如何控制工程施工中大体积混凝土裂缝
大体积混凝土的控制措施
大体积混凝土的控制措施本工程的塔楼部位底板属于大体积混凝土施工,混凝土的裂缝控制是大体积混凝土施工成败的关键所在,因此为防止混凝土产生裂缝,应结合大体积混凝土裂缝的“抗放结合”理论,在控制混凝土内外温差、延缓降温速度、减少混凝土的收缩等方面采取一系列的技术措施。
1、从设计方面采取技术措施(1)明确基础、底板混凝土的最大水灰比不大于为0.55,能够有效控制混凝土干缩裂缝的产生。
(2)明确基础、底板混凝土中的最大氯离子含量为0.06%,最大碱含量为3.0kg/m ³,能够有效的控制氯离子对钢筋的腐蚀作用和碱骨料反应,提高混凝土的耐久性和对钢筋保护的有效性。
2、从原料方面采取技术措施底板混凝土配合比设计应尽量减少水泥用量,增加粉煤灰和膨胀剂用量,采用双掺技术。
据有关资料介绍每立方混凝土中水泥用量每增减10kg,其水化热将使混凝土的温升升降1℃;粉煤灰掺量占胶结料总量30%时,可降低水泥水化热15%;在混凝土中增加膨胀剂,不仅可配制补偿收缩混凝土,同时还可降低水泥水化热10%左右。
同时掺入粉煤灰和膨胀剂的综合降低水化热率可达25%。
(1)水泥拟选用P.O42.5水泥,厂家必须提供水泥出厂合格证。
同时为确保本工程混凝土的质量得到有效保证,需对商品混凝土搅拌站进行延伸质量管理,从混凝土各种强度等级的配合比设计、各种原材料来源、进场,到混凝土的生产、供应过程全程进行监督,并且具体责任落实到人,确保搅拌站为本工程提供合格的商品混凝土(实际浇筑混凝土水泥型号应以浇筑配合比为准)。
(2)外加剂:在混凝土中掺入适量的外加剂,可达到减小新拌混凝土的泌水率,延缓混凝土的凝结和降低温升的目的,并在不增加拌合用水量的条件下增大了混凝土的坍落度,增加了混凝土流动性,从而获得良好的可泵性。
(3)掺加料:混凝土中掺入一定数量的粉煤灰(粉煤灰掺量以经监理、业主审批通过的配合比为准),不仅能够代替部分水泥,填充胶凝材料的空隙,参与胶凝材料的水化反映,提高混凝土的密实度,改善混凝土的界面结构,提高混凝土的饿耐久性与强度,还能增强水泥浆体的流动性,改善混凝土的工作性和可泵性,降低混凝土中的水泥水化热量。
大体积混凝土控制措施
大体积混凝土控制措施本工程地下室一般底板厚度500m。
混凝土一次浇注量较大因此属于大体积混凝土施工范畴。
对此必须重点控制有害裂缝的发生,确保混凝土结构的使用安全。
通过以往类似工程的施工经验,对工程施工过程中如何控制大体积混凝土裂缝的产生,我们确定出以下防治措施:1、优化混凝土配合比:在满足泵送条件下使用较小的水灰比,骨料有良好级配,使空隙率最小,藉以尽可能的减小混凝土的干缩和终凝前的塑性收缩。
同时根据使用要求不同掺加的高效减水剂,缓凝剂或复合外加剂。
2、混凝土的施工防裂措施:施工中制订出从浇筑顺序、施工缝留置、浇筑程序、振捣要求到收活的作法,以至养护等整套工艺。
严格按操作规程进行,控制混凝土的塑性收缩、温度收缩和干缩,使之尽量减小,确保混凝土早期不开裂或不出现有害裂缝。
根据施工图中后浇带的位置合理的划分施工段,混凝土浇注完毕后养护及时合理,可以防止大部分有害裂缝的发生。
3、大体积混凝土的养护:混凝土的养护必须保持混凝土的湿润,防止混凝土表面与内部温差超过25℃防止过快的降温是确保大体积混凝土不出现有害裂缝的关键环节。
本工程底板厚度为600mm。
根据计算施工时首先在混凝土表面覆盖一层塑料布,然后铺设两层阻燃草帘子,其厚度约为23mm左右,可以满足要求。
混凝土浇注完毕后及时进行养护,先铺一层塑料布,防止水份的蒸发,其上覆盖阻燃草帘子两层,以使混凝土表面温度不过快的散发而造成内外温差过大。
并根据测温记录,决定是否增加覆盖厚度,养护时间不少于12天。
4、混凝土测温:现场设专人进行测温记录。
为了能及时掌握温度变化情况,在混凝土中设置测温点,在底板处设置至少5处。
设在底板厚度的1/2处,采用电子电热偶进行测温。
每个测温孔设专人记录温度,以掌握混凝土内外温差随时对混凝土的养护进行调整。
5、混凝土试块的留置:⑴混凝土强度检验:结构实体检验用同条件养护试件龄期确定。
同条件养护试件的留置方式和取样数量,符合下列要求:同条件养护试件所对应的结构构件或结构部位,由监理(建设)、施工等各方共同选定;对混凝土构件工程中的各混凝土强度等级,均留置同条件养护试件;同一强度等级的同条件养护试件,其留置的数量根据混凝土工程量和重要性确定,不宜少于10组,且不少于3组。
建筑工程中大体积混凝土施工裂缝成因及控制措施
建筑工程中大体积混凝土施工裂缝成因及控制措施随着我国经济和建筑工程技术的发展,建筑规模不断扩大,大型现代化构筑物不断增多,导致大体积混凝土工程也越来越多。
但是大体积混凝土施工很容易造成表面产生收缩裂缝等现象。
大体积混凝土在施工期间出现的裂缝数量及危害程度都要远远大于结构使用期间出现的裂缝,因此裂缝控制是大体积混凝土施工质量的控制关键。
本文分析了大体积混凝土施工裂缝产生的原因,并针对成因提出了控制措施。
