《指数函数与对数函数》测试题

合集下载

中职物理指数函数与对数函数测试题

中职物理指数函数与对数函数测试题

中职物理指数函数与对数函数测试题一、选择题1.指数函数与对数函数是下列哪一组函数关系?()A.反功能关系B.反比例关系C.正比例关系D.互为逆运算关系2.根据以下函数对应关系,选择出指数函数的图象,可以是直线方程的是()A.$y=2^x$B.$y=\log_2 x$C.$y=2x$D.$y=\frac{1}{2^x}$3.下列函数中,属于对数函数的是()A.$y=x^2$B.$y=\frac{1}{x}$C.$y=\log_2 x$D.$y=3x+2$4.下列哪组函数中,属于指数函数的一对反函数?()A.$y=10^x$和$y=\log_{10} x$B.$y=e^x$和$y=\ln x$C.$y=2^x$和$y=\log_2 x$D.$y=\frac{1}{2^x}$和$y=\log_{\frac{1}{2}} x$二、解答题1.写出指数函数与对数函数的定义,并说明它们的特点。

2.利用对数函数的特性,求解以下方程:$$2^x=8$$3.已知指数函数$y=2^x$,试回答以下问题:(1)$x=0$时,$y=\square$(2)当$x$取什么值时,$y=8$?三、计算题1.计算以下函数的值:(1)$y=2^3$(2)$y=\log_2 16$2.已知指数函数$y=2^x$和对数函数$y=\log_2 x$,求解以下方程:(1)$2^x=\frac{1}{4}$(2)$x=\log_2 64$四、应用题1.小明在银行存了6000元,按年利率4.2%计算,如果按复利方式,求5年后他的本息和。

2.某商品的初始价格为500元,假设每年下降10%,求经过多少年后商品的价格将降到400元以下?五、拓展题1.用函数的定义求解以下方程:$$2^{2x}=\frac{1}{16}$$2.设$y=f(x)$为指数函数,且$f(2)=4$,$f(3)=8$,求$f(4)$。

3.用指数函数的性质计算以下函数的极限:$$\lim_{x\to+\infty}\frac{e^x}{x^2+3}$$4.用对数函数的性质计算以下函数的极限:$$\lim_{x\to0}\frac{\ln(2+x)}{x}$$5.简单介绍一下指数函数与对数函数在生活中的应用。

指数函数与对数运算测试题(附答案)

指数函数与对数运算测试题(附答案)

指数函数与对数运算测试题 班级 姓名 得分1、21-⎡⎤⎢⎥⎣⎦等于( )A 、2B 、1C 、D 、122、设全集为R ,且{|0}A x =≤,22{|1010}x xB x -==,则()R A B= ð( )A 、{2}B 、{—1}C 、{x|x ≤2}D 、∅3、函数()f x = )A 、(,0]-∞B 、[0,)+∞C 、(,0)-∞D 、(,)-∞+∞4、已知对不同的a 值,函数1()2(01)x f x a a a -=+>≠,且的图象恒过定点P ,则P 点的坐标是( ) A 、()0,3 B 、()0,2 C 、()1,3 D 、()1,25、函数1()2y = )A 、1[1,]2- B 、(,1]-∞- C 、[2,)+∞ D 、1[,2]26、已知lg 2,lg 3a b ==,则lg 12lg 15等于( )A 、21a b a b+++ B 、21a b a b+++ C 、21a b a b+-+ D 、21a b a b+-+7、已知2lg(2)lg lg x y x y -=+,则xy的值为 ( ) A 、1 B 、4 C 、1或4 D 、4或—18、函数xy a =(a >1)的图象是( b )9、若221333111(),(),()522a b c ===,则a ,b ,c 的大小关系是 ( )A 、a>b>cB 、c>b>aC 、a>c>bD 、b>a>c10、已知函数()f x 的定义域是(0,1),那么(2)xf 的定义域是( ) A.(0,1) B.(21,1) C.(-∞,0) D.(0,+∞)11、若集合A ={y | y=2x , x ∈R } , B = {y | y=x 2 , x ∈R } , 则( )A B B.A A 、2a B C 、二、填空题(4⨯5‘)1、点(2,1)与(1,2)在函数()2ax b f x +=的图象上,则()f x 的解析式为 22x -+2、求函数11(),[0,2]3x y x -=∈的值域是 [1/3,3]3、已知()f x 是奇函数,且当x>0时,()10x f x =,则x<0时,()f x = 10x --4、若集合{}{},,lg()0,,x xy xy x y =,则228log ()x y += 1/3三、解答题(7⨯10‘)1、计算(1)122(11)]-+- ; (2)4912log 3log 2log ⋅-。

(精选试题附答案)高中数学第四章指数函数与对数函数真题

(精选试题附答案)高中数学第四章指数函数与对数函数真题

(名师选题)(精选试题附答案)高中数学第四章指数函数与对数函数真题单选题1、设a=log2π,b=log6π,则()A.a−b<0<ab B.ab<0<a−bC.0<ab<a−b D.0<a−b<ab答案:D分析:根据对数函数的性质可得a−b>0,ab>0,1b −1a<1,由此可判断得选项.解:因为a=log2π>log22=1,0=log61<b=log6π<log66=1,所以a>1,0<b<1,所以a−b>0,ab>0,故排除A、B选项;又1b −1a=a−bab=logπ6−logπ2=logπ3<logππ<1,且ab>0,所以0<a−b<ab,故选:D.2、若函数f(x)=x3+x2−2x−2的一个正零点附近的函数值用二分法计算,其参考数据如下:那么方程x3+x2−2x−2=0的一个近似根(精确度0.1)为().A.1.2B.1.4C.1.3D.1.5答案:B分析:根据二分法求零点的步骤以及精确度可求得结果.解:因为f(1)<0,f(1.5)>0,所以f(1)f(1.5)<0,所以函数在(1,1.5)内有零点,因为1.5−1=0.5>0.1,所以不满足精确度0.1;因为f(1.25)<0,所以f(1.25)f(1.5)<0,所以函数在(1.25,1.5)内有零点,因为1.5−1.25=0.25>0.1,所以不满足精确度0.1;因为f(1.375)<0,所以f(1.375)f(1.5)<0,所以函数在(1.375,1.5)内有零点,因为1.5−1.375=0.125>0.1,所以不满足精确度0.1;因为f(1.4375)>0,所以f(1.4375)f(1.375)<0,所以函数在(1.375,1.4375)内有零点,因为1.4375−1.375=0.0625<0.1,所以满足精确度0.1;所以方程x 3+x 2−2x −2=0的一个近似根(精确度0.05)是区间(1.375,1.4375)内的任意一个值(包括端点值),根据四个选项可知选B . 故选:B3、已知55<84,134<85.设a =log 53,b =log 85,c =log 138,则( ) A .a <b <c B .b <a <c C .b <c <a D .c <a <b 答案:A分析:由题意可得a 、b 、c ∈(0,1),利用作商法以及基本不等式可得出a 、b 的大小关系,由b =log 85,得8b =5,结合55<84可得出b <45,由c =log 138,得13c =8,结合134<85,可得出c >45,综合可得出a 、b 、c 的大小关系.由题意可知a 、b 、c ∈(0,1),a b =log 53log 85=lg3lg5⋅lg8lg5<1(lg5)2⋅(lg3+lg82)2=(lg3+lg82lg5)2=(lg24lg25)2<1,∴a <b ;由b =log 85,得8b =5,由55<84,得85b <84,∴5b <4,可得b <45; 由c =log 138,得13c =8,由134<85,得134<135c ,∴5c >4,可得c >45.综上所述,a <b <c . 故选:A.小提示:本题考查对数式的大小比较,涉及基本不等式、对数式与指数式的互化以及指数函数单调性的应用,考查推理能力,属于中等题.4、已知函数f (x )={a +a x ,x ≥03+(a −1)x,x <0(a >0 且a ≠1),则“a ≥3”是“f (x )在R 上单调递增”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件答案:A分析:先由f(x)在R 上单调递增求得a 的取值范围,再利用充分条件,必要条件的定义即得. 若f(x)在R 上单调递增, 则{a >1a −1>0a +1≥3 , 所以a ≥2,由“a ≥3”可推出“a ≥2”,但由“a ≥2”推不出 “a ≥3”, 所以“a ≥3”是“f(x)在R 上单调递增”的充分不必要条件. 故选:A.5、已知9m =10,a =10m −11,b =8m −9,则( ) A .a >0>b B .a >b >0C .b >a >0D .b >0>a 答案:A分析:法一:根据指对互化以及对数函数的单调性即可知m =log 910>1,再利用基本不等式,换底公式可得m >lg11,log 89>m ,然后由指数函数的单调性即可解出. [方法一]:(指对数函数性质) 由9m =10可得m =log 910=lg10lg9>1,而lg9lg11<(lg9+lg112)2=(lg992)2<1=(lg10)2,所以lg10lg9>lg11lg10,即m >lg11,所以a =10m −11>10lg11−11=0.又lg8lg10<(lg8+lg102)2=(lg802)2<(lg9)2,所以lg9lg8>lg10lg9,即log 89>m ,所以b =8m −9<8log 89−9=0.综上,a >0>b . [方法二]:【最优解】(构造函数) 由9m =10,可得m =log 910∈(1,1.5).根据a,b 的形式构造函数f(x)=x m −x −1(x >1) ,则f ′(x)=mx m−1−1, 令f ′(x)=0,解得x 0=m11−m,由m =log 910∈(1,1.5) 知x 0∈(0,1) .f(x)在(1,+∞)上单调递增,所以f(10)>f(8),即a>b,又因为f(9)=9log910−10=0,所以a>0>b .故选:A.【整体点评】法一:通过基本不等式和换底公式以及对数函数的单调性比较,方法直接常用,属于通性通法;法二:利用a,b的形式构造函数f(x)=x m−x−1(x>1),根据函数的单调性得出大小关系,简单明了,是该题的最优解.6、已知函数f(x)={2,x>mx2+4x+2,x≤m,若方程f(x)−x=0恰有三个根,那么实数m的取值范围是()A.[−1,2)B.[−1,2]C.[2,+∞)D.(−∞,−1]答案:A分析:由题意得,函数y=f(x)与函数y=x有三个不同的交点,结合图象可得出结果.解:由题意可得,直线y=x与函数f(x)=2(x>m)至多有一个交点,而直线y=x与函数f(x)=x2+4x+2(x≤m)至多两个交点,函数y=f(x)与函数y=x有三个不同的交点,则只需要满足直线y=x与函数f(x)=2(x>m)有一个交点直线y=x与函数f(x)=x2+4x+2(x≤m)有两个交点即可,如图所示,y=x与函数f(x)=x2+4x+2的图象交点为A(−2,−2),B(−1,−1),故有m≥−1.而当m≥2时,直线y=x和射线y=2(x>m)无交点,故实数m的取值范围是[−1,2).故选:A.7、已知x ,y ,z 都是大于1的正数,m >0,log x m =24,log y m =40,log xyz m =12,则log z m 的值为( ) A .160B .60C .2003D .320答案:B分析:根据换底公式将log x m =24,log y m =40,log xyz m =12,化为log m x =124,log m y =140,log m xyz =112,再根据同底数的对数的加减法运算即可得解. 解:因为log x m =24,log y m =40,log xyz m =12, 所以log m x =124,log m y =140,log m xyz =112,即log m x +log m y +log m z =112,∴log m x =112−log m y −log m z =112−124−140=160, ∴log z m =60. 故选:B .8、下列函数中是增函数的为( )A .f (x )=−xB .f (x )=(23)xC .f (x )=x 2D .f (x )=√x 3答案:D分析:根据基本初等函数的性质逐项判断后可得正确的选项. 对于A ,f (x )=−x 为R 上的减函数,不合题意,舍. 对于B ,f (x )=(23)x为R 上的减函数,不合题意,舍. 对于C ,f (x )=x 2在(−∞,0)为减函数,不合题意,舍.对于D,f(x)=√x3为R上的增函数,符合题意,故选:D.9、已知函数f(x)={a x,x<0(a−3)x+4a,x≥0满足对任意x1≠x2,都有(x1-x2)[f(x1)-f(x2)]<0成立,则a的取值范围为()A.(0,14]B.(0,1)C.[14,1)D.(0,3)答案:A分析:根据给定不等式可得函数f(x)为减函数,再利用分段函数单调性列出限制条件求解即得.因对任意x1≠x2,都有(x1-x2)[f(x1)-f(x2)]<0成立,不妨令x1<x2,则f(x1)>f(x2),于是可得f(x)为R上的减函数,则函数y=a x在(−∞,0)上是减函数,有0<a<1,函数y=(a−3)x+4a在[0,+∞)上是减函数,有a−3<0,即a<3,并且满足:a0≥f(0),即4a≤1,解和a≤14,综上得0<a≤14,所以a的取值范围为(0,14].故选:A10、如图所示,函数y=|2x−2|的图像是()A.B.C.D.答案:B分析:将原函数变形为分段函数,根据x=1及x≠1时的函数值即可得解.∵y=|2x−2|={2x−2,x≥12−2x,x<1,∴x=1时,y=0,x≠1时,y>0. 故选:B.填空题11、化简:(1+1232)(1+1216)(1+128)(1+124)(1+122)(1+12)=________.答案:2−1263分析:分析式子可以发现,若在结尾乘以一个(1−12),则可以从后到前逐步使用平方差公式进行计算,为保证恒等计算,在原式末尾乘以(1−12)×2即可﹒原式=(1+1232)(1+1216)(1+128)(1+124)(1+122)(1+12)×(1−12)×2=(1+1232)(1+1216)(1+128)(1+124)(1+122)×(1−122)×2 =(1+1232)(1+1216)(1+128)(1+124)×(1−124)×2=(1+1232)(1+1216)(1+128)×(1−128)×2=(1+1232)(1+1216)×(1−1216)×2=(1+1232)×(1−1232)×2=(1−1264)×2=2−1263所以答案是:2−1263﹒12、不等式log4x≤12的解集为___________.答案:(0,2]分析:根据对数函数的单调性解不等式即可. 由题设,可得:log 4x ≤log 4412,则0<x ≤412=2, ∴不等式解集为(0,2]. 所以答案是:(0,2].13、在用二分法求函数f (x )的零点近似值时,若第一次所取区间为[−2,6],则第三次所取区间可能是______.(写出一个符合条件的区间即可) 答案:[−2,0]或[0,2]或[2,4]或[4,6](写一个即可). 分析:根据二分法的概念,可求得结果.第一次所取区间为[−2,6],则第二次所取区间可能是[−2,2],[2,6];第三次所取区间可能是[−2,0],[0,2],[2,4],[4,6].所以答案是:[−2,0]或[0,2]或[2,4]或[4,6](写一个即可).14、设函数f(x)={2x +1,x ≤0|lgx |,x >0,若关于x 的方程f 2(x )−af (x )+2=0恰有6个不同的实数解,则实数a 的取值范围为______. 答案:(2√2,3)分析:作出函数f(x)的图象,令f(x)=t ,结合图象可得,方程t 2−at +2=0在(1,2]内有两个不同的实数根,然后利用二次函数的性质即得;作出函数f(x)={2x +1,x ≤0|lgx |,x >0的大致图象,令f (x )=t ,因为f 2(x )−af (x )+2=0恰有6个不同的实数解, 所以g (t )=t 2−at +2=0在区间(1,2]上有2个不同的实数解,∴{Δ=a 2−8>01<a2<2g (1)=3−a >0g (2)=6−2a ≥0 , 解得2√2<a <3,∴实数a 的取值范围为(2√2,3). 所以答案是:(2√2,3).15、函数y =log a (kx −5)+b (a >0且a ≠1)恒过定点(2,2),则k +b =______. 答案:5分析:根据对数函数的图象与性质,列出方程组,即可求解. 由题意,函数y =log a (kx −5)+b 恒过定点(2,2),可得{2k −5=1b =2 ,解得k =3,b =2,所以k +b =3+2=5.所以答案是:5. 解答题16、(1)计算:(1100)−12−√(1−√2)2−8×(√5−√3)0+816;(2)已知x +x −1=4,求x 12+x −12. 答案:(1)3;(2)x 12+x −12=√6.分析:(1)根据指数幂的运算法则进行计算,求得答案; (2)先判断出x >0,然后将x 12+x −12平方后结合条件求得答案. (1)原式=[(100)−1]−12−(√2−1)−8+(23)16,=10012−√2+1−8+212=10+1−8=3.(2)由于x +x−1=4>0,所以x >0,(x 12+x −12)2=x +x −1+2=6,所以x 12+x −12=√6.17、(1)证明对数换底公式:log b N =log a N log a b(其中a >0且a ≠1,b >0且b ≠1,N >0)(2)已知log 32=m ,试用m 表示log 3218. 答案:(1)证明见解析;(2)log 3218=2+m 5m.分析:(1)将对数式转化为指数式,然后两边取对数,利用对数函数的应算法则,即可证明. (2)利用换底公式将等号左边化为以3为底的对数,然后根据对数运算法则化简即得. (1)设log b N =x ,写成指数式b x =N . 两边取以a 为底的对数,得xlog a b =log a N .因为b >0,b ≠1,log a b ≠0,因此上式两边可除以log a b ,得x =log a N log a b.所以,log b N =log a N log a b.(2)log 3218=log 318log 332=log 332+log 32log 325=2+log 325log 32=2+m 5m.小提示:本题考查换底公式的证明和应用,属基础题,关键是将对数式转化为指数式,然后两边取对数,利用对数函数的应算法则,即可证明. 18、已知函数f (x )=a x −1a x +1(a >0,且a ≠1). (1)若f (2)=35,求f (x )解析式; (2)讨论f (x )奇偶性.答案:(1)f (x )=2x −12x +1;(2)奇函数.分析:(1)根据f (2)=35,求函数的解析式;(2)化简f (−x ),再判断函数的奇偶性. 解:(1)∵f (x )=a x −1a x +1,f (2)=35.即a 2−1a 2+1=35,∴a =2.即f (x )=2x −12x +1.(2)因为f (x )的定义域为R ,且f (−x )=a −x −1a −x +1=1−a x1+a x =−f (x ),所以f (x )是奇函数.19、如图,某中学准备在校园里利用院墙的一段,再砌三面墙,围成一个矩形花园ABCD ,已知院墙MN 长为25米,篱笆长50米(篱笆全部用完),设篱笆的一面AB 的长为x 米.(1)当AB 的长为多少米时,矩形花园的面积为300平方米?(2)若围成的矩形ABCD 的面积为 S 平方米,当 x 为何值时, S 有最大值,最大值是多少?答案:(1)15米;(2)当 x 为12.5米时, S 有最大值,最大值是312.5平方米.分析:(1)设篱笆的一面AB 的长为 x 米,则BC =(50−2x)m ,根据“矩形花园的面积为300平方米”列一元二次方程,求解即可;(2)根据题意,可得S =x(50−2x),根据二次函数最值的求法求解即可.(1)设篱笆的一面AB 的长为 x 米,则BC =(50−2x)m ,由题意得,x(50−2x)=300,解得x 1=15,x 2=10,∵50−2x ≤25,∴x ≥12.5,∴x=15,所以,AB的长为15米时,矩形花园的面积为300平方米;(2)由题意得,S=x(50−2x)=−2x2+50x=−2(x−12.5)2+312.5,12.5≤x<25∴x=12.5时,S取得最大值,此时,S=312.5,所以,当x为12.5米时,S有最大值,最大值是312.5平方米.。

