(? 时,的参数方程为: 42?ty ??2?分6 ……22x ?y80,16?t ?82t ? 可得代入2t ?84?tt)3.?t ?AB ??t ?(t 211212 ……8分112ABS ??d ??83??26.?AOB ?222 ……10 分23.(本小题满分10分)(1)由已知,可得x ?3?2x ?1,解:22.1?2x ?即x ?3 分 ……124.??x ??或x ……3 分 32故所求不等式的解集为:(??,?)(4,??).……4分3???4x ?5,x ??3,?1? (2)由已知,设h(x)?2f(x)?g(x)?2x ?3?2x ?1?7,?3?x ?,? 2?1?4x ?5,x ?.? ?2分6…….9?a ?(?4?),?a ??1, max x ……7分?3a ?3?0?a ??1?? ……8分 .?6,只需,???1?a ??1a ?6a ?3?0?? 2?1,且无限趋近于4, 4?4? x ……9分 .a ?4?综上,的取值范围是 分10…… 1,4].?(a。
河南省郑州市2018届高中毕业班第一次质量检测(模拟)理科数学试题+Word版含解析
2018年高中毕业年级第一次质量预测理科数学试题卷第Ⅰ卷一、选择题:共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 设集合,,则()A. B. C. D.【答案】A【解析】∵ ,∴.选A.2. 若复数为纯虚数(为虚数单位),则实数的值是()A. B. 或1 C. 2或 D. 2【答案】D【解析】由题意得,解得.选D.3. 下列说法正确的是()A. “若,则”的否命题是“若,则”B. “若,则”的逆命题为真命题C. ,使成立D. “若,则”是真命题【答案】D【解析】选项A,否命题为“若,则”,故A不正确.选项B,逆命题为“若,则”,为假命题,故B不正确.选项C,由题意知对,都有,故C不正确.选项D,命题的逆否命题“若,则”为真命题,故“若,则”是真命题,所以D正确.选D.4. 在的展开式中,各项系数和与二项式系数和之比为32,则的系数为()A. 50B. 70C. 90D. 120【答案】C【解析】在中,令得,即展开式中各项系数和为;又展开式中的二项式系数和为.由题意得,解得.故二项式为,其展开式的通项为,().令得.所以的系数为.选C.5. 等比数列中,,前3项和为,则公比的值是()A. 1B.C. 1或D. 或【答案】C【解析】.由题意得,即,两式相除整理得,解得或.选C.6. 若将函数图象上的每一个点都向左平移个单位,得到的图象,若函数是奇函数,则函数的单调递增区间为()A. B.C. D.【答案】B【解析】由题意得,∵函数是奇函数,∴,∴,又,∴.∴.由,得.∴函数的单调递增区间为.选B.点睛:解答本题时注意以下两点:(1)函数为奇函数;函数为偶函数.(2)求函数的单调增区间时要注意解析式前面的符号的限制,此时把看作一个整体后需要代入正弦函数的单调递减区间.此处容易出错,解题时要注意.7. 执行如图所示的程序框图,若输出的结果是7,则判断框内的取值范围是()A. B.。
【数学】河南省郑州市2018届高三上学期入学考试数学理试题Word版含答案
【关键字】数学郑州一中2017-2018上期高三入学测试理科数学第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合,,()A.B.C.D.2.已知向量均为单位向量,若它们的夹角为,则等于()A.B.C.D.43.若二项式展开式的二项式系数之和为8,则该展开式的系数之和为()A.-1 B..27 D.-274.将函数的图象向左平移个单位后得到函数的图象如图所示,则函数的解析式是()A.()B.()C. ()D.()5.已知两条不重合的直线和两个不重合的平面,若,,则下列四个命题:①若,则;②若,则;③若,则;④若,则其中正确命题的个数是()A.0 B..2 D.36.阅读下面程序框图,输出的结果的值为()A.B.. D.7.已知圆与直线相切于第三象限,则的值是()A.B. C. D.8.若变量满足条件,则的取值范围是()A.B. C. D.9.在中,,,,则()A.B. C. D.10.设,若函数存在整数零点,则符合条件的的取值个数为()A.2 B.. 4 D.511.已知双曲线()的左、右两个焦点分别为,以线段为直径的圆与双曲线的渐近线在第一象限的交点为,若,该双曲线的离心率为,则()A.2 B. C. D.12.数学上称函数(,)为线性函数,对于非线性可导函数,在点附近一点的函数值,可以用如下方法求其近似代替值:,利用这一方法,的近似代替值()A.大于B.小于 C.等于D.与的大小关系无法确定第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13.设函数(),若,,则.14.由数学2,0,1,7组成没有重复数字的四位偶数的个数为.15.下图是一个几何体的三视图,其中正视图和侧视图均是高为2,底边长为的等腰三角形,俯视图是边长为2的正方形,则该几何体的外接球的体积是.16.已知函数(),则的最大值为.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17. 等差数列中,已知,且为递加的等比数列.(1)求数列的通项公式;(2)若数列的通项公式(),求数列的前项和.18. 河南多地遭遇跨年霾,很多学校调整元旦放假时间,提前放假让学生们在家躲霾,郑州市根据《郑州市人民政府办公厅关于将重污染天气黄色预警升级为红色预警的通知》,自12时将黄色预警升级为红色预警,0时启动I级响应,明确要求“幼儿园、中小学等教育机构停课,停课不停学”学生和家长对停课这一举措褒贬不一,有为了健康赞成的,有怕耽误学习不赞成的,某调查机构为了了解公众对该举措的态度,随机调查采访了50人,将调查情况整理汇总成下表:(1)请在图中完成被调查人员年龄的频率分布直方图;(2)若从年龄在,两组采访对象中各随机选取2人进行深度跟踪调查,选中4人中不赞成这项举措的人数为,求随机变量的分布列和数学期望.19. 如图所示的多面体中,是平行四边形,是矩形,面,,. (1)求证:平面平面;(2)若,求与平面所成角的正弦值.20. 已知椭圆()的离心率为,以椭圆的四个顶点为顶点的四边形的面积为8. (1)求椭圆的方程;(2)如图,斜率为的直线与椭圆交于两点,点在直线的左上方,若,且直线分别与轴交于点,求线段的长度21. 已知函数(),曲线在点处的切线与直线垂直. (1)试比较20172016与20162017的大小,并说明理由;(2)若函数()()g x f x k =-有两个不同的零点12,x x ,证明:212x x e •>.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.22.选修4-4:坐标系与参数方程在直角坐标系xOy 中,直线l 的参数方程为cos 1sin x t y t αα=⎧⎨=+⎩,(t 为参数,[0,)απ∈),以原点O 为极点,以x 轴正关轴为极轴,与直角坐标系xOy 取相同的长度单位,建立极坐标系,设曲线C 的极坐标方程为2cos 4sin ρθθ=.(1)设(,)M x y 为曲线C 上任意一点,求x y +的取值范围; (2)若直线l 与曲线C 交于两点,A B ,求AB 的最小值. 23.选修4-5:不等式选讲已知()215f x x ax =-+-(05a <<) (1)当1a =时,求不等式()9f x ≥的解集; (2)如果函数()y f x =的最小值为4,求实数a 的值.试卷答案一、选择题1-5: BCAAC 6-10:CBDBC 11、12:DA二、填空题13.16.2三、解答题17.解:(1)设数列{}n a 的公差为d ,由题意2333(2)(2)()a d a d a d -+=-, 即220d d -=,解之得2d =或0d =(舍去),所以3(3)21n a a n d n =+-=-,即21n a n =-,*n N ∈为所求 (2)当2n k =,*k N ∈时,22214nn =+-; 当21n k =-,*k N ∈时,12n k +=综上,2212221,24232,214nn n n n k S n n n k -⎧+-=⎪⎪=⎨+-⎪+=-⎪⎩,(*k N ∈)18.解:(1)补全频率分布直方图如图年示: (2)X 的所有可能的取值为0,1,2,3,2264225109015(0)45075C C P X C C ==•==, 2111264644222251051020434(1)45075C C C C C P X C C C C •==•+•==, 1112246444222251051013222(2)45075C C C C C P X C C C C ==•+•==,所以X 的数学期望为() 1.2E X =.19.(1)证明:在平行四边形ABCD 中,6ABD π∠=,2AB AD =,由余弦定理,得BD =,从而222BD AD AB +=,故BD AD ⊥. 可得ABD ∆为直角三角形且090ADB ∠=,又由DE ⊥平面ABCD ,BD ⊂平面ABCD ,得DE BD ⊥ 又ADDE D =,所以BD ⊥平面ADE .由BD ⊂平面BDEF ,得平面BDEF ⊥平面ADE , (2)解:由(1)可得在Rt ABD ∆中,3BAD π∠=,BD =,又由ED BD =设1AD =,BD ED ==DE ⊥平面ABCD ,BD AD ⊥,建立以D 为坐标原点,以射线,,DA DB DE 分别为x 轴,y 轴,z 轴正方向的空间直角坐标系,如图所示:得(1,0,0)A,(C -,E,F设平面AEC 的法向量为(,,)n x y z =,得00n AE n AC ⎧•=⎪⎨•=⎪⎩,所以020x x ⎧-+=⎪⎨-+=⎪⎩令1z =,得(3,2,1)n =又因为(AF =-, 所以42cos ,14n AF n AF n AF•==• 所以直线AF 与平面AEC所成角的正弦值为14. 20.解:(1)由题意知22228c a ab a b c ⎧=⎪⎪⎪=⎨⎪=+⎪⎪⎩,解之得:28a =,22b =所以椭圆C 的方程为22182x y += (2)设直线1:2l y x m =+,11(,)A x y ,22(,)B x y 将12y x m =+代入22182x y +=中,化简整理,得222240x mx m ++-= 22(2)4(24)0m m ∆=-->,得22m -<<于是有122x x m +=-,21224x x m =-,1112PA y k x -=-,2212PB y k x -=-, 注意到121221121211(1)(2)(1)(2)22(2)(2)PA PB y y y x y x k k x x x x ----+--+=+=---- 上式中,分子122111(1)(2)(1)(2)22x m x x m x =+--++-- 从而,0PA PB k k +=,由090APB ∠=,可知1,1PA PB k k ==- 所以PMN ∆是等腰直角三角形,24P MN x ==即为所求. 21.解:(1)依题意得'2ln ()()x axx f x x a +-=+, 所以'211()(1)1a f x a a +==++,又由切线方程可得'(1)1f =,即111a =+,解得0a = 此时ln ()x f x x =,'21ln ()x f x x-=, 令'()0f x >,即1ln 0x ->,解得0x e <<; 令'()0f x <,即1ln 0x -<,解得x e > 所以()f x 的增区间为(0,)e ,减区间为(,)e +∞ 所以(2016)(2017)f f >,即ln 2016ln 201720162017>, 2017ln 20162016ln 2017>,2017201620162017>.(2)证明:不妨设120x x >>因为12()()0g x g x ==所以化简得11ln 0x kx -=,22ln 0x kx -=可得1212ln ln ()x x k x x +=+,1212ln ln ()x x k x x -=-.要证明212x x e >,即证明12ln ln 2x x +>,也就是12()2k x x +>因为1212ln ln x x k x x -=-,所以即证121212ln ln 2x x x x x x ->-+即112212lnx x x x x x ->+,令12x t x =,则1t >,即证2(1)ln 1t t t ->+. 令2(1)()ln 1t h t t t -=-+(1t >),由2'2214(1)()0(1)(1)t h t t t t t -=-=>++ 故函数()h t 在(1,)+∞是增函数,所以()(1)0h t h >=,即2(1)ln 1t t t ->+得证. 所以212x x e >.22.解:(1)将曲线C 的极坐标方程2cos 4sin ρθθ=,化为直角坐标方程为24x y = ∵(,)M x y 为曲线C 上任意一点,∴2211(2)144x y x x x +=+=+- ∴x y +的取值范围是[1,)-+∞.(2)将cos 1sin x t y t αα=⎧⎨=+⎩,代入24x y =整理得22cos 4sin 40t t αα--=,∴2216sin 16cos 160αα∆=+=>,设方程22cos 4sin 40t t αα--=的两根为12,t t 所以12244cos AB t t α=-=≥,当0α=时AB 取得最小值4. 23.解:(1)当1a =时,()215f x x x =-+-所以1()92639x f x x ⎧<⎪≥⇔⎨⎪-≥⎩或15249x x ⎧≤<⎪⎨⎪+≥⎩或5369x x ≥⎧⎨-≥⎩ 解之,得1x ≤-或5x ≥,即所求不等式的解集为(,1][5,)-∞-+∞(2)∵05a <<,∴51a >,则1(2)6,215()(2)4,25(2)6,a x x f x a x x a a x x a ⎧-++<⎪⎪⎪=-+≤≤⎨⎪⎪+->⎪⎩,注意到12x <时()f x 单调递减,5x a>时()f x 单调递增, 故()f x 的是小值在152x a≤≤时取到,即min 021()()42a f x f <≤⎧⎪⎨==⎪⎩,或min 255()()4a f x f a <≤⎧⎪⎨==⎪⎩, 解之,得2a =.此文档是由网络收集并进行重新排版整理.word 可编辑版本!。
【高三数学试题精选】郑州市2018年高考数学一模试卷(理科有解析)
郑州市2018年高考数学一模试卷(理科有解析)5 c 4坐标系与参数方程23.已知曲线c1的参数方程为曲线c2的极坐标方程为ρ=2 cs (θ﹣),以极点为坐标原点,极轴为x轴正半轴建立平面直角坐标系.(1)求曲线c2的直角坐标方程;(2)求曲线c2上的动点到直线c1的距离的最大值.选修4-5不等式选讲24.已知函数f(x)=|x﹣2|﹣|x+1|.(1)解不等式f(x)>1.(2)当x>0时,函数g(x)= (a>0)的最小值总大于函数f (x),试求实数a的取值范围.4坐标系与参数方程23.已知曲线c1的参数方程为曲线c2的极坐标方程为ρ=2 cs (θ﹣),以极点为坐标原点,极轴为x轴正半轴建立平面直角坐标系.(1)求曲线c2的直角坐标方程;(2)求曲线c2上的动点到直线c1的距离的最大值.【考点】简单曲线的极坐标方程;参数方程化成普通方程.【分析】(Ⅰ)由ρ2=x2+2,=ρsinθ,x=ρcsθ,能求出c2的直角坐标方程.(Ⅱ)曲线c1消去参数,得c1的直角坐标方程为,求出圆心到直线c1的距离,由此能求出动点到曲线c1的距离的最大值.【解答】解(Ⅰ),…即ρ2=2(ρcsθ+ρsinθ),∴x2+2﹣2x﹣2=0,故c2的直角坐标方程为(x﹣1)2+(﹣1)2=2.…(Ⅱ)∵曲线c1的参数方程为,∴c1的直角坐标方程为,由(Ⅰ)知曲线c2是以(1,1)为圆心的圆,且圆心到直线c1的距离,…∴动点到曲线c1的距离的最大值为.…选修4-5不等式选讲24.已知函数f(x)=|x﹣2|﹣|x+1|.(1)解不等式f(x)>1.(2)当x>0时,函数g(x)= (a>0)的最小值总大于函数f (x),试求实数a的取值范围.【考点】绝对值三角不等式;分段函数的应用.【分析】(1)分类讨论,去掉绝对值,求得原绝对值不等式的解集.(2)由条利用基本不等式求得,f(x)∈[﹣3,1),再由,求得a的范围.【解答】(1)解当x>2时,原不等式可化为x﹣2﹣x﹣1>1,此时不成立;当﹣1≤x≤2时,原不等式可化为2﹣x﹣x﹣1>1,即﹣1≤x<0,当x<﹣1时,原不等式可化为2﹣x+x+1>1,即x<﹣1,综上,原不等式的解集是{x|x<0}.(2)解因为当x>0时,,当且仅当时“=”成立,所以,,所以f(x)∈[﹣3,1),∴ ,即a≥1为所求.2018年8月15日5 c。