标签:大体积混凝土;施工裂缝;成因控制一、建筑工程中大体积混凝土施工裂缝产生的原因(一)温度应力裂缝(1)由于温差较大引起的,大体积混凝土多采用高强混凝土,水泥用量大,水泥水化反应过程中释放大量热量,又因混凝土尺寸较大,混凝土内部温度不断上升,而表面温度较低,内部与表面混凝土形成较大温差,内部膨胀大于外部,在混凝土表面受到很大的拉应力,早期混凝土抗拉强度较低,当温度应力超过混凝土的抗拉强度时就会出现裂缝。
(2)各种结构在变形过程中受到外界的约束引起的,当大体积混凝土基础浇灌在坚硬地基或厚大的老混凝土垫层上时,没有采取降低和放松约束的措施,将会在混凝土内部引起很大的拉应力,易发生深进,直至贯穿性温度裂缝。
(二)收缩裂缝收缩有很多种,包括干燥收缩、塑性收缩、自身收缩、碳化收缩等等。
这里主要介绍干燥收缩和塑性收缩。
(1)干燥收缩。
混凝土硬化后,在干燥的环境下,混凝土内部的水分不断向外散失,引起混凝土由外向内的干缩变形裂缝。
(2)塑性收缩。
在水泥活性大、混凝土温度较高,或在水灰比较低的条件下会加剧引起开裂。
因为这时混凝土的泌水明显减少,表面蒸发的水分不能及时得到补充,这时混凝土尚处于塑性状态,稍微受到一点拉力,混凝土的表面就会出现分布不均匀的裂缝,出现裂缝以后,混凝土体内的水分蒸发进一步加大,于是裂缝进一步扩展。
二、建筑工程中大体积混凝土施工裂缝的控制措施(一)严格控制混凝土的组成材料大体积混凝土一般都是采用商品混凝土和泵送工艺浇筑,泵送商品混凝土对原材料的技术指标要求很高。
第三讲:大体积砼裂缝控制技术
第一节 混凝土裂缝 六、大体积混凝土结构施工阶段产生裂缝的主要原因: 1、水泥水化热; ➢ 水化热引起的绝热温升:与混凝土单位体积内的水泥用量和 水泥品种有关,并随混凝土的龄期按指数关系增长,一般10d左 右达到最终绝热温升。 ➢ 但由于结构自然散热,实际混凝土内部的最高温度,大多发 生在混凝土浇筑后的3~5d。
第三讲:大体积砼裂缝控制技术
第一节 混凝土裂缝
二、混凝土裂缝的三类原因: 1、由外荷载的直接应力(即按常规计算的主要应力)引起的 裂缝。 2、由结构的次应力(计算未考虑到的结构内部应力)引起的 裂缝。 3、由变形变化(温度、收缩、不均匀沉降等)引起的裂缝。 • 大体积混凝土的裂缝多由上述第三种 原因引起。
目的:
防止钢筋锈蚀、混凝土碳化和酥松脱落,从而影响结 构的耐久性、防水性。
➢ 对于基础、地下或半地下结构,裂缝主要影响其防渗性能。 当裂缝宽度只有0.1~0.2mm时,虽然早期有轻微渗水,经 过一段时间后一般裂缝可以自愈。
➢ 当裂缝宽度超过0.2~0.3mm时,其渗水量与裂缝宽度呈 三次方增加,必须进第行三化讲:学大体注积砼浆裂处缝控理制技。术
[Lmax ] 2
1
chβL/2
S (t )
结构计算温差 T,可按下式计算: T = T m + Ty(t)
其中: T m —— 各龄期砼的水泥水化热降温温差(℃); Ty(t)—— 各第龄三期讲:砼大体的积砼收裂缩缝控当制Fra bibliotek量术温差(℃)。
第一节 混凝土裂缝 七、大体积混凝土结构裂缝控制设计
2. 最大浇筑长度计算:
大体积混凝土基础底板出现的裂缝按深度可分为以下三种: 表面裂缝、深层裂缝、贯穿裂缝(图3-2)
深层裂缝进一步扩展形成 贯穿裂缝
大体积混凝土施工中的裂缝防治范文(2篇)
大体积混凝土施工中的裂缝防治范文裂缝是大体积混凝土施工中常见的问题之一,严重影响结构的安全性和使用寿命。
为了有效防治裂缝,在施工过程中需要采取一系列的措施。
本文将分析裂缝的产生原因,介绍常见的裂缝防治措施,并提出一些改进方法,以期有效解决大体积混凝土施工中的裂缝问题。
一、裂缝产生原因1. 温度变化:混凝土的体积变化系数较大,在温度变化大的情况下会产生温度裂缝。
2. 干缩:混凝土养护期间由于水分的蒸发和收缩而引起干缩裂缝。
3. 内应力:混凝土内部的应力不均匀,会产生内应力裂缝。
4. 设计和施工缺陷:结构设计和施工质量不合格也会导致裂缝的产生。
二、常见的裂缝防治措施1. 控制温度变化:在混凝土施工过程中,应尽量控制温度变化,避免快速升温或降温。
可以采取覆盖物体、喷水等措施来控制混凝土温度。
2. 加强养护:混凝土在初凝期和养护期需要进行充分的湿养护,以减少干缩引起的裂缝。
可以采用覆盖保温、喷水养护等方法。
3. 合理设计:在结构设计中,应考虑混凝土的体积变化和应力分布,避免产生过大的内应力。
合理控制浇筑量、浇筑层次和结构形式等因素。
4. 施工质量控制:加强施工质量控制,确保混凝土的配合比、浇筑工艺、养护等符合标准要求。
同时,应定期检查施工过程中的缺陷,及时进行整改。
三、改进方法1. 使用控制裂缝剂:控制裂缝剂是一种特殊的添加剂,可以有效抑制混凝土裂缝的产生。
它可以减少混凝土的收缩率,提高其抗裂性能。
2. 采用预应力技术:预应力技术可以通过施加预应力,使混凝土内部产生压应力,从而有效减少裂缝的发生。
同时,预应力技术还可以提高结构的承载能力和抗震性能。
3. 使用高性能混凝土:高性能混凝土具有较低的收缩率和较高的抗裂性能,可以有效减少裂缝的产生。