新课程必修第一册《指数函数与对数函数》基础测试题及答案解析

新课程必修第一册《指数函数与对数函数》基础测试题及答案解析

新课程必修第一册《指数函数与对数函数》基础测试题及答案解析时间:120分钟 满分:150分一、选择题(本大题共8小题,每小题5分,共40分) 1.若a<12,则化简42a -12的结果是( )A .2a -1B .-2a -1C .1-2aD .-1-2a2.函数y =lg x +lg (5-3x)的定义域是( )A .[0,53) B .[0,53] C .[1,53)D .[1,53]3.若a>1,则函数y =a x与y =(1-a)x 2的图象可能是下列四个选项中的( )4.函数f(x)=ln(x +1)-2x的零点所在的大致区间是( )A .(1,2)B .(0,1)C .(2,e)D .(3,4)5.若0<a<1,在区间(-1,0)上函数f(x)=log a (x +1)是( )A .增函数且f(x)>0B .增函数且f(x)<0C .减函数且f(x)>0D .减函数且f(x)<06.已知函数f(x)=⎩⎪⎨⎪⎧log 3x ,x>02x, x≤0,则f(f(19))等于( )A .4B .14C .-4D .-147.函数f(x)=4x+12x 的图象( )A .关于原点对称B .关于直线y =x 对称C .关于x 轴对称D .关于y 轴对称8.下列式子中成立的是( )A .log 0.44<log 0.46B .1.013.4>1.013.5C .3.50.3<3.40.3D .log 76<log 67二、多项选择题(本大题共4小题,每小题5分,共20分) 9.下列函数中,是奇函数且存在零点的是( )A .y =x 3+x B .y =log 2x C .y =2x 2-3D .y =x |x |10.下列说法正确的是( ) A .函数()1f x x=在定义域上是减函数 B .函数()22xf x x =-有且只有两个零点 C .函数2xy =的最小值是1D .在同一坐标系中函数2xy =与2xy -=的图象关于y 轴对称11.若函数1xy a b =+-(0a >,且1a ≠)的图像经过第一、三、四象限,则下列选项中正确的有( ) A .1a >B .01a <<C .0b >D .0b <12.定义运算a ⊕b =⎩⎪⎨⎪⎧a ,a ≥b ,b ,a <b ,设函数f (x )=1⊕2-x,则下列命题正确的有( )A .f (x )的值域为[1,+∞)B .f (x )的值域为(0,1]C .不等式f (x +1)<f (2x )成立的范围是(-∞,0)D .不等式f (x +1)<f (2x )成立的范围是(0,+∞) 二、填空题(本大题共4小题,每小题5分,共20分)13. 函数()()2lg lg x f x x =-的零点为________. 14.函数f(x)=ax -1+3的图象一定过定点P ,则P 点的坐标是________.15.如果函数y =log a x 在区间[2,+∞)上恒有y>1,那么实数a 的取值范围是________.16.若函数f (x )=log a x (a >0,且a ≠1)在⎣⎢⎡⎦⎥⎤12,4上的最大值为2,最小值为m ,函数g (x )=(3+2m )x 在[0,+∞)上是增函数,则a +m =______. 三、解答题(本大题共6小题,共70分) 17.(10分)(1)计算:(-3)0-120+(-2)-2-1416-;(2) 设log a 2=m ,log a 3=n ,求a 2m +n的值;18.(12分)(1) log 49-log 212+5lg210-.(2)12lg 25lg 2lg ++()1lg 0.01+-; 19.(12分)设函数f(x)=2x+a 2x -1(a 为实数).(1)当a =0时,若函数y =g(x)为奇函数,且在x>0时g(x)=f(x),求函数y =g(x)的解析式;(2)当a<0时,求关于x 的方程f(x)=0在实数集R 上的解. 20.(12分)已知函数f (x )=log ax +1x -1(a >0且a ≠1), (1)求f (x )的定义域;(2)判断函数的奇偶性和单调性.21.(12分)已知-3≤12log x ≤-32,求函数f (x )=log 2x 2·log 2x4的最大值和最小值.22.(12分) 已知函数2328()log 1mx x nf x x ++=+. (Ⅰ)若4,4m n ==,求函数()f x 的定义域和值域;(Ⅱ)若函数()f x 的定义域为R ,值域为[0,2],求实数,m n 的值.答案及解析:一、单选题1.C [∵a <12,∴2a -1<0.于是,原式=41-2a2=1-2a .]2.C [由函数的解析式得:⎩⎪⎨⎪⎧lg x ≥0,x >0,5-3x >0,即⎩⎪⎨⎪⎧x ≥1,x >0,x <53.所以1≤x <53.]3.C [∵a >1,∴y =a x在R 上是增函数,又1-a <0,所以y =(1-a )x 2的图象为开口向下的抛物线.] 4.A f(1)=ln2-2=ln 2e 2<ln1=0,f(2)=ln3-1=ln 3e>ln1=0,所以函数f(x)=ln(x +1)-2x的零点所在的大致区间是(1,2).5.C [当-1<x <0,即0<x +1<1,且0<a <1时,有f (x )>0,排除B 、D.设u =x +1,则u 在(-1,0)上是增函数,且y =log a u 在(0,+∞)上是减函数,故f (x )在(-1,0)上是减函数.]6.B [根据分段函数可得f (19)=log 319=-2,则f (f (19))=f (-2)=2-2=14.]7.D 易知f(x)的定义域为R ,关于原点对称.∵f(-x)=4-x+12-x =1+4x2x =f(x),∴f(x)是偶函数,其图象关于y 轴对称.8.D [A 选项中由于y =log 0.4x 在(0,+∞)单调递减, 所以log 0.44>log 0.46;B 选项中函数y =1.01x在R 上是增函数, 所以1.013.4<1.013.5;C 选项中由于函数y =x 0.3在(0,+∞)上单调递增, 所以3.50.3>3.40.3;D 选项中log 76<1,log 67>1,故D 正确.] 二、多选题9.解析:选AD A 中,y =x 3+x 为奇函数,且存在零点x =0,与题意相符;B 中,y =log 2x 为非奇非偶函数,与题意不符;C 中,y =2x 2-3为偶函数,与题意不符;D 中,y =x |x |是奇函数,且存在零点x =0,与题意相符. 10.解析:对于A ,()1f x x=在定义域上不具有单调性,故命题错误; 对于B ,函数()22xf x x =-有三个零点,一个负值,两个正值,故命题错误;对于C ,∵|x |≥0,∴2|x |≥20=1,∴函数y =2|x |的最小值是1,故命题正确;对于D ,在同一坐标系中,函数y =2x 与y =2﹣x 的图象关于y 轴对称,命题正确.故选CD 11.解析:因为函数1xy a b =+- (0a >,且1a ≠)的图像经过第 一、三、四象限,所以其大致图像如图所示:由图像可知函数为增函数,所以1a >.当0x =时,110y b b =+-=<,故选AD.12.解析:选AC 由函数f (x )=1⊕2-x,有f (x )=⎩⎪⎨⎪⎧1,1≥2-x,2-x ,1<2-x,即f (x )=⎩⎪⎨⎪⎧2-x,x <0,1,x ≥0,作出函数f (x )的图象,如图所示,根据函数图象得f (x )的值域为[1,+∞),故A 正确,B 错误;若不等式f (x +1)<f (2x )成立,由函数图象知,当2x <x +1<0即x <-1时成立,当⎩⎪⎨⎪⎧2x <0,x +1≥0即-1≤x <0时也成立.所以不等式f (x +1)<f (2x )成立时,x <0.故C 正确,D 错误.故选A 、C. 三、填空题13. 解析:由题知:()2lg lg 0x x -=,得(l g 1g )l 0x x -=,∴lg 0x =或lg 1x =,∴1x =或10x =.故答案为:1x =或10x = 14.(1,4)解析 由于函数y =a x恒过(0,1),而y =ax -1+3的图象可看作由y =a x的图象向右平移1个单位,再向上平移3个单位得到的,则P 点坐标为(1,4). 15.(1,2)解析 当x ∈[2,+∞)时,y >1>0,所以a >1,所以函数y =log a x 在区间[2,+∞)上是增函数,最小值为log a 2,所以log a 2>1=log a a ,所以1<a <2.16.解析:当a >1时,函数f (x )=log a x 是正实数集上的增函数,而函数f (x )=log a x 在⎣⎢⎡⎦⎥⎤12,4上的最大值为2,因此有f (4)=log a 4=2⇒a =2,所以m =log 212=-1,此时g (x )=x 在[0,+∞)上是增函数,符合题意,因此a +m =2-1=1;当0<a <1时,函数f (x )=log a x 是正实数集上的减函数,而函数f (x )=log a x 在⎣⎢⎡⎦⎥⎤12,4上的最大值为2,因此有f ⎝ ⎛⎭⎪⎫12=log a 12=2⇒a =22,所以m =log 224=-4,此时g (x )=-5x 在[0,+∞)上是减函数,不符合题意. 答案:1 17.解 (1)原式=1-0+1-22-()1442-=1+14-2-1=1+14-12=34.(2) ∵log a 2=m ,log a 3=n , ∴a m =2,a n=3. ∴a 2m +n=a 2m ·a n =(a m )2·a n =22·3=12.18.解 (1) 原式=log 23-(log 23+log 24)+2lg 510=log 23-log 23-2+25=-85.(2) ()11222lg 252100.1-⎡⎤⨯⨯⨯⎢⎥⎣⎦()172227lg 521010lg 102⎛⎫=⨯⨯⨯==⎪⎝⎭;19.解 (1)当a =0时,f (x )=2x-1, 由已知g (-x )=-g (x ),则当x <0时,g (x )=-g (-x )=-f (-x )=-(2-x-1) =-(12)x+1,由于g (x )为奇函数,故知x =0时,g (x )=0, ∴g (x )=⎩⎪⎨⎪⎧2x-1, x ≥0-12x+1, x <0.(2)f (x )=0,即2x+a2x -1=0,整理,得:(2x )2-2x+a =0, 所以2x=1±1-4a 2,又a <0,所以1-4a >1,所以2x=1+1-4a2, 从而x =log 21+1-4a2.20.解 (1)要使此函数有意义,则有⎩⎪⎨⎪⎧x +1>0x -1>0或⎩⎪⎨⎪⎧x +1<0x -1<0,解得x >1或x <-1,此函数的定义域为 (-∞,-1)∪(1,+∞),关于原点对称. (2)f (-x )=log a -x +1-x -1=log a x -1x +1=-log ax +1x -1=-f (x ). ∴f (x )为奇函数.f (x )=log a x +1x -1=log a (1+2x -1),函数u =1+2x -1在区间(-∞,-1)和区间(1,+∞)上单调递减. 所以当a >1时,f (x )=log a x +1x -1在(-∞,-1),(1,+∞)上递减; 当0<a <1时,f (x )=log ax +1x -1在(-∞,-1),(1,+∞)上递增. 21.解 ∵f (x )=log 2x2·log 2x4=(log 2x -1)(log 2x -2) =(log 2x )2-3log 2x +2=(log 2x -32)2-14,∵-3≤12log x ≤-32.∴32≤log 2x ≤3. ∴当log 2x =32,即x =22时,f (x )有最小值-14;当log 2x =3,即x =8时,f (x )有最大值2.22.(1)解 (Ⅰ)若4,4m n ==,则232484()log 1x x f x x ++=+,由2248401x x x ++>+,得到2210x x ++>,得到1x ≠-,故定义域为{}1x x ≠-.令224841x x t x ++=+,则2(4)840t x x t --+-= 当4t =时,0x =符合.当4t ≠时,上述方程要有解,则2644(4)0,t t ⎧∆=--≥⎨≠⎩,得到04t ≤<或48t <≤,又1x ≠-,所以0t ≠,所以08t <≤,则值域为3(,log 8]-∞.(Ⅱ)由于函数()f x 的定义域为R ,则22801mx x nx ++>+恒成立,则06440m mn >⎧⎨-<⎩,即016m mn >⎧⎨>⎩,令2281mx x nt x ++=+,由于()f x 的值域为[0,2],则[1,9]t ∈,而 2()80t m x x t n --+-=,则由644()()0,t m t n ∆=---≥解得[1,9]t ∈ ,故1t =和9t =是方程644()()0t m t n ---=即2()160t m n t mn -++-=的两个根,则10169m n mn +=⎧⎨-=⎩,得到55m n =⎧⎨=⎩,符合题意.所以5,5m n ==.。

深圳文成学校必修一第三单元《指数函数和对数函数》检测题(含答案解析)

深圳文成学校必修一第三单元《指数函数和对数函数》检测题(含答案解析)

一、选择题1.设a ,b ,c 为正数,且3a =4b =6c ,则有( ) A .111c a b=+ B .221c a b=+ C .122c a b=+ D .212c a b=+ 2.函数()212()log 23f x x x =--+单调减区间为( )A .(,1]-∞-B .(3,1]--C .[)1,1-D .[)1-+∞, 3.若x ,y ,z 是正实数,满足2x =3y =5z ,试比较3x ,4y ,6z 大小( ) A .3x >4y >6z B .3x >6z >4y C .4y >6z >3xD .6z >4y >3x4.已知函数||()2x f x =,记131(())4a f =,37(log )2b f =,13(log 5)c f =,则a ,b,c 的大小关系为( )A .c b a >>B .b a c >>C .a b c >>D .c a b >>5.已知函数3()22x f x =+,则111357(1)432234f f f f f f f ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫++++++= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭( ) A .212 B .214C .7D .1526.函数1()1x f x a +=-恒过定点( )A .(1,1)B .(1,1)-C .(1,0)-D .(1,1)--7.如图是指数函数①y =x a ;②y =x b ;③y =c x ;④y =d x 的图象,则a ,b ,c ,d 与1的大小关系是( )A .a <b <1<c <dB .b <a <1<d <cC .1<a <b <c <dD .a <b <1<d <c8.已知235log log log 0x y z ==<,则2x 、3y 、5z的大小排序为A .235x y z <<B .325y x z<<C .523z x y <<D .532z y x<<9.已知函数()sin 2f x x x =-,且()0.3231ln ,log ,223a f b f c f ⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭,则以下结论正确的是 A .c a b >>B .a c b >>C .a b c >>D .b a c >>10.函数()log (2)a f x ax =-(0a >且1a ≠)在[]0,3上为增函数,则实数a 的取值范围是( )A .2,13⎛⎫⎪⎝⎭B .(0,1)C .20,3⎛⎫ ⎪⎝⎭D .[)3,+∞ 11.设0.512a ⎛⎫= ⎪⎝⎭,0.50.3b =,0.3log 0.2c =,则a 、b 、c 的大小关系( ). A .b a c <<B .a b c <<C .a b c >>D .a c b <<12.如果函数(0,1)x y a a a =>≠的反函数是增函数,那么函数log (1)a y x =-+的图象大致是( )A .B .C .D .二、填空题13.现有下列四个结论:①若25a b m ==且a b =时,则1m =; ②若236log log log a b c ==,则c ab =;③对函数()3xf x =定义域内任意的1x ,都存在唯一的2x ,使得()()121f x f x ⋅=成立;④存在实数a ,使得函数()()2ln g x x ax a =++的定义域和值域均为R .其中所有正确结论的序号是_________.14.()()2lg 45f x x x =--+的单调递增区间为______.15.函数()()12log 13y x x =-+的递增区间为______.16.给定函数y =f (x ),设集合A ={x |y =f (x )},B ={y |y =f (x )}.若对于∀x ∈A ,∃y ∈B ,使得x +y =0成立,则称函数f (x )具有性质P .给出下列三个函数:①1y x =;②12xy ⎛⎫= ⎪⎝⎭;③y =lgx .其中,具有性质P 的函数的序号是_____. 17.给出下列命题:①函数2x y =与2log y x =互为反函数,其图象关于直线y x =对称; ②已知函数2(1)21f x x x -=-+,则(5)26f =;③当0a >且1a ≠时,函数()log (2)3a f x x =--的图像必过定点(3,3)-; ④用二分法求函数()ln 26f x x x =+-在区间(2,3)内的零点近似值,至少经过3次二分后精确度达到0.1;⑤函数2()2x f x x =-的零点有2个. 其中所有正确命题....的序号是______ 18.已知1a b >>,若10log log 3a b b a +=,b a a b =,则ab =___________. 19.已知3(1)4,1()1,1a a x a x f x og x x -+<⎧=⎨≥⎩是R 上的减函数,那么a 的取值范围是__________.20.若函数1log 12a y x ⎛⎫=+⎪⎝⎭在区间3,62⎡⎤-⎢⎥⎣⎦有最小值-2,则实数a =_______.三、解答题21.已知函数()2221log 2m x f x x-=-(0m >且1m ≠) (1)求()f x 的解析式;(2)判断函数()f x 的奇偶性,并说明理由;(3)若关于x 的方程()1log m f x x =+有解,求m 的取值范围. 22.已知函数()3lg3xf x x+=-. (1)求函数()f x 的定义域;(2)判断函数()f x 的奇偶性,并说明理由. 23.已知函数()22x x f x k -=+. (1)若()f x 为偶函数,求实数k 的值;(2)若()4f x 在2[log x m ∈,2log (2)](m m +为大于0的常数)上恒成立,求实数k 的最小值.24.分别计算下列数值:(1)1lg3lg94lg81lg 27+--;(2)已知()1401x xx -+=<<,求221122x x x x---+.25.已知函数210(),22,01xx ax a x f x a a x ⎧+--≤<=⎨-≤≤⎩,其中a >0且a ≠1. (1)当12a =时,求f (x )的值域; (2)函数y =f (x )能否成为定义域上的单调函数,如果能,则求出实数a 的范围;如果不能,则给出理由;(3)()2f x -在其定义域上恒成立,求实数a 的取值范围. 26.已知函数()f x 是定义在R 上的奇函数,当0x 时,()121xaf x =++. (1)求实数a 的值及()f x 的解析式; (2)求方程4|(1)|5f x -=的解.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】首先根据指对互化求出,,a b c ,再根据换底公式表示111,,a b c,最后根据对数运算法则化简. 【详解】设3a =4b =6c =k , 则a =log 3k , b =log 4k , c =log 6k , ∴311log 3log k a k ==, 同理1log 4k b =,1log 6k c=, 而11log 2,log 3log 22k k k b c ==+, ∴1112c a b =+,即221c a b =+. 故选:B 【点睛】本题考查指对数运算,换底公式,以及对数运算的性质,关键是灵活应用对数运算公式,公式1log log a b b a=是关键. 2.B解析:B【分析】根据复合函数的单调性可知,()()212log 23f x x x =--+的单调减区间为223t x x =--+在定义域上的单调增区间.再根据一元二次函数的单调性求单调增区间即可. 【详解】解:函数()()212log 23f x x x =--+的定义域为()3,1-令223t x x =--+,则()12log g t t =为单调递减函数,由复合函数的单调性可知:()f x 的单调递减区间为223t x x =--+在()3,1-上的单调增区间.()222314t x x x =--+=-++,对称轴为1x =-,开口向下,所以223t x x =--+的单调增区间为(]3,1--. 故选:B. 【点睛】本题考查复合函数的单调性,属于中档题. 方法点睛:(1)先求出函数的定义域; (2)判断外层函数的单调性;(3)根据复合函数同增异减的原则,判断要求的内层函数的单调性; (4)求出单调区间.3.B解析:B 【分析】令235x y z t ===,则1t >,lg lg 2t x =,lg lg 3t y =,lg lg 5tz =,利用作差法能求出结果. 【详解】∵x 、y 、z 均为正数,且235x y z ==, 令235x y z t ===,则1t >, 故2lg log lg 2t x t ==,3lg log lg 3t y t ==,5lg log lg 5tz t ==, ∴()3lg lg5lg 4lg 2lg 3630lg 2lg5lg 2lg5t t t x z -⎛⎫-=-=>⎪⋅⎝⎭,即36x z >; ()2lg lg 27lg 253lg 2lg 6420lg5lg3lg3lg5t t t z y -⎛⎫-=-=> ⎪⋅⎝⎭,即64z y >, 即364x z y >>成立,故选:B. 【点睛】关键点点睛:(1)将指数式转化为对数式; (2)利用作差法比较大小.4.A解析:A 【分析】首先判断函数()f x 的性质,再比较133317,log ,log 542⎛⎫ ⎪⎝⎭的大小关系,从而利用单调性比较a ,b ,c 的大小关系. 【详解】()2xf x =是偶函数,并且当0x >时,2x y =是增函数,()133log 5log 5c f f ⎛⎫== ⎪⎝⎭,因为1310()14<<,3371log log 52<<,即1333170log log 542⎛⎫<<< ⎪⎝⎭ 又因为()y f x =在()0,∞+是增函数,所以a b c <<. 故选:A. 【点睛】关键点点睛:本题考查利用函数的单调性和奇偶性比较函数值的大小,本题的关键是判断函数()2xf x =的性质,后面的问题迎刃而解.5.B解析:B 【分析】先利用解析式计算3()(2)2f x f x +-=,再计算和式即可得到结果. 【详解】 因为3()22xf x =+, 所以2332(2)22224xx x f x -⋅-==+⋅+,()3323()(2)222222x x x f x f x ⋅+-=+=++. 故1113573321(1)34322342224f f f f f f f ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫++++++=⨯+=⎪ ⎪ ⎪ ⎪ ⎪ ⎪+⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭. 故选:B. 【点睛】本题解题关键是通过指数式运算计算3()(2)2f x f x +-=,再配对求和即解决问题.解析:C 【分析】根据指数函数性质求定点. 【详解】因为01a =,所以()011f a -=-=0,因此过定点()1,0-,选C.【点睛】本题考查指数函数性质以及定点问题,考查基本分析求解能力,属于基础题.7.B解析:B 【分析】根据指数函数的图象与性质可求解. 【详解】根据函数图象可知函数①y =x a ;②y =x b 为减函数,且1x =时,②y =1b <①y =1a , 所以1b a <<,根据函数图象可知函数③y =c x ;④y =d x 为增函数,且1x =时,③y =c 1>④y =d 1, 所以1c d >> 故选:B 【点睛】本题主要考查了指数函数的单调性,指数函数的图象,数形结合的思想,属于中档题.8.A解析:A 【解析】x y z ,, 为正实数,且235log log log 0x y z ==<,111235235k k k x y z ---∴===,,,可得:1112352131,51k kk x y z ---=>=>=>,. 即10k -> 因为函数1kf x x -=() 单调递增,∴235x y z<<.故选A.9.D解析:D 【解析】因为()cos 20f x x '=-<,所以函数()sin 2f x x x =-的单调递减函数,又因为0.3213log 0,ln ln 1,12232e <<=<<,即0.3213log ln 232<<,所以由函数的单调性可得:0.3213(log )(ln )(2)32f f f >>,应选答案D .解析:C 【分析】根据对数函数性质与复合函数的单调性求解. 【详解】因为0a >且1a ≠,令2t ax =-,所以函数2t ax =-在[]0,3上为减函数, 所以函数log a y t =应是减函数,()f x 才可能是增函数, ∴01a <<,因为函数()f x 在[]0,3上为增函数, 由对数函数性质知230a ->,即23<a , 综上023a <<. 故选:C . 【点睛】本题考查复合函数的单调性,掌握对数函数性质是解题关键,考查逻辑思维能力和计算能力,属于常考题.11.A解析:A 【分析】利用对数函数,幂函数的单调性比较大小即可. 【详解】解:因为12y x =在[0,)+∞上单调递增,110.32>>所以0.50.50.5110.32⎛⎫> ⎪⎝⎭>,即0.50.5110.32⎛⎫>> ⎪⎝⎭因为0.30.3log 0.2log 0.31>= 所以b a c << 故选:A 【点睛】本题主要考查了利用对数函数,幂函数的单调性比较大小,是中档题.12.C解析:C 【分析】由题意求得1a >,再结合对数函数的图象与性质,合理排除,即可求解. 【详解】因为函数(0,1)xy a a a =>≠的反函数是增函数,可得函数xy a =为增函数,所以1a >,所以函数log (1)a y x =-+为减函数,可排除B 、D ; 又由当0x =时,log (01)0a y =-+=,排除A. 故选:C. 【点睛】本题主要考查了指数函数和对数函数的图象与性质的应用,其中解答中熟记指数函数和对数函数的图象与性质,以及指数函数与对数的关系是解答的关键,着重考查推理与运算能力.二、填空题13.①②③【分析】利用换底公式结合求得的值可判断①的正误;设利用对数与指数的互化以及指数的运算性质可判断②的正误;由求得可判断③的正误;求出函数的定义域值域分别为时对应的实数的取值范围可判断④的正误【详解析:①②③ 【分析】利用换底公式结合a b =,求得m 的值,可判断①的正误;设236log log log a b c t ===,利用对数与指数的互化以及指数的运算性质可判断②的正误;由()()121f x f x ⋅=求得21x x =-,可判断③的正误;求出函数()g x 的定义域、值域分别为R 时,对应的实数a 的取值范围,可判断④的正误. 【详解】对于①,由于250a b m ==>,可得2lg log lg 2m a m ==,5lg log lg 5mb m ==, 由于a b =可得lg lg lg 2lg 5m m=,则lg 0m =,解得1m =,①正确; 对于②,设236log log log a b c t ===,可得2t a =,3t b =,6t c =,则236t t t ab c =⋅==,②正确;对于③,对任意的1x R ∈,则()()1212123331xxx x f x f x +⋅=⋅==,120x x ∴+=,可得21x x =-,③正确;对于④,若函数()()2ln g x x ax a =++的定义域为R ,对于函数2y x ax a =++,240a a ∆=-<,解得01a <<;若函数()()2ln g x x ax a =++的值域为R ,则函数2y x ax a =++的值域包含()0,∞+,则240a a ∆=-≥,解得0a ≤或1a ≥.所以,不存在实数a ,使得函数()()2ln g x x ax a =++的定义域和值域均为R ,④错误.故答案为:①②③.【点睛】关键点点睛:解本题第④问的关键点在于找到函数()()2ln g x x ax a =++的定义域为R的等价条件∆<0;函数()()2ln g x x ax a =++的值域为R 的等价条件0∆≥.14.【分析】由复合函数的单调性只需求出的增区间即可【详解】令则由与复合而成因为在上单调递增且在上单调递增所以由复合函数的单调性知在上单调递增故答案为:【点睛】本题主要考查了复合函数的单调性对数函数的单调 解析:(]5,2--【分析】由复合函数的单调性,只需求出245t x x =--+的增区间即可. 【详解】令245t x x =--+,则()()2lg 45f x x x =--+由lg y t =与245t x x =--+复合而成,因为lg y t =在(0,)t ∈+∞上单调递增,且245(0)t x x t =--+>在(5,2]x ∈--上单调递增,所以由复合函数的单调性知,()()2lg 45f x x x =--+在(5,2]x ∈--上单调递增.故答案为:(]5,2-- 【点睛】本题主要考查了复合函数的单调性,对数函数的单调性,二次函数的单调性,属于中档题.15.【分析】首先求出函数的定义域再根据复合函数的单调性计算可得【详解】解:则解得即函数的定义域为令则因为在上单调递增在上单调递减;在定义域上单调递减根据复合函数的单调性同增异减可知函数在上单调递增故答案 解析:()1,1-【分析】首先求出函数的定义域,再根据复合函数的单调性计算可得. 【详解】 解:()()12log 13y x x =-+则()()130x x -+>解得31x -<<即函数的定义域为()3,1- 令()()()()21314t x x x x =-+=-++,()3,1x ∈-,则12logy t =因为()t x 在()3,1--上单调递增,在()1,1-上单调递减;12log y t =在定义域上单调递减根据复合函数的单调性“同增异减”可知函数()()12log 13y x x =-+在()1,1-上单调递增故答案为:()1,1-【点睛】本题考查复合函数的单调区间的计算,属于基础题.16.①③【分析】A 即为函数的定义域B 即为函数的值域求出每个函数的定义域及值域直接判断即可【详解】对①A =(﹣∞0)∪(0+∞)B =(﹣∞0)∪(0+∞)显然对于∀x ∈A ∃y ∈B 使得x+y =0成立即具有性解析:①③【分析】A 即为函数的定义域,B 即为函数的值域,求出每个函数的定义域及值域,直接判断即可.【详解】对①,A = (﹣∞,0)∪ (0,+∞),B = (﹣∞,0)∪ (0,+∞),显然对于∀x ∈A ,∃y ∈B ,使得x +y =0成立,即具有性质P ;对②,A =R ,B = (0,+∞),当x >0时,不存在y ∈B ,使得x +y =0成立,即不具有性质P ;对③,A = (0,+∞),B =R ,显然对于∀x ∈A ,∃y ∈B ,使得x +y =0成立,即具有性质P ; 故答案为:①③.【点睛】本题以新定义为载体,旨在考查函数的定义域及值域,属于基础题.17.①③【分析】①求解出的反函数再根据反函数的特点进行判断;②采用换元法求解出的解析式由此计算出的值并进行判断;③分析当对数式的真数为时此时的值由此确定出函数所过定点并进行判断;④根据每经过一次操作区间 解析:①③【分析】①求解出2x y =的反函数,再根据反函数的特点进行判断;②采用换元法求解出()f x 的解析式,由此计算出()5f 的值并进行判断;③分析当对数式的真数为1时,此时,x y 的值,由此确定出函数所过定点并进行判断; ④根据每经过一次操作区间长度变为原来的一半,由此列出关于次数的不等式,求解出次数的范围并进行判断;⑤根据()()2,4f f 的值以及零点的存在性定理进行判断.【详解】①令2y x =,所以2log y x =,所以函数2x y =与2log y x =互为反函数,则图象关于y x =对称,故正确;②令1x t -=,则1x t =+,所以()()()221211f t t t t =+-++=,所以()2f x x =,所以()525f =,故错误;③令21x -=,所以3x =,所以()3log 133a f =-=-,所以()f x 过定点()3,3-,故正确;④因为区间()2,3的长度为1,经过n 次操作过后区间长度变为12n ,所以10.12n ≤,所以4n ≥,故错误;⑤因为()()22422220,4240f f =-==-=,且()()()21011210,020102f f --=--=-<=-=>, 所以()f x 在()1,0-上有零点,所以()f x 的零点至少有3个,故错误;故答案为:①③.【点睛】结论点睛:(1)同底数的指数函数和对数函数互为反函数,图象关于y x =对称;(2)形如()()()log 0,1a f x g x b a a =+>≠的图象过定点问题,可考虑令()1g x =,由此求解出x 的值,从而对应的()f x 的值可求,则定点坐标可求;(3)利用二分法求解函数零点的近似值时,每进行一次操作,区间长度会变为原来的一半. 18.9【分析】由对数的运算性质解并整理得由可求出的值【详解】解:整理得解得或因为所以则即因为所以所以解得或因为所以所以所以故答案为:9【点睛】关键点睛:本题主要考查对数运算和指数运算解题的关键是由得出再 解析:9【分析】 由对数的运算性质解10log log 3a b b a +=并整理得3a b =,由b a a b =可求出,a b 的值. 【详解】 解:110log log log log 3a b b b b a a a +=+=,整理得()23log 10log 30b b a a -+=, 解得log 3b a =或13,因为1a b >>,所以log 1b a >,则log 3b a =,即3a b =,因为b a a b =,所以33b b b b =,所以33b b =,解得b =0,因为1b >,所以b =所以3a ==,所以9ab ==.故答案为:9.【点睛】 关键点睛:本题主要考查对数运算和指数运算,解题的关键是由10log log 3a b b a +=得出3a b =,再根据指数运算求解.19.【分析】由在R 上单调减确定a3a-1的范围再根据单调减确定在分界点x=1处两个值的大小从而解决问题【详解】因为是上的减函数所以解得故答案为:【点睛】本题考查分段函数单调性问题关键根据单调性确定在分段 解析:3,17⎡⎫⎪⎢⎣⎭【分析】由()f x 在R 上单调减,确定a , 3a -1的范围,再根据单调减确定在分界点x =1处两个值的大小,从而解决问题.【详解】因为3(1)4,1()1,1a a x a x f x og x x -+<⎧=⎨≥⎩是R 上的减函数, 所以10013(1)4log 10a a a a a -<⎧⎪<<⎨⎪-+≥=⎩, 解得317a ≤<, 故答案为:3,17⎡⎫⎪⎢⎣⎭【点睛】本题考查分段函数单调性问题,关键根据单调性确定在分段点处两个值的大小,属于中档题.20.或2【分析】根据复合函数的单调性及对数的性质即可求出的值【详解】当时在为增函数求得即;当时在为减函数求得即故答案为:或【点睛】本题考查复合函数单调性对数方程的解法难度一般 解析:12或2 【分析】 根据复合函数的单调性及对数的性质即可求出a 的值.【详解】当1a >时, 1log 12a y x ⎛⎫=+⎪⎝⎭在3,62⎡⎤-⎢⎥⎣⎦为增函数,min 33log 1-224a y f ⎛⎫⎛⎫=-=-+= ⎪ ⎪⎝⎭⎝⎭,求得-214a =,即=2a ; 当01a <<时, 1log 12a y x ⎛⎫=+ ⎪⎝⎭在3,62⎡⎤-⎢⎥⎣⎦为减函数,()()min 6log 31-2a y f ==+=,求得-24a =,即1=2a .故答案为:12或2. 【点睛】 本题考查复合函数单调性,对数方程的解法,难度一般.三、解答题21.(1)()1log 1mx f x x +=-;(2)()f x 为奇函数,理由见解析;(3)3m ≥+. 【分析】(1)令21t x =-,采用换元法求解函数解析式;(2)先确定函数的定义域,再由函数奇偶性的定义判断即可;(3)由条件可转化为()11x m x x +=-在()0,1x ∈上有解问题即可. 【详解】 (1)令21t x =-,则21x t =+,则()()11log log 211m m t t f t t t ++==-+-, 所以()1log 1mx f x x +=-; (2)由101x x+>-得11x -<<, 又()()()11log log 11m m x x f x f x x x---===---+,所以()f x 为定义域上的奇函数; (3)由110x x -<<⎧⎨>⎩得01x <<, 又1log 1log log 1m m m x x mx x +=+=-,11x mx x+=-在()0,1x ∈上有解, ()11x m x x +=-,令()11,2u x =+∈,2132323t m u u u u ==≥=+-+-⎛⎫-++ ⎪⎝⎭,当且仅当u =,所以3m ≥+.【点睛】易错点睛: (1)判断函数的奇偶性一定不要忘记先判断定义域是否关于原点对称;(2)利用基本不等式求解范围,一定要注意满足“一正二定三相等”的条件.22.(1)()3,3-;(2)()f x 为奇函数,证明见解析.【分析】(1)利用对数式的真数大于零求解出不等式的解集即为定义域;(2)先判断定义域是否关于原点对称,若定义域关于原点对称,分析()(),f x f x -之间的关系,由此判断出()f x 的奇偶性.【详解】(1)因为303x x+>-,所以()()330x x -+<, 所以{}33x x -<<,所以()f x 的定义域为()3,3-;(2)()f x 为奇函数,证明:因为()f x 的定义域为()3,3-关于原点对称, 且()()1333lg lg lg 333x x x f x f x x x x --++⎛⎫-===-=- ⎪+--⎝⎭, 所以()()f x f x -=-,所以()f x 为奇函数.【点睛】思路点睛:判断函数()f x 的奇偶性的步骤如下:(1)先分析()f x 的定义域,若()f x 定义域不关于原点对称,则()f x 为非奇非偶函数,若()f x 的定义域关于原点对称,则转至(2);(2)若()()f x f x =-,则()f x 为偶函数;若()()f x f x -=-,则()f x 为奇函数. 23.(1)1k =;(2)当02m <<时,k 的最小值为4,当2m 时,k 的最小值为24m m -+.【分析】(1)根据函数是偶函数,利用偶函数的定义求解.(2)将()4f x ,转化为2(2)42x x k -+⨯,令2[x t m =∈,2]m +,构造函数2()4g t t t =-+,利用二次函数的性质求得其最大值即可..【详解】(1)()f x 为偶函数,()()f x f x ∴=-,2?22?2x x x x k k --∴+=+,即(1)(22)0x xk ---=,对任意的x 恒成立, 1k ∴=.(2)由()4f x ,可得2?24x x k -+,即2(2)42x x k-+⨯,令2[x t m =∈,2]m +, 2()4g t t t ∴=-+,当02m <<时,对称轴2[t m =∈,2]m +,则()max g t g =(2)4244=-+⨯=,当2m 时,对称轴2t m =,则2()()4max g t g m m m ==-+,故当02m <<时,k 的最小值为4,当2m 时,k 的最小值为24m m -+.【点睛】本题主要考查函数的奇偶性的和不等式恒成立的问题,还考查了分类讨论的思想和运算求解的能力,属于中档题.24.(1)32;(2)-. 【分析】(1)利用对数的运算性质化简可求得所求代数式的值;(2)由已知条件可求得1x x --的值,可求得22x x -+,并求得1122x x -+的值,代入计算可求得所求代数式的值.【详解】 (1)原式11lg3lg3lg3111lg3322lg5lg 2lg1081222lg32lg 27+-=++=+=; (2)因为()()()221114x xx x x x x x -----=+-=-, 所以()()2211412x x x x ---=+-=, 因为01x <<,则1x x -<,所以1x x --=-22x x --=-, 又因为21112226x x x x --⎛⎫+=++= ⎪⎝⎭,所以1122x x -+=所以221122x x x x ---=-+【点睛】本题考查指数式与对数式的计算,考查了平方关系以及对数运算性质的应用,考查计算能力,属于基础题.25.(1)()f x 的值域为9[16-,1];(2)能,a 的取值集合为{2};(3)232a -. 【分析】(1)由二次函数和指数函数的值域求法,可得()f x 的值域;(2)讨论1a >,01a <<,结合指数函数的单调性和二次函数的单调性,即可得到所求范围;(3)讨论x 的范围和a 的范围,结合参数分离和对勾函数的单调性、指数函数的单调性,计算可得所求范围.【详解】(1)当10x -<时,21122y x x =+-,对称轴为1[14x =-∈-,0), 可得y 的最小值为916-,y 的最大值为0; 当01x 时,12?()1[02x y =-∈,1];综上()f x 的值域为9[16-,1]; (2)当1a >时,函数22x y a a =-在[0,1]递增,故二次函数2y x ax a =+-在[1-,0]也要递增, 1222a a a⎧--⎪⎨⎪--⎩,故只有2a =符合要求; 当01a <<时,函数22xy a a =-在[0,1]递减,故二次函数2y x ax a =+-在[1-,0]也要递减, 0222a a a⎧-⎪⎨⎪--⎩,无解. 综上,a 的取值集合为{2};(3)①当[1x ∈-,0]时,22x ax a +--恒成立,即有2(1)2a x x ---,即221x a x +-, 由221x y x+=-,令1t x =-,[1t ∈,2], 可得32232y t t=+--,当且仅当t =时,取得等号, 可得232a -;②当[0x ∈,1]时,①当1a >时,22x y a a =-,222x a a --,即有222a -,求得2a ,故12a <;②当01a <<时,成立,综上可得a 的范围为232a -.【点睛】本题考查分段函数的值域和单调性的判断和运用,考查分类讨论思想方法和化简运算能力,以及不等式恒成立问题解法,属于中档题.26.(1) 2a =-,()2121x x f x -=+;(2) 212log 3x =+或212log 3x =- 【分析】(1)根据奇函数(0)0f =求解a ,再根据奇函数的性质求解()f x 的解析式即可.(2)根据(1)可得()2121x x f x -=+为奇函数,可先求解4|()|5f t =的根,再求解4|(1)|5f x -=即可. 【详解】(1)因为()f x 是定义在R 上的奇函数,且当0x ≥时,()121x a f x =++,故0(0)1021a f =+=+,即102a +=,解得2a =-.故当0x ≥时,()22112121x x x f x -=-=++. 所以当0x < 时, ()()211221211221x x x x x x f x f x -----=--=-=-=+++. 故()2121x x f x -=+ (2) 先求解4|()|5f t =,此时()214215t t f t -==±+. 当()()214421521215t t t t -=⇒+=-+,即29t =解得22log 92log 3t ==. 因为()2121x x f x -=+为奇函数,故当214215t t -=-+时, 22log 3t =-. 故4|(1)|5f x -=的解为212log 3x -=或212log 3x -=-, 解得212log 3x =+或212log 3x =-【点睛】本题主要考查了根据奇函数求解参数的值以及解析式的方法,同时也考查了根据函数性质求解绝对值方程的问题,属于中档题.。