河南省郑州市、平顶山市2018届高三上学期第一次质量预测数学理试题 含答案
理科数学第Ⅰ卷一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}{}2|1,|21x M x x N x =<=>,则MN =( )A .∅B .{}|01x x <<C .{}|0x x <D .{}|1x x <2.若复数z 满足)3i z i =(i 为虚数单位),则z 的共轭复数为( )A iB iC .1D .1-3.命题“2000,10x R x x ∃∈-->”的否定是( )A .2,10x R x x ∀∈--≤B .2,10x R x x ∀∈-->C .2000,10x R x x ∃∈--≤D . 2000,10x R x x ∃∈--≥4.《张丘建算经》卷上第22 题为:“今有女善织,日益功疾,且从第2天起,每天比前一天多织相同量的布,若第一天织5尺布,现在一月(按30天计),共织390尺布”,则该女最后一天织多少尺布?( )A .18B .20 C. 21 D .255.我们可以用随机数法估计π的值,下面程序框图表示其基本步骤(函数RAND 是产生随机数的函数,它能随机产生()0,1内的任何一个实数),若输出的结果为521,则由此可估计π的近似值为( )A .3.119B .3.126 C. 3.132 D .3.151 6.某几何体的三视图如图所示,则该几何体的体积为( )A .80B .160 C. 240 D .4807.设sin a xdx π=⎰,则6⎛⎝的展开式中常数项是( )A .-160B .160 C. -20 D .208.函数()12cos 12x x f x x ⎛⎫-= ⎪+⎝⎭的图像大致为( )A .B .C. D .9.已知数列{}n a 满足()2*1232n n a a a a n N =∈,且对任意*n N ∈都有12111nt a a a +++<,则实数t 的取值范围为( ) A .1,3⎛⎫+∞ ⎪⎝⎭B .1,3⎡⎫+∞⎪⎢⎣⎭C. 2,3⎛⎫+∞⎪⎝⎭ D .2,3⎡⎫+∞⎪⎢⎣⎭10.设正实数,y x 满足1,12x y >>,不等式224121x y m y x +≥--恒成立,则m 的最大值为( )A.. C. 8 D .1611.已知直线l 与双曲线2214x y -=相切于点,P l 与双曲线两条渐近线交于,M N 两点,则OM ON 的值为( )A . 3B .4 C. 5 D .与P 的位置有关12.已知函数()ln f x x x x =+,若k Z ∈,且()()1k x f x -<对任意的1x >恒成立,则k 的最大值为( )A .2B .3 C. 4 D .5二、填空题:本大题共4题,每小题5分,共20分,将答案填在答题纸上.13.在平面直角坐标系xOy 中,已知角α的顶点和点O 重合,始边与x 轴的非负半轴重合,终边上一点M 坐标为(,则tan 4πα⎛⎫+= ⎪⎝⎭. 14.已知实数,x y 满足不等式组35024020x y x y y -+≥⎧⎪+-≤⎨⎪+≥⎩,则z x y =+的最小值为 .15.过抛物线214y x =的焦点F 作一条倾斜角为30°的直线交抛物线于,A B 两点,则16.若函数()f x 满足a b R ∀∈、都有()()2323a b f f a f b +⎛⎫=+⎪⎝⎭,且()()11,47f f ==,则()2017f = .三、解答题 :本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17. (本小题满分12分)已知ABC ∆,角,,A B C 所对的边分别为0,,,60a b c C =. (1)求sin sin sin a b cA B C++++的值;(2)若a b ab +=,求ABC ∆的面积. 18. (本小题满分12分)如图,在四棱锥S ABCD -中,底面梯形ABCD 中,//AD BC ,平面SAB ⊥平面,ABCD SAB ∆是等边三角形,已知24,22AC AB BC AD DC =====.(1)求证:平面SAB ⊥平面SAC ; (2)求二面角B SC A --的余弦值. 19. (本小题满分12分)北京时间3月15日下午,谷歌围棋人工智能AlphaGO 与韩国棋手李世石进行最后一轮较量,AlphaGO 获得本场比赛胜利,最终人机大战总比分定格在1:4.人机大战也引发全民对围棋的关注,某学校社团为调查学生学习围棋的情况,随机抽取了100名学生进行调查.根据调查结果绘制的学生日均学习围棋时间的频率分布直方图(如图所示),将日均学习围棋时间不低于40分钟的学生称为“围棋迷”.(1)根据已知条件完成下面的列联表,并据此资料你是否有95%的把握认为“围棋迷”与性别有关?(2)将上述调查所得到的频率视为概率,现在从该地区大量学生中,采用随机抽样方法每次抽取1名学生,抽取3次,记被抽取的3名淡定生中的“围棋迷”人数为X .若每次抽取的结果是相互独立的,求X 的分布列,期望()E X 和方差()D X .附:()()()()()22n ad bc K a b c d a c b d -=++++,其中n a b c d =+++.20. (本小题满分12分)已知圆()222:0M x y rr +=>与直线:40l x +=相切,设点A 为圆上一动点,AB x ⊥轴于B ,且动点N 满足2AB NB =,设动点N 的轨迹为曲线C .(1)求曲线C 的方程;(2)直线l 与直线1l 垂直且与曲线C 交于,P Q 两点,求OPQ ∆面积的最大值. 21. (本小题满分12分) 设函数()()()1ln 1f x mx x =-+.(1)若当01x <<时,函数()f x 的图像恒在直线y x =上方,求实数m 的取值范围;(2)求证:1000410011000e ⎛⎫> ⎪⎝⎭.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.22. (本小题满分10分)选修4-4:坐标系与参数方程在平面直角坐标系xOy 中,曲线1C 的参数方程为2cos sin x y ϕϕ=⎧⎨=⎩(ϕ为参数),在以O 为极点,x 轴的正半轴为极轴的极坐标系中,曲线2C 是圆心为3,2π⎛⎫⎪⎝⎭,半径为1的圆. (1)求曲线12,C C 的直角坐标方程;(2)设M 为曲线1C 上的点,N 为曲线2C 上的点,求MN 的取值范围. 23. (本小题满分10分)选修4-5:不等式选讲已知0,0a b >>,函数()f x x a x b =++-的最小值为4. (1)求a b +的值; (2)求221149a b +的最小值.试卷答案一、选择题1-5: BDAC 6-10: BACDC 11、12:AB二、填空题13. 2- 14.-13 15.三、解答题17.(本小题满分12分)解: 2分所以a =sin A ,b B =……6分 (Ⅱ)8分 由余弦定理得2222cos c a b ab C =+-,即2224()3a b ab a b ab =+-=+-, 又a b ab +=,所以2()340ab ab --=,解得4ab =或1ab =-(舍去).……10分所以11sin 422ABC S ab C ∆==⨯=.……………12分 18. 解:(Ⅰ)证明:在BCA ∆中,由于∴222AB AC BC +=,故AB AC ⊥.……………2分又SAB ABCD ⊥平面平面,SABABCD AB =平面平面,AC ABCD ⊂平面,SAB AC ∴⊥平面,……………4分又AC SAC ⊂平面,故平面SAC ⊥平面SAB ……………6分 (2)如图建立A xyz -空间直角坐标系,()0,0,0A ,()2,0,0,B(143)(24CSBC =-=-,,,,,,()0,4,0,AC ……………8分设平面SBC 的法向量()111,,n x y z =, 00n BCn CS ⎧⋅=⎪⇒⎨⋅=⎪⎩令1111,2,y x z ===则, n ⎛∴= ⎝.…10分设平面SCA 的法向量()222,,m x y z =,2040m AC x y m CS ⎧⋅=⎪⇒⎨-⋅=⎪⎪⎩⎩2x = (3,0,1∴=-m 219cos ,n m n m n m⋅==⋅∴二面角--B SC A 的余弦值为……………12分19. 解:(Ⅰ)由频率分布直方图可知,在抽取的100人中,“围棋迷”有25人,…1分 从而22⨯列联表如下:……………3分将22⨯列联表中的数据代入公式计算,得因为3.030<3.841,所以没有理由认为“围棋迷”与性别有关. ……………6分(Ⅱ)由频率分布直方图知抽到“围棋迷”的频率为0. 25,将频率视为概率,即从观众中抽取一名“围棋迷”的概率为14.由题意13,3X B ⎛⎫⎪⎝⎭,从而X 的分布列为 ……………10分()13==3=44E X np ⨯. ……………12分20.(Ⅰ)设动点),(y x N ,),,(00y x A 因为x AB ⊥轴于B ,所以)0,(0x B ,……1分 设圆M 的方程为222:,+=M x y r 由题意得2r ==,所以圆M 的程为22:4M x y +=.……………3分由题意, 2AB NB =,所以00(0,)2(,)y x x y -=--,所以,即00,2,=⎧⎨=⎩x x y y将(,2)A x y 代入圆22:4M x y +=,得动点N 的轨迹方程2214x y += ,……………5分(Ⅱ)由题意设直线0,++=y m 设直线l 与椭圆交于221,4+=x y1122(,),(,)P x y Q x y,联立方程22,44,⎧=-⎪⎨+=⎪⎩y m x y得2213440x m ++-=, 222192413(44)16(13)0m m m ∆=-⨯-=-+>,解得213m <,1,2x ==又因为点O 到直线l 的距离2md =,122PQ x x =-= (10)分12122OPQm S ∆=⋅⋅=≤. OPQ ∆面积的最大值为1.……………12分21. (Ⅰ)令()()(1)ln(1)F x f x x mx x x =-=-+-,(0,1)x ∈,2分时,由于(0,1)x ∈,有 于是'()F x 在(0,1)x ∈上单调递增,从而'()'(0)0F x F >=,因此()F x 在(0,1)x ∈上单调递增,即()0F x >;……………3分 ②当0m ≥时,由于(0,1)x ∈,有于是'()F x 在(0,1)x ∈上单调递减,从而'()'(0)0F x F <=,因此()F x 在(0,1)x ∈上单调递减,即()(0)0F x F <=不符;……………4分,当0(0,]x x ∈时, ,于是'()F x 在0(0,]x x ∈上单调递减, 从而'()'(0)0F x F <=,因此()F x 在0(0,]x x ∈上单调递减, 即()(0)0F x F <=而且仅有(0)0F =不符.综上可知,所求实数m 的取值范围是……………6分 (Ⅱ)对要证明的不等式等价变形如下:对于任意的正整数n ,不等式251(1)n e n++<恒成立,等价变形211(1)ln(1)05n n n ++-<相当于(28分 ()F x 在上单调递减,即()(0)0F x F <=;……………10分解:(Ⅰ)消去参数ϕ可得1C 曲线2C 的圆心的直角坐标为)3,0(,∴2C 的直角坐标方程为1)3(22=-+y x .………………4分)2(设),sin ,cos 2(ϕϕM则222)3(sin )cos 2(||-+=ϕϕMC 9sin 6sin cos 422+-+=ϕϕϕ13sin 6sin 32+--=ϕϕ16)1(sin 32++-=ϕ. 1sin 1≤≤-ϕ,∴,2||min 2=MC ,4||max 2=MC .根据题意可得,112||min =-=MN ,,514||max =+=MN即||MN 的取值范围是[]1,5..………………10分23. (本小题满分10分)选修4-5:不等式选讲解:(Ⅰ)因为,b a b a b x a x +=--≥-++, 所以()f x a b ≥+,当且仅当0))((<-+b x a x 时,等号成立,又0,0a b >>, 所以||a b a b +=+,所以()f x 的最小值为a b +,所以4a b +=..………………5分 (Ⅱ)由(1)知4,4a b b a +==-,。
2018年河南省高考数学一诊试卷(理科)
2018年河南省高考数学一诊试卷(理科)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知a ∈R ,复数z =(a−i)(1+i)i,若z =z ,则a =( )A.1B.−1C.2D.−22. 已知集合M ={x|x−3x−1≤0},N ={x|y =log 3(−6x 2+11x −4)},则M ∩N =( ) A.[1, 43]B.(12, 3]C.(1, 43)D.(43, 2)3. 某城市收集并整理了该市2017年1月份至10月份各月最低气温与最高气温(单位:∘C )的数据,绘制了下面的折线图.已知该市的各月最低气温与最高气温具有较好的线性关系,则根据该折线图,下列结论错误的是( )A.最低气温与最高气温为正相关B.10月的最高气温不低于5月的最高气温C.月温差(最高气温减最低气温)的最大值出现在1月D.最低气温低于0∘C 的月份有4个4. 在等比数列{a n }中,若a 2=√22,a 3=√43,则a 1+a 15a 7+a 21=( )A.23B.12C.32D.25. 《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有阳马,广五尺,袤七尺,高八尺,问积几何?”其意思为:“今有底面为矩形,一侧棱垂直于底面的四棱锥,它的底面长、宽分别为7尺和5尺,高为8尺,问它的体积是多少?”若以上条件不变,则这个四棱锥的外接球的表面积为( ) A.128π平方尺 B.138π平方尺 C.140π平方尺 D.142π平方尺6. 定义[x]表示不超过x 的最大整数,(x)=x −[x],例如[2.1]=2,(2.1)=0.1,执行如图所示的程序框图,若输入的x =5.8,则输出的z =( )A.−1.4B.−2.6C.−4.6D.−2.87. 若对于任意x ∈R 都有f(x)+2f(−x)=3cosx −sinx ,则函数f(2x)图象的对称中心为( )A.(kπ−π4,0)(k ∈Z) B.(kπ−π8,0)(k ∈Z) C.(kπ2−π4,0)(k ∈Z)D.(kπ2−π8,0)(k ∈Z)8. 设x ,y 满足约束条件{2x −y ≥0x +13y ≤1y ≥0,若z =−ax +y 取得最大值的最优解不唯一,则实数a 的值为( )A.2或−3B.3或−2C.−13或12D.−13或29. 函数f(x)=x(e −x −e x )4x 2−1的部分图像大致是( )A.B.C.D.10. 已知某几何体的三视图如图所示,则该几何体的表面积为()A.20+12√2+2√14B.20+6√2+2√14C.20+6√2+2√34D.20+12√2+2√3411. 设椭圆E:x2a2+y2b2=1(a>b>0)的一个焦点为F(1, 0),点A(−1, 1)为椭圆E内一点,若椭圆E上存在一点P,使得|PA|+|PF|=9,则椭圆E的离心率的取值范围是()A.[12,1) B.[13,12] C.[15,14] D.[12,23]12. 已知函数f(x)=lnx+(2e2−a)x−b2,其中e是自然对数的底数,若不等式f(x)≤0恒成立,则ba的最小值为()A.−1e2B.−2e2C.−1eD.−2e二、填空题(每题5分,满分20分,将答案填在答题纸上)在△ABC中,|AB→+AC→|=|AB→−AC→|,|AB→|=2,则AB→⋅BC→=________已知(1+x)(a−x)6=a0+a1x+a2x2+...+a7x7,a∈R,若a0+a1+a2+...