实验讲义——无机材料科学基础部分
无机材料科学基础资料资料
第三章熔体和玻璃一,玻璃的结构参数晶子学说:硅酸盐玻璃是由无数“晶子”组成,“晶子”的化学性质取决于玻璃的化学组成。
所谓“晶子”不同于一般微晶,而是带有晶格变形的有序区域,在“晶子”中心质点排列较有规律,愈远离中心则变形程度愈大。
“晶子”分散在无定形部分的过渡是逐步完成的,两者之间无明显界线。
晶子学说的核心是结构的不均匀性及进程有序性。
无规则网络学说:凡是成为玻璃态的物质和相应的晶体结构一样,也是由一个三度空间网络所构成。
这种网络是由离子多面体(三角体或四面体)构筑起来的。
晶体结构网是由多面体无数次有规律重复构成,而玻璃中结构多面体的重复没有规律性。
试述微晶学说与无规则网络学说的主要观点,并比较两种学说在解释玻璃结构上的共同点和分歧。
解:微晶学说:玻璃结构是一种不连续的原子集合体,即无数“晶子”分散在无定形介质中;“晶子”的化学性质和数量取决于玻璃的化学组成,可以是独立原子团或一定组成的化合物和固溶体等微晶多相体,与该玻璃物系的相平衡有关;“晶子”不同于一般微晶,而是带有晶格极度变形的微小有序区域,在“晶子”中心质点排列较有规律,愈远离中心则变形程度愈大;从“晶子”部分到无定形部分的过渡是逐步完成的,两者之间无明显界限。
无规则网络学说:玻璃的结构与相应的晶体结构相似,同样形成连续的三维空间网络结构。
但玻璃的网络与晶体的网络不同,玻璃的网络是不规则的、非周期性的,因此玻璃的内能比晶体的内能要大。
由于玻璃的强度与晶体的强度属于同一个数量级,玻璃的内能与相应晶体的内能相差并不多,因此它们的结构单元(四面体或三角体)应是相同的,不同之处在与排列的周期性。
微晶学说强调了玻璃结构的不均匀性、不连续性及有序性等方面特征,成功地解释了玻璃折射率在加热过程中的突变现象。
网络学说强调了玻璃中离子与多面体相互间排列的均匀性、连续性及无序性等方面结构特征。
分化过程:架状[SiO4]断裂称为熔融石英的分化过程。
缩聚过程:分化过程产生的低聚化合物相互发生作用,形成级次较高的聚合物,次过程为缩聚过程。
无机材料科学基础
无机材料科学基础无机材料科学是材料科学的一个重要分支,主要研究无机材料的结构、性能和应用。
无机材料是指不含碳元素或含碳量极少的材料,包括金属、陶瓷、玻璃和半导体等。
在现代科技和工业生产中,无机材料发挥着重要作用,广泛应用于电子、建筑、能源、医疗等领域。
首先,无机材料的基本结构对其性能和应用具有重要影响。
无机材料的结构可以分为晶体结构和非晶体结构两种。
晶体结构是指原子或离子按照一定的规则排列而成的有序结构,具有明确的晶体面和晶体方向,如金属和陶瓷材料。
非晶体结构则是指原子或离子无规则排列,缺乏明显的晶体面和晶体方向,如玻璃材料。
不同的结构决定了材料的密度、硬度、导电性和光学性质等。
其次,无机材料的性能与其化学成分密切相关。
无机材料的化学成分包括元素种类、原子结构和化学键等。
例如,金属材料的主要成分是金属元素,具有良好的导电性和机械性能;陶瓷材料主要由氧化物、碳化物和氮化物等组成,具有优异的耐磨性和耐高温性能。
化学成分的不同会导致无机材料性能的差异,因此在材料设计和制备过程中需要充分考虑化学成分的影响。
另外,无机材料的应用领域多种多样。
金属材料广泛应用于机械制造、航空航天和汽车工业;陶瓷材料被用于建筑材料、电子器件和生物医药领域;玻璃材料则被广泛应用于建筑、家居和光学仪器等方面。
此外,半导体材料在电子器件和光电子器件中有着重要的应用,如集成电路、太阳能电池和激光器等。
总之,无机材料科学基础是材料科学研究的重要组成部分,对于推动材料科学的发展和应用具有重要意义。
通过深入研究无机材料的结构、性能和应用,可以不断拓展材料的应用领域,提高材料的性能和功能,推动材料科学和工程技术的进步。
希望本文能够对无机材料科学感兴趣的读者有所启发,也欢迎大家积极参与无机材料科学的研究和应用工作,共同推动材料科学的发展。
无机材料科学基础01
第一章 无机材料概论
资源加工与生物工程学院
2. Inorganic Nonmetallic Materials
无机非金属材料(简称无机材料):由硅酸盐、铝酸盐、 无机非金属材料(简称无机材料):由硅酸盐、铝酸盐、 无机材料):由硅酸盐 硼酸盐、磷酸盐、锗酸盐等原料和( 硼酸盐、磷酸盐、锗酸盐等原料和(或)氧化物、氮化物、 氧化物、氮化物、 碳化物、硼化物、硫化物、硅化物、 碳化物、硼化物、硫化物、硅化物、卤化物等原料经一定的 工艺制备而成的材料,是除金属材料、 工艺制备而成的材料,是除金属材料、高分子材料以外所有 材料的总称,与广义的陶瓷材料有等同的含义。 材料的总称,与广义的陶瓷材料有等同的含义。 无机非金属材料种类繁多,用途各异, 无机非金属材料种类繁多,用途各异,目前无统一完善的 分类方法,一般分为传统的 普通的) 新型的(先进的) 传统的( 分类方法,一般分为传统的(普通的)和新型的(先进的) 无机非金属材料两大类。 无机非金属材料两大类。
第一章 无机材料概论
资源加工与生物工程学院
1.1 Category of Materials
1.1.1 按化学组成(或基本组成)分类 按化学组成(或基本组成) 1.1.2 按材料性能分类 1.1.3 按服役领域分类 1.1.4 按结晶状态分类 1.1.5 按材料尺寸及形态分类
第一章 无机材料概论
资源加工与生物工程学院
第一章 无机材料概论
资源加工与生物工程学院
学习方法 1. 多分析,多思考,举一反三,理论联系实际; 多分析,多思考,举一反三,理论联系实际; 2. 学习分析问题方法,这一点比记住结论更重要; 学习分析问题方法,这一点比记住结论更重要; 3. 认真完成布置的作业及思考题 。
第一章 无机材料概论
无机材料科学基础
第一章1、结晶学的发展,从其研究内容看主要包括以下几个方面:(1)晶体生长学:研究天然及人工晶体的形成,生长和变化的过程与机理以及控制和影响它们的因素。
(2)几何结晶学:研究晶体外表几何多面体的形状及其间的规律(3)晶体结构学:研究晶体内部结构中质点排列的规律性以及晶体结构的不完整性(4)晶体化学:研究晶体的化学组成以及晶体结构与性质之间关系及其规律(5)晶体物理学:研究晶体的各项物理性质及其产生的机理2、晶体:晶体是内部质点在三维空间按周期性重复排列的固体,或者说晶体是格子构造的固体。
3、晶体的共同特征:是内部质点在三维空间按周期性的重复排列。
不具备这一特征的物体不是晶体。
4、晶体的基本性质:(1)结晶均一性:由于晶体内部结构的特征,因此,晶体在其任一部位上都具有相同的性质。
(2)各向异性:晶体在不同的方向上表现出性质的差异称为晶体的各向异性。
(3)自限性:晶体能自发的形成封闭的凸几何多面体外形的特征,称为晶体的自限性或自范性。
(4)对称性:晶体中的相同部分(包括晶面、晶棱)以及晶体的性质能够在不同的方向或位置上有规律的重复出现(5)最小内能性:在相同的热力学条件下,晶体与同组成的气体、液体及非晶质固体相比其内能最小。
因此,晶体最稳定。
5、对称:是指液体中相同部分之间的有规律重复。
6、对称操作:是指能使对称物体中各相同部分做有规律重复的变换动作, 又称对称变换。
7、晶体的对称要素:(1)对称中心(符号C)(2)对称面(符号P)(3)对称轴(符号L n)(4)倒转轴(Li n)(5)映转轴(Lsn)8、对称型(32种):宏观晶体中对称要素的集合,包含了宏观晶体中全部对称要素的总和以及它们相互间的组合关系。
9、三大晶族、七个晶系:P710、整数定律:若以平行于三根不共面晶棱的直线为坐标轴,则晶体上任意两个晶面在三个坐标轴上截距的比值之比为一简单整数比。
10、单行:是指能借助于对称性之全部对称要素的作用而相互联系起来的一组晶面的组合。
无机材料科学基础实验指导书-1
实验一淬冷法研究相平衡一.实验目的1.从热力学角度建立系统状态(物系中相的数目,相的组成及相的含量)和热力学条件(温度,压力,时间等)以及动力学条件(冷却速率等)之间的关系。
2.掌握静态法研究相平衡的实验方法之一──淬冷法研究相平衡的实验方法及其优缺点。
3.掌握浸油试片的制作方法及显微镜的使用,验证Na2O —SiO2系统相图。
二.基本原理从热力学角度来看,任何物系都有其稳定存在的热力学条件,当外界条件发生变化时,物系的状态也随之发生变化。
这种变化能否发生以及能否达到对应条件下的平衡结构状态,取决于物系的结构调整速率和加热或冷却速率以及保温时间的长短。
淬冷法的主要原理是将选定的不同组成的试样长时间地在一系列预定的温度下加热保温,使它们达到对应温度下的平衡结构状态,然后迅速冷却试样,由于相变来不及进行,冷却后的试样保持了高温下的平衡结构状态。
用显微镜或X-射线物相分析,就可以确定物系相的数目、组成及含量随淬冷温度而改变的关系。
将测试结果记入相图中相应点的位置,就可绘制出相图。
淬冷法是用同一组成的试样在不同温度下进行试验。
