平面向量高考真题精选(一)

合集下载

平面向量测试题-高考经典试题-附详细答案

平面向量测试题-高考经典试题-附详细答案

平面向量高考经典试题一、选择题1.(全国1文理)已知向量(5,6)a =-,(6,5)b =,则a 与bA .垂直B .不垂直也不平行C .平行且同向D .平行且反向 解.已知向量(5,6)a =-,(6,5)b =,30300a b ⋅=-+=,则a 与b 垂直,选A 。

2、(山东文5)已知向量(1)(1)n n ==-,,,a b ,若2-a b 与b 垂直,则=a ( )A .1BC .2D .4【答案】:C 【分析】:2(3,)n -a b =,由2-a b 与b 垂直可得:2(3,)(1,)30n n n n ⋅-=-+=⇒= 2=a 。

3、(广东文4理10)若向量,a b 满足||||1a b ==,,a b 的夹角为60°,则a a a b ⋅+⋅=______; 答案:32;解析:1311122a a ab ⋅+⋅=+⨯⨯=, 4、(天津理10) 设两个向量22(2,cos )a λλα=+-和(,sin ),2m b m α=+其中,,m λα2,a b =则mλ的取值范围是( )A.[6,1]-B.[4,8]C.(,1]-∞D.[1,6]-【答案】A【分析】由22(2,cos )a λλα=+-,(,sin ),2mb m α=+2,a b =可得2222cos 2sin m m λλαα+=⎧⎨-=+⎩,设k m λ=代入方程组可得22222cos 2sin km mk m m αα+=⎧⎨-=+⎩消去m 化简得2222cos 2sin 22k k k αα⎛⎫-=+ ⎪--⎝⎭,再化简得22422cos 2sin 022k k αα⎛⎫+-+-= ⎪--⎝⎭再令12t k =-代入上式得222(sin 1)(16182)0t t α-+++=可得2(16182)[0,4]t t -++∈解不等式得1[1,]8t ∈--因而11128k -≤≤--解得61k -≤≤.故选A5、(山东理11)在直角ABC ∆中,CD 是斜边AB 上的高,则下列等式不成立的是 (A )2AC AC AB =⋅ (B ) 2BC BA BC =⋅(C )2AB AC CD =⋅ (D ) 22()()AC AB BA BC CD AB⋅⨯⋅=【答案】:C.【分析】: 2()00AC AC AB AC AC AB AC BC =⋅⇔⋅-=⇔⋅=,A 是正确的,同理B 也正确,对于D 答案可变形为2222CD AB AC BC ⋅=⋅,通过等积变换判断为正确. 6、(全国2 理5)在∆ABC 中,已知D 是AB 边上一点,若AD =2DB ,CD =CB CA λ+31,则λ=(A)32(B)31(C) -31(D) -32 解.在∆ABC 中,已知D 是AB 边上一点,若AD =2DB ,CD =CB CA λ+31,则22()33CD CA AD CA AB CA CB CA =+=+=+-=1233CA CB +,4 λ=32,选A 。

(完整版)全国卷高考题汇编—平面向量

(完整版)全国卷高考题汇编—平面向量

2011年——2016年高考题专题汇编专题3 平面向量1、(16年全国1 文)设向量a =(x ,x +1),b =(1,2),且a ⊥b ,则x = .2、(16年全国1 理)设向量a =(m ,1),b =(1,2),且|a +b |2=|a |2+|b |2,则m = .3、(16年全国2 文)已知向量a =(m ,4),b =(3,-2),且a ∥b ,则m =___________.4、(16年全国2 理)已知向量(1,)(3,2)m =-,=a b ,且()⊥a +b b ,则m =(A )-8 (B )-6 (C )6 (D )85、(16年全国3 文)已知向量BA →=(12,2),BC →=(2,12),则∠ABC = (A )30° (B )45° (C )60° (D )120°6、(16年全国3 理)已知向量1(,)22BA = ,31(),22BC = 则∠ABC= (A)300 (B) 450 (C) 600 (D)12007、(15年新课标2 文)向量(1,1)=-a ,(1,2)=-b ,则(2)+⋅=a b aA .-1B .0C .1D .38、(15年新课标2理)设向量,不平行,向量与平行,则实数_________.9、(15年新课标1文)已知点A (0,1),B (3,2),向量AC =(-4,-3),则向量BC =(A )(-7,-4) (B )(7,4) (C )(-1,4) (D )(1,4) 10、(15年新课标1理)设D 为ABC 所在平面内一点3BC CD =,则(A )1433AD AB AC =-+ (B) 1433AD AB AC =- (C )4133AD AB AC =+ (D) 4133AD AB AC =-11、(14年新课标3 文)已知a b 、为单位向量,其夹角为060,则(2)a b b -•=( ) A .-1 B .0 C .1 D .212、(14年新课标3 理)若向量,a b 满足:||1a =,()a b a +⊥,(2)a b b +⊥,则||b =( )A .2BC .1 D13、(14年新课标2 文)设向量a ,b 满足a ·b=(A )1 (B ) 2 (C )3 (D) 514、(14年新课标2 理)设向量a,b 满足|a+b |=|a -b ,则a ⋅b = ( )A. 1B. 2C. 3D. 515、(14年新课标1文)设F E D ,,分别为ABC ∆的三边AB CA BC ,,的中点,则=+FC EBA. ADB.AD 21 C. BC 21 D. BC16、(14年新课标1理)已知A ,B ,C 是圆O 上的三点,若1()2AO AB AC =+,则AB 与AC 的夹角为 .17、(13全国2 文 理)已知正方形ABCD 的边长为2, E 为CD 的中点,,则 =_______.18、(12全国2 文)已知向量a ,b 夹角为45° ,且|a |=1,|2a -b |=10,则|b |=19、(11全国2 文)若向量a,b 满足1||||1,2a b a b ==⋅=-,则2a b +=A B CD 20、(11全国2 理)设向量a ,b ,c 满足a =b =1,a b =12-,,a c b c --=060,则c 的最大值等于A .2BCD .1。

高考数学平面向量专项考试题及答案解析

高考数学平面向量专项考试题及答案解析

装--------------------订--------------------线-------------------------------------------------------------试题共页第页试题共页第页试题共页第页试题共页第页式作差整理后得到(1+λ)c=(1+μ)a,∵向量a,c不共线,∴1+λ=0,1+μ=0,即λ=-1,μ=-1,∴a+b=-c,即a+b+c=0.故选D.10.解析:由题意,不妨设a=(1,0),b=⎝⎛⎭⎪⎫-12,32,p=(x,y),∵p·a=p·b=12,∴⎩⎪⎨⎪⎧x=12,-12x+32y=12,解得⎩⎪⎨⎪⎧x=12,y=32,∴|p|=x2+y2=1,故选B. 11.解析:由|AB→+AC→|=|AB→-AC→|,化简得AB→·AC→=0,又因为AB和AC为三角形的两条边,它们的长不可能为0,所以AB→与AC→垂直,所以△ABC为直角三角形.以AC所在直线为x轴,以AB所在直线为y轴建立平面直角坐标系,如图所示,则A(0,0),B(0,2),C(1,0).不妨令E为BC的靠近C的三等分点,则E⎝⎛⎭⎪⎫23,23,F⎝⎛⎭⎪⎫13,43,所以AE→=⎝⎛⎭⎪⎫23,23,AF→=⎝⎛⎭⎪⎫13,43,所以AE→·AF→=23×13+23×43=109.答案:B12.解析:由⎩⎨⎧a⊥c,b∥c⇒⎩⎨⎧2x-4=0,2y+4=0⇒⎩⎨⎧x=2,y=-2,∴a=(2,1),b=(1,-2),a+b=(3,-1),∴|a+b|=10,故选B.二、填空题13.解析:∵λa+b=0,即λa=-b,∴|λ||a|=|b|.∵|a|=1,|b|=5,∴|λ|= 5.---------------------------------------------------------------装--------------------订--------------------线------------------------------------------------------------- 答案: 514.解析:∵OA→⊥AB→,∴OA→·AB→=0,即OA→·(OB→-OA→)=0,∴OA→·OB→=OA2→=9.答案:915.解析:∵a⊥b,∴a·b=2m-6=0,m=3,∴a-b=(1,7),∴|a-b|=1+49=5 2.答案:5 216.解析:如图所示,BD→·AE→=(AD→-AB→)·(AB→+BE→)=⎝⎛⎭⎪⎫12AC→-AB→·⎝⎛⎭⎪⎫AB→+13AC→-13AB→=⎝⎛⎭⎪⎫12AC→-AB→·⎝⎛⎭⎪⎫13AC→+23AB→=16AC2→-23AB2→=16×4-23×4=-2. 答案:-2试题共页第页B卷答案解析一、选择题1.解析:∵A(1,3),B(4,-1),∴AB→=(3,-4),又∵|AB→|=5,∴与AB→同向的单位向量为AB→|AB→|=⎝⎛⎭⎪⎫35,-45.故选A.答案:A2.解析:由|a+b|=|a-b|可知a⊥b,设AB→=b,AD→=a,作矩形ABCD,可知AC→=a+b,BD→=a-b,设AC与BD的交点为O,结合题意可知OA=OD=AD,∴∠AOD=π3,∴∠DOC=2π3,又向量a+b与a-b的夹角为AC→与BD→的夹角,故所求夹角为2π3,选D.答案:D3.解析:由题意可得OD→=kOC→=kλOA→+kμOB→(0<k<1),又A,D,B三点共线,所以kλ+kμ=1,则λ+μ=1k>1,即λ+μ的取值范围是(1,+∞),选项B 正确.答案:B4.解析:∵a=(1,3),b=(3,m),∴|a|=2,|b|=9+m2,a·b=3+3m,又a,b的夹角为π6,试题共页第页可化为x2+y2-2x≤0,即(x-1)2+y2≤1,故选C.答案:C10.解析:由题知AD→=12(AB→+AC→),∵AB→·AC→=-16,∴|AB→|·|AC→|cos∠BAC=-16.在△ABC中,|BC→|2=|AB→|2+|AC→|2-2|AB→||AC→|·cos∠BAC,∴102=|A B→|2+|AC→|2+32,|AB→|2+|AC→|2=68,∴|AD→|2=14(AB→2+AC→2+2AB→·AC→)=14(68-32)=9,∴|AD→|=3.答案:D11.解析:如图,设A(m,0),B(0,n),∴mn=2,则a=(1,0),b=(0,1),OP→=a+2b=(1,2),P A→=(m-1,-2),PB→=(-1,n-2),P A→·PB→=5-(m+2n)≤5-22nm=1,当且仅当m=2n,即m=2,n=1时,等号成立.答案:A12.解析:由a,b为单位向量且a·b=0,可设a=(1,0),b=(0,1),又设c=(x,y),代入|c-a-b|=1得(x-1)2+(y-1)2=1,又|c|=x2+y2,故由几何性质得12+12-1≤|c|≤12+12+1,即2-1≤|c|≤2+1.答案:A二、填空题13.解析:AB→=OB→-OA→=(3,2-t),由题意知OB→·AB→=0,所以2×3+2(2-t)=0,解得t=5.答案:514.解析:由|2a-b|≤3可知,4a2+b2-4a·b≤9,所以4a2+b2≤9+4a·b,而---------------------------------------------------------------装--------------------订--------------------线------------------------------------------------------------- 4a2+b2=|2a|2+|b|2≥2|2a|·|b|≥-4a·b,所以a·b≥-98,当且仅当2a=-b时取等号.答案:-9815.解析:作CO⊥AB于O,建立如图所示的平面直角坐标系,则A⎝⎛⎭⎪⎫-32,0,B⎝⎛⎭⎪⎫12,0,C⎝⎛⎭⎪⎫0,32,D⎝⎛⎭⎪⎫-1,32,所以E⎝⎛⎭⎪⎫16,33,F⎝⎛⎭⎪⎫-56,32,所以AE→·AF→=⎝⎛⎭⎪⎫53,33·⎝⎛⎭⎪⎫23,32=109+12=2918.答案:291816.解析:如图,AE→=AB→+BE→=AB→+13BC→,AF→=AD→+DF→=AD→+1λDC→=BC→+1λAB→,所以AE→·AF→=⎝⎛⎭⎪⎫AB→+13BC→·⎝⎛⎭⎪⎫BC→+1λAB→=⎝⎛⎭⎪⎫1+13λAB→·BC→+1λAB→2+13BC→2=⎝⎛⎭⎪⎫1+13λ×2×2×cos 120°+4λ+43=1,解得λ=2.答案:2。