+a6+ a7=0,则a3=________.已知S n为数列{a n}的前n项和,a1=1,当n≥2时,恒有ka n=a n S n−S n2成立,若设F1,F2分别是双曲线x2a2−y2b2=1(a>0,b>0)的左、右焦点,过F1的直线l与双曲线分别交于点A,B,且A(m, 18)在第一象限,若△ABF2为等边三角形,则双曲线的实轴长为________.三、解答题(本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤.)如图,在△ABC中,内角A,B,C的对边分别为a,b,c,已知c=4,b=2,2ccosC=b,D,E分别为线段BC上的点,且BD=CD,∠BAE=∠CAE.(1)求线段AD的长;(2)求△ADE的面积.某班为了活跃元旦气氛,主持人请12位同学做一个游戏,第一轮游戏中,主持人将标有数字1到12的十二张相同的卡片放入一个不透明的盒子中,每人依次从中取出一张卡片,取得标有数字7到12的卡片的同学留下,其余的淘汰;第二轮将标有数字1到6的六张相同的卡片放入一个不透明的盒子中,每人依次从中取出一张卡片,取到标有数字4到6的卡片的同学留下,其余的淘汰;第三轮将标有数字1,2,3的三张相同的卡片放入一个不透明的盒子中,每人依次从中取得一张卡片,取到标有数字2,3的卡片的同学留下,其余的淘汰;第四轮用同样的办法淘汰一位同学,最后留下的这位同学获得一个奖品.已知同学甲参加了该游戏.(1)求甲获得奖品的概率;(2)设X为甲参加游戏的轮数,求X的分布列和数学期望.如图,在三棱台ABC−A1B1C1中,D,E分别是AB,AC的中点,B1E⊥平面ABC,△AB1C是等边三角形,AB=2A1B1,AC=2BC,∠ACB=90∘.(1)证明:B1C // 平面A1DE;(2)求二面角A−BB1−C的正弦值.已知抛物线E:y2=2px(p>0),斜率为k且过点M(3, 0)的直线l与E交于A,B两点,(1)求抛物线E 的方程;(2)设点N(−3, 0),记直线AN ,BN 的斜率分别为k 1,k 2,证明:1k 12+1k 22−2k 2为定值.已知函数f(x)=(x +1)e ax (a ≠0),且x =2a 是它的极值点.(1)求a 的值;(2)求f(x)在[t −1, t +1]上的最大值;(3)设g(x)=f(x)+2x +3xlnx ,证明:对任意x 1,x 2∈(0, 1),都有|g(x 1)−g(x 2)|<2e 3+3e +1.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.[选修4-4:坐标系与参数方程]在平面直角坐标系xOy 中,直线l 1的参数方程为{x =t −√3y =kt (t 为参数),直线l 2的参数方程为{x =√3−my =m 3k (m 为参数),设直线l 1与l 2的交点为P ,当k 变化时,P 的轨迹为曲线C 1.(1)求出曲线C 1的普通方程;(2)以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,直线C 2的极坐标方程为ρsin(θ+π4)=4√2,点Q 为曲线C 1的动点,求点Q 到直线C 2的距离的最小值.[选修4-5:不等式选讲]已知f(x)=|x +a|(a ∈R).(1)若f(x)≥|2x +3|的解集为[−3, −1],求a 的值;(2)若∀x ∈R ,不等式f(x)+|x −a|≥a 2−2a 恒成立,求实数a 的取值范围.参考答案与试题解析2018年河南省高考数学一诊试卷(理科)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.【答案】B【考点】复数的运算【解析】根据复数的基本运算进行化简,结合z=z,进行求解即可.【解答】解:z=(a−i)(1+i)i =a+1+(a−1)ii=a+1i+a−1=(a−1)−(a+1)i,则z=(a−1)+(a+1)i,∵z=z,∴a+1=0,得a=−1,故选B.2.【答案】C【考点】交集及其运算【解析】求解分式不等式化简集合M,求解一元二次不等式化简集合N,再由交集运算性质得答案.【解答】∵集合M={x|x−3x−1≤0}={x|1<x≤3},N={x|y=log3(−6x2+11x−4)}={x|−6x2+11x−4>0}={x|12<x<43},∴M∩N={x|1<x≤3}∩{x|12<x<43}=(1, 43).3.【答案】D【考点】频率分布折线图、密度曲线由该市2017年1月份至10月份各月最低气温与最高气温(单位:∘C)的数据的折线图,得最低气温低于0∘C的月份有3个.【解答】由该市2017年1月份至10月份各月最低气温与最高气温(单位:∘C)的数据的折线图,得:在A中,最低气温与最高气温为正相关,故A正确;在B中,10月的最高气温不低于5月的最高气温,故B正确;在C中,月温差(最高气温减最低气温)的最大值出现在1月,故C正确;在D中,最低气温低于0∘C的月份有3个,故D错误.4.【答案】B【考点】等比数列的通项公式【解析】利用等比数列通项公式先求出公比q=a3a2=√43√2=216,再由a1+a15a7+a21=a1+a15q6(a1+a15)=1q6,能求出结果.【解答】∵在等比数列{a n}中,若a2=√2,a3=√43,∴公比q=a3a2=√43√2=216,∴a1=a2q =√2216=213,∴a1+a15a7+a21=a1+a15q6(a1+a15)=1q6=12.5.【答案】B【考点】球内接多面体球的体积和表面积【解析】构造一个长方体,其长、宽、高分别为7尺、5尺、8尺,则这个这个四棱锥的外接球就是这个长方体的外接球,由此能求出这个四棱锥的外接球的表面积.【解答】解:∵今有底面为矩形,一侧棱垂直于底面的四棱锥,它的底面长,宽分别为7尺和5尺,高为8尺,∴构造一个长方体,其长、宽、高分别为7尺、5尺、8尺,则这个四棱锥的外接球就是这个长方体的外接球,∴这个四棱锥的外接球的半径R=√72+52+822=√1382(尺),∴这个四棱锥的外接球的表面积S=4π×R2=4π×1384=138π(平方尺).6.【答案】C【考点】程序框图【解析】由已知中的程序框图可知:该程序的功能是利用循环结构计算并输出变量z的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得答案.【解答】模拟程序的运行,可得x=5.8y=5−1.6=3.4x=5−1=4满足条件x≥0,执行循环体,x=1.7,y=1−1.4=−0.4,x=1−1=0满足条件x≥0,执行循环体,x=−0.2,y=−1−1.6=−2.6,x=−1−1=−2不满足条件x≥0,退出循环,z=−2+(−2.6)=−4.6.输出z的值为−4.6.7.【答案】D【考点】正弦函数的图象【解析】根据题意求出函数f(x)的解析式,再化f(x)为正弦型函数,可得函数f(2x)的解析式,根据正弦函数的对称性,求出f(2x)图象的对称中心.【解答】∵对任意x∈R,都有f(x)+2f(−x)=3cosx−sinx①,用−x代替x,得f(−x)+2f(x)=3cos(−x)−sin(−x)②,即f(−x)+2f(−x)=3cosx+sinx②;由①②组成方程组,解得f(x)=sinx+cosx,∴f(x)=√2sin(x+π4),∴f(2x)=√2sin(2x+π4).令2x+π4=kπ,k∈Z,求得x=kπ2−π8,故函数f(2x)图象的对称中心为(kπ2−π8, 0),k∈Z,8.【答案】A【考点】含参线性规划问题简单线性规划【解析】作出不等式组对应的平面区域,利用目标函数的几何意义,得到直线y=ax+z斜率的变化,从而求出a的取值.解:作出不等式组对应的平面区域如图:(阴影部分OAB),由z=y−ax得y=ax+z,即直线的截距最大,z也最大.若a=0,此时y=z,此时,目标函数只在A处取得最大值,不满足条件,若a>0,目标函数y=ax+z的斜率k=a>0,要使z=y−ax取得最大值的最优解不唯一,则直线y=ax+z与直线2x−y=0平行,此时a=2,若a<0,目标函数y=ax+z的斜率k=a<0,要使z=y−ax取得最大值的最优解不唯一,则直线y=ax+z与直线x+13y=1平行,此时a=−3,综上a=−3或a=2.故选A.9.【答案】B【考点】函数的图象变化【解析】此题暂无解析【解答】解:∵函数f(x)的定义域为{x|x≠±12},关于原点对称,f(−x)=−x(e x−e−x) 4x2−1=x(e−x−e x)4x2−1=f(x),∴f(x)为偶函数,其图像关于y轴对称,故排除选项A.令f(x)=0,即x(e −x−e x)4x2−1=0,解得x=0,∴函数f(x)只有一个零点,故排除选项D.当x=1时,f(1)=1e−e3<0,故排除选项C.故选B.10.【答案】D【考点】由三视图求体积【解析】【解答】由三视图可知该几何体为侧放的四棱柱,棱锥的底面为矩形ABCD,底面与一个侧面PBC垂直,PB=PC=4,AB=3.S ABCD=3×4√2=12√2,S△PBC=12×4×4=8,S△PCD=S△PBA=12×3×4=6,△PAD中AP=PD=5,AD=4√2,∴AD边上的高为√25−8=√17,∴S△PAD=12×4√2×√17=2√34,则该几何体的表面积为12√2+8+6+6+2√34=12√2+20+2√34,11.【答案】C【考点】椭圆的离心率【解析】通过记椭圆的左焦点为F1(−1, 0),则|AF1|=1,利用|PF1|≤|PA|+|AF1|可知a≤5;利用|PF1|≥|PA|−|AF1|可知a≥4,进而可得结论4≤a≤5.【解答】记椭圆的左焦点为F1(−1, 0),则|AF1|=1,∵|PF1|≤|PA|+|AF1|,∴2a=|PF1|+|PF|≤|PA|+|AF1|+|PF|≤1+9=10,即a≤5;∵|PF1|≥|PA|−|AF1|,∴2a=|PF1|+|PF|≥|PA|−|AF1|+|PF|≥9−1=8,即a≥4,∴4≤a≤5,∴ca ∈[15,14]12.【答案】B【考点】利用导数研究函数的单调性导数求函数的最值【解析】求得f(x)的导数,讨论a≤2e2时,不恒成立;a>2e2时,求得f(x)的最大值,12b≥−1−ln(a−2e2),可得12⋅ba≥−1−ln(a−2e2)a(a>2e2),令F(x)=−1−ln(x−2e2)x,x>2e2,求得导数和单调区间,可得F(x)的最小值,即可得到所求最小值.【解答】∵函数f(x)=lnx+(2e2−a)x−b2,其中e为自然对数的底数,∴f′(x)=1x+(2e2−a),x>0,当a≤2e2时,f′(x)>0,∴ f(x)≤0不可能恒成立, 当a >2e 2时,由f′(x)=0,得x =1a−2e 2,∵ 不等式f(x)≤0恒成立,∴ f(x)的最大值为0, 当x ∈(0, 1a−2e 2)时,f′(x)>0,f(x)单调递增, 当x ∈(1a−2e 2, +∞)时,f′(x)<0,f(x)单调递减, ∴ 当x =1a−2e 2时,f(x)取最大值, f(1a−2e 2)=−ln(a −2e 2)−12b −1≤0,∴ ln(a −2e 2)+12b +1≥0, ∴ 12b ≥−1−ln(a −2e 2), ∴ 12⋅ba ≥−1−ln(a−2e 2)a(a >2e 2),令F(x)=−1−ln(x−2e 2)x,x >2e 2,F′(x)=−xx−2e 2+1+ln(x−2e 2)x 2=(x−2e 2)ln(x−2e 2)−2e 2(x−2e 2)x 2,令H(x)=(x −2e 2)ln(x −2e 2)−2e 2, H′(x)=ln(x −2e 2)+1, 由H′(x)=0,得x =2e 2+1e ,当x ∈(2e 2+1e , +∞)时,H′(x)>0,H(x)是增函数, x ∈(2e 2, 2e 2+1e )时,H′(x)<0,H(x)是减函数,∴ 当x =2e 2+1e 时,H(x)取最小值H(2e 2+1e )=−2e 2−1e , ∵ x →2e 2时,H(x)→0,x >3e 2时,H(x)>0,H(3e 2)=0, ∴ 当x ∈(2e 2, 3e 2)时,F′(x)<0,F(x)是减函数, 当x ∈(3e 2, +∞)时,F′(x)>0,F(x)是增函数, ∴ x =3e 2时,F(x)取最小值,F(3e 2)=−1−23e 2=−1e2,∴ 12⋅ba 的最小值为−1e 2,即有ba 的最小值为−2e 2.二、填空题(每题5分,满分20分,将答案填在答题纸上) 【答案】 −4【考点】【解析】运用向量的平方即为模的平方,对等式两边平方,可得A 为直角,再由向量数量积的定义和解直角三角形,即可得到所求值. 【解答】在△ABC 中,|AB →+AC →|=|AB →−AC →|, 可得|AB →+AC →|2=|AB →−AC →|2,即有AB →2+AC →2+2AB →⋅AC →=AB →2+AC →2−2AB →⋅AC →, 即为AB →⋅AC →=0,则△ABC 为直角三角形,A 为直角, 则AB →⋅BC →=−BA →⋅BC →=−|BA →|⋅|BC →|⋅cosB =−|BA →|2=−4.【答案】 −5【考点】二项式定理的应用 【解析】在二项式展开式中,令x =1得a 0+a 1+...+a 7的值,从而求得a 的值,再由a 3表示x 3的系数求得a 3的值. 【解答】(1+x)(a −x)6=a 0+a 1x +a 2x 2+...+a 7x 7中, 令x =1得,a 0+a 1+...+a 7=2⋅(a −1)6=0, 解得a =1,而a 3表示x 3的系数,所以a 3=C 63⋅(−1)3+C 62⋅(−1)2=−5. 【答案】 2【考点】 数列的求和 【解析】由题意可得(k −S n )(S n −S n−1)=−Sn 2,化为1S n−1Sn−1=1k ,再利用等差数列的通项公式即可得出k 的值. 【解答】当n ≥2时,恒有ka n =a n S n −S n 2成立, 即为(k −S n )(S n −S n−1)=−S n 2, 化为1S n−1Sn−1=1k ,可得1S n=1+n−1k,由S99=150,可得150=kk+98,解得k=2.【答案】2√21【考点】双曲线的离心率【解析】根据双曲线的定义算出△AF1F2中,|AF1|=2a,|AF2|=4a,由△ABF2是等边三角形得∠F1AF2=120∘,利用余弦定理算出c2=7a2,b2=6a2,结合双曲线的第二定义,可得m,A在双曲线上,代入双曲线的方程,即可得出a,即有实轴长.【解答】根据双曲线的定义,可得|AF1|−|AF2|=2a,∵△ABF2是等边三角形,即|AF2|=|AB|,∴|BF1|=2a,又∵|BF2|−|BF1|=2a,∴|BF2|=|BF1|+2a=4a,∵△BF1F2中,|BF1|=2a,|BF2|=4a,∠F1BF2=120∘,∴|F1F2|2=|BF1|2+|BF2|2−2|BF1|⋅|BF2|cos120∘,即4c2=4a2+16a2−2×2a×4a×(−12)=28a2,解得c2=7a2,b2=6a2,由双曲线的第二定义可得ca =|AF2|m−a2c=4am−a√7=√7,则m=√7,由A在双曲线上,可得257−1826a2=1,解得a=√21,则2a=2√21.三、解答题(本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤.)【答案】根据题意,b=2,c=4,2ccosC=b,则cosC=b2c =14;又由cosC=a2+b2−c22ab =4+a2−162×2×a=14,解可得a=4,即BC=4,则CD=2,在△ACD中,由余弦定理得:AD2=AC2+CD2−2AC⋅CDcosC=6,则AD=√6;根据题意,AE平分∠BAC,则CEBE =ACAB=12,cosC =14,则sinC =√1−(14)2=√154,S △ADE =S △ACD −S △ACE =12×2×2×√154−12×2×43×√154=√156. 【考点】 余弦定理 【解析】(1)在△ABC 中,利用余弦定理计算BC ,再在△ACD 中利用余弦定理计算AD ; (2)根据角平分线的性质得出CE ,于是S △ADE =S △ACD −S △ACE . 