将试样装入铂金坩埚中,在淬火炉内保持恒定的温度,当达到平衡后把试样以尽可能快的速度投入低温液体中(水浴,油浴或汞浴),以保持高温时的平衡结构状态,再在室温下用显微镜进行观察。
这是可能出现三种情况:(1)若淬冷样品中全为各向同性的玻璃相,则可以断定物系原来所处的温度(T1)在液相线以上。
(2)若在温度(T2)时,淬冷样品中既有玻璃相又有晶相,则液相线温度就处于T1和T2之间。
(3)若淬冷样品全为晶相,则物系原来所处的温度(T3)在固相线以下。
由于绝大多数硅酸盐熔融物粘度高,结晶慢,系统很难达到平衡。
采用动态方法误差较大,因此,常采用淬冷法来研究高粘度系统的相平衡。
本实验用淬冷法验证Na2O-SiO2系统相图,实验中样品的均匀性对试验结果的准确性影响较大,因此,常常将原料制成玻璃以得到组成均匀的样品。
无机材料科学基础第一章共83页
自旋量子数 s - 表征自旋运动的取向
si
1,共2个取值 2
Electron spin visualized
电子自旋有顺时针和 逆时针的两个方向, 通常用↑和↓表示
16
➢ 原子中每个电子的运动状态可用四个量子数来 描述,四个量 子数确定之后,电子在核外的运动 状态就确定了。
例2:已知核外某电子的四个量子数为: n=2; l=1; m=-1; ms=+1/2 说明其表示的意义。
9
对于定态的原子来说,电子也不是位于确定半 径的平面轨道上,而是有可能位于核外空间的任何 地方,只是在不同的位置出现电子的几率不同。这 样,经典的轨道概念就必须摒弃。人们往往用连续 分布的“电子云”代替轨道来表示单个电子出现在 各处的几率。
电子云密度最大的地方就是电子出现几率最大 的地方。
10
e=1.6022×10-19C NA=6.023×1023atom/mol M:原子量
li
0
1
2
3
光谱学 符号
s
p
d
f
14
磁量子数 m - 表征原子轨道在外磁场方向上
分量的大小,即原子轨道在空间的不同取向
m0,1,2,3,...,l 共(2l1)个取值
每一个亚层中,m有几个取值,其亚层就有几个不同伸 展方向的同类原子轨道
磁量子数与电子能量无关,同一亚层的原子轨道,能 量是相等的,叫等价轨道(或简并轨道),简并轨道的数 目,称为简并度。
1) 提出了量子的概念 2) 成功地解释了氢原子光谱的实验结果 3) 用于计算氢原子的电离能
玻尔原子理论的局限性
1) 无法解释氢原子光谱的精细结构 2) 不能解释多电子原、分子或固体的光谱 3) 不能解释电子衍射现象
无机材料科学基础(第一章)
第一章结晶学基础§1-1 晶体的基本概念与性质一、晶体的基本概念1、晶体的概念:晶体是内部质点在三维空间按周期性重复排列的固体。
晶体是具有格子构造的固体。
2、等同点:在晶体结构中占据相同的位置和具有相同的环境的几何点。
3、空间点阵:由一系列在三维空间按周期性排列的几何点。
4、阵点or结点:空间点阵中的几何点或等同点。
5、行列:在空间点阵中,分布在同一直线上的结点构成一个行列。
6、结点间距:行列中两个相邻结点间的距离。
7、网面:连接分布在三维空间内的结点构成空间格子。
二、晶体的性质1、结晶均一性:由于晶体内部结构的特性,因此,晶体在其任一部位上都具有相同的性质。
2、各向异性:晶体在不同的方向上表现出的性质的差异。
3、自限性:or自范性晶体能自发形成封闭的凸几何多面体外形的特征。
晶面:结晶多面体上的平面。
晶棱:晶面的交棱。
4、对称性:晶体中相同部分(包括晶面、晶棱等)以及晶体的性质能够在不同的方向或位置上有规律地重复出现。
5、最小内能性:在相同的热力学条件下,晶体与同组气体、液体以及非晶质固体相比其内能为最小。
§1-2 晶体的宏观对称性一、对称的概念1、对称:是指物体中相同部分之间的有规律重复。
2、对称条件:物体必须有若干个相同的部分以及这些相同部分能借助于某种特定的动作发生有规律的重复。
3、对称变换(对称操作):指能使对称物体中各个相同部分作有规律重复的。
4、对称要素:指在进行对称变换时所凭借的几何要素—点、线、面等。
二、晶体的对称要素宏观晶体中的对称要素有:1、对称中心(符号C):是一个假象的几何点,其相应的对称变换是对于这个点的倒反(反伸)。
在晶体中如有对称中心存在必位于晶体的几何中心。
2、对称面(符号P):假想的平面,其相应的对称变换是对此平面的反映。
3、对称轴(符号Ln):是一根假想的直线,相应的对称变换是绕此直线的旋转。
轴次n:物体在旋转一周的过程中复原的次数对称该对称轴的轴次。
无机材料科学基础(共117张PPT)
无机材料科学基础
29
四次旋转反伸轴
L
4 i
无机材料科学基础
L
4 i
A
B
C
D
30
六次旋转反伸轴
L
6 i
L
6 i
无机材料科学基础
三方柱
31
5 、旋转反映轴——映转轴(Lsn)
映转轴由一根假想的直线和垂直于直线的一个平面构成, 即图形绕此直线旋转一定角度后并对此平面进行反映后,相 同部分重复出现。 旋转反映轴有:L1s、L2s、L3s、L4s、L6s。
2、《硅酸盐物理化学》 浙江大学等 建工出版社
3、《结晶学》
翁臻培等
建工出版社
4、《陶瓷导轮》
W.D. 金格瑞等 建工出版社
5、《如何看硅酸盐相图》 沈鹤年·
轻工出版社
6、《固体材料结构基础》 张孝文等
建工出版社
7、《无机材料物理化学》 叶瑞伦等
建工出版社
无机材料科学基础
ቤተ መጻሕፍቲ ባይዱ
6
第一章 结晶学基础
何谓结晶学?
23
一个晶体中可以有对称面,也可以没有对称面;可以有一个,也可 以有多个,但最多不能超过9个。
1P
5P
无机材料科学基础
24
3 、对称轴(Ln):通过晶体中心的一条假想的直线,绕这 条直线旋转一定的角度后,能使图形相 同的部分重复出现
对应的对称操作:绕对称轴的旋转 轴次(n):旋转一周重复的次数 基转角():重复时所旋转的最小角度
7
§1-1 晶体的基本概念与性质
一、 晶体的基本概念
1、晶体的基本概念
以NaCl晶体为例
Cl Na
0.563nm
晶体:内部质点在三维空间按周期性重复排列的固体; 或具有格子构造的固体。
无机材料科学基础试验
四、实验条件
1.药物天平
2.量筒
5.Na2CO3溶液(不同浓度)
8.承量瓶
9.蒸馏水
3.玻璃棒 4.烧杯(600ml)
6.秒表
7.试验用粘土
10.恩氏粘度计 (如图)
五、实验步骤
1、加水量对粘土泥浆流动性的影响的测定 取3支容量为600ml的烧杯,每杯放入80g粘土(天平精确到
0.1g),在第一杯中加入蒸馏水150ml,其余各杯中相应增加30ml 水,即180,210,240ml水,用玻璃棒搅拌均匀,搅拌相同的时间, 倒入粘度计中,然后测流出100ml泥浆所需的时间(秒)。 2、相对粘度的测定
一、实验目的
验证固相反应理论,通过本实验达到进一步了解固相 反应机理;
通过测定BaCO3-SiO2系统中给定组成的固相反应速 度常数,熟悉测定固相反应速度的仪器及方法。
在另一高温炉升高到900℃保温30分钟淬冷或750℃淬冷后, 盖好电炉底盖,温到900℃,保温30分钟,然后再将样品 (第二个)淬冷。
把淬冷后的样品冷却后,取出,放在载玻片上用镊子平研细 (压碎)盖上盖玻片,在偏光显微镜下观察物镜。
根据观察结果写出试验报告,并与Na2O-SiO2系统相图相对 照。
一、实验目的 二、实验内容 三、实验原理、方法和手段 四、实验条件 五、实验步骤 六、思考题
一、实验目的
掌握测定粘土阳离子交换容量的方法; 熟悉鉴定粘土矿物组成的一种方法。
二、实验内容
对某种硅酸盐矿物的阳离子交换容量进行测定, 对实验结果进行处理,写出实验报告。
三、实验原理、方法和手段
实验原理
后会稠厚起来,但在机械作用影响下(如剧烈的搅拌,振动等)又恢复
其流动性。这个性能以稠固性(稠化度,厚化度)来评定,稠固性愈大,
无机材料科学基础 (2)
有缘学习更多+谓ygd3076考证资料或关注桃报:奉献教育(店铺)
二、影响因素
σ
温度
影响
组成
单位表面的质点数
表面质点受内部的 结合力
1. T↑ 质点间距↑ 作用力↓ ↓ (T↑ 100 oC ↓ 1%或4~10N/m)
2. O/Si ↓ 聚合物尺寸↑ 质点数↓ ↓ 3. R2O含量↑ 解聚作用↑ 聚合物尺寸↓
5、B2O3对黏度的影响(硼反常)
[B O 3 ] O nb [B O 4 ]
A. 在B2O3-SiO2中加入Na2O [BO3]
有缘学习更多+谓ygd3076考证资料或关注桃报:奉献教育(店铺)
B. 在Na2O-SiO2中加入 B2O3
C. 在R2O-B2O3-SiO2系统中 当(RO + R2O)/B2O3 < 1,引入R2O,[BO4] 增加,
例如 :Al-Si酸盐熔体σ=317mN/m, 加入33%
K2O使此熔体表面张力降至212mN/m;加入7%V2O5 则表面张力可降至100mN/m。