其强度和耐久性也更高,能够提高结构的使用寿命。
4. 引入复合材料:在混凝土中添加适量的纤维材料,如玻璃纤维、碳纤维等,可以有效增加混凝土的韧性和抗裂性能,减少裂缝的产生。
大体积混凝土抗裂措施
大体积混凝土抗裂措施
混凝土在建筑工程中扮演着重要的角色,而其中的混凝土抗裂措施
尤为关键。
本文将探讨大体积混凝土抗裂的措施及方法。
大体积混凝土的抗裂措施主要包括以下几个方面:
一、合理设计配筋方案
在大体积混凝土结构的设计中,应根据不同部位和受力情况,合理
设计配筋方案。
通过增加梁、柱等构件的钢筋数量和布置方式,提高
整体的抗裂性能,有效减少混凝土开裂的可能性。
二、加入合适的外加剂
掺入适量的外加剂能够改善混凝土的性能,增强其抗裂性能。
例如,可添加合适的高分子材料或纤维增强材料,使混凝土具有更好的韧性
和抗拉强度,有效防止裂缝的扩展。
三、控制混凝土收缩和温度变化
混凝土在硬化过程中会发生收缩,而温度的变化也是导致混凝土开
裂的重要原因之一。
因此,在浇筑和养护混凝土时,要控制混凝土的
收缩和温度变化,采取适当的保护措施,避免裂缝的生成。
四、严格控制浇筑工艺
在大体积混凝土浇筑时,必须严格控制浇筑工艺,采取适当的浇筑
方式和工艺措施。
避免混凝土过早硬化或过热,导致内部应力集中,
引发裂缝的出现。
五、定期维护和检测
对于大体积混凝土的结构,在使用过程中需要进行定期的维护和检测。
及时处理潜在的裂缝,修复已有的裂缝,确保混凝土结构的稳定性和安全性。
总之,大体积混凝土的抗裂措施至关重要,需要综合考虑材料的性能、结构的设计和施工工艺等方面,确保混凝土结构具有良好的抗裂性能,延长其使用寿命,保障工程的安全可靠。
通过以上措施的有效实施,可以有效减少混凝土结构的裂缝,提高结构的整体性能和耐久性,为工程的顺利进行和长期运行提供保障。
2024年大体积商品混凝土裂纹的控制
2024年大体积商品混凝土裂纹的控制
1. 使用低收缩的混凝土:选择低收缩性能优良的混凝土材料,可以减少混凝土在硬化过程中的收缩,减少裂缝的产生。
2. 控制混凝土表面的蒸发速率:在混凝土浇筑后,要注意控制浇水或使用覆盖物来减少混凝土表面的蒸发速率,以防止裂纹的发生。
3. 控制温度变化:在混凝土浇筑后,要通过控制温度变化来减少混凝土的热应力,可以采取降低浇筑温度、使用降温剂等措施。
4. 使用添加剂:在混凝土配制中加入一些添加剂,如减水剂、增稠剂、增强剂等,可以改善混凝土的流动性、减少收缩等问题,从而降低裂纹的发生。
5. 控制施工过程:在混凝土浇筑过程中,要注意控制浇注速度、浇筑高度、振捣等施工参数,以确保混凝土的均匀性,减少裂纹的产生。
这些仅仅是一些一般性的建议,具体的控制裂纹的方法还需要根据具体的工程要求和现场条件进行综合考虑和控制。
建议您在实施前咨询专业的工程师或混凝土技术人员,以确保正确的建议和方法。
第 1 页共 1 页。
控制大体积混凝土裂缝的方法
控制大体积混凝土裂缝的方法
1.减少水泥用量,降低水化热。
大体积混凝土升温,主要是由水泥水化热引起的。
预防和控制混凝土裂缝,首先应从降低水泥水化热着手,不少工程曾使用低热水泥来减少水化热。
2.预设冷却管能降低混凝土内部的最高温升。
控制大体积混凝土内部的最高温升,另一项措施是在混凝土内部预设冷却水管,用循环水及时将热量排出.以降低混凝土内部最高温升。
3、表面覆盖蓄热养生。
大体积混凝土内外温差根据体积大小和温度梯度不同,一般控制在25~30℃,不会出现裂缝。
4、及时对混凝土覆盖保温、保湿材料。
6
5、在拌合混凝土时,还可掺入适量的微膨胀剂或膨胀水泥,使混凝土得到补偿收缩,减少混凝土的温度应力。
大体积混凝土裂缝产生原因及控制措施
大体积混凝土裂缝产生原因及控制措施大体积混凝土结构在使用过程中,常常出现裂缝现象,这不仅影响了建筑物的外观,更重要的是可能影响结构的安全性和耐久性。
了解大体积混凝土裂缝产生的原因,并采取相应的控制措施显得尤为重要。
1. 原材料问题混凝土质量的差异可能导致混凝土中存在空鼓等问题,这会在使用过程中引发裂缝。
材料中含有过多的气孔和流动性差也会增加混凝土的收缩性,从而加剧了混凝土裂缝的产生。
2. 温度变化混凝土在硬化过程中会发生收缩,而环境温度的变化也会对混凝土产生影响。
当混凝土中的收缩和环境温度的变化不匹配时,就会导致混凝土内部的应力过大,从而引发裂缝。
3. 设计缺陷如果在混凝土结构的设计和施工中,存在设计缺陷或者施工质量不合格的情况,也有可能导致混凝土结构内部出现裂缝。
4. 荷载变化混凝土结构在使用过程中,受到荷载的作用,比如温度荷载、湿度荷载、机械荷载等,这些荷载的变化都有可能引发混凝土结构内部的应力变化,从而导致裂缝的产生。
5. 施工工艺混凝土结构的施工工艺不当也是混凝土裂缝产生的一个重要原因。
比如浇筑过程中的振捣不足、养护不到位等都可能导致混凝土结构内部的空鼓和裂缝。
以上就是大体积混凝土裂缝产生的一些主要原因,深入了解这些原因,才能更好地采取相应的控制措施。
1. 选材在混凝土的选材过程中,应该选择质量好、掺合比适宜的原材料。