高中 平面向量高考真题

高中 平面向量高考真题

平面向量高考真题1、(2020全国Ⅰ理14)设,a b 为单位向量,且||1a b += ,则||a b -= ______________.32、(2020全国Ⅱ理13)已知单位向量a →,b →的夹角为45°,k a b →→-与a →垂直,则k =__________.223、(2020全国Ⅲ理6)已知向量a ,b 满足||5a =,||6b =,6a b ⋅=-,则cos ,=+a a b ()A.3135-B.1935-C.1735D.19354、(2020北京13)已知正方形ABCD 的边长为2,点P 满足1()2AP AB AC =+,则||PD = _________;PB PD ⋅=_________.(1).5(2).1-5、(2020天津理15)如图,在四边形ABCD 中,60,3B AB ︒∠==,6BC =,且3,2AD BC AD AB λ=⋅=- ,则实数λ的值为_________,若,M N 是线段BC 上的动点,且||1MN = ,则DM DN ⋅的最小值为_________.(1).16(2).1326、(2020浙江17)17.设1e ,2e 为单位向量,满足21|22|-≤e e 12a e e =+ ,123b e e =+ ,设a ,b的夹角为θ,则2cos θ的最小值为_______.28297、(2020全国新高考山东卷7)已知P 是边长为2的正六边形ABCDEF 内的一点,则AP AB ⋅的取值范用是()AA.()2,6-B.(6,2)-C.(2,4)- D.(4,6)-8、(2020江苏13)13.在△ABC 中,43=90AB AC BAC ==︒,,∠,D 在边BC 上,延长AD到P ,使得AP =9,若3()2PA mPB m PC =+- (m 为常数),则CD 的长度是________.1859、(2019全国Ⅰ理7)已知非零向量a ,b 满足||2||=a b ,且()-a b ⊥b ,则a 与b 的夹角为BA .π6B .π3C .2π3D .5π610、(2019全国Ⅱ理3)已知AB=(2,3),AC =(3,t ),BC =1,则AB BC ⋅ =CA .-3B .-2C .2D .311、(2019全国Ⅲ理13)已知a ,b 为单位向量,且a ·b =0,若2=-c a ,则cos ,<>=a c ___________.2312、(2019北京7)设点A ,B ,C 不共线,则”是的(A )充分而不必要条件(B )必要而不充分条件(C )充分必要条件(D )既不充分也不必要条件13、(2019天津14)在四边形ABCD中,,5,30AD BC AB AD A ==∠=︒∥,点E 在线段CB 的延长线上,且AE BE =,则BD AE ⋅=.1-14、(2019浙江17)已知正方形ABCD 的边长为1,当每个(1,2,3,4,5,6)i i λ=取遍1±时,123456||AB BC CD DA AC BD λλλλλλ+++++的最小值是___________,最大值是___________.0,15、(2019江苏12)如图,在ABC ∆中,D 是BC 的中点,E 在边AB 上,=2BE EA ,AD 与CE 交于O ,若=6AB AC AO EC ⋅⋅ ,则ABAC的值是______.。