高中数学第四章指数函数与对数函数典型例题(带答案)

高中数学第四章指数函数与对数函数典型例题(带答案)

高中数学第四章指数函数与对数函数典型例题单选题1、已知a=lg2,10b=3,则log56=()A.a+b1+a B.a+b1−aC.a−b1+aD.a−b1−a答案:B分析:指数式化为对数式求b,再利用换底公式及对数运算性质变形. ∵a=lg2,0b=3,∴b=lg3,∴log56=lg6lg5=lg2×3lg102=lg2+lg31−lg2=a+b1−a.故选:B.2、函数f(x)=|x|⋅22−|x|在区间[−2,2]上的图象可能是()A.B.C.D.答案:C分析:首先判断函数的奇偶性,再根据特殊值判断即可;解:∵f(−x)=|x|⋅22−|x|=f(x),∴f(x)是偶函数,函数图象关于y轴对称,排除A,B选项;∵f(1)=2=f(2),∴f(x)在[0,2]上不单调,排除D选项.故选:C3、式子√m⋅√m 43√m 56m >0)的计算结果为( )A .1B .m 120C .m 512D .m 答案:D分析:由指数运算法则直接计算可得结果.√m⋅√m 43√m 56=m 12⋅m 43m 56=m 12+43−56=m .故选:D.4、若f(x)={(6−a)x −a,x <1log a x +3,x ≥1是定义在R 上的增函数,实数a 的取值范围是( )A .[1,5]B .[32,5) C .(32,5)D .(1,5) 答案:B分析:由题意得{6−a >1a >1log a 1+3≥(6−a)−a ,解不等式组可求得答案因为f(x)={(6−a)x −a,x <1log a x +3,x ≥1是定义在R 上的增函数,所以{6−a >1a >1log a 1+3≥(6−a)−a ,解得32≤a <5,故选:B5、函数f (x )=√3−x +log 13(x +1)的定义域是( )A .[−1,3)B .(−1,3)C .(−1,3]D .[−1,3] 答案:C分析:由题可得{3−x ≥0x +1>0,即得.由题意得{3−x ≥0x +1>0,解得−1<x ≤3, 即函数的定义域是(−1,3].故选:C.6、下列函数中是增函数的为( )A .f (x )=−xB .f (x )=(23)xC .f (x )=x 2D .f (x )=√x 3答案:D分析:根据基本初等函数的性质逐项判断后可得正确的选项. 对于A ,f (x )=−x 为R 上的减函数,不合题意,舍. 对于B ,f (x )=(23)x为R 上的减函数,不合题意,舍.对于C ,f (x )=x 2在(−∞,0)为减函数,不合题意,舍. 对于D ,f (x )=√x 3为R 上的增函数,符合题意, 故选:D.7、下列计算中结果正确的是( ) A .log 102+log 105=1B .log 46log 43=log 42=12C .(log 515)3=3log 515=−3D .13log 28=√log 283=√33答案:A分析:直接根据对数的运算性质及换底公式计算可得;解:对于A :log 102+log 105=log 10(2×5)=log 1010=1,故A 正确; 对于B :log 46log 43=log 36,故B 错误;对于C :(log 515)3=(log 55−1)3=(−log 55)3=−1,故C 错误; 对于D :13log 28=13log 223=13×3log 22=1,故D 错误; 故选:A8、荀子《劝学》中说:“不积跬步,无以至千里;不积小流,无以成江海.”所以说学习是日积月累的过程,每天进步一点点,前进不止一小点.我们可以把(1+1%)365看作是每天的“进步”率都是1%,一年后是1.01365≈37.7834;而把(1−1%)365看作是每天“退步”率都是1%,一年后是0.99365≈0.0255.若“进步”的值是“退步”的值的100倍,大约经过(参考数据:lg101≈2.0043,lg99≈1.9956) ( )天.A .200天B .210天C .220天D .230天 答案:D分析:根据题意可列出方程100×0.99x =1.01x ,求解即可.设经过x 天“进步”的值是“退步”的值的100倍,则100×0.99x=1.01x,即(1.010.99)x =100,∴x =log 1.010.99100=lg lg 1.010.99=lg lg 10199=2lg−lg≈22.0043−1.9956=20.0087≈230.故选:D . 多选题9、已知函数f(x)=1−2x 1+2x,则下面几个结论正确的有( )A .f(x)的图象关于原点对称B .f(x)的图象关于y 轴对称C .f(x)的值域为(−1,1)D .∀x 1,x 2∈R ,且x 1≠x 2,f (x 1)−f (x 2)x 1−x 2<0恒成立答案:ACD分析:利用奇函数的定义和性质可判断AB 的正误,利用参数分离和指数函数的性质可判断CD 的正误. 对于A ,f(x)=1−2x1+2x ,则f(−x)=1−2−x1+2−x =2x −11+2x =−f(x), 则f(x)为奇函数,故图象关于原点对称,故A 正确.对于B ,计算f(1)=−13,f(−1)=13≠f(1),故f(x)的图象不关于y 轴对称,故B 错误. 对于C ,f(x)=1−2x1+2x =−1+21+2x ,1+2x =t,t ∈(1,+∞),故y =f(x)=−1+2t ,易知:−1+2t ∈(−1,1),故f(x)的值域为(−1,1),故C 正确. 对于D ,f(x)=1−2x1+2x =−1+21+2x ,因为y =1+2x 在R 上为增函数,y =−1+21+t 为(1,+∞)上的减函数, 由复合函数的单调性的判断法则可得f (x )在R 上单调递减,故∀x 1,x 2∈R ,且x 1≠x 2,f(x 1)−f(x 2)x 1−x 2<0恒成立,故D 正确.故选:ACD.小提示:方法点睛:复合函数的单调性的研究,往往需要将其转化为简单函数的复合,通过内外函数的单调性结合“同增异减”的原则来判断.10、设函数f (x )=ax 2+bx +c (a,b,c ∈R,a >0),则下列说法正确的是( ) A .若f (x )=x 有实根,则方程f(f (x ))=x 有实根 B .若f (x )=x 无实根,则方程f(f (x ))=x 无实根 C .若f (−b 2a)<0,则函数y =f (x )与y =f(f (x ))都恰有2个零点D .若f (f (−b 2a))<0,则函数y =f (x )与y =f(f (x ))都恰有2零点答案:ABD分析:直接利用代入法可判断A 选项的正误;推导出f (x )−x >0对任意的x ∈R 恒成立,结合该不等式可判断B 选项的正误;取f (x )=x 2−x ,结合方程思想可判断C 选项的正误;利用二次函数的基本性质可判断D 选项的正误.对于A 选项,设f (x )=x 有实根x =x 0,则f(f (x 0))=f (x 0)=x 0,A 选项正确; 对于B 选项,因为a >0,若方程f (x )=x 无实根,则f (x )−x >0对任意的x ∈R 恒成立, 故f(f (x ))>f (x )>x ,从而方程f(f (x ))=x 无实根,B 选项正确;对于C 选项,取f (x )=x 2−x ,则f (12)=−14<0,函数y =f (x )有两个零点, 则f(f (x ))=[f (x )]2−f (x )=0,可得f (x )=0或f (x )=1,即x 2−x =0或x 2−x =1. 解方程x 2−x =0可得x =0或1,解方程x 2−x −1=0,解得x =1±√52. 此时,函数y =f(f (x ))有4个零点,C 选项错误;对于D 选项,因为f (f (−b2a ))<0,设t =f (−b2a ),则t =f (x )min , 因为f (t )<0且a >0,所以,函数f (x )必有两个零点,设为x 1、x 2且x 1<x 2, 则x 1<t <x 2,所以,方程f (x )=x 1无解,方程f (x )=x 2有两解,因此,若f(f(−b))<0,则函数y=f(x)与y=f(f(x))都恰有2零点,D选项正确.2a故选:ABD.小提示:思路点睛:对于复合函数y=f[g(x)]的零点个数问题,求解思路如下:(1)确定内层函数u=g(x)和外层函数y=f(u);(2)确定外层函数y=f(u)的零点u=u i(i=1,2,3,⋯,n);(3)确定直线u=u i(i=1,2,3,⋯,n)与内层函数u=g(x)图象的交点个数分别为a1、a2、a3、⋯、a n,则函数y=f[g(x)]的零点个数为a1+a2+a3+⋯+a n.11、(多选题)某市出租车收费标准如下:起步价为8元,起步里程为3km(不超过3km按起步价付费);超过3km 但不超过8km时,超过部分按每千米2.15元收费;超过8km时,超过部分按每千米2.85元收费,另每次乘坐需付燃油附加费1元.下列结论正确的是()A.出租车行驶4km,乘客需付费9.6元B.出租车行驶10km,乘客需付费25.45元C.某人乘出租车行驶5km两次的费用超过他乘出租车行驶10km一次的费用D.某人乘坐一次出租车付费22.6元,则此次出租车行驶了9km答案:BCD分析:根据题意分别计算各个选项的情况,即可得答案.对于A选项:出租车行驶4km,乘客需付费8+1×2.15+1=11.15元,故A错误;对于B选项:出租车行驶10 km,乘客需付费8+2.15×5+2.85×(10-8)+1=25.45元,故B正确;对于C选项:乘出租车行驶5km,乘客需付费8+2×2.15+1=13.30元,乘坐两次需付费26.6元,26.6>25.45,故C正确;对于D选项:设出租车行驶x km时,付费y元,由8+5×2.15+1=19.75<22.6,知x>8,因此由y=8+2.15×5+2.85(x-8)+1=22.6,解得x=9,故D正确.故选:BCD.小提示:本题考查函数模型的应用,解题要点为认真审题,根据题意逐一分析选项即可,属基础题.12、若log2m=log4n,则()A.n=2m B.log9n=log3mC.lnn=2lnm D.log2m=log8(mn)答案:BCD分析:利用对数运算化简已知条件,然后对选项进行分析,从而确定正确选项.依题意log2m=log4n,所以m>0,n>0,log2m=log22n=12log2n=log2n12,所以m=n 12,m2=n,A选项错误.log9n=log32m2=22log3m=log3m,B选项正确.lnn=lnm2=2lnm,C选项正确.log8(mn)=log23m3=33log2m=log2m,D选项正确.故选:BCD13、在平面直角坐标系中,我们把横纵坐标相等的点称之为“完美点”,下列函数的图象中存在完美点的是()A.y=﹣2x B.y=x﹣6C.y=3xD.y=x2﹣3x+4答案:ACD分析:横纵坐标相等的函数即y=x,与y=x有交点即存在完美点,依次计算即可.横纵坐标相等的函数即y=x,与y=x有交点即存在完美点,对于A,{y=xy=−2x,解得{x=0y=0,即存在完美点(0,0),对于B,{y=xy=x−6,无解,即不存在完美点,对于C,{y=xy=3x,解得{x=√3y=√3或{x=−√3y=−√3,即存在完美点(√3,√3),(−√3,−√3)对于D,{y=xy=x2−3x+4,x2−3x+4=x,即x2−4x+4=0,解得x=2,即存在完美点(2,2).故选:ACD.填空题14、化简(√a−1)2+√(1−a)2+√(1−a)33=________.答案:a-1分析:根据根式的性质即可求解.由(√a−1)2知a-1≥0,a≥1.故原式=a-1+|1-a|+1-a=a-1.所以答案是:a-115、对数型函数f(x)的值域为[0,+∞),且在(0,+∞)上单调递增,则满足题意的一个函数解析式为______.答案:f(x)=|log2(x+1)|(答案不唯一,满足f(x)=|log a(x+b)|,a>1,b≥1即可)分析:根据题意可利用对数函数的性质和图像的翻折进行构造函数.∵函数f(x)的值域为[0,+∞),且在(0,+∞)上单调递增,∴满足题意的一个函数是f(x)=|log2(x+1)|.所以答案是:f(x)=|log2(x+1)|(答案不唯一)16、函数y=log a(x+1)-2(a>0且a≠1)的图象恒过点________.答案:(0,-2)分析:由对数函数的图象所过定点求解.解:依题意,x+1=1,即x=0时,y=log a(0+1)-2=0-2=-2,故图象恒过定点(0,-2).所以答案是:(0,-2)解答题17、(1)计算0.027−13−(−16)−2+810.75+(19)0−3−1;(2)若x 12+x−12=√6,求x 2+x −2的值.答案:(1)-5;(2)14.分析:(1)由题意利用分数指数幂的运算法则,计算求得结果. (2)由题意两次利用完全平方公式,计算求得结果. (1)0.027−13−(−16)−2+810.75+(19)0−3−1=0.3﹣1﹣36+33+1−13=103−36+27+1−13=−5.(2)若x 12+x −12=√6,∴x +1x +2=6,x +1x =4,∴x 2+x ﹣2+2=16,∴x 2+x ﹣2=14.18、已知函数f (x )=2x −12x +1.(1)判断并证明f (x )在其定义域上的单调性;(2)若f (k ⋅3x )+f (3x −9x +2)<0对任意x ≥1恒成立,求实数k 的取值范围. 答案:(1)f (x )在R 上单调递增;证明见解析 (2)(−∞,43)分析:(1)设x 2>x 1,可整理得到f (x 2)−f (x 1)=2(2x 2−2x 1)(2x 2+1)(2x 1+1)>0,由此可得结论;(2)利用奇偶性定义可证得f (x )为奇函数,结合单调性可将恒成立的不等式化为k <g (x )=3x −23x −1,由g (x )单调性可求得g (x )≥43,由此可得k 的取值范围.(1)f (x )在R 上单调递增,证明如下: 设x 2>x 1,∴f (x 2)−f (x 1)=2x 2−12x 2+1−2x 1−12x 1+1=(2x 2−1)(2x 1+1)−(2x 2+1)(2x 1−1)(2x 2+1)(2x 1+1)=2(2x 2−2x 1)(2x 2+1)(2x 1+1);∵x 2>x 1,∴2x 2−2x 1>0,又2x 2+1>0,2x 1+1>0,∴f (x 2)−f (x 1)>0, ∴f (x )在R 上单调递增. (2)∵f (−x )=2−x −12−x +1=1−2x1+2x =−f (x ),∴f (x )为R 上的奇函数,由f(k⋅3x)+f(3x−9x+2)<0得:f(k⋅3x)<−f(3x−9x+2)=f(9x−3x−2),由(1)知:f(x)在R上单调递增,∴k⋅3x<9x−3x−2在[1,+∞)上恒成立;当x≥1时,3x≥3,∴k<3x−23x−1在[1,+∞)上恒成立;令g(x)=3x−23x−1,∵y=3x在[1,+∞)上单调递增,y=23x在[1,+∞)上单调递减,∴g(x)在[1,+∞)上单调递增,∴g(x)≥g(1)=3−23−1=43,∴k<43,即实数k的取值范围为(−∞,43).。

