信息论与编码习题参考答桉1
姜丹 信息论与编码习题参考答案
信息论与编码习题参考答案 第一章 单符号离散信源1.1同时掷一对均匀的子,试求:(1)“2和6同时出现”这一事件的自信息量; (2)“两个5同时出现”这一事件的自信息量; (3)两个点数的各种组合的熵; (4)两个点数之和的熵;(5)“两个点数中至少有一个是1”的自信息量。
解:bitP a I N n P bitP a I N n P c c N 17.536log log )(361)2(17.418log log )(362)1(3666样本空间:2221111616==-=∴====-=∴===⨯==(3)信源空间:bit x H 32.436log 3616236log 36215)(=⨯⨯+⨯⨯=∴ (4)信源空间: bitx H 71.3636log 366536log 3610 436log 368336log 366236log 36436log 362)(=⨯⨯+⨯+⨯+⨯⨯=∴++ (5) bit P a I N n P 17.11136log log )(3611333==-=∴==1.2如有6行、8列的棋型方格,若有两个质点A 和B ,分别以等概落入任一方格内,且它们的坐标分别为(Xa ,Ya ), (Xb ,Yb ),但A ,B 不能同时落入同一方格内。
(1) 若仅有质点A ,求A 落入任一方格的平均信息量; (2) 若已知A 已落入,求B 落入的平均信息量; (3) 若A ,B 是可辨认的,求A ,B 落入的平均信息量。
解:bita P a P a a P a I a P A i 58.548log )(log )()(H 48log )(log )(481)(:)1(481i i i i i ==-=∴=-=∴=∑=落入任一格的概率 bitb P b P b b P b I b P A i 55.547log )(log )()(H 47log )(log )(471)(:B ,)2(481i i i i i ==-=∴=-=∴=∑=落入任一格的概率是落入任一格的情况下在已知 bitAB P AB P AB H AB P AB I AB P AB i i i i i i i 14.11)4748log()(log )()()(log )(471481)()3(47481=⨯=-=-=∴⨯=∑⨯=是同时落入某两格的概率1.3从大量统计资料知道,男性中红绿色盲的发病率为7%,女性发病率为0.5%.如果你问一位男士:“你是否是红绿色盲?”他的回答可能是:“是”,也可能“不是”。
信息论与编码期末考试题----学生复习用1
密文c=?请写出具体的步骤。
六、设有离散无记忆信源,其概率分布如下:
对其进行费诺编码,写出编码过程,求出信
源熵、平均码长和编码效率。
七、信道编码 现有生成矩阵
1. 求对应的系统校验矩阵Hs。 2求该码字集合的最小码字距离d、最大检错能力 、最大纠错能力t max 。
2. 填写下面的es表
e
s
0000000
H(Y/X) 0,I(X;Y) H(X)。
二、若连续信源输出的幅度被限定在【2,6】区域内,当输出
信号的概率密度是均匀分布时,计算该信源的相对熵,并说明 该信源的绝对熵为多少。
三、已知信源
(1)用霍夫曼编码法编成二进制变长码;(6分) (2)计算平均码长;(4分) (3)计算编码信息率;(2分) (4)计算编码后信息传输率;(2分) (5)计算编码效率。(2分)
。
2、 一张1024×512像素的16位彩色BMP图像能
包含的最大信息量为
。
3、 香农编码中,概率为的信源符号xi对应的码
字Ci的长度Ki应满足不等式
。
3、设有一个信道,其信道矩阵为 ,则它是
信道(填对称,准对称),其信道容量是
比特/信道符号。
三、,通过一个干扰信道,接受符号集为,信道转
移矩阵为
试求(1)H(X),H(Y),H(XY);
0000001
0000010
0000100
0001000
0010000
0100000
1000000
4. 现有接收序列为,求纠错译码输出。 5. 5. 画出该码的编码电路
(四)
4、 简答题 1. 利用公式介绍无条件熵、条件熵、联合熵和平均互信息 量之间的关系。 2. 简单介绍哈夫曼编码的步骤
信息论与编码期末考试题----学生复习
《信息论基础》参考答案一、填空题1、信源编码的主要目的是提高有效性,信道编码的主要目的是提高可靠性。
2、信源的剩余度主要来自两个方面,一是信源符号间的相关性,二是信源符号的统计不均匀性。
3、三进制信源的最小熵为0,最大熵为bit/符号。
4、无失真信源编码的平均码长最小理论极限制为信源熵(或H(S)/logr= H r (S))。
5、当R=C或(信道剩余度为0)时,信源与信道达到匹配.6、根据信道特性是否随时间变化,信道可以分为恒参信道和随参信道。
7、根据是否允许失真,信源编码可分为无失真信源编码和限失真信源编码。
8、若连续信源输出信号的平均功率为,则输出信号幅度的概率密度是高斯分布或正态分布或时,信源具有最大熵,其值为值。
9、在下面空格中选择填入数学符号“”或“"(1)当X和Y相互独立时,H(XY)=H(X)+H(X/Y)=H(Y)+H(X)。
(2)(3)假设信道输入用X表示,信道输出用Y表示.在无噪有损信道中,H(X/Y)〉 0, H(Y/X)=0,I(X;Y)<H(X)。
二、若连续信源输出的幅度被限定在【2,6】区域内,当输出信号的概率密度是均匀分布时,计算该信源的相对熵,并说明该信源的绝对熵为多少.=2bit/自由度该信源的绝对熵为无穷大.三、已知信源(1)用霍夫曼编码法编成二进制变长码;(6分)(2)计算平均码长;(4分)(3)计算编码信息率;(2分)(4)计算编码后信息传输率;(2分)(5)计算编码效率。
(2分)(1)编码结果为:(2)(3)(4)其中,(5)四、某信源输出A、B、C、D、E五种符号,每一个符号独立出现,出现概率分别为1/8、1/8、1/8、1/2、1/8。
如果符号的码元宽度为0。
5。
计算:(1)信息传输速率。
(2)将这些数据通过一个带宽为B=2000kHz的加性白高斯噪声信道传输,噪声的单边功率谱密度为。
试计算正确传输这些数据最少需要的发送功率P。
解:(1)(2)五、一个一阶马尔可夫信源,转移概率为.(1) 画出状态转移图。
信息论与编码考试题(附答案版)
1.按发出符号之间的关系来分,信源可以分为(有记忆信源)和(无记忆信源)2.连续信源的熵是(无穷大),不再具有熵的物理含义。
3.对于有记忆离散序列信源,需引入(条件熵)描述信源发出的符号序列内各个符号之间的统计关联特性3.连续信源X,平均功率被限定为P时,符合(正态)分布才具有最大熵,最大熵是(1/2ln(2 ⅇ 2))。
4.数据处理过程中信息具有(不增性)。