【解答】根据题意,b =2,c =4,2ccosC =b ,则cosC =b2c =14; 又由cosC =a 2+b 2−c 22ab=4+a 2−162×2×a=14,解可得a =4,即BC =4,则CD =2, 在△ACD 中,由余弦定理得:AD 2=AC 2+CD 2−2AC ⋅CDcosC =6, 则AD =√6;根据题意,AE 平分∠BAC , 则CEBE =ACAB =12,变形可得:CE =13BC =43,cosC =14,则sinC =√1−(14)2=√154,S △ADE =S △ACD −S △ACE =12×2×2×√154−12×2×43×√154=√156. 【答案】解:(1)设甲获得奖品为事件A ,在每轮游戏中, 甲留下的概率与他摸卡片的顺序无关, 则P(A)=612×36×23×12=112.(2)随机变量X 的取值可以为1,2,3,4. P(X =1)=612=12, P(X =2)=612×36=14, P(X =3)=612×36×13=112, P(X =4)=612×36×23=16. 随机变量X 的概率分布列为:所以数学期望E(X)=1×12+2×14+3×112+4×16=2312.【考点】离散型随机变量的期望与方差离散型随机变量及其分布列古典概型及其概率计算公式【解析】(1)甲获得奖品的事件为A,在每一轮游戏中,甲留下的概率和他摸卡片的顺序无关,由此利用相互独立事件概率乘法公式能求出甲拿到礼物的概率.(2)随机变量X的所有可能取值是1,2,3,4,分别求出相应的概率,由此能求出随机变量X的概率分布列及数学期望.【解答】解:(1)设甲获得奖品为事件A,在每轮游戏中,甲留下的概率与他摸卡片的顺序无关,则P(A)=612×36×23×12=112.(2)随机变量X的取值可以为1,2,3,4.P(X=1)=612=12,P(X=2)=612×36=14,P(X=3)=612×36×13=112,P(X=4)=612×36×23=16.随机变量X的概率分布列为:所以数学期望E(X)=1×12+2×14+3×112+4×16=2312.【答案】因为A1B1 // AB,AB=2A1B1,D为棱AB的中点,所以A1B1 // BD,A1B1=BD,所以四边形A1B1BD为平行四边形,从而BB1 // A1D.又BB1平面A1DE,A1D⊂平面A1DE,所以B1B // 平面A1DE,因为DE是△ABC的中位线,所以DE // BC,同理可证,BC // 平面A1DE.因为BB1∩BC=B,所以平面B1BC // 平面A1DE,又B1C⊂平面B1BC,所以B1C // 平面A1DE.以ED,EC,EB1所在直线分别为x轴,y轴,z轴,建立如图所示的空间直角坐标系E−设平面ABB 1的一个法向量m =(x 1,y 1,z 1), 则{m →⋅AB 1→=0m →⋅AB →=0 ,即{ay 1+√3az 1=0ax 1+2ay 1=0, 取z 1=1,得m →=(2√3,−√3,1).同理,设平面BB 1C 的一个法向量n →=(x,y,z), 又CB 1→=(0,−a,√3a),BC →=(−a,0,0), 由{n →⋅BC →=0n →⋅CB 1→=0 ,得{−ax =0−ay +√3az =0 , 取z =−1,得n →=(0,−√3,−1), 所以cos <m →,n →>=m →⋅n→|m →|⋅|n →|=14,故二面角A −BB 1−C 的正弦值为:√1−(14)2=√154.【考点】直线与平面平行二面角的平面角及求法 【解析】(1)推导出四边形A 1B 1BD 为平行四边形,从而BB 1 // A 1D ,进而B 1B // 平面A 1DE ,由DE 是△ABC 的中位线,得DE // BC ,从而BC // 平面A 1DE .进而平面B 1BC // 平面A 1DE ,由此能证明B 1C // 平面A 1DE .(2)以ED ,EC ,EB 1所在直线分别为x 轴,y 轴,z 轴,建立空间直角坐标系E −xyz ,利用向量法能求出二面角A −BB 1−C 的正弦值. 【解答】因为A 1B 1 // AB ,AB =2A 1B 1,D 为棱AB 的中点, 所以A 1B 1 // BD ,A 1B 1=BD ,所以四边形A 1B 1BD 为平行四边形,从而BB 1 // A 1D . 又BB 1平面A 1DE ,A 1D ⊂平面A 1DE , 所以B 1B // 平面A 1DE ,因为DE 是△ABC 的中位线,所以DE // BC , 同理可证,BC // 平面A 1DE .因为BB 1∩BC =B ,所以平面B 1BC // 平面A 1DE , 又B 1C ⊂平面B 1BC ,所以B 1C // 平面A 1DE .以ED ,EC ,EB 1所在直线分别为x 轴,y 轴,z 轴,建立如图所示的空间直角坐标系E −xyz ,设平面ABB 1的一个法向量m =(x 1,y 1,z 1), 则{m →⋅AB 1→=0m →⋅AB →=0 ,即{ay 1+√3az 1=0ax 1+2ay 1=0, 取z 1=1,得m →=(2√3,−√3,1).同理,设平面BB 1C 的一个法向量n →=(x,y,z), 又CB 1→=(0,−a,√3a),BC →=(−a,0,0), 由{n →⋅BC →=0n →⋅CB 1→=0 ,得{−ax =0−ay +√3az =0 , 取z =−1,得n →=(0,−√3,−1), 所以cos <m →,n →>=m →⋅n→|m →|⋅|n →|=14,故二面角A −BB 1−C 的正弦值为:√1−(14)2=√154.【答案】根据题意,设直线l 的方程为y =k(x −3),联立方程组{y 2=2pxy =k(x −3)得y 2−2p k y −6p =0, 设A(x 1, y 1),B(x 2, y 2), 所以y 1+y 2=2p k,y 1y 2=−6p ,又OA →∗OB →=x 1x 2+y 1y 2=(y 1y 2)24p 2+y 1y 2=9−6p =−3,所以p =2,从而抛物线E 的方程为y 2=4x .证明:因为k 1=y1x 1+3=y1y 1k+6,k 2=y2x 2+3=y2y 2k+6,所以1k 1=1k +6y 1,1k 2=1k +6y 2,因此1k 12+1k 22−2k 2=(1k +6y 1)2+(1k +6y 2)2−2k 2=2k 2+12k∗(1y 1+1y 2)+36(1y 12+1y 22)−2k 2=12k∗y 1+y 2y 1y 2+36×(y 1+y 2)2−2y 1y 2y 12y 22,又y 1+y 2=2p k=4k ,y 1y 2=−6p =−12,16即1k 12+1k 22−2k 为定值.【考点】直线与抛物线的位置关系 【解析】(1)根据题意,设直线l 的方程为y =k(x −3),联立直线与抛物线的方程,得y 2−2p ky −6p =0,设A(x 1, y 1),B(x 2, y 2),利用根与系数的关系分析用p 表示OA →∗OB →+3=0,解可得p 的值,即可得抛物线的标准方程;(2)根据题意,由两点间连线的斜率公式可得k 1、k 2的值,将其值代入1k 12+1k 22−2k 2中,结合抛物线的焦点弦公式分析可得结论. 【解答】根据题意,设直线l 的方程为y =k(x −3),联立方程组{y 2=2pxy =k(x −3)得y 2−2p k y −6p =0, 设A(x 1, y 1),B(x 2, y 2), 所以y 1+y 2=2p k,y 1y 2=−6p ,又OA →∗OB →=x 1x 2+y 1y 2=(y 1y 2)24p 2+y 1y 2=9−6p =−3,所以p =2,从而抛物线E 的方程为y 2=4x .证明:因为k 1=y 1x 1+3=y 1y 1k+6,k 2=y 2x 2+3=y2y 2k+6,所以1k 1=1k +6y 1,1k 2=1k +6y 2,因此1k 12+1k 22−2k 2=(1k +6y 1)2+(1k +6y 2)2−2k 2=2k 2+12k∗(1y 1+1y 2)+36(1y 12+1y 22)−2k 2=12k∗y 1+y 2y 1y 2+36×(y 1+y 2)2−2y 1y 2y 12y 22,又y 1+y 2=2p k=4k ,y 1y 2=−6p =−12,所以1k 12+1k 22−2k 2=12k×(−1)3k+36×16k 2+24144=6,即1k 12+1k 22−2k 2为定值.【答案】f(x)=(x +1)e ax (a ≠0)的导数f′(x)=e ax +a(x +1)e ax =(ax +a +1)e ax , 因为x =2a 是f(x)的一个极值点, 所以f ′(2a )=(a +3)e 2=0,所以a =−3.由(1)知f(x)=(x +1)e −3x ,f′(x)=(−3x −2)e −3x ,当t −1≥−23,即t ≥13时,f(x)在[t −1, t +1]上递减,f(x)max =f(t −1)=te −3(t−1);当t −1<−23<t +1,即−53<t <13时,f(x)max =f(−23)=e 23.证明:g(x)=(x +1)e −3x +2x +3xlnx , 设g(x)=m 1(x)+m 2(x),x ∈(0, 1),其中m 1(x)=(x +1)e −3x +2x ,m 2(x)=3xlnx ,则m 1′(x)=(−3x −2)e −3x +2,设ℎ(x)=(−3x −2)e −3x +2,则ℎ′(x)=(9x +3)e −3x >0,可知m 1′(x)在(0, 1)上是增函数, 所以m 1′(x)>m 1′(0)=0,即m 1(x)在(0, 1)上是增函数, 所以1<m 1(x)<2+2e 3.又m 2′(x)=3(1+lnx),由m 2′(x)>0,得x >1e ;由m 2′(x)<0,得0<x <1e , 所以m 2(x)在(0,1e )上递减,在(1e ,1)上递增,所以−3e ≤m 2(x)<0,从而1−3e <m 1(x)+m 2(x)<2+2e 3.所以,对任意x 1,x 2∈(0, 1),|g(x 1)−g(x 2)|<(2+2e 3)−(1−3e )=2e 3+3e +1. 【考点】利用导数研究函数的极值 利用导数研究函数的最值 【解析】(1)求得f(x)的导数,可得f′(2a )=0,解方程可得a 的值;(2)由(1)可得极值点,讨论区间与极值点的关系,结合单调性,即可得到所求最大值;(3)g(x)=(x +1)e −3x +2x +3xlnx ,设g(x)=m 1(x)+m 2(x),x ∈(0, 1),其中m 1(x)=(x +1)e −3x +2x ,m 2(x)=3xlnx ,分别求得导数和单调性,可得它们的取值范围, 即可得证. 【解答】f(x)=(x +1)e ax (a ≠0)的导数f′(x)=e ax +a(x +1)e ax =(ax +a +1)e ax , 因为x =2a 是f(x)的一个极值点, 所以f ′(2a )=(a +3)e 2=0,所以a =−3.由(1)知f(x)=(x +1)e −3x ,f′(x)=(−3x −2)e −3x ,当t −1≥−23,即t ≥13时,f(x)在[t −1, t +1]上递减,f(x)max =f(t −1)=te −3(t−1);当t −1<−23<t +1,即−53<t <13时,f(x)max =f(−23)=e 23.证明:g(x)=(x +1)e −3x +2x +3xlnx , 设g(x)=m 1(x)+m 2(x),x ∈(0, 1),其中m 1(x)=(x +1)e −3x +2x ,m 2(x)=3xlnx ,则m 1′(x)=(−3x −2)e −3x +2,设ℎ(x)=(−3x −2)e −3x +2,则ℎ′(x)=(9x +3)e −3x >0,可知m 1′(x)在(0, 1)上是增函数, 所以m 1′(x)>m 1′(0)=0,即m 1(x)在(0, 1)上是增函数, 所以1<m 1(x)<2+2e 3.又m 2′(x)=3(1+lnx),由m 2′(x)>0,得x >1e ;由m 2′(x)<0,得0<x <1e , 所以m 2(x)在(0,1e )上递减,在(1e ,1)上递增,所以−3e ≤m 2(x)<0,从而1−3e <m 1(x)+m 2(x)<2+2e 3.所以,对任意x 1,x 2∈(0, 1),|g(x 1)−g(x 2)|<(2+2e 3)−(1−3e )=2e 3+3e +1. 请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.[选修4-4:坐标系与参数方程] 【答案】∵ 直线l 1的参数方程为{x =t −√3y =kt (t 为参数),∴ 直线l 1的普通方程为y =k(x +√3),①∵ 直线l 2的参数方程为{x =√3−my =m 3k (m 为参数),∴ 直线l 2的普通方程为y =13k (√3−x),② ①×②,消k ,得:x 23+y 2=1.∵ k ≠0,∴ y ≠0,∴ 曲线C 1的普通方程为x 23+y 2=1(y ≠0).∵ 直线C 2的极坐标方程为ρsin(θ+π4)=4√2, ∴ 直线C 2的直角坐标方程为x +y −8=0, 由(1)知曲线C 1与直线C 2无公共点,∵ 曲线C 1的参数方程为{x =√3cosαy =sinα ,(α为参数,α≠kπ,k ∈Z),∴ 曲线C 1上的点Q(√3cosα, sinα)到直线的距离为: π∴ 当sin(α+π3)=1时,d 取最小值3√2.【考点】参数方程与普通方程的互化【解析】(1)求出直线l 1的普通方程为y =k(x +√3),①,直线l 2的普通方程为y =13k (√3−x),②,①×②,消k ,能求出曲线C 1的普通方程. (2)直线C 2的直角坐标方程为x +y −8=0,曲线C 1上的点Q(√3cosα, sinα)到直线的距离为:d =√3cosα+sinα−8|√2=|2sin(α+π3)−8|√2,当sin(α+π3)=1时,d 取最小值3√2. 【解答】∵ 直线l 1的参数方程为{x =t −√3y =kt(t 为参数), ∴ 直线l 1的普通方程为y =k(x +√3),①∵ 直线l 2的参数方程为{x =√3−m y =m 3k(m 为参数), ∴ 直线l 2的普通方程为y =13k (√3−x),②①×②,消k ,得:x 23+y 2=1.∵ k ≠0,∴ y ≠0,∴ 曲线C 1的普通方程为x 23+y 2=1(y ≠0). ∵ 直线C 2的极坐标方程为ρsin(θ+π4)=4√2,∴ 直线C 2的直角坐标方程为x +y −8=0,由(1)知曲线C 1与直线C 2无公共点,∵ 曲线C 1的参数方程为{x =√3cosαy =sinα,(α为参数,α≠kπ,k ∈Z), ∴ 曲线C 1上的点Q(√3cosα, sinα)到直线的距离为: d =√3cosα+sinα−8|√2=|2sin(α+π3)−8|√2, ∴ 当sin(α+π3)=1时,d 取最小值3√2.[选修4-5:不等式选讲]【答案】f(x)≥|2x +3|即|x +a|≥|2x +3|,平方整理得:3x 2+(12−2a)x +9−a 2≤0,所以−3,−1是方程 3x 2+(12−2a)x +9−a 2=0的两根,…2分由根与系数的关系得到{12−2a −3=−49−a 23=3 ...4分解得a =0...5分因为f(x)+|x −a|≥|(x +a)−(x −a)|=2|a|...7分 所以要不等式f(x)+|x −a|≥a 2−2a 恒成立只需2|a|≥a 2−2a...8分 当a ≥0时,2a ≥a 2−2a 解得0≤a ≤4,当a <0时,−2a ≥a 2−2a 此时满足条件的a 不存在,综上可得实数a 的范围是0≤a ≤4...10分【考点】绝对值三角不等式【解析】(1)根据二次函数的性质得到关于a 的方程组,解出即可; (2)问题转化为2|a|≥a 2−2a ,通过讨论a 的范围,得到关于a 的不等式,解出即可.【解答】f(x)≥|2x +3|即|x +a|≥|2x +3|,平方整理得:3x 2+(12−2a)x +9−a 2≤0,所以−3,−1是方程 3x 2+(12−2a)x +9−a 2=0的两根,…2分由根与系数的关系得到{12−2a −3=−49−a 23=3 ...4分解得a =0...5分因为f(x)+|x −a|≥|(x +a)−(x −a)|=2|a|...7分 所以要不等式f(x)+|x −a|≥a 2−2a 恒成立只需2|a|≥a 2−2a...8分 当a ≥0时,2a ≥a 2−2a 解得0≤a ≤4,当a <0时,−2a ≥a 2−2a 此时满足条件的a 不存在, 综上可得实数a 的范围是0≤a ≤4...10分。