单招指数函数与对数函数复习题

单招指数函数与对数函数复习题

单招指数函数与对数函数复习题一、选择题1. 指数函数的基本形式是:A. y = a^xB. y = log_a(x)C. y = x^aD. y = a^x + b2. 对数函数的基本形式是:A. y = a^xB. y = log_a(x)C. y = x^aD. y = a^x + b3. 如果指数函数y = 2^x的图像向右平移2个单位,新的函数表达式是:A. y = 2^(x-2)B. y = 2^(x+2)C. y = 2^(x/2)D. y = 2^(2x)4. 对数函数y = log_2(x)的图像向上平移1个单位,新的函数表达式是:A. y = log_2(x) + 1B. y = log_2(x-1)C. y = log_2(x+1)D. y = log_2(x) - 15. 指数函数y = 3^x的增长速度比y = 2^x的增长速度:A. 更快B. 更慢C. 相同D. 无法比较二、填空题6. 指数函数y = a^x的图像在x轴的正半轴上是_________的。

7. 对数函数y = log_a(x)的图像在y轴的正半轴上是_________的。

8. 如果指数函数y = a^x经过点(1, b),则a的值为_________。

9. 对数函数y = log_a(x)的底数a的取值范围是_________。

10. 对数函数y = log_a(x)的图像与x轴的交点是_________。

三、解答题11. 求函数y = 2^x的值域。

12. 求函数y = log_2(x)的定义域。

13. 证明指数函数y = a^x (a > 0, a ≠ 1)的图像总是单调的。

14. 证明对数函数y = log_a(x) (a > 0, a ≠ 1)的图像总是单调的。

15. 解方程:2^x = 8。

四、应用题16. 某细菌的初始数量是100,如果每3小时数量翻倍,求12小时后细菌的总数。

17. 某公司的股票价格从100元开始,每年增长10%,求5年后的股票价格。

指数函数与对数函数练习题(含详解)

指数函数与对数函数练习题(含详解)

指数函数1.指数函数概念一般地,函数叫做指数函数,其中是自变量,函数的定义域为。

2。

指数函数函数性质:函数名称指数函数定义函数且叫做指数函数图象定义域值域过定点图象过定点,即当时,.奇偶性非奇非偶单调性在上是增函数在上是减函数函数值的变化情况变化对图象的影响在第一象限内,从逆时针方向看图象,逐渐增大;在第二象限内,从逆时针方向看图象,逐渐减小.对数函数及其性质1.对数函数定义一般地,函数叫做对数函数,其中是自变量,函数的定义域.2。

对数函数性质:函数名称对数函数定义函数且叫做对数函数图象定义域值域过定点图象过定点,即当时,。

奇偶性非奇非偶单调性在上是增函数在上是减函数函数值的变化情况变化对图象的影响在第一象限内,从顺时针方向看图象,逐渐增大;在第四象限内,从顺时针方向看图象,逐渐减小。

指数函数习题一、选择题1.定义运算a⊗b=错误!,则函数f(x)=1⊗2x的图象大致为()2.函数f(x)=x2-bx+c满足f(1+x)=f(1-x)且f(0)=3,则f(b x)与f(c x)的大小关系是( )A.f(b x)≤f(c x)B.f(b x)≥f(c x)C.f(b x)>f(c x)D.大小关系随x的不同而不同3.函数y=|2x-1|在区间(k-1,k+1)内不单调,则k的取值范围是()A.(-1,+∞) B.(-∞,1)C.(-1,1) D.(0,2)4.设函数f(x)=ln[(x-1)(2-x)]的定义域是A,函数g(x)=lg(错误!-1)的定义域是B,若A⊆B,则正数a的取值范围( )A.a〉3 B.a≥3C.a〉 5 D.a≥错误!5.已知函数f(x)=错误!若数列{a n}满足a n=f(n)(n∈N*),且{a n}是递增数列,则实数a的取值范围是()A.[错误!,3) B.(错误!,3)C.(2,3) D.(1,3)6.已知a〉0且a≠1,f(x)=x2-a x,当x∈(-1,1)时,均有f(x)<错误!,则实数a的取值范围是( )A.(0,错误!]∪[2,+∞) B.[错误!,1)∪(1,4]C.[错误!,1)∪(1,2] D.(0,错误!)∪[4,+∞)二、填空题7.函数y=a x(a>0,且a≠1)在[1,2]上的最大值比最小值大错误!,则a的值是________.8.若曲线|y|=2x+1与直线y=b没有公共点,则b的取值范围是________.9.(2011·滨州模拟)定义:区间[x1,x2](x1〈x2)的长度为x2-x1。

(必考题)高中数学必修一第三单元《指数函数和对数函数》测试题(含答案解析)

(必考题)高中数学必修一第三单元《指数函数和对数函数》测试题(含答案解析)

一、选择题1.下列各组函数中,表示同一个函数的是( )A .211x y x -=-与1y x =+B .y x =与log xa y a =(0a >且1a ≠)C .21y x =-与1y x =-D .lg y x =与21lg 2y x =2.函数12xy ⎛⎫= ⎪⎝⎭的大致图象是( ). A . B .C .D .3.我国著名数学家华罗庚曾说过:“数缺形时少直观,形少数时难入微:数形结合百般好,隔离分家万事休”.在数学学习中和研究中,常用函数的图象来研究函数的性质,页常用函数的解析式来琢磨函数图象的特征,如函数()22xy xx R =-∈的大致图象是( )A .B .C .D .4.已知函数()()3,<1log ,1a a x a x f x x x ⎧--=⎨≥⎩的值域..是R ,那么实数a 的取值范围是( ) A .31,2⎛⎤ ⎥⎝⎦B .()1,+∞C .()()0,11,3D .3,32⎡⎫⎪⎢⎣⎭5.已知函数22()lg[(1)(1)1]f x a x a x =-+++的值域为R .则实数a 的取值范围是( ) A .5[1,]3B .5(1,]3C .(]5,1(,)3-∞-⋃+∞D .()5,1[1,)3-∞-6.已知:23log 2a =,42log 3b =,232c -⎛⎫= ⎪⎝⎭,则a ,b ,c 的大小关系是( )A .b c a <<B .b a c <<C .c b a <<D .c a b <<7.函数()212()log 4f x x =-的单调递增区间为( ). A .(0,+∞)B .(-,0)C .(2,+∞)D .(-,-2)8.已知函数()f x 是定义在R 上的单调递增的函数,且满足对任意的实数x 都有[()3]4x f f x -=,则()()f x f x +-的最小值等于( ).A .2B .4C .8D .129.函数1()1x f x a +=-恒过定点( )A .(1,1)B .(1,1)-C .(1,0)-D .(1,1)--10.如图是指数函数①y =x a ;②y =x b ;③y =c x ;④y =d x 的图象,则a ,b ,c ,d 与1的大小关系是( )A .a <b <1<c <dB .b <a <1<d <cC .1<a <b <c <dD .a <b <1<d <c11.函数2()ln(43)f x x x =+-的单调递减区间是( )A .32⎛⎤-∞ ⎥⎝⎦,B .3,42⎡⎫⎪⎢⎣⎭C .3,2⎡⎫+∞⎪⎢⎣⎭D .31,2⎛⎤- ⎥⎝⎦12.已知函数()2,01,0x x f x x x >⎧=⎨+≤⎩,若()()10f a f +=,则实数a 的值等于( )A .-3B .-1C .1D .3二、填空题13.下列命题中所有正确的序号是_____________.①函数1()3x f x a -=+(0a >且1)a ≠的图像一定过定点(1,4)P ; ②函数(1)f x -的定义域是(1,3),则函数()f x 的定义域为(2,4); ③若1log 12a>,则a 的取值范围是112⎛⎫⎪⎝⎭,; ④若22ln ln()x y x y -->-- (0x >,0y <),则0x y +<.14.函数()log 31a y x =+-.(0a >且1a ≠)的图像恒过定点A ,若点A 在直线10mx ny ++=上(其中m ,0n >),则12m n+的最小值等于__________. 15.设函数2()ln(1)f x x x =+,若()23(21)0f a f a +-<,则实数a 的取值范围为_____.16.函数()()cos1log sin f x x =的单调递增区间是____________. 17.函数()()212log 56f x x x =-+的单调递增区...间是__________. 18.已知奇函数()()y f x x R =∈满足:对一切x ∈R ,()()11f x f x +=-且[]0,1x ∈时,()1xf x e =-,则()2019f f =⎡⎤⎣⎦__________.19.设函数122,1()1log ,1x x f x x x -⎧≤=⎨->⎩,则满足()2f x ≤的x 的取值范围是_______________.20.如果()231log 2log 9log 64x x x f x =-+-,则使()0f x <的x 的取值范围是______.三、解答题21.已知函数()log (1)log (1)a a f x x x =+--,(0a >且1a ≠) (1)求()f x 的定义域;(2)判断()f x 的奇偶性,并予以证明; (3)求使()0f x >的x 取值范围. 22.已知函数122()log 2xf x x-=+. (1)求函数()f x 的定义域,并判断其奇偶性;(2)判断()f x 在其定义域上的单调性,并用单调性定义证明. 23.已知函数()421()x x f x a a R =-+⋅-∈. (1)当1a =时,求()f x 的值域; (2)若()f x 在区间[]1,0-的最大值为14-,求实数a 的值. 24.已知函数35()log 5xf x x-=+. (1)求函数()f x 的定义域;(2)判断函数()f x 奇偶性,并证明你的结论.25.已知集合(){}2log 33A x x =+≤,{}213B x m x m =-<≤+. (1)若2m =-,求AB ;(2)若A B A ⋃=,求实数m 的取值范围.26.已知函数()f x 是定义在R 上的奇函数,当0x 时,()121xaf x =++. (1)求实数a 的值及()f x 的解析式; (2)求方程4|(1)|5f x -=的解.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】分析各个选项中每组函数的定义域和对应关系,若定义域和对应关系均相同则为同一个函数,由此判断出正确选项. 【详解】A .211x y x -=-的定义域为{}1x x ≠,1y x =+的定义域为R ,所以不是同一个函数;B .y x =与log xa y a =的定义域均为R ,且log xa y a =即为y x =,所以是同一个函数; C.y =(][),11,-∞-+∞,1y x =-的定义域为R ,所以不是同一个函数;D .lg y x =的定义域为()0,∞+,21lg 2y x =的定义域为{}0x x ≠,所以不是同一个函数, 故选:B. 【点睛】思路点睛:同一函数的判断步骤:(1)先判断函数定义域,若定义域不相同,则不是同一函数;若定义域相同,再判断对应关系;(2)若对应关系不相同,则不是同一函数;若对应关系相同,则是同一函数.2.A解析:A 【分析】去绝对值符号后根据指数函数的图象与性质判断. 【详解】由函数解析式可得:1,022,0xx x y x ⎧⎛⎫≥⎪ ⎪=⎨⎝⎭⎪<⎩可得值域为:01y <≤,由指数函数的性质知:在(),0-∞上单调递增;在()0,∞+上单调递减. 故选:A. 【点睛】思路点睛:函数图象的辨识可从以下方面入手:(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置. (2)从函数的单调性,判断图象的变化趋势; (3)从函数的奇偶性,判断图象的对称性; (4)从函数的特征点,排除不合要求的图象.3.A解析:A 【分析】分析函数()()22xf x xx R =-∈的奇偶性,结合()01f =可得出合适的选项.【详解】令()22=-xf x x ,该函数的定义域为R ,()()()2222xxf x x x f x --=--=-=,函数()22=-xf x x 为偶函数,排除B 、D 选项;又()010f =>,排除C 选项. 故选:A. 【点睛】函数图象的辨识可从以下方面入手: (1)从函数的定义域,判断图象的左右位置; (2)从函数的值域,判断图象的上下位置. (3)从函数的单调性,判断图象的变化趋势; (4)从函数的奇偶性,判断图象的对称性; (5)从函数的特征点,排除不合要求的图象.4.A解析:A 【分析】当0<a <1时,当1≥x 时,log 0a y x =≤,则当1x <时,()3y a x a =--的值域必须要包含()0,+∞,,当1a >时,当1≥x 时,[)log 0a y x =∈+∞,,则当1x <时,()3y a x a =--的值域必须要包含()0-∞,,从而可得答案. 【详解】由题意,()f x 的值域为R ,当0<a <1时,当1≥x 时,log 0a y x =≤,所以当1x <时,()3y a x a =--的值域必须要包含()0,+∞,当1x <时,()3y a x a =--单调递增,()332y a x a a =--<- 所以不满足()f x 的值域为R .当1a >时,当1≥x 时,[)log 0a y x =∈+∞,, 所以当1x <时,()3y a x a =--的值域必须要包含()0-∞,, 若3a =时,当1x <时,3y a =-=-,不满足()f x 的值域为R .若3a >时,当1x <时,()3y a x a =--单调递减,()332y a x a a =-->- 所以不满足()f x 的值域为R .若13a <<时,当1x <时,()3y a x a =--单调递增,()332y a x a a =--<- 要使得()f x 的值域为R ,则320a -≥,即32a ≤ 所以满足条件的a 的取值范围是:312a <≤, 故选:A .【点睛】关键点睛:本题考查根据函数的值域求参数的范围,解答本题的关键是当0<a <1时,当1≥x 时,log 0a y x =≤,则当1x <时,()3y a x a =--的值域必须要包含()0,+∞,,当1a >时,当1≥x 时,[)log 0a y x =∈+∞,,则当1x <时,()3y a x a =--的值域必须要包含()0-∞,,属于中档题. 5.A解析:A 【分析】当函数的值域为R 时,命题等价于函数()()22111y a x a x =-+++的值域必须包含区间()0+∞,得解 【详解】22()lg[(1)(1)1]f x a x a x =-+++的值域为R令()()22111y a x a x =-+++,则()()22111y a x a x =-+++的值域必须包含区间()0+∞,当210a -=时,则1a =± 当1a =时,21y x =+符合题意; 当1a =-时,1y =不符合题意;当1a ≠±时,()()222101410a a a ⎧->⎪⎨∆=+--≥⎪⎩,解得513a <≤ 513a ∴≤≤,即实数a 的取值范围是5[1,]3故选:A 【点睛】转化命题的等价命题是解题关键.6.A解析:A 【分析】由换底公式和对数函数的性质可得112b a <<<,再由指数函数的性质可得102c <<,即可得解. 【详解】23ln3ln12log =02ln 2ln 2a ==>,4212ln ln 2ln1323log =03ln 4ln 2ln 2b ====<, a b ∴>22223231log log 410,239222a c -⎛⎫⎛⎫<===< ⎪ ⎪⎭=⎝>⎭=⎝,b c a ∴<<, 故选:A 【点睛】方法点睛:本题考查了对数式、指数式的大小比较,比较大小的常用方法为同底的对数式和指数式利用其单调性进行比较,也可以借助于中间值0和1进行比较,考查了运算求解能力与逻辑推理能力,属于常考题.7.D解析:D 【分析】求出函数的定义域,根据对数型复合函数的单调性可得结果. 【详解】函数()212()log 4f x x =-的定义域为()(),22,-∞-+∞,因为函数()f x 是由12log y u =和24u x =-复合而成,而12log y u =在定义域内单调递减,24u x =-在(),2-∞-内单调递减,所以函数()212()log 4f x x =-的单调递增区间为(),2-∞-, 故选:D. 【点睛】易错点点睛:对于对数型复合函数务必注意函数的定义域.8.B解析:B 【分析】根据()3x f x -为定值,可假设()3xf x m =+,然后计算()()f x f x +-,并计算m 的值,然后使用基本不等式,可得结果. 【详解】由题可知:()3xf x -为定值故设()3xf x m -=,即()3xf x m =+又[()3]4xf f x -=,所以()341mf m m m =+=⇒= 则()31xf x =+()()3131x x f x f x -+-=+++则1()()32243x x f x f x +-=++≥= 当且仅当133xx =时,取等号 所以()()f x f x +-的最小值为:4故选:B 【点睛】本题考查基本不等式的应用,还考查镶嵌函数的应用,难点在于()3xf x -为定值,审清题意,细心计算,属中档题.9.C解析:C 【分析】根据指数函数性质求定点. 【详解】因为01a =,所以()011f a -=-=0,因此过定点()1,0-,选C.【点睛】本题考查指数函数性质以及定点问题,考查基本分析求解能力,属于基础题.10.B解析:B 【分析】根据指数函数的图象与性质可求解. 【详解】根据函数图象可知函数①y =x a ;②y =x b 为减函数,且1x =时,②y =1b <①y =1a , 所以1b a <<,根据函数图象可知函数③y =c x ;④y =d x 为增函数,且1x =时,③y =c 1>④y =d 1, 所以1c d >> 故选:B 【点睛】本题主要考查了指数函数的单调性,指数函数的图象,数形结合的思想,属于中档题.11.B解析:B 【分析】先求函数的定义域,再利用复合函数的单调性同增异减,即可求解. 【详解】由2430x x +->得2340x x --<,解得:14x -<<,2()ln(43)f x x x =+-由ln y t =和234t x x =-++复合而成,ln y t =在定义域内单调递增,234t x x =-++对称轴为32x =,开口向下, 所以 234t x x =-++在31,2⎛⎫- ⎪⎝⎭ 单调递增,在3,42⎡⎫⎪⎢⎣⎭单调递减, 所以2()ln(43)f x x x =+-的单调减区间为3,42⎡⎫⎪⎢⎣⎭,故选:B 【点睛】本题主要考查了利用同增异减求复合函数的单调区间,注意先求定义域,属于中档题12.A解析:A 【分析】先求得()1f 的值,然后根据()f a 的值,求得a 的值. 【详解】由于()1212f =⨯=,所以()()20,2f a f a +==-,22a =-在()0,∞+上无解,由12a +=-解得3a =-,故选A.【点睛】本小题主要考查分段函数求函数值,考查已知分段函数值求自变量,属于基础题.二、填空题13.①③④【分析】由指数函数的图象函数的定义域对数函数的性质判断各命题①令代入判断②利用函数的定义求出的定义域判断③由对数函数的单调性判断④引入新函数由它的单调性判断【详解】①令则即图象过点①正确;②则解析:①③④ 【分析】由指数函数的图象,函数的定义域,对数函数的性质判断各命题.①,令1x =代入判断,②利用函数的定义求出()f x 的定义域判断,③由对数函数的单调性判断,④引入新函数1()ln 2ln 2xxg x x x -⎛⎫=-=- ⎪⎝⎭,由它的单调性判断.【详解】①令1x =,则(1)4f =,即()f x 图象过点(1,4),①正确; ②13x <<,则012x <-<,∴()f x 的定义域是(0,2),②错;③1log 1log 2a a a ,∴0112a a <<⎧⎪⎨>⎪⎩,∴112a <<.③正确;④由22ln ln()x y x y -->-- (0x >,0y <),得ln 2ln()2x y x y --<--, 又1()ln 2ln 2xx g x x x -⎛⎫=-=- ⎪⎝⎭是(0,)+∞上的增函数, ∴由ln 2ln()2x y x y --<--,得x y <-,即0x y +<,④正确. 故答案为:①③④【点睛】关键点点睛:本题考查指数函数的图象,对数函数的单调性,函数的定义域问题,定点问题:(1)指数函数(0x y a a =>且1)a ≠的图象恒过定点(0,1);(2)对数函数log (0a y x a =>且1)a ≠的图象恒过定点(1,0),解题时注意整体思想的应用.14.8【分析】根据函数平移法则求出点得再结合基本不等式即可求解【详解】由题可知恒过定点又点在直线上故当且仅当时取到等号故的最小值等于8故答案为:8【点睛】本题考查函数平移法则的使用基本不等式中1的妙用属 解析:8【分析】根据函数平移法则求出点A ()2,1--,得21m n +=,再结合基本不等式即可求解【详解】由题可知,()log 31a y x =+-恒过定点()2,1--,又点A 在直线 10mx ny ++=上,故21m n +=,()121242448n m m n m n m n m n ⎛⎫+=++=++≥+= ⎪⎝⎭,当且仅当122n m ==时取到等号,故12m n+的最小值等于8 故答案为:8【点睛】本题考查函数平移法则的使用,基本不等式中“1”的妙用,属于中档题15.【分析】根据已知可得为奇函数且在上单调递增不等式化为转化为关于自变量的不等式即可求解【详解】的定义域为是奇函数设为增函数在为增函数在为增函数在处连续的所以在上单调递增化为等价于即所以实数的取值范围为 解析:1(1,)3- 【分析】根据已知可得()f x 为奇函数且在R 上单调递增,不等式化为()23(12)f a f a <-,转化为关于自变量的不等式,即可求解.【详解】()f x 的定义域为R ,()()))ln10f x f x x x +-=+==,()f x ∴是奇函数,设,[0,)()x u x x =∈+∞为增函数,()f x 在[0,)+∞为增函数,()f x 在(,0)-∞为增函数,()f x 在0x =处连续的,所以()f x 在R 上单调递增,()23(21)0f a f a +-<,化为()23(12)f a f a <-,等价于2312a a <-,即213210,13a a a +-<-<<, 所以实数a 的取值范围为1(1,)3-.故答案为: 1(1,)3-【点睛】本题考查利用函数的单调性和奇偶性解不等式,熟练掌握函数的性质是解题的关键,属于中档题. 16.【分析】根据对数型复合函数单调性列不等式再根据正弦函数性质得结果【详解】单调递增区间为单调递减区间且所以故答案为:【点睛】本题考查对数型复合函数单调性以及正弦函数性质考查基本分析求解能力属基础题 解析:[2,2),()2k k k Z ππππ++∈ 【分析】根据对数型复合函数单调性列不等式,再根据正弦函数性质得结果.【详解】()()cos1cos1(0,1)log sin f x x ∈∴=单调递增区间为sin y x =单调递减区间且sin 0x >, 所以22,()2k x k k Z ππππ+≤<+∈, 故答案为:[2,2),()2k k k Z ππππ++∈【点睛】 本题考查对数型复合函数单调性以及正弦函数性质,考查基本分析求解能力,属基础题. 17.【分析】求出函数的定义域利用复合函数法可求得函数的单调递增区间【详解】对于函数有解得或所以函数的定义域为内层函数在区间上单调递减在区间上单调递增外层函数为减函数所以函数的单调递增区间为故答案为:【点 解析:(),2-∞【分析】求出函数()f x 的定义域,利用复合函数法可求得函数()()212log 56f x x x =-+的单调递增区间.【详解】对于函数()()212log 56f x x x =-+,有2560x x -+>,解得2x <或3x >. 所以,函数()()212log 56f x x x =-+的定义域为()(),23,-∞+∞,内层函数256u x x =-+在区间(),2-∞上单调递减,在区间()3,+∞上单调递增, 外层函数12log y u =为减函数,所以,函数()f x 的单调递增区间为(),2-∞. 故答案为:(),2-∞.【点睛】复合函数()y f g x ⎡⎤=⎣⎦的单调性规律是“同则增,异则减”,即()y f u =与()u g x =.若具有相同的单调性,则()y f g x ⎡⎤=⎣⎦为增函数,若具有不同的单调性,则()y f g x ⎡⎤=⎣⎦必为减函数.18.【分析】根据题意求得的周期性则可求再结合函数解析式求得函数值即可【详解】由题可知:因为对一切故关于对称;又因为是奇函数则可得故可得故函数是周期为的函数则又当故则故答案为:【点睛】本题考查利用函数周期 解析:31e e --【分析】根据题意,求得()f x 的周期性,则()2019f 可求,再结合函数解析式,求得函数值即可.【详解】由题可知:因为对一切x R ∈,()()11f x f x +=-,故()f x 关于1x =对称;又因为()f x 是奇函数,则可得()()()()()21111f x f x f x f x f x +=++=--=-=-,故可得()()()()4222f x f x f x f x +=++=-+=,故函数()f x 是周期为4的函数.则()()()201911f f f =-=-,又当[]0,1x ∈,()1x f x e =-,故()()201911f f e =-=-, 则()()()()()320191131e f f f e f e f e e -=-=--=--=-.故答案为:31e e --.【点睛】本题考查利用函数周期性求函数值,属综合中档题;难点在于求得函数的周期. 19.【分析】根据分段函数分段解不等式最后求并集【详解】当时因为解得:∴当时解得:所以综上原不等式的解集为故答案为:【点睛】本题主要考查了解分段函数不等式涉及指数与对数运算属于基础题解析:[0,)+∞【分析】根据分段函数,分段解不等式,最后求并集.【详解】当1x ≤时,1()2x f x -=,因为11x -≤,解得:0x ≥,∴01x ≤≤ ,当1x >时,2()1log 2f x x =-≤,2log 1x ≥-,解得:12x ≥,所以1x >, 综上,原不等式的解集为[)0,+∞.故答案为:[)0,+∞.【点睛】 本题主要考查了解分段函数不等式,涉及指数与对数运算,属于基础题.20.【分析】可结合对数化简式将化简为再解对数不等式即可【详解】由由得即当时故;当时无解综上所述故答案为:【点睛】本题考查对数化简公式的应用分类讨论求解对数型不等式属于中档题 解析:81,3⎛⎫ ⎪⎝⎭【分析】可结合对数化简式将()f x 化简为()1log 2log 3log 4x x x f x =-+-,再解对数不等式即可【详解】由()2323231log 2log 9log 641log 2log 3log 4x x x x x x f x =-+-=-+- 31log 2log 3log 41log 8x x x x =-+-=+,由()0f x <得81log 03x -<, 即8log log 3x x x >, 当1x >时,83x <,故81,3x ⎛⎫∈ ⎪⎝⎭;当()0,1x ∈时,83x >,无解 综上所述,81,3x ⎛⎫∈ ⎪⎝⎭ 故答案为:81,3⎛⎫ ⎪⎝⎭【点睛】本题考查对数化简公式的应用,分类讨论求解对数型不等式,属于中档题三、解答题21.(1){|11}x x -<<;(2)函数()f x 是奇函数,证明见解析;(3)当1a >时,01x <<;当01a <<时,10x -<<【分析】(1)根据对数的真数为正数列式可解得结果;(2)函数()f x 是奇函数,根据奇函数的定义证明即可;(3)不等式化为log (1)log (1)a a x x +>-后,分类讨论底数a ,根据对数函数的单调性可解得结果.【详解】(1)要使函数数()f x 有意义,则必有1010x x +>⎧⎨->⎩,解得11x -<<, 所以函数()f x 的定义域是{|11}x x -<< .(2)函数()f x 是奇函数,证明如下:∵(1,1)x ∈-,(1,1)x -∈-,()log (1)log (1)a a f x x x -=--+[]log (1)log (1)a a x x =-+--()f x =-,∴函数()f x 是奇函数(3)使()0f x >,即log (1)log (1)a a x x +>-当1a >时,有111010x x x x +>-⎧⎪->⎨⎪+>⎩,解得01x <<,当01a <<时,有111010x x x x +<-⎧⎪->⎨⎪+>⎩,解得10x -<<.综上所述:当1a >时,01x <<;当01a <<时,10x -<<.【点睛】方法点睛:已知函数解析式,求函数定义域的方法:有分式时:分母不为0;有根号时:开奇次方,根号下为任意实数,开偶次方,根号下大于或等于0;有指数时:当指数为0时,底数一定不能为0;有根号与分式结合时,根号开偶次方在分母上时:根号下大于0;有指数函数形式时:底数和指数都含有x ,指数底数大于0且不等于1;有对数函数形式时,自变量只出现在真数上时,只需满足真数上所有式子大于0,自变量同时出现在底数和真数上时,要同时满足真数大于0,底数要大0且不等于1.22.(1)定义域为(2,2)-,奇函数(2)函数()f x 在(2,2)-上为增函数,证明见解析【分析】(1)根据真数大于0可得定义域,根据奇函数的定义可得函数为奇函数;(2)设1222x x -<<<,根据对数函数的单调性可得12()()f x f x <,再根据定义可证函数()f x 在(2,2)-上为增函数.【详解】(1)由函数有意义得202x x->+,解得22x -<<, 所以函数的定义域为(2,2)-, 因为1112222()log log ()22x x f x f x x x -+-⎛⎫-===- ⎪-+⎝⎭, 所以函数为奇函数.(2)因为124()log 12f x x ⎛⎫=-+⎪+⎝⎭,所以函数()f x 在(2,2)-上为增函数, 证明:设1222x x -<<<,则120224x x <+<+<,则1244122x x >>++,则124411022x x -+>-+>++, 因为1012<<,所以12()()f x f x <,所以函数()f x 在(2,2)-上为增函数, 【点睛】思路点睛:判断函数的奇偶性的思路:①求出定义域,并判断其是否关于原点对称;②若定义域不关于原点对称,则函数为非奇非偶函数,若定义域关于原点对称,再判断()f x -与()f x 的关系,若()()f x f x -=-,则函数为奇函数;若()()f x f x -=,则函数为偶函数.23.(1)3,4⎛⎤-∞- ⎥⎝⎦;(2)a =【分析】(1)令()20,xt =∈+∞,可得21y t t =-+-,利用二次函数的性质可求出; (2)令12,12x t ⎡⎤=∈⎢⎥⎣⎦,可得21y t at =-+-,讨论对称轴2a t =的取值范围结合二次函数的性质即可求出.【详解】(1)()2()421221x x x x f x a a =-+⋅-=-+⋅-.令()20,xt =∈+∞,21y t at =-+-,1a =时,2213124y t t t ⎛⎫=-+-=--- ⎪⎝⎭在10,2⎛⎫ ⎪⎝⎭上单调递增,在1,2⎛⎫+∞ ⎪⎝⎭上单调递减. ∴当12t =时,max 34y =-,∴3,4y ⎛⎤∈-∞- ⎥⎝⎦, 所以()f x 的值域为3,4⎛⎤-∞- ⎥⎝⎦. (2)令12,12x t ⎡⎤=∈⎢⎥⎣⎦,22211124a y t at t a ⎛⎫=-+-=---+ ⎪⎝⎭, 其图象的对称轴为2a t =. ①当122a ≤,即1a ≤时,函数y 在区间1,12⎡⎤⎢⎥⎣⎦上单调递减, 当12t =时,max 1111424y a =-+-=-,解得2a =,与1a ≤矛盾; ②当12a ≥,即2a ≥时,函数y 在区间1,12⎡⎤⎢⎥⎣⎦上单调递增, 当1t =时,max 1114y a =-+-=-,解得74a =,与2a ≥矛盾, ③当1122a <<,即12a <<时,函数y 在1,22a ⎡⎤⎢⎥⎣⎦上单调递增,在,12a ⎡⎤⎢⎥⎣⎦上单调递减.当2a t =时,2max 11144y a =-=-,解得a =,舍去a =综上,a =【点睛】思路点睛:求二次函数在闭区间[],a b 的最值的思路;(1)二次函数开口向上时,求函数的最大值,讨论对称轴和2a b +的大小求解; (2)二次函数开口向上时,求函数的最小值,讨论对称轴在(]()[),,,,,a a b b -∞+∞三个区间的范围求解.24.(1)(5,5)- (2)奇函数,见解析【分析】(1)若()f x 有意义,则需满足505x x->+,进而求解即可; (2)由(1),先判断定义域是否关于原点对称,再判断()f x -与()f x 的关系即可.【详解】(1)由题,则505x x->+,解得55x -<<,故定义域为()5,5-(2)奇函数,证明:由(1),()f x 的定义域关于原点对称,因为()()33355log log log 1055x x f x f x x x +--+=+==-+,即()()f x f x -=-, 所以()f x 是奇函数【点睛】本题考查具体函数的定义域,考查函数的奇偶性的证明.25.(1){}31A B x x ⋂=-<≤;(2)[][)1,24,m ∈-+∞ 【分析】(1)计算{}35A x x =-<≤,{}51B x x =-<≤,再计算交集得到答案.(2)A B A ⋃=,故B A ⊆,讨论B =∅和B ≠∅,计算得到答案.【详解】(1)(){}{}2log 3335A x x x x =+≤=-<≤,{}51B x x =-<≤, 故{}31A B x x ⋂=-<≤.(2){}35A x x =-<≤,A B A ⋃=,故B A ⊆, 当B =∅时,213m m -≥+,解得4m ≥;当B ≠∅时,4m <,故21335m m -≥-⎧⎨+≤⎩,解得12m -≤≤. 综上所述:[][)1,24,m ∈-+∞.【点睛】本题考查交集运算,根据集合的包含关系求参数,意在考查学生的计算能力和综合应用能力. 26.(1) 2a =-,()2121x x f x -=+;(2) 212log 3x =+或212log 3x =- 【分析】(1)根据奇函数(0)0f =求解a ,再根据奇函数的性质求解()f x 的解析式即可.(2)根据(1)可得()2121x x f x -=+为奇函数,可先求解4|()|5f t =的根,再求解4|(1)|5f x -=即可. 【详解】(1)因为()f x 是定义在R 上的奇函数,且当0x ≥时,()121x a f x =++,故0(0)1021a f =+=+,即102a +=,解得2a =-.故当0x ≥时,()22112121x x x f x -=-=++. 所以当0x < 时, ()()211221211221x x x x x x f x f x -----=--=-=-=+++.故()2121x x f x -=+ (2) 先求解4|()|5f t =,此时()214215t t f t -==±+. 当()()214421521215t t t t -=⇒+=-+,即29t =解得22log 92log 3t ==. 因为()2121x x f x -=+为奇函数,故当214215t t -=-+时, 22log 3t =-. 故4|(1)|5f x -=的解为212log 3x -=或212log 3x -=-, 解得212log 3x =+或212log 3x =-【点睛】本题主要考查了根据奇函数求解参数的值以及解析式的方法,同时也考查了根据函数性质求解绝对值方程的问题,属于中档题.。