高考数学压轴专题最新备战高考《平面向量》真题汇编附答案解析

高考数学压轴专题最新备战高考《平面向量》真题汇编附答案解析

数学高考《平面向量》复习资料(1)一、选择题1.已知向量()1,3b =r ,向量a r 在b r方向上的投影为6-,若()a b b λ+⊥r r r ,则实数λ的值为( ) A .13B .13-C .23D .3【答案】A 【解析】 【分析】设(),a x y =r ,转化条件得36x y +=-,()34x y λ+=-,整体代换即可得解.【详解】 设(),a x y =r,Q a r 在b r方向上的投影为6-,∴362a b x y b⋅+==-r rr 即312x y +=-. 又 ()a b b λ+⊥r r r ,∴()0a b b λ+⋅=r r r即1330x y λλ+++=,∴()34x y λ+=-即124λ-=-,解得13λ=. 故选:A. 【点睛】本题考查了向量数量积的应用,属于中档题.2.如图,在梯形ABCD 中, 2DC AB =u u u r u u u r, P 为线段CD 上一点,且12DP PC =,E 为BC 的中点, 若EP AB AD λμ=+u u u r u u u r u u u r(λ, R μ∈),则λμ+的值为( )A .13B .13-C .0D .12【答案】B 【解析】 【分析】直接利用向量的线性运算,化简求得1526EP AD AB =-u u u v u u u v u u u v,求得,λμ的值,即可得到答案.【详解】由题意,根据向量的运算法则,可得:()1214111232326EP EC CP BC CD AC AB AB AC AB u u u v u u u v u u u v u u u v u u u v u u u v u u u v u u u v u u u v u u u v =+=+=--=-()1111522626AD AB AB AD AB =+-=-u u uv u u u v u u u v u u u v u u u v 又因为EP AB AD λμ=+u u u v u u u v u u u v ,所以51,62λμ=-=,所以511623λμ+=-+=-,故选B. 【点睛】本题主要考查了向量的线性运算及其应用,其中解答中熟记向量的线性运算法则,合理应用向量的三角形法则化简向量EP u u u v是解答的关键,着重考查了运算与求解能力,属于基础题.3.已知单位向量a r ,b r 的夹角为3π,(),c a b R μλμ+=λ+∈r u u r u u r ,若2λμ+=,那么c r 的最小值为( )A BC D 【答案】D 【解析】 【分析】利用向量的数量积的运算公式,求得12a b ⋅=r r ,再利用模的公式和题设条件,化简得到24c λμ=-u r ,最后结合基本不等式,求得1λμ≤,即可求解.【详解】由题意,向量,a b r r 为单位向量,且夹角为3π,所以11cos 11322a b a b π⋅=⋅=⨯⨯=r r r r ,又由(),c a b μλμ=λ+∈R r u u r u u r,所以()22222222()4c a b a b λμλμλμλμλμλμλμλμ=+=++⋅=++=+-=-u r r r r r ,因为,R λμ+∈时,所以222()122λμλμ+⎛⎫≤==⎪⎝⎭,当且仅当λμ=时取等号,所以23c ≥u r ,即c ≥u r故选:D . 【点睛】本题主要考查了平面向量的数量积的运算,以及向量的模的计算,其中解答中熟记向量的数量积和模的计算公式,以及合理应用基本不等式求解是解答的关键,着重考查了推理与运算能力.4.已知向量(sin ,cos )a αα=r,(1,2)b =r, 则以下说法不正确的是( ) A .若//a b rr,则1tan 2α=B .若a b ⊥rr,则1tan 2α=C .若()f a b α=⋅rr 取得最大值,则1tan 2α= D .||a b -rr 1 【答案】B 【解析】 【分析】根据向量平行、垂直、模以及向量的数量积的坐标运算即可判断. 【详解】A 选项,若//a b r r ,则2sin cos αα=,即1tan 2α=,A 正确.B 选项,若a b ⊥r r,则sin 2cos 0αα+=,则tan 2α=-,B 不正确.C 选项,若()f a b α=⋅r r取得最大值时,则())f ααϕ=+,取得最大值时,()sin 1αϕ+=,2,2k k Z παϕπ+=+∈,又tan 2ϕ=,则1tan 2α=,则C 正确.D 选项,||a b -==r r的最大值为1=,选项D 正确.故选:B . 【点睛】本题主要考查向量的坐标运算,以及模的求法,掌握向量平行、垂直、数量积的坐标运算是解题的关键,是基础题.5.已知向量a v ,b v 满足a b a b +=-r rv v ,且||a =v ||1b =r ,则向量b v 与a b -v v 的夹角为( ) A .3π B .23π C .6π D .56π 【答案】B 【解析】 【分析】对a b a b +=-v v v v 两边平方,求得0a b ⋅=v v ,所以a b ⊥v v .画出图像,根据图像确定b v 与a b-v v 的夹角,并根据它补角的正切值求得对应的角的大小.【详解】因为a b a b +=-v v v v ,所以222222a a b b a a b b +⋅+=-⋅+v v v v v v v v ,即0a b ⋅=v v ,所以a b ⊥v v .如图,设AB a =u u u v v ,AD b =u u u v v,则向量b v 与a b -v v 的夹角为BDE ∠,因为tan 3BDA ∠=,所以3BDA π∠=,23BDE π∠=.故选B.【点睛】本题考查平面向量的模以及夹角问题,考查运算求解能力,考查数形结合的数学思想方法.属于中档题.6.下列说法中说法正确的有( )①零向量与任一向量平行;②若//a b rr,则()a b R λλ=∈rr;③()()a b c a b c ⋅⋅=⋅⋅r r r r r r④||||||a b a b +≥+r r r r ;⑤若0AB BC CA ++=u u u r u u u r u u u r r ,则A ,B ,C为一个三角形的三个顶点;⑥一个平面内只有一对不共线的向量可作为表示该平面内所有向量的基底; A .①④ B .①②④C .①②⑤D .③⑥【答案】A 【解析】 【分析】直接利用向量的基础知识的应用求出结果. 【详解】对于①:零向量与任一向量平行,故①正确;对于②:若//a b r r ,则()a b R λλ=∈r r ,必须有0b ≠r r,故②错误;对于③:()()a b c a b c ⋅⋅=⋅⋅r r r r r r ,a r 与c r不共线,故③错误;对于④:a b a b +≥+r r r r,根据三角不等式的应用,故④正确;对于⑤:若0AB BC CA ++=u u u r u u u r u u u r r ,则,,A B C 为一个三角形的三个顶点,也可为0r,故⑤错误;对于⑥:一个平面内,任意一对不共线的向量都可以作为该平面内所有向量的基底,故⑥错误. 综上:①④正确. 故选:A. 【点睛】本题考查的知识要点:向量的运算的应用以及相关的基础知识,主要考察学生的运算能力和转换能力,属于基础题.7.已知在平面直角坐标系xOy 中,O 为坐标原点,()0,2A ,2220OB OA +=,若平面内点P 满足3PB PA =u u u r u u u r,则PO 的最大值为( )A .7B .6C .5D .4【答案】C 【解析】 【分析】设(),P x y ,(),B m n ,根据3PB PA =u u u r u u u r可得262m x n y=-⎧⎨=-⎩,再根据2220OB OA +=可得点P 的轨迹,它一个圆,从而可求PO 的最大值. 【详解】设(),P x y ,(),B m n ,故(),PB m x n y =--u u u r ,(),2PA x y =--u u u r. 由3PB PA =u u u r u u u r可得363m x x n y y-=-⎧⎨-=-⎩,故262m x n y=-⎧⎨=-⎩,因为2220OB OA +=,故()22443420x y +-+=,整理得到()2234x y +-=,故点P 的轨迹为圆,其圆心为()0,3,半径为2,故PO 的最大值为325+=, 故选:C. 【点睛】本题考查坐标平面中动点的轨迹以及圆中与距离有关的最值问题,一般地,求轨迹方程,可以动点转移法,也可以用几何法,而圆外定点与圆上动点的连线段长的最值问题,常转化为定点到圆心的距离与半径的和或差,本题属于中档题.8.已知ABC V 为直角三角形,,6,82C BC AC π===,点P 为ABC V 所在平面内一点,则()PC PA PB ⋅+u u u r u u u r u u u r的最小值为( )A .252-B .8-C .172-D .1758-【答案】A 【解析】 【分析】根据,2C π=以C 点建系, 设(,)P x y ,则22325()=2(2)222PC PA PB x y ⎛⎫⋅+-+-- ⎪⎝⎭u u u r u u u r u u u r ,即当3=2=2x y ,时,取得最小值.【详解】如图建系,(0,0), (8,0), (0,6)C A B ,设(,)P x y ,(8,)PA x y =--u u u r ,(,6)PB x y =--u u u r,则22()(,)(82,62)2826PC PA PB x y x y x x y y ⋅+=--⋅--=-+-u u u r u u u r u u u r22325252(2)2222x y ⎛⎫=-+--≥- ⎪⎝⎭.故选:A. 【点睛】本题考查平面向量数量积的坐标表示及其应用,根据所求关系式运用几何意义是解题的关键,属于中档题.9.在ABC V 中,D 为边AC 上的点,若2133BD BA BC =+u u u r u u u r u u u r ,AD DC λ=u u u v u u u v,则λ=( )A .13B .12C .3D .2【答案】B 【解析】 【分析】根据2133BD BA BC =+u u u v u u u v u u u v ,将,AD DC u u u r u u u r 都用基底()BA BC u u u r u u u r ,表示,再根据AD DC λ=u u u v u u u v 求解.【详解】因为2133BD BA BC =+u u u v u u u v u u u v ,所以1122,+3333AD BD BA BA BC DC BC BD BA BC =-=-+=-=-u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u uu r u u u r ,因为AD DC λ=u u u v u u u v ,所以λ= 12, 故选:B 【点睛】本题主要考查平面向量的基本定理和共线向量定理,还考查运算求解的能力,属于中档题.10.在ABC V 中,AD AB ⊥,3,BC BD =u u u r u u u r ||1AD =u u u r ,则AC AD ⋅u u u r u u u r的值为( )A .1B .2C .3D .4【答案】C 【解析】 【分析】由题意转化(3)AC AD AB BD AD ⋅=+⋅u u u r u u u r u u u r u u u r u u u r,利用数量积的分配律即得解.【详解】AD AB ⊥Q ,3,BC BD =u u u r u u u r ||1AD =u u u r,()(3)AC AD AB BC AD AB BD AD ∴⋅=+⋅=+⋅u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r2333AB AD BD AD AD =⋅+⋅==u u u r u u u r u u u r u u u r u u u r故选:C 【点睛】本题考查了平面向量基本定理和向量数量积综合,考查了学生综合分析,转化划归,数学运算能力,属于中档题.11.如图,两个全等的直角边长分别为1,3的直角三角形拼在一起,若AD AB AC λμ=+u u u r u u u r u u u r,则λμ+等于( )A 323-+ B 323+ C 31 D 31+【答案】B 【解析】 【分析】建立坐标系,求出D 点坐标,从而得出λ,μ的值. 【详解】解:1AC =Q ,3AB =30ABC ∴∠=︒,60ACB ∠=︒,以AB ,AC 为坐标轴建立坐标系,则13,12D ⎛+ ⎝⎭. )3,0AB =u u u r,()0,1AC =uu u r ,∴13,12AD ⎛⎫=+⎪ ⎪⎝⎭u u u r. Q AD AB AC λμ=+u u u r u u u r u u u r ,∴132312λμ⎧=⎪⎪⎨⎪=+⎪⎩,∴331λμ⎧=⎪⎪⎨⎪=+⎪⎩,231λμ∴+=+. 故选:B .【点睛】本题考查了平面向量的基本定理,属于中档题.12.若点O 和点F 分别为椭圆22143x y +=的中心和左焦点,点P 为椭圆上的任意一点,则OP FP →→g 的最大值为( ) A .4 B .5C .6D .7【答案】C 【解析】 【分析】设(),P x y ,由数量积的运算及点P 在椭圆上,可把OP FP ⋅u u u r u u u r表示成为x 的二次函数,根据二次函数性质可求出其最大值. 【详解】设(),P x y ,()()1,0,0,0F O -,则()(),,+1,OP x y FP x y ==u u u r u u u r,则 22OP FP x x y ⋅=++u u u r u u u r,因为点P 为椭圆上,所以有:22143x y +=即22334y x =-,所以()222223132244x x y x x x FP x OP =++=⋅++-=++u u u r u u u r又因为22x -≤≤,所以当2x =时,OP FP ⋅u u u r u u u r的最大值为6 故选:C 【点睛】本题考查了数量积的坐标运算,求二次函数的最大值,属于一般题.13.如图,在等腰直角ABC ∆中,D ,E 分别为斜边BC 的三等分点(D 靠近点B ),过E 作AD 的垂线,垂足为F ,则AF =u u u v( )A .3155AB AC +u u uv u u u vB .2155AB AC +u u uv u u u vC .481515AB AC +u u uv u u u v D .841515AB AC +u u uv u u u v 【答案】D 【解析】 【分析】设出等腰直角三角形ABC 的斜边长,由此结合余弦定理求得各边长,并求得cos DAE ∠,由此得到45AF AD =u u u r u u u r,进而利用平面向量加法和减法的线性运算,将45AF AD =u u u r u u u r 表示为以,AB AC u u u r u u u r为基底来表示的形式.【详解】设6BC =,则32,2AB AC BD DE EC =====,22π2cos 4AD AE BD BA BD BA ==+-⋅⋅10=,101044cos 2105DAE +-∠==⨯, 所以45AF AF AD AE ==,所以45AF AD =u u u r u u u r . 因为()1133AD AB BC AB AC AB =+=+-u u u r u u u r u u u r u u u r u u u r u u u r 2133AB AC =+u u ur u u u r , 所以421845331515AF AB AC AB AC ⎛⎫=⨯+=+ ⎪⎝⎭u u u r u u u r u u u r u u u r u u u r. 故选:D 【点睛】本小题主要考查余弦定理解三角形,考查利用基底表示向量,属于中档题.14.已知平面向量,,a b c r r r满足()()2,21a b a b a c b c ==⋅=-⋅-=r r r r r r r r ,则b c -r r 的最小值为( )A B C .2-D 【答案】A 【解析】 【分析】根据题意,易知a r 与b r的夹角为60︒,设(=1a r ,()20b =,r ,(),c x y =r ,由()()21a c b c -⋅-=r r r r ,可得221202x y x +-+=,所以原问题等价于,圆221202x y x +-+=上一动点与点()20,之间距离的最小值, 利用圆心和点()20,的距离与半径的差,即可求出结果. 【详解】因为2a b a b ==⋅=r r r r ,所以a r 与b r的夹角为60︒,设(=1a r ,()20b =,r ,(),c x y =r,因为()()21a c b c -⋅-=r r r r ,所以221202x y x +-+=,又b c -=r r所以原问题等价于,圆221202x y x +-+=上一动点与点()20,之间距离的最小值,又圆221202x y x +-+=的圆心坐标为1⎛ ⎝⎭,所以点()20,与圆221202x y x +-+=上一动点距离的最小值为=. 故选:A. 【点睛】本题考查向量的模的最值的求法,考查向量的数量积的坐标表示,考查学生的转换思想和运算能力,属于中档题.15.如图,在ABC ∆中,12AN NC =u u u r u u u r ,P 是线段BN 上的一点,若15AP mAB AC =+u u u r u u u r u u u r ,则实数m 的值为( )A .35B .25C .1415D .910【答案】B【解析】【分析】根据题意,以AB u u u r ,AC u u u r 为基底表示出AP u u u r 即可得到结论.【详解】 由题意,设()NP NB AB AN λλ==-u u u r u u u r u u u r u u u r , 所以,()()113AP AN NP AN AB AN AB AN AB AC λλλλλ-=+=+-=+-=+u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r , 又15AP mAB AC =+u u u r u u u r u u u r , 所以,1135λ-=,且m λ=,解得25m λ==. 故选:B.【点睛】 本题考查了平面向量的线性运算的应用以及平面向量基本定理的应用,属于基础题. 16.若O 为ABC ∆所在平面内任一点,且满足()()0OB OC OC OA CA AB -⋅-++=u u u r u u u r u u u r u u u r u u r u u u r ,则ABC ∆的形状为( )A .直角三角形B .等腰三角形C .等腰直角三角形D .等边三角形 【答案】A【解析】【分析】利用平面向量加法和减法的三角形法则以及向量数量积的性质即可进行判断.【详解】 由()()0OB OC OC OA CA AB -⋅-++=u u u r u u u r u u u r u u u r u u u r u u u r ,即()0CB AC CB CB AB ⋅+=⋅=u u u r u u u r u u u r u u u r u u u r ,所以,CB AB ⊥,即2B π∠=,故ABC ∆为直角三角形.故选:A.【点睛】 本题主要考查了平面向量加法和减法的三角形法则以及向量数量积的性质的简单应用,属于基础题.17.已知向量(sin ,cos )a αα=r ,(1,2)b =r ,则以下说法不正确的是( )A .若//a b r r ,则1tan 2α=B .若a b ⊥r r ,则1tan 2α= C .若()f a b α=⋅r r 取得最大值,则1tan 2α= D .||a b -r r1 【答案】B【解析】【分析】A 选项利用向量平行的坐标表示来判断正确性.B 选项利用向量垂直的坐标表示来判断正确性.C 选项求得()f α的表达式,结合三角函数最值的求法,判断C 选项的正确性.D 选项利用向量模的运算来判断正确性.【详解】A 选项,若//a b r r ,则2sin cos αα=,即1tan 2α=,A 正确.B 选项,若a b ⊥r r ,则sin 2cos 0αα+=,则tan 2α=-,B 不正确. C选项,si (n )2cos in()f a b ααααϕ+==⋅=+r r ,其中tan 2ϕ=.取得最大值时,22k παϕπ+=+,22k πϕπα=+-,tan 2tan 2k πϕπα=+-⎛⎫ ⎪⎝⎭1tan 22tan παα⎛⎫=== ⎪⎝⎭-,则1tan 2α=,则C 正确. D 选项,由向量减法、模的几何意义可知||a b -r r1,此时a =r ,,a b r r 反向.故选项D 正确.故选:B【点睛】本小题主要考查向量平行、垂直的坐标表示,考查向量数量积的运算,考查向量减法的模的几何意义,属于中档题.18.向量1,tan 3a α⎛⎫= ⎪⎝⎭r ,()cos ,1b α=r ,且//a b r r ,则cos 2πα⎛⎫+= ⎪⎝⎭( )A .13 B.3- C.3- D .13- 【答案】D【解析】【分析】根据向量平行的坐标运算以及诱导公式,即可得出答案.【详解】//a b ∴r r1cos tan sin 3ααα∴=⋅= 1cos sin 23παα⎛⎫∴+=-=- ⎪⎝⎭故选:D【点睛】本题主要考查了由向量平行求参数以及诱导公式的应用,属于中档题.19.已知单位向量,a b r r满足3a b +=r r ,则a r 与b r 的夹角为A .6πB .4πC .3πD .2π 【答案】C【解析】由3a b +=r r 22236913a b a a b b +=+⋅+=r r r r r r ,又因为单位向量,a b r r ,所以1632a b a b ⋅=⇒⋅=r r r r , 所以向量,a b r r 的夹角为1cos ,2a b a b a b ⋅〈〉==⋅r r r r r r ,且,[0,]a b π〈〉∈r r ,所以,3a b π〈〉∈r r ,故选C.20.在OAB ∆中,已知OB =u u u v 1AB u u u v =,45AOB ∠=︒,点P 满足(),OP OA OB λμλμ=+∈R u u u v u u u v u u u v ,其中λ,μ满足23λμ+=,则OP u u u v 的最小值为( ) ABCD【答案】A【解析】【分析】根据2OB =u u u r ,1AB =uu u r ,45AOB ∠=︒,由正弦定理可得OAB ∆为等腰直角三角形,进而求得点A 坐标.结合平面向量的数乘运算与坐标加法运算,用λ,μ表示出OP u u u r.再由23λμ+=,将OP u u u r 化为关于λ的二次表达式,由二次函数性质即可求得OP u u u r的最小值.【详解】 在OAB ∆中,已知2OB =u u u r ,1AB =uu u r ,45AOB ∠=︒由正弦定理可得sin sin AB OB AOB OAB=∠∠u u u r u u u r 代入2sin 22OAB =∠,解得sin 1OAB ∠=即2OAB π∠= 所以OAB ∆为等腰直角三角形 以O 为原点,OB 所在直线为x 轴,以OB 的垂线为y 轴建立平面直角坐标系如下图所示:则点A 坐标为22⎝⎭所以22OA =⎝⎭u u u r ,)2,0OB =u u u r 因为(),OP OA OB λμλμ=+∈R u u u r u u u r u u u r 则)222,022OP λμ⎛ =+ ⎝⎭u u u r 222,22λμλ⎛⎫ ⎪ ⎪⎝⎭= 则2222222OP λμλ⎛⎫=++⎛⎫ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭u u u r 2222λλμμ=++因为23λμ+=,则32μλ=-代入上式可得==所以当95λ=时, min OP ==u u u r 故选:A【点睛】本题考查了平面向量基本定理的应用,正弦定理判断三角形形状,平面向量的坐标运算,属于中档题.。