5.信源冗余度产生的原因包括(信源符号之间的相关性)和(信源符号分布的不均匀性)。
6.单符号连续信道的信道容量取决于(信噪比)。
7.香农信息极限的含义是(当带宽不受限制时,传送1bit信息,信噪比最低只需-1.6ch3)。
8.对于无失真信源编码,平均码长越小,说明压缩效率(越高)。
9.对于限失真信源编码,保证D的前提下,尽量减少(R(D))。
10.立即码指的是(接收端收到一个完整的码字后可立即译码)。
11.算术编码是(非)分组码。
12.游程编码是(无)失真信源编码。
13.线性分组码的(校验矩阵)就是该码空间的对偶空间的生成矩阵。
14.若(n,k)线性分组码为MDC码,那么它的最小码距为(n-k+1)。
15.完备码的特点是(围绕2k个码字、汉明矩d=[(d min-1)/2]的球都是不相交的每一个接受吗字都落在这些球中之一,因此接收码离发码的距离至多为t,这时所有重量≤t的差错图案都能用最佳译码器得到纠正,而所有重量≤t+1的差错图案都不能纠正)。
16.卷积码的自由距离决定了其(检错和纠错能力)。
(对)1、信息是指各个事物运动的状态及状态变化的方式。
(对)2、信息就是信息,既不是物质也不是能量。
(错)3、马尔可夫信源是离散无记忆信源。
(错)4、不可约的马尔可夫链一定是遍历的。
(对)5、单符号连续信源的绝对熵为无穷大。
(错)6、序列信源的极限熵是这样定义的:H(X)=H(XL|X1,X2,…,XL-1)。
(对)7、平均互信息量I(X;Y)是接收端所获取的关于发送端信源X的信息量。
《信息论与编码》部分课后习题参考答案
1 5 1 5 1 1 1 1 1 1 1 1 = − 2 × log + 2 × log + 2 × log + 2 × log + 2 × log + log 6 36 6 36 9 9 12 12 18 18 36 36 = 3.274 bit / symbol
2.2 如果你在不知道今天是星期几的情况下问你的朋友“明天是星期几?”则答案中含有多 少信息量?如果你在已知今天是星期四的情况下提出同样的问题, 从别人的答案中你能获得 多少信息量(假设已知星期一至星期日得排序)? 答:若不知道今天是星期几,则答案可能有 7 种,这 7 种都是有价值的,所以答案的信息量 为:
2.5 4 个等概率分布的消息 M1、M2、M3、M4 被送入如题所示的信道进行传输,通过编码 使 M1=00,M2=01、M3=10、M4=11.求输入是 M1 和输出的第一个符号是 0 的互信息量是多 少?如果知道第二个符号也是 0,这时带来多少附加信息量? X 0 p p 1 1-p 1-p Y
I(X N ) I (Y )
=
2.1 × 106 13.29
= 1.58 ×105 字
2.4 某居住地区的女孩中有 25%是大学生,在女大学生中有 75%是身高 1.6 米以上的,而女 孩中身高 1.6 米以上的占总数一半。假如我们得知“身高 1.6 米以上的某女孩是大学生”的
消息,问获得多少信息量? 答:设随机变量 X 代表女孩子学历 X x1(是大学生) x2(不是大学生) P(X) 0.25 0.75 设随机变量 Y 代表女孩子身高 Y y1(身高>160cm) P(Y) 0.5
第二章
2.1 同时掷两个骰子,设每个骰子各个面向上的概率都是 1/6。试求: (1)事件“2 和 6 同时出现”的自信息量; (2)事件“两个 3 同时出现”的自信息量; (3)事件“两个点数中至少有一个是 5”的自信息量; (4)两个点数之和的熵。 答: (1)事件“2 和 6 同时出现”的概率为:
信息论与编码期末考试题(全套)
《信息论基础》参考答案一、填空题(共15分,每空1分)1、信源编码的主要目的是提高有效性,信道编码的主要目的是提高可靠性。
2、信源的剩余度主要来自两个方面,一是信源符号间的相关性,二是信源符号的统计不均匀性。
3、三进制信源的最小熵为0,最大熵为32log bit/符号。
4、无失真信源编码的平均码长最小理论极限制为信源熵(或H(S)/logr= H r (S))。
5、当R=C 或(信道剩余度为0)时,信源与信道达到匹配。
6、根据信道特性是否随时间变化,信道可以分为恒参信道和随参信道。
7、根据是否允许失真,信源编码可分为无失真信源编码和限失真信源编码。
8、若连续信源输出信号的平均功率为2σ,则输出信号幅度的概率密度是高斯分布或正态分布或()222xf x σ-=时,信源具有最大熵,其值为值21log 22e πσ。
9、在下面空格中选择填入数学符号“,,,=≥≤〉”或“〈” (1)当X 和Y 相互独立时,H (XY )=H(X)+H(X/Y)=H(Y)+H(X)。
(2)()()1222H X X H X =≥()()12333H X X X H X =(3)假设信道输入用X 表示,信道输出用Y 表示。
在无噪有损信道中,H(X/Y)> 0, H(Y/X)=0,I(X;Y)<H(X)。
二、(6分)若连续信源输出的幅度被限定在【2,6】区域内,当输出信号的概率密度是均匀分布时,计算该信源的相对熵,并说明该信源的绝对熵为多少。
()1,2640,x f x ⎧≤≤⎪=⎨⎪⎩其它()()()62log f x f x dx ∴=-⎰相对熵h x=2bit/自由度 该信源的绝对熵为无穷大。
三、(16分)已知信源1234560.20.20.20.20.10.1S s s s s s s P ⎡⎤⎡⎤=⎢⎥⎢⎥⎣⎦⎣⎦(1)用霍夫曼编码法编成二进制变长码;(6分)(2)计算平均码长L ;(4分)(3)计算编码信息率R ';(2分)(4)计算编码后信息传输率R ;(2分) (5)计算编码效率η。
信息论与编码课后习题答案
1. 有一个马尔可夫信源,已知p(x 1|x 1)=2/3,p(x 2|x 1)=1/3,p(x 1|x 2)=1,p(x 2|x 2)=0,试画出该信源的香农线图,并求出信源熵。
解:该信源的香农线图为:1/3○ ○2/3 (x 1) 1 (x 2)在计算信源熵之前,先用转移概率求稳固状态下二个状态x 1和 x 2 的概率)(1x p 和)(2x p 立方程:)()()(1111x p x x p x p =+)()(221x p x x p=)()(2132x p x p +)()()(1122x p x x p x p =+)()(222x p x x p =)(0)(2131x p x p + )()(21x p x p +=1 得431)(=x p 412)(=x p马尔可夫信源熵H = ∑∑-IJi j i jix x p x xp x p )(log )()( 得 H=0.689bit/符号2.设有一个无经历信源发出符号A 和B ,已知4341)(.)(==B p A p 。
求:①计算该信源熵;②设该信源改成发出二重符号序列消息的信源,采纳费诺编码方式,求其平均信息传输速度; ③又设该信源改成发三重序列消息的信源,采纳霍夫曼编码方式,求其平均信息传输速度。