并且要求混凝土的含水量和流动性要符合设计要求,这样有利于减少混凝土中的空鼓和气孔,从而减少裂缝的产生。
2. 设计优化在混凝土结构的设计阶段,应该充分考虑混凝土的收缩性和环境温度变化对混凝土结构的影响,从而在设计阶段就采取相应的措施来减少混凝土结构内部的应力集中,减少裂缝的产生。
4. 预留伸缩缝在混凝土结构设计中,应该根据结构的实际情况,合理设置伸缩缝。
伸缩缝的设置可以有效地减少混凝土结构内部因为温度变化和应力变化而引发的裂缝。
5. 养护混凝土在硬化过程中,需要进行适当的养护。
建筑工程大体积混凝土施工裂缝控制措施
建筑工程大体积混凝土施工裂缝控制措施建筑工程中,大体积混凝土施工是一个非常重要的环节。
同时也常常面临着裂缝问题,这不仅影响着建筑物的外观美观和使用寿命,更会对结构安全产生影响。
对于大体积混凝土施工裂缝的控制,是非常值得重视的。
下面就来谈谈在建筑工程中大体积混凝土施工裂缝控制的相关措施。
1. 合理设计和选材在进行大体积混凝土施工前,首先需要进行合理的设计。
这包括对混凝土的配比、材料的选择等方面进行合理分析和设计。
混凝土的配比应根据工程要求、原材料特性进行科学合理的确定,通过实验室试验,充分研究确定适宜的水泥用量,保证混凝土的抗渗抗裂性能。
2. 控制温度混凝土的温度变化是裂缝产生的一个重要因素。
在混凝土施工过程中,需要注意控制混凝土的温度,避免快速凝固和骤冷。
一般来说,采用降温措施、遮阳、覆盖等措施来控制混凝土的温度,尤其是在高温季节和高温地区的施工中更加需要加强温度控制。
3. 控制浇筑方式在大体积混凝土施工中,浇筑方式对于裂缝的控制也起着非常重要的作用。
采用逐层浇筑的方式,通过分层浇筑可以控制混凝土内部的温度,减少裂缝的产生。
还要避免混凝土的过度振捣、超振捣等情况,避免过分挤压混凝土内部的空气和水泥浆料,导致混凝土内部裂缝的产生。
4. 控制收缩裂缝混凝土在硬化过程中会产生收缩,这也是产生裂缝的一个重要因素。
为了控制混凝土的收缩裂缝,可以在混凝土中添加适量的外加剂,如膨胀剂、膨胀粘结料等,来减少混凝土的收缩。
可以通过合理的构造设计和细致的施工工艺,来减少混凝土构件收缩变形,从而减少裂缝的产生。
5. 利用预应力技术对于大体积混凝土结构,可以采用预应力技术来控制裂缝的产生。
通过预应力技术,将混凝土构件内部受到预应力的作用,能够有效地抵抗混凝土的收缩和变形,减少裂缝的产生,提高混凝土构件的整体性能和使用寿命。
6. 加强养护管理在大体积混凝土施工完成后,养护管理也是非常重要的一环。
在混凝土刚浇筑完后,需要及时进行覆盖保温,避免水分过快挥发导致裂缝的产生。
超长大体积砼裂缝控制措施
(此文为2006年版本,仅供设计人员参考)超长(大体积)混凝土结构裂缝控制措施一、设计方面措施:设计人员根据具体工程超长情况,可同时或部分采用以下几种裂缝控制措施。
1、采用适当的混凝土强度等级,对大体积混凝土工程应采取降低混凝土水化温升的有效措施。
●混凝土强度等级不宜过高,一般采用C30~C35,不宜超过C40。
可在混凝土中掺入一定数量的粉煤灰,可采用混凝土60~90天龄期的后期强度作为混凝土强度评定、工程交工验收及混凝土配合比设计的依据,但应严格控制混凝土的强度值,施工完成后的混凝土强度应不大于设计强度的1.2倍。
●对大体积混凝土工程应采取降低混凝土水化温升的有效措施(参见施工方面措施)。
2、设置后浇施工缝或设置膨胀加强带,分段施工。
设置施工后浇缝:每隔30~40M左右设置一道施工后浇缝,施工后浇缝宽800~1000mm,且在两侧混凝土浇筑两个月后用提高一级强度的无收缩或微膨胀混凝土浇筑,并应注意后浇缝混凝土浇筑时的环境温度,宜控制在10~20℃之间。
施工缝处浇筑混凝土前,应将接茬处剔凿干净,浇水湿润,并在接茬处铺水泥砂浆或涂混凝土界面剂,保证施工缝处结合良好。
应加强施工缝处混凝土的养护,其湿润养护时间不少于15天。
对大面积混凝土工程可采用分段间隔浇筑措施。
分段原则应根据结构条件确定,一般不大于30m,经过10天的养护,再将各分段连成整体。
对于有防水要求的结构,应在各分段之间设置钢板止水带,并仔细处理好施工缝。
设置膨胀加强带:当超长混凝土结构不设后浇施工缝时,可每隔30m左右设置一道2~3m左右宽的掺加膨胀剂的加强带,在混凝土中建立0.2~0.7Mpa的预压应力。
膨胀加强带混凝土应比两侧混凝土提高一级强度等级。
加强带两侧混凝土不掺膨胀剂或少掺微膨胀剂,对于有防水要求的砼构件,可通过掺加粉煤灰和矿渣粉来填补混凝土内部孔隙,使混凝土达到自密的效果,混凝土中的胶凝材料总量控制在400kg/m3左右。
大体积混凝土抗裂措施
大体积混凝土抗裂措施混凝土是一种广泛应用于建筑、桥梁和基础设施等工程中的重要材料。
然而,由于混凝土的内部存在微裂缝,长期以来一直是工程中的一个问题。
这些微裂缝不仅可能影响混凝土的强度和耐久性,还可能引起渗透物质的侵入和腐蚀,从而导致工程的不安全和损坏。
为了解决这个问题,工程师们采取了一系列的抗裂措施,以确保混凝土的质量和可靠性。