高考数学专题:平面向量练习试题、答案

高考数学专题:平面向量练习试题、答案

高考数学专题:平面向量练习试题 1.已知(3,4)a =,(8,6)b =-,则向量a 与b ( )A .互相平行B .互相垂直C .夹角为30°D .夹角为60° 2.已知向量(5,3)a =-,(2,)b x =,且//a b ,则x 的值是( ) A .65 B .103 C .-65 D .-103 3.已知向量(2,3)a =,(1,2)b =,且()()a b a b λ+⊥-,则λ等于( ) A .35 B .35- C .3- D .3 4.如果a 、b 都是单位向量,则a b -的取值范围是( )A .(1,2)B .(0,2)C .[1,2]D .[0,2] 5.已知在ABC ∆中,0OA OB OC ++=,则O 为ABC ∆的( )A .垂心B .重心C .外心D .内心 6.已知(7,1)A ,(1,4)B ,直线ax y 21=与线段AB 交于点C ,且2AC CB =,则a 等于( ) A .2 B .35 C .1 D .54 7.已知直线2y x =上一点P 的横坐标为a ,有两个点(1,1)A -,(3,3)B ,那么使向量PA 与PB 夹角为钝角的一个充分但不必要的条件是( )A .12a -<<B .01a <<C .22a -<< D .02a <<8.已知向量(4,2)a =,(1,1)b =-,则b 在a 方向上的射影长为_________. 9.已知点(2,3)A ,(0,1)C ,且2AB BC =-,则点B 的坐标为_____________.10.已知||2a =,||2b =,a 与b 的夹角为45︒,则()b a a -⋅=________. 11.已知向量(3,1)OA =--,(2,3)OB =,OC OA OB =+,则向量OC 的坐标为____________,将向量OC 按逆时针方向旋转90︒得到向量OD ,则向量OD 的坐标为______________12.已知向量a 、b 的夹角为45︒,且满足||4a =,1()(23)122a b a b +⋅-=,则||b =_________;b 在a 方向上的投影等于_____________. 13.平面上有三个点(2,)A y -,(0,)2y B ,(,,)C x y ,若AB BC ⊥,则动点的轨迹方程为______________.14.将函数2y x =的图象F 按向量(3,2)a =-平移到'F ,则'F 对应的函数解析式为_________________.15.把点(2,2)A 按向量(2,2)a =-平移到点B ,此时点B 分OC (O 为坐标原点)的比为2-,则点C 的坐标为____________.16.在ABC ∆中,60BAC ∠=︒,||1AC =,||4AB =,则ABC ∆的面积为____,||BC =_____________.答案1.B2.C3.B4.D5.B6.A7.B8.59.(2,1)-- 10.2- 11.(1,2)-,(2,1)--12 1 13.28y x =14.2(3)2y x =-- 15.(0,2)16。

平面向量高考题选及答案知识讲解

平面向量高考题选及答案知识讲解

形, P 为平
面 ABC 内一点,则 PA (PB PC) 的最小是 )A. 2 B. 3 C. 4
2
3
D. 1
7.【2017 全国高考新课标 III 卷理数·12T】在矩形 ABCD 中,AB=1,AD=2,
动点 P 在以点 C 为圆心且与 BD 相切的圆上。若 AP = AB + AD ,则 + 的
11.【2017 全国高考浙江卷理数·13T】在平面直角坐标系 xOy 中,A(-
12,0),B(0,6),点 P 在圆 O:x2+y2=50 上,若 PA · PB 20,则点 P 的横
坐标的取值范围是 12【2017 全国高考浙江卷理数·16T】(本小题满分 14 分)
已知向量 a=(cosx,sinx),
,
.(1)若 a∥b,求 x 的值;
(2)记
,求 的最大值和最小值以及对应的 x 的值
13、(2016 年北京高考)设 a , b 是向量,则“| a || b | ”是“| a b || a b | ”的( )
A.充分而不必要条件 B.必要而不充分条件 C.充分必要条件 D.既不充分也不必要条件
平面向量高考题选及 答案
精品资料
《平面向量》
1.【2017 全国高考新课标 I 卷理数·13T】已知向量 a,b 的夹角为 60°,
|a|=2,|b|=1,则| a +2b |=
.
2.(2016 全国 1.理数.13)设向量 a=(m,1),b=(1,2),且|a+b|2=|a|2+|b|2,则
m=
(C) 3 a2 Error! Digit expected. 4
24.【2015 高考陕西,理 7】对任意向量 a,b ,下列关系式中不恒成立的是

(7)历届高考中的“平面向量”试题精选(自我测试)

(7)历届高考中的“平面向量”试题精选(自我测试)

17.解:(Ⅰ)由题意得,f(x)=a· (b+c)=(sinx,-cosx)· (sinx-cosx,sinx-3cosx)
=sin2x-2sinxcosx+3cos2x=2+cos2x-sin2x=2+ 2 sin(2x+
2 = . 2 3 k 3 3 (Ⅱ)由 sin(2x+ )=0 得 2x+ =k. ,即 x= ,k∈Z, 4 2 8 4 k 3 k 3 2 于是 d=( ,-2) ,d ( ) 4 , k∈Z. 2 8 2 8
8. (2005 北京理、文)若 | a | 1,| b | 2, c a b ,且 c a ,则向量 a 与 b 的夹角为( (A)30° (B)60° (C)120° (D)150° 9.(2007全国Ⅱ文、理)在∆ABC中,已知D是AB边上一点,若 AD =2 DB , CD = 则=( (A) ) (B)
sin 2 2sin 1 cos 2 2 cos 1 2(sin cos ) 3 2 2 sin( ) 3 4
当 sin(


) =1 时 a b 有最大值,此时 4 4
2 1
最大值为 2 2 3
cos PQ BC | PQ | | BC | cx by . a2
cx by a 2 cos . BP CQ a 2 a 2 cos . 故当cos 1, 即 0( PQ与BC方向相同)时, BC CQ最大, 其最大值为 0.
2. (2001 江西、山西、天津理)若向量 a=(1,1) ,b=(1,-1) ,c=(-1,2) ,则 c= ( 1 1 3 3 3 1 3 1 (A) a+ b (B) a- b (C) a b (D)- a b 2 2 2 2 2 2 2 2