6. 两种熔体混合时,表面张力不具加和性, 其中较小的被排挤到表面富集,混合体的表
面张力以较小的为主。
7. 负离子F-和SO32- 都有降低表面张力的明显作用。 8. 添加各种氧化物对熔体表面张力的影响
使 σ ↑:SiO2、Al2O3、CaO、MgO (无表面活性) 使 σ ↓:
(1) K2O、PbO、B2O3、Sb2O3、Cr2O3 (有表面活性) (2) V2O5、As2O5、SO3 (强表面活性剂)
0.3 M gO
0.3 C aO
思路:组成 结构 性质
组成变
聚合物分布变 结合力变 活化能变
无机材料科学基础实验指导
无机材料科学基础实验讲义目录实验一紧密堆积原理及模型实验二晶体结构模型分析实验三玻璃的析晶实验四粘土泥浆动电位的测定实验五固相反应速度的测定实验一紧密堆积原理及模型一、实验目的1、掌握紧密堆积原理,弄清各种堆积方式,为学习具体的晶体结构打下基础。
2、认识并掌握立方简单堆积,立方紧密堆积,六方紧密堆积中单胞内球的个数,空隙种类、位置以及堆积系数的计算。
二、紧密堆积原理原子或离子都有一定的半径,它们在空间成周期性的重复规则排列,而构成晶体结构。
因此,从几何角度看,原子或离子之间的相互结合,可以看作是球体的相互堆积。
晶体中的原子或离子之间的相互结合要遵循内能最小的原则,要求彼此间的引力和斥力达到平衡。
故从球体堆积角度来看,要求球体堆积密度尽可能大,即趋于最紧密堆积。
三、球体堆积类型为统一起见,我们以最低层作为第一层,逐层向上堆积。
同层球体的结合称为排列。
异层球体的结合称为堆积。
排列有两种方式,一种为对齐排列,另一种为错位排列(见下图)。
在错位排列中,我们假设把球心位置标记为0。
此时,每个球与相邻的6个接触,形成6个成弧线三角形的空隙。
其中3个空隙的尖角朝下,其中心位置标记为1、3、5;另外3个空隙尖角朝上,其中心位置标记为2、4、6。
两种空隙相间分布。
对齐排列错位排列堆积也有两种方式,一种为非嵌入堆积,上层球心位置与下层球心位置重叠。
另一种为嵌入堆积,上层球心位置落在下层球心的空隙位置上。
1、立方简单堆积立方简单堆积为同层对齐排列,异层非嵌入堆积,见模型1。
每个球与同层的4个球,上层下层各1个球接触,即与相邻的6个球接触。
这种堆积中具有立方体空隙,8个球堆积成立方体(见模型2)。
球体之间形成了这种立方体空隙。
立方简单堆积不是最紧密堆积,空隙占总体积的48﹪。
2、立方紧密堆积这种堆积有两种排列堆积方式,但结果相同,都是立方紧密堆积。
第一种排列堆积方式为同层对齐排列,异层嵌入堆积。
可用模型3演示。
第一层排好后,第二层的球心位置落在第一层的空隙中,第三层的球心位置落在第二层的空隙中,并与第一层球心位置重叠。
无机材料科学基础实验书
实验一淬冷法研究相平衡一.实验目的1.从热力学角度建立系统状态(物系中相的数目,相的组成及相的含量)和热力学条件(温度,压力,时间等)以及动力学条件(冷却速率等)之间的关系。
2.掌握静态法研究相平衡的实验方法之一──淬冷法研究相平衡的实验方法及其优缺点。
3.掌握浸油试片的制作方法及显微镜的使用,验证Na2O —SiO2系统相图。
二.基本原理从热力学角度来看,任何物系都有其稳定存在的热力学条件,当外界条件发生变化时,物系的状态也随之发生变化。
这种变化能否发生以及能否达到对应条件下的平衡结构状态,取决于物系的结构调整速率和加热或冷却速率以及保温时间的长短。
淬冷法的主要原理是将选定的不同组成的试样长时间地在一系列预定的温度下加热保温,使它们达到对应温度下的平衡结构状态,然后迅速冷却试样,由于相变来不及进行,冷却后的试样保持了高温下的平衡结构状态。
用显微镜或X-射线物相分析,就可以确定物系相的数目、组成及含量随淬冷温度而改变的关系。
将测试结果记入相图中相应点的位置,就可绘制出相图。
淬冷法是用同一组成的试样在不同温度下进行试验。
将试样装入铂金坩埚中,在淬火炉内保持恒定的温度,当达到平衡后把试样以尽可能快的速度投入低温液体中(水浴,油浴或汞浴),以保持高温时的平衡结构状态,再在室温下用显微镜进行观察。
这是可能出现三种情况:(1)若淬冷样品中全为各向同性的玻璃相,则可以断定物系原来所处的温度(T1)在液相线以上。
(2)若在温度(T2)时,淬冷样品中既有玻璃相又有晶相,则液相线温度就处于T1和T2之间。
(3)若淬冷样品全为晶相,则物系原来所处的温度(T3)在固相线以下。
由于绝大多数硅酸盐熔融物粘度高,结晶慢,系统很难达到平衡。
采用动态方法误差较大,因此,常采用淬冷法来研究高粘度系统的相平衡。
本实验用淬冷法验证Na2O-SiO2系统相图,实验中样品的均匀性对试验结果的准确性影响较大,因此,常常将原料制成玻璃以得到组成均匀的样品。
无机材料科学基础第一章
+ H , Al 3 , Ba 2 , Sr 2 ,Ca 2 , Mg 2 , NH 4 , K , Na , Li
11
4.粘土胶粒大小与形状:颗粒小,活性边表面多,接 触性大,易形成触变结构;颗粒形状呈条状、板状,易 形成卡片结构,触变性↑; 5.温度:温度升高,质点热运动剧烈,颗粒间作用减 弱,不易形成卡片结构; 6.PH值:PH↑,介质为碱性,边棱及板面均带负电荷 ,成层片状,浆体η↓,易流动, 触变性↓; PH↓,酸性,易形成卡片结构,浆体η↑,触 变性↑。
(2)提高ζ-电位 须有一价金属离子交换粘土原来吸附的离子。
天然粘土吸附大量Ca2+、Mg2+、H+等离子(在吸附层),ζ-电 位较低,用一价碱金属离子交换后,使扩散层变厚,ζ-电位升 高,粘土胶粒间的斥力f 增大,粘度降低,流动性好。 2 (粘土胶粒间的斥力 f d , d——扩散层厚度)
6
(3)阴离子的作用 ① 选择阴离子,使其与原土上的 Ca2+ 、 Mg2+ 离子形成不可溶物或
稳定的络合物,促进一价金属离子对Ca2+、Mg2+的交换。 因为从阳离子交换序可知,Na+、K+离子交换Ca2+、Mg2+离子,在 相同浓度下不可能,必须有较高的浓度才行。若能形成沉淀,则 交换反应趋于完全。泥浆的粘度降低,流动性提高。如: Ca-土 + 2NaOH ===2Na-土 + Ca(OH)2 该反应 Ca-土 + Na2SiO3 ==2Na-土 + Ca SiO3↓ 更易进
未加稀释剂时的边- 面和边-边结构
加稀释剂后的面- 面结构
4
5
3. 泥浆的胶溶(稀释)须具备以下几个条件: (1)介质呈碱性
沈阳化工大学无机材料科学基础--2-2
无机材料科学基础
2、晶体中键的表征
键型四面体
无机材料科学基础
3、晶体中离子键、共价键比例的估算
电负性 —— 可定性的判断结合键的类型
电负性:是指各元素的原子在形成价键时吸 引电子的能力,用以表征原子形成负离子倾向 的大小。
鲍林用电负性差值△X=XA-XB来计算化合物中
离子键的成份。差值越大,离子键成分越高。
物理性能: 熔点、密度…… 力学性能: 弹性模量、强度、塑性……
无机材料科学基础
结合键种类对性能的影响
键 能 (kJ/mol) 586-1047 63-712 113-350 <42 熔 点 高 高 有高 有低 低 硬 度 高 高 有高 有低 低 导电性 固态 不导电 不导电 良好 不导电 键 的 方向性 无 有 无 有
第三层位于一二层间隙
面心立方最紧密堆积
无机材料科学基础
面心立方最紧密堆积
—— 面心立方结构
密排面:(111)面
无机材料科学基础
密排面:(111)面
无机材料科学基础
(2)密堆积结构中的间隙
1)空隙形式
四面体空隙:正四面体,由4个球构成
八面体空隙:正八面体,由6个球构成,
无机材料科学基础
1、极化过程
被极化:自身被极化
一个离子受到其他离子所产生的外电场的 作用下发生极化,用极化率α 表示 主极化:极化周围其它离子
一个离子以其本身的电场作用于周围离
子,使其他离子极化,用极化力β 表示
无机材料科学基础
2、一般规律
正离子 负离子
β大 β小
α小 α大
▲ 18电子构型的正离子 Cu2+、Cd2+的α值大
无机材料科学基础实验指导
无机材料科学基础实验指导无机材料科学基础实验讲义目录实验一紧密堆积原理及模型实验二晶体结构模型分析实验三玻璃的析晶实验四粘土泥浆动电位的测定实验五固相反应速度的测定实验一紧密堆积原理及模型一、实验目的1、掌握紧密堆积原理,弄清各种堆积方式,为学习具体的晶体结构打下基础。
2、认识并掌握立方简单堆积,立方紧密堆积,六方紧密堆积中单胞内球的个数,空隙种类、位置以及堆积系数的计算。
二、紧密堆积原理原子或离子都有一定的半径,它们在空间成周期性的重复规则排列,而构成晶体结构。
因此,从几何角度看,原子或离子之间的相互结合,可以看作是球体的相互堆积。
晶体中的原子或离子之间的相互结合要遵循内能最小的原则,要求彼此间的引力和斥力达到平衡。
故从球体堆积角度来看,要求球体堆积密度尽可能大,即趋于最紧密堆积。
三、球体堆积类型为统一起见,我们以最低层作为第一层,逐层向上堆积。