下面将介绍一些常用的大体积混凝土抗裂措施。
1.合理设计混凝土配合比混凝土的配合比是指水泥、砂子、骨料和水等混凝土组成成分的比例。
合理的配合比可以提高混凝土的强度和耐久性,从而降低混凝土裂缝的发生概率。
工程师需要根据工程的具体要求和混凝土的使用环境,合理设计配合比,确保混凝土的强度和抗裂性能。
2.使用适当的混凝土添加剂混凝土添加剂可以改善混凝土的性能和抗裂能力。
例如,使用减水剂可以降低混凝土的水灰比,提高混凝土的强度和致密性;使用增塑剂可以增加混凝土的可塑性,降低混凝土的收缩率。
通过使用适当的混凝土添加剂,可以有效地控制混凝土的裂缝产生。
3.增加钢筋骨架钢筋骨架是提高混凝土抗裂性能的重要手段之一。
钢筋的强度和延伸性远远高于混凝土,可以承受更大的拉力。
在混凝土结构中加入适量的钢筋,可以有效地阻止混凝土的裂缝扩展,提高结构的抗裂性能。
4.控制混凝土的收缩混凝土在硬化过程中会产生收缩,这种收缩会导致混凝土产生裂缝。
为了控制混凝土的收缩,可以采取一系列的措施。
例如,在施工过程中,可以采用遮阳措施来控制混凝土的表面温度,从而减少混凝土的收缩;在混凝土中添加收缩剂,可以改善混凝土的致密性,减少混凝土的收缩。
5.使用预应力混凝土预应力混凝土是在混凝土施加预先应变荷载的一种结构形式。
通过预应力荷载的作用,混凝土不仅可以抵抗外部荷载,还可以提高混凝土的抗裂性能。
预应力混凝土结构具有较高的刚度和强度,能够有效地控制混凝土的裂缝扩展。
总结起来,大体积混凝土的抗裂措施包括合理设计混凝土配合比、使用适当的混凝土添加剂、增加钢筋骨架、控制混凝土的收缩和使用预应力混凝土。
大体积混凝土裂缝的处理方法
大体积混凝土裂缝的处理方法一:背景介绍大体积混凝土常因干燥收缩、温度变化等原因引起裂缝的形成,严重影响混凝土的强度和耐久性,因此需要采取适当的措施进行处理。
本文将详细介绍大体积混凝土裂缝处理方法。
二:表面裂缝处理1. 检查与记录:首先,需要对混凝土裂缝进行检查,并记录裂缝的位置、长度、宽度等参数。
2. 清洁与修复:清除裂缝中的污物和杂物,并进行基本的修补工作,如填充小裂缝。
3. 填充材料选择:根据裂缝的宽度和深度,选择适当的填充材料,如聚氨酯、环氧树脂等,并按照厂家要求进行施工。
三:结构裂缝处理1. 加固措施:对于较严重的结构裂缝,需要采取加固措施,如钢筋加固、纤维增强、碳纤维片等。
2. 补丁修复:对于小范围的结构裂缝,可以采用补丁修复的方式,以增加混凝土的强度和耐久性。
3. 压缩材料使用:在裂缝边缘和构件连接处使用压缩材料,以防止裂缝的进一步扩展。
四:预防措施1. 控制混凝土的干燥收缩:在施工过程中加水养护、加入缩微剂等措施来控制混凝土的干燥收缩。
2. 控制混凝土的温度变化:使用遮阳网、冷却系统等措施来降低混凝土的温度变化,减少裂缝的形成。
3. 加强施工质量管理:对混凝土的材料、配合比、浇筑方式等进行严格控制和管理,以减少裂缝的产生。
附件:本文档涉及的附件包括混凝土裂缝检查记录表、裂缝处理施工规范等。
法律名词及注释:1. 混凝土裂缝:指在混凝土结构中形成的开裂,可能会导致结构失稳或功能障碍。
2. 干燥收缩:混凝土在干燥过程中由于水分流失而收缩,使混凝土产生裂缝。
3. 环氧树脂:一种用于填充混凝土裂缝的材料,具有较高的粘结强度和耐久性。
一:引言大体积混凝土裂缝的处理是建筑工程中常见的问题之一,本文将详细介绍大体积混凝土裂缝的处理方法,以读者完善处理技巧。
二:裂缝分类1. 表面裂缝:主要分为龟裂、疤痕裂缝等。
该类裂缝一般较浅,较易处理。
2. 结构裂缝:由于混凝土材料受到外力作用,造成结构体出现裂缝,该类裂缝治理难度较大。
建筑工程大体积混凝土施工裂缝控制措施
建筑工程大体积混凝土施工裂缝控制措施
建筑工程中,混凝土的裂缝是一种常见的问题,它们可能会影响建筑物的结构强度和
使用寿命。
在大体积混凝土施工过程中,需要采取一系列的措施来控制裂缝的产生和发展。
下面将介绍一些常见的措施:
1. 使用适当的混凝土配合比:混凝土配合比的设计非常重要,需要根据具体的工程
要求确定合适的水泥、砂、石料和水的比例。
合理的配合比可以提高混凝土的均匀性和稠度,从而减少裂缝的产生。
2. 控制混凝土的温度:混凝土在硬化过程中会产生热量,如果没有及时控制,会导
致温度差大,进而产生较大的应力,从而引起裂缝。
在大体积混凝土施工中,需要采取降
温措施,如利用冷却剂或降低环境温度等。
4. 使用扩散剂:在混凝土中加入一定量的扩散剂,可以改善混凝土的抗裂性能,防
止混凝土在干燥过程中产生大的收缩应力。
5. 控制施工过程中的振捣:振捣是混凝土施工过程中的重要环节,可以提高混凝土
的密实性和均匀性,从而减少裂缝的发生。
过度的振捣也会引起混凝土的分层和集料的分离,因此需要控制振捣的力量和时间。
6. 加强混凝土的抗裂性能:可以采用一些措施来提高混凝土的抗裂性能,如添加纤
维材料(如钢纤维、聚丙烯纤维等)和改善混凝土的骨料粒径分布等。
7. 选择合适的施工工艺:在大体积混凝土施工中,需要选择合适的施工工艺,如采