解:①∑-=Xiix p x p X H )(log )()( =0.812 bit/符号②发出二重符号序列消息的信源,发出四种消息的概率别离为1614141)(=⨯=AA p 1634341)(=⨯=AB p1634143)(=⨯=BA p 1694343)(=⨯=BB p用费诺编码方式 代码组 b i BB 0 1 BA 10 2 AB 110 3 AA 111 3无经历信源 624.1)(2)(2==X H X H bit/双符号 平均代码组长度 2B =1.687 bit/双符号BX H R )(22==0.963 bit/码元时刻③三重符号序列消息有8个,它们的概率别离为641)(=AAA p 643)(=AAB p 643)(=BAA p 643)(=ABA p 649)(=BBA p 649)(=BAB p 649)(=ABB p 6427)(=BBB p用霍夫曼编码方式 代码组 b iBBB 6427 0 0 1 BBA 649 0 )(6419 1 110 3BAB 649 1 )(6418 )(644 1 101 3ABB 649 0 0 100 3AAB 6431 )(6461 11111 5 BAA 643 0 1 11110 5ABA6431 )(6440 11101 5 AAA641 0 11100 5)(3)(3X H X H ==2.436 bit/三重符号序列 3B =2.469码元/三重符号序列3R =BX H )(3=0.987 bit/码元时刻3.已知符号集合{ 321,,x x x }为无穷离散消息集合,它们的显现概率别离为 211)(=x p ,412)(=x p 813)(=x p ···ii x p 21)(=···求: ① 用香农编码方式写出各个符号消息的码字(代码组); ② 计算码字的平均信息传输速度; ③ 计算信源编码效率。
信息理论与编码答案 人民邮电出版社
第一章 自我测试题一、填空题1. 在认识论层次上研究信息的时候,必须同时考虑到形式、__语义___和__语用___三个方面的因素。
2. 如果从随机不确定性的角度来定义信息,信息是用以消除__随机不确定性___的东西。
3. 信源编码的结果是__减小_冗余;而信道编码的手段是__增加___冗余。
4. _1948_年,香农发表了著名的论文__通信的数学理论__,标志着信息论诞生。
5. 信息商品是一种特殊商品,它有__保存性_性、_共享_性、_老化可能_性和 知识创造性 等特征。
二、判断题1. 信息传输系统模型表明,噪声仅仅来源于信道(×)2. 本体论层次信息表明,信息不依赖于人而存在(√)3. 信道编码与译码是一对可逆变换(×)4. 1976年,论文《密码学的新方向》的发表,标志着保密通信研究的开始(×)5. 基因组序列信息的提取和分析是生物信息学的研究内容之一(√)三、选择题1.下列表述中,属于从随机不确定性的角度来定义信息的是__D___ A . 信息是数据B . 信息是集合之间的变异度C . 信息是控制的指令D . 信息是收信者事先不知道的报道 2.___B__是最高层次的信息 A . 认识论 B . 本体论 C . 价值论 D . 唯物论 3.下列不属于狭义信息论的是__D___ A . 信息的测度 B . 信源编码 C . 信道容量 D . 计算机翻译 4.下列不属于信息论的研究内容的是__A___ A . 信息的产生 B . 信道传输能力 C . 文字的统计特性 D . 抗干扰编码 5.下列关于信息论发展历史描述不正确的是__B___A . 偶然性、熵函数引进物理学为信息论的产生提供了理论前提。
B . 1952年,香农发展了信道容量的迭代算法C . 哈特莱用消息可能数目的对数来度量消息中所含有的信息量,为香农创立信息论提供了思路。
D . 1959年,香农首先提出率失真函数和率失真信源编码定理,才发展成为信息率失真编码理论。
信息论与编码 课后习题答案
信息论与编码课后习题答案信息论与编码课后习题答案[信息论与编码]课后习题答案1、在认识论层次上研究信息的时候,必须同时考虑到形式、含义和效用三个方面的因素。
2、1948年,美国数学家香农发表了题为“通信的数学理论”的长篇论文,从而创立了信息论。
3、按照信息的性质,可以把信息分为语法信息、语义信息和语用信息。
4、按照信息的地位,可以把信息分成客观信息和主观信息。
5、人们研究信息论的目的就是为了高效率、可信、安全地互换和利用各种各样的信息。
6、信息的是建立信息论的基础。
8、就是香农信息论最基本最重要的概念。
9、事物的不确定度是用时间统计发生概率的对数来描述的。
10、单符号线性信源通常用随机变量叙述,而多符号线性信源通常用随机矢量叙述。
11、一个随机事件发生某一结果后所带来的信息量称为自信息量,定义为其发生概率对数的负值。
12、自信息量的单位通常存有比特、奈特和哈特。
13、必然事件的自信息是。
14、不可能将事件的自信息量就是15、两个相互独立的随机变量的联合自信息量等于两个自信息量之和。
16、数据处理定理:当消息经过多级处置后,随着处理器数目的激增,输出消息与输入消息之间的平均值互信息量趋向变大。
17、离散平稳无记忆信源x的n次扩展信源的熵等于离散信源x的熵的。
limh(xn/x1x2xn1)h n18、线性稳定存有记忆信源的音速熵,。
19、对于n元m阶马尔可夫信源,其状态空间共有m个不同的状态。
20、一维已连续随即变量x在[a,b]。
1log22ep21、平均功率为p的高斯分布的已连续信源,其信源熵,hc(x)=2。
22、对于限峰值功率的n维连续信源,当概率密度均匀分布时连续信源熵具有最大值。
23、对于减半平均功率的一维已连续信源,当概率密度24、对于均值为0,平均功率受限的连续信源,信源的冗余度决定于平均功率的限定值p和信源的熵功率p25、若一线性并无记忆信源的信源熵h(x)等同于2.5,对信源展开相切的并无杂讯二进制编码,则编码长度至少为。
信息论与编码习题参考答案(全)
111
(1)在W4=011中,接到第一个码字“0”后获得关于a4的信息量I(a4;0);
(2)在收到“0”的前提下,从第二个码字符号“1”中获取关于a4的信息量I(a4;1/0);
(3)在收到“01”的前提下,从第三个码字符号“1”中获取关于a4的信息量I(a4;1/01);
(4)从码字W4=011中获取关于a4的信息量I(a4;011)。
其中N=2FT,б2X是信号的方差(均值为零),б2N是噪声的方差(均值为零).
再证:单位时间的最大信息传输速率
信息单位/秒
(证明详见p293-p297)
5.12设加性高斯白噪声信道中,信道带宽3kHz,又设{(信号功率+噪声功率)/噪声功率}=10dB.试计算改信道的最大信息传输速率Ct.
