清远市华侨中学2019届高三数学(理)导学案——三角恒等变换与解三角形(2)教师版
(新课标)高考数学二轮复习 专题一 三角函数与解三角形 第2讲 三角恒等变换与解三角形学案 理 新人
第2讲 三角恒等变换与解三角形[做真题]题型一 三角恒等变换1.(2019·高考全国卷Ⅱ)已知α∈⎝⎛⎭⎪⎫0,π2,2sin 2α=cos 2α+1,则sin α=( )A .15 B .55C .33D .255解析:选B .由2sin 2α=cos 2α+1,得4sin αcos α=1-2 sin 2α+1,即2sin αcosα=1-sin 2α.因为α∈⎝⎛⎭⎪⎫0,π2,所以cos α=1-sin 2α,所以2sin α1-sin 2α=1-sin 2α,解得sin α=55,故选B . 2.(2018·高考全国卷Ⅲ)若sin α=13,则cos 2α=( )A .89 B .79 C .-79D .-89解析:选B .cos 2α=1-2sin 2α=1-2×⎝ ⎛⎭⎪⎫132=79.3.(2016·高考全国卷Ⅱ)若cos ⎝ ⎛⎭⎪⎫π4-α=35,则sin 2α=( )A .725 B .15 C .-15D .-725解析:选D .因为cos ⎝ ⎛⎭⎪⎫π4-α=cos π4cos α+sin π4sin α=22(sin α+cos α)=35,所以sin α+cos α=325,所以1+sin 2α=1825,所以sin 2α=-725,故选D .题型二 三角形中的边角计算问题1.(2018·高考全国卷Ⅱ)在△ABC 中,cos C 2=55,BC =1,AC =5,则AB =( )A .4 2B .30C .29D .2 5解析:选A .因为cos C2=55,所以cos C =2cos 2C 2-1=2×⎝ ⎛⎭⎪⎫552-1=-35.于是,在△ABC 中,由余弦定理得AB 2=AC 2+BC 2-2AC ·BC ·cos C =52+12-2×5×1×⎝ ⎛⎭⎪⎫-35=32,所以AB =4 2.故选A .2.(2016·高考全国卷Ⅱ)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若cos A =45,cos C =513,a =1,则b =________.解析:因为cos A =45,cos C =513,所以sin A =35,sin C =1213,sin B =sin(A +C )=sin A cos C +cos A sin C =6365,由正弦定理b sin B =a sin A ,得b =a sin B sin A =6365×53=2113.答案:21133.(2019·高考全国卷Ⅰ)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,设(sin B -sinC )2=sin 2A -sin B sin C .(1)求A ;(2)若2a +b =2c ,求sin C .解:(1)由已知得sin 2B +sin 2C -sin 2A =sinB sinC ,故由正弦定理得b 2+c 2-a 2=bc .由余弦定理得cos A =b 2+c 2-a 22bc =12.因为0°<A <180°,所以A =60°.(2)由(1)知B =120°-C ,由题设及正弦定理得2sin A +sin (120°-C )=2sin C ,即62+32cos C +12sin C =2sin C ,可得cos(C +60°)=-22. 由于0°<C <120°,所以sin(C +60°)=22, 故sin C =sin(C +60°-60°)=sin(C +60°)cos 60°-cos(C +60°)sin 60° =6+24. 题型三 与三角形面积有关的问题1.(2018·高考全国卷Ⅲ)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .若△ABC 的面积为a 2+b 2-c 24,则C =( )A .π2B .π3C .π4D .π6解析:选C .根据题意及三角形的面积公式知12ab sin C =a 2+b 2-c 24,所以sin C =a 2+b 2-c22ab =cos C ,所以在△ABC 中,C =π4.2.(2019·高考全国卷Ⅱ)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .若b =6,a =2c ,B =π3,则△ABC 的面积为________.解析:法一:因为a =2c ,b =6,B =π3,所以由余弦定理b 2=a 2+c 2-2ac cos B ,得62=(2c )2+c 2-2×2c ×c cos π3,得c =23,所以a =43,所以△ABC 的面积S =12ac sin B =12×43×23×sin π3=6 3. 法二:因为a =2c ,b =6,B =π3,所以由余弦定理b 2=a 2+c 2-2ac cos B ,得62=(2c )2+c 2-2×2c ×c cos π3,得c =23,所以a =43,所以a 2=b 2+c 2,所以A =π2,所以△ABC的面积S =12×23×6=6 3.答案:6 33.(2019·高考全国卷Ⅲ)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知a sinA +C2=b sin A .(1)求B ;(2)若△ABC 为锐角三角形,且c =1,求△ABC 面积的取值范围. 解:(1)由题设及正弦定理得 sin A sinA +C2=sin B sin A .因为sin A ≠0,所以sinA +C2=sin B .由A +B +C =180°,可得sinA +C2=cos B 2,故cos B 2=2sin B 2cos B2. 因为cos B 2≠0,故sin B 2=12,因此B =60°.(2)由题设及(1)知△ABC 的面积S △ABC =34a . 由正弦定理得a =c sin A sin C =sin(120°-C )sin C =32tan C +12. 由于△ABC 为锐角三角形,故0°<A <90°,0°<C <90°. 由(1)知A +C =120°,所以30°<C <90°,故12<a <2,从而38<S △ABC <32.因此,△ABC 面积的取值范围是⎝⎛⎭⎪⎫38,32. [明考情]1.高考对此部分的考查一般以“二小”或“一大”的命题形式出现.2.若无解答题,一般在选择题或填空题各有一题,主要考查三角恒等变换、解三角形,难度一般,一般出现在第4~9题或第13~15题位置上.3.若以解答题形式出现,主要考查三角函数与解三角形的综合问题,一般出现在解答题第17题位置上,难度中等.三角恒等变换与求值[考法全练]1.(2019·高考全国卷Ⅰ)tan 255°=( ) A .-2- 3 B .-2+ 3 C .2- 3D .2+ 3解析:选D .由正切函数的周期性可知,tan 255°=tan (180°+75°)=tan 75°=tan (30°+45°)=33+11-33=2+3,故选D .2.(一题多解)(2019·福建五校第二次联考)已知cos ⎝ ⎛⎭⎪⎫π4-α=45,则sin 2α=( )A .15 B .-15C .725D .-725解析:选C .法一:因为cos ⎝ ⎛⎭⎪⎫π4-α=45,所以sin 2α=sin ⎣⎢⎡⎦⎥⎤π2-2⎝ ⎛⎭⎪⎫π4-α=cos2⎝ ⎛⎭⎪⎫π4-α=2cos 2⎝ ⎛⎭⎪⎫π4-α-1=2×⎝ ⎛⎭⎪⎫452-1=725.故选C .法二:令π4-α=θ,则α=π4-θ,cos θ=45,所以sin 2α=sin 2⎝ ⎛⎭⎪⎫π4-θ=sin ⎝ ⎛⎭⎪⎫π2-2θ=cos 2θ=2cos 2θ-1=2×⎝ ⎛⎭⎪⎫452-1=725.故选C .法三:因为cos ⎝⎛⎭⎪⎫π4-α=45,所以22(cosα+sin α)=45,所以cos α+sin α=425,平方得1+sin 2α=3225,得sin 2α=725.故选C .3.已知α∈⎝ ⎛⎭⎪⎫0,π2,tan α=2,则cos ⎝⎛⎭⎪⎫α-π4=________. 解析:因为α∈⎝⎛⎭⎪⎫0,π2,tan α=2, 所以sin α=255,cos α=55,所以cos ⎝⎛⎭⎪⎫α-π4=cos αcos π4+sin αsin π4=22×⎝ ⎛⎭⎪⎫255+55=31010. 答案:310104.(2019·江西七校第一次联考)若0<α<π2,-π2<β<0,cos ⎝ ⎛⎭⎪⎫α+π4=13,sin ⎝ ⎛⎭⎪⎫β2+π4=33,则cos(2α+β)=________. 解析:因为0<α<π2,所以π4<α+π4<3π4,又cos ⎝ ⎛⎭⎪⎫α+π4=13,所以sin ⎝ ⎛⎭⎪⎫α+π4=223, sin 2⎝ ⎛⎭⎪⎫α+π4=2sin ⎝ ⎛⎭⎪⎫α+π4cos ⎝ ⎛⎭⎪⎫α+π4=429, cos 2⎝ ⎛⎭⎪⎫α+π4=2cos 2⎝ ⎛⎭⎪⎫α+π4-1=-79. 因为-π2<β<0,所以0<β2+π4<π4,又sin ⎝⎛⎭⎪⎫β2+π4=33,所以cos ⎝ ⎛⎭⎪⎫β2+π4=63,sin 2⎝ ⎛⎭⎪⎫β2+π4=2sin ⎝ ⎛⎭⎪⎫β2+π4cos ⎝ ⎛⎭⎪⎫β2+π4=223, cos 2⎝ ⎛⎭⎪⎫β2+π4=1-2sin 2⎝ ⎛⎭⎪⎫β2+π4=13. 所以cos(2α+β)=-cos ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫α+π4+2⎝ ⎛⎭⎪⎫β2+π4=-cos 2⎝ ⎛⎭⎪⎫α+π4cos 2⎝ ⎛⎭⎪⎫β2+π4+sin 2⎝⎛⎭⎪⎫α+π4·sin 2⎝ ⎛⎭⎪⎫β2+π4=2327.答案:2327三角恒等变换要遵循的“三看”原则一看“角”,通过看角之间的差别与联系,把角进行合理的拆分;二看“函数名称”,是需进行“切化弦”还是“弦化切”等,从而确定使用的公式;三看“结构特征”,了解变式或化简的方向.三角形的基本量的计算[典型例题]命题角度一 求解三角形中的角(1)(2019·江西七校第一次联考)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知b =a (cos C +33sin C ),a =2,c =263,则角C =( ) A .3π4B .π3C .π6D .π4(2)已知△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,且b cos C +b sin C =a . ①求角B 的大小;②若BC 边上的高等于14a ,求cos A 的值.【解】 (1)选D .由b =a ⎝ ⎛⎭⎪⎫cos C +33sin C ,得sin B =sin A ⎝ ⎛⎭⎪⎫cos C +33sin C . 因为sin B =sin []π-(A +C )=sin(A +C ), 所以sin A cos C +cos A sin C =sin A cos C +33sin A sin C (sin C ≠0),即cos A =33sin A ,所以tan A = 3.因为0<A <π,所以A =π3.由正弦定理a sin A =c sin C ,得sin C =22.因为0<C <2π3,所以C =π4.故选D .(2)①由b cos C +b sin C =a , 得sin B cos C +sin B sin C =sin A . 因为A +B +C =π,所以sin B cos C +sin B sin C =sin(B +C ),即sin B cos C +sin B sin C =sin B cos C +cos B sin C , 因为sin C ≠0,所以sin B =cos B .因为B ∈(0,π),所以B =π4. ②设BC 边上的高为AD ,则AD =14a .因为B =π4,所以BD =AD =14a ,所以CD =34a ,所以AC =AD 2+DC 2=104a ,AB =24a . 由余弦定理得cos A =AB 2+AC 2-BC 22AB ·AC =-55.利用正、余弦定理求三角形角的方法(1)已知两边及其夹角,先由余弦定理求第三边,再由正弦定理求角. (2)已知三边,直接由余弦定理求角.(3)已知两边及其中一边的对角,先由正弦定理求另一边的对角,再由三角形内角和求第三角.[技能] 利用正、余弦定理求角时的两个失分点:(1)已知两边及其中一边的对角求其他角时,有一解、两解的情况,容易把握不准而出错;(2)在变形时,直接两边约去公因式,没有移项后提公因式,产生漏解.命题角度二 求解三角形中的边与面积如图所示,在△ABC 中,点D 为BC 边上一点,且BD =1,E 为AC 的中点,AE =32,cos B =277,∠ADB =2π3.(1)求AD 的长; (2)求△ADE 的面积.【解】 (1)在△ABD 中,因为cos B =277,B ∈(0,π),所以sin B =1-cos 2B =1-⎝ ⎛⎭⎪⎫2772=217,所以sin ∠BAD =sin(B +∠ADB )=217×⎝ ⎛⎭⎪⎫-12+277×32=2114. 由正弦定理知AD sin B =BD sin ∠BAD ,得AD =BD ·sin Bsin ∠BAD=1×2172114=2.(2)由(1)知AD =2,依题意得AC =2AE =3,在△ACD 中,由余弦定理得AC 2=AD 2+DC 2-2AD ·DC cos ∠ADC ,即9=4+DC 2-2×2×DC cos π3,所以DC 2-2DC -5=0,解得DC =1+6(负值舍去),所以S △ACD =12AD ·DC sin ∠ADC =12×2×(1+6)×32=3+322,从而S △ADE =12S △ACD =3+324.利用余弦定理求边,一般是已知三角形的两边及其夹角.利用正弦定理求边,必须知道两角及其中一边,如该边为其中一角的对边,要注意解的多样性与合理性.而三角形的面积主要是利用两边与其夹角的正弦值求解.[技能] 三角形的面积主要是利用S =12ab sin C 求解,有时可以直接利用余弦定理求出ab 的整体值再求面积,而不必分别求出a ,b 的值.[对点训练]1.(一题多解)(2019·广州市综合检测一)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c 已知c cos B =(3a -b )cos C .(1)求sin C 的值;(2)若c =26,b -a =2,求△ABC 的面积. 解:(1)法一:因为c cos B =(3a -b )cos C ,所以由正弦定理得sin C cos B =(3sin A -sin B )cos C , 即sin C cos B +sin B cos C =3sin A cos C , 所以sin(B +C )=3sin A cos C ,由于A +B +C =π,所以sin(B +C )=sin (π-A )=sin A , 则sin A =3sin A cos C .