平面向量高考试题含详细答案

平面向量高考试题含详细答案

平面向量高考试题含详细答案TPMK standardization office【 TPMK5AB- TPMK08- TPMK2C- TPMK18】平面向量高考试题精选(一)一.选择题(共14小题)1.(2015•河北)设D为△ABC所在平面内一点,,则()A.B.C.D.2.(2015•福建)已知,若P点是△ABC所在平面内一点,且,则的最大值等于()A.13 B.15 C.19 D.213.(2015•四川)设四边形ABCD为平行四边形,||=6,||=4,若点M、N满足,,则=()A.20 B.15 C.9 D.64.(2015•安徽)△ABC是边长为2的等边三角形,已知向量,满足=2,=2+,则下列结论正确的是()A.||=1 B.⊥C.•=1 D.(4+)⊥5.(2015•陕西)对任意向量、,下列关系式中不恒成立的是()A.||≤|||| B.||≤|||﹣|||C.()2=||2D.()•()=2﹣26.(2015•重庆)若非零向量,满足||=||,且(﹣)⊥(3+2),则与的夹角为()A.B.C.D.π7.(2015•重庆)已知非零向量满足||=4||,且⊥()则的夹角为()A.B.C.D.8.(2014•湖南)在平面直角坐标系中,O为原点,A(﹣1,0),B(0,),C(3,0),动点D满足||=1,则|++|的取值范围是()A.[4,6]B.[﹣1,+1] C.[2,2]D.[﹣1,+1] 9.(2014•桃城区校级模拟)设向量,满足,,<>=60°,则||的最大值等于()A.2 B. C. D.110.(2014•天津)已知菱形ABCD的边长为2,∠BAD=120°,点E、F分别在边BC、DC上,=λ,=μ,若•=1,•=﹣,则λ+μ=()A.B.C.D.11.(2014•安徽)设,为非零向量,||=2||,两组向量,,,和,,,,均由2个和2个排列而成,若•+•+•+•所有可能取值中的最小值为4||2,则与的夹角为()A.B.C.D.012.(2014•四川)平面向量=(1,2),=(4,2),=m+(m∈R),且与的夹角等于与的夹角,则m=()A.﹣2 B.﹣1 C.1 D.213.(2014•新课标I)设D,E,F分别为△ABC的三边BC,CA,AB的中点,则+=()A.B.C.D.14.(2014•福建)设M为平行四边形ABCD对角线的交点,O为平行四边形ABCD所在平面内任意一点,则等于()A.B.2C.3D.4二.选择题(共8小题)15.(2013•浙江)设、为单位向量,非零向量=x+y,x、y∈R.若、的夹角为30°,则的最大值等于.16.(2013•北京)已知点A(1,﹣1),B(3,0),C(2,1).若平面区域D由所有满足(1≤λ≤2,0≤μ≤1)的点P组成,则D的面积为.17.(2012•湖南)如图,在平行四边形ABCD中,AP⊥BD,垂足为P,且AP=3,则=.18.(2012•北京)己知正方形ABCD的边长为1,点E是AB边上的动点.则的值为.19.(2011•天津)已知直角梯形ABCD中,AD∥BC,∠ADC=90°,AD=2,BC=1,P是腰DC上的动点,则的最小值为.20.(2010•浙江)已知平面向量满足,且与的夹角为120°,则||的取值范围是.21.(2010•天津)如图,在△ABC中,AD⊥AB,,,则=.22.(2009•天津)若等边△ABC的边长为,平面内一点M满足=+,则=.三.选择题(共2小题)23.(2012•上海)定义向量=(a,b)的“相伴函数”为f(x)=asinx+bcosx,函数f (x)=asinx+bcosx的“相伴向量”为=(a,b)(其中O为坐标原点).记平面内所有向量的“相伴函数”构成的集合为S.(1)设g(x)=3sin(x+)+4sinx,求证:g(x)∈S;(2)已知h(x)=cos(x+α)+2cosx,且h(x)∈S,求其“相伴向量”的模;(3)已知M(a,b)(b≠0)为圆C:(x﹣2)2+y2=1上一点,向量的“相伴函数”f (x)在x=x0处取得最大值.当点M在圆C上运动时,求tan2x0的取值范围.24.(2007•四川)设F1、F2分别是椭圆=1的左、右焦点.(Ⅰ)若P是第一象限内该椭圆上的一点,且,求点P的作标;(Ⅱ)设过定点M(0,2)的直线l与椭圆交于不同的两点A、B,且∠AOB为锐角(其中O为坐标原点),求直线l的斜率k的取值范围.平面向量高考试题精选(一)参考答案与试题解析一.选择题(共14小题)1.(2015•河北)设D为△ABC所在平面内一点,,则()A.B.C.D.解:由已知得到如图由===;故选:A.2.(2015•福建)已知,若P点是△ABC所在平面内一点,且,则的最大值等于()A.13 B.15 C.19 D.21解:由题意建立如图所示的坐标系,可得A(0,0),B(,0),C(0,t),∵,∴P(1,4),∴=(﹣1,﹣4),=(﹣1,t﹣4),∴=﹣(﹣1)﹣4(t﹣4)=17﹣(+4t),由基本不等式可得+4t≥2=4,∴17﹣(+4t)≤17﹣4=13,当且仅当=4t即t=时取等号,∴的最大值为13,故选:A.3.(2015•四川)设四边形ABCD为平行四边形,||=6,||=4,若点M、N满足,,则=()A.20 B.15 C.9 D.6解:∵四边形ABCD为平行四边形,点M、N满足,,∴根据图形可得:=+=,==,∴=,∵=•()=2﹣,2=22,=22,||=6,||=4,∴=22=12﹣3=9故选:C4.(2015•安徽)△ABC是边长为2的等边三角形,已知向量,满足=2,=2+,则下列结论正确的是()A.||=1 B.⊥C.•=1 D.(4+)⊥解:因为已知三角形ABC的等边三角形,,满足=2,=2+,又,所以,,所以=2,=1×2×cos120°=﹣1,4=4×1×2×cos120°=﹣4,=4,所以=0,即(4)=0,即=0,所以;故选D.5.(2015•陕西)对任意向量、,下列关系式中不恒成立的是()A.||≤|||| B.||≤|||﹣|||C.()2=||2D.()•()=2﹣2解:选项A正确,∵||=|||||cos<,>|,又|cos<,>|≤1,∴||≤||||恒成立;选项B错误,由三角形的三边关系和向量的几何意义可得||≥|||﹣|||;选项C正确,由向量数量积的运算可得()2=||2;选项D正确,由向量数量积的运算可得()•()=2﹣2.故选:B6.(2015•重庆)若非零向量,满足||=||,且(﹣)⊥(3+2),则与的夹角为()A.B.C.D.π解:∵(﹣)⊥(3+2),∴(﹣)•(3+2)=0,即32﹣22﹣•=0,即•=32﹣22=2,∴cos<,>===,即<,>=,故选:A7.(2015•重庆)已知非零向量满足||=4||,且⊥()则的夹角为()A.B.C.D.解:由已知非零向量满足||=4||,且⊥(),设两个非零向量的夹角为θ,所以•()=0,即2=0,所以cosθ=,θ∈[0,π],所以;故选C.8.(2014•湖南)在平面直角坐标系中,O为原点,A(﹣1,0),B(0,),C(3,0),动点D满足||=1,则|++|的取值范围是()A.[4,6]B.[﹣1,+1] C.[2,2]D.[﹣1,+1]】解:∵动点D满足||=1,C(3,0),∴可设D(3+cosθ,sinθ)(θ∈[0,2π)).又A(﹣1,0),B(0,),∴++=.∴|++|===,(其中sinφ=,cosφ=)∵﹣1≤sin(θ+φ)≤1,∴=sin(θ+φ)≤=,∴|++|的取值范围是.故选:D.9.(2014•桃城区校级模拟)设向量,满足,,<>=60°,则||的最大值等于()A.2 B. C. D.1解:∵,∴的夹角为120°,设,则;=如图所示则∠AOB=120°;∠ACB=60°∴∠AOB+∠ACB=180°∴A,O,B,C四点共圆∵∴∴由三角形的正弦定理得外接圆的直径2R=当OC为直径时,模最大,最大为2故选A10.(2014•天津)已知菱形ABCD的边长为2,∠BAD=120°,点E、F分别在边BC、DC上,=λ,=μ,若•=1,•=﹣,则λ+μ=()A.B.C.D.解:由题意可得若•=(+)•(+)=+++=2×2×cos120°++λ•+λ•μ=﹣2+4μ+4λ+λμ×2×2×cos120°=4λ+4μ﹣2λμ﹣2=1,∴4λ+4μ﹣2λμ=3 ①.•=﹣•(﹣)==(1﹣λ)•(1﹣μ)=(1﹣λ)•(1﹣μ)=(1﹣λ)(1﹣μ)×2×2×cos120°=(1﹣λ﹣μ+λμ)(﹣2)=﹣,即﹣λ﹣μ+λμ=﹣②.由①②求得λ+μ=,故答案为:.11.(2014•安徽)设,为非零向量,||=2||,两组向量,,,和,,,,均由2个和2个排列而成,若•+•+•+•所有可能取值中的最小值为4||2,则与的夹角为()A.B.C.D.0解:由题意,设与的夹角为α,分类讨论可得①•+•+•+•=•+•+•+•=10||2,不满足②•+•+•+•=•+•+•+•=5||2+4||2cosα,不满足;③•+•+•+•=4•=8||2cosα=4||2,满足题意,此时cosα=∴与的夹角为.故选:B.12.(2014•四川)平面向量=(1,2),=(4,2),=m+(m∈R),且与的夹角等于与的夹角,则m=()A.﹣2 B.﹣1 C.1 D.2解:∵向量=(1,2),=(4,2),∴=m+=(m+4,2m+2),又∵与的夹角等于与的夹角,∴=,∴=,∴=,解得m=2,故选:D13.(2014•新课标I)设D,E,F分别为△ABC的三边BC,CA,AB的中点,则+=()A.B.C.D.【解答】解:∵D,E,F分别为△ABC的三边BC,CA,AB的中点,∴+=(+)+(+)=+=(+)=,故选:A14.(2014•福建)设M为平行四边形ABCD对角线的交点,O为平行四边形ABCD所在平面内任意一点,则等于()A.B.2C.3D.4解:∵O为任意一点,不妨把A点看成O点,则=,∵M是平行四边形ABCD的对角线的交点,∴=2=4故选:D.二.选择题(共8小题)15.(2013•浙江)设、为单位向量,非零向量=x+y,x、y∈R.若、的夹角为30°,则的最大值等于2.解:∵、为单位向量,和的夹角等于30°,∴=1×1×cos30°=.∵非零向量=x+y,∴||===,∴====,故当=﹣时,取得最大值为2,故答案为 2.16.(2013•北京)已知点A(1,﹣1),B(3,0),C(2,1).若平面区域D由所有满足(1≤λ≤2,0≤μ≤1)的点P组成,则D的面积为3.解:设P的坐标为(x,y),则=(2,1),=(1,2),=(x﹣1,y+1),∵,∴,解之得∵1≤λ≤2,0≤μ≤1,∴点P坐标满足不等式组作出不等式组对应的平面区域,得到如图的平行四边形CDEF及其内部其中C(4,2),D(6,3),E(5,1),F(3,0)∵|CF|==,点E(5,1)到直线CF:2x﹣y﹣6=0的距离为d==∴平行四边形CDEF的面积为S=|CF|×d=×=3,即动点P构成的平面区域D的面积为3故答案为:317.(2012•湖南)如图,在平行四边形ABCD中,AP⊥BD,垂足为P,且AP=3,则=18.【解答】解:设AC与BD交于点O,则AC=2AO∵AP⊥BD,AP=3,在Rt△APO中,AOcos∠OAP=AP=3∴||cos∠OAP=2||×cos∠OAP=2||=6,由向量的数量积的定义可知,=||||cos∠PAO=3×6=18故答案为:1818.(2012•北京)己知正方形ABCD的边长为1,点E是AB边上的动点.则的值为1.【解答】解:因为====1.故答案为:119.(2011•天津)已知直角梯形ABCD中,AD∥BC,∠ADC=90°,AD=2,BC=1,P是腰DC上的动点,则的最小值为5.解:如图,以直线DA,DC分别为x,y轴建立平面直角坐标系,则A(2,0),B(1,a),C(0,a),D(0,0)设P(0,b)(0≤b≤a)则=(2,﹣b),=(1,a﹣b),∴=(5,3a﹣4b)∴=≥5.故答案为5.20.(2010•浙江)已知平面向量满足,且与的夹角为120°,则||的取值范围是(0,].解:令用=、=,如下图所示:则由=,又∵与的夹角为120°,∴∠ABC=60°又由AC=由正弦定理得:||=≤∴||∈(0,]故||的取值范围是(0,]故答案:(0,]21.(2010•天津)如图,在△ABC中,AD⊥AB,,,则=.【解答】解:,∵,∴,∵,∴cos∠DAC=sin∠BAC,,在△ABC中,由正弦定理得变形得|AC|sin∠BAC=|BC|sinB,,=|BC|sinB==,故答案为.22.(2009•天津)若等边△ABC的边长为,平面内一点M满足=+,则=﹣2.解:以C点为原点,以AC所在直线为x轴建立直角坐标系,可得,∴,,∵=+=,∴M,∴,,=(,)•(,)=﹣2.故答案为:﹣2.三.选择题(共2小题)23.(2012•上海)定义向量=(a,b)的“相伴函数”为f(x)=asinx+bcosx,函数f (x)=asinx+bcosx的“相伴向量”为=(a,b)(其中O为坐标原点).记平面内所有向量的“相伴函数”构成的集合为S.(1)设g(x)=3sin(x+)+4sinx,求证:g(x)∈S;(2)已知h(x)=cos(x+α)+2cosx,且h(x)∈S,求其“相伴向量”的模;(3)已知M(a,b)(b≠0)为圆C:(x﹣2)2+y2=1上一点,向量的“相伴函数”f (x)在x=x0处取得最大值.当点M在圆C上运动时,求tan2x0的取值范围.【解答】解:(1)g(x)=3sin(x+)+4sinx=4sinx+3cosx,其‘相伴向量’=(4,3),g(x)∈S.(2)h(x)=cos(x+α)+2cosx=(cosxcosα﹣sinxsinα)+2cosx=﹣sinαsinx+(cosα+2)cosx∴函数h(x)的‘相伴向量’=(﹣sinα,cosα+2).则||==.(3)的‘相伴函数’f(x)=asinx+bcosx=sin(x+φ),其中cosφ=,sinφ=.当x+φ=2kπ+,k∈Z时,f(x)取到最大值,故x0=2kπ+﹣φ,k∈Z.∴tanx0=tan(2kπ+﹣φ)=cotφ=,tan2x0===.为直线OM的斜率,由几何意义知:∈[﹣,0)∪(0,].令m=,则tan2x0=,m∈[﹣,0)∪(0,}.当﹣≤m<0时,函数tan2x0=单调递减,∴0<tan2x0≤;当0<m≤时,函数tan2x0=单调递减,∴﹣≤tan2x0<0.综上所述,tan2x0∈[﹣,0)∪(0,].24.(2007•四川)设F1、F2分别是椭圆=1的左、右焦点.(Ⅰ)若P是第一象限内该椭圆上的一点,且,求点P的作标;(Ⅱ)设过定点M(0,2)的直线l与椭圆交于不同的两点A、B,且∠AOB为锐角(其中O为坐标原点),求直线l的斜率k的取值范围.】解:(Ⅰ)易知a=2,b=1,.∴,.设P(x,y)(x>0,y>0).则,又,联立,解得,.(Ⅱ)显然x=0不满足题设条件.可设l的方程为y=kx+2,设A(x1,y1),B(x2,y2).联立∴,由△=(16k)2﹣4•(1+4k2)•12>016k2﹣3(1+4k2)>0,4k2﹣3>0,得.①又∠AOB为锐角,∴又y1y2=(kx1+2)(kx2+2)=k2x1x2+2k(x1+x2)+4∴x1x2+y1y2=(1+k2)x1x2+2k(x1+x2)+4===∴.②综①②可知,∴k的取值范围是.。