解:
5.13在图片传输中,每帧约有2.25×106个像素,为了能很好的重现图像,需分16个量度电平,并假设量度电平等概率分布,试计算每分钟传输一帧图片所需信道的带宽(信噪功率比为30dB).
(2)求信源的极限熵H∞;
(3)求当p=0,p=1时的信息熵,并作出解释。
解:
3.10设某马尔柯夫信源的状态集合S:{S1S2S3},符号集X:{α1α2α3}。在某状态Si(i=1,2,3)下发发符号αk(k=1,2,3)的概率p(αk/Si) (i=1,2,3; k=1,2,3)标在相应的线段旁,如下图所示.
证明:
3.5试证明:对于有限齐次马氏链,如果存在一个正整数n0≥1,对于一切i,j=1,2,…,r,都有pij(n0)>0,则对每个j=1,2,…,r都存在状态极限概率:
(证明详见:p171~175)
3.6设某齐次马氏链的第一步转移概率矩阵为:
2020年信息论与编码期末考试题
信息论与编码期末考试题(一)一、判断题. 当随机变量和相互独立时,条件熵等于信源熵. ()由于构成同一空间的基底不是唯一的,所以不同的基底或生成矩阵有可能生成同一码集. ()一般情况下,用变长编码得到的平均码长比定长编码大得多. ()只要信息传输率大于信道容量,总存在一种信道编译码,可以以所要求的任意小的误差概率实现可靠的通信. ()各码字的长度符合克拉夫特不等式,是唯一可译码存在的充分和必要条件. ()连续信源和离散信源的熵都具有非负性. ()信源的消息通过信道传输后的误差或失真越大,信宿收到消息后对信源存在的不确定性就越小,获得的信息量就越小. 汉明码是一种线性分组码. ()率失真函数的最小值是. () 1.必然事件和不可能事件的自信息量都是. ()二、填空题 1、码的检、纠错能力取决于 . 2、信源编码的目的是;信道编码的目的是 . 3、把信息组原封不动地搬到码字前位的码就叫做. 4、香农信息论中的三大极限定理是、、 . 5、设信道的输入与输出随机序列分别为和,则成立的条件 .. 6、对于香农-费诺编码、原始香农-费诺编码和哈夫曼编码,编码方法惟一的是 . 7、某二元信源,其失真矩阵,则该信源的=.三、计算题. 1、某信源发送端有2种符号,;接收端有3种符号,转移概率矩阵为. (1)计算接收端的平均不确定度;(2)计算由于噪声产生的不确定度;(3)计算信道容量以及最佳入口分布. 2、一阶马尔可夫信源的状态转移图如右图所示,信源的符号集为. (1)求信源平稳后的概率分布;(2)求此信源的熵;(3)近似地认为此信源为无记忆时,符号的概率分布为平稳分布.求近似信源的熵并与进行比较. 3、设码符号为,信源空间为试构造一种三元紧致码. 4、设二元线性分组码的生成矩阵为. (1)给出该码的一致校验矩阵,写出所有的陪集首和与之相对应的伴随式;(2)若接收矢量,试计算出其对应的伴随式并按照最小距离译码准则试着对其译码. (二)一、填空题 1、信源编码的主要目的是,信道编码的主要目的是。
信息论与编码试卷及答案
一、概念简答题(每题5分,共40分)1.什么是平均自信息量与平均互信息,比较一下这两个概念的异同?2.简述最大离散熵定理。
对于一个有m个符号的离散信源,其最大熵是多少?3.解释信息传输率、信道容量、最佳输入分布的概念,说明平均互信息与信源的概率分布、信道的传递概率间分别是什么关系?4.对于一个一般的通信系统,试给出其系统模型框图,并结合此图,解释数据处理定理。
5.写出香农公式,并说明其物理意义。
当信道带宽为5000Hz,信噪比为30dB时求信道容量。
6.解释无失真变长信源编码定理。
7.解释有噪信道编码定理。
8.什么是保真度准则?对二元信源,其失真矩阵,求a>0时率失真函数的和?二、综合题(每题10分,共60分)1.黑白气象传真图的消息只有黑色和白色两种,求:1)黑色出现的概率为0.3,白色出现的概率为0.7。
给出这个只有两个符号的信源X的数学模型。
假设图上黑白消息出现前后没有关联,求熵;2)假设黑白消息出现前后有关联,其依赖关系为:,,,,求其熵;2.二元对称信道如图。
;1)若,,求和;2)求该信道的信道容量和最佳输入分布。
3.信源空间为,试分别构造二元和三元霍夫曼码,计算其平均码长和编码效率。
4.设有一离散信道,其信道传递矩阵为,并设,试分别按最小错误概率准则与最大似然译码准则确定译码规则,并计算相应的平均错误概率。
5.已知一(8,5)线性分组码的生成矩阵为。
求:1)输入为全00011和10100时该码的码字;2)最小码距。
6.设某一信号的信息传输率为5.6kbit/s,在带宽为4kHz的高斯信道中传输,噪声功率谱NO=5×10-6mw/Hz。
试求:(1)无差错传输需要的最小输入功率是多少?(2)此时输入信号的最大连续熵是多少?写出对应的输入概率密度函数的形式。
一、概念简答题(每题5分,共40分)1.答:平均自信息为表示信源的平均不确定度,也表示平均每个信源消息所提供的信息量。
2021年信息论与编码期末考试题
信息论与编码期末考试题信息论与编码期末考试题(一)一、判断题. 1. 当随机变量和相互 ___时,条件熵等于信源熵. ()2. 由于构成同一空间的基底不是唯一的,所以不同的基底或生成矩阵有可能生成同 ___集. ()3.一般情况下,用变长编码得到的平均码长比定长编码大得多. ()4. 只要信息传输率大于信道容量,总存在一种信道编译码,可以以所要求的任意小的误差概率实现可靠的通信. ()5. 各码字的长度符合克拉夫特不等式,是唯一可译码存在的充分和必要条件. ()6. 连续信源和离散信源的熵都具有非负性. ()7. 信源的消息通过信道传输后的误差或失真越大,信宿收到消息后对信源存在的不确定性就越小,获得的信息量就越小. 8. 汉明码是一种线性分组码. ()9. 率失真函数的最小值是. ()10.必然___和不可能 ___的自信息量都是. ()二、填空题 1、码的检、纠错能力取决于 . 2、信源编码的目的是;信道编码的目的是 .3、把信息组原封不动地搬到码字前位的码就叫做 .4、香农信息论中的三大极限定理是、、 .5、设信道的输入与输出随机序列分别为和,则成立的条件 ..6、对于香农-费诺编码、原始香农-费诺编码和哈夫曼编码,编码方法惟一的是 .7、某二元信源,其失真矩阵,则该信源的= . 三、计算题. 1、某信源发送端有2种符号,;接收端有3种符号,转移概率矩阵为. (1)计算接收端的平均不确定度;(2)计算由于噪声产生的不确定度;(3)计算信道容量以及最佳入口分布. 2、一阶马尔可夫信源的状态转移图如右图所示,信源的符号集为. (1)求信源平稳后的概率分布;(2)求此信源的熵;(3)近似地认为此信源为无记忆时,符号的概率分布为平稳分布.求近似信源的熵并与进行比较. 3、设码符号为,信源空间为试构造一种三元紧致码. 4、设二元线性分组码的生成矩阵为. (1)给出该码的一致校验矩阵,写出所有的陪集首和与之相对应的伴随式;(2)若接收矢量,试计算出其对应的伴随式并按照最小距离译码准则试着对其译码. (二)一、填空题 1、信源编码的主要目的是,信道编码的主要目的是。
信息论与编码课后习题答案
1. 有一个马尔可夫信源,已知p(x 1|x 1)=2/3,p(x 2|x 1)=1/3,p(x 1|x 2)=1,p(x 2|x 2)=0,试画出该信源的香农线图,并求出信源熵。