因为0<A <π,所以sin A ≠0,cos C =13.因为0<C <π,所以sin C =1-cos 2C =223.法二:因为c cos B =(3a -b )cos C ,所以由余弦定理得c ×a 2+c 2-b 22ac =(3a -b )×a 2+b 2-c 22ab,化简得a 2+b 2-c 2=23ab ,所以cos C =a 2+b 2-c 22ab =23ab2ab =13.因为0<C <π,所以sin C =1-cos 2C =223.(2)法一:由余弦定理c 2=a 2+b 2-2ab cos C , 及c =26,cos C =13,得a 2+b 2-23ab =24,即(a -b )2+43ab =24.因为b -a =2,所以ab =15.所以△ABC 的面积S =12ab sin C =12×15×223=5 2.法二:由余弦定理c 2=a 2+b 2-2ab cos C , 及c =26,cos C =13,得a 2+b 2-23ab =24.又b -a =2, 所以a =3,b =5.所以△ABC 的面积S =12ab sin C =12×15×223=5 2.2.(2019·郑州市第一次质量预测)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知△ABC 的面积为S ,且满足sin B =b 24S.(1)求sin A sin C ;(2)若4cos A cos C =3,b =15,求△ABC 的周长.解:(1)由三角形的面积公式可得S =12bc sin A ,又sin B =b 24S,所以2bc sin A sin B =b 2,即2c sin A sin B =b ,由正弦定理可得2sin C sin A sin B =sin B , 因为sin B ≠0,所以sin A sin C =12.(2)因为4cos A cos C =3,所以cos A cos C =34,所以cos A cos C -sin A sin C =34-12=14,即cos(A +C )=14,所以cos B =-14,因为0<B <π,所以sin B =154, 因为a sin A =b sin B =c sin C =15154=4,所以sin A sin C =ac 16=12,所以ac =8,因为b 2=a 2+c 2-2ac cos B =(a +c )2-2ac -2ac cos B , 所以(a +c )2=15+12=27,所以a +c =3 3. 所以△ABC 的周长为a +b +c =33+15.解三角形的综合问题[典型例题]命题角度一 以平面几何为载体的解三角形问题(2019·洛阳尖子生第二次联考)如图,在平面四边形ABCD 中,∠ABC 为锐角,AD⊥BD ,AC 平分∠BAD ,BC =23,BD =3+6,△BCD 的面积S =3(2+3)2.(1)求CD ; (2)求∠ABC .【解】 (1)在△BCD 中,S =12BD ·BC ·sin ∠CBD =3(2+3)2,因为BC =23,BD =3+6, 所以sin ∠CBD =12.因为∠ABC 为锐角,所以∠CBD =30°.在△BCD 中,由余弦定理得CD 2=BC 2+BD 2-2BC ·BD ·cos ∠CBD =(23)2+(3+6)2-2×23×(3+6)×32=9,所以CD =3. (2)在△BCD 中,由正弦定理得BC sin ∠BDC =CDsin ∠CBD ,即23sin ∠BDC =3sin 30°,解得sin ∠BDC =33.因为BC <BD ,所以∠BDC 为锐角,所以cos ∠BDC =63. 在△ACD 中,由正弦定理得AC sin ∠ADC =CDsin ∠CAD ,即ACcos ∠BDC =3sin ∠CAD.①在△ABC 中,由正弦定理得AC sin ∠ABC =BCsin ∠BAC ,即ACsin ∠ABC =23sin ∠BAC.②因为AC 平分∠BAD ,所以∠CAD =∠BAC . 由①②得sin ∠ABC cos ∠BDC =323,解得sin ∠ABC =22.因为∠ABC 为锐角,所以∠ABC =45°.解决以平面几何为载体的问题,主要注意以下几方面:一是充分利用平面几何图形的性质;二是出现多个三角形时,从条件较多的三角形突破求解;三是四边形问题要转化到三角形中去求解;四是通过三角形中的不等关系(如大边对大角,最大角一定大于等于π3)确定角或边的范围.命题角度二 三角形中的最值或范围问题(1)在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,外接圆的半径为1,且tan Atan B=2c -bb,则△ABC 面积的最大值为________.(2)已知△ABC 的内角A ,B ,C 的对边分别是a ,b ,c ,且(a 2+b 2-c 2)(a cos B +b cos A )=abc ,若a +b =2,则c 的取值范围为________.【解析】 (1)因为tan A tan B =2c -b b ,所以b sin A cos A =(2c -b )sin Bcos B,由正弦定理得sin B sinA cosB =(2sinC -sin B )sin B cos A ,又sin B ≠0,所以sin A cos B =(2sin C -sin B )cos A ,所以sin A cos B +sin B cos A =2sin C cos A ,即sin(A +B )=2sin C cos A ,即sin C =2sin C cos A ,又sin C ≠0,所以cos A =12,sin A =32.设外接圆的半径为r ,则r =1,由余弦定理得bc =b 2+c 2-a 22cos A=b 2+c 2-a 2=b 2+c 2-(2r sin A )2=b 2+c 2-3≥2bc -3(当且仅当b=c 时,等号成立),所以bc ≤3,所以S △ABC =12bc sin A =34bc ≤334.所以△ABC 面积的最大值为334.(2)由sin A cos B +sin B cos A =sin(A +B )=sin C 及正弦定理,可知a cos B +b cos A =c ,则由(a 2+b 2-c 2)(a cos B +b cos A )=abc ,得a 2+b 2-c 2=ab ,由余弦定理可得cos C =12,则C =π3,B =2π3-A , 由正弦定理asin A=bsin B=csin C,得asin A=bsin ⎝ ⎛⎭⎪⎫2π3-A =csinπ3,又a +b =2,所以c sin A32+c sin ⎝⎛⎭⎪⎫2π3-A 32=2,即c =3sin A +sin ⎝ ⎛⎭⎪⎫2π3-A =1sin ⎝⎛⎭⎪⎫A +π6,因为A ∈⎝ ⎛⎭⎪⎫0,2π3,所以A +π6∈⎝ ⎛⎭⎪⎫π6,5π6,sin ⎝⎛⎭⎪⎫A +π6∈⎝ ⎛⎦⎥⎤12,1,则c ∈[1,2).【答案】 (1)334(2)[1,2)解三角形中的最值与范围问题主要有两种解决方法:一是利用基本不等式求得最大值或最小值;二是将所求式转化为只含有三角形某一个角的三角函数形式,结合角的范围确定所求式的范围.[对点训练]1.(2019·重庆市七校联合考试)如图,在平面四边形ABCD 中,E 为AB 边上一点,连接CE ,DE .CB =2,BE =1,∠B =∠CED =2π3.(1)求sin ∠AED 的值; (2)若AB ∥CD ,求CD 的长.解:(1)在△BEC 中,由余弦定理得,CE =CB 2+BE 2-2CB ·BE cos ∠B =7, 又BEsin ∠BCE =CE sin ∠B ,所以sin ∠BCE =2114,因为∠B =∠CED ,所以sin ∠AED =sin ∠BCE =2114. (2)因为AB ∥CD ,所以∠CDE =∠AED , 所以sin ∠CDE =sin ∠AED =2114, 在△CDE 中,CD sin ∠CED =CE sin ∠CDE ,所以CD =CE sin ∠CEDsin ∠CDE=7×322114=7.2.(2019·福建五校第二次联考)在△ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,且3a cosC =(2b -3c )cos A .(1)求角A 的大小;(2)若a =2,求△ABC 面积的最大值.解:(1)由正弦定理可得,3sin A cos C =2sin B cos A -3sin C cos A , 从而3sin(A +C )=2sin B cos A ,即3sin B =2sin B cos A . 又B 为三角形的内角,所以sin B ≠0,于是cos A =32,又A 为三角形的内角,所以A =π6.(2)由余弦定理a 2=b 2+c 2-2bc cos A ,得4=b 2+c 2-2bc ×32≥2bc -3bc ,所以bc ≤4(2+3),所以S △ABC =12bc sin A ≤2+3,故△ABC 面积的最大值为2+ 3.[A 组 夯基保分专练]一、选择题1.(2019·湖南省五市十校联考)已知函数f (x )=23sin x cos x +2cos 2x +1,则( ) A .f (x )的最小正周期为π,最大值为3 B .f (x )的最小正周期为π,最大值为4 C .f (x )的最小正周期为2π,最大值为3 D .f (x )的最小正周期为2π,最大值为4解析:选B .f (x )=23sin x cos x +2cos 2x +1=3sin 2x +cos 2x +2=2sin(2x +π6)+2,则f (x )的最小正周期为2π2=π,最大值为2+2=4.故选B .2.(2019·高考全国卷Ⅰ)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知a sin A -b sin B =4c sin C ,cos A =-14,则bc=( )A .6B .5C .4D .3解析:选A .由题意及正弦定理得,b 2-a 2=-4c 2,所以由余弦定理得,cos A =b 2+c 2-a 22bc=-3c 22bc =-14,得b c=6.故选A . 3.在△ABC 中,内角A ,B ,C 的对边分别是a ,b ,c ,若c =2a ,b sin B -a sin A =12a sinC ,则sin B 为( )A .74 B .34 C .73D .13解析:选A .由b sin B -a sin A =12a sin C ,且c =2a ,得b =2a ,因为cos B =a 2+c 2-b 22ac =a 2+4a 2-2a 24a 2=34, 所以sin B =1-⎝ ⎛⎭⎪⎫342=74.4.在△ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,若a ,b ,c 成等比数列,且a 2=c 2+ac -bc ,则cb sin B=( )A .32 B .233C .33D . 3解析:选B .由a ,b ,c 成等比数列得b 2=ac ,则有a 2=c 2+b 2-bc ,由余弦定理得cos A=b 2+c 2-a 22bc =bc 2bc =12,故A =π3,对于b 2=ac ,由正弦定理得,sin 2B =sin A sinC =32·sinC ,由正弦定理得,c b sin B =sin C sin 2B =sin C 32sin C=233.故选B . 5.(一题多解)在△ABC 中,已知AB =2,AC =5,tan ∠BAC =-3,则BC 边上的高等于( )A .1B . 2C . 3D .2解析:选A .法一:因为tan ∠BAC =-3,所以sin ∠BAC =310,cos ∠BAC =-110.由余弦定理,得BC 2=AC 2+AB 2-2AC ·AB ·cos ∠BAC =5+2-2×5×2×⎝⎛⎭⎪⎫-110=9,所以BC =3,所以S △ABC =12AB ·AC sin ∠BAC =12×2×5×310=32,所以BC 边上的高h =2S △ABCBC =2×323=1,故选A .法二:因为tan ∠BAC =-3,所以cos ∠BAC =-110<0,则∠BAC 为钝角,因此BC 边上的高小于2,故选A .6.如图,在△ABC 中,∠C =π3,BC =4,点D 在边AC 上,AD =DB ,DE ⊥AB ,E 为垂足.若DE =22,则cos A 等于( )A .223B .24 C .64D .63解析:选C .依题意得,BD =AD =DE sin A =22sin A ,∠BDC =∠ABD +∠A =2∠A .在△BCD 中,BCsin ∠BDC=BDsin C ,4sin 2A =22sin A ×23=423sin A ,即42sin A cos A =423sin A,由此解得cos A =64. 二、填空题7.若sin ⎝ ⎛⎭⎪⎫π3-α=14,则cos ⎝ ⎛⎭⎪⎫π3+2α=________. 解析:依题意得cos ⎝⎛⎭⎪⎫π3+2α=-cos ⎣⎢⎡⎦⎥⎤π-⎝ ⎛⎭⎪⎫π3+2α=-cos ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫π3-α=2sin 2⎝ ⎛⎭⎪⎫π3-α-1=2×⎝ ⎛⎭⎪⎫142-1=-78.答案:-788.已知a ,b ,c 是△ABC 中角A ,B ,C 的对边,a =4,b ∈(4,6),sin 2A =sin C ,则c 的取值范围为________.解析:由4sin A =c sin C ,得4sin A =csin 2A ,所以c =8cos A ,因为16=b 2+c 2-2bc cos A ,所以16-b 2=64cos 2A -16b cos 2A ,又b ≠4,所以cos 2A =16-b 264-16b =(4-b )(4+b )16(4-b )=4+b16,所以c 2=64cos 2A =64×4+b 16=16+4b .因为b ∈(4,6),所以32<c 2<40,所以42<c <210.答案:(42,210)9.(一题多解)(2019·合肥市第一次质检测)设△ABC 的内角A ,B ,C 的对边a ,b ,c 成等比数列,cos(A -C )-cos B =12,延长BC 至点D ,若BD =2,则△ACD 面积的最大值为________.