同层球体的结合称为排列。
异层球体的结合称为堆积。
排列有两种方式,一种为对齐排列,另一种为错位排列(见下图)。
在错位排列中,我们假设把球心位置标记为0。
此时,每个球与相邻的6个接触,形成6个成弧线三角形的空隙。
其中3个空隙的尖角朝下,其中心位置标记为1、3、5;另外3个空隙尖角朝上,其中心位置标记为2、4、6。
两种空隙相间分布。
对齐排列错位排列堆积也有两种方式,一种为非嵌入堆积,上层球心位置与下层球心位置重叠。
另一种为嵌入堆积,上层球心位置落在下层球心的空隙位置上。
1、立方简单堆积立方简单堆积为同层对齐排列,异层非嵌入堆积,见模型1。
每个球与同层的4个球,上层下层各1个球接触,即与相邻的6个球接触。
这种堆积中具有立方体空隙,8个球堆积成立方体(见模型2)。
球体之间形成了这种立方体空隙。
立方简单堆积不是最紧密堆积,空隙占总体积的48﹪。
2、立方紧密堆积这种堆积有两种排列堆积方式,但结果相同,都是立方紧密堆积。
第一种排列堆积方式为同层对齐排列,异层嵌入堆积。
无机材料科学基础
无机材料科学基础无机材料科学基础是材料科学的重要组成部分,它研究的是无机材料的结构、性质和制备方法。
无机材料是指不含碳的材料,主要包括金属、陶瓷和玻璃等。
无机材料科学基础的研究对于材料工程、能源领域、生物医学等领域都具有重要意义。
首先,无机材料科学基础的研究对象包括金属材料。
金属材料是一类具有金属性质的材料,具有良好的导电性、导热性和机械性能。
金属材料的研究主要包括金属的晶体结构、晶体缺陷、金属的力学性能等方面。
金属材料的应用非常广泛,包括航空航天、汽车制造、建筑等领域。
其次,无机材料科学基础的研究对象还包括陶瓷材料。
陶瓷材料是一类非金属无机材料,具有高硬度、高耐磨性和高耐高温性能。
陶瓷材料的研究主要包括陶瓷的晶体结构、烧结工艺、陶瓷的力学性能等方面。
陶瓷材料的应用包括电子器件、化工设备、医疗器械等领域。
另外,无机材料科学基础的研究对象还包括玻璃材料。
玻璃材料是一类非晶态无机材料,具有透明、坚固和化学稳定性好的特点。
玻璃材料的研究主要包括玻璃的成分、结构、制备工艺等方面。
玻璃材料的应用包括建筑玻璃、光学器件、玻璃容器等领域。
无机材料科学基础的研究方法包括实验研究和理论研究。
实验研究主要包括材料的制备、性能测试等方面,而理论研究主要包括材料的结构模拟、性能预测等方面。
无机材料科学基础的研究方法需要借助于材料科学、化学、物理学等学科的知识,采用先进的分析测试技术和计算模拟方法。
无机材料科学基础的研究对于推动材料科学的发展具有重要意义。
通过对无机材料的结构和性能进行深入研究,可以为材料工程提供新的理论基础和实验依据,为新材料的设计和制备提供指导。
同时,无机材料科学基础的研究也为解决能源、环境、医疗等方面的重大问题提供了新的思路和方法。
总之,无机材料科学基础是材料科学领域的重要组成部分,它的研究对于推动材料科学的发展、促进技术创新具有重要意义。
通过对金属、陶瓷、玻璃等无机材料的结构、性能和制备方法进行深入研究,可以为材料工程、能源领域、生物医学等领域的发展做出重要贡献。
无机材料科学基础讲课讲稿
二、仪器结构原理及特点
物质在加热过程中的某一特定温度下,往往会发生物理、化学变化并伴 随有吸、放热现象。差示量热分析(DSC)是通过物质在加热过程中特定温 度下的吸、放热现象来研究物质的各种性质的。
STA-449C是世界上最先进的同步TG-DSC分析仪器,拥有最高解析度的 TG/DSC与无可比拟的长时间稳定性,即使在1400℃以上的高温,仍能保证 DSC传感器的高灵敏度与比热测量的准确性。针对无机材料、高分子材料等 不同的应用领域,STA-449C可以选配四个可自由更换的炉体,覆盖-120℃~ 1650℃的宽广温度范围。STA-449C配备带电磁补偿的的超微量天平,具有 高准确度、g级的分辨率与出色的稳定性,并能测试重达5g的样品。STA449C采用顶部装样结构。与其它结构相比,顶部装样结构的特点在于操作简 便,即便操作人员装样时略有失误也不易损坏支架。炉体采用真空密闭设计 ,炉体打开时样品支架即与天平脱离,有利于对天平的保护,由于气氛为由 下往上的自然流向,因此只需很小的流量即可带走分解产物,载气中产物气 体浓度高,特别有利于与FTIR/MS联用。标准配备三路气体的质量流量计。 STA-449C支架传感器与坩埚底部直接接触,测温准确。用户可以根据应用 选配多种样品支架:TG-DSC支架可同时提供TG-DSC-DTA信号,
三、实验方法
(一)操作条件
1.实验室门应轻开轻关,尽量避免或减少人员走动。 2.计算机在仪器测试时,不能上网或运行系统资源占用较大的程序。 3.保护气体(Protective):保护气体是用于在操作过程中对仪器及其天平进行保护,以防止
受到样品在测试温度下所产生的毒性及腐蚀性气体的侵害。Ar、N2、He等惰性气体均 可用作保护气体。保护气体输出压力应调整为0.05 MPa,流速恒定为10~30 ml/min,一 般设定为15 ml/min。开机后,保护气体开关应始终为打开状态。 4.吹扫气体(Purge1 / Purge2):吹扫气体在样品测试过程中,用作为气氛气、或反应气。 一般采用惰性气体,也可用氧化性气体(如:空气、氧气等)或还原性气体(如:CO 、H2等)。但应慎重考虑使用氧化、还原性气体作气氛气,特别是还原性气体,会缩 短样品支架热电偶的使用寿命,还会腐蚀仪器上的零部件。吹扫气体输出压力应调整 为0.05 MPa,流速100 ml/min,一般情况下为20 ml/min。 5.恒温水浴:恒温水浴是用来保证测量天平工作在一个恒定的温度下。一般情况下,恒 温水浴的水温调整为至少比室温高出2C。 6.真空泵:为了保证样品测试中不被氧化或与空气中的某种气体进行反应,需要真空泵 对测量管腔进行反复抽真空并用惰性气体置换。一般置换两到三次即可。
无机材料科学基础教程课件
晶体与材料
组成材料的物质(包括天然的固态物质)按其 原子(分子)的聚集状态可分为晶体与非晶体。 晶体可以有单晶体和多晶体,其构成的材料分 别为单晶材料和多晶材料。 单晶材料有人造半导体材料单晶硅和锗、金刚 石、红宝石等,多晶材料包括金属及陶瓷等。 晶体固有的性质对材料的性质具有重要的决定 作用。
晶体与材料
金属和陶瓷等很大一部分材料主要是由晶体 组成的晶质材料。在晶质材料中,晶体本身的性 质是影响材料性质的最主要因素之一。 例如构成耐火材料的主晶相一般具有较高的 熔点;氮化铝陶瓷良好的导热性,是因为氮化铝 晶粒具有高的热导率,等等。Fra bibliotek晶体与材料
一般来讲,一种晶体具有一定的物质组成和一 定的内部结构,物质组成确定后,晶体的性质主要 与其内部结构(或者说内部质点的排列方式)有关。 例如,金刚石和石墨,都是由碳构成的,由于 碳的排列方式(内部结构)不同,金刚石具有很高 的硬度,而石墨则很软。当然,不同的物质成分, 也可具有相同的排列方式。 本章就是关于晶体内部质点排列规律性及由此 决定的晶体宏观形态规律性的认识。
无机材料科学基础(陆佩文)
无机材料科学基础概论一. 研究对象与学习目的自古以来,材料的发展一直是人类文明的里程碑.材料、能源、•信息被公认为是现代文明的三大支柱.新材料已成为各个高技术领域的突破口.材料主要包括:金属材料、有机材料、无机非金属材料.本课程研究的对象是无机非金属材料.无机非金属材料的最大特点是耐高温、耐腐蚀,这些特点是其它材料无法比拟的.无机非金属材料的发展在国民经济中的重要作用是显而易见.研究的对象是"无机非金属材料〞,从化学组成上看:包含硅酸盐,和各种氧化物、氮化物、碳化物、硼化物、硅化物、氟化物等.从物质结构上看:可以包括单晶体、多晶体或无定形体.本专业主要研究多晶、多相无机非金属材料,也可称为"陶瓷".从材料形态上看:不仅包括块体材料,还包括粉体材料、纤维材料、晶须材料和薄膜材料.从所属的工业产品来看:可分为传统材料和现代陶瓷,所属的工业产品涉与各个领域.传统材料主要包括陶瓷、玻璃、耐火材料、水泥、磨料、砖瓦等.现代陶瓷按其功能又可分为两大部分:高温结构陶瓷:能在高温条件下承受各种机械作用的陶瓷材料.如:陶瓷发动机的部件、切削工具、耐磨轴承、火箭燃气喷嘴、各种密封环〔石墨〕、能承受超高温作用的结构部件.功能陶瓷:具有声、光、•电、•磁、•热等功能的陶瓷制品.•如:•压电陶瓷〔PbTiO3系>、热敏陶瓷、陶瓷基片、光电陶瓷、生物陶瓷、超导材料、核燃料、磁性材料、化学电池〔β-Al2O3>材料等.我们学习无机材料科学基础的目的是:从理论上定性的了解无机非金属材料的组成、结构与性能之间的关系和变化规律,了解控制材料性能的基本和共性规律.至于如何具体从技术上实现这些,则属于工艺课的范畴.二.学习的内容分为四大部分:材料的结构:晶体结构晶体缺陷玻璃体和熔体固体表面过程热力学和动力学:热力学应用相图相图的热力学推导扩散相变材料制备原理:硅酸盐晶体结构坯料制备与成型的理论基础固相反应烧结材料的制备实验:包括基础实验和选作实验两部分,独立设课三.