解:该信源的香农线图为:1/3○ ○2/3 (x 1) 1 (x 2)在计算信源熵之前,先用转移概率求稳定状态下二个状态x 1和 x 2 的概率)(1x p 和)(2x p 立方程:)()()(1111x p x x p x p =+)()(221x p x x p=)()(2132x p x p +)()()(1122x p x x p x p =+)()(222x p x x p =)(0)(2131x p x p + )()(21x p x p +=1 得431)(=x p 412)(=x p马尔可夫信源熵H = ∑∑-IJi j i jix x p x xp x p )(log )()( 得 H=0.689bit/符号2.设有一个无记忆信源发出符号A 和B ,已知4341)(.)(==B p A p 。
求:①计算该信源熵;②设该信源改为发出二重符号序列消息的信源,采用费诺编码方法,求其平均信息传输速率; ③又设该信源改为发三重序列消息的信源,采用霍夫曼编码方法,求其平均信息传输速率。
解:①∑-=Xiix p x p X H )(log )()( =0.812 bit/符号②发出二重符号序列消息的信源,发出四种消息的概率分别为1614141)(=⨯=AA p 1634341)(=⨯=AB p1634143)(=⨯=BA p 1694343)(=⨯=BB p用费诺编码方法 代码组 b i BB 0 1 BA 10 2 AB 110 3 AA 111 3无记忆信源 624.1)(2)(2==X H X H bit/双符号 平均代码组长度 2B =1.687 bit/双符号BX H R )(22==0.963 bit/码元时间③三重符号序列消息有8个,它们的概率分别为641)(=AAA p 643)(=AAB p 643)(=BAA p 643)(=ABA p 649)(=BBA p 649)(=BAB p 649)(=ABB p 6427)(=BBB p用霍夫曼编码方法 代码组 b iBBB 64270 0 1 BBA 649 0 )(6419 1 110 3BAB 649 1 )(6418 )(644 1 101 3ABB 649 0 0 100 3AAB 6431 )(6461 11111 5 BAA 643 0 1 11110 5ABA6431 )(6440 11101 5 AAA641 0 11100 5)(3)(3X H X H ==2.436 bit/三重符号序列 3B =2.469码元/三重符号序列3R =BX H )(3=0.987 bit/码元时间3.已知符号集合{ 321,,x x x }为无限离散消息集合,它们的出现概率分别为 211)(=x p ,412)(=x p 813)(=x p ···i i x p 21)(=···求: ① 用香农编码方法写出各个符号消息的码字(代码组); ② 计算码字的平均信息传输速率; ③ 计算信源编码效率。
信息论与编码姜丹第三版规范标准答案
信息论与编码习题参考答案第一章单符号离散信源信息论与编码作业是74页,1.1的(1)(5),1.3,1.4,1.6,1.13,1.14 还有证明熵函数的连续性、扩展性、可加性1.1同时掷一对均匀的子,试求:(1) “ 2和6同时出现”这一事件的自信息量;(2) “两个5同时出现”这一事件的自信息量;(3) 两个点数的各种组合的熵;⑷两个点数之和的熵;(5) “两个点数中至少有一个是 1 ”的自信息量。
解:样本空间:N c6c6 6 6 36(1) P n1— I (a) logR Iog18 4.17bitN 36n2 1(2) F2 2I (a) log F2 log36 5.17bitN 36(3) 信源空间:2 36 1H(x) 15 log 6 log 36 4.32bit36 2 36(42 ,“ 4 ,36 6 , 36 8 ,36H(x) log 36+log —log log -36 36 2 36 3 36 410 ,36 6 ,36log +log - 3.71bit36 5 36 6⑸P3 n3 11I(a) log R 1.17bitN 36 111.2如有6行、8列的棋型方格,若有两个质点A和B,分别以等概落入任一方格内,且它们的坐标分别为(Xa,Ya), (Xb,Yb),但A,B不能同时落入同一方格内。
(1)若仅有质点A,求A落入任一方格的平均信息量;(2)若已知A已落入,求B落入的平均信息量;(3) 若A , B是可辨认的,求A, B落入的平均信息量。
解:1(1) A落入任一格的概率:P(aJ I (aj log P(aJ log 484848H(a) P(a i)log P(a i) log 48 5.58biti 11(2) 在已知A落入任一格的情况下,B落入任一格的概率是:P(bJ —47I(b) logP(b i) log 4748H (b) P(b i)log P(b i) log 47 5.55biti 11 1(3) AB同时落入某两格的概率是P(AB i) - —748 47I(AB i) log P(AB i)48 47H (AB i) P(AB i)log P(ABJ log(48 47) 11.14biti 11.3从大量统计资料知道,男性中红绿色盲的发病率为7%,女性发病率为0.5%.如果你问一位男士:“你是否是红绿色盲?”他的回答可能是:“是”,也可能“不是”。
信息论与编码试题集与答案(新)
一填空题(本题20分,每小题2分)1、平均自信息为表示信源的平均不确定度,也表示平均每个信源消息所提供的信息量。
平均互信息表示从Y获得的关于每个X的平均信息量,也表示发X前后Y的平均不确定性减少的量,还表示通信前后整个系统不确定性减少的量。
2、最大离散熵定理为:离散无记忆信源,等概率分布时熵最大。
3、最大熵值为。
4、通信系统模型如下:5、香农公式为为保证足够大的信道容量,可采用(1)用频带换信噪比;(2)用信噪比换频带。
6、只要,当N足够长时,一定存在一种无失真编码。
7、当R<C时,只要码长足够长,一定能找到一种编码方法和译码规则,使译码错误概率无穷小。
8、在认识论层次上研究信息的时候,必须同时考虑到形式、含义和效用三个方面的因素。
9、1948年,美国数学家香农发表了题为“通信的数学理论”的长篇论文,从而创立了信息论。
按照信息的性质,可以把信息分成语法信息、语义信息和语用信息。
按照信息的地位,可以把信息分成客观信息和主观信息。
人们研究信息论的目的是为了高效、可靠、安全地交换和利用各种各样的信息。
信息的可度量性是建立信息论的基础。
统计度量是信息度量最常用的方法。
熵是香农信息论最基本最重要的概念。
事物的不确定度是用时间统计发生概率的对数来描述的。
10、单符号离散信源一般用随机变量描述,而多符号离散信源一般用随机矢量描述。
11、一个随机事件发生某一结果后所带来的信息量称为自信息量,定义为 其发生概率对数的负值 。
12、自信息量的单位一般有 比特、奈特和哈特 。
13、必然事件的自信息是 0 。
14、不可能事件的自信息量是 ∞ 。