用连续浇筑、分段浇筑或预应力施工等,以减少混凝土的收缩和温度应力。
在大体积混凝土施工过程中,通过合理的设计和施工措施,可以有效地控制裂缝的产
生和发展,提高建筑物的结构质量和使用寿命。
大体积混凝土的施工难点及解决方案
大体积混凝土的施工难点及解决方案引言在建筑工程中,大体积混凝土的施工是一项重要且具有挑战性的任务。
大体积混凝土的施工难点主要包括:温度控制、施工工期、浇注性能等方面,如果不采取适当的措施,这些问题可能会导致施工质量的下降。
本文将针对大体积混凝土施工的难点,并提出相应的解决方案。
施工难点及解决方案1. 温度控制大体积混凝土浇注后,在固化过程中会产生热量,由于混凝土的体积较大,热量的释放速度较慢,容易导致温度梯度的产生,从而引发裂缝的形成。
为了有效控制温度,可以采取以下措施: - 使用低热水泥:低热水泥的水化热释放较小,有助于减少温度的上升。
- 施工时错开浇注:如果施工条件允许,可以采用错时浇注的方式,将浇筑时间分散,减少热量的集中释放。
- 使用冷却剂:在混凝土中加入适量的冷却剂,可以有效降低混凝土的温度。
2. 施工工期由于大体积混凝土的施工需要大量的人力和物力,工期较长,容易导致进度延误。
为了解决施工工期的问题,可以采取以下措施: - 提前进行施工准备:在施工前进行充分的准备工作,如材料的准备、设备的调试等,以便在施工开始时能够快速进行。
- 加强协调与管理:合理安排施工队伍,加强施工进度的监督和管理,确保施工的快速推进。
- 采用预制构件:如果工程条件允许,可以采用预制构件的方式,减少现场施工的时间。
3. 浇注性能大体积混凝土的浇注性能较差,易出现堆积、塌落等问题,影响施工质量。
为了解决浇注性能的问题,可以考虑以下措施: - 高效搅拌设备:选用高效搅拌设备,确保混凝土的搅拌均匀,提高浇注性能。
- 合理控制施工工艺:根据具体情况,选择适当的施工工艺,如采用分层浇筑、振捣等方式,以提高施工效率。
- 控制浇注速度:适当控制混凝土的浇注速度,避免过快或过慢导致的浇筑紊乱。
大体积混凝土的施工面临着温度控制、施工工期和浇注性能等多方面的难点。
通过采取适当的解决方案,可以有效地解决这些问题,保证施工的质量和进度。
大体积混凝土的质量控制措施
大体积混凝土的质量控制措施摘要:大体积混凝土在重要工程项目中扮演着至关重要的角色。
确保大体积混凝土的质量控制是确保工程项目成功完成的重要因素之一。
本文将介绍一些常用和有效的大体积混凝土质量控制措施,旨在帮助工程师和施工人员确保混凝土的质量。
引言:大体积混凝土常用于基础工程、水利工程和建筑物结构中。
由于其特殊性质和高要求,对其质量控制至关重要,以确保工程的安全和持久性。
执行恰当的质量控制措施将大大减少施工过程中的风险和潜在问题。
一、原材料的选择和检验混凝土的质量直接受到原材料的影响。
在选择原材料时,应优先选择符合国家标准并有稳定供应渠道的材料。
对于水泥、骨料和掺合料等原材料,应进行实验室检验和验证其物理性能和化学性质是否符合要求。
只有确保原材料的质量稳定才能保证大体积混凝土的质量。
二、搅拌参数的控制搅拌是混凝土制作过程中非常重要的环节。
搅拌设备的选择和使用对混凝土的质量有着重要影响。
在搅拌过程中,应严格控制搅拌时间、搅拌速度和搅拌温度等参数。
过长的搅拌时间和过高的搅拌速度会导致混凝土的坍落度下降和气泡生成,从而影响混凝土的密实性和强度。
三、浇筑和养护措施在进行大体积混凝土的浇筑前,应确保浇筑环境温度和湿度适宜。
应避免在高温和干燥的环境中浇筑大体积混凝土,以免引起混凝土裂缝和开裂。
对于大体积混凝土的养护,应采取适当的养护措施,如覆盖塑料薄膜、喷水养护等,以保持混凝土的湿润和温度稳定。
四、强度和质量检测大体积混凝土的强度和质量是评估其工程性能的重要指标。
在施工过程中,应定期进行混凝土的强度和质量检测。
强度测试可以通过压力试验或超声波测试等方法进行。
同时,还应对混凝土进行抗渗和抗裂性能的检测,以确保其满足设计要求。
五、施工人员的培训和管理施工人员对于大体积混凝土的质量控制至关重要。
施工人员应受到相关培训,熟悉大体积混凝土的特性、施工要求以及质量控制措施。
同时,施工现场应建立一套完善的管理制度,包括检查和记录施工过程中的各个环节,及时发现和解决问题。
混凝土楼板裂缝控制措施
混凝土楼板裂缝控制措施1.施工工艺控制混凝土的裂缝部分是由于混凝土收缩、温度变化以及外力作用等原因引起的。
因此,在施工过程中需要采取一些措施来减少混凝土的收缩和温度变化。
例如,在混凝土浇筑后要及时进行养护,避免混凝土快速干燥收缩;控制混凝土的温度,避免过快的温度变化等。
此外,适当的施工工艺也能减少外力对混凝土楼板的影响,比如避免冲击和震动,防止楼板受到外力冲击而产生裂缝。
2.加入纤维材料将一定比例的纤维材料掺入混凝土中,可以提高混凝土的抗裂性能。
纤维材料可以有效地分散和控制混凝土的裂缝,使其形成多个短小的细裂缝,从而减少大面积的裂缝出现。
常用的纤维材料有聚丙烯纤维、玻璃纤维和钢纤维等。
掺入纤维材料不仅可以提高混凝土楼板的抗裂性能,还能增强混凝土的韧性和耐久性。