2020-2021学年高中数学必修第一册第四章《指数函数与对数函数》测试卷及答案解析

2020-2021学年高中数学必修第一册第四章《指数函数与对数函数》测试卷及答案解析

③b>a>1
④0<a<b<1
⑤a=b
其中不可能成立的关系有( )
A.1 个
B.2 个
C.3 个
D.4 个
【解答】解:∵实数 a,b 满足 th a th b,
hh 即
h
hᵎ
hh
,∴
h
h
hᵎ
hh
,∴
h
h
hᵎ ;
h
h 对于①,当 a=3,b=2 时, h
h h ,即 th 3
th 2,∴①不成立;
对于②,当 a ,b 时, th


使
∴使
使
使
x=y=3 时取等号.
故选:B.
使 使
使
,当且仅当
,即
使
6.已知 3m=2n=k 且
,则 k 的值为( )
A.15
B.
C.
【解答】解:∵3m=2n=k,∴m=log3k,n=log2k,
D.6

th
th
th
th logk6=2,
∴k2=6,∴

故选:C.
7.设 a=30.7,b=( )﹣0.8,c=log0.70.8,则 a,b,c 的大小关系为( )
第6页共9页
∴ thh

∴f(6t)﹣f(3t)=loga6t﹣loga3t=loga2 .
故答案为: . 四.解答题(共 6 小题)
14.(1)计算: ୠ

ୠ;
(2)已知 x+x﹣1=4,求 x2﹣x﹣2 的值.
【解答】解:(1) ୠ






(2)由 x+x﹣1=4,两边平方并整理得 x2+x﹣2=14,

(完整版)高职数学第四章指数函数与对数函数题库

(完整版)高职数学第四章指数函数与对数函数题库

高职数学第四章指数函数与对数函数题库一、选择题01-04-01.= ( ) A.52a B.2ab - C.12a b D.32b02-04-01.下列运算正确的是( ) A.342243⋅=2 B.4334(2)=2C.222log 2log x x =D.lg11=03-04-01.若0a >,且,m n 为整数,则下列各式中正确的是( ) A.m m n na a a ÷= B.m n m n a a a =C.()n m m n a a +=D.01n n a a -÷= 04-04-01.=⋅⋅436482( )A.4B.8152C.272 D.805-04-01.求值1.0lg 2log ln 2121-+e 等于( ) A.12- B.12 C.0 D.106-04-01.将25628=写成对数式( )A.2256log 8=B.28log 256=C.8256log 2=D.2562log 8=07-04-01.下列函数中,在其定义域内既是奇函数,又是增函数的是( )A.x y 3.0log = (x >0)B. y=x 2+x (x ∈R) C.y=3x (x ∈R) D.y=x 3(x ∈R)08-04-01.下列函数,在其定义域内,是减函数的是( ) A.12y x = B.2x y = C.3y x = D.x y 3.0log = (x >0)09-04-01.下列各组函数中,表示同一函数的是( )A.2x y x=与y x = B.y x =与yC.y x =与2log 2x y =D.0y x =与1y =09-04-01. 化简10021得( )A.50B.20 C .15 D .1010-04-01. 化简832_得( ) A.41 B. 21 C.2 D .4 11-04-01.化简232-⎪⎪⎭⎫ ⎝⎛y x 的结果是( )A.64y x - B .64-y x C .64--y x D .34y x12-04-01.求式子23-·1643的值,正确的是( ) A.1 B .2 C .4 D .813-04-01.求式子42·48的值,正确的是( )A.1 B .2 C .4 D .814-04-01.求式子573⎪⎭⎫ ⎝⎛·08116⎪⎭⎫ ⎝⎛÷479⎪⎭⎫ ⎝⎛的值,正确的是( ) A. 1281 B .1891 C .2561 D .1703 15-04-01.求式子23-·45·0.255的值,正确的是( ) A.1 B .21 C .41 D .81 16-04-01. 已知指数函数y=a x (a >0,且a ≠1)的图象经过点(2,16),则函数的解析式是( )A.x y 2= B .x y 3= C .x y 4= D .xy 8= 17-04-01. 已知指数函数y=a x(a >0,且a ≠1)的图象经过点(2,16),则函数的值域是( )A.()+∞,1B.()+∞,0 C .[)+∞,0 D .()0,∞-18-04-01.已知指数函数y=a x (a >0,且a ≠1)的图象经过点(2,16),x=3时的函数值是( )A.4 B .8 C .16 D .6419-04-01.下列函数中,是指数函数的是( )A.y=(-3)xB.y=x-⎪⎭⎫ ⎝⎛52 C.y= x 21 D.y=3x 420-04-01.下列式子正确是( ) A.log 2(8—2)=log 28—log 22 B.lg (12—2)=2lg 12lg ; C.9log 27log 33=log 327—log 39. D.()013535≠=-a a a 21-04-01.计算22log 1.25log 0.2+=( )A.2-B.1-C.2D.122-04-01.当1a >时,在同一坐标系中,函数log a y x =与函数1x y a ⎛⎫= ⎪⎝⎭的图象只可能是( )23-04-01.设函数()log a f x x = (0a >且1a ≠),(4)2f =,则(8)f =( )A.2B.12C.3D. 13二、填空题 24-04-01. 将分数指数幂53-b 写成根式的形式是 。

2023年一轮复习《指数函数和对数函数》综合训练(含解析)

2023年一轮复习《指数函数和对数函数》综合训练(含解析)

2023年一轮复习《指数函数和对数函数》综合训练一、单选题(本大题共12小题,共60分)1.(5分)已知函数y=f(x)是定义域为R的奇函数.当x⩾0时f(x)={x 2,0⩽x⩽1f(x−1)+1,x>1.若恰有5个不同的实数x1,x2,…,x5,使得f(x)=mx成立,则实数m的值为()A. √2−1B. 2√2−2C. 2−√2D. 3−2√22.(5分)已知某抽气机每次可抽出容器内空气的60%,要使容器内的空气少于原来的0.2%,则至少要抽的次数是(参考数据:lg2=0.301)()A. 6B. 7C. 8D. 93.(5分)已知函数f(x)=sin(π2x)+a(e x−1+e−x+1)有唯一零点,则a=()A. −1B. −12C. 12D. 14.(5分)已知x1是方程x+≶x=3的根,x2是方程x+10x=3的根,那么x1+x2的值为()A. 6B. 3C. 2D. 15.(5分)函数y=|ln|x−2||+x2−4x的所有零点之和是()A. −8B. −4C. 4D. 86.(5分)已知函数f(x)={xlnx−x,x>0f(x+1),x⩽0,若关于x的方程2f(x)−kx+1=0有四个不同的实根,则实数k的取值范围是()A. (−14,−16]∪(14,12]B. [−14,−16)∪[14,12)C. (−12,−13]∪(12,1]D. [−12,−13]7.(5分)已知函数f(x)是定义在R上的偶函数,且在[0,+∞)上单调递减,f(−2)=0,则不等式xf(x+1)>0的解集为()A. (−3,−1)∪(0,+∞)B. (−∞,−3)∪(0,1)C. (−∞,−3)∪(−1,+∞)D. (−3,0)∪(1,+∞)8.(5分)已知函数y=f(x)的定义域为(0,+∞),满足对任意x∈(0,+∞),恒有f[f(x)−1x]=4,若函数y=f(x)−4的零点个数为有限的n(n∈N∗)个,则n的最大值为()A. 1B. 2C. 3D. 49.(5分)下列函数中,在定义域内单调递增,且在区间(−1,1)内有零点的函数是()A. y=−x3B. y=2x−1C. y=x2−12D. y=log2(x+2)10.(5分)(示范高中)已知x >0,y >0,≶2x +≶4y =≶2,则1x +1y 的最小值是( )A. 6B. 5C. 3+2√2D. 4√211.(5分)已知函数f(x)={|log 2(x +1)|,x ∈(−1,3)5−x,x ∈[3,+∞),则函数g(x)=f(f(x))−1的零点个数为( )A. 3B. 4C. 5D. 612.(5分)已知函数f(x)在[−3,4]上的图象是一条连续的曲线,且其部分对应值如表:A. (−3,−1)和(−1,1)B. (−3,−1)和(2,4)C. (−1,1)和(1,2)D. (−∞,−3)和(4,+∞)二 、填空题(本大题共4小题,共20分)13.(5分)若log 9(3a +4b )=log 3√ab ,则a +3b 的最小值是________. 14.(5分)已知2a =3,b =log 25,则2b =______,2a+b =______. 15.(5分)若lga ,lgb 是方程2x2-4x+1=0的两个实根,则ab=____. 16.(5分)计算 log23•log38=____. 三 、解答题(本大题共6小题,共72分) 17.(12分)求值:(1)0.027−13−(−17)−2−3−1+(−78)0; (2)3log 32+lg 16+3lg 5−lg 15.18.(12分)计算下列各式的值. (1)i −i 2+i 3−i 4+…+i 2021−i 2022;(2)log 168+101−lg5−(2764)13+(1−√2)lg1. 19.(12分)已知函数f(x)=a −22x +1(a ∈R) 为定义域上的奇函数.(1)求a 的值;(2)判断f(x)在定义域上的单调性,并加以证明;(3)若关于x 的方程f(x)=23在区间(b,b +1)(b ∈N ∗)内有唯一解,求b 的值. 20.(12分)设二次函数f(x)=ax 2+(b −3)x +3.(1)若函数f(x)的零点为−3,2,求函数f(x); (2)若f(1)=1,a >0,b >0,求1a +4b 的最小值. 21.(12分)解下列方程. (1)log 2[log 2(2x +3)]=2; (2)(12)x .82x =4.22.(12分)已知函数f(x)=−x 2+2ex +m −1,g(x)=x +e 2x(x >0).(1)若y =g(x)−m 有零点,求实数m 的取值范围;(2)求实数m 的取值范围,使得g(x)−f(x)=0有两个不相等的实根. 四 、多选题(本大题共5小题,共25分) 23.(5分)已知a >0,b >0,ln a =ln b 2=ln (3a +2b )3,则下列说法错误的是( )A. b =2aB. 3a +2b =b 3C. ln bln (a+1)=log 23D. eln b a=324.(5分)设函数f(x)={3x ,x ⩽0|log 3x|,x >0,若f(x)−a =0有三个不同的实数根,则实数a 的取值可以是( )A. 12 B. 1 C. −1 D. 225.(5分)若关于x 的不等式ae x +bx +c <0的解集为(−1,1),则( )A. b >0B. |a|<|c|C. a +b +c >0D. 8a +2b +c >026.(5分)下列各选项中,值为1的是( )A. log 26.log 62B. log 62+log 64C. (2+√3)12⋅(2−√3)12D. (2+√3)12−(2−√3)1227.(5分)已知函数f(x)={cosx,x >0kx,x ⩽0,若方程f(x)+f(−x)=0有n 个不同的实根,从小到大依次为x 1,x 2,x 3,…,x n ,则下列说法正确的是( )A. x 1+x 2+x 3+…+x n =0B. 当n =1时,k <−1π C. 当n =3且k <0时,tan x 3=−1x 3D. 当k >12π时,n =3答案和解析1.【答案】B;【解析】解:∵函数y=f(x)是定义域为R的奇函数.x⩾0时f(x)={x 2,0⩽x⩽1f(x−1)+1,x>1.∴f(0)=0,若恰有5个不同的实数x1,x2,…,x5,使得f(x)=mx成立,则f(x)=mx有且仅有两个正根,则m>0,且y=mx的图象,与y=f(x),x∈[1,2]的图象相切,由y=f(x)=(x−1)2+1,x∈[1,2],故mx=(x−1)2+1有且只有一个解,即x2−(m+2)x+2=0的Δ=0,解得:m=2√2−2,或m=−2√2−2(舍去),故m=2√2−2,故选:B由已知中恰有5个不同的实数x1,x2,…,x5,使得f(x)=mx成立,可得f(x)=mx有且仅有两个正根,则m>0,且y=mx的图象,与y=f(x),x∈[1,2]的图象相切,进而可得答案.此题主要考查的知识点是根的存在性及根的个数判断,其中结合函数奇偶性的函数特征,分析出f(x)=mx有且仅有两个正根,是解答的关键.2.【答案】B;【解析】解:假设至少要抽的次数是n,则(1−0.6)n<0.002,∴nlg0.4<lg0.002,∴n>lg0.002lg0.4=lg2−32lg2−1≈6.8.∴至少要抽的次数是7.故选:B.假设至少要抽的次数是n,则(1−0.6)n<0.002,化为对数式即可得出.该题考查了指数式化为对数式,考查了推理能力与计算能力,属于基础题.3.【答案】B;【解析】解:因为函数f(x)=sin(π2x)+a(e x−1+e−x+1),令x−1=t,t∈R,则g(t)=sin(π2(t+1))+a(e t+e−t)=cos(π2t)+a(e t+e−t)为偶函数,因为函数f(x)=sin(π2x)+a(e x−1+e x−1)有唯一零点,t)+a(e t+e−1)有唯一零点,所以g(t)=cos(π2根据偶函数的对称性,则g(0)=1+2a=0,解得a=−1,2故选:B.t)+a(e t+e−t)有唯一零点,根据偶函数的对称性求令x−1=t,转化为g(t)=cos(π2解.此题主要考查了函数的零点问题,属于中档题.4.【答案】B;【解析】解:第一个方程:≶x=3−x,第二个方程,≶(3−x)=x.注意第二个方程如果做变量代换y=3−x,则≶y=3−y,其实是与第一个方程一样的.如果x1,x2是两个方程的解,则必有x1=3−x2,∴x1+x2=3.故选:B.第一个方程:≶x=3−x,第二个方程,≶(3−x)=x.注意第二个方程如果做变量代换y=3−x,则≶y=3−y,由此能求出结果.该题考查两数和的求法,是基础题,解题时要认真审题,注意对数函数性质的合理运用.5.【答案】D;【解析】解:根据函数y=|ln|x−2||+x2−4x的零点,转化为|ln|x−2||+x2−4x=0的根,令y=|ln|x−2||,y=−x2+4x,两个函数的对称轴都为x=2,在同一坐标系中,画出函数的图象:x 3,x 2关于x =2对称,所以x 3+x 2=4, x 1,x 4关于x =2对称,所以x 1+x 4=4, 所以x 1+x 2+x 3+x 4=8, 故选:D .根据函数y =|ln |x −2||+x 2−4x 的零点⇒|ln |x −2||+x 2−4x =0的根⇒y =|ln |x −2||,y =−x 2+4x 交点的横坐标,由两个函数都有对称轴x =2,结合图象可得x 3,x 2关于x =2对称,x 1,x 4关于x =2对称,进而得出答案. 该题考查函数的零点,解题中注意转化思想的应用,属于中档题.6.【答案】C;【解析】解:当x >0时,f ′(x)=lnx ,当0<x <1时,f ′(x)<0,当x >1时,f ′(x)>0,所以当x >0时,f(x)在(0,1)上单调递减,在(1,+∞)上单调递增, 又当x ⩽0时,f(x)=f(x +1),所以根据周期为1可得:当x ⩽0时f(x)的图象,故f(x)的图象如图所示:将方程2f(x)−kx +1=0,转化为方程f(x)=k2x −12有四个不同的实根, 令g(x)=k2x −12,其图象恒过(0,−12), 因为f(x)与g(x)的图象有四个不同的交点, 所以k CE <k2⩽k DE 或k BE <k2⩽k AE ,又由A(−3,0),B(−2,0),C(−2,−1),D(−1,−1),E(0,−12), 故k CE =14,k DE =12,k BE =−14,k DE =−16, 所以14<k2⩽12或−14<k2⩽−16, 即12<k ⩽1或−12<k ⩽−13. 故选:C.把方程2f(x)−kx +1=0有四个不同的实根,转化为函数y =f(x)和g(x)=k2x −12的图象有四个交点,作出两个函数的图象,结合图象,即可求解.此题主要考查了函数的零点、转化思想、数形结合思想,难点在于作出图象,属于中档题.7.【答案】B;【解析】本题查抽象函数的单调性和奇偶性的综合应用,属于中档题。