15、两个相互独立的随机变量的联合自信息量等于 两个自信息量之和 。
16、数据处理定理:当消息经过多级处理后,随着处理器数目的增多,输入消息与输出消息之间的平均互信息量 趋于变小 。
17、离散平稳无记忆信源X 的N 次扩展信源的熵等于离散信源X 的熵的 N 倍 。
18、离散平稳有记忆信源的极限熵,=∞H )/(lim 121-∞→N N N X X X X H 。
信息论与编码试卷及答案
一、(11’)填空题(1)1948年,美国数学家香农发表了题为“通信的数学理论”的长篇论文,从而创立了信息论。
(2)必然事件的自信息是0 。
(3)离散平稳无记忆信源X的N次扩展信源的熵等于离散信源X的熵的N倍。
(4)对于离散无记忆信源,当信源熵有最大值时,满足条件为__信源符号等概分布_.(5)若一离散无记忆信源的信源熵H(X)等于2.5,对信源进行等长的无失真二进制编码,则编码长度至少为3 。
(6)对于香农编码、费诺编码和霍夫曼编码,编码方法惟一的是香农编码. (7)已知某线性分组码的最小汉明距离为3,那么这组码最多能检测出_2_______个码元错误,最多能纠正___1__个码元错误。
(8)设有一离散无记忆平稳信道,其信道容量为C,只要待传送的信息传输率R__小于___C(大于、小于或者等于),则存在一种编码,当输入序列长度n足够大,使译码错误概率任意小。
(9)平均错误概率不仅与信道本身的统计特性有关,还与___译码规则____________和___编码方法___有关三、(5')居住在某地区的女孩中有25%是大学生,在女大学生中有75%是身高1。
6米以上的,而女孩中身高1.6米以上的占总数的一半。
假如我们得知“身高1.6米以上的某女孩是大学生”的消息,问获得多少信息量?解:设A表示“大学生"这一事件,B表示“身高1.60以上”这一事件,则P(A)=0。
25 p(B)=0.5 p(B|A)=0。
75 (2分)故 p(A|B)=p(AB)/p(B)=p(A)p(B|A)/p(B)=0。
75*0。
25/0.5=0.375 (2分)I(A|B)=—log0.375=1.42bit (1分)四、(5')证明:平均互信息量同信息熵之间满足I(X;Y)=H(X)+H(Y)—H(XY)证明:()()()()()()()()()()Y X H X H y x p y x p x p y x p x p y x p y x p Y X I X X Y j i j i Y i j i XYi j i j i -=⎥⎦⎤⎢⎣⎡---==∑∑∑∑∑∑log log log; (2分)同理()()()X Y H Y H Y X I -=; (1分)则()()()Y X I Y H X Y H ;-=因为()()()X Y H X H XY H += (1分)故()()()()Y X I Y H X H XY H ;-+=即()()()()XY H Y H X H Y X I -+=; (1分)五、(18')。
信息论与编码理论-习题答案-姜楠-王健-编著-清华大学
可得 ,3种状态等概率分布。
一阶马尔可夫信源熵为
信源剩余度为
(2)二阶马尔可夫信源有9种状态(状态转移图略),同样列方程组求得状态的平稳分布为
二阶马尔可夫信源熵为
信源剩余度为
由于在上述两种情况下,3个符号均为等概率分布,所以信源剩余度都等于0。
总的概率
所需要的信息量
2.6设 表示“大学生”这一事件, 表示“身高1.60m以上”这一事件,则
故
2.7四进制波形所含的信息量为 ,八进制波形所含信息量为 ,故四进制波形所含信息量为二进制的2倍,八进制波形所含信息量为二进制的3倍。
2.8
故以3为底的信息单位是比特的1.585倍。
2.9(1)J、Z(2)E(3)X
(2)三元对称强噪声信道模型如图所示。
4.7由图可知信道1、2的信道矩阵分别为
它们串联后构成一个马尔科夫链,根据马氏链的性质,串联后总的信道矩阵为
4.8传递矩阵为
输入信源符号的概率分布可以写成行向量形式,即
由信道传递矩阵和输入信源符号概率向量,求得输出符号概率分布为
输入符号和输出符号的联合概率分布为
由冗余度计算公式得
3.18(1)由一步转移概率矩阵与二步转移概率矩阵的公式 得
(2)设平稳状态 ,马尔可夫信源性质知 ,即
求解得稳态后的概率分布
3.19设状态空间S= ,符号空间
且
一步转移概率矩阵
状态转移图
设平稳状态 ,由马尔可夫信源性质有
即
可得
马尔可夫链只与前一个符号有关,则有
3.20消息元的联合概率是
平均信息传输速率
信息论与编码(第二版)曹雪虹(最全版本)答案
《信息论与编码(第二版)》曹雪虹答案(一)第二章Equation Chapter 1 Section 12.1一个马尔可夫信源有3个符号,转移概率为:,,,,,,,,,画出状态图并求出各符号稳态概率。
解:状态图如下状态转移矩阵为:设状态u1,u2,u3稳定后的概率分别为W1,W2、W3由得计算可得2.2 由符号集{0,1}组成的二阶马尔可夫链,其转移概率为:=0.8,=0.2,=0.2,=0.8,=0.5,=0.5,=0.5,=0.5。
画出状态图,并计算各状态的稳态概率。
解:于是可以列出转移概率矩阵:状态图为:000110110.80.20.50.50.50.50.20.8设各状态00,01,10,11的稳态分布概率为W1,W2,W3,W4 有得 计算得到2.3 同时掷出两个正常的骰子,也就是各面呈现的概率都为1/6,求: (1) “3和5同时出现”这事件的自信息; (2) “两个1同时出现”这事件的自信息;(3) 两个点数的各种组合(无序)对的熵和平均信息量; (4) 两个点数之和(即2, 3, … , 12构成的子集)的熵; (5) 两个点数中至少有一个是1的自信息量。
解:(1)(2)(3)两个点数的排列如下: 11 12 13 14 15 16 21 22 23 24 25 26 31 32 33 34 35 36 41 42 43 44 45 46 51 52 53 54 55 56 61 62 63 64 65 66共有21种组合:其中11,22,33,44,55,66的概率是其他15个组合的概率是(4)参考上面的两个点数的排列,可以得出两个点数求和的概率分布如下:(5)2-42.5 居住某地区的女孩子有25%是大学生,在女大学生中有75%是身高160厘米以上的,而女孩子中身高160厘米以上的占总数的一半。