解析:法一:由题意知b 2=ac ,由正弦定理得sin 2B =sin A sinC ①,又由已知,得cos(A -C )+cos(A +C )=12,可得cos A cos C =14 ②,②-①,得14-sin 2B =-cos B ,所以cos 2B+cos B -34=0,解得cos B =12或cos B =-32(舍去),所以B =60°,再由题得cos(A -C )=1,则A -C =0,即A =C ,则a =c ,所以△ABC 为正三角形,则∠ACD =120°,AC =b ,CD =2-b ,故S △ACD =12×b ×(2-b )×32≤34⎝ ⎛⎭⎪⎫b +2-b 22=34,当且仅当b =2-b ,即b =1时取等号.故填34. 法二:由题意知b 2=ac ,且cos(A -C )+cos(A +C )=12,即cos A cos C +sin A sin C +cos A cos C -sin A sin C =12,即cos A cos C =14,由余弦定理得b 2+c 2-a 22bc ·b 2+a 2-c 22ab =14,整理得b 4-(a 2-c 2)2=b 4,所以a 2-c 2=0,即a =c ,又b 2=ac ,所以a =b =c ,即△ABC 为正三角形,所以S △ACD =S △ABD -S △ABC =12×2×c ×32-34c 2=-34(c -1)2+34≤34,当c =1时取等号,故填34. 答案:34三、解答题10.(2019·广东六校第一次联考)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且a 2+c 2-b 2=ab cos A +a 2cos B .(1)求角B ;(2)若b =27,tan C =32,求△ABC 的面积. 解:(1)因为a 2+c 2-b 2=ab cos A +a 2cos B ,所以由余弦定理,得2ac cos B =ab cos A +a 2cos B ,又a ≠0,所以2c cos B =b cos A +a cos B ,由正弦定理,得 2sin C cos B =sin B cos A +sin A cos B =sin(A +B )=sin C , 又C ∈(0,π),sin C >0,所以cos B =12.因为B ∈(0,π),所以B =π3. (2)由tan C =32,C ∈(0,π),得sin C =217,cos C =277, 所以sin A =sin(B +C )=sin B cos C +cos B sin C =32×277+12×217=32114. 由正弦定理a sin A =b sin B ,得a =b sin Asin B =27×3211432=6,所以△ABC 的面积为12ab sin C =12×6×27×217=6 3.11.(2019·武汉模拟)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,A =2B ,cos B =255. (1)求sin C 的值;(2)若角A 的平分线AD 的长为5,求b 的值. 解:(1)由cos B =255及0<B <π,得sin B =55,又A =2B ,所以sin A =sin 2B =2sin B cos B =2×55×255=45, cos A =cos 2B =2cos 2B -1=35.故sin C =sin(A +B )=sin A cos B +cos A sin B =45×255+35×55=11525.(2)由题意得,∠ADC =B +12∠BAC =∠BAC (如图),所以sin ∠ADC =45.在△ADC 中,AD sin C =ACsin ∠ADC ,即511525=AC 45,AC =2011,故b =2011.12.(2019·高考天津卷)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .已知b +c =2a ,3c sin B =4a sin C .(1)求cos B 的值; (2)求sin ⎝⎛⎭⎪⎫2B +π6的值. 解:(1)在△ABC 中,由正弦定理b sin B =csin C,得b sin C =c sin B ,又由3c sin B =4a sinC ,得3b sin C =4a sin C ,即3b =4a .又因为b +c =2a ,得到b =43a ,c =23a .由余弦定理可得cos B =a 2+c 2-b 22ac =a 2+49a 2-169a 22·a ·23a=-14.(2)由(1)可得sin B =1-cos 2B =154, 从而sin 2B =2sin B cos B =-158,cos 2B =cos 2B -sin 2B =-78, 故sin ⎝⎛⎭⎪⎫2B +π6=sin 2B cos π6+cos 2B sin π6=-158×32-78×12=-35+716.[B 组 大题增分专练]1.(2019·江西七校第一次联考)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知a (sinA -sinB )=(c -b )(sinC +sin B ).(1)求角C ;(2)若c =7,△ABC 的面积为332,求△ABC 的周长.解:(1)由a (sin A -sin B )=(c -b )(sin C +sin B )及正弦定理,得a (a -b )=(c -b )(c +b ),即a 2+b 2-c 2=ab .所以cos C =a 2+b 2-c 22ab =12,又C ∈(0,π),所以C =π3.(2)由(1)知a 2+b 2-c 2=ab ,所以(a +b )2-3ab =c 2=7, 又S =12ab sin C =34ab =332,所以ab =6,所以(a +b )2=7+3ab =25,a +b =5.所以△ABC 的周长为a +b +c =5+7. 2.(一题多解)(2019·福州模拟)如图,在△ABC 中,M 是边BC 的中点,cos ∠BAM =5714,cos ∠AMC =-277.(1)求∠B 的大小;(2)若AM =21,求△AMC 的面积.解:(1)由cos ∠BAM =5714, 得sin ∠BAM =2114, 由cos ∠AMC =-277,得sin ∠AMC =217. 又∠AMC =∠BAM +∠B ,所以cos ∠B =cos (∠AMC -∠BAM )=cos∠AMC cos ∠BAM +sin ∠AMC sin ∠BAM=-277×5714+217×2114=-12, 又∠B ∈(0,π),所以∠B =2π3. (2)法一:由(1)知∠B =2π3, 在△ABM 中,由正弦定理AM sin ∠B =BM sin ∠BAM, 得BM =AM sin ∠BAM sin ∠B =21×211432= 3.因为M 是边BC 的中点,所以MC = 3.故S △AMC =12AM ·MC ·sin ∠AMC =12×21×3×217=332. 法二:由(1)知∠B =2π3, 在△ABM 中,由正弦定理AM sin ∠B =BM sin ∠BAM, 得BM =AM sin ∠BAM sin ∠B =21×211432= 3.因为M 是边BC 的中点,所以S △AMC =S △ABM ,所以S △AMC =S △ABM =12AM ·BM ·sin ∠BMA =12×21×3×217=332. 3.(2019·昆明市质量检测)△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,已知2(c -a cos B )=3b .(1)求角A ;(2)若a =2,求△ABC 面积的取值范围.解:(1)由2(c -a cos B )=3b 及正弦定理得2(sin C -sin A cos B )=3sin B , 所以2sin(A +B )-2sin A cos B =3sin B ,即2cos A sin B =3sin B , 因为sin B ≠0,所以cos A =32,又0<A <π,所以A =π6. (2)因为a =2,由正弦定理得b =4sin B ,c =4sin C ,所以S △ABC =12bc sin A =14bc , 所以S △ABC =4sin B sin C ,因为C =π-(A +B )=5π6-B ,所以sin C =sin ⎝ ⎛⎭⎪⎫5π6-B , 所以S △ABC =4sin B sin ⎝ ⎛⎭⎪⎫5π6-B =4sin B ⎝ ⎛⎭⎪⎫12cos B +32sin B , 即S △ABC =2sin B cos B +23sin 2B=sin 2B -3cos 2B + 3 =2sin ⎝ ⎛⎭⎪⎫2B -π3+ 3. 因为0<B <5π6,所以-π3<2B -π3<4π3,所以-32<sin ⎝⎛⎭⎪⎫2B -π3≤1, 所以0<S △ABC ≤2+ 3.即△ABC 面积的取值范围为(0,2+3].4.已知在△ABC 中,角A ,B ,C 所对的边长分别为a ,b ,c ,AB 边上的高h =23c . (1)若△ABC 为锐角三角形,且cos A =35,求角C 的正弦值; (2)若C =π4,M =a 2+b 2+13c 2ab ,求M 的值. 解:(1)作CD ⊥AB ,垂足为D ,因为△ABC 为锐角三角形,且cos A =35, 所以sin A =45,tan A =43, 所以AD =c 2,BD =AB -AD =c 2, 所以BC =CD 2+BD 2=⎝ ⎛⎭⎪⎫23c 2+⎝ ⎛⎭⎪⎫c 22=5c 6, 由正弦定理得sin ∠ACB =AB sin A BC =c ×455c 6=2425. (2)因为S △ABC =12c ×23c =12ab sin ∠ACB =24ab , 所以c 2=324ab , 又a 2+b 2-c 2=2ab cos ∠ACB =2ab ,所以a 2+b 2=2ab +c 2,所以a 2+b 2+13c 2=2ab +43c 2=2ab +43×324ab =22ab , 所以M =a 2+b 2+13c 2ab =22ab ab =2 2.。
第2讲 三角恒等变换与解三角形(教案)
第2讲 三角恒等变换与解三角形正弦定理、余弦定理以及解三角形问题是高考的必考内容,主要考查:1.边和角的计算.2.三角形形状的判断.3.面积的计算.4.有关参数的范围问题.由于此内容应用性较强,与实际问题结合起来进行命题将是今后高考的一个关注点,不可轻视.热点一 三角恒等变换1.三角求值“三大类型”“给角求值”“给值求值”“给值求角”.2.三角函数恒等变换“四大策略”(1)常值代换:特别是“1”的代换,1=sin 2θ+cos 2θ=tan 45°等.(2)项的分拆与角的配凑:如sin 2α+2cos 2α=(sin 2α+cos 2α)+cos 2α,α=(α-β)+β等.(3)降次与升次:正用二倍角公式升次,逆用二倍角公式降次.(4)弦、切互化:一般是切化弦.例1 (1)(2017·河南省洛阳市统考)设a =cos 50°cos 127°+cos 40°cos 37°,b =22(sin 56°-cos 56°),c =1-tan 239°1+tan 239°,则a ,b ,c 的大小关系是( ) A .a >b >c B .b >a >cC .c >a >bD .a >c >b答案 D解析 由三角恒等变换的公式,可得a =cos 50°cos 127°+cos 40°cos 37°=cos(50°-127°)=cos(-77°)=cos 77°=sin 13°,b =22(sin 56°-cos 56°)=22sin 56°-22cos 56° =sin(56°-45°)=sin 11°,c =1-tan 239°1+tan 239°=1-sin 239°cos 239°1+sin 239°cos 239°=cos 239°-sin 239°=cos 78°=sin 12° .因为函数y =sin x ,x ∈⎣⎡⎦⎤0,π2为单调递增函数, 所以sin 13°>sin 12°>sin 11°,所以a >c >b ,故选D.(2)已知sin α=55,sin(α-β)=-1010,α,β均为锐角,则角β等于( ) A.5π12 B.π3C.π4D.π6 答案 C解析 因为α,β均为锐角,所以-π2<α-β<π2. 又sin(α-β)=-1010,所以cos(α-β)=31010. 又sin α=55,所以cos α=255, 所以sin β=sin[α-(α-β)]=sin αcos(α-β)-cos αsin(α-β)=55×31010-255×⎝⎛⎭⎫-1010=22. 所以β=π4. 思维升华 (1)三角变换的关键在于对两角和与差的正弦、余弦、正切公式,二倍角公式,三角恒等变换公式的熟记和灵活应用,要善于观察各个角之间的联系,发现题目所给条件与恒等变换公式的联系,公式的使用过程要注意正确性,要特别注意公式中的符号和函数名的变换,防止出现“张冠李戴”的情况.(2)求角问题要注意角的范围,要根据已知条件将所求角的范围尽量缩小,避免产生增解.跟踪演练1 (1)(2017·河北省衡水中学三调)若α∈⎝⎛⎭⎫π2,π,且3cos 2α=sin ⎝⎛⎭⎫π4-α,则sin 2α的值为( ) A .-118B.118 C .-1718D.1718答案 C解析 由3cos 2α=sin(π4-α), 可得3(cos 2α-sin 2α)=22(cos α-sin α), 于是3(cos α+sin α)=22,所以1+2sin αcos α=118, 所以sin 2α=-1718,故选C.(2)(2017届山东省师大附中模拟)已知sin ⎝⎛⎭⎫π6-α-cos α=13,则cos ⎝⎛⎭⎫2α+π3=________. 答案 79解析 ∵sin ⎝⎛⎭⎫π6-α-cos α=12cos α-32sin α-cos α =-sin ⎝⎛⎭⎫α+π6=13, ∴sin ⎝⎛⎭⎫α+π6=-13. 则cos ⎝⎛⎭⎫2α+π3=1-2sin 2⎝⎛⎭⎫α+π6=79. 热点二 正弦定理、余弦定理1.正弦定理:在△ABC 中,a sin A =b sin B =c sin C=2R (R 为△ABC 的外接圆半径).变形:a =2R sin A ,b =2R sin B ,c =2R sin C ,sin A =a 2R ,sin B =b 2R ,sin C =c 2R,a ∶b ∶c =sin A ∶sin B ∶sin C 等. 2.余弦定理:在△ABC 中,a 2=b 2+c 2-2bc cos A .变形:b 2+c 2-a 2=2bc cos A ,cos A =b 2+c 2-a 22bc . 例2 已知a ,b ,c 分别为△ABC 三个内角A ,B ,C 的对边,c =3a sin C -c cos A .(1)求A ;(2)若a =2,△ABC 的面积为3,求b ,c .解 (1)由c =3a sin C -c cos A 及正弦定理,得3sin A sin C -cos A sin C -sin C =0.由于sin C ≠0,所以sin ⎝⎛⎭⎫A -π6=12. 