学习要求材料科学基础对无机非金属材料的性能与生产过程中的一些共性问题从理论上做了系统的讨论.该课程是后续工艺课的理论基础课,同样也是今后指导实际工作,进行理论研究的理论基础.其重要性显而易见.学习过程中实现思维方式的两个转变:--从微观结构的角度考虑问题如:扩散原高浓度—低浓度现为什么在不同的物质中扩散速度不同—结构决定--建立工程意识科学教育—是与非;工程教育—是否可行、是否有效、是否最优.谈到某一因素的影响时既有有利一面又有不利一面.应结合具体情况进行综合考虑.材料科学基础研究无机非金属材料的共性问题,是一门新兴学科,一些理论和学说仍在发展之中,这使我们更容易了解这些理论和学说建立的过程,从中可学习到材料科学的一些研究方法和研究思路.材料科学基础是以物理、化学、物化等学科的知识为基础.要求在学习过程中与时复习所涉与到的有关内容.材料科学基础是一门新兴学科,有些理论尚不成熟.在某些问题上不同学派存在不同观点,为了广泛了解这些观点授课内容不只限于选用教材.所以要求同学们课上做好笔记,课下多看参考书.为了加强同学们独立分析解决问题的能力,习题的选择有一定的难度.某些习题是课堂授课内容的延伸.希望能独立、认真地完成,以收到良好的学习效果.第一章晶体无机非金属材料所用原料与其制品大多数是以结晶状态存在的物质.然而不同的晶体结构具有不同的性质.例如 ,TiO2光催化材料可以在太阳光的照射下降解污染物,TiO2有金红石、锐钛矿、板钛矿等几种晶体结构,锐钛矿型TiO2材料的光催化性能优于金红石型;陶瓷行业中常用的粘土,由于晶体结构不同,工艺性能也表现出很大的差异;α-Al2O3是良好的绝缘材料,而β-Al2O3可作为电池中的电解质以离子导电的方式传递电荷.人们对晶体的研究首先是从研究晶体几何外形的特征开始的,1912年X射线晶体衍射实验的成功,使人们对晶体的研究从晶体的外部进入到了晶体的内部,使得对晶体的认识有了质的变化.晶体所具有的性质是由晶体中质点排列方式所决定,结构发生变化,性质随之发生变化.然而晶体结构又取决于晶体的化学组成,组成晶体的质点不同意味着质点间键的作用形式和排列方式发生改变.所以,本章主要研究晶体的组成、空间结构和性质之间的关系.本章主要介绍了几何结晶学、晶体化学的基本概念和原理.从这些基本原理出发,介绍了描述晶体结构的方法,包括:i 从几何结晶学角度——空间格子ii 从球体堆积角度——负离子做堆积,正离子填充空隙iii 用鲍林规则分析——多面体堆积iv 取晶胞,晶胞中质点的具体位置以通过这些方法掌握NaCl型、CsCl 型、闪锌矿型、萤石型、刚玉型的晶体结构,并了解纤锌矿型、金红石型、碘化镉CdI2型、钙钛矿型和尖晶石型结构.在此基础上,了解晶体的组成、空间结构和性质之间的关系.第一节几何结晶学基本概念一、晶体的定义1、定义晶体是内部质点在三维空间作有规则的周期性重复排列的固体,是具有格子构造的固体.晶体的这一定义表明,不论晶体的组成如何不同,也不论其表观是否具有规则的几何外形,晶体的共同特征是内部质点在三维空间按周期性的重复排列.不具备这一特征的物体就不是晶体.以NaCl晶体为例.NaCl的晶胞结构2、空间点阵〔空间格子〕在三维空间按周期性重复排列的几何点的集合称为空间点阵〔空间格子〕.空间点阵〔空间格子〕中的结点是抽象的几何点并非实际晶体中的质点.阵点或结点:空间点阵中的几何点称为阵点或结点.等同点:同一套空间格子中的结点叫等同点.实际晶体是由组成晶体的离子或原子去占据一套或几套穿插在一起的空间格子的结点位置而构成.实际晶体的内部质点是有实际内容的原子或离子.实际晶体中化学组成相同、结晶化学环境相同的质点占据的结点构成一套等同点.所谓结晶化学环境相同是指质点周围在相同方位上离开相同距离有相同的质点.晶体中有几套空间格子就有几套等同点,判断晶体中有几套空间格子的方法是看晶体中有几套等同点.NaCl晶体有2套空间格子,Na+ 离子和Cl-离子各构成一套空间格子.CsCl晶体有2套空间格子,Cs+ 离子和Cl-离子各构成一套空间格子.CaF2 晶体有3套空间格子,Ca2+离子构成一套空间格子;F-离子有两套空间格子. 3、晶体的性质:结晶均一性、各向异性、自限性、对称性、最小内能性.二、晶系:根据晶体的对称性,将晶体分为三大晶族、七大晶系.高级晶族:立方晶系〔等轴晶系〕中级晶族:六方晶系、三方晶系〔菱方晶系〕、四方晶系〔正方晶系〕低级晶族:斜方晶系〔正交晶系〕、单斜晶系、三斜晶系三、晶胞晶胞是晶体中重复出现的最小结构单元,它包含了整个晶体的特点.对应于七大晶系,晶胞形状有七种.四、空间格子的类型:〔14种布拉维空间格子〕以等同点为基准取晶胞,根据七大晶系,晶胞的形状共有7种. 等同点在晶胞的位置可以有以下几种:1.原始式:等同点占据晶胞的各个角顶2.体心式:等同点占据晶胞的各个角顶和体心3.面心式:等同点占据晶胞的各个角顶和面心4.底心式:等同点占据晶胞的各个角顶和上下底面中心根据某一套等同点为基准所取晶胞的形状和该套等同点在晶胞中的位置可以判断该套等同点构成的空间格子类型,共有十四种空间格子类型,通常称为十四种布拉维空间格子〔布拉维空间点阵〕.晶胞种类等同点在晶胞的位置立方晶胞原始式体心式面心式六方晶胞底心式三方晶胞原始式四方晶胞原始式体心式斜方晶胞原始式体心式面心式底心式单斜晶胞原始式体心式三斜晶胞原始式如:①NaCl晶体是由一套Na+离子立方面心格子和一套Cl-离子立方面心格子穿插而成.②CsCl晶体是由一套Cl-离子立方原始格子和一套Cs+离子立方原始格子穿插而成.CsCl晶体结构③立方ZnS〔闪锌矿〕晶体是由一套S2-离子立方面心格子和一套Zn2+离子立方面心格子穿插而成.④CaF2〔萤石〕晶体是由一套Ca2+离子立方面心格子和两套F-离子立方面心格子穿插而成.⑤TiO2〔金红石〕晶体是由两套Ti4+离子四方原始格子和四套O2-离子四方原始格子穿插而成.第二节晶体化学基础一、晶体中键的形式:1. 典型键型化学键:原子或离子结合成为分子或晶体时,相邻原子或离子间的强烈的吸引作用称为化学键.分子键:分子间较弱的相互作用力.电负性〔X〕可衡量电子转移的情况,因而可用来判断化学键的键型.原子的X越大,越易得到电子,X 大于2,呈非金属性;原子的X越小,越易失去电子,X小于2,呈金属性.化学键的类型:离子键:凡是X值相差大的不同种原子作用形成离子键.X值小的原子易失电子形成正离子,X值大的原子易得电子形成负离子.如:碱土金属与氧原子结合.离子键无饱和性和方向性.共价键:凡是X值较大的同种或不同种原子组成共价键.共价键有饱和性和方向性.金属键:凡是X值都较小的同种或不同种原子组成金属键,被给出的电子形成自由电子气,金属离子浸没其中.金属键无饱和性和方向性.分子键的类型:范德华键:分子间由于色散、诱导、取向作用而产生的吸引力的总和.氢键:X—H…Y,可将其归入分子键.氢键键键力 > 范德华键键力一般的情况下各种键的强度顺序如下:共价键最强,离子键很强,金属键较强,三种化学键的键力远大于分子键,分子键中氢键的键力大于范德华键.2.键型的过渡性凡是X值有相当差异、但差异并不过大的原子之间形成离子键和共价键之间的过渡键型.如:Si-O键〔共价键和离子键成份各占50%〕.依据鲍林公式计算过渡键型中离子键占的百分数P:P=1-exp[-1/4〔xA-xB〕2]二离子半径:对于独立存在的离子,它的离子半径是不确定的,但在离子晶体中,设离子为点电荷 ,根据库仑定律,正、负离子之间的吸引力:F∝<q1q2>/r2随着离子的相互靠近,电子云之间的斥力出现并迅速增大.当引力=斥力时处于平衡,平衡间距r=r0.r0为正离子中心到负离子中心的距离,即正、负离子都可以近似看成球形,各有一个作用圈半径,平衡间距就是相邻的正、负离子相互接触时半径之和.对于存在于离子晶体中的离子,它有确定的离子半径.r0=r++ r-三、球体的堆积方式:1. 球体的最紧密堆积原理假设球体是刚性球,堆积密度越大,堆积体的内能越小,结构越稳定.球体的堆积倾向于最紧密方式堆积.2. 等径球体的堆积方式:〔1〕最紧密堆积①六方最紧密堆积:ABAB……〔ACAC……〕每两层重复一次,其球体在空间的分布与六方格子相对应,堆积体中有两套六方底心格子.其密排面//〔0001〕②立方最紧密堆积:ABCABC……〔ACBACB……〕每三层重复一次,球体分布方式与立方面心格子相对应,堆积体中有一套立方面心格子.其密排面//〔111〕除上述这两种常见的最紧密堆积方式,最紧密堆积也可能出现ABACABAC……,每四层重复一次,或ABABCABABC……,每五层重复一次,等等.密堆率〔堆积系数〕:晶胞中含有的球体体积与晶胞体积之比.最紧密堆积密堆率都是74.05%,空隙率25.95%.最紧密堆积体中是有空隙的,空隙类型有:①四面体空隙:处于四个球体包围之中的空隙,四个球体中心连线形成一个四面体.