2018年河南省高考数学一模试卷(理科)
2018 年河南省高考数学一模试卷(理科)一、选择题(此题共12 小题,每题 5 分,共 60 分)1.(5 分)已知会合 A={ x| x2﹣ 2x﹣3>0} ,B=N,则会合( ?R A)∩ B 中元素的个数为()A.2B.3C.4D.52.( 5 分)若复数(a∈R,i为虚数单位)是纯虚数,则实数a的值为()A.﹣ 6B.13C.D.3.( 5 分)已知 f(x)=sinx﹣tanx,命题 p:? x0∈( 0,),f (x0)<0,则()A.p 是假命题,¬ p:? x∈( 0,),f(x)≥ 0B.p 是假命题,¬ p:? x0∈( 0,),f(x0)≥ 0C.p 是真命题,¬ p:? x∈( 0,),f(x)≥ 0D.p 是真命题,¬ p:? x0∈( 0,),f(x0)≥ 04.(5 分)已知程序框图如图,则输出i 的值为()A.7B.9C.11D.135.(5 分) 2018 年元旦假期,高三的8 名同学准备拼车去旅行,此中(1)班、(2)班,(3)班、(4)班每班各两名,分乘甲乙两辆汽车,每车限坐4 名同学(乘同一辆车的4 名同学不考虑地点),此中(1)班两位同学是孪生姐妹,需乘同一辆车,则乘坐甲车的 4 名同学中恰有 2 名同学是来自同一个班的乘坐方式共有()A.18 种B.24 种C.48 种D.36 种6.(5 分)《九章算术》是我国古代数学名著,在《九章算术》中将底面为矩形且有一侧棱垂直于底面的四棱锥称为“阳马”,若某阳马”的三视图如下图,此中正视图和侧视图是腰长为 1 的两个全等的等腰直角三角形,则该“阳马”的表面积为()A.1+B.1+2C.2+D.2+27.(5 分)设不等式组表示的平面地区为D,若圆 C:(x+1)2+y2=r2(r >0)不经过地区 D 上的点,则 r 的取值范围为()A.(0,)∪(,+∞)B.(,+∞)C.(0,)D.[,]8.(5 分)若等边三角形ABC的边长为 3,平面内一点 M 知足 6﹣3=2,则?的值为()A.﹣B.﹣ 2C.2D.9.( 5 分)对于函数 f(x)=3sin( 2x﹣)+1(x∈R),以下命题正确的选项是()A.由 f( x1)=f( x2) =1 可得 x1﹣ x2是π的整数倍B.y=f(x)的表达式可改写成f( x) =3cos(2x+)+1C.y=f(x)的图象对于点(,1)对称D.y=f(x)的图象对于直线x=﹣对称10.( 5 分)设函数 f(x)=mx2﹣mx﹣1,若对于 x∈[ 1, 3] ,f (x)<﹣ m+4 恒成立,则实数 m 的取值范围为()A.(﹣∞, 0]B.C.D.11.( 5 分)设双曲线的方程为﹣=1(a>0,b>0),若双曲线的渐近线被圆 M :x2+y2﹣10x=0 所截得的两条弦长之和为12,已知△ ABP的极点 A,B 分别为双曲线的左、右焦点,极点 P 在双曲线上,则的值等于()A.B.C.D.12.( 5 分)已知定义在R 上的函数 f( x)和 g(x)分别知足 f(x)=,e2x﹣2+x2﹣ 2f(0)?x,g′(x)+2g( x)< 0,则以下不等式恒成立的是()A.g(2016)< f(2)?g( 2018)B.f (2)?g( 2016)< g( 2018)C.g(2016)> f (2)?g( 2018)D.f(2)?g( 2016)> g(2018)二、填空题(此题共 4 小题,每题 5 分,共 20 分)13.( 5 分)设 a=(cosx﹣sinx)dx,则二项式(a﹣)6的睁开式中含x2项的系数为.14.( 5 分)若函数 f (x)=(a,b∈R)为奇函数,则f(a+b)的值为.15.( 5 分)已知三棱柱 ABC﹣ A1B1C1的底面是正三角形,侧棱AA1⊥底面 ABC,如有一半径为 2 的球与三棱柱的各条棱均相切,则AA1的长度为.16.( 5 分)如图, OA,OB 为扇形湖面 OAB 的湖岸,现欲利用渔网和湖岸在湖中隔出两个养殖区﹣地区I 和地区Ⅱ,点 C 在上,∠ COA=θ,CD∥OA,其中,半径 OC及线段 CD 需要用渔网制成.若∠ AOB=,OA=1,则所需渔网的最大长度为.三、解答题(共70 分)17.( 12 分)已知 S n为数列 { a n} 的前 n 项和,且 a1<2,a n>0, 6S n=+3a n+2,n∈N* .( 1)求数列 { a n} 的通项公式;( 2)若对 ? n∈ N* ,b n(﹣)n ,求数列 { b n 的前2n 项的和2n .=1 } T18.(12 分)如下图,在四棱锥 P﹣ABCD中,底面 ABCD为直角梯形, AB∥CD,∠BAD=90°,DC=DA=2AB=2 ,点 E 为 AD 的中点,BD∩ CE=H,PH⊥平面 ABCD,且 PH=4.(1)求证: PC⊥BD;( 2)线段 PC上能否存在一点 F,使二面角 B﹣DF﹣ C 的余弦值是?若存在,请找出点 F 的地点;若不存在,请说明原因.19.( 12 分)某地域为认识学生学业水平考试的状况,从参加学业水平考试的学生中抽出 160 名,其数学构成绩(均为整数)的频次散布直方图如下图.( 1)预计此次考试数学成绩的均匀分和众数;( 2)假定在( 90,100] 段的学生中有 3 人得满分 100 分,有 2 人得 99 分,其他学生的数学成绩都不同样.现从 90 分以上的学生中任取 4 人,不一样分数的个数为 ξ,求 ξ的散布列及数学希望 E (ξ).20.(12 分)已知椭圆 C 1: +=1(a >b >0)的离心率为 ,右焦点 F 是抛物线 C 2:y 2=2px (p >0)的焦点,点( 2,4)在抛物线 C 2 上.( 1)求椭圆 C 1 的方程;( 2)已知斜率为 k 的直线 l 交椭圆 C 1 于 A ,B 两点, M ( 0,2),直线 AM 与 BM的斜率乘积为﹣ ,若在椭圆上存在点 N ,使| AN| =| BN| ,求△ ABN 的面积的最小值.21.( 12 分)已知函数 f (x )=ae x +x 2﹣bx (a ,b ∈ R ),其导函数为 y=f ′( x ).( 1)当 b=2 时,若函数 y=f ′( x )在 R 上有且只有一个零点,务实数 a 的取值范围;( 2)设 a ≠0,点 P (m , n )(m , n ∈ R )是曲线 y=f (x )上的一个定点,能否存在实数 x 0( 0≠ m )使得 f ( 0)﹣ n=f (′)( 0﹣ m )成立?并证明你x xx的结论.[ 选修 4-4:坐标系与参数方程选讲 ]22.( 10 分)在直角坐标系 xOy 中,已知直线 l 1:( t 为参数), l 2:(t 为参数),此中 α∈( 0,),以原点 O 为极点, x 轴第 5页(共 25页)非负半轴为极轴,取同样长度单位成立极坐标系,曲线 C 的极坐标方程为ρ﹣4cosθ=0.(1)写出 l1, l2的极坐标方程和曲线 C 的直角坐标方程;(2)设 l1,l 2分别与曲线 C 交于点 A,B(非坐标原点),求 | AB| 的值.[ 选修 4-5:不等式选讲 ]23.设函数 f (x)=| x﹣a| ( a> 0).(1)当 a=2 时,解不等式 f(x)≥ 1﹣ 2x;(2)已知 f(x)+| x﹣1| 的最小值为 3,且 m2n=a( m>0,n>0),求 m+n 的最小值.2018 年河南省高考数学一模试卷(理科)参照答案与试题分析一、选择题(此题共12 小题,每题 5 分,共 60 分)1.【剖析】可先求出会合A={ x| x<﹣ 1,或 x>3} ,而后进行交集、补集的运算即可.【解答】解: A={ x| x<﹣ 1,或 x>3} ;∴?R A={ x| ﹣1≤x≤3} ;∴( ?R A)∩ B={ 0,1,2,3} .应选: C.【评论】考察一元二次不等式的解法,以及描绘法、列举法表示会合的观点,交集和补集的运算.2.【剖析】利用复数的除法运算化简为a+bi(a,b∈R)的形式,由实部等于0 且虚部不等于求解 a 的值.【解答】解:由复数==是纯虚数,则,解得 a=﹣6.应选: A.【评论】此题考察了复数代数形式的乘除运算,考察了复数的基本观点,是基础的计算题.3.第 7页(共 25页)否认是全称命题写出结果.【解答】解:f( x)=sinx﹣tanx,x∈( 0,),当x=时,∴ f(x)=,命题 p:? x0∈( 0,),f(x0)<0,是真命题,命题 p:? x0∈( 0,),f(x0)<0,则¬p:? x∈(0,),f(x)≥ 0.应选: C.【评论】此题考察命题的否认,特称命题与全称命题的否认关系,基本知识的考察.4.【剖析】由已知中的程序框图可知:该程序的功能是利用循环结构计算并输出变量 i 的值,模拟程序的运转过程,可得答案.【解答】解:当 S=1时,不知足退出循环的条件,故S=1,i=3;当 S=1时,不知足退出循环的条件,故 S=3,i=5;当S=3时,不知足退出循环的条件,故 S=15, i=7;当S=15时,不知足退出循环的条件,故 S=105,i=9;当 S=105时,不知足退出循环的条件,故 S=945, i=11;当S=945时,不知足退出循环的条件,故 S=10395,i=13;当S=10395时,知足退出循环的条件,故输出的 i=13,应选: D.【评论】此题考察的知识点是程序框图,当循环的次数不多,或有规律时,常采纳模拟循环的方法解答.5.【剖析】分类议论,第一类,一班的 2 名同学在甲车上;第二类,一班的2 名同学不在甲车上,再利用组合知识,问题得以解决.【解答】解:由题意,第一类,一班的 2 名同学在甲车上,甲车上剩下两个要来自不一样的班级,从三个班级中选两个为C2=3,而后分别从选择的班级中再选第 8页(共 25页)择一个学生为 C21C21=4,故有 3×4=12 种.第二类,一班的 2 名同学不在甲车上,则从剩下的 3 个班级中选择一个班级的两名同学在甲车上,为 C31=3,而后再从剩下的两个班级中分别选择一人为C21C21=4,这时共有 3×4=12 种,依据分类计数原理得,共有 12+12=24 种不一样的搭车方式,应选: B.【评论】此题考察计数原理的应用,考察组合知识,考察学生的计算能力,属于中档题.6.【剖析】由三视图知该几何体是侧棱垂直于底面的四棱锥,画出图形联合图形求出它的表面积.【解答】解:由三视图知该几何体是侧棱垂直于底面的四棱锥,如下图;正视图和侧视图是腰长为 1 的两个全等的等腰直角三角形,∴四棱锥的底面是正方形,且边长为1,此中一条侧棱 PD⊥底面 ABCD,且侧棱 AD=1,∴四棱锥的四个侧面都为直角三角形,且 PA=PC= ,∴四棱锥的表面积为S=S底面ABCD+2S△SAD+2S△SAB=1+2××1×1+2××1×=2+.应选: C.【评论】此题考察了利用空间几何体的三视图求几何体表面积的应用问题,是基础题.7.【剖析】作出题中不等式组表示的平面地区,获得如图的△MNP 及其内部,而圆 C 表示以(﹣ 1,﹣1)为圆心且半径为 r 的圆.察看图形,可得半径r <CM或 r>CP 时,圆 C 不经过地区 D 上的点,由此联合平面内两点之间的距离公式,即可获得 r 的取值范围.【解答】解:作出不等式组表示的平面地区,获得如图的△ MNP 及其内部,此中M(1,1), N(2,2),P(1,3)∵圆 C:(x+1)2 +y2=r2(r >0)表示以 C(﹣ 1,0)为圆心,半径为r的圆,∴由图可得,当半径知足r< CM 或 r>CP时,圆 C 不经过地区 D 上的点,∵CM==,CP==.∴当 0<r <或r>时,圆C不经过地区D上的点,应选: A.【评论】此题给出动圆不经过已知不等式组表示的平面地区,求半径r的取值范围.侧重考察了圆的标准方程、平面内两点间的距离公式、二元一次不等式组表示的平面地区等知识,属于中档题.8.【剖析】依据条件可先求出,而由即可得出,这样即可用分别表示出,而后进行数目积的运算即可.【解答】 解:等边三角形 ABC 的边长为 3;∴;;∴;∴==,=;∴= ==﹣2.应选: B .【评论】考察向量数目积的运算及计算公式, 以及向量的数乘运算, 向量加法的几何意义.9.【剖析】依据函数 f ( x )=3sin ( 2x ﹣ )+1( x ∈ R ),联合三角函数的性质即可 判断各选项.【解答】 解:函数 f (x ) =3sin (2x ﹣ )+1(x ∈R ),周期 T=,对于 A :由 f ( x 1) =f ( 2) ,x =1可能 x 1 与 x 2 对于此中一条对称轴是对称的,此时 x 1﹣x 2 不是 π的整数倍;∴ A不对.对于 B :由引诱公式, 3sin (2x ﹣ ) +1=3cos[ ﹣( 2x ﹣ ) ]+ 1=3cos ( 2x﹣)+1.∴ B 不对.第11页(共 25页)∴C不对,对于 D:当 x=﹣时,可得f()=3sin(﹣﹣)+1=﹣1×3+1=﹣2,f(x)的图象对于直线x=﹣对称.应选: D.【评论】此题主要考察利用y=Asin(ωx+φ)的信息特点,判断各选项的正误,属于中档题.10.【剖析】利用分别参数法,再求出对应函数在x∈ [ 1,3] 上的最大值,即可求m 的取值范围.【解答】解:由题意, f(x)<﹣ m+4,可得 m( x2﹣x+1)< 5.∵当 x∈[ 1, 3] 时, x2﹣x+1∈[ 1,7] ,∴不等式 f( x)< 0 等价于 m<.∵当 x=3 时,的最小值为,∴若要不等式 m<恒成立,则一定 m<,所以,实数 m 的取值范围为(﹣∞,),应选: D.【评论】此题考察恒成立问题,考察分别参数法的运用,解题的要点是分别参数,正确求最值,属于中档题.11.【剖析】依据垂径定理求出圆心到直线的距离为d=4,再依据点到直线的距离公式可得=4,获得5b=4c,即可求出a= c ,依据正弦定理可得第12页(共 25页)== =【解答】解:双曲线的一条渐近线方程为y=x,双曲线的渐近线被圆M :x2+y2﹣ 10x=0,即(x﹣ 5)2+y2=25 所截得的两条弦长之和为 12,设圆心到直线的距离为d,则 d==4,∴=4,即 5b=4c,即 b= c∵ a2=c2﹣ b2=c2,∴a= c,∴| AP﹣BP| =2a,由正弦定理可得∴sinB= , sinA====2R,,sinP=,∴== =,应选: C.【评论】此题考察了双曲线的简单性质以及圆的相关性质和正弦定理,属于中档题12.【剖析】 f(x)=2x﹣2 2﹣ 2f(0)?x,令 x=0,则 f (0)= .由 f ′e +x(x)=f (′1)?e2x﹣2+2x﹣2f(0),令 x=1,可得 f(0).从而得出 f (′1),f( x),().令()2x (),及其已知2x[ g′f 2h x =e g x g′(x)+2g(x)<0,可得 h′(x)=e (x)+2g(x)] <0,利用函数 h( x)在 R 上单一递减,即可得出.【解答】解: f(x) =2x﹣ 2 2e +x ﹣2f( 0) ?x,令 x=0,则 f(0)=.∵f (′ x)=f ′(1)?e2x﹣2+2x﹣ 2f(0),令 x=1,则 f ′( 1) =f ′(1)+2﹣2f(0),解得 f( 0) =1.∴ f (′ 1) =2e2.∴ f(x)=e2x+x2﹣2x,∴f(2)=e4.令 h(x) =e2x g(x),∵ g′(x) +2g(x)< 0,∴h′(x) =e2x g′(x)+2e2x g( x) =e2x[ g′( x)+2g( x) ] < 0,∴函数 h( x)在 R 上单一递减,∴ h(2016)> h( 2018),∴e2016×2g(2016)> e2018×2g( 2018),可得: g(2016)> e4g(2018).∴g( 2016)> f( 2)g(2018).应选: C.【评论】此题考察了利用导数研究函数的单一性极值与最值、结构法、方程与不等式的解法,考察了推理能力与计算能力,属于难题.二、填空题(此题共 4 小题,每题 5 分,共 20 分)13.第14页(共 25页)出 r 的值,问题得以解决.【解答】解:因为 a= (cosx﹣sinx)dx=( sinx+cosx)| =﹣ 1﹣ 1=﹣2,∴(﹣2 ﹣)6+ )6的通项公式为r+1 6﹣r 6r 3﹣r ,=(2 T =2 C ?x令 3﹣r=2,求得 r=1,故含 x2项的系数为 26﹣1C61=192.