又0<A <π,故A =π3. (2)△ABC 的面积S =12bc sin A =3,故bc =4. 而a 2=b 2+c 2-2bc cos A ,故b 2+c 2=8.解得b =c =2.思维升华 关于解三角形问题,一般要用到三角形的内角和定理,正弦、余弦定理及有关三角形的性质,常见的三角变换方法和原则都适用,同时要注意“三统一”,即“统一角、统一函数、统一结构”,这是使问题获得解决的突破口.跟踪演练2 (2017·广西陆川县中学知识竞赛)在锐角△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且满足a cos C =(2b -c )cos A .(1)求角A ;(2)若a =7,△ABC 的面积S △ABC =103,求b +c 的值.解 (1)由a cos C =(2b -c )cos A ,得sin A cos C =(2sin B -sin C )cos A ,即sin A cos C +cos A sin C =2sin B cos A ,即sin(A +C )=2sin B cos A ,即sin B =2sin B cos A .∵sin B ≠0,∴cos A =12,而0<A <π2,∴A =π3. (2)由S △ABC =103,得12bc sin π3=103,∴bc =40. ∵a =7,∴b 2+c 2-2bc cos π3=49,即b 2+c 2=89, 于是(b +c )2=89+2×40=169,∴b +c =13(舍负).热点三 解三角形与三角函数的综合问题解三角形与三角函数的综合是近几年高考的热点,主要考查三角形的基本量,三角形的面积或判断三角形的形状.例3 (2017·河南省息县第一高级中学阶段测试)已知函数f (x )=23sin x cos x -3sin 2x -cos 2x +2.(1)当x ∈⎣⎡⎦⎤0,π2时,求f (x )的值域; (2)若△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且满足b a =3,sin (2A +C )sin A=2+2cos(A +C ),求f (B )的值.解 (1)∵f (x )=23sin x cos x -3sin 2x -cos 2x +2 =3sin 2x -2sin 2x +1 =3sin 2x +cos 2x=2sin ⎝⎛⎭⎫2x +π6, 又∵x ∈⎣⎡⎦⎤0,π2, ∴2x +π6∈⎣⎡⎦⎤π6,7π6,sin ⎝⎛⎭⎫2x +π6∈⎣⎡⎦⎤-12,1, ∴f (x )∈[-1,2].(2)由题意可得sin [A +(A +C )]=2sin A +2sin A cos(A +C ),∴sin A cos(A +C )+cos A sin(A +C )=2sin A +2sin A cos(A +C ),化简可得sin C =2sin A ,∴由正弦定理可得c =2a .∵b =3a ,∴由余弦定理可得cos B =a 2+c 2-b 22ac =a 2+4a 2-3a 22a ·2a =12, ∵0<B <π,∴B =π3,∴f (B )=1. 思维升华 解三角形与三角函数的综合题,要优先考虑角的范围和角之间的关系;对最值或范围问题,可以转化为三角函数的值域来求.跟踪演练3 (2017届青岛市统一质量检测)已知函数f (x )=sin ⎝⎛⎭⎫2x +π3+cos ⎝⎛⎭⎫2x +π6+m sin 2x (m ∈R ),f ⎝⎛⎭⎫π12=2.(1)求m 的值;(2)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若b =2,f ⎝⎛⎭⎫B 2=3,△ABC 的面积是3,求△ABC的周长.解 (1)∵f ⎝⎛⎭⎫π12=2,∴f ⎝⎛⎭⎫π12=sin ⎝⎛⎭⎫2×π12+π3+cos ⎝⎛⎭⎫2×π12+π6+ m sin ⎝⎛⎭⎫2×π12=sin π2+cos π3+m 2=2, 解得m =1.(2)由(1)知f (x )=sin ⎝⎛⎭⎫2x +π3+cos ⎝⎛⎭⎫2x +π6+sin 2x =sin 2x cos π3+cos 2x sin π3+cos 2x cos π6- sin 2x sin π6+sin 2x =3cos 2x +sin 2x=2sin ⎝⎛⎭⎫2x +π3, ∴f ⎝⎛⎭⎫B 2=2sin ⎝⎛⎭⎫B +π3= 3. ∵0<B <π,π3<B +π3<4π3, ∴B +π3=2π3,则B =π3. 又∵S △ABC =12ac sin B =34ac =3, ∴ac =4.∵b 2=a 2+c 2-2ac cos B =(a +c )2-3ac =4,∴(a +c )2=4+12=16,∴a +c =4,∴△ABC 的周长为a +b +c =6.真题体验1.(2017·全国Ⅲ)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知C =60°,b =6,c =3,则A =________. 答案 75°解析 如图,由正弦定理,得3sin 60°=6sin B ,∴sin B =22. 又c >b ,∴B =45°,∴A =180°-60°-45°=75°.2.(2017·北京)在平面直角坐标系xOy 中,角α与角β均以Ox 为始边,它们的终边关于y 轴对称 .若sin α=13,则sin β=________. 答案 13解析 由角α与角β的终边关于y 轴对称,可知α+β=π+2k π(k ∈Z ),所以β=2k π+π-α(k ∈Z ),所以sin β=sin α=13. 3.(2017·江苏)若tan ⎝⎛⎭⎫α-π4=16,则tan α=________. 答案 75解析 方法一 ∵tan ⎝⎛⎭⎫α-π4=tan α-tan π41+tan αtan π4=tan α-11+tan α=16. ∴6tan α-6=1+tan α(tan α≠-1),∴tan α=75. 方法二 tan α=tan ⎣⎡⎦⎤⎝⎛⎭⎫α-π4+π4 =tan ⎝⎛⎭⎫α-π4+tan π41-tan ⎝⎛⎭⎫α-π4·tan π4=16+11-16=75. 4.(2017·浙江)已知△ABC ,AB =AC =4,BC =2.点D 为AB 延长线上一点,BD =2,连接CD ,则△BDC 的面积是________,cos ∠BDC =________.答案 152 104解析依题意作出图形,如图所示,则sin ∠DBC =sin ∠ABC .由题意知AB =AC =4,BC =BD =2,则sin ∠ABC =154,cos ∠ABC =14, 所以S △BDC =12BC ·BD ·sin ∠DBC =12×2×2×154=152. 因为cos ∠DBC =-cos ∠ABC =-14=BD 2+BC 2-CD 22BD ·BC =8-CD 28, 所以CD =10.由余弦定理,得cos ∠BDC =4+10-42×2×10=104. 押题预测1.在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c .已知cos A =23,sin B =5cos C ,并且a =2,则△ABC 的面积为________.押题依据 三角形的面积求法较多,而在解三角形中主要利用正弦、余弦定理求解,此题很好地体现了综合性考查的目的,也是高考的重点.答案 52 解析 因为0<A <π,cos A =23, 所以sin A =1-cos 2A =53. 又5cos C =sin B =sin(A +C )=sin A cos C +cos A sin C =53cos C +23sin C , 结合sin 2C +cos 2C =1,得sin C =56,cos C =16. 于是sin B =5cos C =56. 由a =2及正弦定理a sin A =c sin C,得c = 3. 故△ABC 的面积S =12ac sin B =52. 2.已知函数f (x )=3sin ωx ·cos ωx -cos 2ωx (ω>0)的最小正周期为2π3. (1)求ω的值;(2)在△ABC 中,sin B ,sin A ,sin C 成等比数列,求此时f (A )的值域.押题依据 三角函数和解三角形的交汇点命题是近几年高考命题的趋势,本题综合考查了三角变换、余弦定理和三角函数的值域,还用到数列、基本不等式等知识,对学生能力要求较高.解 (1)f (x )=32sin 2ωx -12(cos 2ωx +1) =sin ⎝⎛⎭⎫2ωx -π6-12, 因为函数f (x )的周期为T =2π2ω=2π3,所以ω=32. (2)由(1)知f (x )=sin ⎝⎛⎭⎫3x -π6-12, 易得f (A )=sin ⎝⎛⎭⎫3A -π6-12. 因为sin B ,sin A ,sin C 成等比数列,所以sin 2A =sin B sin C ,所以a 2=bc ,所以cos A =b 2+c 2-a 22bc =b 2+c 2-bc 2bc≥2bc -bc 2bc =12(当且仅当b =c 时取等号). 因为0<A <π,所以0<A ≤π3, 所以-π6<3A -π6≤5π6, 所以-12<sin ⎝⎛⎭⎫3A -π6≤1, 所以-1<sin ⎝⎛⎭⎫3A -π6-12≤12, 所以函数f (A )的值域为⎝⎛⎦⎤-1,12.A 组 专题通关1.(2017·贵阳市第一中学适应性考试)已知在△ABC 中,A ,B ,C 的对边分别为a ,b ,c ,若a =10,c=3,cos A =14,则b 等于( ) A. 2 B. 3C .2D .3答案 C解析 由余弦定理知,a 2=b 2+c 2-2bc cos A ,可得10=b 2+9-2·b ·3·14 , b 2-32b -1=0,所以(b -2)(b +12)=0,解得b=2(舍负),故选C.2.tan 70°+tan 50°-3tan 70°tan 50°的值等于()A. 3B.3 3C.-33D.- 3答案 D解析因为tan 120°=tan 70°+tan 50°1-tan 70°tan 50°=-3,即tan 70°+tan 50°-3tan 70°tan 50°=- 3.3.(2017·荆、荆、襄、宜四地七校联考)已知α为第四象限角,sin α+cos α=15,则tan α2的值为( ) A .-12B.12 C .-13D.13答案 C解析 由sin α+cos α=15平方,得1+2sin αcos α=125⇒2sin αcos α=-2425⇒(sin α-cos α)2=1-2sin αcos α=4925. 因为α为第四象限角,所以sin α<0,cos α>0,sin α-cos α=-75, 因此sin α=-35,cos α=45, tan α2=sinα2cos α2=sin α2cos α2cos 2α2=sin α1+cos α =-351+45=-13,故选C. 4.(2017·合肥一模)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若cos C =223,b cos A +a cos B =2,则△ABC 的外接圆的面积为( )A .4πB .8πC .9πD .36π答案 C解析 ∵b cos A +a cos B =2,∴b ·b 2+c 2-a 22bc +a ·a 2+c 2-b 22ac=2, ∴c =2.由cos C =223, 得sin C =13,∴2R =c sin C =213=6,R =3, S =π×32=9π,故选C.5.若sin 2α=55,sin(β-α)=1010,且α∈⎣⎡⎦⎤π4,π,β∈⎣⎡⎦⎤π,3π2,则α+β的值是( ) A.7π4 B.9π4 C.5π4或7π4 D.5π4或9π4答案 A解析 ∵sin 2α=55,α∈⎣⎡⎦⎤π4,π, ∴cos 2α=-255且α∈⎣⎡⎦⎤π4,π2, 又∵sin(β-α)=1010,β∈⎣⎡⎦⎤π,3π2, ∴cos(β-α)=-31010, ∴sin(α+β)=sin [(β-α)+2α]=sin(β-α)cos 2α+cos(β-α)sin 2α=1010×⎝⎛⎭⎫-255+⎝⎛⎭⎫-31010×55=-22, cos(α+β)=cos [(β-α)+2α]=cos(β-α)cos 2α-sin(β-α)sin 2α=⎝⎛⎭⎫-31010×⎝⎛⎭⎫-255-1010×55=22, 又α+β∈⎣⎡⎦⎤5π4,2π,∴α+β=7π4,故选A. 6.(2017·全国Ⅰ)已知α∈⎝⎛⎭⎫0,π2,tan α=2,则cos ⎝⎛⎭⎫α-π4=________. 答案 31010解析 cos ⎝⎛⎭⎫α-π4=cos αcos π4+sin αsin π4=22(cos α+sin α). 又由α∈⎝⎛⎭⎫0,π2,tan α=2知,sin α=255,cos α=55, ∴cos ⎝⎛⎭⎫α-π4=22×⎝⎛⎭⎫55+255=31010. 7.(2017届湖南省百所重点中学阶段性诊断)我国南宋著名数学家秦九韶在他的著作《数书九章》卷五“田域类”里有一个题目:“问有沙田一段,有三斜,其小斜一十三里,中斜一十四里,大斜一十五里.里法三百步.欲知为田几何.”这道题讲的是有一个三角形沙田,三边分别为13里,14里,15里,假设1里按500米计算,则该沙田的面积为________平方千米.答案 21解析 设△ABC 的对应边边长分别为a =13里,b =14里,c =15里,cos C =132+142-1522×13×14=513⇒sin C =1213 ⇒S =12×13×14×1213×250 000=21×106(平方米) =21(平方千米).8.(2017·河南省息县第一高级中学阶段测试)如图,在平面四边形ABCD 中,AD=1,CD =2,AC =7,cos ∠BAD =-714,sin ∠CBA =216,则BC 的长为________.答案 3解析 因为cos ∠BAD =-714, 故sin ∠BAD = 1-⎝⎛⎭⎫-7142=32114, 在△ADC 中运用余弦定理,可得cos ∠CAD =1+7-427=277, 则sin ∠CAD = 1-⎝⎛⎭⎫2772=217, 所以sin ∠BAC =sin(∠BAD -∠CAD )=32114×277+714×217=63+314=32, 在△ABC 中运用正弦定理,可得 BC sin ∠BAC =7sin ∠CBA ⇒BC =32×7×621=3.9.(2017·天津)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .已知a sin A =4b sin B ,ac =5(a 2-b 2-c 2).(1)求cos A 的值;(2)求sin(2B -A )的值.解 (1)由a sin A =4b sin B 及a sin A =b sin B,得a =2b . 