②八面体空隙:处于六个球体包围之中的空隙,六个球体中心连线形成一个八面体.空隙半径〔空隙中内切球半径〕:八面体>四面体有n个球体作最紧密堆积:①每个球周围有四面体空隙8个,每个四面体空隙为4个球共有,每个球占有四面体空隙数8*1/4=2②每个球周围有八面体空隙6个,每个八面体空隙为6个球共有,每个球占有八面体空隙数6*6/1=1n个球体作最紧密堆积的堆积体中,有2 n个四面体空隙,有n个八面体空隙.〔2〕简单立方堆积简单立方堆积不是最紧密堆积.球体分布方式与立方原始格子相对应,密堆率为52%.堆积体中只形成立方体空隙〔8个球包围,其球心连线形成一个立方体〕.同理可知,n 个球做简单立方堆积有n个立方体空隙.〔3〕不等径球体的堆积不等径球体的堆积可看成较大的球体作等径球体的最紧密堆积,较小的球填充于堆积体的空隙中.在离子晶体中,负离子一般较大,负离子通常作最紧密堆积,正离子较小,填充于堆积体的四面体空隙或八面体空隙中,如果正离子太大,八面体空隙也填不下,则要求负离子改变堆积方式,作简单立方堆积,产生较大的立方体空隙,正离子填充于堆积体的立方体空隙中.用这种方式描述离子晶体结构,虽不严密但有助于我们想象.如:NaCl :n个Cl-离子做立方最紧密堆积,产生n 个八面体空隙,Na+离子填充全部八面体空隙.CsCl:Cl-做简单立方堆积,Cs+离子填充于全部的立方体空隙当中.ZnS:S2-做立方最紧密堆积,Zn2+填充一半的四面体空隙.CaF2:F-做简单立方堆积,Ca2+填充一半的立方体空隙.不等径球体堆积达到的密堆率可以大于等径球体的密堆率.四、配位数〔CN〕:定义在离子晶体中,每个离子都被与其电荷相反的异名离子相包围,则异名离子的数量就是这个离子的配位数.如:NaCl,Na+周围有6个Cl-,则Na+的CN=62.配位多面体配位数决定了配位多面体的形态.配位数:8——配位多面体:立方体;配位数:4——配位多面体:四面体假设离子是刚性球,正离子的配位数由R+/R-决定:在最紧密堆积体中,八面体空隙内切球的半径:设:堆积球的半径为R,八面体空隙内切球的半径为r,连接四个堆积球的球心为正方形, 所以, 2〔2R〕2=〔2R+2r〕2解得,1.414R=R+r 所以, r/ R=0.414可见,当R+/ R-=0.414 时,正离子恰好填入八面体空隙,此时正离子的配位数为6.同理,当R+/ R-=0.225时,正离子恰好填入四面体空隙,此时正离子的配位数为4.当R+/ R-=0.732 时,正离子恰好填入立方体空隙,此时正离子的配位数为8.实际上,离子晶体中的R+/ R-很少恰好是这些数值,当R+/ R-在两临界值之间时,配位数取下限值.正离子的配位数与R+/ R-的关系如下:R+/ R- <0.155≤R+/ R- <0.225≤R+/ R- <0.414≤ R+/ R- <0.732≤ R+/ R- <1≤ R+/ R-配位数 2 3 4 6 8 12 注意:当配位数为12 相当于等径球体的最紧密堆积.3. 离子的极化对晶体结构的影响在外电场作用下离子被极化,产生偶极矩.离子晶体中每个离子都有双重能力,既有极化别的离子的能力,又有被别的离子极化的能力.极化率〔极化系数〕α:离子被极化的难易程度〔α越大,变形程度越大;α越小,变形程度越小〕极化力β:离子极化其它离子的能力,主极化.一般地,只考虑正离子对负离子的极化作用,而对于最外层电子是18、18+2型正离子,除考虑正离子对负离子的极化作用外,还必须考虑负离子对正离子的极化,因为最外层电子为18、18+2型离子不仅β大.而且α也大,总的极化作用大大加强,晶体结构类型可能因此而改变.* 例:离子极化对卤化银晶体结构的影响AgClAgBrAgIR+/R-0.6350.5870.523实际配位数664〔理论为6〕理论结构类型NaClNaClNaC l实际结构类型NaClNaCl立方ZnS五、决定离子晶体结构的因素——结晶化学定律离子晶体结构取决其组成质点的数量关系、大小关系和极化性能.数量关系:正负离子的比例,如:NaCl中为1:1〔两套立方面心格子〕,CaF2中为1:2〔三套立方面心格子〕大小关系:NaCl中,R+/R-=0.95/1.81=0.52,CN=6.CsCl 中,R+/R-=1.69/1.81=0.93,CN=8.极化性能:AgCl,CN=6;AgI,CN=4.六、晶格能1.定义:把1mol离子晶体中各离子拆散至气态时所需要的能量.对于二元离子晶体U=W1W2e2N0A<1-1/n>/r0其中:W1W2——正负离子的电价, e——电子电荷,r0——平衡间距,N0——阿佛加德罗常数,A——马德伦常数, n——波恩指数.2.晶格能的意义:对于二元晶体,晶格类型相同,且离子间的极化作用不太强烈时,由晶格能大小可比较晶体有关的物理性质如:MgO、CaO、SrO、BaO二元晶体,结构类型为NaCl型,故:晶格能UMgO>U CaO >U SrO >UBaO故熔点 MgO>CaO>SrO>BaO硬度 MgO>CaO>SrO>BaO在利用晶格能比较晶体物理性质时必须注意极化的影响,如ZrO2、CeO2、ThO2均为CaF2型二元晶体,且RZr<RCe<RTh晶格能U ZrO2>U CeO2>U ThO2实际熔点为:2710℃<2750℃<3050℃,熔点ZrO2最低而ThO2最高.七从多面体堆积角度认识晶体——鲍林规则1 第一规则:关于组成负离子多面体的规则在每个正离子周围都形成一个负离子多面体,正负离子间距取决于它们的半径之和,正离子的配位数取决于正负离子半径之比.2 第二规则:电价规则在一个稳定的离子化合物结构中,每一负离子的电价等于或近似等于从邻近的正离子至该负离子各静电强度的总和.W-=∑Si〔偏差不超过1/4价〕其中:Si—静电键强度〔中心正离子分配给每个负离子的电价分数〕〔1〕对于二元晶体可推断其结构〔已知结构稳定〕如:NaClR+/R-=0.95/1.81=0.52,形成[NaCl6]八面体,Si=1/6∴W-=1=∑Si=1/6*i 推出i=6即:每个Cl-周围有6个Na+,或每个Cl-是6个[NaCl6]八面体的共用顶点.〔2〕判断结构是否稳定〔已知结构〕如:镁橄榄石〔Mg2SiO4〕已知结构中,一个[SiO4]四面体和三个[MgO6]八面体共用一个O顶点∴∑Si=1*4/4+3*2/6=2= W- 故结构稳定3第三规则:关于负离子配位多面体共用顶点规则在一个配位结构中,两个负离子多面体以共棱方式特别是共面方式存在时,结构稳定性较低,对于电价高而配位数小的正离子此效应尤为显著.阴离子多面体存在方式不连共顶共棱共面阴离子多面体共用顶点123随着顶点共用数增加,导致两个正离子中心距减小,如在八面体中以点、棱、面相连时,两中心正离子之间的距离以1:0.71:0.58的比例减小,而四面体以点、棱、面相连时,两中心正离子之间的距离以1:0.58:0.33的比例减小.正离子间距减小,排斥力增大,不稳定程度增大.4、第四规则:不同种类配位多面体之间的连接规则在含有不同种类正离子的晶体中,电价高而配位数小的正离子的配位多面体趋向于相互不共用顶点.该规则的物理基础与第三规则相同.5、第五规则:节约规则八、典型无机化合物的结构* 描述晶体结构的方法:i 从几何结晶学角度——空间格子ii 从球体堆积角度——负离子做堆积,正离子填充空隙iii 用鲍林规则分析——多面体堆积iv 取晶胞,晶胞中质点的具体位置1、AX型〔1〕NaCl型方法i:一套Cl-和一套Na+的立方面心格子穿插而成.方法ii:Cl-做立方最紧密堆积,Na+填充全部的八面体空隙.方法iii:第一规则:RNa+/RCl-=0.52,形成[NaCl6]八面体.第二规则:已知结构稳定,W-=1=∑Si在[NaCl6]八面体中,Si=1/6 ∴1=1/6*i 推出:i=6即:每个Cl-是6个[NaCl6]八面体的共用顶点.第三规则:最高连接方式是共棱连接,结构稳定.方法iv:Cl-为基准取晶胞,立方晶胞:Cl- <0,0,0>,<1/2,0,1/2>,<0,1/2,1/2>,<1/2,1/2,0>Na+ <1/2,1/2,1/2>NaCl晶胞中含有的式量分子数:Na+:体心,各边心 1+1/4*12=4Cl- :各角顶,各面心 1/8*8+1/2*6=4即:每个晶胞中含有4个式量分子.〔"分子〞〕碱土金属氧化物MgO、CaO、SrO、BaO具有NaCl型晶体结构.〔其中的Mg2+、Ca2+、Cs2+、Ba2+相当于NaCl中的Na+离子,而O离子相当于Cl-离子〕〔2〕CsCl型方法i:由一套Cl-和一套Cs+离子的立方原始格子穿插而成.方法ii:Cl-做简单立方堆积,Cs+填充全部立方体空隙.方法iii:第一规则:RCs+/RCl-=0.167/0.181=0.93,形成[CsCl8]立方体第二规则:W-=1=∑Si在[CsCl8]立方体中,Si=1/8 ∴1=1/8*i 推出:i=8即:每个Cl-是8个[CsCl8]立方体的共用顶点.