故答案为: 192【评论】此题主要考察定积分、二项式定理的应用,二项式睁开式的通项公式,属于基础题.14.【剖析】由已知中函数f( x)为奇函数, f(﹣ x)=﹣f( x)恒成立,可得 a,b 的值,从而可得 f (a+b)的值.【解答】解:∵函数 f (x)==为奇函数,故 f(﹣ x) =﹣ f( x)恒成立,故.即,∴ f(x)=,∴f(a+b) =f(1)=1﹣ 2=﹣1,故答案为:﹣ 1.【评论】此题考察的知识点是分段函数的应用,函数的奇偶性,函数求值,难度中档.15.【剖析】由题意求出正三棱柱的高、底面边长,即可求出AA1的长度.【解答】解:由题意,△ ABC的外接圆即为球的大圆,r=2,设底面△ ABC外接圆圆心 G,即 GA=GB=GC=2,从而正三角形 ABC边长 2 ,设球心 O,由题意, E、D 在球面上, OE=OD=2,F 为 DE中点,则 OF⊥DE, OF=GD= GC=1,在 Rt△OEF中, OE=2, OF=1,∴EF= ,∴ DE=2 ,∴AA1=2 .故答案为: 2 .【评论】此题考察正三棱柱的内切球与正三棱柱的关系,经过两者的关系求出正三棱柱的体积,考察计算能力,逻辑推理能力.16.【剖析】确立∠ COD,在△ OCD中利用正弦定理求得CD 的长度,依据所需渔网长度,即图中弧 AC、半径 OC和线段 CD长度之和,确立函数的分析式,利用导数确立函数的最值,求得所需渔网长度的最大值.【解答】解:由 CD∥OA,∠ AOB=,∠ AOC=θ,得∠ OCD=θ,∠ ODC=,∠COD=﹣θ;在△ OCD中,由正弦定理,得CD= sin(﹣θ),θ∈(0,),设渔网的长度为f(θ),可得 f (θ)=θ+1+ sin(﹣θ),所以 f ′(θ)=1﹣cos(﹣θ),因为θ∈(0,),所以﹣θ∈( 0,),第16页(共 25页)令 f ′(θ)=0,得 cos(﹣θ)=,所以﹣θ= ,所以θ= .θ(0,)(,)f (′θ)+0﹣f(θ)极大值所以 f (θ)∈( 2,] .故所需渔网长度的最大值为.【评论】此题考察了正弦定理的应用问题,也考察了函数模型的建立与最值应用问题,是难题.三、解答题(共70 分)17.【剖析】(1)6S n=+3a n+2,n∈N* .n≥2 时, 6a n=6S n﹣6S n﹣1,化为( a n+a n﹣1)(a n﹣ a n﹣1﹣3)=0,由 a n>0,可得 a n﹣a n﹣1=3,n=1 时,6a1=+3a1+2,且a1<2,解得 a1.利用等差数列的通项公式可得a n.(2) b n=(﹣ 1)n =(﹣ 1)n(3n﹣2)2. b2n﹣1+b2n=﹣( 6n﹣ 5)2+(6n﹣ 2)2=3(12n﹣7)=36n﹣21.利用分组乞降即可得出.【解答】解:(1)6S n =+3a n+2, n∈N* .n≥2 时, 6a n=6S n﹣6S n﹣1= +3a n +2﹣(+2),化为:(a n+a n﹣1)(a n﹣a n﹣1﹣3)=0,∵a n>0,∴ a n﹣ a n﹣1=3,n=1 时, 6a1= +3a1+2,且 a1<2,解得 a1=1.∴数列 { a n} 是等差数列,首项为1,公差为 3.∴a n=1+3( n﹣ 1)=3n﹣2.=(﹣ 1)n(3n﹣ 2)2.( 2) b n =(﹣ 1)n∴b+b=﹣( 6n﹣5)2+(6n﹣ 2)2=3( 12n﹣7)=36n﹣21.第17页(共 25页)∴数列 { b n 的前2n 项的和 2n ()﹣21n=﹣ 2} T =36 1+2+ +n 21n=18n ﹣3n.【评论】此题考察了数列递推关系、等差数列的定义通项公式与乞降公式、分组乞降方法,考察了推理能力与计算能力,属于中档题.18.【剖析】(1)推导出△ BAD≌△ EDC,∠ DBA=∠DEH,从而 BD⊥EC,由 PH⊥平面 ABCD,得 BD⊥PH,由此能证明 BD⊥平面 PEC,从而 PC⊥ BD.(2)推导出 PH、 EC、BD 两两垂直,成立以 H 为坐标原点, HB、HC、HP 所在直线分别为 x,y, z 轴的坐标系,利用向量法能求出线段PC 上存在一点 F,当点 F 知足 CF=3时,二面角B﹣DF﹣C的余弦值是.【解答】证明:(1)∵ AB∥CD,∠ BAD=90°,∴∠ EDC=∠BAD=90°,∵DC=DA=2AB,E 为 AD 的中点,∴ AB=ED,∴△ BAD≌△ EDC,∴∠ DBA=∠DEH,∵∠ DBA+∠ADB=90°,∴∠ DEH+∠ADB=90°,∴ BD⊥EC,又∵ PH⊥平面 ABCD,BD? 平面 ABCD,∴ BD⊥PH,又∵ PH∩ EC=H,且 PH,EC? 平面 PEC,∴ BD⊥平面PEC,又∵ PC? 平面 PEC,∴ PC⊥BD.解:( 2)由( 1)可知△ DHE∽△ DAB,由题意得 BD=EC=5,AB=DE= ,∴,∴EH=1, HC=4,DH=2,HB=3,∵ PH、EC、BD 两两垂直,成立以 H 为坐标原点, HB、HC、HP 所在直线分别为x,y,z 轴的坐标系,H(0,0,0),B(3,0,0),C(0,4,0),D(﹣ 2,0,0),P(0,0,4),假定线段 PC上存在一点 F 知足题意,∵与共线,∴存在独一实数λ,(0≤λ≤ 1),知足 =λ,解得F(0,4﹣4λ, 4λ),设向量=(x,y, z)为平面 CPD的一个法向量,且=(0,﹣ 4,4),=(﹣2,﹣4,0),∴,取 x=2,得=(2,﹣ 1,﹣ 1),同理得平面 CPD的一个法向量=(0,λ,λ﹣1),∵二面角 B﹣DF﹣ C 的余弦值是,∴ | cos<>| ===,由 0≤λ≤ 1,解得λ=,∴=,∵CP=4 ,∴线段 PC上存在一点 F,当点 F 知足 CF=3时,二面角B﹣DF﹣C的余弦值是.【评论】此题考察线线垂直垂直的证明,考察二面角的余弦值的求法,考察空间中线线、线面、面面间的地点关系等基础知识,考察运算求解能力,考察函数与方程思想,是中档题.19.【剖析】(1)把组中值看作各小组的均匀数,依据加权均匀数公式计算;( 2)依据组合数公式计算各样状况的概率,得出散布列.【解答】解:(1) =45×0.005×10+55×0.015×10+65× 0.02×10+75× 0.03×10+85×0.025×10+95× 0.005×10=72(分),众数为 75 分.(2) 90 分以上的人数为 160×0.005×10=8人.∴ξ的可能取值为 2, 3, 4,P(ξ =2)==,P(ξ =3)==,P(ξ =4)==.∴ξ的散布列为:ξ 2 3 4P∴ξ的数学希望是 E(ξ)=2× +3×+4×=.【评论】此题考察了频次散布直方图,失散型随机变量的散布列和数学希望,属于中档题.20.【剖析】(1)先求出 p 的值,即可求出 c 的值,依据离心率求出 a 的值,即可得到椭圆方程,( 2)设直线 l 的方程为 y=kx+m,设 A( x1,1),(2,2),由,yB x y依据直线 AM 与 BM 的斜率乘积为﹣,求出m=0,再依据弦长公式求出| AB|和| ON| ,表示出三角形的面积来,再利用二次函数的性质即可求出最小值.【解答】解:(1)∵点( 2, 4)在抛物线 y2=2px 上,∴16=4p,第20页(共 25页)∴椭圆的右焦点为F(2,0),∴c=2,∵椭圆 C1:+ =1(a>b>0)的离心率为,∴= ,∴a=2 ,∴b2=a2﹣ c2=8﹣4=4,∴椭圆 C1的方程为+,=1( 2)设直线 l 的方程为 y=kx+m,设 A(x1,1 ),( 2 , 2 ),y B x y 由,消 y 可得( 1+2k2) x2 +4kmx+2m2﹣8=0,∴ x1 2 , 1 2 ,+x = x x =∴ y1 2 ( 1 2 )+2m= ,12 212 ( 1 2) 2=+y =k x +x y y =k x x +km x +x +m∵ M(0,2),直线 AM 与 BM 的斜率乘积为﹣,∴ k1?k2=?===﹣,解得 m=0,∴直线 l 的方程为 y=kx,线段 AB 的中点为坐标原点,由弦长公式可得 | AB| ==,∵| AN| =| BN| ,∴ ON 垂直均分线段 AB,当 k≠0 时,设直线 ON 的方程为 y=﹣x,同理可得|ON|== ,∴ S △ ABN = | ON| ?| AB| =8,当 k=0 时,△ ABN 的面积也合适上式,令 t=k 2+1, t ≥1,0< ≤ 1,则S =8=8=8,△ABN∴当 = 时,即 k=±1 时, S △ABN 的最小值为 .【评论】此题考察椭圆的标准方程, 直线与椭圆的地点关系, 考察椭圆与二次函数函数的应用,考察计算能力,属于难题.21.【剖析】(1)当 b=2 时,f ( x )=ae x +x 2﹣ 2x ,( a ∈ R ),f (′x )=ae x +2x ﹣2,( a ∈ R ),由题意 a=,令 h ( x )= ,则 =0,解得 x=2,由此能求出当 a=﹣或 a ∈[ 0, +∞)时, f ′(x )在 R 上有且只有一个零点.( 2 )由f ( x ) =ae x +x 2 ﹣ bx , 得 f ′( x ) =ae x +2x ﹣ b , 假定 存在 x 0 ,则,利用导数性质推导出不存在实数x (0 x 0≠m )使得 f (x 0)﹣ n=f (′)( 0﹣ m )成立.x【解答】 解:(1)当 b=2 时, f (x )=ae x +x 2﹣2x ,(a ∈R ),f (′x )=ae x +2x ﹣ 2,(a ∈R ), 由题意得 ae x +2x ﹣ 2=0,即 a= ,令 h (x ) =,则=0,解得 x=2,当 x <2 时, h ′( x )< 0,h (x )单一递减,当 x >2 时, h ′( x )> 0,h (x )单一递加, ∴ h ( x )min =h ( 2)=﹣ ,∵当 x=﹣ 1 时, h (﹣ 1) =4e >0,当 x >2 时, h (x )=<0,由题意适当 a=﹣或 a ∈[ 0, +∞)时, f ′( x )在 R 上有且只有一个零点.( 2)由 f (x )=ae x +x 2﹣bx ,得 f ′(x )=ae x +2x ﹣ b ,假定存在 x 0,则有 f (x 0)==,即,∵ f (′)= +2 ﹣b ,==+(x 0+m )﹣ b ,∴+2?﹣ b=+(x 0 +m )﹣ ,b即 = ,∵ a ≠0,∴,令 t=x 0﹣ m > ,则,两边同时除以 e m ,得,即 ,令 g (t ) =,∴ ,令 h (t ) =﹣ ﹣1 在( 0,+∞)上单一递加,且 h (0)=0,∴ h ( t )> 0 对于 t ∈( 0, +∞)恒成立,即 g ′(t )> 0 对于 t ∈( 0, +∞)恒成立,∴ g ( e )在( 0,+∞)上单一递加, g (0)=0,∴ g ( t )> 0 对于 t ∈( 0, +∞)恒成立,∴= 不可立,同理, t=x 0﹣ m <0 时,∴不存在实数 x 0( 0≠ m )使得 f ( 0)﹣ n=f ′()(0﹣ m )成立. x xx【评论】此题考察利用导数研究函数的性质及实数的最值范围的求法、 知足条件的实数能否存在的判断与证明,考察函数与方程思想、转变与化归思想,考察运算求解能力、推理论证能力,考察创新意识,是中档题.[ 选修 4-4:坐标系与参数方程选讲 ]22.【剖析】(1)考察直线 l 1,l 2 参数方程与极坐标方程的互化,曲线 C 的极坐标方程与直角坐标方程的互化.要点都是消去参数t .( 2)利用 l 1, l 2 极坐标方程,联合余弦定理,计算出 | AB| 的长度.【解答】 解:(1)l 1,l 2 的极坐标方程为 θ1=α(ρ∈R ), θ2=α+ (ρ∈R ).曲线 C 的极坐标方程方程为 ρ﹣4cos θ=0.即得 ρ2﹣4ρcos θ=0,222利用 ρ x +y ,x=ρcos θ得曲线 C 的直角坐标方程为( x ﹣2)2+y 2=4. ( 2)因为 ρ1=4cos α, ρ2=4cos (α+ ),所以|AB|2﹣ ρ1. ρ222( )﹣ cos αcos=+2 cos=16[ cos α+cos()]=16[ cos 2α+ (cos α﹣ sin α)2﹣cos α( cos α﹣ sin α)] =8,所以| AB| 的值为 2 .【评论】考察极坐标方程与参数方程, 一般方程的互化. 记准互化公式和原则是要点,属于中档题目.[ 选修 4-5:不等式选讲 ]第24页(共 25页)23.【剖析】(1)经过议论 x 的范围,求出不等式的解集即可;(2)依据绝对值不等式的性质求出 a 的值,联合基本不等式的性质求出 m+n 的最小值即可.【解答】解:(1)当 x≥2 时, x﹣ 2≥ 1﹣ 2x,得 x≥1,故 x≥2,当 x<2 时, 2﹣x≥1﹣2x,得 x≥﹣ 1,故﹣ 1≤x<2,综上,不等式的解集是 { x| x≥﹣ 1} ;( 2)∵ f( x)+| x﹣ 1| 的最小值是 3,∴ f(x)+| x﹣1| ≥| x﹣ a﹣( x﹣ 1) | =| a﹣ 1|=3,故 a=4,∵ m+n= + +n≥3 =3,当且仅当=n 即 m=2, n=1 时取“=.”【评论】此题考察认识绝对值不等式问题,考察绝对值的性质以及基本不等式的性质,是一道中档题.第25页(共 25页)。
河南省2018年高考数学一模试卷(理科)Word版含解析
2018年河南省高考数学一模试卷(理科)选择题1.A. 2B. 3C. 4D. 5【答案】C【解析】【分析】故选【点睛】本题主要考查了集合的交集,补集的混合运算,熟练掌握各自的定义是解题的关键,属于基础题。
2.)A. -6B. 13C.D.【答案】A【解析】解答:a=−6.本题选择A选项.3.已知pA. p,B. pC. p,D. p【答案】C【解析】【分析】利用特称值,判断特称命题的真假,利用命题的否定关系,特称命题的否定是全称命题写出结果。
命题:,是真命题【点睛】本题主要考查了命题的否定,特称命题与全称命题的否定关系,属于基础题。
4.已知程序框图如图,则输出iA. 7B. 9C. 11D. 13【答案】D【解析】【分析】运行过程,可得答案.【点睛】本题主要考查的知识点是程序框图,当循环的次数不多,或有规律时,常采用模拟循环的方法解答。
5.2018年元旦假期,高三的8各两名,分乘甲乙两辆汽车,每车限坐44班两位同学是孪生姐妹,需乘同一辆车,则乘坐甲车的4名同学中恰有2名同学是来自同一A. 18种B. 24种C. 48种D. 36种【答案】B【解析】【分析】组合知识,问题得以解决。
根据分类计数原理得,共有【点睛】本题考查计数原理的应用,考查组合知识,考查学生的计算能力,属于中档题.四棱锥称为“阳马”,若某阳马”的三视图如图所示,其中正视图和侧视图是腰长为1的两【答案】C【解析】【分析】由三视图知该几何体是侧棱垂直于底面的四棱锥,画出图形结合图形求出它的表面积。
【详解】由三视图知该几何体是侧棱垂直于底面的四棱锥,如图所示;四棱锥的四个侧面都为直角三角形,且故选【点睛】本题考查了利用空间几何体的三视图求几何体表面积的应用问题,是基础题.7.D,若圆C:D上的点,则r的取值范围为【答案】A【分析】表示以【详解】及其内部,其中时,圆的取值范围,着重考查了圆的标准方程、平面内两点间的距离公式、二元一次不等式组表示的平面区域等知识,属于中档题。
郑州市2018年高中毕业年级第一次质量预测理科数学试题(含答案)(2018.1.10)