平面向量测试题,高考经典试题,附详细答案

平面向量测试题,高考经典试题,附详细答案

平面向量高考经典试题一、选择题1.(全国1文理)已知向量(5,6)a =-,(6,5)b =,则a 与bA .垂直B .不垂直也不平行C .平行且同向D .平行且反向解.已知向量(5,6)a =-,(6,5)b =,30300a b ⋅=-+=,则a 与b 垂直,选A 。

2、(山东文5)已知向量(1)(1)n n ==-,,,a b ,若2-a b 与b 垂直,则=a ( )A .1B .2C .2D .4【答案】:C 【分析】:2(3,)n -a b =,由2-a b 与b 垂直可得:2(3,)(1,)303n n n n ⋅-=-+=⇒=±, 2=a 。

3、(广东文4理10)若向量,a b 满足||||1a b ==,,a b 的夹角为60°,则a aab ⋅+⋅=______;答案:32;解析:1311122a a ab ⋅+⋅=+⨯⨯=,4、(天津理10) 设两个向量22(2,cos )a λλα=+-和(,sin ),2mb m α=+其中,,m λα为实数.若2,a b =则mλ的取值范围是(A.[6,1]-B.[4,8]C.(,1]-∞D.[1,6]-【答案】A【分析】由22(2,cos )a λλα=+-,(,sin ),2mb m α=+2,a b =可得2222cos 2sin m m λλαα+=⎧⎨-=+⎩,设k m λ=代入方程组可得22222cos 2sin km m k m m αα+=⎧⎨-=+⎩消去m 化简得2222cos 2sin 22k k k αα⎛⎫-=+ ⎪--⎝⎭,再化简得22422cos 2sin 022k k αα⎛⎫+-+-= ⎪--⎝⎭再令12t k =-代入上式得222(sin 1)(16182)0t t α-+++=可得2(16182)[0,4]t t -++∈解不等式得1[1,]8t ∈--因而11128k -≤≤--解得61k -≤≤.故选A5、(山东理11)在直角ABC ∆中,CD 是斜边AB 上的高,则下列等式不成立的是(A )2AC AC AB =⋅ (B ) 2BC BA BC =⋅ (C )2AB AC CD =⋅ (D ) 22()()AC AB BA BC CD AB⋅⨯⋅=【答案】:C.【分析】: 2()00AC AC AB AC AC AB AC BC =⋅⇔⋅-=⇔⋅=,A 是正确的,同理B 也正确,对于D 答案可变形为2222CD AB AC BC ⋅=⋅,通过等积变换判断为正确.6、(全国2 理5)在∆ABC 中,已知D 是AB 边上一点,若AD =2DB ,CD =CB CA λ+31,则λ=(A)32(B)31(C) -31(D) -32 解.在∆ABC 中,已知D 是AB 边上一点,若AD =2DB ,CD =CB CA λ+31,则22()33CD CA AD CA AB CA CB CA =+=+=+-=1233CA CB +,4 λ=32,选A 。

平面向量高考真题精选

平面向量高考真题精选
22.已知向量 , , .若 ,则 ________.
【来源】2018年全国卷Ⅲ理数高考试题文档版
【答案】
【解析】
【分析】
由两向量共线的坐标关系计算即可。
【详解】
由题可得
,即
故答案为
【点睛】
本题主要考查向量的坐标运算,以及两向量共线的坐标关系,属于基础题。
【来源】2019年江苏省高考数学试卷
【答案】 .
【解析】
【分析】
由题意将原问题转化为基底的数量积,然后利用几何性质可得比值.
【详解】
如图,过点D作DF//CE,交AB于点F,由BE=2EA,D为BC中点,知BF=FE=EA,AO=OD.

得 即 故 .
【点睛】
本题考查在三角形中平面向量的数量积运算,渗透了直观想象、逻辑推理和数学运算素养.采取几何法,利用数形结合和方程思想解题.
【详解】
根据题意,设E(0,a),F(0,b);
∴ ;
∴a=b+2,或b=a+2;
且 ;
∴ ;
当a=b+2时, ;
∵b2+2b﹣2的最小值为 ;
∴ 的最小值为﹣3,同理求出b=a+2时, 的最小值为﹣3.
故答案为:﹣3.
【点睛】
考查根据点的坐标求两点间的距离,根据点的坐标求向量的坐标,以及向量坐标的数量积运算,二次函数求最值的公式.
A.3B.2 C. D.2
【来源】2017年全国普通高等学校招生统一考试理科数学(新课标3卷精编版)
【答案】A
【解析】
如图所示,建立平面直角坐标系.
设 ,
易得圆的半径 ,即圆C的方程是 ,
,若满足 ,
则 , ,所以 ,

完整版)平面向量历年高考题汇编——难度高

完整版)平面向量历年高考题汇编——难度高

完整版)平面向量历年高考题汇编——难度高1.题目中给出了两个命题p和q,要求判断哪个是真命题。

p是关于向量a、b、c的等式,q是关于向量a、b、c的平行关系。

因为p和q都是关于向量a、b、c的命题,所以可以将它们合并成一个命题,即“若a·b=,b·c=,且a∥b,b∥c,则a·c=”。

然后通过代入向量的坐标进行计算,可以得出a·c =,因此命题p和q都是真命题,答案为B。

2.已知AO=(AB+AC),需要求出∠BAC的大小。

可以通过向量的几何意义进行推导,将向量AB和AC分别平移至点O,得到向量AO=AB+AC,这说明向量AO是向量AB和AC的合成向量。

根据三角形余弦定理,有cos∠BAC=(AB·AC)/(AB*AC),化简后得到cos∠BAC=1/2,所以∠BAC =60°,答案为60.3.首先计算出向量a和向量b的夹角θ,有cosθ=a·b/(|a||b|),代入向量的坐标计算得到cosθ=9/(√5*√21),然后可以根据向量的线性运算得到向量c=(m+4.2m+4),并且c与a的夹角等于θ,c与b的夹角也等于θ。

根据向量的数量积公式,有cosθ=c·a/(|c||a|)=(m+6)/(√[(m+4)²+(2m+4)²]*√5),代入cosθ的值计算得到m=-2,因此答案为A。

4.根据中线定理,有EB=FC=AB/2,因此EB+FC=AB=11,答案为A。

5.根据平行四边形对角线的性质,有OA+OC=OB+OD=2OM,因此OA+OB+OC+OD=4OM,答案为4OM。

6.根据向量的数量积公式,有a·b=|a||b|cosθ,其中θ为向量a和向量b的夹角。

因为a=1,|b|≤1,所以a·b=|b|cosθ≤cosθ。

根据平行四边形面积公式,有|a×b|=|a||b|sinθ/2,因此|a×b|≤|a||b|/2=1/2.将a=1,b=1/2代入可得cosθ≥1/4,因此-3π/4≤θ≤3π/4,答案为[-3π/4.3π/4]。

平面向量高考题集锦

平面向量高考题集锦

平面向量高考题集锦一,选择题1.如图,正六边形ABCDEF 中,BA CD EF ++=( )(A )0 (B )BE (C )AD(D )CF2.在集合{1,2,3,4,5}中任取一个偶数a 和一个奇数b 构成以原点为起点的向量(,)a b =α,从所有得到的以原点为起点的向量中任取两个向量为邻边作平行四边形,记所有作成的平行四边形的个数为n ,其中面积等于2的平行四边形的个数为m ,则m n = (A )215(B )15(C )415(D )133. 已知向量a=(1,2),b=(1,0),c=(3,4)。