由ac =5(a 2-b 2-c 2)及余弦定理,得cos A =b 2+c 2-a 22bc =-55ac ac =-55. (2)由(1)可得sin A =255,代入a sin A =4b sin B , 得sin B =a sin A 4b =55. 由(1)知,A 为钝角,所以cos B =1-sin 2B =255. 于是sin 2B =2sin B cos B =45,cos 2B =1-2sin 2B =35,故sin(2B -A )=sin 2B cos A -cos 2B sin A =45×⎝⎛⎭⎫-55-35×255=-255. 10.(2017·浙江省“超级全能生”联考)已知f (x )=sin(ωx +φ) ⎝⎛⎭⎫ω>0,|φ|<π2满足f ⎝⎛⎭⎫x +π2=-f (x ),若其图象向左平移π6个单位长度后得到的函数为奇函数. (1)求f (x )的解析式;(2)在锐角△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且满足(2c -a )cos B =b cos A ,求f (A )的取值范围.解 (1)∵f ⎝⎛⎭⎫x +π2=-f (x ), ∴f (x +π)=-f ⎝⎛⎭⎫x +π2=f (x ), ∴T =π,∴ω=2,则f (x )的图象向左平移π6个单位长度后得到的函数为g (x )=sin ⎝⎛⎭⎫2x +π3+φ,而g (x )为奇函数,则有π3+φ=k π,k ∈Z ,而|φ|<π2,则有φ=-π3, 从而f (x )=sin ⎝⎛⎭⎫2x -π3. (2)∵(2c -a )cos B =b cos A ,由正弦定理得2sin C cos B =sin(A +B )=sin C ,又C ∈⎝⎛⎭⎫0,π2,∴sin C ≠0,∴cos B =12,∴B =π3.∵△ABC 是锐角三角形,C =2π3-A <π2, ∴π6<A <π2,∴0<2A -π3<2π3, ∴sin ⎝⎛⎭⎫2A -π3∈(0,1], ∴f (A )=sin ⎝⎛⎭⎫2A -π3∈(0,1]. B 组 能力提高11.(2017届合肥教学质量检测)在锐角△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且满足(a -b )(sin A +sin B )=(c -b )sin C ,若a =3,则b 2+c 2的取值范围是( )A.(3,6]B.(3,5)C.(5,6]D.[5,6] 答案 C解析 ∵(a -b )(sin A +sin B )=(c -b )sin C ,由正弦定理得(a -b )(a +b )=(c -b )c ,即b 2+c 2-a 2=bc ,∴cos A =b 2+c 2-a 22bc =bc 2bc =12,∴A =π3,∴B +C =2π3.又△ABC 为锐角三角形,∴⎩⎨⎧ 0<B <π2,A +B =π3+B >π2,∴π6<B <π2, 由正弦定理a sin A =b sin B =c sin C =332=2, 得b =2sin B ,c =2sin C ,∴b 2+c 2=4(sin 2B +sin 2C )=4⎣⎡⎦⎤sin 2B +sin 2⎝⎛⎭⎫2π3-B=4-2cos ⎝⎛⎭⎫2B +π3,又π6<B <π2, 可得b 2+c 2∈(5,6].故选C.12.(2017·湖北省黄冈市质量检测)已知2sin θ=1-cos θ,则tan θ等于( )A .-43或0B .43或0 C .-43D.43答案 A解析 因为2sin θ=1-cos θ,所以4sin θ2cos θ2=1-⎝⎛⎭⎫1-2sin 2θ2=2sin 2θ2, 解得sin θ2=0或2cos θ2=sin θ2,tan θ2=0或2,又tan θ=2tanθ21-tan 2θ2,当tan θ2=0时,tan θ=0; 当tan θ2=2时,tan θ=-43,故选A. 13.(2017届河南省安阳市模拟)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且2a cos C -a =c -2c cos C ,若c =3,则a +b 的最大值为________.答案 6解析 由题设可得(a +c )(2cos C -1)=0,由于a +c ≠0,所以cos C =12⇒C =60°,由余弦定理可得9=a 2+b 2-ab ,即(a +b )2=9+3ab ,又因为ab ≤(a +b )24,当且仅当a =b 时取等号,所以(a +b )24≤9⇒a +b ≤6. 14.(2017届南京市、盐城市模拟)如图,在△ABC 中,D 为边BC 上一点,AD =6,BD =3,DC =2.(1)若AD ⊥BC ,求∠BAC 的大小;(2)若∠ABC =π4,求△ADC 的面积. 解 (1)设∠BAD =α,∠DAC =β.因为AD ⊥BC ,AD =6,BD =3,DC =2,所以tan α=12,tan β=13, 所以tan ∠BAC =tan(α+β)=tan α+tan β1-tan αtan β=12+131-12×13=1. 又∠BAC ∈(0,π),所以∠BAC =π4. (2)设∠BAD =α.在△ABD 中,∠ABC =π4,AD =6,BD =3. 由正弦定理得AD sin π4=BD sin α,解得sin α=24. 因为AD >BD ,所以α为锐角,从而cos α=1-sin 2α=144.因此sin ∠ADC =sin ⎝⎛⎭⎫α+π4=sin αcos π4+cos αsin π4 =22⎝⎛⎭⎫24+144=1+74.△ADC 的面积S =12×AD ×DC ·sin ∠ADC=12×6×2×1+74=32(1+7).。
三角恒等变换教案
三角恒等变换教案一、教学目标1. 知识与技能:(1)理解三角恒等变换的概念和意义;(2)掌握三角恒等变换的基本公式;(3)能够运用三角恒等变换解决实际问题。
2. 过程与方法:(1)通过观察、分析、归纳三角恒等变换的规律;(2)培养学生的逻辑思维能力和运算能力。
3. 情感态度与价值观:(1)激发学生对数学的兴趣和探究欲望;(2)培养学生的团队合作意识和克服困难的勇气。
二、教学内容1. 三角恒等变换的概念和意义;2. 三角恒等变换的基本公式;3. 三角恒等变换的运用。
三、教学重点与难点1. 教学重点:(1)三角恒等变换的概念和意义;(2)三角恒等变换的基本公式;(3)三角恒等变换的运用。
2. 教学难点:(1)三角恒等变换公式的灵活运用;(2)解决实际问题时的变形和计算。
四、教学方法1. 采用问题驱动法,引导学生主动探究三角恒等变换的规律;2. 通过示例讲解,让学生掌握三角恒等变换的基本公式;3. 利用练习题和小组讨论,提高学生的实际应用能力和团队合作意识。
五、教学过程1. 导入新课:(1)复习相关三角函数知识;(2)提问:什么是三角恒等变换?为什么学习三角恒等变换?2. 知识讲解:(1)讲解三角恒等变换的概念和意义;(2)介绍三角恒等变换的基本公式;(3)示例讲解:如何运用三角恒等变换解决实际问题。
3. 课堂练习:(1)布置练习题,让学生独立完成;(2)选取部分学生的作业进行讲解和评价。
4. 小组讨论:(1)让学生分组讨论,分享解题心得和经验;5. 课堂小结:(1)回顾本节课所学内容;(2)强调三角恒等变换在数学和实际生活中的重要性。
6. 课后作业:(1)布置巩固练习题;(2)鼓励学生自主学习,深入探究三角恒等变换的运用。
六、教学评价1. 课堂表现评价:观察学生在课堂上的参与程度、提问回答的正确性以及与同学的合作情况。
2. 练习作业评价:检查学生作业的完成质量,包括答案的正确性、解题方法的合理性以及书写的规范性。
三角恒等变换复习教案(二)(共三个课时)
三角恒等变换复习教案学习目标:(1)了解两角和与差正弦、余弦、正切公式之间的内在联系.培养逻辑推理能力.(2)掌握两角和与差的正弦公式、正切公式,并会运用它们进行有关计算、化简、证明.(3)通过实例熟悉一些解题的技巧并增强利用公式解决具体问题的灵活性. 重点:熟练、灵活的应用三角公式.难点:变换中的技巧.复习与巩固两角和与差的正弦、余弦、正切公式的内在联系:三角函数恒等变形实质是对角、函数名称的变化,而转化的依据就是一系列三角公式,如:①同角三角函数关系——可实现函数名称的转化;②诱导公式及和、差角的三角函数——可实现角的形式的转化.在应用公式时要注意它的逆向变换、多向变换,即对公式要“三会”:正用、逆用、变用.要注意通过拆角、拼角的技巧用已知角表示未知角.一、关于和角与差三角公式特别注意公式的结构,用活公式. :sin()sin cos cos sin ;sin()sin cos cos sin ,,:2sin cos sin()sin();2cos sin sin()sin().αβαβαβαβαβαβαβαβαβαβαβαβ+=+-=-=++-=+--如在公式中应用方程的思想得 :2cos cos cos()cos();2sin sin cos()cos()C C αβαβαβαβαβαβαβαβ+-=++--=+--同理由公式可得tan tan :tan(),:1tan tan tan tan tan()(1tan tan ),tan tan ,tan tan ,.αβαβαβαβαβαβαβαβ++=-+=+-+又如公式可以变形为特别是公式中有式子因此常又与一元二次方程联系在一起 二、习题复习与巩固231.sin ,,cos ,,tan().34αβαβαβ==-++例已知且是第二象角求的值()()S C αβαβ++()()S C αβαβ--ββ-以代ββ-以代tan(60)tan(30)2..1tan(60)tan(30)αααα+-+++⋅+ 例计算的值 1113.sin ,cos(),,(0,),7142πααβαββ=+=-∈例已知且求的值 31234.,cos(),sin(),sin 2,sin 224135ππβααβαβαβ<<<-=+=-例已知求的值 42sin 3cos (1)55.(1)sin().32cos 3sin (2)547(2)8sin 5cos 6,sin(),808cos 5sin .αβαβαβαβαβαβ⎧+=⎪⎪+⎨⎪+=⎪⎩+=+=+例已知求的值求的值6(1):3cos 3sin ;(2):;(3):sin .1212x x x x ππ-+例化简化简求值7.:tan15tan30tan15tan30++ 例计算():1.[0,];22.;3.;4.π请同学们把下列内容记一记或默一默间的特殊角的三角函数值同角三角函数基本关系式九组诱导公式两角和与差的三角函数公式三、综合训练题 28.0(0)tan ,tan ,tan().ax bx c a a c αβαβ++=≠≠+例已知一元二次方程且的两个根为求的值tan tan :tan()1tan tan αβαβαβ++=-分析tan tan .tan tan b a ca αβαβ⎧+=-⎪⎪⎨⎪=⎪⎩而代入即可 21.670tan ,tan ,:sin()cos()x x αβαβαβ++=+=+变式题已知一元二次方程的两个根为求证22.,(tan ,0),(tan ,0)()(23)20(0),tan().m A B f x mx m x m m y αβαβ=+-+-=≠=+变式题设为实数是二次函数图象上的两点求的最小值min 923:00,(,0)(0,],tan tan ,4233tan tan tan(),.24m m m m m y m y m αβαβαβ-∆≥≠∈-∞+=--=∴=+==-∴=- 分析且得 9.:tan tan tan tan tan tan ABC A B C A B C ∆++=⋅⋅例在中,求证:tan()tan .A B C +=-分析利用10.,(0,),:(1tan )(1tan )2:.24A B A B A B ππ∈++=+=例已知求证的充要条件是 :tan tan tan()(1tan tan )2T αβπαβαβαβ++=+-分析利用的变式.:(1tan1)(1tan 2)(1tan3)(1tan 44)++++ 变式题化简11.:[2sin50sin10(1)]+ 例求值:50,10,80,60,90,.分析都不特殊角但其和却是特殊角故可考虑逆用两角和公式求其三角函数值:cos10(2sin 50sin10)80cos102cos(6010)(2sin 50sin10)cos1050cos10cos50sin10)60=+-=++==思路一原式:[2sin 50sin10(1tan 60tan10)]80tan 60tan10)[2sin 50sin10]tan(6010)2cos50(2sin 50sin10)cos10=++-=+-=+==思路二原式2222sin()sin()tan 12.:1.sin cos tan αβαββαβα+-=-例求证 :,,.分析观察左右两边的差异从左向右证明要解决角的差异如果从右向左证明解决名称的差异32sin 13.:tan tan .22cos cos 2x x x x x -=+例求证:,,.,,.分析此题各式间的差异较大不仅角之间的差异而且函数名称及结构之间也存在较大差异为此要重点抓住某一特征差异进行分析以求突破 3sin tantan ;322cos cos 222sin sin .333cos()cos()cos cos 222222x x x x x x x x x x x x x =-=⋅==-++⋅左边右边 114.,0,cos(),22292sin(),tan .232ππβαπβαααββ<<<<-=-+-=例已知求的值 :()(),,22242,,,4222αββαπβαβαππαπαββ+=---<-<+<-<分析而再求出的正弦余弦则问题可解22sin ;cos tan 227227235αβαβαβ+++==∴= 33:,0,cos(),4444535sin(),sin().413ππππαβαπβαβ<<<<-=-=+变式题已知求的值15.,,,,tan tan tan .2222ABC A B C A C A C ∆++例在已知成等差数列求的值:,,223tan()22,tan tan tan 2222A C A C A C A C π+=∴+=++=分析由题意得由公式变形得 2cos10sin 2016.cos 20-例求的值:103020=- 分析17.sin(2)2sin 0,:tan 3tan().αββααβ++==+例已知求证 :2();()αβαβαβαβα+=++=+-分析518.sin(),0,:4134cos 2.cos()4x x x x πππ-=<<+例已知求的值 :2()();().44424cos 22413cos()4x x x x x x x ππππππ=+--+=--==+ 分析 2219.(1)tan 5,sin 5(1tan 5tan 2.5).3tan 15(2).13tan 15a =+--例已知求的值求的值:(1),;(2),分析切化弦再逆用公式因式分解后引入辅助角再逆用公式20.,,,lgsin lgsin lgsin lg 2..A B C ABC A B C ∆--=例已知是的三个内角且试判断此三角形的形状特征 :,:sin sin()A B C =+分析利用在三角形中有。