指数函数和对数函数练习题

指数函数和对数函数练习题

第三章 指数函数和对数函数 §1 正整数指数函数 §2 指数扩充及其运算性质1.正整数指数函数 函数y =a x (a>0,a ≠1,x ∈N +)叫作________指数函数;形如y =ka x (k ∈R ,a >0,且a ≠1)的函数称为________函数. 2.分数指数幂(1)分数指数幂的定义:给定正实数a ,对于任意给定的整数m ,n (m ,n 互素),存在唯—的正实数b ,使得b n =a m ,我们把b 叫作a 的mn 次幂,记作b =mn a ;(2)正分数指数幂写成根式形式:m na =na m (a >0);(3)规定正数的负分数指数幂的意义是:m na -=__________________(a >0,m 、n ∈N +,且n >1);(4)0的正分数指数幂等于____,0的负分数指数幂__________. 3.有理数指数幂的运算性质(1)a m a n =________(a >0);(2)(a m )n =________(a >0);(3)(ab )n =________(a >0,b >0). 一、选择题1.以下说法中:①16的4次方根是2;②416的运算结果是±2;③当n 为大于1的奇数时,n a 对任意a ∈R 都有意义;④当n 为大于1的偶数时,na 只有当a ≥0时才有意义.其中正确的选项是( )A .①③④B .②③④C .②③D .③④ 2.假设2<a <3,化简(2-a )2+4(3-a )4的结果是( ) A .5-2a B .2a -5 C .1 D .-1 3.在(-12)-1、122-、1212-⎛⎫⎪⎝⎭、2-1中,最大的是( ) A .(-12)-1 B .122- C .1212-⎛⎫⎪⎝⎭D .2-14.化简3a a 的结果是( )A .aB .12a C .a 2 D .13a 5.以下各式成立的是( ) A.3m 2+n 2=()23m n + B .(ba)2=12a 12bC.6(-3)2=()133- D.34=1326.以下结论中,正确的个数是( ) ①当a <0时,()322a=a 3;②na n =|a |(n >0);③函数y =()122x --(3x -7)0的定义域是(2,+∞); ④假设100a =5,10b =2,则2a +b =1.A .0B .1C .2D .3 二、填空题 7.614-3338+30.125的值为________. 8.假设a >0,且a x=3,a y=5,则22y x a+=________.9.假设x >0,则(214x +323)(214x -323)-412x -·(x -12x )=________.三、解答题10.(1)化简:3xy 2·xy -1·xy ·(xy )-1(xy ≠0); (2)计算:122-+(-4)02+12-1-(1-5)0·238.11.设-3<x <3,求x 2-2x +1-x 2+6x +9的值. 12.化简:413322333842a a b b ab a-++÷(1-23b a)×3a .13.假设x >0,y >0,且x -xy -2y =0,求2x -xyy +2xy的值.§3 指数函数(一)1.指数函数的概念一般地,________________叫做指数函数,其中x 是自变量,函数的定义域是____. 2.指数函数y =a x (a >0,且a ≠1)的图像和性质a >1 0<a <1图像定义域 R 值域 (0,+∞) 性 质 过定点 过点______,即x =____时,y =____ 函数值 的变化 当x >0时,______; 当x <0时,________ 当x >0时,________; 当x <0时,________单调性 是R 上的________ 是R 上的________1.以下以x 为自变量的函数中,是指数函数的是( ) A .y =(-4)x B .y =πxC .y =-4xD .y =a x +2(a >0且a ≠1) 2.函数f (x )=(a 2-3a +3)a x 是指数函数,则有( )A .a =1或a =2B .a =1C .a =2D .a >0且a ≠13.函数y =a |x |(a >1)的图像是( )4.已知f (x )为R 上的奇函数,当x <0时,f (x )=3x ,那么f (2)的值为( )A .-9 B.19C .-19D .95.如图是指数函数①y =a x ;②y =b x ;③y =c x ;④y =d x 的图像,则a 、b 、c 、d 与1的大小关系是( ) A .a <b <1<c <d B .b <a <1<d <c C .1<a <b <c <d D .a <b <1<d <c6.函数y =(12)x -2的图像( )A .第—、二、三象限B .第—、二、四象限C .第—、三、四象限D .第二、三、四象限 二、填空题7.函数f (x )=a x 的图像经过点(2,4),则f (-3)的值为________.8.假设函数y =a x -(b -1)(a >0,a ≠1)的图像不经过第二象限,则a ,b 必满足条件________.9.函数y =8-23-x (x ≥0)的值域是________. 三、解答题10.比拟以下各组数中两个值的大小:(1)0.2-1.5和0.2-1.7;(2)1314⎛⎫⎪⎝⎭和2314⎛⎫⎪⎝⎭; (3)2-1.5和30.2.11.2022年10月18日,美国某城市的以醒目标题刊登了一条消息:“市政委员会今天宣布:本市垃圾的体积到达50 000 m 3〞,副标题是:“垃圾的体积每三年增加一倍〞.如果把3年作为垃圾体积加倍的周期,请你依据下面关于垃圾的体积V (m 3)与垃圾体积的加倍的周期(3年)数n 的关系的表格,答复以下问题.周期数n 体积V (m 3)0 50 000×20 1 50 000×2 2 50 000×22 … … n 50 000×2n(1)设想城市垃圾的体积每3年继续加倍,问24年后该市垃圾的体积是多少? (2)依据报纸所述的信息,你估量3年前垃圾的体积是多少? (3)如果n =-2,这时的n ,V 表示什么信息?(4)写出n 与V 的函数关系式,并画出函数图像(横轴取n 轴). (5)曲线可能与横轴相交吗?为什么? 能力提升12.定义运算a ⊕b =⎩⎪⎨⎪⎧a (a ≤b )b (a >b ),则函数f (x )=1⊕2x 的图像是( )13.定义在区间(0,+∞)上的函数f (x )满足对任意的实数x ,y 都有f (x y )=yf (x ). (1)求f (1)的值;(2)假设f (12)>0,解不等式f (ax )>0.(其中字母a 为常数).§3 指数函数(二)1.以下肯定是指数函数的是( )A .y =-3xB .y =X (x >0,且x ≠1)C .y =(a -2)x (a >3)D .y =(1-2)x 2.指数函数y =a x 与y =b x 的图像如图,则( )A .a <0,b <0B .a <0,b >0C .0<a <1,b >1D .0<a <1,0<b <1 3.函数y =πx 的值域是( )A .(0,+∞)B .0,+∞)C .RD .(-∞,0)4.假设(12)2a +1<(12)3-2a ,则实数a 的取值范围是( )A .(1,+∞)B .(12,+∞)C .(-∞,1)D .(-∞,12)5.设13<(13)b <(13)a <1,则( )A .a a <a b <b aB .a a <b a <a bC .a b <a a <b aD .a b <b a <a a6.假设指数函数f (x )=(a +1)x 是R 上的减函数,那么a 的取值范围为( ) A .a <2 B .a >2 C .-1<a <0 D .0<a <1 一、选择题1.设P ={y |y =x 2,x ∈R },Q ={y |y =2x ,x ∈R },则( ) A .Q P B .Q PC .P ∩Q ={2,4}D .P ∩Q ={(2,4)} 2.函数y =16-4x 的值域是( )A .0,+∞)B .0,4C .0,4)D .(0,4)3.函数y =a x 在0,1]上的最大值与最小值的和为3,则函数y =2ax -1在0,1]上的最大值是( )A .6B .1C .3 D.324.假设函数f (x )=3x +3-x 与g (x )=3x -3-x 的定义域均为R ,则( ) A .f (x )与g (x )均为偶函数 B .f (x )为偶函数,g (x )为奇函数 C .f (x )与g (x )均为奇函数 D .f (x )为奇函数,g (x )为偶函数 5.函数y =f (x )的图像与函数g (x )=e x +2的图像关于原点对称,则f (x )的表达式为( )A .f (x )=-e x -2B .f (x )=-e -x +2C .f (x )=-e -x -2D .f (x )=e -x +2 6.已知a =1335-⎛⎫ ⎪⎝⎭,b =1235-⎛⎫ ⎪⎝⎭,c =1243-⎛⎫⎪⎝⎭,则a ,b ,c 三个数的大小关系是( ) A .c <a <b B .c <b <a C .a <b <c D .b <a <c 二、填空题7.春天来了,某池塘中的荷花枝繁叶茂,已知每一天新长出荷叶覆盖水面面积是前一天的2倍,假设荷叶20天可以完全长满池塘水面,当荷叶刚好覆盖水面面积一半时,荷叶已生长了________天.8.已知函数f (x )是定义在R 上的奇函数,当x >0时,f (x )=1-2-x ,则不等式f (x )<-12的解集是________________. 9.函数y =2212x x-+⎛⎫⎪⎝⎭的单调递增区间是________.三、解答题10.(1)设f (x )=2u ,u =g (x ),g (x )是R 上的单调增函数,试推断f (x )的单调性; (2)求函数y =2212x x --的单调区间.11.函数f (x )=4x -2x +1+3的定义域为-12,12].(1)设t =2x,求t 的取值范围; (2)求函数f (x )的值域. 能力提升12.函数y =2x -x 2的图像大致是( )13.已知函数f (x )=2x -12x +1.(1)求f f (0)+4]的值;(2)求证:f (x )在R 上是增函数;(3)解不等式:0<f (x -2)<1517.习题课1.以下函数中,指数函数的个数是( )①y =2·3x ;②y =3x +1;③y =3x ;④y =x 3.A .0B .1C .2D .32.设f (x )为定义在R 上的奇函数,当x ≥0时,f (x )=2x +2x +b (b 为常数),则f (-1)等于( )A .-3B .-1C .1D .33.对于每一个实数x ,f (x )是y =2x 与y =-x +1这两个函数中的较小者,则f (x )的最大值是( )A .1B .0C .-1D .无最大值4.将22化成指数式为________.5.已知a =40.2,b =80.1,c =(12)-0.5,则a ,b ,c 的大小顺序为________.6.已知12x +12x -=3,求x +1x的值.一、选择题 1.(1222-⎡⎤⎢⎥⎣⎦的值为( )A. 2 B .- 2 C.22 D .-222.化简3(a -b )3+(a -2b )2的结果是( )A .3b -2aB .2a -3bC .b 或2a -3bD .b3.假设0<x <1,则2x ,(12)x ,(0.2)x 之间的大小关系是( )A .2x <(0.2)x <(12)xB .2x <(12)x <(0.2)xC .(12)x <(0.2)x <2xD .(0.2)x <(12)x <2x4.假设函数则f (-3)的值为( ) A.18 B.12 C .2 D .85.函数f (x )=a x -b 的图像如下图,其中a ,b 均为常数,则以下结论正确的选项是( )A .a >1,b >0B .a >1,b <0C .0<a <1,b >0D .0<a <1,b <06.函数f (x )=4x +12x 的图像( )A .关于原点对称B .关于直线y =x 对称C .关于x 轴对称D .关于y 轴对称 二、填空题7.计算:130.064--(-14)0+160.75+120.01=________________.8.已知10m =4,10n =9,则3210m n -=________. 9.函数y =1-3x (x ∈-1,2])的值域是________. 三、解答题10.比拟以下各组中两个数的大小:(1)0.63.5和0.63.7;(2)(2)-1.2和(2)-1.4; (3)1332⎛⎫⎪⎝⎭和2332⎛⎫ ⎪⎝⎭;(4)π-2和(13)-1.3 11.函数f (x )=a x (a >0,且a ≠1)在区间1,2]上的最大值比最小值大a2,求a 的值.能力提升12.已知f (x )=a a 2-1(a x -a -x )(a >0且a ≠1),商量f (x )的单调性.13.依据函数y =|2x -1|的图像,推断当实数m 为何值时,方程|2x -1|=m 无解?有一解?有两解?§4 对数(一)1.对数的概念如果a b =N (a >0,且a ≠1),那么数b 叫做______________,记作__________,其中a叫做__________,N 叫做________. 2.常用对数与自然对数通常将以10为底的对数叫做__________,以e 为底的对数叫做__________,log 10N 可简记为________,loge N 简记为________. 3.对数与指数的关系假设a >0,且a ≠1,则a x =N ⇔log a N =____.对数恒等式:log a Na =____;log a a x =____(a >0,且a ≠1). 4.对数的性质(1)1的对数为____; (2)底的对数为____; (3)零和负数________. 一、选择题1.有以下说法:①零和负数没有对数;②任何一个指数式都可以化成对数式; ③以10为底的对数叫做常用对数; ④以e 为底的对数叫做自然对数. 其中正确命题的个数为( )A .1B .2C .3D .42.有以下四个结论:①lg(lg10)=0;②ln(ln e)=0;③假设10=lg x ,则x =100;④假设e =ln x ,则x =e 2.其中正确的选项是( ) A .①③ B .②④ C .①② D .③④3.在b =log (a -2)(5-a )中,实数a 的取值范围是( )A .a >5或a <2B .2<a <5C .2<a <3或3<a <5D .3<a <44.方程3log 2x=14的解是( )A .x =19B .x =33C .x = 3D .x =9 5.假设log a 5b =c ,则以下关系式中正确的选项是( ) A .b =a 5c B .b 5=a c C .b =5a c D .b =c 5a6.0.51log 412-+⎛⎫ ⎪⎝⎭的值为( )A .6 B.72C .8 D.37二、填空题7.已知log 7log 3(log 2x )]=0,那么12x-=________.8.假设log 2(log x 9)=1,则x =________.9.已知lg a =2.431 0,lg b =1.431 0,则ba=________.三、解答题10.(1)将以下指数式写成对数式:①10-3=11 000;②0.53=0.125;③(2-1)-1=2+1.(2)将以下对数式写成指数式:①log 26=2.585 0;②log 30.8=-0.203 1;③lg 3=0.477 1.11.已知log a x =4,log a y =5,求A =121232x x y -⎡⎤⎢⎥⋅⎢⎥⎢⎥⎣⎦的值. 能力提升12.假设log a 3=m ,log a 5=n ,则a 2m +n 的值是( ) A .15 B .75 C .45 D .22513.(1)先将以下式子改写成指数式,再求各式中x 的值:①log 2x =-25;②log x 3=-13.(2)已知6a =8,试用a 表示以下各式: ①log 68;②log 62;③log 26.§4 对数(二)1.对数的运算性质如果a >0,且a ≠1,M >0,N >0,则: (1)log a (MN )=________________;(2)log a MN=________;(3)log a M n =__________(n ∈R ). 2.对数换底公式log b N =log a Nlog a b(a ,b >0,a ,b ≠1,N >0);特别地:log a b ·log b a =____(a >0,且a ≠1,b >0,且b ≠1). 一、选择题1.以下式子中成立的是(假定各式均有意义)( ) A .log a x ·log a y =log a (x +y ) B .(log a x )n =n log a xC.log a x n =log a n xD.log a x log a y =log a x -log a y2.计算:log 916·log 881的值为( )A .18 B.118 C.83 D.383.假设log 513·log 36·log 6x =2,则x 等于( )A .9 B.19 C .25 D.1254.已知3a =5b =A ,假设1a +1b=2,则A 等于( )A .15 B.15 C .±15 D .225 5.已知log 89=a ,log 25=b ,则lg 3等于( )A.a b -1B.32(b -1)C.3a2(b +1)D.3(a -1)2b6.假设lg a ,lg b 是方程2x 2-4x +1=0的两个根,则(lg ab)2的值等于( )A .2 B.12 C .4 D.14二、填空题7.2log 510+log 50.25+(325-125)÷425=______________. 8.(lg 5)2+lg 2·lg 50=________.9.2022年5月12日,四川汶川发生里氏8.0级特大地震,给人民的生命财产造成了庞大的损失.里氏地震的等级最早是在1935年由美国加州理工学院的地震学家里特判定的.它与震源中心释放的能量(热能和动能)大小有关.震级M =23lg E -3.2,其中E (焦耳)为以地震波的形式释放出的能量.如果里氏6.0级地震释放的能量相当于1颗美国在二战时投放在广岛的X 的能量,那么汶川大地震所释放的能量相当于________颗广岛X .三、解答题10.(1)计算:lg 12-lg 58+lg 12.5-log 89·log 34;(2)已知3a =4b =36,求2a +1b的值.11.假设a 、b 是方程2(lg x )2-lg x 4+1=0的两个实根,求lg(ab )·(log a b +log b a )的值. 能力提升12.以下给出了x 与10x 的七组近似对应值: 组号 一 二 三 四 五 六 七 x 0.301 03 0.477 11 0.698 97 0.778 15 0.903 09 1.000 00 1.079 18 10x 2 3 5 6 8 10 12假设在上表的各组对应值中,有且仅有一组是错误的,它是第________组.( ) A .二 B .四 C .五 D .七13.一种放射性物质不断变化为其他物质,每经过一年的剩余质量约是原来的75%,估量约经过多年少,该物质的剩余量是原来的13?(结果保存1位有效数字)(lg 2≈0.3010,lg 3≈0.477 1)§5 对数函数(一)1.对数函数的定义:一般地,我们把______________________________叫做对数函数,其中x 是自变量,函数的定义域是________.________为常用对数函数;y =________为自然对数函数.2.对数函数的图像与性质定义 y =log a x (a >0,且a ≠1) 底数 a >1 0<a <1图像定义域______ 值域 ______单调性 在(0,+∞)上是增函数 在(0,+∞)上是减函数共点性 图像过点______,即log a 1=0 函数值x ∈(0,1)时, x ∈(0,1)时,特点y ∈______; x ∈1,+∞)时, y ∈______. y ∈______; x ∈1,+∞)时, y ∈______.对称性 函数y =log a x 与y =1log ax 的图像关于______对称3.反函数对数函数y =log a x (a >0且a ≠1)和指数函数____________________互为反函数. 一、选择题1.函数y =log 2x -2的定义域是( )A .(3,+∞)B .3,+∞)C .(4,+∞)D .4,+∞)2.设集合M ={y |y =(12)x ,x ∈0,+∞)},N ={y |y =log 2x ,x ∈(0,1]},则集合M ∪N是( )A .(-∞,0)∪1,+∞)B .0,+∞)C .(-∞,1D .(-∞,0)∪(0,1) 3.已知函数f (x )=log 2(x +1),假设f (α)=1,则α等于( )A .0B .1C .2D .3 4.函数f (x )=|log 3x |的图像是( )5.已知对数函数f (x )=log a x (a >0,a ≠1),且过点(9,2),f (x )的反函数记为y =g (x ),则g (x )的解析式是( )A .g (x )=4xB .g (x )=2xC .g (x )=9xD .g (x )=3x6.假设log a 23<1,则a 的取值范围是( )A .(0,23)B .(23,+∞)C .(23,1)D .(0,23)∪(1,+∞)二、填空题7.如果函数f (x )=(3-a )x ,g (x )=log a x 的增减性相同,则a 的取值范围是________. 8.已知函数y =log a (x -3)-1的图像恒过定点P ,则点P 的坐标是________.9.给出函数,则f (log 23)=________. 三、解答题10.求以下函数的定义域与值域: (1)y =log 2(x -2);(2)y =log 4(x 2+8).11.已知函数f (x )=log a (1+x ),g (x )=log a (1-x ),(a >0,且a ≠1). (1)设a =2,函数f (x )的定义域为3,63],求函数f (x )的最值.(2)求使f (x )-g (x )>0的x 的取值范围. 能力提升12.已知图中曲线C 1,C 2,C 3,C 4分别是函数y =1log a x ,y =2log a x ,y =3log a x ,y =4log a x 的图像,则a 1,a 2,a 3,a 4的大小关系是( ) A .a 4<a 3<a 2<a 1 B .a 3<a 4<a 1<a 2 C .a 2<a 1<a 3<a 4 D .a 3<a 4<a 2<a 113.假设不等式x 2-log m x <0在(0,12)内恒成立,求实数m 的取值范围.§5 对数函数(二)1.函数y =log a x 的图像如下图,则实数a 的可能取值是( )A .5 B.15 C.1e D.122.以下各组函数中,表示同一函数的是( )A .y =x 2和y =(x )2B .|y |=|x |和y 3=x 3C .y =log a x 2和y =2log a xD .y =x 和y =log a a x3.假设函数y =f (x )的定义域是2,4],则y =f (12log x )的定义域是( )A .12,1 B .4,16]C .116,14 D .2,4]4.函数f (x )=log 2(3x +1)的值域为( )A .(0,+∞)B .0,+∞)C .(1,+∞)D .1,+∞)5.函数f (x )=log a (x +b )(a >0且a ≠1)的图像经过(-1,0)和(0,1)两点,则f (2)=________.6.函数y =log a (x -2)+1(a >0且a ≠1)恒过定点______________________________ __________________________________________.一、选择题1.设a =log 54,b =(log 53)2,c =log 45,则( )A .a <c <bB .b <c <aC .a <b <cD .b <a <c2.已知函数y =f (2x )的定义域为-1,1],则函数y =f (log 2x )的定义域为( )A .-1,1B .12,2]C .1,2D .2,4]3.函数f (x )=log a |x |(a >0且a ≠1)且f (8)=3,则有( )A .f (2)>f (-2)B .f (1)>f (2)C .f (-3)>f (-2)D .f (-3)>f (-4)4.函数f (x )=a x +log a (x +1)在0,1]上的最大值与最小值之和为a ,则a 的值为( )A.14 B.12 C .2 D .45.已知函数f (x )=lg 1-x1+x ,假设f (a )=b ,则f (-a )等于( )A .bB .-bC.1b D .-1b6.函数y =3x (-1≤x <0)的反函数是( )A .y =13log x (x >0) B .y =log 3x (x >0)C .y =log 3x (13≤x <1)D .y =13log x (13≤x <1)二、填空题7.函数f (x )=lg(2x -b ),假设x ≥1时,f (x )≥0恒成立,则b 应满足的条件是________.8.函数y =log a x 当x >2时恒有|y |>1,则a 的取值范围是________.9.假设log a 2<2,则实数a 的取值范围是______________.三、解答题10.已知f (x )=log a (3-ax )在x ∈0,2]上单调递减,求a 的取值范围.11.已知函数f (x )=12log 1-ax x -1的图像关于原点对称,其中a 为常数. (1)求a 的值;(2)假设当x ∈(1,+∞)时,f (x )+12log (x -1)<m 恒成立.求实数m 的取值范围.能力提升12.假设函数f (x )=log a (x 2-ax +12)有最小值,则实数a 的取值范围是( ) A .(0,1) B .(0,1)∪(1,2)C .(1,2)D .2,+∞)13.已知log m 4<log n 4,比拟m 与n 的大小.习题课1.已知m =0.95.1,n =5.10.9,p =log 0.95.1,则这三个数的大小关系是( )A .m <n <pB .m <p <nC .p <m <nD .p <n <m2.已知0<a <1,log a m <log a n <0,则( )A .1<n <mB .1<m <nC .m <n <1D .n <m <13.函数y =x -1+1lg (2-x )的定义域是( ) A .(1,2) B .1,4]C .1,2)D .(1,2]4.给定函数①y =12x ,②y =12log (x +1),③y =|x -1|,④y =2x +1,其中在区间(0,1)上单调递减的函数序号是( )A .①②B .②③C .③④D .①④5.设函数f (x )=log a |x |,则f (a +1)与f (2)的大小关系是________________.6.假设log 32=a ,则log 38-2log 36=________.一、选择题1.以下不等号连接错误的一组是( )A .log 0.52.7>log 0.52.8B .log 34>log 65C .log 34>log 56D .log πe>log e π2.假设log 37·log 29·log 49m =log 412,则m 等于( ) A.14 B.22C. 2 D .4 3.设函数假设f (3)=2,f (-2)=0,则b 等于( )A .0B .-1C .1D .24.假设函数f (x )=log a (2x 2+x )(a >0,a ≠1)在区间(0,12)内恒有f (x )>0,则f (x )的单调递增区间为( )A .(-∞,-14)B .(-14,+∞)C .(0,+∞)D .(-∞,-12)5.假设函数假设f (a )>f (-a ),则实数a 的取值范围是( )A .(-1,0)∪(0,1)B .(-∞,-1)∪(1,+∞)C .(-1,0)∪(1,+∞)D .(-∞,-1)∪(0,1)6.已知f (x )是定义在R 上的奇函数,f (x )在(0,+∞)上是增函数,且f (13)=0,则不等式f (18log x )<0的解集为( )A .(0,12)B .(12,+∞) C .(12,1)∪(2,+∞) D .(0,12)∪(2,+∞) 二、填空题7.已知log a (ab )=1p ,则log ab a b=________. 8.假设log 236=a ,log 210=b ,则log 215=________.9.设函数假设f (a )=18,则f (a +6)=________. 三、解答题10.已知集合A ={x |x <-2或x >3},B ={x |log 4(x +a )<1},假设A ∩B =∅,求实数a 的取值范围.11.抽气机每次抽出容器内空气的60%,要使容器内的空气少于原来的0.1%,则至少要抽几次?(lg 2≈0.301 0)能力提升12.设a >0,a ≠1,函数f (x )=log a (x 2-2x +3)有最小值,求不等式log a (x -1)>0的解集.13.已知函数f (x )=log a (1+x ),其中a >1.(1)比拟12f (0)+f (1)]与f (12)的大小; (2)探究12f (x 1-1)+f (x 2-1)]≤f (x 1+x 22-1)对任意x 1>0,x 2>0恒成立. §6 指数函数、幂函数、对数函数增长的比拟1.当a >1时,指数函数y =a x 是________,并且当a 越大时,其函数值增长越____.2.当a >1时,对数函数y =log a x (x >0)是________,并且当a 越小时,其函数值________.3.当x >0,n >1时,幂函数y =x n 是________,并且当x >1时,n 越大,其函数值__________.一、选择题1t 1.99 3.0 4.0 5.1 6.12v 1.5 4.40 7.5 12 18.01A .v =log 2tB .v =12log t C .v =t 2-12 D .v =2t -2 2.从山顶到山下的招待所的距离为20千米.某人从山顶以4千米/时的速度到山下的招待所,他与招待所的距离s (千米)与时间t (小时)的函数关系用图像表示为( )3.某公司为了适应市场需求对产品结构做了重大调整,调整后初期利润增长迅速,后来增长越来越慢,假设要建立恰当的函数模型来反映该公司调整后利润y 与时间x 的关系,可选用( )A .一次函数B .二次函数C .指数型函数D .对数型函数4.某自行车存车处在某天的存车量为4 000辆次,存车费为:变速车0.3元/辆次,一般车0.2元/辆次.假设当天一般车存车数为x 辆次,存车费总收入为y 元,则y 关于x 的函数关系式为( )A .y =0.2x (0≤x ≤4 000)B .y =0.5x (0≤x ≤4 000)C .y =-0.1x +1 200(0≤x ≤4 000)D .y =0.1x +1 200(0≤x ≤4 000)5.已知f (x )=x 2-bx +c 且f (0)=3,f (1+x )=f (1-x ),则有( )A .f (b x )≥f (c x )B .f (b x )≤f (c x )C .f (b x )<f (c x )D .f (b x ),f (c x )大小不定6.某公司在甲、乙两地销售一种品牌车,利润(单位:万元)分别为l 1=5.06x -0.15x 2和l 2=2x ,其中x 为销售量(单位:辆).假设该公司在这两地共销售15辆车,则可能获得的最大利润是( )A .45.606B .45.6C .45.56D .45.51二、填空题7.一种特意侵占内存的计算机病毒,开机时占据内存2KB ,然后每3分钟自身复制一次,复制后所占内存是原来的2倍,那么开机后经过________分钟,该病毒占据64MB 内存(1MB =210KB).8.近几年由于北京房价的上涨,引起了二手房市场交易的火爆.房子几乎没有变化,但价格却上涨了,小张在2022年以80万元的价格购得一套新房子,假设这10年来价格年膨胀率不变,那么到2022年,这所房子的价格y (万元)与价格年膨胀率x 之间的函数关系式是________.三、解答题9.用模型f (x )=ax +b 来描述某企业每季度的利润f (x )(亿元)和生产本钱投入x (亿元)的关系.统计说明,当每季度投入1(亿元)时利润y 1=1(亿元),当每季度投入2(亿元)时利润y 2=2(亿元),当每季度投入3(亿元)时利润y 3=2(亿元).又定义:当f (x )使f (1)-y 1]2+f (2)-y 2]2+f (3)-y 3]2的数值最小时为最正确模型.(1)当b =23,求相应的a 使f (x )=ax +b 成为最正确模型; (2)依据题(1)得到的最正确模型,请预测每季度投入4(亿元)时利润y 4(亿元)的值.10.依据市场调查,某种商品在最近的40天内的价格f (t )与时间t 满足关系f (t )=,销售量g (t )与时间t 满足关系g (t )=-13t +433(0≤t ≤40,t ∈N ).求这种商品的日销售额(销售量与价格之积)的最大值.11.某商品在近30天内每件的销售价格p (元)与时间t (天)的函数关系是p =该商品的日销售量Q (件)与时间t (天)的函数关系式为Q =-t +40(0<t ≤30,t ∈N ),求这种商品的日销售金额的最大值,并指出日销售金额最大的一天是30天中的第几天?能力提升12.某种商品进价每个80元,零售价每个100元,为了促销拟采取买一个这种商品,赠送一个小礼品的方法,实践说明:礼品价值为1元时,销售量增加10%,且在肯定范围内,礼品价值为(n +1)元时,比礼品价值为n 元(n ∈N +)时的销售量增加10%.(1)写出礼品价值为n 元时,利润y n (元)与n 的函数关系式;(2)请你设计礼品价值,以使商店获得最大利润.13.已知桶1与桶2通过水管相连如下图,开始时桶1中有a L 水,t min 后剩余的水符合指数衰减函数y 1=a e -nt ,那么桶2中的水就是y 2=a -a e -nt ,假定5 min 后,桶1中的水与桶2中的水相等,那么再过多长时间桶1中的水只有a 4L 第三章 章末检测一、选择题(本大题共12小题,每题5分,共60分)1.已知函数f (x )=lg(4-x )的定义域为M ,函数g (x )=0.5x -4的值域为N ,则M ∩N 等于( )A .MB .NC .0,4)D .0,+∞)2.函数y =3|x |-1的定义域为-1,2],则函数的值域为( )A .2,8B .0,8]C .1,8D .-1,8]3.已知f (3x )=log 29x +12,则f (1)的值为( ) A .1 B .2 C .-1 D.124.21log 52 等于( )A .7B .10C .6 D.925.假设100a =5,10b =2,则2a +b 等于( )A .0B .1C .2D .36.比拟13.11.5、23.1、13.12的大小关系是( ) A .23.1<13.12<13.11.5 B .13.11.5<23.1<13.12 C .13.11.5<13.12<23.1 D .13.12<13.11.5<23.17.式子log 89log 23的值为( ) A.23 B.32C .2D .38.已知ab >0,下面四个等式中:①lg(ab )=lg a +lg b ; ②lg a b=lg a -lg b ; ③12lg(a b )2=lg a b ; ④lg(ab )=1log ab 10. 其中正确的个数为( )A .0B .1C .2D .39.为了得到函数y =lg x +310的图像,只需把函数y =lg x 的图像上全部的点( ) A .向左平移3个单位长度,再向上平移1个单位长度B .向右平移3个单位长度,再向上平移1个单位长度C .向左平移3个单位长度,再向下平移1个单位长度D .向右平移3个单位长度,再向下平移1个单位长度10.函数y =2x 与y =x 2的图像的交点个数是( )A .0B .1C .2D .311.设偶函数f (x )满足f (x )=2x -4(x ≥0),则{x |f (x -2)>0}等于( )A .{x |x <-2或x >4}B .{x |x <0或x >4}C .{x |x <0或x >6}D .{x |x <-2或x >2}12.函数f (x )=a |x +1|(a >0,a ≠1)的值域为1,+∞),则f (-4)与f (1)的关系是( )A .f (-4)>f (1)B .f (-4)=f (1)C .f (-4)<f (1)D .不能确定二、填空题(本大题共4小题,每题5分,共20分)13.已知函数f (x )=⎩⎨⎧(12)x , x ≥4f (x +1), x <4,则f (2+log 23)的值为______. 14.函数f (x )=log a 3-x 3+x (a >0且a ≠1),f (2)=3,则f (-2)的值为________. 15.函数y =12log (x 2-3x +2)的单调递增区间为______________.16.设0≤x ≤2,则函数y =124x --3·2x +5的最大值是________,最小值是________.三、解答题(本大题共6小题,共70分)17.(10分)已知指数函数f (x )=a x (a >0且a ≠1).(1)求f (x )的反函数g (x )的解析式;(2)解不等式:g (x )≤log a (2-3x ).18.(12分)已知函数f (x )=2a ·4x -2x -1.(1)当a =1时,求函数f (x )在x ∈-3,0]的值域;(2)假设关于x 的方程f (x )=0有解,求a 的取值范围.19.(12分)已知x >1且x ≠43,f (x )=1+log x 3,g (x )=2log x 2,试比拟f (x )与g (x )的大小. 20.(12分)设函数f (x )=log 2(4x )·log 2(2x ),14≤x ≤4, (1)假设t =log 2x ,求t 的取值范围;(2)求f (x )的最值,并写出最值时对应的x 的值.21.(12分)已知f (x )=log a 1+x 1-x(a >0,a ≠1). (1)求f (x )的定义域;(2)推断f (x )的奇偶性并予以证明;(3)求使f (x )>0的x 的取值范围.22.(12分)已知定义域为R 的函数f (x )=-2x +b 2x +1+2是奇函数. (1)求b 的值;(2)推断函数f (x )的单调性;(3)假设对任意的t ∈R ,不等式f (t 2-2t )+f (2t 2-k )<0恒成立,求k 的取值范围.。