若λ为实数,(()a b λ+∥c ),则λ=A .14B .12C .1D .24.已知平面直角坐标系xOy 上的区域D 由不等式⎪⎩⎪⎨⎧≤≤≤≤yx x x 2220 给定,若M (x ,y )为D上的动点,点A的坐标为,则z=·的最大值为A .3B .4C .D .5.ABC ∆中,AB 边的高为CD ,若C B a =,CA b =,0a b ⋅=,||1a =,||2b =,则AD = (A )1133a b - (B )2233a b - (C )3355a b - (D )4455a b - 6.若向量()()1,2,1,1a b ==-,则2a +b 与a b -的夹角等于A .4π-B .6π C .4π D .34π 7.已知向量)1,2(=a ,),1(k -=b ,0)2(=-⋅b a a ,则=kA .12-B .6-C .6D .128.向量a,b满足1||||1,2a b a b ==⋅=-,则2a b +=AB C D9.设1A ,2A ,3A ,4A 是平面直角坐标系中两两不同的四点,若1312A A A A λ= (λ∈R ),1412A A A A μ=(μ∈R ),且112λμ+=,则称3A ,4A 调和分割1A ,2A ,已知点C(c ,o ),D (d ,O ) (c ,d ∈R )调和分割点A (0,0),B (1,0),则下面说法正确的是 A .C 可能是线段AB 的中点 B .D 可能是线段AB 的中点C .C ,D 可能同时在线段AB 上 D .C ,D 不可能同时在线段AB 的延长线上10.设x R ∈ ,向量(,1),(1,2),a x b ==-且a b ⊥ ,则||a b +=(A (B (C )(D )10 11.设a ,b 是两个非零向量。

高考数学压轴专题人教版备战高考《平面向量》真题汇编含答案解析

高考数学压轴专题人教版备战高考《平面向量》真题汇编含答案解析
则 , , ,
∴ .
故选B
【点睛】
本题主要考查共轭复数和数量积的坐标运算,考查直线和抛物线的交点的求法,意在考查学生对这些知识的理解掌握水平和分析推理能力.
18.如图,已知 , , , , ,则 等于()
A. B. C. D.
【答案】A
【解析】
【分析】
依题意建立直角坐标系,根据已知角,可得点B、C的坐标,利用向量相等建立关于m、n的方程,求解即可.

又 ,
则 ,
则 .
故选:C.
【点睛】
本题考查平面向量的加减法运算以及向量的基本定理的应用.
2.如图,在直角梯形ABCD中,AB∥DC,AD⊥DC,AD=DC=2AB,E为AD的中点,若 ,则λ+μ的值为( )
A. B. C. D.
【答案】B
【解析】
【分析】
建立平面直角坐标系,用坐标表示 ,利用 ,列出方程组求解即可.
【详解】
在 中,已知 , ,
由正弦定理可得
代入 ,解得

所以 为等腰直角三角形
以 为原点, 所在直线为 轴,以 的垂线为 轴建立平面直角坐标系如下图所示:
则点 坐标为
所以 ,
因为


因为 ,则
代入上式可得
所以当 时,
故选:A
【点睛】
本题考查了平面向量基本定理的应用,正弦定理判断三角形形状,平面向量的坐标运算,属于中档题.
【详解】
以OA所在的直线为x轴,过O作与O且 ,∴ ,
∴A(1,0),B( ),又令 ,则 = ,∴ =7,
又如图点C在∠AOB内,∴ = ,sin = ,又 ,∴C( ),
∵ ,(m,n∈R),∴( )=(m,0)+( )=(m , )

平面向量高考题选及答案

平面向量高考题选及答案

DA ﹒ DB = DB ﹒ DC = DC ﹒ DA =—2,动点 P,M 满足 AP =1,PM = MC ,则 BM 2 的
最大值是(
)(A) 43 4
(B) 49 (C) 37 6 3
4
4
(D) 37 2 33 4
16、(2016 年天津高考)已知△ABC 是边长为 1 的等边三角形,点 D, E 分别是边 AB, BC 的
18。【答案】A 19。【答案】[0,1 2]
22.【答案】 1 2
23。【答案】D
20。【答案】 5 28
21。【答案】 2
因为 BD CD BD BA
BA BC
BA
2
BA BC BA a2 a2 cos 60
3 a2
2
故选 D.
24.【答案】B【解析】因为 a b a b cos a,b a b ,所以选项 A 正确;当 a 与 b 方

22、(2016 年浙江高考)已知向量 a、b, |a| =1,|b| =2,若对任意单位向量 e,均有 |
a·e|+|b·e| 6 ,则 a·b 的最大值是

23 。【 2015 高 考 山 东 , 理 4 】 已 知 菱 形 ABCD 的 边 长 为 a , ABC 60 , 则
BD CD ( )
2
2
5
7.【答案】A 试题解析:如图所示,建立平面直角坐标系
设 A0,1, B0,0,C 2,0, D2,1, P x, y ,根据等面积公式可得圆的半径 r 2 ,即
5
圆 C 的方程是 x 22 y2 4 ,
5
8.【答案】 3 11
9。【答案】4, 2 5 【解析】试题解析:设向量 a,b 的夹角为 ,由余弦定理有:
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