方法iv:立方晶胞:Cl-:<0,0,0>Cs+:<1/2,1/2,1/2>晶胞中含有的式量分子数:Cs+:体心 1Cl-:角顶 1/8*8=1即:每个晶胞中含有1个CsCl式量分子.属于该类型结构的晶体有CsBr、CsI、TlCl、NH4Cl等〔3〕闪锌矿型〔立方ZnS〕方法i:由一套S2-和一套Zn2+的立方面心格子穿插而成.方法ii:S2-做立方最紧密堆积,Zn2+填充1/2的四面体空隙.方法iii:R Zn2+/R S2-=0.44,理论上为[ZnO6]八面体,实际为[ZnO4]四面体.W-=2=∑Si Si=2/4=1/2 ∴1/2*i=2 推出:i=4即:每个S2-是4 个[ZnO4]四面体的共用顶点.最高连接方式为共顶连接.立方晶胞中S2-:<0,0,0>,<0,1/2,1/2>,<1/2,0,1/2>,<1/2,1/2,0>Zn2+:<1/4,1/4,3/4>,<1/4,3/4,1/4>,<3/4,1/4,1/4>,<3/4,3/4,3/4> 晶胞中含有的式量分子数:S2-:各角顶,各面心 1/8*8+1/2*6=4Zn2+:各1/8小立方体的体心 8*1/2=4即:每个晶胞含有4个ZnS"分子".β-SiC、GaAs、AlP、InSb等具有该类型结构.〔4〕纤锌矿型〔六方ZnS〕由2套S2-和2套Zn2+的六方底心格子穿插而成.2. AX2型〔1〕CaF2〔萤石型〕方法i:由一套Ca2+和2套F-的立方面心格子穿插而成.方法ii:F-做简单立方堆积,Ca2+填充一半的立方体空隙.方法iii:R Ca2+/R F-=0.112/0.131=0.85,形成[CaF8]立方体W-=1=∑Si Si=2/8=1/4 ∴1/4*i=1 推出:i=4即:4个[CaF8]立方体共用1 个顶点最高连接方式为共棱连接.方法iv:立方晶胞:Ca2+:<0,0,0>,<1/2,1/2,0>,<1/2,0,1/2>,<0,1/2,1/2>F-:<1/4,1/4,1/4>,<3/4,3/4,1/4>,<3/4,1/4,3/4>,<1/4,3/4,3/4>,<3/4,3/4,3/4>,<1/4,1/4,3/4>,<1/4,3/4,1/4>,<3/4,1/4,1/4> 晶胞中含有的式量分子数:Ca2+:各角顶、各面心 1/8*8+6*1/2=4F-:各1/8小立方体体心 8即:每个晶胞中含有4个CaF2式量分子.该类型结构晶体有ZrO2、UO2、ThO2等* 反萤石结构:与萤石结构相反,正、负离子位颠倒的结构,阴离子做立方最紧密堆积,阳离子填充全部的四面体空隙.晶体举例:碱金属氧化物Li2O、Na2O、K2O〔2〕TiO2〔金红石型〕方法i:由2套Ti4+和4套O2-的四方原始格子穿插而成.方法ii:O2-做六方最紧密堆积,Ti4+填充一半的八面体空隙.方法iii:R Ti4+/R O2-=0.06/0.125=0.46,形成[TiO6]八面体W-=2=∑Si Si=4/6=2/3 ∴2/3*i=2 推出:i=3即:每个O2-是三个[TiO6]八面体的共用顶点.最高连接方式为共棱连接.方法v:四方晶胞:Ti4+:各角顶、体心 1/8*8+1=2O2-:2个1/8立方体体心、4个小立方体底心 2+4*1/2=4即:每个晶体中含有2个TiO2式量分子.晶体举例:GeO2、SnO2、PbO2、MnO2等.* TiO2变体:①金红石型:八面体之间共用棱边数为2条②板钛矿型:八面体之间共用棱边数为3条③锐钛矿型:八面体之间共用棱边数为4条〔3〕CdI2型I-做近似的六方最紧密堆积,Cd2+填充一半的八面体空隙.填充方式为I-形成的层间一层填满一层不填,形成层状结构晶体.两片I-离子夹一片Cd2+离子,电价饱和,层之间靠范德华力连接.方法iii:R Cd2+/R I-=0.095/0.22=0.44,形成[CdI6]八面体W-=1=∑Si Si=2/6=1/3 ∴1/3*i=1 推出:i=3即:每个I-是三个[CdI6]八面体的共用顶点.晶体举例:Mg<OH>2、Ca<OH> 23. A2X3型:α-Al2O3〔刚玉型〕——三方晶系O2-做近似六方最紧密堆积,Al3+填充2/3的八面体空隙.晶胞中存在6个八面体空隙,Al3+填充4个,故不可避免出现八面体共面现象,但α-Al2O3是稳定的,因为Al-O键很强, Al3+配位数高,比4配位时斥力小的多.R Al3+/R O2-= 0.057/0.13 5 = 0.40,形成[AlO6]八面体W-=2=∑Si Si=3/6=1/2 ∴1/2*i=2 推出:i=4即:每个O2-是4个[AlO6]八面体的共用顶点.晶体举例:α-Fe2O3、Cr2O3、Ti2O3、V2O3等.4、ABO3型:〔1〕 CaTiO3〔钙钛矿型〕Ca2+:个角顶 O2-:个面心 Ti4+:体心——[TiO6]Ti4+:个角顶 Ca2+:体心 O2-:各边边心——[CaO12]可视做Ca2+、 O2-〔较大的Ca2+〕做立方最紧密堆积〔2〕钛铁矿:FeTiO3〔A离子较小〕O2-做立方最紧密堆积,Fe2+、Ti4+共同填充八面体空隙.〔3〕络阴离子团的ABO3:CaCO3〔B离子较小〕5、AB2O4型:MgAl2O4〔镁铝尖晶石〕O2-做立方最紧密堆积,Al3+填充一半的八面体空隙,Mg2+填充1/8的四面体空隙.将一个晶胞分为8个小立方体〔4个为A,4个为B〕其中A:O2-:各角顶、各面心 Al3+:6条边边心 Mg2+:2个小立方体体心B:O2-:各角顶、各面心 Al3+:另6条边边心和体心无Mg2+* 正尖晶石:二价离子填充四面体空隙,三价离子填充八面体空隙.反尖晶石:一半三价离子填充四面体空隙,另一半三价离子和二价离子填充八面体空隙.第二章晶体缺陷固体在热力学上最稳定的状态是处于0K温度时的完整晶体状态,此时,其内部能量最低.晶体中的原子按理想的晶格点阵排列.实际的真实晶体中,在高于0K的任何温度下,都或多或少的存在着对理想晶体结构的偏离,即存在着结构缺陷.结构缺陷的存在与其运动规律,对固体的一系列性质和性能有着密切的关系,尤其是新型陶瓷性能的调节和应用功能的开发常常取决于对晶体缺陷类型和缺陷浓度的控制,因此掌握晶体缺陷的知识是掌握材料科学的基础.晶体缺陷从形成的几何形态上可分为点缺陷、线缺陷和面缺陷三类.其中点缺陷按形成原因又可分为热缺陷、组成缺陷〔固溶体〕和非化学计量化合物缺陷,点缺陷对材料的动力性质具有重要影响.本章对点缺陷进行重点研究,对线缺陷的类型和基本运动规律进行简要的介绍,面缺陷的内容放在表面和界面一章中讲解.第一节热缺陷一.热缺陷定义当晶体的温度高于绝对0K时,由于晶格内原子热振动,使一部分能量较大的原子离开平衡位置造成的缺陷.由于质点热运动产生的缺陷称为热缺陷.二.热缺陷产生的原因当温度高于绝对温度时,晶格中原子热振动,温度是原子平均动能的度量,部分原子的能量较高,大于周围质点的约束力时就可离开其平衡位置,形成缺陷.三.热缺陷的基本类型1.肖特基缺陷。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验一、晶体结构分析(一)一、实验目的掌握14种空间格子的几何特征与球体密堆积理论,了解配位多面体的配置。
二、实验内容1.了解14种空间格子的几何形态,分析空间格子类型;2.熟悉密堆积理论,注意观察球体堆积时,周围空隙的类型、位置与数量情况;3.了解几种配位多面体的配置情况。
三、实验方法1.观察14种空间格子模型表征14种空间格子,用晶格常数α、β、γ和a、b、c;并判断其所属晶系。
2.观察球体密堆积模型用球体模型进行面心立方紧密堆积、六方紧密堆积和体心立方近似密堆积,分析球体周围空隙的类型、数目和位置分布。
观察分析面心立方紧密堆积、六方紧密堆积和体心立方近似密堆积的单位晶胞,注意其四、八面体空隙分布,判断其数量。
3.观察配位多面体模型模型四、实验报告1.绘制14种空间格子的几何形态,并用注明晶格常数的形式表示出所有14种空间格子;2.分析三种常见的球体堆积情况,绘制出其单位晶胞,画出其(111)、(110)(100)晶面原子排布图[ 密排六方需画出(0001)晶面 ];3.分析体心立方与面心立方单位晶胞中四、八面体空隙的位置分布与数量,并绘图;4.对不同配位多面体绘图,讨论其临界半径比。
(注:在预习报告中要将14种空间格子的几何图形画好)实验一、晶体结构分析(二)一、实验目的掌握几种典型矿物的结构,了解晶胞的几何特征。
二、实验内容1.对照实际具体结构模型,熟悉金刚石、石墨、氯化钠、氯化铯、闪锌矿、纤锌矿、金红石、碘化镉、萤石、钙钛矿、尖晶石的晶体结构特征;2.观察层状和架状硅酸盐矿物的晶体结构模型的特点,注意观察高岭土、方石英的结构;3.标定萤石模型中所有质点的几何位置;4.组装一个晶体结构模型。