成都市第十一中学必修一第三单元《指数函数和对数函数》检测(包含答案解析)

成都市第十一中学必修一第三单元《指数函数和对数函数》检测(包含答案解析)

一、选择题1.下列各组函数中,表示同一个函数的是( )A .211x y x -=-与1y x =+B .y x =与log xa y a =(0a >且1a ≠)C.y =1y x =-D .lg y x =与21lg 2y x =2.若lg 2a =,lg3b =,则5log 12等于( )A .21a b a++B .21a b a+C .21a b aD .21a b a-3.若关于x 的不等式34log 2xa x -≤在10,2x ⎛⎤∈ ⎥⎝⎦恒成立,则实数a 的取值范围是( ) A .1,14⎡⎫⎪⎢⎣⎭B .10,4⎛⎤ ⎥⎝⎦C .3,14⎡⎫⎪⎢⎣⎭D .30,4⎛⎤ ⎥⎝⎦4.定义:若函数()y f x =的图像上有不同的两点,A B ,且,A B 两点关于原点对称,则称点对(),A B 是函数()y f x =的一对“镜像”,点对(),A B 与(),B A 看作同一对“镜像点对”,已知函数()23,02,0x x f x x x x ⎧-<⎪=⎨-≥⎪⎩,则该函数的“镜像点对”有( )对.A .1B .2C .3D .45.已知函数3131()(),()log ,()(0)2xf x xg x x xh x x x x =-=-=->的零点分别为,,a b c ,则,,a b c 的大小顺序为( )A .a b c >>B .c a b >>C .b c a >>D .b a c >>6.设52a -=,5log 2b =,8log 5c =,则( ) A .a b c <<B .b c a <<C .c b a <<D .c a b <<7.若一系列函数的解析式和值域相同,但其定义域不同,则称这些函数为“同族函数”,例如函数2y x =,x ∈[1,2]与函数.2y x =,[]2,1x ∈--即为同族函数,下面函数解析式中也能够被用来构造“同族函数”的是( ) A .y =xB .1y x x=+ C . 22x x y -=- D .y =log 0.5x 8.已知偶函数()f x 在[0,)+∞上单调递增,131(())4a f =,37(log )2b f =,13(log 5)c f =,则a ,b,c 的大小关系为( )A .a b c >>B .b a c >>C .c b a >>D .c a b >>9.已知()243,1log 2,1a x ax x f x x a x ⎧-+<=⎨+≥⎩满足对任意12x x ≠,都有()()12120f x f x x x -<-成立,那么a 的取值范围是( )A .10,2⎛⎤ ⎥⎝⎦B .1,12⎡⎫⎪⎢⎣⎭C .12,23⎡⎤⎢⎥⎣⎦D .2,13⎡⎫⎪⎢⎣⎭10.已知函数()2,01,0x x f x x x >⎧=⎨+≤⎩,若()()10f a f +=,则实数a 的值等于( )A .-3B .-1C .1D .3 11.若a >b >0,0<c <1,则A .log a c <log b cB .log c a <log c bC .a c <b cD .c a >c b12.对数函数log (0a y x a =>且1)a ≠与二次函数()21y a x x =--在同一坐标系内的图象可能是( )A .B .C .D .二、填空题13.已知()()2log 1f x x =-,若()()f a f b =(ab ),则2a b +的最小值为________.14.已知()f x 是定义在R 上的奇函数,且当0x 时,2log (1),01,()31,1,x x f x x x +<⎧=⎨--⎩则方程1()2f x =的所有实根之和为________. 15.函数()()()212log 24f x ax x a R =-+∈,若()f x 的值域为(],1-∞,则a 的值为______.16.定义在(,0)(0,)-∞+∞上的函数1,0(),0x x e x f x e m x -⎧->=⎨+<⎩是奇函数,则实数m 的值为______.17.已知3(1)4,1()1,1aa x a x f x og x x -+<⎧=⎨≥⎩是R 上的减函数,那么a 的取值范围是__________.18.如果()231log 2log 9log 64x x x f x =-+-,则使()0f x <的x 的取值范围是______.19.若函数1log 12a y x ⎛⎫=+ ⎪⎝⎭在区间3,62⎡⎤-⎢⎥⎣⎦有最小值-2,则实数a =_______. 20.关于下列命题:①若函数2x y =的定义域是{}|0x x ≤,则它的值域是{}|1y y ≤ ②若函数1y x =的定义域是{}|2x x >,则它的值域是12y y ⎧⎫<⎨⎬⎩⎭ ③若函数2yx 的值域是{}|04y y ≤≤,则它的定义域可能是{}|22x x -≤≤④若函数2log y x =的值域是{}|3y y ≤,则它的定义域是{}|8x x ≤其中不正确的命题的序号是________.(注:把你认为不正确的命题的序号都填上)三、解答题21.已知函数1()22xxf x =-,()(4ln )ln ().g x x x b b R =-⋅+∈ (1)若()0f x >,求实数x 的取值范围;(2)当[1,)x ∈+∞时,设函数(),()f x g x 的值域分别为,A B ,若A B ⋂≠∅,求实数b 的取值范围.22.已知函数()x f x a =(0a >且1a ≠),满足(2)(1)6f f +=; (1)求()f x 的解析式;(2)若方程()(2),[0,1]m f x f x x =-∈有解,求m 的取值范围;(3)已知()g x 为奇函数,()h x 为偶函数,函数()()()f x g x h x =+;若存在[1,2]x ∈使得2()(2)0ag x h x +≤,求a 的取值范围.23.(1)已知12x y +=,9xy =,且x y <,求11221122x y x y-+值;(2)求值:2(lg 2)lg5lg 20+⋅.24.已知函数35()log 5xf x x-=+. (1)求函数()f x 的定义域;(2)判断函数()f x 奇偶性,并证明你的结论. 25.已知函数()21log 1x f x x +=-, (1)求函数()y f x =的定义域;(2)证明:()y f x =是奇函数; (3)设()()()14h x f x f x =+,求函数()y h x =在[]3,7内的值域; 26.已知函数11()ln 12f x x x ⎛⎫=+ ⎪-⎝⎭. (1)先求1(2)2f f ⎛⎫-⎪⎝⎭的值,再求[]1111(11)(12)(29)(66)11122966f f f f f f f f ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫+++-+++⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦的值; (2)求()f x 的定义域,并证明()f x 在定义域上恒正.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】分析各个选项中每组函数的定义域和对应关系,若定义域和对应关系均相同则为同一个函数,由此判断出正确选项. 【详解】A .211x y x -=-的定义域为{}1x x ≠,1y x =+的定义域为R ,所以不是同一个函数;B .y x =与log xa y a =的定义域均为R ,且log xa y a =即为y x =,所以是同一个函数;C .y =(][),11,-∞-+∞,1y x =-的定义域为R ,所以不是同一个函数;D .lg y x =的定义域为()0,∞+,21lg 2y x =的定义域为{}0x x ≠,所以不是同一个函数, 故选:B. 【点睛】思路点睛:同一函数的判断步骤:(1)先判断函数定义域,若定义域不相同,则不是同一函数;若定义域相同,再判断对应关系;(2)若对应关系不相同,则不是同一函数;若对应关系相同,则是同一函数.解析:C【分析】利用对数的换底公式可将5log12用a、b表示.【详解】根据对数的换底公式得,5lg12lg3lg4lg32lg22log12lg5lg10lg21lg21a ba+++ ====---,故选:C.【点睛】关键点点睛:该题考查的是有关对数的运算,解答本题的关键是熟记换底公式以及对数的运算性质,利用运算性质化简、运算,其中lg5lg10lg2=-是题目的一个难点和易错点. 3.A解析:A【分析】转化为当10,2x⎛⎤∈ ⎥⎝⎦时,函数342xy=-的图象不在log ay x=的图象的上方,根据图象列式可解得结果.【详解】由题意知关于x的不等式34log2xax-≤在10,2x⎛⎤∈ ⎥⎝⎦恒成立,所以当10,2x⎛⎤∈ ⎥⎝⎦时,函数342xy=-的图象不在log ay x=的图象的上方,由图可知0111log22aa<<⎧⎪⎨≥⎪⎩,解得114a≤<.故选:A 【点睛】关键点点睛:利用函数342xy=-的图象与函数log ay x=的图象求解是解题关键.解析:C 【分析】由新定义可知探究y 轴左侧部分图像关于原点中心对称的图像与y 轴右侧部分图像的交点个数即得结果. 【详解】由题意可知,函数()y f x =的图像上有不同的两点,A B ,且,A B 两点关于原点对称,则称点对(),A B 是函数()y f x =的一对“镜像”,因为()23,02,0xx f x x x x ⎧-<⎪=⎨-≥⎪⎩,由y 轴左侧部分()3,0xy x =-<图像关于原点中心对称的图像3x y --=-,即3xy -=,()0x >,作函数3xy -=,()0x >和()22,0y x x x =-≥的图象如下:由图像可知两图象有三个公共点,即该函数有3对“镜像点对”. 故选:C. 【点睛】本题解题关键是理解新定义,寻找对称点对,探究y 轴左侧部分图像关于原点中心对称的图像与y 轴右侧部分图像的交点个数,通过数形结合,即突破难点.5.B解析:B 【分析】将函数3131()(),()log ,()(0)2xf x xg x x xh x x x x =-=-=->的零点,转化为函数y x =的图象分别与函数3131(),log ,(0)2xy y x y x x ===>的图象交点的横坐标,利用数形结合法求解. 【详解】函数3131()(),()log ,()(0)2x f x x g x x x h x x x x =-=-=->的零点,即为函数y x =的图象分别与函数3131(),log ,(0)2x y y x y x x ===>的图象交点的横坐标, 如图所示:由图象可得:c a b >>, 故选:B 【点睛】本题主要考查函数的零点以及指数函数,对数函数和幂函数的图象的应用,还考查了数形结合的思想方法,属于中档题.6.A解析:A 【分析】由551112,2332log -<<<,8152log >,即可得出a ,b ,c 的大小关系. 【详解】52112243--<=<,11325551152532log log log =<<=,12881582log log >=, a b c ∴<<.故选:A 【点睛】本题主要考查了指数函数、对数函数的单调性,对数的运算性质,还考查了转化求解问题的能力,属于中档题.7.B解析:B 【分析】由题意,能够被用来构造“同族函数”的函数必须满足在其定义域上不单调,由此判断各个函数在其定义域上的单调性即可. 【详解】对A :y x =在定义域R 上单调递增,不能构造“同族函数”,故A 选项不正确;对B :1y x x=+在(),1-∞-递增,在()1,0-递减,在()0,1递减,在()1,+∞递增,能构造“同族函数”,故B 选项正确; 对C :22x xy -=-在定义域上递增,不能构造“同族函数”,故C 选项不正确;对D :0.5log y x =在定义域上递减,不能构造“同族函数”,故D 选项不正确. 故选:B. 【点睛】本题给出“同族函数”的定义,要求我们判断几个函数能否被用来构造“同族函数”,考查基本初等函数的单调性的知识点,属于基础题.8.C解析:C 【分析】偶函数()f x 在[0,)+∞上单调递增,化简1333(log 5)(log 5)(log 5)f f f =-=,利用中间量比较大小得解. 【详解】∵偶函数()f x 在[0,)+∞上单调递增1333(log 5)(log 5)(log 5)c f f f ∴==-=,∵1333170()1log log 542<<<<,133317(()(log )(log 5)42)f f f << ∴a b c <<. 故选:C 【分析】本题考查函数奇偶性、单调性及对数式大小比较,属于基础题.9.C解析:C 【分析】判断函数的单调性.利用分段函数解析式,结合单调性列出不等式组求解即可. 【详解】解:243,1log 2,1a x ax x f x x a x ⎧-+<=⎨+≥⎩()满足对任意12x x ≠,都有()()12120f x f x x x --<成立,所以分段函数是减函数,所以:0121442a a a a<<⎧⎪≥⎨⎪-≥⎩,解得12,23a ⎡⎤∈⎢⎥⎣⎦.故选C . 【点睛】本题考查分段函数的单调性的应用,函数的单调性的定义的理解,考查转化思想以及计算能力.10.A解析:A 【分析】先求得()1f 的值,然后根据()f a 的值,求得a 的值. 【详解】由于()1212f =⨯=,所以()()20,2f a f a +==-,22a =-在()0,∞+上无解,由12a +=-解得3a =-,故选A.【点睛】本小题主要考查分段函数求函数值,考查已知分段函数值求自变量,属于基础题.11.B解析:B 【解析】试题分析:对于选项A ,a b 1gc 1gclog c ,log c lg a lg b==,01c <<,10gc ∴<,而0a b >>,所以lg lg a b >,但不能确定lg lg a b 、的正负,所以它们的大小不能确定;对于选项B ,c lg lg log ,log lg lg c a b a b c c ==,lg lg a b >,两边同乘以一个负数1lg c改变不等号方向,所以选项B 正确;对于选项C ,利用cy x =在第一象限内是增函数即可得到c c a b >,所以C 错误;对于选项D ,利用xy c =在R 上为减函数易得a b c c <,所以D 错误.所以本题选B.【考点】指数函数与对数函数的性质【名师点睛】比较幂或对数值的大小,若幂的底数相同或对数的底数相同,通常利用指数函数或对数函数的单调性进行比较;若底数不同,可考虑利用中间量进行比较.12.A解析:A 【分析】由对数函数,对a 分类,01a <<和1a >,在对数函数图象确定的情况下,研究二次函数的图象是否相符.方法是排除法. 【详解】由题意,若01a <<,则log a y x =在()0+∞,上单调递减, 又由函数()21y a x x =--开口向下,其图象的对称轴()121x a =-在y 轴左侧,排除C ,D.若1a >,则log a y x =在()0+∞,上是增函数, 函数()21y a x x =--图象开口向上,且对称轴()121x a =-在y 轴右侧,因此B 项不正确,只有选项A 满足. 故选:A . 【点睛】本题考查由解析式先把函数图象,解题方法是排除法,可按照其中一个函数的图象分类确定另一个函数图象,排除错误选项即可得.二、填空题13.【分析】根据求得之间的等量关系再利用均值不等式求得的最小值【详解】因为且不妨设则一定有且即即可得解得因为故可得当且仅当且即时取得最小值故的最小值为故答案为:【点睛】本题考查对数函数的性质以及对数运算解析:3【分析】根据()()f a f b =,求得,a b 之间的等量关系,再利用均值不等式求得2a b +的最小值. 【详解】因为()()2log 1f x x =-,且()()f a f b = 不妨设a b <,则一定有12a b <<<, 且()()22log 1log 1a b -=- 即()()22log 1log 1a b --=-, 即可得()()2log 110a b --=, 解得()()111a b --=. 因为10,10a b ->->故可得()()22113a b a b +=-+-+3≥3=当且仅当()211a b -=-,且()()111a b --=,即112a b =+=+.故2a b +的最小值为223+. 故答案为:223+. 【点睛】本题考查对数函数的性质,以及对数运算,涉及均值不等式求最值的问题,属综合性困难题.14.【分析】画出分段函数的图像根据图像结合解析式进行求解【详解】根据分段函数的解析式以及函数为奇函数作图如下:由图容易知因为在区间上关于对称且在区间上关于对称故其与直线的所有交点的横坐标之和为0故所有根 解析:21-【分析】画出分段函数的图像,根据图像,结合解析式,进行求解. 【详解】根据分段函数的解析式,以及函数为奇函数,作图如下:由图容易知,因为31y x =--在区间[)1,+∞上,关于3x =对称, 且31y x =---+在区间(],1-∞上,关于3x =-对称, 故其与直线12y =的所有交点的横坐标之和为0. 故1()2f x =所有根之和,即为当()0,1x ∈时的根, 此时()21log 12x +=,解得21x =. 21. 【点睛】本题考查函数图像的交点,涉及函数图像的绘制,函数奇偶性的应用,属函数综合题.15.【分析】根据对数的性质可知且最小值为即可求得的值【详解】因为的值域为所以函数的最小值为即解得故答案为:【点睛】本题考查对数函数的值域考查对数的性质合理转化是解题的关键考查了运算能力属于中档题 解析:27【分析】根据对数的性质可知2240y ax x =-+>,且最小值为1,即可求得a 的值.【详解】因为()()()212log 24f x ax x a R =-+∈的值域为(],1-∞,所以2240ax x -+>, 函数224y ax x =-+的最小值为12,即()20442142a a a >⎧⎪⎨⨯--=⎪⎩,解得27a =,故答案为:27【点睛】本题考查对数函数的值域,考查对数的性质,合理转化是解题的关键,考查了运算能力,属于中档题.16.【分析】由奇函数定义求解【详解】设则∴此时时为奇函数故答案为:【点睛】方法点睛:本题考查函数的奇偶性对于分段函数一般需要分类求解象这种由奇函数求参数可设求得参数值然后再验证这个参数值对也适用即可本题解析:1-. 【分析】由奇函数定义求解. 【详解】设0x >,则()1xf x e -=-,()xf x em --=+,∴10x x e m e --++-=,1m =-.此时,0x <时,()1,x f x e =-()1()xf x e f x -=-=-,()f x 为奇函数.故答案为:1-. 【点睛】方法点睛:本题考查函数的奇偶性,对于分段函数,一般需要分类求解.象这种由奇函数求参数,可设0x >,求得参数值,然后再验证这个参数值对0x <也适用即可.本题也可以由特殊值如(1)(1)f f -=-求出参数,然后检验即可.17.【分析】由在R 上单调减确定a3a-1的范围再根据单调减确定在分界点x=1处两个值的大小从而解决问题【详解】因为是上的减函数所以解得故答案为:【点睛】本题考查分段函数单调性问题关键根据单调性确定在分段解析:3,17⎡⎫⎪⎢⎣⎭【分析】由()f x 在R 上单调减,确定a , 3a -1的范围,再根据单调减确定在分界点x =1处两个值的大小,从而解决问题. 【详解】因为3(1)4,1()1,1aa x a x f x og x x -+<⎧=⎨≥⎩是R 上的减函数,所以10013(1)4log 10a a a a a -<⎧⎪<<⎨⎪-+≥=⎩,解得317a ≤<, 故答案为:3,17⎡⎫⎪⎢⎣⎭【点睛】本题考查分段函数单调性问题,关键根据单调性确定在分段点处两个值的大小,属于中档题.18.【分析】可结合对数化简式将化简为再解对数不等式即可【详解】由由得即当时故;当时无解综上所述故答案为:【点睛】本题考查对数化简公式的应用分类讨论求解对数型不等式属于中档题解析:81,3⎛⎫⎪⎝⎭【分析】可结合对数化简式将()f x 化简为()1log 2log 3log 4x x x f x =-+-,再解对数不等式即可 【详解】由()2323231log 2log 9log 641log 2log 3log 4x x x x x x f x =-+-=-+-31log 2log 3log 41log 8x x x x =-+-=+,由()0f x <得81log 03x -<,即8log log 3xx x >, 当1x >时,83x <,故81,3x ⎛⎫∈ ⎪⎝⎭;当()0,1x ∈时,83x >,无解 综上所述,81,3x ⎛⎫∈ ⎪⎝⎭故答案为:81,3⎛⎫ ⎪⎝⎭【点睛】本题考查对数化简公式的应用,分类讨论求解对数型不等式,属于中档题19.或2【分析】根据复合函数的单调性及对数的性质即可求出的值【详解】当时在为增函数求得即;当时在为减函数求得即故答案为:或【点睛】本题考查复合函数单调性对数方程的解法难度一般解析:12或2【分析】根据复合函数的单调性及对数的性质即可求出a 的值. 【详解】当1a >时, 1log 12a y x ⎛⎫=+ ⎪⎝⎭在3,62⎡⎤-⎢⎥⎣⎦为增函数,min33log 1-224a y f ⎛⎫⎛⎫=-=-+= ⎪ ⎪⎝⎭⎝⎭,求得-214a =,即=2a ; 当01a <<时, 1log 12a y x ⎛⎫=+ ⎪⎝⎭在3,62⎡⎤-⎢⎥⎣⎦为减函数,()()min 6log 31-2a y f ==+=,求得-24a =,即1=2a . 故答案为:12或2. 【点睛】本题考查复合函数单调性,对数方程的解法,难度一般.20.①②④【分析】根据①②③④各个函数的定义域求出各个函数的值域判断正误即可【详解】①中函数的定义域值域;故①不正确;②中函数的定义域是值域;故②不正确;③中函数的值域是则它的定义域可能是故③是正确的;解析:①②④ 【分析】根据①、②、③、④各个函数的定义域,求出各个函数的值域,判断正误即可. 【详解】①中函数2x y =的定义域{}|0x x ≤,值域2(0,1]x y =∈;故①不正确; ②中函数1y x =的定义域是{|2}x x >,值域110,2y x ⎛⎫=∈ ⎪⎝⎭;故②不正确; ③中函数2y x 的值域是{|04}y y ≤≤,则它的定义域可能是{}|22x x -≤≤,故③是正确的;④中函数2log y x =的值域是{|3}y y ≤,∵2log 3,08y x x =≤∴<≤,,故④不正确; 故答案为:①②④. 【点睛】本题考查函数的定义域及其求法,函数的值域,指数函数的定义域和值域,对数函数的值域与最值,考查计算能力,属于基础题.三、解答题21.(1)(0,)+∞(2)52b ≥- 【分析】(1)化为指数不等式21x >可解得结果;(2)由()f x 的单调性求出集合A ,换元后,利用二次函数知识求出集合B ,根据A B ⋂≠∅列式可解得结果. 【详解】(1)()0f x >即1202xx ->,所以()221x >,所以21x >,所以0x >, 所以实数x 的取值范围是(0,)+∞.(2)因为()f x 122xx=-在[1,)+∞上递增,所以当1x =时,()f x 取得最小值32,无最大值,所以3[,)2A =+∞,设ln t x =,因为1≥x ,所以0t ≥,所以2()()4h t g x t t b ==-++(0)t ≥,因为2()(2)4h t t b =--++在[0,2)上递增,在(2,)+∞上递减,所以2t =是,()h t 取得最大值(2)4h b =+,无最小值,所以(,4]B b =-∞+, 因为A B ⋂≠∅,所以342b +≥,得52b ≥-.【点睛】关键点点睛:利用换元法将函数()g x 化为二次函数求值域是解题关键. 22.(1)()2x f x =;(2)[2,0]-;(3)17,12⎛⎤-∞- ⎥⎝⎦. 【分析】(1)根据(2)(1)6f f +=求解出a 的值,即可求解出()f x 的解析式;(2)采用换元法构造函数2(),[1,2]F t t t t =-∈,将m 的取值范围与()F t 的最值联系在一起,由此求解出结果;(3)先根据函数的奇偶性求解出()(),h x g x 的解析式,然后采用分离参数法得到1222222x x x x a --⎡⎤≤--+⎢⎥-⎣⎦,采用换元法求解出1222222xx x x --⎡⎤--+⎢⎥-⎣⎦的最大值,从而求解出a 的取值范围.【详解】(1)因为(2)(1)6f f +=,所以260,2a a a +-==或3a =-(舍去),所以()2x f x =;(2)由(1)知,()2x f x =,所以()222222x x x xm =-=-,令2,[1,2]xt t =∈,令2(),[1,2]F t t t t =-∈,所以()F t 的对称轴为12t =,且()F t 为开口向下的二次函数,所以()F t 在[]1,2上单调递减,所以()()ma min x (2)2,(1)0F t F F t F -====,所以m 的取值范围为[2,0]-; (3)因为()g x 为奇函数,()h x 为偶函数,所以()(),()()g x g x h x h x -=--=.由题()()()f x g x h x =+知,2()()2()()x x g x h x g x h x -⎧=+⎨=-+-⎩,即2()()2()()x x g x h x g x h x -⎧=+⎨=-+⎩解得2222(),()22x x x xh x g x --+-==将上式代入2()(2)0ag x h x +≤,得()()221222202x xxx a ---++≤, 易知()22222212211222222222222x xx xx xxx x x x x a -------++⎡⎤≤-⋅=-⋅=--+⎢⎥---⎣⎦. 令12,[1,2]2x xt x =-∈,则315,24t ⎡⎤=⎢⎥⎣⎦,122a t t ⎛⎫≤-+ ⎪⎝⎭, 因为存在[1,2]x ∈使得2()(2)0ag x h x +≤,所以max 12132173222122a t t ⎛⎫ ⎪⎡⎤⎛⎫≤-+=-+=- ⎪ ⎪⎢⎥⎝⎭⎣⎦ ⎪⎝⎭所以a 的取值范围是17,12⎛⎤-∞- ⎥⎝⎦. 【点睛】方法点睛:不等式在指定区间上有解或恒成立求解参数范围问题的处理方法: (1)分类讨论法:根据参数的临界值作分类讨论;(2)分离参数法:将自变量和参数分离开来,自变量部分构造新函数,分析新函数的最值与参数的关系. 23.(1)3-2)1. 【分析】(1)求出x y -的值,再化简11221122x y x y-+即得解;(2)利用对数的运算法则化简求解. 【详解】(1)因为222()()41249108x y x y xy -=+-=-⨯=,又x y <,所以x y -=-所以1111222221122()3x y x y x y x y--====--+.(2)原式22(lg 2)lg5(1lg 2)(lg 2)lg5lg 2lg5=+⋅+=+⋅+lg2(lg2lg5)lg5lg2lg51=++=+=.【点睛】关键点点睛:解答指数对数运算题的关键是通过观察式子的特点,再熟练利用指数对数的运算法则和性质求解.24.(1)(5,5)- (2)奇函数,见解析 【分析】(1)若()f x 有意义,则需满足505xx->+,进而求解即可; (2)由(1),先判断定义域是否关于原点对称,再判断()f x -与()f x 的关系即可. 【详解】 (1)由题,则505xx->+,解得55x -<<,故定义域为()5,5- (2)奇函数,证明:由(1),()f x 的定义域关于原点对称, 因为()()33355log log log 1055x xf x f x x x+--+=+==-+,即()()f x f x -=-, 所以()f x 是奇函数 【点睛】本题考查具体函数的定义域,考查函数的奇偶性的证明. 25.(1)见解析;(2)见解析;(3)[]4,5 【分析】 (1)由不等式101x x +>-即可求出()f x 的定义域; (2)证明()()f x f x -=-可得()f x 为奇函数;(3)先求出()f x 在[]3,7上的值域,令()t f x =,求()14h t t t=+的值域. 【详解】 (1)由101x x +>-得:1x >或1x <-, ()f x ∴的定义域为()(),11,-∞-+∞;(2)()()222111log log log 111x x x f x f x x x x -+-+-===-=---+-, ()f x ∴为奇函数;(3)()22log 11f x x ⎛⎫=+ ⎪-⎝⎭在[]3,7上单调递减,令()t f x =,则24log ,13t ⎡⎤∈⎢⎥⎣⎦,而()14h t t t=+在10,2⎛⎤ ⎥⎝⎦单调递减,在1,12⎡⎤⎢⎥⎣⎦上单调递增,又()2411log 15,4342h h h h ⎛⎫⎛⎫⎛⎫<=== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, ∴函数()h x 在[]3,7内的值域为[]4,5.【点睛】本题主要考查了对数型函数的定义域,奇偶性,考查了复合函数的单调性,值域求解,属于中档题.26.(1)0;0,(2)定义域是(0,1)(1,)⋃+∞,见解析 【分析】(1)先求出1(2)02f f ⎛⎫-=⎪⎝⎭,再证明1()0f x f x ⎛⎫-= ⎪⎝⎭,即得解;(2)先求出函数()f x 的定义域是(0,1)(1,)⋃+∞,再分类讨论证明()f x 在定义域上恒正.【详解】 (1)1(2)02f f ⎛⎫-= ⎪⎝⎭. 对任意(0,1)(1,)x ∈+∞,111111()ln ln 11221f x f x x x x x ⎛⎫⎪⎛⎫⎛⎫-=+-+ ⎪ ⎪ ⎪-⎝⎭⎝⎭ ⎪-⎝⎭1111111ln ln ln 1ln 121212121x x x x x x x x x x x x -⎛⎫⎛⎫⎛⎫⎛⎫=+++=+++=+ ⎪ ⎪ ⎪ ⎪-----⎝⎭⎝⎭⎝⎭⎝⎭0=.所以[]1111(11)(12)(29)(66)11122966f f f f f f f f ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫+++-+++⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦ 1111(11)(12)(29)(66)011122966f f f f f f f f ⎡⎤⎡⎤⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-+-= ⎪ ⎪ ⎪ ⎪⎢⎥⎢⎥⎢⎥⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦⎣⎦⎣⎦. (2)由题得0x >且1x ≠,所以函数()f x 的定义域是(0,1)(1,)⋃+∞,1()ln 2(1)x f x x x +=-.当(0,1)x ∈时,10x -<,ln 0x <,10x +>,所以()0f x >; 当(1,)x ∈+∞时,10x ->,ln 0x >,10x +>,所以()0f x >. 综上,()f x 在定义域上恒正. 【点睛】本题主要考查函数定义域的求法,考查函数值的求法,考查函数值域的求法,意在考查学生对这些知识的理解掌握水平.。