假如我们得知“身高160厘米以上的某女孩是大学生”的消息,问获得多少信息量?解:设随机变量X代表女孩子学历X x1(是大学生)x2(不是大学生)P(X)0.250.75设随机变量Y代表女孩子身高Y y1(身高>160cm)y2(身高<160cm)P(Y)0.50.5已知:在女大学生中有75%是身高160厘米以上的即:求:身高160厘米以上的某女孩是大学生的信息量即:2.6 掷两颗骰子,当其向上的面的小圆点之和是3时,该消息包含的信息量是多少?当小圆点之和是7时,该消息所包含的信息量又是多少?解:1)因圆点之和为3的概率该消息自信息量2)因圆点之和为7的概率该消息自信息量2.7 设有一离散无记忆信源,其概率空间为(1)求每个符号的自信息量(2)信源发出一消息符号序列为{202 120 130 213 001 203 210 110 321 010 021 032 011 223 210},求该序列的自信息量和平均每个符号携带的信息量解:同理可以求得因为信源无记忆,所以此消息序列的信息量就等于该序列中各个符号的信息量之和就有:平均每个符号携带的信息量为bit/符号2.8 试问四进制、八进制脉冲所含信息量是二进制脉冲的多少倍?解:四进制脉冲可以表示4个不同的消息,例如:{0, 1, 2, 3}八进制脉冲可以表示8个不同的消息,例如:{0, 1, 2, 3, 4, 5, 6, 7}二进制脉冲可以表示2个不同的消息,例如:{0, 1}假设每个消息的发出都是等概率的,则:四进制脉冲的平均信息量八进制脉冲的平均信息量二进制脉冲的平均信息量所以:四进制、八进制脉冲所含信息量分别是二进制脉冲信息量的2倍和3倍。
信息论与编码姜丹第三版答案精编版
信息论与编码习题参考答案 第一章 单符号离散信源信息论与编码作业是74页,1.1的(1)(5),1.3,1.4,1.6,1.13,1.14还有证明熵函数的连续性、扩展性、可加性1.1同时掷一对均匀的子,试求:(1)“2和6同时出现”这一事件的自信息量; (2)“两个5同时出现”这一事件的自信息量; (3)两个点数的各种组合的熵; (4)两个点数之和的熵;(5)“两个点数中至少有一个是1”的自信息量。
解:bitP a I N n P bit P a I N n P c c N 17.536log log )(361)2(17.418log log )(362)1(36662221111616==-=∴====-=∴===⨯==样本空间:(3)信源空间:bit x H 32.436log 3616236log 36215)(=⨯⨯+⨯⨯=∴ bitx H 71.3636log 366536log 3610 436log 368336log 366236log 36436log 362)(=⨯⨯+⨯+⨯+⨯⨯=∴++ (5) bit P a I N n P 17.11136log log )(3611333==-=∴==1.2如有6行、8列的棋型方格,若有两个质点A 和B ,分别以等概落入任一方格内,且它们的坐标分别为(Xa ,Ya ), (Xb ,Yb ),但A ,B 不能同时落入同一方格内。
(1) 若仅有质点A ,求A 落入任一方格的平均信息量; (2) 若已知A 已落入,求B 落入的平均信息量; (3) 若A ,B 是可辨认的,求A ,B 落入的平均信息量。
解:bita P a P a a P a I a P A i 58.548log )(log )()(H 48log )(log )(481)(:)1(481i i i i i ==-=∴=-=∴=∑=落入任一格的概率bitb P b P b b P b I b P A i 55.547log )(log )()(H 47log )(log )(471)(:B ,)2(481i i i i i ==-=∴=-=∴=∑=落入任一格的概率是落入任一格的情况下在已知 bitAB P AB P AB H AB P AB I AB P AB i i i i i i i 14.11)4748log()(log )()()(log )(471481)()3(47481=⨯=-=-=∴⨯=∑⨯=是同时落入某两格的概率1.3从大量统计资料知道,男性中红绿色盲的发病率为7%,女性发病率为0.5%.如果你问一位男士:“你是否是红绿色盲?”他的回答可能是:“是”,也可能“不是”。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
信息论与编码习题参考答案 第一章 单符号离散信源1.1同时掷一对均匀的子,试求:(1)“2和6同时出现”这一事件的自信息量; (2)“两个5同时出现”这一事件的自信息量; (3)两个点数的各种组合的熵; (4)两个点数之和的熵;(5)“两个点数中至少有一个是1”的自信息量。
解:bitP a I N n P bit P a I N n P c c N 17.536log log )(361)2(17.418log log )(362)1(36662221111616==-=∴====-=∴===⨯==样本空间:(3)信源空间:X (1,1) (1,2) (1,3) (1,4) (1,5) (1,6) P(X) 1/36 2/36 2/36 2/36 2/36 2/36 X (2,2) (2,3) (2,4) (2,5) (2,6) P(x) 1/36 2/36 2/36 2/36 2/36 X (3,3) (3,4) (3,5) (3,6) P(x) 1/36 2/36 2/36 2/36 X (4,4) (4,5) (4,6) P(x) 1/36 2/36 2/36 X (5,5) (5,6) (6,6) P(x)1/362/361/36bit x H 32.436log 3616236log 36215)(=⨯⨯+⨯⨯=∴ (4)信源空间: X 2 3 4 5 6 7 8 9 10 11 12 P(x) 1/36 2/36 3/36 4/36 5/36 6/36 5/36 4/36 3/36 2/36 1/36 bitx H 71.3636log 366536log 3610 436log 368336log 366236log 36436log 362)(=⨯⨯+⨯+⨯+⨯⨯=∴++ (5) bit P a I N n P 17.11136log log )(3611333==-=∴==1.2如有6行、8列的棋型方格,若有两个质点A 和B ,分别以等概落入任一方格内,且它们的坐标分别为(Xa ,Ya ), (Xb ,Yb ),但A ,B 不能同时落入同一方格内。
(1) 若仅有质点A ,求A 落入任一方格的平均信息量; (2) 若已知A 已落入,求B 落入的平均信息量; (3) 若A ,B 是可辨认的,求A ,B 落入的平均信息量。
解:bita P a P a a P a I a P A i 58.548log )(log )()(H 48log )(log )(481)(:)1(481i i i i i ==-=∴=-=∴=∑=落入任一格的概率bitb P b P b b P b I b P A i 55.547log )(log )()(H 47log )(log )(471)(:B ,)2(481i i i i i ==-=∴=-=∴=∑=落入任一格的概率是落入任一格的情况下在已知 bitAB P AB P AB H AB P AB I AB P AB i i i i i i i 14.11)4748log()(log )()()(log )(471481)()3(47481=⨯=-=-=∴⨯=∑⨯=是同时落入某两格的概率1.3从大量统计资料知道,男性中红绿色盲的发病率为7%,女性发病率为0.5%.如果你问一位男士:“你是否是红绿色盲?”他的回答可能是:“是”,也可能“不是”。