三角恒等变换教案优质课教案
三角函数的图像与变换
三角函数的基本图像
01
正弦、余弦、正切函数在坐标系中的图像及其特点。
图像的平移与伸缩
02
通过平移和伸缩变换,可以得到不同振幅、周期和相位的三角
函数图像。
图像的对称与周期性
03
三角函数图像具有对称性和周期性,可以通过这些性质进行图
像分析和变换。
三角函数的和差化积与积化和差公式
和差化积公式
05
06
$tan(A - B) = frac{tan A - tan B}{1 + tan A tan B}$
倍角公式与半角公式
倍角公式 $sin 2A = 2sin A cos A$
$cos 2A = cos^2 A - sin^2 A = 2cos^2 A - 1 = 1 - 2sin^2 A$
解释三角恒等变换在几何图形中的应用,如角度、边长等的计算。
02
三角恒等变换在物理中的应用
阐述三角恒等变换在物理学中的应用,如振动、波动等问题的分析。
03
三角恒等变换在工程学中的应用
介绍三角恒等变换在工程领域中的应用,如建筑设计、机械制造等。
拓展:三角恒等变换在其他领域的应用
三角恒等变换在数学分析中的应用
三角恒等变换在数学、物理、工程等领域具有广泛的应用,是解决实际问题的重要 工具之一。
掌握三角恒等变换的方法和技巧,对于提高学生的数学素养和解决问题的能力具有 重要意义。
课程目标与要求
知识与技能目标
掌握三角恒等变换的基本方法和技巧, 能够熟练地进行三角函数的化简和计 算。
过程与方法目标
情感态度与价值观目标
将两个角的三角函数和差转化为 单个角的三角函数形式,便于计
2019-2020年高中数学 第三章《三角恒等变换》教学设计 新人教A版必修4
2019-2020年高中数学第三章《三角恒等变换》教学设计新人教A版必修4【教学目标】进一步掌握三角恒等变换的方法,如何利用正、余弦、正切的和差公式与二倍角公式,对三角函数式进行化简、求值和证明:新授课阶段1. 11个三角恒等变换公式中,余弦的差角公式是其它公式的基础,由它出发,用-β代替β、±β代替β、α=β等换元法可以推导出其它公式.你能根据下图回顾推导过程吗?2.化简,要求使三角函数式成为最简:项数尽量少,名称尽量少,次数尽量底,分母尽量不含三角函数,根号内尽量不含三角函数,能求值的求出值来;3.求值,要注意象限角的范围、三角函数值的符号之间联系与影响,较难的问题需要根据上三角函数值进一步缩小角的范围.4.证明是利用恒等变换公式将等式的左边变同于右边,或右边变同于,或都将左右进行变换使其左右相等.5. 三角恒等变换过程与方法,实际上是对三角函数式中的角、名、形的变换,即(1)找差异:角、名、形的差别;(2)建立联系:角的和差关系、倍半关系等,名、形之间可以用哪个公式联系起来;(3)变公式:在实际变换过程中,往往需要将公式加以变形后运用或逆用公式,如升、降幂公式, cos α= cos βcos (α-β)- sin βsin (α-β),1= sin 2α+cos 2α,==tan (450+300)等.例1 知),2(,61)4sin()4sin(ππ∈α=α-πα+π,求sin4α的值. 解:∵61)4sin()4sin(=α-πα+π ∴31)4cos()4sin(2=α+πα+π∴ ∴cos2α = 又∵ ∴2α∈ (π, 2π)∴sin2α = 322)31(12cos 122-=--=α-- ∴sin4α = 2sin2αcos2α =例2 已知θ是三角形中的一个最小的内角,且12sin 2cos 2sin 2cos 2222+=θ-θ-θ+θa a a ,求a 的取值范围. 解:原式变形:1)2sin 2(cos )2sin 2(cos 2222+=θ-θ-θ-θa a即,显然 (若,则 0 = 2) ∴ 又∵,∴ 即: 解之得:例3 求证:)6(sin )3cos(cos sin 22α-π-α+πα+α的值是与α无关的定值. 证:)3cos(cos )]23cos(1[21)2cos 1(21α+πα+α-π--α-=原式)sin 3sin cos 3(cos cos ]2cos )23[cos(21απ-απα+α-α-π=211(cos cos 2sin sin 2cos 2)cos sin 23322ππαααααα=+-+-1111cos 22cos 2(1cos 2)24244ααααα=+-++-= ∴)6(sin )3cos(cos sin 22α-π-α+πα+α的值与α无关 例4 已知331cos 2sin 2cos(), , 45221tan πππααααα-++=≤<-求的值.解:由得解方程组223sin 225sin cos 1αααα-=⎪⎨⎪+=⎩得sin 10cos 10αα⎧=-⎪⎪⎨⎪=-⎪⎩或sin 10cos 10αα⎧=⎪⎪⎨⎪=⎪⎩sin 310cos 0 22cos 10αππααα⎧=-⎪⎪≤<∴≤∴⎨⎪=-⎪⎩ 21cos 2sin22sin 2sin cos 1tan 1tan ααααααα-++∴=--22(2(281010101775⨯+⨯==--例5 求值:02210sin 21)140cos 1140sin 3(⋅-.解:原式=0020*******sin 21140cos 140sin 140sin 140cos 3⋅- 16160sin 200sin 1680cos 80sin 200sin 810sin 2180sin 41200sin 80sin 410sin 21)40cos 40sin ()140sin 140cos 3)(140sin 140cos 3(0000002000200000=-=-=⋅⋅-=⋅-+-=例6 .已知函数1)4()cos x f x xπ-=. (Ⅰ)求的定义域;(Ⅱ)设的第四象限的角,且,求的值. 解:(Ⅰ)由 得,故在定义域为(Ⅱ)因为,且是第四象限的角, 所以故1)4()cos f πααα-=12(sin 22)22cos ααα--=.例7 已知sin (-x )=,0<x <,求的值.分析:角之间的关系:(-x )+(+x )=及-2x =2(-x ),利用余角间的三角函数的关系便可求之.解:∵(-x )+(+x )=,∴cos(+x )=sin (-x ).又cos2x =sin (-2x )=sin2(-x )=2sin (-x )cos (-x ), ∴=2cos(-x )=2×=.例8 求证:(sin cos 1)(sin cos 1)tan sin 22x x x x x x +--+=解:原式=22(sin 12sin 1)(sin 12sin 1)22sin 2x xx x x+---++ =22(2sin cos 2sin )(2sin cos 2sin )2222224sin cos cos 22x x x x x x x xx-+ =(cos sin )(cos sin )sin 22222cos cos 2x x x x x x x-+⋅ =x x x x x cos 2cos 2sin 2sin 2cos 22⋅-)(=x x x x cos 2cos 2sincos ⋅⋅=tan.例9 已知,,都是锐角,求 的值. 解:由得3sin 2α=1-2sin 2β=cos2β.由得sin2β=sin2α.∴cos(α+2β)=cos αcos2β-sin αsin2β =3cos αsin 2α-sin α·sin2α=0.∵α、β∈(0,),∴α+2β∈(0,). ∴α+2β=. 课堂小结三角恒等式的证明方法有:从等式一边推导变形到另一边,一般是化繁为简. 等式两边同时变形成同一个式子.将式子变形后再证明. 作业 见同步练习 拓展提升 1.若,则等于 (A ) (B ) (C ) (D )2.函数y=sin2x+sinx,x 的值域是( ) (A)[-,] (B) [] (C) [-,] (D)[]3.已知x ∈(-,0),cos x =,则tan2x 等于 ( ) A.B.-C.D.-4.已知tan=,则的值为( ) A .B .-C .D .-5..,则 . 6.已知,若,则. 若 , 则.7.若,则的值为_______.8.已知锐角三角形ABC 中,.51)sin(,53)sin(=-=+B A B A 求 的值.9. ()41,cos ,tan , cos .53αβααββ=-=-已知、为锐角求的值10.设函数()cos 2cos ()f x x x x x R =+∈的最大值为M ,最小正周期为T . (1) 求M ,T ;(2) 若有10个互不相等的正数满足M ,且(i=1,2,…10), 求…的值.参考答案 1.C2.B 提示:用二倍角公式及两角和与差的正弦或余弦公式3.D 4.A 提示:222sin 2sin cos1cos sin 222tan 1cos sin 22cos 2sin cos 222θθθθθθθθθθθ+-+==+++ 5.. 提示:由已知得,22sin 2cos 22sin cos cos sin αααααα+=+-2222222sin cos cos sin 2tan 1tan 7sin cos tan 15ααααααααα+-+-===-++ 6. 提示:2(sin cos )12sin cos θθθθ-=-= 当0,sin cos 4πθθθ⎛⎫∈< ⎪⎝⎭时,当,sin cos 42ππθθθ⎛⎫∈> ⎪⎝⎭时, 7. 提示:去分母后两边平方可得 8 解:,51)sin(,53)sin(=-=+B A B A .2tan tan 51sin cos ,52cos sin .51sin cos cos sin ,53sin cos cos sin =⇔⎪⎪⎩⎪⎪⎨⎧==⇔⎪⎪⎩⎪⎪⎨⎧=-=+∴B A B A B A B A B A B A B A 9 解:43,cos , sin .55ααα=∴=是锐角.,22 π<β-α<π-∴βα为锐角、又 ()可求出,31tan -=-βα ()(),1010sin ,10103cos -=-=-βαβα()cos cos βααβ∴=--⎡⎤⎣⎦()()cos cos sin sin ααβααβ=-+-10 解:(1)()cos 222sin(2)6f x x x x π=+=+(2):,22,62i x k k Z πππ+=+∈故即 ,又是互不相等的正数且(i=1,2,…10), 故 0,1,…9.所以…。
2013-2014学年高三数学一轮复习导学案:解三角形(2)
3. △ABC 中,三内角 A,B,C 成等差数列。 (1)若 b=7,a+c=13,求此三角形的面积; (2)求 3 sin A sin(c
6ห้องสมุดไป่ตู้
) 的取值范围。
4. 设锐角△ABC 的内角 A,B,C 所对的边长分别为 a,b,c,已知 a=2bsinA. (1)求 B 的大小; (2)求 cosA+sinC 的取值范围。
例 3 在△ABC 中,角 A,B,C 的对边分别为 a, b, c 。 (1)若 sin( A
) 2 cos A, 求 A 的值; 6 1 (2)若 cos A , b 3c, 求 sin C 的值。 3
四、 【学后反思】
课堂检测:解三角形(2)
姓名:
2
1. 若三条线段长分别为 5,6,7,则该三条线段组成的三角形的形状是
3
,当△ABC 的面积等于 3 时, tan C
3. 在△ABC 中,角 A,B,C 所对的边分别为 a, b, c ,且满足 c 2a cos B ,则△ABC 的形状是 三角形。
4. 在△ABC 中,若 sin A
3 5 , cos B ,则 cos C 的值为 5 13
三、 【探究提高】
例1 在△ABC 中,角 A,B,C 所对的边分别为 a, b, c ,且满足
a 2 tan A ,试判 b2 tan B
断△ABC 的形状。
1
例2
设△ABC 的内角 A, B, C 所对的连长分别为 a, b, c , 且 a cos B 3, b sin A 4.
(1)求边长 a ; (2)若△ABC 的面积 S 10 ,求△ABC 的周长 l 。
2019届高三一轮复习导学案 解三角形
第一节 解 三 角 形一、考纲要求1.掌握正弦定理、余弦定理,并能解决一些简单的三角形度量问题;2.能够运用正弦定理、余弦定理等知识和方法解决一些与测量和几何计算有关的实际问题。
二、命题角度1.正弦定理和余弦定理;2.解三角形的综合应用。
(第一课时)三、要点回顾1.正弦定理:______________________=2R (其中2R 为△ABC 外接圆直径), 变式:a =___________,b =___________,c =___________ a ∶b ∶c =_______∶_______:_______ 。
2.余弦定理:a 2=___________;b 2=___________;c 2=___________。
变式:cos A =___________;cos B =___________;cos C =___________。
3.三角形常用面积公式S =12a ·h a =_______=_______=_______=12r (a +b +c )(r 为内切圆半径)四、重点提醒在△ABC 中,常有以下结论:1.∠A +∠B +∠C =π;2.任意两边之和大于第三边,任意两边之差小于第三边;3.sin(A +B )=sin C ;cos(A +B )=-cos C ;sin A +B 2=cos C 2;cos A +B 2=sin C 2;4.∠A >∠B ⇔a >b ⇔sin A >sin B ⇔cos A <cos B 。
五、巩固训练1.在△ABC 中,AB =5,AC =3,BC =7,则∠BAC =( )A.π6B.π3C.2π3D.5π62.在△ABC 中,A =π3,BC =3,AB =6,则C 等于( )A.π4或3π4B.3π4C.π4D.π63.在△ABC 中,已知a 2-b 2-c 2=2bc ,则角B +C 等于( )A.π4B.3π4C.5π4D.π4或3π44.在△ABC 中,A =π3,AB =2,且△ABC 的面积为32,则边BC 的长为________。
(新课标)高考数学大一轮复习第三章三角函数、解三角形第3节三角恒等变换第2课时简单的三角恒等变换课件
即 3sin(α+β)cosα-3cos(α+β)sinα=sin(α+β)cosα +cos(α+β)sinα,
整理可得 sin(α+β)cosα=2cos(α+β)·sinα. 因为 α≠kπ+π2 ,α+β≠kπ+π2 (k∈Z), 所以 cos(α+β)·cosα≠0, 则有 tan(α+β)=2tanα.