3.加入膨胀剂膨胀剂是一种具有一定膨胀性能的材料,可以在混凝土硬化后发生膨胀变形。
掺入适量的膨胀剂可以让混凝土在出现塑性收缩时进行膨胀,从而减少混凝土的拉应力,降低裂缝的产生。
常用的膨胀剂有石膏、硫酸钙和铝粉等。
在使用膨胀剂时需要注意掺入量的适当性,过高的掺入量可能会引起混凝土的质量问题。
4.使用布缝条在混凝土浇筑过程中,可以在预定位置预留一定的裂缝,然后在裂缝位置使用布缝条进行处理。
布缝条可以起到隔离和分散裂缝的作用,将裂缝引导到布缝条上,避免裂缝扩展至整个楼板。
布缝条可使用橡胶、塑料、纤维材料制成,选择适当的布缝条材料和规格可以增加混凝土楼板的抗裂性能。
5.控制混凝土配合比和施工质量混凝土的配合比和施工质量直接影响楼板的抗裂性能。
合理的混凝土配合比可以提高混凝土的密实性和强度,降低收缩和温度变化引起的裂缝。
同时,施工质量的控制也能减少缺陷和瑕疵,提高楼板的整体性能。
例如,控制混凝土的振捣程度,保证混凝土的均匀密实;控制浇筑速度和温度等。
综上所述,混凝土楼板裂缝控制是一个复杂的工程问题,涉及施工过程中的多个环节和因素。
通过科学合理的施工工艺、加入纤维材料和膨胀剂、使用布缝条以及控制配合比和施工质量等措施,可以有效地控制混凝土楼板裂缝的产生和扩展,提高楼板的抗裂性能和使用寿命。
2024年基础大体积混凝土的裂缝控制
2024年基础大体积混凝土的裂缝控制在2024年,基础大体积混凝土的裂缝控制是一个关键的工程问题。
混凝土结构在使用过程中,由于内部应力和外部荷载的作用,以及温度变化等因素,可能出现裂缝。
这些裂缝不仅会降低结构的强度和耐久性,还会影响结构的美观和使用寿命。
因此,对于基础大体积混凝土的裂缝控制至关重要。
为了有效控制基础大体积混凝土的裂缝,需要从设计、施工和维护等方面综合考虑。
首先,在设计阶段应该合理确定结构的尺寸和形状,使用适当的材料和结构形式,以减小内部应力集中的可能性。
其次,施工过程中需要注意控制浇筑温度和湿度,合理设置构造缝和预留伸缩缝,以降低混凝土的温度和收缩裂缝的产生。
另外,应该采取适当的养护措施,保持混凝土的湿度和温度稳定,促进混凝土的早期强度发展,减小裂缝的发生概率。
在维护阶段,应该定期检查基础大体积混凝土结构的裂缝情况,及时采取修复措施。
对于已经出现的裂缝,可以采用填缝、碾压、切割等方法来修复,防止裂缝扩张导致结构损坏。
此外,定期进行水泥胶接处理和防水处理,提高混凝土的抗渗性和耐久性,延长结构的使用寿命。
综上所述,基础大体积混凝土的裂缝控制是一个综合的工程问题,需要在设计、施工和维护等各个环节都加以重视。
只有通过科学合理的措施和方法,才能有效地控制裂缝的发生,保障结构的安全稳定和持久耐用。
第 1 页共 1 页。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
如何控制工程施工中大体积混凝土裂缝
摘要:通过对工程施工中大体积混凝土施工裂缝问题产生原因进行分析,提出了降低混凝土温度应力、防止混凝土产生裂缝的施工控制措施,以及在构造设计上对大体积混凝土应采取的防裂措施,供大家参考。
关键词:大体积混凝土水化热裂缝
前言
随着施工技术的突飞猛进,大体积混凝土在结构中应用的越来越多。
我国普通混凝土配合比设计规范规定:混凝土结构物中实体最小尺寸不小于1 m的部位所用的混凝土即为大体积混凝土;美国则规定为:任何现浇混凝土,只要有可能产生温度影响的混凝土均称为大体积混凝土。
目前,国内外对机械荷载引起的开裂问题研究得较为透彻。
而对温度荷载引起的有关裂缝的研究尚不充分。
我们应对此加以重视,防止危害结构的裂缝产生。
另外对于大体积混凝土内温度应力与裂缝控制也多集中在水利工程中的大坝、高层建筑的深基础底板。
而对于一般施工过程中大体积混凝土的裂缝的研究并未得到足够的重视。
1. 大体积混凝土裂缝产生的主要原因
大体积混凝土结构裂缝的发生是由多种因素引起的,各类裂缝产生的主要影响因素如下:
1.1 水泥水化热的影响
水泥水化过程中放出大量的热,且主要集中在浇筑后的7d左右,一般每克水泥可以放出500J左右的热量,如果以水泥用量350kg/m3 ~550kg/m3来计算,每立方米混凝土将释放出17500KJ~27500的热量,从而使混凝土内部温度升高(可达70℃左右,甚至更高)尤其对大体积混凝土来讲,这种现象更加严重因为混凝土内部和表面的散热条件不同,故混凝土中心温度很高,就会形成温度梯度,使混凝土内部产生压应力,表面产生拉应力,当拉应力超过混凝土的极限抗拉强度时混凝土表面就会产生裂缝。
1.2 混凝土的收缩
混凝土在空气中硬结时体积减小的现象称为混凝土收缩。
混凝土在不受外力的情况下的这种自发变形,受到外部约束时(支撑条件、钢筋等),将在混凝土中产生拉应力,使得混凝土开裂。
引起混凝土的裂缝主要有塑性收缩、干燥收缩和温度收缩等三种。
在硬化初期主要是水泥石在水化凝固结硬过程中产生的体积变化,后期主要是混凝土内部自由水分蒸发而引起的干缩变形。
1.3 外界气温湿度变化的影响