问这两个回答中各含有多少信息量?平均每个回答中各含有多少信息量?如果你问一位女士,则她的答案中含有多少平均信息量? 解:bit w P w P w P w P m m P m I w P w I bit m P m P m P m P m bit m P m I bit m P m I n n y y n n y y n n y y n n y y 0454.0log99.5%99.5%-log0.5%-0.5% )(log )()(log )()(H %5.99log )(log )(%5.0log )(log )(366.0log93%93%-log7%-7% )(log )()(log )()(H 105.0%93log )(log )(84.3%7log )(log )(:=⨯⨯=⨯-⨯-=-=-=-=-==⨯⨯=⨯-⨯-==-=-==-=-=平均每个回答信息量::回答“不是”的信息量回答“是”的信息量:对于女:平均每个回答信息量::回答“不是”的信息量回答“是”的信息量:对于男士1.4某一无记忆信源的符号集为{0,1},已知。
,323110==p p (1) 求符号的平均信息量;(2) 由1000个符号构成的序列,求某一特定序列(例如有m 个“0”,(1000-m )个“1”)的自信量的表达式;(3) 计算(2)中序列的熵。
解:32log 3)1000(231log 3log log )( ce bit/sequen 918918.01000)(1000)(3 32log )1000(31log log )1000(log )(2/ 918.032log 3231log 31log log )(1100011110001100∑∑-==---=--==⨯==---=---==⨯-⨯-=--=mi mi m m p p p p A H X H A H bit m m p m p m A I sym blebit p p p p x H )()()(1.5设信源X 的信源空间为:⎩⎨⎧∙ 0.3 0.18 0.16 0.18 0.190.17 X)( a a a a a a X ][654321p p x :: 求信源熵,并解释为什么H(X)>log6,不满足信源熵的极值性。
解:。
立的约束条件,所以不满足信源熵最大值成但是本题中的约束条件下求得的,值是在这是因为信源熵的最大,不满足信源熵的极值性可见log6H(X)18.1 1585.2log62.725H(X) bit/symble 725.2 3.0log 3.016.0log 16.018.0log 18.0219.0log 19.017.0log 17.0 )(log )()(61161>===>==--⨯---=-=∑∑∑===i iri i i i i pp a p a p X H1.6为了使电视图象获得良好的清晰度和规定的对比度,需要用5×105个像素和10个不同的亮度电平,并设每秒要传送30帧图象,所有的像素是独立的,且所有亮度电平等概出现。
求传输此图象所需要的信息率(bit/s )。
解:bit/s 104.98310661.130)/)(()/(R bit/frame10661.1322.3105)(H 105)(H bit/pels322.310log )(log )()(H 7665051010⨯=⨯⨯=⨯=∴⨯=⨯⨯=⨯⨯====∑=fram e bit X H s fram e r x X a p a p x i i i 所需信息速率为:每帧图像的熵是:每个像素的熵是:,由熵的极值性:由于亮度电平等概出现1.7设某彩电系统,除了满足对于黑白电视系统的上述要求外,还必须有30个不同的色彩度。
试证明传输这种彩电系统的信息率要比黑白系统的信息率大2.5倍左右。
证:.5.2,,5.25.2477.210log 300log )(H )(H pels/bit 300log )(log )()(H bit 3001030,10,,300130011倍左右比黑白电视系统高彩色电视系统信息率要图形所以传输相同的倍作用大信息量比黑白电视系统彩色电视系统每个像素每个像素的熵是:量化所以每个像素需要用个亮度每个色彩度需要求下在满足黑白电视系统要个不同色彩度增加∴≈====∴=⨯∑=x x b p b p x i i i1.8每帧电视图像可以认为是由3×105个像素组成,所以像素均是独立变化,且每像素又取128个不同的亮度电平,并设亮度电平是等概出现。
问每帧图像含有多少信息量?若现在有一个广播员,在约10000个汉字中选1000个字来口述这一电视图像,试问若要恰当地描述此图像,广播员在口述中至少需要多少汉字? 解:个汉字最少需要数描述一帧图像需要汉字每个汉字所包含信息量每个汉字所出现概率每帧图象所含信息量55665510322.6/10322.61.0log 101.2)()()()(,log H(c):1.0100001000symble /bit 101.2128log 103)(103)(:⨯∴⨯=-⨯=≥≤-=∴==⨯=⨯⨯=⨯⨯=fram ec H X H n c nH X H n p p x H X H1.9给定一个概率分布),...,,(21n p p p 和一个整数m ,n m ≤≤0。
定义∑=-=mi i m p q 11,证明:)log(),,...,,(),...,,(2121m n q q p p p H p p p H m m m n -+≤。
并说明等式何时成立?证:∑∑+==--=>-=<-=''-=''∴>-=''-=''>-=nm i iimi i i n pp p p p p p H x x x x f x ex x x f x xex x x f x x x x f 1121log log ),...,,()0(log )( 0log )log ()(0log )log ()()0(log )( 又为凸函数。
即又为凸函数,如下:先证明时等式成立。
当且仅当时等式成立。
当且仅当即可得:的算术平均值的函数,函数的平均值小于变量由凸函数的性质,变量n m m m m m n mm m i i i m m m m m mi i i nm i iimi i i n n m m m m m nm i iimm nm i inm i inm i inm i inm i i i p p p m n q q p p p H p p p H q q p p q p p p H m n q q q p p pp p p p p p H p p p m n q q q pp mn q q mn pmn pm n mn pf m n mn p f m n p p ===-+≤--=-+--≤--=∴===-+-≤---=----=---≤---=-++==+==+++=+=+=+=+=+=∑∑∑∑∑∑∑∑∑∑...)log(),,...,,(),...,,(log log ),,...,,()log(log log log log ),...,,(...)log(log log loglog)()()()()(log 21212112111121211111111.10找出两种特殊分布:p 1≥p 2≥p 3≥…≥p n ,p 1≥p 2≥p 3≥…≥p m ,使H(p 1,p 2,p 3,…,p n )=H(p 1,p 2,p 3,…,p m )。