第二十三页,共56页。
(2)∵α 为锐角,cosα+π6 =45,∴sinα+π6 =35, ∴sin2α+π3 =2sinα+π6 cosα+π6 =2245, cos2α+π3 =2cos2α+π6 -1=275, ∴sin2α+π 12=sin2α+π3 -π4 = 22sin2α+π3 -cos2α+π3 =1750 2.
第十二页,共56页。
考向 1 给角求值
【例 2】 sin47°-cosisn1177°°cos30°=(
)
A.-
3 2
B.-12
C.12
D.
3 2
第十三页,共56页。
【解析】 原式=sin(30°+17° cos)17-°sin17°cos30° =sin30°cos17°+cos3c0o°s1s7i°n17°-sin17°cos30° =sin3c0o°s1c7o°s17° =sin30°=12. 【答案】 C
第十八页,共56页。
cos2α-π4 =cos2α-π4 +π4 = 22cos2α-π4 -sin2α-π4 =-3510 2.
第十九页,共56页。
解法 2:由 cosπ4 -α=35,得 22(cosα+sinα)=35.① 两边平方,得 1+2cosαsinα=1285. sin2α=2cosαsinα=-275, (cosα-sinα)2=1--275=3225. 根据 2cosαsinα=-275<0 及-3π 2 <α<-π2 ,
高三理科数学第三章导学案.三角恒等变换.doc公开课导学案讲c
二连浩特市第一中学 高三年级 数学第一轮综合复习导学案 第三章 三角函数、三角恒大变换 编号:_20 时间: 2014-10-22 备课组长:王婷 包科领导: 班级:____ 小组:____ 姓名:_________ 主备:王婷 教师评价1: 教师评价2:让学习、思考、改变、进步成为我们的学习和生活方式简单三角恒等变换在研究三角函数中的应用【学习目标】利用三角公式进行化简后研究函数y=Asin(ωx+φ)的性质;(1)x y sin = (2) x y cos = (3) x y tan =【考纲要求】能运用两角和与差的正弦、余弦、正切公式以及二倍角的正弦、余弦和正切公式进行简单的恒等变换(包括导出积化和差、和差化积、半角公式,但对这三组公式不要求记忆) 【熟记以下常用三角变换公式】 1.=+)sin(βα =-)sin(βα ; 2.=+)cos(βα=-)cos(βα ; 3.=+)tan(βα =-)tan(βα ; 4=α2sin ;5.α2tan = ;6.=α2cos = ;= ;变形公式:=+α2cos 1 ;=-α2cos 1 ;=α2cos ; =α2sin ;7.=2tanα= = ;8.=+ααcos sin b a ;其中 ;9.==︒︒75cos 15sin ;10.==︒︒75sin 15cos ;【基础演练】1.(2013·新课标全国Ⅱ高考文科·T6)已知2sin 23α=,则2cos ()4πα+=( ) A.16 B.13 C.12 D.232.(2013·新课标全国Ⅱ高考文科·T16)函数cos(2)()y x ϕπϕπ=+-≤≤的图象向右平移2π个单位后,与函数sin(2)3y x π=+的图象重合,则ϕ=_________。
3.(2012·新课标全国高考文科·T9)已知ω>0,0<φ<π,直线x=π4和x=5π4是函数f(x)=sin(ωx+φ)图象的两条相邻的对称轴,则φ=( )(A )π4 (B )π3 (C )π2(D )3π44.(2011·新课标全国高考文科·T11)设函数()sin(2)cos(2)44f x x x ππ=+++,则( )(A )()y f x =在0,2π⎛⎫⎪⎝⎭内单调递增,其图象关于直线4x π=对称(B )()y f x =在0,2π⎛⎫⎪⎝⎭内单调递增,其图象关于直线2x π=对称(C )()y f x =在0,2π⎛⎫⎪⎝⎭内单调递减,其图象关于直线4x π=对称(D )()y f x =在0,2π⎛⎫⎪⎝⎭内单调递减,其图象关于直线2x π=对称二连浩特市第一中学 高三年级 数学第一轮综合复习导学案 三角函数,简单的三角恒等变换 时间: 2014-10-22 主备:王婷 班级:_____ 小组:______ 姓名及编号:_________ 教师评价:_______! 高三班的孩子们加油吧! 我们一定要成功,一定能成功..5.(2012·大纲版全国卷高考理科·T7)已知α为第二象限角,33cos sin =+αα,则cos2α=( )(A)(B)6.(2012大纲版全国卷高考文科·T15)与(2012·大纲版全国卷高考理科·T14)相同 当函数x x y cos 3sin -=)20(π<≤x 取得最大值时,=x ________.【拓展提升】1.(2014·新课标Ⅱ高考文科·T14)与(2014·新课标高Ⅱ考理科·T14)相同 函数)cos(sin 2)2sin()(ϕϕϕ+-+=x x x f 的最大值为 ;2.(2013·新课标全国Ⅱ高考理科·T15)设θ为第二象限角,若tan 142πθ⎛⎫+= ⎪⎝⎭,则sin θ+cos θ=;3.(2012·新课标全国高考理科·T9)已知ω>0,函数()sin 4f x x πω⎛⎫=+ ⎪⎝⎭在,2ππ⎛⎫ ⎪⎝⎭内单调递减,则ω的取值范围是( )(A)15,24⎡⎤⎢⎥⎣⎦ (B) 13,24⎡⎤⎢⎥⎣⎦ (C)1(0,]2 (D) (0,2] 4.(2011·新课标全国高考理科·T11)设函数()sin()cos()(0,)2f x x x πωϕωϕωϕ=+++><的最小正周期为π,且()()f x f x -=,则( )(A )()f x 在0,2π⎛⎫ ⎪⎝⎭单调递减 (B )()f x 在3,44ππ⎛⎫⎪⎝⎭单调递减(C )()f x 在0,2π⎛⎫⎪⎝⎭单调递增(D )()f x 在3,44ππ⎛⎫⎪⎝⎭单调递增5.(2013·新课标Ⅰ高考文科·T16)与(2013·新课标Ⅰ高考理科·T15)相同 设当θ=x时,函数x x x f cos 2sin )(-=取得最大值,则=θcos ;6.(2013·大纲版全国卷高考理科·T12)已知函数()=cos sin 2,f x x x下列结论中错误的是( ) A .()(),0y f x π=的图像关于中心对称B.()2y f x x π==的图像关于对称 C.()f xD.()f x 既是奇函数,又是周期函数【课后反思】1、我做错的题:2、错误原因:3、改进措施:4、我的收获:二连浩特市第一中学 高三年级 数学第一轮综合复习导学案 第二章 导数 编号:_ 12 时间: 班级:___ 小组:____ 姓名及编号:_________教师评价:___主备:王婷让学习、思考、改变、进步成为我们的学习和生活方式!31. (2011·新课标全国高考理科·T21)已知函数ln ()1a x bf x x x=++,曲线()y f x =在点(1,(1))f 处的切线方程为230x y +-=.)求a 、b 的值;(2)如果当0x>,且1x ≠时,ln ()1x kf x x x>+-,求k 的取值范围. 1. (2011·新课标全国高考文科·T21)已知函数ln ()1a x b f x x x=++,曲线()y f x =在点(1,(1))f 处的切线方程为230x y +-=.(1)求a 、b 的值; (2)证明:当0x >,且1x ≠时,ln ()1xf x x >-.2(2014·新课标全国Ⅱ高考理科·T21)已知函数x e e x f xx2)(--=-(1)讨论)(x f 的单调性;(2)设),(4)2()(x bf x f x g -=,当0>x 时,0)(>x g ,求b 的最大值;(3)已知1.4142<2<1.4143,估计2ln 的近似值(精确到0.001)2.(2014·新课标全国Ⅱ高考文科·T21)已知函数23)(23++-=ax x x x f ,曲线)(x f y =在点(0,2)处的切线与x 轴交点横坐标为-2. (1)求a ;(2)证明:当k<1时,曲线)(x f y =与直线2-=kx y 只有一个交点二连浩特市第一中学 高三年级 数学第一轮综合复习导学案 三角函数,简单的三角恒等变换 时间: 2014-10-22 主备:王婷 班级:_____ 小组:______ 姓名及编号:_________ 教师评价:_______! 高三班的孩子们加油吧! 我们一定要成功,一定能成功..【改进措施】【我的收获】2012文【解题指南】(1)先确定函数的定义域,然后求导函数()f x ',因不确定a 的正负,故应讨论,结合a 的正负分别得出在每一种情况下()f x '的正负,从而确立单调区间.(2)分离参数k ,将不含有参数的式子看作一个新函数()g x ,将求k 的最大值转化为求()g x 的最值问题.【解析】(1)()f x 的定义域为(),-∞+∞,()x f x e a '=-.若0a ≤,则()0f x '>,所以()f x 在(),-∞+∞上单调递增.若0a >,则当(),ln x a ∈-∞时, ()0f x '<;当()ln ,x a ∈+∞时, ()f x '>0,所以,()f x 在(),ln a -∞上单调递减,在()ln ,a +∞上单调递增.(2)由于1a =,所以()()()()111x x k f x x x k e x '-++=--++,故当0x>时, ()()10x k f x x '-++>等价于()10.1xx k x x e +<+>- ①令()11xx g x x e +=+-,则.由(1)知,函数()2x h x e x =--在()0,+∞上单调递增.而()()10,20h h <>,所以()h x 在()0,+∞上存在唯一的零点.故()g x '在()0,+∞存在唯一的零点.设此零点为α,则()1,2α∈. 当()0,x α∈时,()0g x '<;当(),x α∈+∞时,()0g x '>.所以()g x 在()0,+∞的最小值为()g α.又由()0g α'=,可得2eαα=+,所以()1g αα=+()2,3∈.二连浩特市第一中学 高三年级 数学第一轮综合复习导学案 第二章 导数 编号:_ 12 时间: 班级:___ 小组:____ 姓名及编号:_________教师评价:___主备:王婷让学习、思考、改变、进步成为我们的学习和生活方式!5由于①式等价于()k g α<,故整数k 的最大值为2.30.(2013·新课标全国Ⅱ高考理科·T21)已知函数f(x)=e x-ln(x+m), (1)设x=0是f(x)的极值点,求m,并讨论f(x)的单调性;(2)当m ≤2时,证明f(x)>0.2013年理【解题指南】(1)求导,然后将0x =代入导函数,求得m ,讨论分析导函数的符号,得单调性. (2)求()f x 的最小值()0f x ,证明最小值()00f x >即可.【解析】(1)因为()1x f x e x m '=-+,0x =是()f x 的极值点,所以()1010f m'=-=,解得1,m =所以函数()()l n 1xfx e x =-+,其定义域为()1,-+∞,因为()()111,11xxe xf x e x x +-'=-=++设()()11,x gx e x =+-则()()'10x x g x e x e =++>,所以()g x 在()1,-+∞上是增函数,又因为()00g =,所以当0x >时,()0g x >,即()0f x '>,当10x -<<时,()0g x <,()0f x '<,所以()f x 在()1,0-上是减函数,在()0,+∞上是增函数.(2)当2m ≤,(),x m ∈-+∞时,()()ln ln 2x m x +≤+,故只需证明当2m =时,()0f x >.当2m=时,函数()12x f x e x '=-+在()2,-+∞单调递增. 由()()10,00f f ''-<>,故()0f x '=在()2,-+∞上有唯一实根0x ,且()01,0x ∈-.当()02,x x ∈-时,()0f x '<;当()0,x x ∈+∞时,()0f x '>,从而当0x x =时,()f x 取得最小值.由()00f x '=得()00001,ln 2,2x e x x x =+=-+故()()()2000011022x f x f x x x x +≥=+=>++.综上,当2m≤时,()0f x >.31. (2013·新课标全国Ⅱ高考文科·T21)已知函数2()x f x x e -=。
新高考数学(理)之三角函数与解三角形 专题04 三角恒等变换(解析版)