2018年高中毕业年级第一次质量预测理科数学 参考答案二、填空题13. -1; 14. 50,;2⎡⎤⎢⎥⎣⎦15. 12;35 16. .210x y ±= 三、解答题:解答应写出文字说明,证明过程或演算步骤.17.解析:(1)⎩⎨⎧=+===+=+5510552552135152d a a S d a a a ,求得.23,3,51+=∴⎩⎨⎧==n a d a n ...............6分(2)).231131(31)23)(13(1)13(1+--=+-=-=n n n n n a b n n ...............8分),23121(31)23113181515121(3121+-=+--++-+-=++=n n n b b b T n n ΛΛ.)23(269161+=+-=∴n n n T n ...............12分 18.解析:(1)由题意12210141134132)120(126119115113107105=++++++++++x ,解得8=x ;...............4分(2)随机变量η的所有取值有0,1,2,3,4.;457)0(2102102627===C C C C p η ;22591)1(210210261317===C C C C C p η;31)2(2102101416131724272623=++==C C C C C C C C C C p η ;22522)3(210210241317141623=+==C C C C C C C C p η ;2252)4(2102102423===C C C C p η...............9分η∴的分布列为:η0 1 2 3 4P457 22591 31 22522 225257225242252233122259114570)(=⨯+⨯+⨯+⨯+⨯=ηE ...............12分19.(1)证明:连接DE ,由题意知,2,4==BD AD.90,222οΘ=∠∴=+ACB AB BC AC.33632cos ==∠ABC .8cos 322212222=∠⨯⨯-+=∴ABC CD.22=∴CD222AC AD CD =+∴,则AB CD ⊥,...............2分又因为ABC PAB 平面平面⊥,所以,,PD CD PAB CD ⊥∴⊥平面 因为AC PD ⊥,CD AC ,都在平面ABC 内, 所以⊥PD 平面ABC ;...............4分(2)由(1)知,,PD CD AB 两两互相垂直,建立如图所示的直角坐标系D xyz -,且PA 与平面ABC 所成的角为4π,有4=PD , 则)4,0,0(),0,2,0(),0,0,22(),0,4,0(P B C A -∴)4,4,0(),0,4,22(),0,2,22(--==-=PA AC CB 因为,//,2,2AC DE EB CE DB AD ∴==由(1)知,BC AC ⊥⊥PD 平面ABC ,∴ CB ⊥平面DEP ...............8分 ∴)0,2,22(-=CB 为平面DEP 的一个法向量.设平面PAC 的法向量为(),,n x y z =v,则⎪⎩⎪⎨⎧⊥⊥,,PA n AC n∴⎩⎨⎧=--=+0440422z y y x ,令1=z ,则1,2-==y x ,...............10分∴)1,1,2(-=为平面PAC 的一个法向量. ∴.2312424,cos -=⋅-->=<故平面PAC 与平面PDE 的锐二面角的余弦值为23, 所以平面PAC 与平面PDE 的锐二面角为ο30................12分20.解析:(1)由题意c b a ab =+-2243,即).4)(()4(3222222222b a b a b a c b a +-=+=所以222b a =,22=∴e ................4分 (2)因为三角形2PQF ∆的周长为24,所以,2,244=∴=a a由(1)知12=b ,椭圆方程为1222=+y x ,且焦点)0,1(),0,1(21F F -, ①若直线l 斜率不存在,则可得l x ⊥轴,方程为)22,1(),22,1(,1----=Q P x , )22,2(),22,2(22--=-=F F ,故2722=⋅Q F P F ................6分 ②若直线l 斜率存在,设直线l 的方程为)1(+=x k y ,由⎩⎨⎧=++=22),1(22y x x k y 消去y 得0224)12(2222=-+++k x k x k , 设),(),,(2211y x Q y x P ,则.1222,12422212221+-=+-=+k k x x k k x x ...............8分 ,)1)(1(),1(),1(2121221122y y x x y x y x F F +--=-⋅-=⋅则.1))(1()1(221221222+++-++=⋅k x x k x x k F F 代入韦达定理可得,)12(292712171)124)(1(1222)1(222222222222+-=+-=+++--++-+=⋅k k k k k k k k k k F F由02>k 可得)27,1(22-∈⋅Q F P F ,结合当k 不存在时的情况,得]27,1(22-∈⋅F F , 所以F F 22⋅最大值是27...............12分 21.解析:(1))0(,1)(2>-='x ax ax x f当0a <时,0)(>'x f 恒成立,所以函数()f x 是()0,+∞上的单调递增函数;当0a >时,()210ax f x ax -'=>,得1x a>, 01)(2<-='ax ax x f ,得ax 10<<, 函数单调递增区间为),1(+∞a ,减区间为).1,0(a综上所述,当0a <时,函数()f x 增区间为()0,.+∞.当0a >时,函数单调递增区间为),1(+∞a ,减区间为).1,0(a...............4分 (2)∵],1[e ex ∈,函数m x e x x g x-+-=)1(ln )(的零点, 即方程m x e x x=+-)1(ln 的根. 令()()ln 1e x h x x x =-+,()1ln 1e 1.x h x x x ⎛⎫=+-+⎪⎝⎭'................6分 由(1)知当1a =时, ()1ln 1f x x x=+-在)1,1[e 递减,在[]1,e 上递增,∴()()10f x f ≥=.∴1ln 10x x+-≥在],1[e e x ∈上恒成立.∴()1ln 1e 1010x h x x x ⎛⎫=+-+≥+>⎪⎭'⎝,...............8分 ∴()()ln 1e xh x x x =-+在],1[e ex ∈上单调递增. ∴()1min112e h x h e e e ⎛⎫==-+ ⎪⎝⎭,e x h =max )(..........10分所以当112em e e <-+或e m >时,没有零点,当112e e m e e-+≤≤时有一个零点................12分22.(1)直线l 的参数方程为:1cos ,(sin x t t y t αα=+⎧⎨=⎩为参数). ……2分28cos sin θρθ=Q ,2sin 8cos ,ρθθ∴=22sin 8cos ,ρθρθ∴=28.y x =即 ……5分(2)当4πα=时,直线l的参数方程为:1,(2x t y t⎧=⎪⎪⎨⎪=⎪⎩为参数),……6分代入28y x =可得2160,t --=12,,A B t t 设、两点对应的参数分别为则11t t +=1216t t =-g12AB t t ∴=-==……8分1sin42O AB d π=⨯=又点到直线的距离11222AOB S AB d ∆∴=⨯=⨯=……10分23.(本小题满分10分)解:(1)321,x x +<-由已知,可得 22321.x x +<-即……1分21080,x x -->则有:324.3x x ∴<->或 ……3分 2(,)(4,).3-∞-+∞U 故所求不等式的解集为: ……4分45,3,1(2)()2()()23217,3,2145,.2x x h x f x g x x x x x x ⎧⎪--≤-⎪⎪=+=++-=-<<⎨⎪⎪+≥⎪⎩由已知,设……6分 3454,49,x x ax ax x ≤--->+<--当时,只需恒成立即499304x x a x x --≤-<∴>=--Q 恒成立.,1,)94(max ->∴-->∴a x a ……7分1374,302x ax ax -<<>+-<当时,只需恒成立即恒成立..61,61,0321033≤≤-∴⎩⎨⎧≤-≥∴⎪⎩⎪⎨⎧≤-≤--a a a a a 只需 ……8分1454,4 1.2x x ax ax x ≥+>+<+当时,只需恒成立即14110,42x x a x x +≥>∴<=+Q 恒成立.414>+x Θ,且无限趋近于4,.4≤∴a ……9分综上,a 的取值范围是(1,4].- ……10分。
高三数学数学河南省郑州市2018届高三第一次调研考试(理)
河南省郑州市2021—2021学年高三第一次调研考试数学试卷〔理科〕第一卷一、选择题:本大题共12题,每题5分,共60分.在每题给出的四个选项中,只有一项为哪一项符合题目要求的.1.假设集合A{x ||x|x,B{x|x2x0}},那么A∩B=〔〕A.[0,1]B.(,0]C.〔1,+〕D.〔-,-1〕t13i2.设t是实数,且13i2 1B.1A.2是实数,那么t=〔〕3C.D.223.函数f(x)2log a x(a0,且a1),f1(x)是f(x)的反函数,假设f1(x)的图象过点〔6,4〕,那么a等于〔〕A.3B.33C.6D.24.圆x2y2上到直线x y20的距离等于1的点的个数为〔〕4A.3B.2C.1D.05.从4名女生和3名男生中选出3人分别参加三个培训班,假设这3人中至少有1名男生,那么不同的选派方案共有〔〕A.118种B.186种C.216种D.270种6.变量x,y满足约速条件A.3B.4yz xaa xy2bb3x6 那么目标函数Z 2x y的最大值为〔〕C.9D.127.数列{a n}的前n项和S n n(n 40),那么以下判断正确的选项是〔〕A.a19>0,a21<0B.a20>0,a21<0C.a19<0,a21>0D.a19<0,a20>0 8.设、、为互不相同的三个平面,l、m、n为不重合的三条直线,那么l的一个充分条件是〔〕A.,,l B.,m,l mC .m ,m,lD ., ,l9.曲线y1 21,那么切点的横坐标为〔〕x3lnx 的一条切线的斜率为42A .3B .2C .11D .210.设a132tan13,c1 cos50cos6 sin6,b213 2 那么有221 tan〔〕A .a>b>cB .a<b<cC .a<c<bD .b<c<ax2y21的左右焦点,假设双曲线上存在点A ,使∠F 1AF 2=90°11.设F 1,F 2分别是双曲线b 2a2且|AF 1|=3|AF 2|,那么双曲线的离心率等于〔〕5B .10C .15D .5A .22212.偶函数 y f(x)在[ 1,0]上为减函数,又,为锐角三角形的两内角,那么必须〔〕A .C .f(sin ) f(cos )f(sin )f(sin )B .D .f(sin ) f(cos )f(cos ) f(cos )第二卷二、填空题:本大题共4小题,共 20分,把答案填在题中的横线上.13.(x1)10展开式中的第四项为.x14.设e 1,e 2是 两 个 互 相 垂 直 的 单 位 向 量 ,a(2e 1 e 2),be 1e 2,假设a b ,那么的值为.15.正三棱锥S —ABC 内接于球O ,且球心O 在平面ABC 上,假设正三棱锥S —ABC 的底面边长为a ,那么该三棱锥的体积是 .16.p>0,q>0,p 、q 的等差中项为 1,且xp1,yq1,那么x y 的最2pq小值为 .三、解答题:本大题共 6个小题;共 70分.解容许写出文字说明,证明过程或演算步骤 .17.〔本小题总分值 10分〕函数f(x) s in 2x 2sinxcosx 3cos 2x(x R)〔Ⅰ〕求函数 f(x)的最小正周期;〔Ⅱ〕当x[19,]时,求函数 f(x)的最大值和最小值.2418.〔本小题总分值12分〕4个球,甲投篮命中的概率为1甲、乙两篮球运发动进行定点投篮,每人各投,乙投2篮命中的概率为2.3〔Ⅰ〕求甲至多命中2个且乙至少命中 2个的概率;〔Ⅱ〕假设规定每投篮一次命中得3分,未命中得-1分,求乙所得分数η的概率分布和数学期望.19.〔本小题总分值12分〕如图:正三棱柱 ABC —A 1B 1C 1中,D 是BC 的中点,AA 1=AB=1. 〔Ⅰ〕求证:A 1C//平面AB 1D ;〔Ⅱ〕求二面角B —AB 1—D 的大小;〔Ⅲ〕求点C 到平面AB 1D 的距离.20.〔本小题总分值12分〕函数f(x) xln(1x)a(x1),其中a 为常数.〔Ⅰ〕假设当x[1, )时,f (x) 0恒成立,求a 的取值范围;〔Ⅱ〕求g(x)f ax(x)的单调区间.x121.〔本小题总分值 12分〕F是椭圆:x2y21在y轴正半轴上的焦点,该椭圆的离心率e2,直m2线PQ和MN过点F且与该椭圆分别交于P、Q、M、N四点.〔Ⅰ〕求m的值;〔Ⅱ〕假设PQ⊥MN,求四边形PMQN的面积的最小值和最大值.22.〔本小题总分值12分〕等比数列{a n}中,a11.0,a n12a n〔Ⅰ〕求数列{a n}的通项公式a n;〔Ⅱ〕设数列{a n}的前n项和为S n,证明:S n n ln(n1);〔Ⅲ〕设bn a n(9)n,证明:对任意的正整数n、m,均有|b n b m|3.105理科数学 参考答案 一、1—5CDDAB 6—10CCCAC11—12BA二、填空13.C 103x 414.215.1a 3 16.512三、解答:17.解:f(x)1 sin2x2cos 2x⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯1分=2cos2xsin2x 22cos(2x) ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯3分4〔Ⅰ〕f(x)的周期是:T=⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯5分〔Ⅱ〕∵19x∴112x492464∴2 cos(2x)1 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯8分24∴322cos(2x) 22,即:3f(x)224∴函数f(x)的最小3,最大2 2⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯分1018.解:〔Ⅰ〕“甲至多命中2个球〞事件A ,“乙至少命中两个球〞事件B ,由意得:P(A)(1)4C 41(1)1 (1)3C 42(1)2 (1)211⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯2分2 2 22 2 16P(B)2 2 ) 2 1 ) 2 3( 2 31 2 4 8 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯4分C 4 ( ( C 4 )( )93 3 3 33 ∴甲至多命中2个球且乙至少命中 2个球的概率:P(A)P(B) 11 8 11⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯6分16 918〔Ⅱ〕η=-4,0,4,8,12,分布列如下:η -448 12P182432 168181818181⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯分 11E41 0 8 4 24 8 32 12 1620 ⋯⋯⋯⋯⋯⋯⋯⋯⋯分1281 81 81 81 81319.解:〔Ⅰ〕接 A 1B ,A 1B ∩AB 1=E ,DE ,ABC —A 1B 1C 是正三棱柱且AA 1=AB ,∴四形A 1ABB 1是正方形,∴E 是A 1B 的中点,又D 是BC 的中点,∴DE//A 1C ⋯⋯⋯⋯⋯⋯⋯⋯3分 DE 平面AB 1D ,A 1C 平面AB 1D , A 1C//平面AB 1D ⋯⋯⋯⋯⋯⋯⋯⋯4分〔Ⅱ〕在平面ABC 内作DF ⊥AB 于点F ,在平面A1ABB1内作FG⊥AB1于点G,DG。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中毕业年级第一次质量预测理科数学试题卷本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分,考试时间120分钟,满分150分.考生应首先阅读答题卡上的文字信息,然后在答题卡上作答,在试题卷上作答无效,交卷时只交答题卡.第I 卷一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1. 已知集合{}|12M x x =-<<,{}|N x x a =<,若M N ⊆,则实数a 的取值范围是( )A. ()2,+∞B. [2,)+∞C. (),1-∞-D. (,1]-∞-2. 