三、实验方法1.分析晶胞模型金刚石、石墨、氯化钠、氯化铯、闪锌矿、纤锌矿、金红石、碘化镉、萤石、钙钛矿、尖晶石均为一个单位晶胞,通过一个单位晶胞,分析晶胞所属空间格子类型及正负离子或原子所处的空间位置,对照模型,分析正负离子的配位数。
根据正负离子的分布,判断离子晶体中正离子所处的位置是四面体空隙还是八面体空隙。
2.观察硅酸盐结构模型在分析层状和架状硅酸盐矿物模型时,注意硅氧四面体的分布状态,注意公共氧及非公共氧的位置关系。
3.质点位置的标定首先,在所研究的晶胞的左后下方,设立坐标原点;然后计算晶胞中每一个占位质点的坐标(x、y、z),标定出所有占位质点的坐标。
4.组装模型用不同颜色的球体,代表不同种占位质点,组装成一个简单的晶体结构模型。
四、实验报告1.五个晶体结构的分析结果,绘制其单位晶胞投影图;2.萤石晶体结构模型中质点的位置标定;3.层状和架状硅酸盐晶体结构的分析结果;4.一个自己组装的晶体结构的说明及介绍、并绘图。
(注:在预习报告中将各晶胞图形画好)实验二泥浆性能的测定一、实验目的1.了解泥浆的稀释原理,如何选择稀释剂并确定其用量;2.掌握泥浆性能的测试方法及控制方法。
二、实验原理泥浆是陶瓷原料在水中的一种悬浮体。
在陶瓷材料的生产中,泥浆粘度与厚化度是否恰当,将影响球磨输送、储存、榨泥和上釉等生产工艺,特别是注浆成型时,将直接影响浇注制品的质量。
如何调节和控制泥浆的流动度和厚化度,对于满足生产需要,提高产品质量和生产效率,具有重要意义。
泥浆和釉浆在外力作用下产生流动时因存在着内部摩擦,使平行的浆层流动速度有差异,称这种特性为粘滞度,即粘度或称内摩擦系数。
粘度的倒数即为流动度。
泥浆的流动性能可用流动度、相对粘度和绝对粘度来表征。
工艺上泥浆的流动度是以一定体积的泥浆静置一定时间后从一定的流出孔流出的时间来表示。
粘度愈大,流动度愈小,即流动性愈差,反之则相反。
相对粘度即泥浆与水在同一温度下,流出同体积所需时间之比,可用涂-4粘度计测定泥浆的相对粘度。
泥浆的绝对粘度可以反应泥浆的真实粘度,用旋转粘度计测定。
旋转粘度计是靠一个微型的同步电机通过转轴带动转筒旋转,当转筒在被测液体中旋转时受到粘滞阻力作用而产生反作用力使电动机壳体偏转,电动机壳体与两根一正一反安装的金属游丝相连,壳体的转动使游丝产生扭矩。
当游丝的力矩与粘滞阻力矩达到平衡时,与电动机壳体相联接的指针便在刻度盘上指出某一数值,此数值与转筒所受粘滞阻力成正比,绝对粘度就以刻度读数乘上转筒因子来表示。
浆体在剪切速率不变的条件下,剪切应力随时间减少的性能称为触变性,陶瓷工艺学上以溶胶和凝胶的恒温可逆变化或震动之则获得流动性,静置之则重新稠化的现象表征触变性或稠化性。
触变性以稠化度或厚化度表示,等于泥浆在粘度计中静置30min后的流出时间对静置30s后的流出时间之比值。
本实验主要测量泥浆的绝对粘度与厚化度。
泥浆的流动度与厚化度,取决于泥料的配方组成,即所用粘土原料的矿物组成与性质,泥浆的颗粒分散和配制方法、水分含量和温度及使用电解质的种类。
实践证明,电解质对泥浆流动性等性能的影响是很大的,即使在含水量较少的泥浆内加入适量电解质后,也能得到像含水量多时或更大的流动度。
因此,调节和控制泥浆流动度和厚化度的常用方法是选择适宜的电解质,并确定其加入量。
在粘土水系统中,粘土粒子带负电,因而粘土粒子在水中能吸附阳离子形成胶团。
一般天然粘土粒子上吸附着各种盐的Ca2+、Mg2+、Fe3+、Al3+阳离子,其中以Ca2+为最多。
在粘土系统中,粘土粒子还大量吸附H+。
在未加电解质时,由于H+离子半径小,电荷密度大,与带负电的粘土粒子作用力大,易进入胶团吸附层,中和粘土粒子的大部分电荷,使相邻粒子间的同性电荷减少,斥力减小,以至于粘土粒子易于粘附凝聚,而使流动性变差。
Ca2+以及其他高价离子等,由于其电价高(与一价阳离子相比)与粘土粒子间的静电引力大,易进入胶团吸附层,因而产生与上述一样的结果,使流动性变差。
如果加入电解质,这种电解质的阳离子离解程度大,且所带的水膜较厚,而与粘土粒子间的作用不很大,大部分仅进入胶团的扩散层,使扩散加厚,电动电位增大,粘土粒子间排斥力增大,故增加泥浆的流动性。
泥浆的最大稀释度(最低粘度)与其电动电位的最大值相适应。
若加入过量的电解质,泥浆中这种电解质的阳离子浓度过高,含有较多的阳离子进入胶团的吸附层,中和粘土胶团的负电荷,从而使扩散层变薄,电动电位下降,粘土胶粒不易移动,使泥浆粘度增加,流动性下降,所以电解质的加入量应有一定的范围。
阴离子对稀释作用也有影响。
1.用于稀释泥浆的电解质必须具备三个条件:(1)具有水化能力强的一价阳离子,如Na+等;(2)能直接离解或水解而提供足够的OH-,使分散系统呈碱性;(3)能与粘土中有害离子发生交换反应,生成难溶的盐类或稳定的络合物。
2.生产中常用的稀释剂可分为三类(1)无机电解质,如水玻璃、碳酸钠、六偏磷酸钠(NaPO4)6、焦磷酸钠(Na4P2O7·10H2O)等,电解质的用量一般为干坯料重量的0.3%~0.5%。
(2)能生成保护胶体的有机酸盐类,如腐植酸钠、单宁酸钠、柠檬酸钠,松香皂等,用量一般为0.2%~0.6%。
(3)聚合电解质,如聚丙烯酸盐、羧甲基纤维素、木质素磺酸盐、阿拉伯树胶。
稀释泥浆的电解质,可单独使用或几种混合使用,其加入量必须适当。
若过少则稀释作用不完全,过多反而引起凝聚。
适当的电解质加入量与合适的电解质种类,对于不同粘土必须通过实验来确定。
一般电解质加入量控制在不大于0.5%(对于干料而言)的范围内。
采用复合电解质时,还需注意加入顺序对稀释效果的影响,当采用Na2CO3与水玻璃或Na2CO3和单宁酸钠复合时,都应先加入Na2CO3,后加水玻璃或单宁酸钠。
在选择电解质,并确定各电解质的最适宜用量时,一般是将电解质加入粘土泥浆中,并测该泥浆的流动度。
对泥浆胶体,流动度用相对粘度来表示,即测定泥浆与水在同一温度下,流出同一体积所需流出的时间之比来表示。
三、仪器设备涂-4粘度计、NDJ-79型旋转粘度计、分析天平、普通天平、电动搅拌机、滴定管、秒表、量筒、泥浆杯、玻璃棒、铁架。
四、实验步骤1.配制电解质标准溶液:配制浓度为5%或10%的Na2CO3、水玻璃(Na2SiO3)和腐植酸钠等不同电解质的标准溶液。
电解质应在使用时配制。
尤其是水玻璃极易吸收空气中CO2而降低稀释效果;Na2CO3也必须保存在干燥的地方,以免在空气中变成NaHCO3,而使泥浆凝聚。
2.粘土试样须经磨细、风干、过100目筛。
3.泥浆需水量的测定:称200.0~250.0g粘土试样(准确至0.1),用滴定管加入蒸馏水,充分拌和至泥浆开始呈流动性为止,记录加水量V0(准确至0.1ml)。
不同粘土的需水量波动于30%~70%之间。
4.电解质用量初步实验:在呈微动的泥浆中,以滴定管仔细将配好的电解质溶液滴入,并不断拌和,记下泥浆呈明显稀释时电解质的加入量。
5.选择电解质用量:在编好号的5只泥浆杯中,各称取泥样200.0~250.0g(准确至0.1g)。
各加一定水量调至微微流动。
根据初步石英所加电解质的量,选择电解质加入量的范围,其间隔为一定(可由大至小,0.1~0.5ml)。
5只泥浆杯中加入的电解质溶液量不同,但杯中总液体体积相等。
调和后,用小型电动搅拌机搅动5~10min,用粘度计测定流动度,所选择电解质浓度范围应包括使泥浆获得最大稀释的合适用量。
6.相对粘度的测定:将粘度计清洗干净,置于平台上,调节水平,把烧杯放在粘度计下面的中央。
堵住粘度计的流出口,将制备好的试样搅拌均匀(可用小型搅拌机搅拌5min),倒入粘度计容器中,静置30s,打开开关同时启动秒表,当泥浆断流时,立即关秒表,记下时间,重复三次,取平均值。
按上述步骤测定相同条件下,流出100ml蒸馏水所需的时间。
7.绝对粘度的测定:调整好仪器至水平位置,选择适宜的转子装上旋转粘度计,将搅拌好的泥浆装入测试仪器内,开启电机开关待指针稳定后读数,所得数值乘以转子的因子即为绝对粘度值(单位为mPaS)。
当指针所指数值低于10格时,调换大一号的转子。
8.确定最适宜电解质:用上述方法测定其他电解质对该粘土的稀释作用,比较泥浆获得最大稀释时的相对粘度,电解质的用量及泥浆获得一定流动度的最低含水量。
9.厚化度的测定:将稀释好的泥浆倒入涂-4粘度计中,测定静置30s和30min中后流出100ml泥浆所需时间的比值。
五、实验记录与数据处理1.实验记录(1)相对粘度:记录泥浆与水在同一温度下流出同一体积所需的时间,于表1-1。
表1-1相对粘度测定记录表(2)绝对粘度表1-2 绝对粘度测定记录表(3)厚化度2.数据处理(1)相对粘度的计算:水相对粘度=t ts 30式中:t30s——泥浆静止30s后,从粘度计中流出100ml所需的时间,s;t水——水从粘度计中流出100ml所需的时间,s。
(2)根据泥浆相对粘度与电解质加入量(以毫克当量数/100g的干粘土为单位)的关系绘成曲线,再根据转折点判断最适宜电解质加入量。