大体积混凝土结构在施工期间,外界气温的变化对防止大体积混凝土裂缝的产生起着很大的影响。
混凝土内部的温度是由浇筑温度、水泥水化热的绝热温度和结构的散热温度等各种温度叠加之和组成。
浇筑温度与外界气温有着直接关系,外界气温愈高,混凝土的浇筑温度也就会愈高;如果外界温度降低则又会增加大体积混凝土的内外温差梯度。
如果外界温度的下降过快,会造成很大的温度应力,极其容易引发混凝土的开裂。
另外外界的湿度对混凝土的裂缝也有很大的影响,外界的湿度降低会加速混凝土的干缩,也会导致混凝土裂缝的产生。
1.4 其他因素的影响
建筑物基础的不均匀沉降也会产生裂缝,这种裂缝会随着基础沉降而不断的增大,待地基下沉稳定后,将不会变化。
超荷载使用或未达到设计过早加荷载导致结构出现裂缝,这种裂缝称之为荷载裂缝。
混凝土配合比不良会造成混凝土塑性沉降裂缝,一般是混凝土配合比中,粗骨料级配不连续、数量不够,砂率及水灰比不当所造成的裂缝。
2、大体积混凝土施工质量控制措施
2.1 大体积混凝土配合比设计
2.1.1 原材料选用由于水泥的用量直接影响着水化热的多少,大体积混凝土应选用水化热较低的水泥,如低热矿渣硅酸盐水泥、中热硅酸盐水泥等,并尽可能减少水泥用量。
细骨料宜采用2区中砂,因为使用中砂比用细砂可减少水及水泥的用量。
在可泵送情况下粗骨料,选用粒径5—20 mm连续级配石子,以减少混凝土收缩变形。
使用掺合料,应用添加粉煤灰技术。
在混凝土中掺用的粉煤灰不仅能够节约水泥,降低水化热,增加混凝土和易性,而且能够大幅度提高混凝土后期强度,推移温升峰值出现时间。
2.1.2 外加剂的使用。
采用减水剂,如缓凝高效减水剂;采用膨胀剂,如广泛使用u型膨胀剂无水硫铝酸钙或硫酸铝。
试验表明,在混凝土添加了膨胀剂之后混凝土内部产生的膨胀应力,可以抵消一部分混凝土的收缩应力,这样,相应地提高混凝土抗裂强度。
2.2 温控措施及施工现场控制
1)温度预测分析。
根据现场混凝土配合比和施工中的气温气候情况及各种养护方案,采用计算机仿真技术对混凝土施工期温度场和温差进行计算机模拟动态预测,提供结构沿厚度方向的温度分布及随混凝土龄期变化情况,制定混凝土在施工期内不产生温度裂缝的温控标准,进行保温养护优化选择。
2)混凝土浇筑方案。
采用延缓温差梯度和降温梯度的措施,在浇筑前经详细计算安排分块、分层浇筑次序、流向、浇筑厚度、宽度、长度、前后浇筑的搭接时间;控制混凝土温度并加强振捣,严格控制振捣时间,移动距离和插入深度,保证振捣密实,严防漏振和过振,确保混凝土均匀密实;做好现场协调组织管
理,要有充足的人力、物力、保证施工按计划顺利进行,保证混凝土供应,确保不留冷缝;浇筑后对大体积混凝土表面较厚的水泥浆进行必要的处理,一般浇筑后3~4h内初步用木长刮尺刮平,初凝前用铁滚筒碾压2遍,再用木抹子搓平压实,以控制表面龟裂;混凝土浇灌完后,立即采取有效的保温措施并按规定覆盖养护。
3)混凝土温度监测。
在混凝土内部外部设置温度测点,设置保温材料温度测点及养护水温度测点,现场温度监测数据由数据采集仪自动采集并进行整理分析。
每一测点的温度值、各测位中心测点与表层测点的温差值,作为研究调整控温措施的依据,防止混凝土出现温度裂缝。
4)为反映温控效果可在少数混凝土层中埋设应变计进行温度应力检测,应变计沿水平方向布置检测水平方向应力分量。
5)通水冷却。
采用薄壁钢管在一些混凝土浇筑分层中埋冷却水管,冷却水管使用前进行试水,防止管道漏水和阻塞,根据混凝土内部温度监测,控制冷却水管进水流量及温度。
2.3 构造设计上对大体积混凝土采取防裂措施
1)设计合理的结构形式,可以减少工程数量,减低水化热。
如可根据悬索桥锚碇受力特点,设计挖空非关键受力部分混凝土体积,利用土方压重方案,来减少混凝土结构体积。
2)充分利用混凝土在基坑有侧限条件,在混凝土中掺加微膨胀剂,使其在基坑约束下形成一定的预压力,补偿混凝土内部温度收缩产生的拉应力,从而有效的避免混凝土裂缝的产生。
3)大体积混凝土体积庞大,施工周期一般较长,依据结构受力情况可合理地确定混凝土评定验收龄期,打破正常标准28d的评定验收龄期,改为60d或更多天,评定验收龄期充分考虑混凝土的后期强度,从而降低设计标号,达到减少混凝土水泥用量降低水化热的目的。
4)由于边界存在约束才会产生温度应力,采用改善边界约束的构造设计,如遇有约束强的岩石类地基、较厚的混凝土垫层等时,可在接触面上设滑动层来减少温度应力。
在外约束的接触面上全部设滑动层,则可大大减弱外约束。
5)还应重视合理有益作用,可采取增配构造钢筋。
配筋应尽可能采用小直径、小间距,全截面含筋率控制在0.3%~0.5%之间。
在混凝土表面增设金属扩张网等有效措施,有效地提高混凝土抗裂性能。
结束语
在控制大体积混凝土温度裂缝时既要控制混凝土的内外温差又要防止混凝
土表面温度的突然变化。
重视温度监测,实际施工中应随时监测混凝土内部温度和内外温差的变化趋势,并据此来调整温控措施,确保混凝土不开裂。
影响大体积混凝土开裂的因素很多,应从造成裂缝的各种原因着手,采取全面防治措施,并根据工程具体情况确定防裂重点。