在复平面内与复数512iz i=+所对应的点关于虚轴对称的点为A ,则A 对应的复数为( )A. 12i +B. 12i -C. 2i -+D. 2i +3.等差数列{}n a 的前n 项和为n S ,且336,0S a ==,则公差d 等于( )A. 1-B. 1C. 2D. 2- 4. 命题:p “2a =-”是命题:q “直线310ax y +-=与直线6430x y +-=垂直”成立的( )A. 充要条件B. 充分非必要条件C.必要非充分条件D.既不充分也不必要条件5. 已知点(),P a b 是抛物线220x y =上一点,焦点为F ,25PF =,则ab =( )A. 100B.200C.360D.4006. 已知点(),P x y 的坐标满足条件11350x y x x y ≥⎧⎪≥-⎨⎪+-≤⎩,那么点P 到直线34130x y --=的最小值为( )A. 115B. 2C. 95D. 17. 某三棱锥的三视图如图所示,且三个三角形均为直角三角形,则xy 的最大值为( )A. 32B.C.64D.8. 如图,函数()()sin f x A x ωϕ=+(其中0,0,2A πωϕ>>≤)与坐标轴的三个交点,,P Q R 满足()1,0P ,(),2,24PQR M π∠=-为线段QR 的中点,则A 的值为( )A.3C.3D. 9. .如图所示的程序框图中,若()()21,4f x x x g x x =-+=+,且()h x m ≥恒成立,则m 的最大值是( )A. 4B.3C. 1D. 010. 设函数()()224,ln 25x f x e x g x x x =+-=+-,若实数,a b 分别是()(),f x g x 的零点,则( )A. ()()0g a f b <<B. ()()0f b g a <<C. ()()0g a f b <<D. ()()0f b g a <<11. 在Rt ABC ∆中,3CA CB ==,,M N 是斜边AB 上的两个动点,且MN =CM CN ⋅的取值范围为( )A. 52,2⎡⎤⎢⎥⎣⎦B. []2,4C. []3,6D. []4,612. 设函数()()()122015,log ,1,2,,20152015i if x x f x x a i ====…,记 ()()()()2132k k k k k I f a f a f a f a =-+-+…()()20152014k k f a f a +-,1,2k =,则( )A. 12I I <B. 12I I =C. 12I I >D. 无法确定第II 卷本试卷包括必考题和选考题两部分,第13-21题为必考题,每个试题考生都必须作答,第22-24题为选考题,学生根据要求作答.二、填空题:本大题共4个小题,每小题5分.13. 已知等比数列{}n a ,前n 项和为n S ,12453,64a a a a +=+=,则6S =14. 已知20cos a xdx π=⎰,在二项式52a x x ⎛⎫- ⎪⎝⎭的展开式中,x 的一次项系数的值为15. 设函数()y f x =的定义域为D ,若对于任意的12,x x D ∈,当122x x a +=时,恒有()()122f x f x b +=,则称点(),a b 为函数()y f x =图象的对称中心.研究函数()3sin 2f x x x =++的某一个对称中心,并利用对称中心的上述定义,可得到()19120f f ⎛⎫-+-+ ⎪⎝⎭…()19120ff ⎛⎫++= ⎪⎝⎭16.给定方程:1sin 102xx ⎛⎫+-= ⎪⎝⎭,下列命题中:①该方程没有小于0的实数解;②该方程有无数个实数解;③该方程在(),0-∞内有且只有一个实数根;④若0x 是方程的实数根,则01x >-. 正确命题是三、解答题:解答题应写出文字说明,证明过程或演算步骤.17.(本小题满分12分)在ABC ∆中,,,a b c 分别为角A 、B 、C 的对边,D 为边AC 的中点,4a ABC =∠=(I )若3c =,求sin ACB ∠的值;(II )若3BD =,求ABC ∆的面积.18.(本小题满分12分)某学校为了丰富学生的业余生活,以班级为单位组织学生开展古诗词背诵比赛,随机抽取题目,背诵正确加10分,背诵错误减10分,只有“正确”和“错误”两种结果,其中某班级的正确率为23p =,背诵错误的的概率为13q =,现记“该班级完成n 首背诵后总得分为n S ”. (I ) 求620S =且()01,2,3i S i ≥=的概率; (II )记5S ξ=,求ξ的分布列及数学期望.19.(本小题满分12分)如图,在四棱锥P ABCD -中,底面ABCD 为直角梯形,||AD BC ,PD ⊥底面ABCD ,190,1,22ADC BC AD PD CD ∠=︒====,Q 为AD 的中点,M 为棱PC 上一点.(I )试确定点M 的位置,使得||PA 平面BMQ ,并证明你的结论;(II )若2PM MC =,求二面角P BQ M --的余弦值.20.(本小题满分12分)已知动点P 到定点()1,0F 和直线:2l x =的距离之比为,设动点P 的轨迹为曲线E ,过点F 作垂直于x 轴的直线与曲线E 相交于,A B 两点,直线:l y mx n =+与曲线E 交于,C D 两点,与线段AB 相交于一点(与,A B 不重合)(I )求曲线E 的方程;(II )当直线l 与圆221x y +=相切时,四边形ABCD 的面积是否有最大值,若有,求出其最大值,及对应的直线l 的方程;若没有,请说明理由.22. (本小题满分12分) 已知函数()()222ln 2f x x x x ax =-++.(I )当1a =-时,求()f x 在点()()1,1f 处的切线方程; (II )当0a >时,设函数()()2g x f x x =--,且函数()g x 有且仅有一个零点,若2e x e -<<,()g x m ≤,求m 的取值范围.请考生在第22、23、24三题中任选一题做答,如果多做,则按所做的第一题记分,答时用2B 铅笔在答题卡上把所选题目的题号涂黑.22.(本小题满分10分)选修4-1:几何证明选讲 如图所示,EP 交圆于,E C 两点,PD 切圆于D ,G 为CE 上一点且PG PD =,连接DG 并延长交圆于点A ,作弦AB 垂直EP ,垂足为F.(I )求证:AB 为圆的直径; (II )若,5AC BD AB ==,求弦DE 的长.23.(本小题满分10分)选修4-4:坐标系与参数方程 在直角坐标系xOy 中,以O 为极点,x 轴正半轴为极轴建立直角坐标系,圆C的极坐标方程为4πρθ⎛⎫=+ ⎪⎝⎭,直线l 的参数方程为1x ty =⎧⎪⎨=-+⎪⎩t 为参数),直线l 和圆C 交于,A B 两点,P是圆C 上不同于,A B 的任意一点.(I )求圆心的极坐标;(II )求PAB ∆面积的最大值.24.(本小题满分10分)选修4-5:不等式选讲 已知函数()121f x m x x =---+.(I )当5m =时,求不等式()2f x >的解集;(II )若二次函数223y x x =++与函数()y f x =的图象恒有公共点,求实数m 的取值范围.高中毕业年级第一次质量预测 理科数学 参考答案一、选择题1-12:BCDA DBCC BADA 二、填空题13.63414.-10 15.82 16.2,3,4.三、解答题 17.解:(Ⅰ) 42cos 23=∠=ABC a ,,3=c ,由余弦定理:ABC a c a c b ∠⋅⋅-+=cos 2222=18423232)23(322=⨯⨯⨯-+,………………………………2分∴23=b . ……………………………………………………………………4分 又(0,)π∠∈ABC ,所以414cos 1sin 2=∠-=∠ABC ABC , 由正弦定理:ABCbACB c ∠=∠sin sin ,得47sin sin =∠⨯=∠b ABC c ACB . (6)分(Ⅱ) 以BC BA ,为邻边作如图所示的平行四边形ABCE ,如图,则42cos cos -=∠-=∠ABC BCE ,…………………8分,62==BD BE 在△BCE中,由余弦定理:BCE CE CB CE CB BE ∠⋅⋅-+=cos 2222. 即)42(23218362-⨯⨯⨯-+=CE CE , BCD A E解得:,3=CE 即,3=AB …………………10分 所以479sin 21=∠=∆ABC ac S ABC (1)2分18.解:(Ⅰ)当206=S 时,即背诵6首后,正确个数为4首,错误2首,………………2分若第一首和第二首背诵正确,则其余4首可任意背诵对2首;…………………3分若第一首正确,第二首背诵错误,第三首背诵正确,则其余3首可任意背诵对1首, 此时的概率为:811631)32(323132)31()32()32(21322242=⨯⨯⨯⨯⨯+⨯⨯⨯=C C p ………… …………5分(2)∵5S =ξ的取值为10,30,50,又21,,32p q ==…………………6分 ∴8140)31()32()31()32()10(32252335=+==C C P ξ,8130)31()32()31()32()30(41151445=+==C C P ξ5505552111(50)()().3381P C C ξ==+= (9)分∴ξ的分布列为:∴81815081308110=⨯+⨯+⨯=ξE .…………………………………………12分19.解:(1)当M 为PC 中点时,//PA 平面BMQ , (2)分理由如下: 连结AC 交BQ 于N ,连结MN ,因为090ADC ∠=,Q 为AD 的中点,所以N 为AC 的中点. 当M 为PC 的中点,即PM MC =时,MN 为PAC ∆线,…………4分故//MN PA ,又MN ⊂平面BMQ ,所以//PA 平面BMQ (2)由题意,以点D 为原点DP DC DA ,,所在直线分别为z y x ,,轴, 建立空间直角坐标系,…………………6分 则),0,2,1(),0,0,1(),2,0,0(B Q P …………………7分 由MC PM2=可得点)32,34,0(M ,所以)32,34,1(),0,2,0(),20,1(-==-=QM,设平面PQB 的法向量为),,(1z y x n =,则1120,2,0.20,PQ n x z x z y QB n y ⎧⋅=-==⎧⎪∴⎨⎨=⋅==⎩⎪⎩令)1,0,2(,11=∴=n z ,…………………9分同理平面MBQ 的法向量为)1,0,32(2=n ,…………………10分设二面角大小为θ,.65657cos ==θ…………………………………………12分20.解:(1).设点),(y x P ,由题意可得,22|2|)1(22=-+-x y x ,…………………2分y整理可得:1222=+y x .曲线E的方程是1222=+y x .………………………5分(2).设),(11y x C ,),(22y x D,由已知可得:||AB =当0=m 时,不合题意. …………………6分当0≠m 时,由直线l 与圆122=+y x 相切,可得:11||2=+m n ,即221.m n +=联立⎪⎩⎪⎨⎧=++=1222y x n mx y 消去y得2221()210.2m x mnx n +++-= (8)分02)1)(21(4422222>=-+-=∆m n m n m ,122,1222221+∆--=+∆+-=m mn x m mn x所以,1222,1242221221+-=+-=+m n x x m mn x x||||2112x x AB S ACBD-=四边形=12||2121222222+=++-m m m n m=212||||m m ≤+10分当且仅当||1||2m m =,即22±=m 时等号成立,此时26±=n ,经检验可知, 直线2622-=x y 和直线2622+-=x y 符合题意. ………………………………12分21.解:(1)当1a =-时,22()(2)ln 2f x x x x x =--+,定义域为()0,+∞,()()()22ln 22.f x x x x x '=-+-- (2)分(1)3f '∴=-,又(1)1,f =()f x 在()()1,1f 处的切线方程340.x y +-= ……………4分(2)令()()20,g x f x x =--=则()222ln 22,x x x ax x -++=+即1(2)ln ,x x a x--⋅=令1(2)ln ()x xh x x--⋅=, …………………5分则2221122ln 12ln ().x x x h x x x x x ---'=--+= …………………6分令()12ln t x x x =--,22()1x t x x x--'=--=,()0t x '< ,()t x 在(0,)+∞上是减函数,又()()110t h '== ,所以当01x <<时,()0h x '>,当1x <时,()0h x '<,所以()h x 在()0,1上单调递增,在()1,+∞上单调递减,()max (1)1h x h ∴== (8)分因为0>a , 所以当函数()g x 有且仅有一个零点时,1a =. 当1a =,()()222ln g x x x x x x =-+-,若2,(),e x e g x m -<<≤只需证明max (),g x m ≤ (9)分()()()132ln g x x x '=-+,令()0g x '=得1x =或32x e -=,又2e x e -<< , ∴函数()g x 在322(,)e e --上单调递增,在32(,1)e -上单调递减,在(1,)e 上单调递增,10分又333221()22g e e e ---=-+ , 2()23,g e e e =-333322213()2222()().22g e e e e e e e g e ----=-+<<<-=即32()()g e g e -< ,2max ()()23,g x g e e e ==-223.m e e ∴≥- (12)分22.证明:(1)因为PD PG =,所以PGD PDG ∠=∠.由于PD 为切线,故DBA PDA ∠=∠,…………………2分 又因为PGD EGA ∠=∠,所以DBA EGA ∠=∠, 所以DBA BAD EGA BAD ∠+∠=∠+∠,从而BDA PFA ∠=∠.…………………4分又,EP AF ⊥所以 90=∠PFA ,所以 90=∠BDA , 故AB 为圆的直径.…………………5分 (2)连接BC ,DC .由于AB 是直径,故∠BDA =∠ACB =90°.在Rt △BDA 与Rt △ACB 中,AB =BA ,AC =BD ,从而得Rt △BDA ≌Rt △ACB ,于是∠DAB =∠CBA . …………………7分又因为∠DCB =∠DAB ,所以∠DCB =∠CBA ,故DC ∥AB . ………………8分 因为AB ⊥EP ,所以DC ⊥EP ,∠DCE 为直角,…………………9分所以ED 为直径,又由(1)知AB 为圆的直径,所以5==AB DE .…………………10分23.解:(Ⅰ)圆C 的普通方程为02222=+-+y x y x ,即22(1)(1) 2.x y -++= (2)分所以圆心坐标为(1,-1),圆心极坐标为7)4π;…………………5分(Ⅱ)直线l 的普通方程:0122=--y x ,圆心到直线l 的距离32231122=-+=d ,…………………7分所以,31029822=-=AB 点P直线AB距离的最大值为,3253222=+=+d r …………………9分9510325310221max =⨯⨯=S .…………………10分24.解:(Ⅰ)当5=m 时,,1,3411,21,63)(⎪⎩⎪⎨⎧>-≤≤-+--<+=x x x x x x x f (3)分由2)(>x f 易得不等式解集为)0,34(-∈x ; (5)分(2)由二次函数2)1(3222++=++=x x x y ,该函数在1-=x 取得最小值2, 因为31,1()3,1131,1x m x f x x m x x m x ++<-⎧⎪=--+-≤≤⎨⎪-+->⎩在1-=x 处取得最大值2-m ,…………………7分所以要使二次函数322++=x x y 与函数)(x f y =的图象恒有公共点,只需22≥-m ,即 4.m ≥.……………………………10分。