平面向量高考真题精选(一)一.选择题(共20小题)1.(2017•新课标Ⅱ)设非零向量,满足|+|=|﹣|则( ) A .⊥ B .||=||C .∥D .||>||2.(2017•新课标Ⅱ)已知△ABC 是边长为2的等边三角形,P 为平面ABC 内一点,则•(+)的最小值是( )A .﹣2B .﹣C .﹣D .﹣13.(2017•浙江)如图,已知平面四边形ABCD ,AB ⊥BC ,AB=BC=AD=2,CD=3,AC 与BD 交于点O ,记I 1=•,I 2=•,I 3=•,则( )A .I 1<I 2<I 3B .I 1<I 3<I 2C .I 3<I 1<I 2D .I 2<I 1<I 34.(2017•新课标Ⅲ)在矩形ABCD 中,AB=1,AD=2,动点P 在以点C 为圆心且与BD 相切的圆上.若=λ+μ,则λ+μ的最大值为( )A .3B .2C .D .25.(2016•四川)已知正三角形ABC 的边长为2,平面ABC 内的动点P ,M 满足||=1,=,则||2的最大值是( ) A .B .C .D .6.(2016•新课标Ⅱ)已知向量=(1,m ),=(3,﹣2),且(+)⊥,则m=( )A .﹣8B .﹣6C .6D .87.(2016•天津)已知△ABC 是边长为1的等边三角形,点D 、E 分别是边AB 、BC的中点,连接DE并延长到点F,使得DE=2EF,则•的值为()A.﹣B.C.D.8.(2016•山东)已知非零向量,满足4||=3||,cos<,>=.若⊥(t+),则实数t的值为()A.4 B.﹣4 C.D.﹣9.(2016•四川)在平面内,定点A,B,C,D满足==,•=•=•=﹣2,动点P,M满足=1,=,则||2的最大值是()A.B.C.D.10.(2016•新课标Ⅲ)已知向量=(,),=(,),则∠ABC=()A.30°B.45°C.60°D.120°11.(2015•新课标Ⅰ)设D为△ABC所在平面内一点,,则()A. B.C.D.12.(2015•新课标Ⅰ)已知点A(0,1),B(3,2),向量=(﹣4,﹣3),则向量=()A.(﹣7,﹣4)B.(7,4)C.(﹣1,4)D.(1,4)13.(2015•四川)设向量=(2,4)与向量=(x,6)共线,则实数x=()A.2 B.3 C.4 D.614.(2015•山东)已知菱形ABCD的边长为a,∠ABC=60°,则=()A.﹣a2B.﹣a2C.a2 D.a215.(2015•四川)设四边形ABCD为平行四边形,||=6,||=4,若点M、N满足,,则=()A.20 B.15 C.9 D.616.(2015•安徽)△ABC是边长为2的等边三角形,已知向量,满足=2,=2+,则下列结论正确的是()A.||=1 B.⊥C.•=1 D.(4+)⊥17.(2015•广东)在平面直角坐标系xOy中,已知四边形 ABCD是平行四边形,=(1,﹣2),=(2,1)则•=()A.5 B.4 C.3 D.218.(2015•重庆)若非零向量,满足||=||,且(﹣)⊥(3+2),则与的夹角为()A.B.C.D.π19.(2015•重庆)已知非零向量满足||=4||,且⊥()则的夹角为()A.B.C.D.20.(2015•福建)设=(1,2),=(1,1),=+k,若,则实数k的值等于()A.﹣B.﹣C.D.二.填空题(共8小题)21.(2017•新课标Ⅰ)已知向量,的夹角为60°,||=2,||=1,则|+2|= .22.(2017•天津)在△ABC中,∠A=60°,AB=3,AC=2.若=2,=λ﹣(λ∈R),且=﹣4,则λ的值为.23.(2017•北京)已知点P在圆x2+y2=1上,点A的坐标为(﹣2,0),O为原点,则•的最大值为.24.(2017•山东)已知,是互相垂直的单位向量,若﹣与+λ的夹角为60°,则实数λ的值是.26.(2017•新课标Ⅰ)已知向量=(﹣1,2),=(m,1),若向量+与垂直,则m= .27.(2016•新课标Ⅰ)设向量=(m,1),=(1,2),且|+|2=||2+||2,则m= .28.(2016•山东)已知向量=(1,﹣1),=(6,﹣4),若⊥(t+),则实数t的值为.三.解答题(共2小题)29.(2017•山东)在△ABC中,角A,B,C的对边分别为a,b,c,已知b=3,=3,求A和a.=﹣6,S△ABC30.(2015•广东)在平面直角坐标系xOy中,已知向量=(,﹣),=(sinx,cosx),x∈(0,).(1)若⊥,求tanx的值;(2)若与的夹角为,求x的值.平面向量高考真题精选(一)参考答案与试题解析一.选择题(共20小题)1.(2017•新课标Ⅱ)设非零向量,满足|+|=|﹣|则()A.⊥B.||=|| C.∥D.||>||【解答】解:∵非零向量,满足|+|=|﹣|,∴,解得=0,∴.故选:A.2.(2017•新课标Ⅱ)已知△ABC是边长为2的等边三角形,P为平面ABC内一点,则•(+)的最小值是()A.﹣2 B.﹣C.﹣D.﹣1【解答】解:建立如图所示的坐标系,以BC中点为坐标原点,则A(0,),B(﹣1,0),C(1,0),设P(x,y),则=(﹣x,﹣y),=(﹣1﹣x,﹣y),=(1﹣x,﹣y),则•(+)=2x2﹣2y+2y2=2[x2+(y﹣)2﹣]∴当x=0,y=时,取得最小值2×(﹣)=﹣,故选:B3.(2017•浙江)如图,已知平面四边形ABCD ,AB ⊥BC ,AB=BC=AD=2,CD=3,AC 与BD 交于点O ,记I 1=•,I 2=•,I 3=•,则( )A .I 1<I 2<I 3B .I 1<I 3<I 2C .I 3<I 1<I 2D .I 2<I 1<I 3 【解答】解:∵AB ⊥BC ,AB=BC=AD=2,CD=3, ∴AC=2,∴∠AOB=∠COD >90°, 由图象知OA <OC ,OB <OD ,∴0>•>•,•>0,即I 3<I 1<I 2, 故选:C .4.(2017•新课标Ⅲ)在矩形ABCD 中,AB=1,AD=2,动点P 在以点C 为圆心且与BD 相切的圆上.若=λ+μ,则λ+μ的最大值为( )A .3B .2C .D .2【解答】解:如图:以A 为原点,以AB ,AD 所在的直线为x ,y 轴建立如图所示的坐标系,则A (0,0),B (1,0),D (0,2),C (1,2), ∵动点P 在以点C 为圆心且与BD 相切的圆上,设圆的半径为r,∵BC=2,CD=1,∴BD==∴BC•CD=BD•r,∴r=,∴圆的方程为(x﹣1)2+(y﹣2)2=,设点P的坐标为(cosθ+1,sinθ+2),∵=λ+μ,∴(cosθ+1,sinθ+2)=λ(1,0)+μ(0,2)=(λ,2μ),∴cosθ+1=λ,sinθ+2=2μ,∴λ+μ=cosθ+sinθ+2=sin(θ+φ)+2,其中tanφ=2,∵﹣1≤sin(θ+φ)≤1,∴1≤λ+μ≤3,故λ+μ的最大值为3,故选:A5.(2016•四川)已知正三角形ABC的边长为2,平面ABC内的动点P,M满足||=1,=,则||2的最大值是()A.B.C.D.【解答】解:如图所示,建立直角坐标系.B(0,0),C.A.∵M满足||=1,∴点P的轨迹方程为:=1,令x=+cosθ,y=3+sinθ,θ∈[0,2π).又=,则M,∴||2=+=+3sin≤.∴||2的最大值是.故选:B.6.(2016•新课标Ⅱ)已知向量=(1,m),=(3,﹣2),且(+)⊥,则m=()A.﹣8 B.﹣6 C.6 D.8【解答】解:∵向量=(1,m),=(3,﹣2),∴+=(4,m﹣2),又∵(+)⊥,∴12﹣2(m﹣2)=0,解得:m=8,故选:D.7.(2016•天津)已知△ABC是边长为1的等边三角形,点D、E分别是边AB、BC的中点,连接DE并延长到点F,使得DE=2EF,则•的值为()A.﹣B.C.D.【解答】解:如图,∵D、E分别是边AB、BC的中点,且DE=2EF,∴•========.故选:C.8.(2016•山东)已知非零向量,满足4||=3||,cos<,>=.若⊥(t+),则实数t的值为()A.4 B.﹣4 C.D.﹣【解答】解:∵4||=3||,cos<,>=,⊥(t+),∴•(t+)=t•+2=t||•||•+||2=()||2=0,解得:t=﹣4,故选:B.9.(2016•四川)在平面内,定点A,B,C,D满足==,•=•=•=﹣2,动点P ,M 满足=1,=,则||2的最大值是( ) A .B .C .D .【解答】解:由==,可得D 为△ABC 的外心,又•=•=•,可得•(﹣)=0,•(﹣)=0,即•=•=0, 即有⊥,⊥,可得D 为△ABC 的垂心, 则D 为△ABC 的中心,即△ABC 为正三角形.由•=﹣2,即有||•||cos120°=﹣2,解得||=2,△ABC 的边长为4cos30°=2,以A 为坐标原点,AD 所在直线为x 轴建立直角坐标系xOy , 可得B (3,﹣),C (3,),D (2,0),由=1,可设P (cosθ,sinθ),(0≤θ<2π), 由=,可得M 为PC 的中点,即有M (,),则||2=(3﹣)2+(+)2=+==, 当sin (θ﹣)=1,即θ=时,取得最大值,且为.故选:B .10.(2016•新课标Ⅲ)已知向量=(,),=(,),则∠ABC=()A.30°B.45°C.60°D.120°【解答】解:,;∴;又0°≤∠ABC≤180°;∴∠ABC=30°.故选A.11.(2015•新课标Ⅰ)设D为△ABC所在平面内一点,,则()A. B.C.D.【解答】解:由已知得到如图由===;故选:A.12.(2015•新课标Ⅰ)已知点A(0,1),B(3,2),向量=(﹣4,﹣3),则向量=()A.(﹣7,﹣4)B.(7,4)C.(﹣1,4)D.(1,4)【解答】解:由已知点A(0,1),B(3,2),得到=(3,1),向量=(﹣4,﹣3),则向量==(﹣7,﹣4);故答案为:A.13.(2015•四川)设向量=(2,4)与向量=(x,6)共线,则实数x=()A.2 B.3 C.4 D.6【解答】解;因为向量=(2,4)与向量=(x,6)共线,所以4x=2×6,解得x=3;故选:B.14.(2015•山东)已知菱形ABCD的边长为a,∠ABC=60°,则=()A.﹣a2B.﹣a2C.a2 D.a2【解答】解:∵菱形ABCD的边长为a,∠ABC=60°,∴=a2,=a×a×c os60°=,则=()•==故选:D15.(2015•四川)设四边形ABCD为平行四边形,||=6,||=4,若点M、N 满足,,则=()A.20 B.15 C.9 D.6【解答】解:∵四边形ABCD为平行四边形,点M、N满足,,∴根据图形可得:=+=,==,∴=,∵=•()=2﹣,2=22,=22,||=6,||=4,∴=22=12﹣3=9故选:C16.(2015•安徽)△ABC是边长为2的等边三角形,已知向量,满足=2,=2+,则下列结论正确的是()A.||=1 B.⊥C.•=1 D.(4+)⊥【解答】解:因为已知三角形ABC的等边三角形,,满足=2,=2+,又,∴的方向应该为的方向.所以,,所以=2,=1×2×cos120°=﹣1,4=4×1×2×cos120°=﹣4,=4,所以=0,即(4)=0,即=0,所以;故选D.17.(2015•广东)在平面直角坐标系xOy中,已知四边形 ABCD是平行四边形,=(1,﹣2),=(2,1)则•=()A.5 B.4 C.3 D.2【解答】解:由向量加法的平行四边形法则可得,==(3,﹣1).∴=3×2+(﹣1)×1=5.故选:A.18.(2015•重庆)若非零向量,满足||=||,且(﹣)⊥(3+2),则与的夹角为()A.B.C.D.π【解答】解:∵(﹣)⊥(3+2),∴(﹣)•(3+2)=0,即32﹣22﹣•=0,即•=32﹣22=2,∴cos<,>===,即<,>=,故选:A19.(2015•重庆)已知非零向量满足||=4||,且⊥()则的夹角为( )A .B .C .D .【解答】解:由已知非零向量满足||=4||,且⊥(),设两个非零向量的夹角为θ, 所以•()=0,即2=0,所以cosθ=,θ∈[0,π],所以;故选C .20.(2015•福建)设=(1,2),=(1,1),=+k ,若,则实数k 的值等于( )A .﹣B .﹣C .D .【解答】解:∵=(1,2),=(1,1), ∴=+k =(1+k ,2+k ) ∵,∴•=0,∴1+k+2+k=0,解得k=﹣ 故选:A二.填空题(共8小题)21.(2017•新课标Ⅰ)已知向量,的夹角为60°,||=2,||=1,则|+2|= 2.【解答】解:【解法一】向量,的夹角为60°,且||=2,||=1,∴=+4•+4=22+4×2×1×cos60°+4×12=12,∴|+2|=2.【解法二】根据题意画出图形,如图所示;结合图形=+=+2;在△OAC中,由余弦定理得||==2,即|+2|=2.故答案为:2.22.(2017•天津)在△ABC中,∠A=60°,AB=3,AC=2.若=2,=λ﹣(λ∈R),且=﹣4,则λ的值为.【解答】解:如图所示,△ABC中,∠A=60°,AB=3,AC=2,=2,∴=+=+=+(﹣)=+,又=λ﹣(λ∈R),∴=(+)•(λ﹣)=(λ﹣)•﹣+λ=(λ﹣)×3×2×cos60°﹣×32+λ×22=﹣4,∴λ=1,解得λ=.故答案为:.23.(2017•北京)已知点P在圆x2+y2=1上,点A的坐标为(﹣2,0),O为原点,则•的最大值为 6 .【解答】解:设P(cosα,sinα).=(2,0),=(cosα+2,sinα).则•=2(cosα+2)≤6,当且仅当cosα=1时取等号.故答案为:6.24.(2017•山东)已知,是互相垂直的单位向量,若﹣与+λ的夹角为60°,则实数λ的值是.【解答】解:,是互相垂直的单位向量,∴||=||=1,且•=0;又﹣与+λ的夹角为60°,∴(﹣)•(+λ)=|﹣|×|+λ|×cos60°,即+(﹣1)•﹣λ=××,化简得﹣λ=××,即﹣λ=,解得λ=.故答案为:.25.(2017•新课标Ⅲ)已知向量=(﹣2,3),=(3,m),且,则m= 2 .【解答】解:∵向量=(﹣2,3),=(3,m),且,∴=﹣6+3m=0,解得m=2.故答案为:2.26.(2017•新课标Ⅰ)已知向量=(﹣1,2),=(m,1),若向量+与垂直,则m= 7 .【解答】解:∵向量=(﹣1,2),=(m,1),∴=(﹣1+m,3),∵向量+与垂直,∴()•=(﹣1+m)×(﹣1)+3×2=0,解得m=7.故答案为:7.27.(2016•新课标Ⅰ)设向量=(m,1),=(1,2),且|+|2=||2+||2,则m= ﹣2 .【解答】解:|+|2=||2+||2,可得•=0.向量=(m,1),=(1,2),可得m+2=0,解得m=﹣2.故答案为:﹣2.28.(2016•山东)已知向量=(1,﹣1),=(6,﹣4),若⊥(t+),则实数t的值为﹣5 .【解答】解:∵向量=(1,﹣1),=(6,﹣4),∴t+=(t+6,﹣t﹣4),∵⊥(t+),∴•(t+)=t+6+t+4=0,解得t=﹣5,故答案为:﹣5.三.解答题(共2小题)29.(2017•山东)在△ABC中,角A,B,C的对边分别为a,b,c,已知b=3,=3,求A和a.=﹣6,S△ABC【解答】解:由=﹣6可得bccosA=﹣6,①,=bcsinA=3,②由三角形的面积公式可得S△ABC∴tanA=﹣1,∵0<A<180°,∴A=135°,∴c==2,由余弦定理可得a2=b2+c2﹣2bccosA=9+8+12=29∴a=30.(2015•广东)在平面直角坐标系xOy中,已知向量=(,﹣),=(sinx,cosx),x∈(0,).(1)若⊥,求tanx的值;(2)若与的夹角为,求x的值.【解答】解:(1)若⊥,则•=(,﹣)•(sinx,cosx)=sinx﹣cosx=0,即sinx=cosxsinx=cosx,即tanx=1;(2)∵||=,||==1,•=(,﹣)•(sinx,cosx)=sinx﹣cosx,∴若与的夹角为,则•=||•||cos=,即sinx﹣cosx=,则sin(x﹣)=,∵x∈(0,).∴x﹣∈(﹣,).则x﹣=即x=+=.。

相关文档
最新文档