2023-2024学年高一上数学《指数函数与对数函数》测试卷及答案解析

2023-2024学年高一上数学《指数函数与对数函数》测试卷及答案解析

2023-2024学年高一数学《指数函数与对数函数》一.选择题(共12小题)1.(2022春•鼓楼区校级期中)设,则a,b,c的大小顺序为()A.a<c<b B.c<a<b C.a<b<c D.b<a<c 2.(2022春•鼓楼区校级期中)关于x的不等式e x≤ax(x﹣lnx)只有唯一实数解,则实数a的取值范围是()A.{e}B.[e,+∞)C.{1}D.(0,1] 3.(2022春•福州期中)已知a=lg2,b=log23,c=log34,则a,b,c的大小关系为()A.a>b>c B.a<b<c C.a<c<b D.c<a<b 4.(2022•福州模拟)折纸是我国民间的一种传统手工艺术.现有一张长10cm、宽8cm的长方形的纸片,将纸片沿着一条直线折叠,折痕(线段)将纸片分成两部分,面积分别为S1,S2.若S1:S2=1:3,则折痕长的最大值为()A .cm B.10cm C.2cm D.2cm 5.(2021秋•福州期末)已知函数f(x)=(x+3)(x﹣e)+(x﹣e)(x﹣π)+(x﹣π)(x+3)的零点x1,x2(x1<x2),则()A.x1x2>0B .<﹣C.x2﹣x1<e D.x1+x2<π6.(2021秋•福州期末)设a=0.123,b=30.4,c=log0.40.12,则a,b,c的大小关系为()A.a<b<c B.b<a<c C.a<c<b D.c<a<b 7.(2021秋•仓山区校级期末)若方程x2+2x+m2+3m=m cos(x+1)+7有且仅有1个实数根,则实数m的值为()A.2B.﹣2C.4D.﹣4 8.(2021秋•鼓楼区校级期中)某科技有限公司为了鼓励员工创新,打破发达国家的芯片垄断,计划逐年增加研发资金投入,若该公司2018年全年投入的研发资金为200万元,在此基础上,每年投入的研发资金比上一年增加10%,则该公司全年投入的研发资金开始超过400万元的年份是()(参考数据:1.16=1.77,1.17=1.95,1.18=2.14,1.19=2.36)第1页(共23页)。

指数函数与对数函数练习题

指数函数与对数函数练习题

指数函数与对数函数练习题1. 已知指数函数 $y = 2^{x-1}$,求下列函数的定义域和值域:a) $f(x) = y + 3$b) $g(x) = -y$c) $h(x) = y^2$解:a) $f(x) = y + 3$函数 $f(x)$ 的定义域与函数 $y = 2^{x-1}$ 的定义域相同,即所有实数,因为指数函数的定义域是 $(-\infty, +\infty)$。

值域为 $(-\infty,+\infty)$。

b) $g(x) = -y$函数 $g(x)$ 的定义域与函数 $y = 2^{x-1}$ 的定义域相同,即所有实数,因为指数函数的定义域是 $(-\infty, +\infty)$。

值域为 $(-\infty,0]$。

c) $h(x) = y^2$函数 $h(x)$ 的定义域与函数 $y = 2^{x-1}$ 的定义域相同,即所有实数,因为指数函数的定义域是 $(-\infty, +\infty)$。

值域为 $[0,+\infty)$。

2. 解下列对数方程:a) $\log_2(x+3) = 2$解: 首先将方程转化为指数形式,得到 $2^2 = x+3$。

然后解方程,得到 $4 = x+3$,进而得到 $x = 1$。

b) $\log_3(x-4) = -1$解: 首先将方程转化为指数形式,得到 $3^{-1} = x-4$。

然后解方程,得到 $\frac{1}{3} = x-4$,进而得到 $x = \frac{13}{3}$。

c) $\ln(x+2) = 3$解: 首先将方程转化为指数形式,得到 $e^3 = x+2$。

然后解方程,得到 $x = e^3 - 2$。

3. 判断下列函数的奇偶性:a) $f(x) = 2^x$解: 将函数 $f(x)$ 替换为 $f(-x)$,得到 $f(-x) = 2^{-x}$。

比较$f(x)$ 和 $f(-x)$,发现它们不相等,因此函数 $f(x)$ 不是奇函数也不是偶函数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《指数函数与对数函数》测试题一、选择题:1、已知(10)x f x =,则(5)f =( )A 、510B 、105 C 、lg10 D 、lg 52、对于0,1a a >≠,下列说法中,正确的是( )①若M N =则log log a a M N =; ②若log log a a M N =则M N =;③若22log log a a M N =则M N =; ④若M N =则22log log a a M N =。

A 、①②③④ B 、①③ C 、②④ D 、②3、设集合2{|3,},{|1,}x S y y x R T y y x x R ==∈==-∈,则S T 是 ( )A 、∅B 、TC 、SD 、有限集4、函数22log (1)y x x =+≥的值域为( )A 、()2,+∞B 、(),2-∞C 、[)2,+∞D 、[)3,+∞ 5、设 1.50.90.4812314,8,2y y y -⎛⎫=== ⎪⎝⎭,则( )A 、312y y y >>B 、213y y y >>C 、132y y y >>D 、123y y y >>6、在(2)log (5)a b a -=-中,实数a 的取值范围是( )A 、52a a ><或B 、2335a a <<<<或C 、25a <<D 、34a <<7、计算()()22lg 2lg52lg 2lg5++⋅等于( )A 、0B 、1C 、2D 、38、已知3log 2a =,那么33log 82log 6-用a 表示是( )A 、52a -B 、2a -C 、23(1)a a -+D 、231a a --9、若21025x=,则10x -等于( )A 、15B 、15-C 、150D 、162510、若函数2(55)xy a a a =-+⋅是指数函数,则有( )A 、1a =或4a =B 、1a =C 、4a =D 、0a >,且1a ≠11、当1a >时,在同一坐标系中, 函数x y a -=与log x a y =的图象是图中的( ) 12、已知1x ≠,则与x 3log 1+x 4log 1+x5log 1相等的式子是( ) A 、 x60log 1 B 、3451log log log x x x ⋅⋅ C 、 60log 1x D 、34512log log log x x x ⋅⋅ 13、若函数()l o g (01)a f x x a =<<在区间[],2a a 上的最大值是最小值的3倍,则a 的值为( )A、4 B、2 C 、14 D 、1214、下图是指数函数(1)x y a =,(2)x y b =,(3)x y c =x ,(4)x y d=x 的图象,则 a 、b 、c 、d 与1的大小关系是( )A 、1a b c d <<<<B 、1b a d c <<<<C 、1a b c d <<<<D 、1a b d c <<<< 15、若函数m y x +=-|1|)21(的图象与x 轴有公共点, 则m 的取值范围是( )A 、1m ≤-B 、10m -≤<C 、1m ≥D 、01m <≤ 二、填空题:16、指数式4532-b a 化为根式是 。

17化为指数式是 。

18、函数y=的定义域是 。

19、[]643log log (log 81)的值为 。

20、设1232,2()((2))log (1) 2.x e x f x f f x x -⎧⎪=⎨-≥⎪⎩<,则的值为, 。

21、已知函数12x y a+=-(0,1)a a >≠且的图象恒过定点,则这个定点的坐标是 。

22、若)log 11x =-,则x = 。

23、方程22log (1)2log (1)x x -=-+的解为 。

三、解答题:24、化简或求值:(1)25.02121325.0320625.0])32.0()02.0()008.0()945()833[(÷⨯÷+----; (2)()281lg500lglg 6450lg 2lg552+-++25、已知21()log 1x f x x+=- (1)求()f x 的定义域;(2)求使()0f x >的x 的取值范围。

26、已知2(23)4()log x x f x +-=, (1)求函数()f x 的单调区间;(2)求函数()f x 的最大值,并求取得最大值时的x 的值.27、已知函数2431()()3ax x f x -+=.(1)若1a =-,求()f x 的单调区间;(2)若()f x 有最大值3,求a 的值.(3)若()f x 的值域是(0,+∞),求a 的取值范围.《指数函数与对数函数》测试题参考答案一、选择题:DDCCC BBBAC AAABB14、【提示或答案】B 剖析:可先分两类,即(3)(4)的底数一定大于1,(1)(2)的底数小于1,然后再从(3)(4)中比较c 、d 的大小,从(1)(2)中比较a 、b 的大小.解法一:当指数函数底数大于1时,图象上升,且当底数越大,图象向上越靠近于y 轴;当底数大于0小于1时,图象下降,底数越小,图象向右越靠近于x 轴.得b <a <1<d <c . 解法二:令x =1,由图知c 1>d 1>a 1>b 1,∴b <a <1<d <c . 15、解: ⎪⎩⎪⎨⎧<≥==---)1(2)1()21()21(11|1|x x y x x x ,画图象可知-1≤m<0。

答案为B 。

二、填空题:16、4532b a 17、2343-b a 18、13,0,144⎡⎫⎛⎤-⎪ ⎢⎥⎣⎭⎝⎦19、0 20、2 21、(1,1)-- 22、1 23、5(解:考察对数运算。

原方程变形为2)1(log )1(log )1(log 2222=-=++-x x x ,即412=-x ,得5±=x 。

且⎩⎨⎧>+>-0101x x 有1>x 。

从而结果为5)三、解答题:24、解:(1)原式=41322132)10000625(]102450)81000()949()278[(÷⨯÷+- 922)2917(21]1024251253794[=⨯+-=÷⨯⨯+-=; (2)原式=()2681lg (5100)lglg 250lg 2552⨯+-+⨯ =lg5+lg100lg8lg53lg 250+--+=lg5+23lg 2lg53lg 250+--+=5225、(1)由于101x x+>-,即()()110x x +⋅->,解得:11x -<<∴函数21()log 1x f x x +=-的定义域为(1,1)-(2)()0f x >,即22211log 0log log 111x x x x ++>⇒>-- ∵以2为底的对数函数是增函数, ∴11,(1,1),10,1101x x x x x x x+>∈-∴->∴+>-⇒>- 又∵函数21()log 1x f x x+=-的定义域为(1,1)-,∴使()0f x >的x 的取值范围为(0,1) 26、解:(1)由2230x x +->,得函数()f x 的定义域为(1,3)-令223t x x =+-,(1,3)x ∈-,由于223t x x =+-在(-1,1]上单调递增,在[1,3)上单调递减,而4()log t f x =在R 上单调递增, 所以函数()f x 的单调递增区间为(-1,1],递减区间为[1,3)(2)令223t x x =+-,(1,3)x ∈-,则2223(1)44t x x x =+-=--+≤, 所以2(23)44441()log log log x x tf x +-=≤==,所以当1x =时,()f x 取最大值1.27、解:(1)当1a =-时,2431()()3x x f x --+=,令2()43g x x x =--+, 由于()g x 在(-∞,-2)上单调递增,在(-2,+∞)上单调递减, 而1()3t y =在R 上单调递减,所以()f x 在(-∞,-2)上单调递减,在(-2,+∞)上单调递增,即函数()f x 的递增区间是(-2,+∞),递减区间是(-∞,-2).(2)令2()43h x ax x =-+,则()1()3h x y =,由于()f x 有最大值3,所以()h x 应有最小值1-,因此必有0121614a a a>⎧⎪-⎨=-⎪⎩,解得1a =. 即当()f x 有最大值3时,a 的值等于1.(3)由指数函数的性质知,要使()1()3h x y =的值域为(0,+∞).应使2()43h x ax x =-+的值域为R ,因此只能有0a =。

因为若0a ≠,则()h x 为二次函数,其值域不可能为R 。

故a 的取值范围是0a =.。

相关文档
最新文档