新高考数学(理)三角函数与平面向量04 三角恒等变换一、具本目标:1.两角和与差的三角函数公式 (1)会用向量的数量积推导出两角差的余弦公式;(2)能利用两角差的余弦公式导出两角差的正弦、正切公式;(3)能利用两角差的余弦公式导出两角和的正弦、余弦、正切公式,导出二倍角的正弦、余弦、正切公式,了解它们的内在联系;2.简单的三角恒等变换:能运用上述公式进行简单的恒等变换(包括导出积化和差、和差化积、半角公式,但对这三组公式不要求记忆)3.(1) 已知两角的正余弦,会求和差角的正弦、余弦、正切值. (2) 会求类似于15°,75°,105°等特殊角的正、余弦、正切值. (3) 用和差角的正弦、余弦、正切公式化简求值. (4)逆用和差角的正弦、余弦、正切公式化简求值. (5) 会配凑、变形、拆角等方法进行化简与求值. 二、知识概述:知识点一 两角和与差的正弦、余弦、正切公式两角和与差的正弦公式: ()sin sin cos cos sin α+β=αβ+αβ,()sin sin cos cos sin α-β=αβ-αβ.两角和与差的余弦公式:()cos cos cos sin sin α+β=αβ-αβ, ()cos cos cos sin sin α-β=αβ+αβ. 两角和与差的正切公式:()tan tan tan 1tan tan α+βα+β=-αβ,【考点讲解】()tan tan tan 1tan tan α-βα-β=+αβ.【特别提醒】公式的条件:1. 两角和与差的正弦、余弦公式中的两个角α、β为任意角.2.两角和与差的正切公式中两个角有如下的条件:(),,,.2222k k k k k z ππππα+β≠π+α-β≠π+α≠π+β≠π+∈知识点二 公式的变用1. 两角和与差的正弦公式的逆用与辅助角公式:()22sin cos sin a x b x a b x +=++ϕ(其中φ角所在的象限由a,b 的符号确定,φ的值由tan baϕ=确定),在求最值、化简时起着重要的作用. 2. ()tan tan tan 1tan tan α+βα+β=-αβ变形为()()tan tan tan 1tan tan α+β=α+β-αβ,()tan tan tan 1tan tan α+βα+β=-αβ变形为()tan tan tan tan 1tan α+βαβ=-α+β.()tan tan tan 1tan tan α-βα-β=+αβ变形为()()tan tan tan 1tan tan α-β=α-β+αβ,()tan tan tan 1tan tan α-βα-β=+αβ变形为()tan tan tan tan 1tan α-βαβ=-α-β来使用. 条件为:(),,,.2222k k k k k z ππππα+β≠π+α-β≠π+α≠π+β≠π+∈ 知识点三 二倍角公式: 1.22tan sin 22sin cos 1tan ααααα==+ 2222221tan cos 2cos sin 2cos 112sin 1tan ααααααα-=-=-=-=+ 22tan tan 21tan ααα=-2. 常见变形:(1)22cos 1sin 2αα-=,22cos 1cos 2αα+=(2)()2cos sin 2sin 1ααα+=+,()2cos sin 2sin 1ααα-=-;(3)αα2cos 22cos 1=+,αα2sin 22cos 1=-.3.半角公式:2cos 12sin αα-±=,2cos 12cos αα+±=,αααcos 1cos 12tan+-±=,αααααsin cos 1cos 1sin 2tan-=+=.1.【2019年高考全国Ⅱ卷文理】已知a ∈(0,π2),2sin2α=cos2α+1,则sin α=( ) A .15B .55 C .33D .255【解析】本题是对三角函数中二倍角公式、同角三角函数基本关系式的考查.2sin 2cos21αα=+Q ,24sin cos 2cos .0,,cos 02αααααπ⎛⎫∴⋅=∈∴> ⎪⎝⎭Q ,sin 0,α>2sin cos αα∴=,又22sin cos 1αα+=,2215sin 1,sin 5αα∴==,又sin 0α>,5sin 5α∴=,故选B . 【答案】B2.【2019年高考全国Ⅲ卷文数】函数()2sin sin2f x x x =-在[0,2π]的零点个数为( ) A .2B .3C .4D .5【解析】由()2sin sin 22sin 2sin cos 2sin (1cos )0f x x x x x x x x =-=-=-=,得sin 0x =或cos 1x =,[]0,2πx ∈Q ,0π2πx ∴=、或.()f x ∴在[]0,2π的零点个数是3,故选B .【答案】B3.【2018年高考全国Ⅰ卷文数】已知函数()222cos sin 2f x x x =-+,则( )A .()f x 的最小正周期为π,最大值为3B .()f x 的最小正周期为π,最大值为4C .()f x 的最小正周期为2π,最大值为3D .()f x 的最小正周期为2π,最大值为 4【真题分析】【解析】本题考查的是二倍角公式及余弦型函数的周期及最值问题.根据题意有()135cos 21(1cos 2)2cos 2222f x x x x =+--+=+,所以函数()f x 的最小正周期为2ππ2T ==,且最大值为()max 35422f x =+=,故选B. 【答案】B4.【2018年高考全国Ⅰ卷】若1sin 3α=,则cos2α=( ) A .89 B .79 C .79- D .89-【解析】本题主要考查二倍角公式及求三角函数的值.2217cos 212sin 12()39αα=-=-⨯=.故选B. 【答案】B5.【2018年高考全国Ⅰ卷文数】已知角α的顶点为坐标原点,始边与x 轴的非负半轴重合,终边上有两点()1A a ,,()2B b ,,且2cos 23α=,则a b -=( )A .15 B .55 C .255D .1 【解析】本题主要考查任意角的三角函数和三角恒等变換根据条件,可知,,O A B 三点共线,从而得到2b a =,因为22212cos22cos 12131a ⎛⎫=-=⋅-= ⎪+⎝⎭αα,解得215a =,即55a =,所以525a b a a -=-=. 【答案】B6.【2017年高考全国Ⅰ卷文数】已知4sin cos 3αα-=,则sin 2α=( ) A .79-B .29-C .29D .79【解析】()2sin cos 17sin 22sin cos 19ααααα--===--.所以选A. 【答案】A7.【2019年高考全国Ⅰ卷文数】函数3π()sin(2)3cos 2f x x x =+-的最小值为___________. 【解析】23π()sin(2)3cos cos 23cos 2cos 3cos 12f x x x x x x x =+-=--=--+23172(cos )48x =-++, 1cos 1x -≤≤Q ,∴当cos 1x =时,min ()4f x =-,故函数()f x 的最小值为4-.【答案】4-8.【2019年高考北京卷理数】函数f (x )=sin 22x 的最小正周期是__________.【解析】本题主要考查二倍角的三角函数公式、三角函数的最小正周期公式,函数()2sin 2f x x ==1cos 42x -,周期为π2. 【答案】π29.【2019年高考江苏卷】已知tan 2π3tan 4αα=-⎛⎫+ ⎪⎝⎭,则πsin 24α⎛⎫+ ⎪⎝⎭的值是 . 【解析】由()tan 1tan tan tan 2tan 1πtan 13tan 1tan 4αααααααα-===-++⎛⎫+ ⎪-⎝⎭,得23tan 5tan 20αα--=, 解得tan 2α=,或1tan 3α=-.πππsin 2sin 2cos cos 2sin 444ααα⎛⎫+=+ ⎪⎝⎭()2222222sin cos cos sin sin 2cos 2=22sin cos αααααααα⎛⎫+-=+ ⎪+⎝⎭2222tan 1tan =2tan 1ααα⎛⎫+- ⎪+⎝⎭, 当tan 2α=时,上式22222122==22110⎛⎫⨯+-⨯ ⎪+⎝⎭; 当1tan 3α=-时,上式=22112()1()2233[]=1210()13⨯-+--⨯-+. 综上,π2sin 2.410α⎛⎫+= ⎪⎝⎭ 【答案】21010.【2018年高考全国Ⅰ卷文数】已知5π1tan()45-=α,则tan =α__________. 【解析】本题主要考查三角恒等变换,考查考生的运算求解能力.5πtan tan5πtan 114tan 5π41tan 51tan tan 4ααααα--⎛⎫-=== ⎪+⎝⎭+⋅,解方程得3tan 2=α.故答案为32. 【答案】3211.【2018年高考全国Ⅱ理数】已知sin cos 1αβ+=,cos sin 0αβ+=,则sin()αβ+=__________. 【解析】本题主要考查三角恒等变换.因为sin cos 1+=αβ,cos sin 0+=αβ,所以()()221sin cos 1,-+-=αα所以11sin ,cos 22==αβ, 因此()22111111sin sin cos cos sin cos 1sin 1.224442+=+=⨯-=-+=-+=-αβαβαβαα【答案】12-12.【2017年高考江苏卷】若π1tan(),46-=α则tan =α .【解析】11tan()tan7644tan tan[()]14451tan()tan 1446ααααππ+-+ππ=-+===ππ---.故答案为75. 【答案】7513.【2018年高考全国Ⅰ理数】已知函数()2sin sin2f x x x =+,则()f x 的最小值是_____________.【解析】()()212cos 2cos 24cos 2cos 24cos 1cos 2f x x x x x x x ⎛⎫'=+=+-=+-⎪⎝⎭, 所以当1cos 2x <时函数单调递减,当1cos 2x >时函数单调递增,从而得到函数的递减区间为()5ππ2π,2π33k k k ⎡⎤--∈⎢⎥⎣⎦Z ,函数的递增区间为()ππ2π,2π33k k k ⎡⎤-+∈⎢⎥⎣⎦Z , 所以当π2π,3x k k =-∈Z 时,函数()f x 取得最小值,此时33sin ,sin222x x =-=-, 所以()min 33332222f x ⎛⎫=⨯--=- ⎪ ⎪⎝⎭,故答案是332-.【答案】332-14.【2017年高考全国Ⅱ理数】函数()23sin 3cos 4f x x x =+-(π0,2x ⎡⎤∈⎢⎥⎣⎦)的最大值是 . 【解析】本题主要考查的是三角函数式的化简及三角函数的问题转化为二次函数的问题,二次函数、二次方程与二次不等式统称“三个二次”化简三角函数的解析式的综合考查.()2223131cos 3cos cos 3cos cos 1442f x x x x x x ⎛⎫=-+-=-++=--+ ⎪ ⎪⎝⎭,由自变量的范围:π0,2x ⎡⎤∈⎢⎥⎣⎦可得:[]cos 0,1x ∈,当3cos 2x =时,函数()f x 取得最大值1.【答案】115.【2019年高考浙江卷】设函数()sin ,f x x x =∈R .(1)已知[0,2),θ∈π函数()f x θ+是偶函数,求θ的值; (2)求函数22[()][()]124y f x f x ππ=+++的值域. 【解析】本题主要考查三角函数及其恒等变换等基础知识.(1)因为()sin()f x x θθ+=+是偶函数,所以,对任意实数x 都有sin()sin()x x θθ+=-+, 即sin cos cos sin sin cos cos sin x x x x θθθθ+=-+,故2sin cos 0x θ=,所以cos 0θ=. 又[0,2π)θ∈,因此π2θ=或3π2. (2)2222ππππsin sin 124124y fx f x x x ⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=+++=+++ ⎪ ⎪ ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦ππ1cos 21cos 2133621cos 2sin 222222x x x x ⎛⎫⎛⎫-+-+ ⎪ ⎪⎛⎫⎝⎭⎝⎭=+=-- ⎪ ⎪⎝⎭3π1cos 223x ⎛⎫=-+ ⎪⎝⎭. 因此,函数的值域是33[1,1]22-+. 【答案】(1)π2θ=或3π2;(2)33[1,1]22-+. 16.【2018年高考北京卷文数】已知函数2()sin 3sin cos f x x x x =+.(1)求()f x 的最小正周期; (2)若()f x 在区间[,]3m π-上的最大值为32,求m 的最小值. 【解析】本题主要考查二倍角公式、辅助角公式、正弦函数的性质. (1)1cos 23311π1()sin 2sin 2cos 2sin(2)2222262x f x x x x x -=+=-+=-+, 所以()f x 的最小正周期为2ππ2T ==. (2)由(1)知π1()sin(2)62f x x =-+.因为π[,]3x m ∈-,所以π5ππ2[,2]666x m -∈--.要使得()f x 在π[,]3m -上的最大值为32,即πsin(2)6x -在π[,]3m -上的最大值为1. 所以ππ262m -≥,即π3m ≥.所以m 的最小值为π3.【答案】(1)π;(2)π3.1. sin15°sin105°的值是( ) A .14 B .14-C .34D .34-【解析】本题的考点二倍角的正弦和诱导公式:sin15°sin105°=sin15°cos15°=12sin30°=14,故选A . 【答案】A2.已知sin2α=13,则cos 2(π4α-)=( ) A .34 B .23 C .45 D .56【解析】本题考点二倍角的余弦,三角函数的化简求值.∵sin2α=13,∴cos 2(π4α-)=π11cos 211sin 22232223αα⎛⎫+-+⎪+⎝⎭===.故选B . 【答案】B3.已知sin α=45-,α∈(π,3π2),则tan 2α等于( ) A .-2 B .12 C .12-或2 D .-2或12【解析】∵sin α=45-,α∈(π,3π2),∴cos α=35-,∴tan α=43.∵α∈(π,3π2),∴2α∈(π2,3π4),∴tan 2α<0. tan α=22tan21tan 2αα- =43,即2tan 22α+ 3tan2α-2=0,解得tan2α=-2,或tan2α=12(舍去),故选A .【答案】A【模拟考场】4.设π0,2α⎛⎫∈ ⎪⎝⎭,π0,4β⎛⎫∈ ⎪⎝⎭,且tan α=1sin 2cos 2ββ+,则下列结论中正确的是( ) A .2π4αβ-=B .π24αβ+=C .π4αβ-=D .π4αβ+= 【解析】本题的考点二倍角的余弦,二倍角的正弦..tan α=()222sin cos 1sin 2sin cos 1tan cos 2cos sin cos sin 1tan ββββββββββββ++++===---πtan 4β⎛⎫=+ ⎪⎝⎭ 因为π0,2α⎛⎫∈ ⎪⎝⎭,πππ,442β⎛⎫+∈ ⎪⎝⎭,所以π4αβ-=.故选C . 【答案】C5.已知角αβ,均为锐角,且cos α=35,tan (α−β)=−13,tan β=( ) A .13 B .913 C .139D .3【解析】∵角α,β均为锐角,且cos α=35,∴sin α=21cos α- =45,tan α=43,又tan (α−β)=tan tan 1+tan tan αβαβ-=4tan 341+tan 3ββ-=−13, ∴tan β=3,故选D .【答案】D6.设α为锐角,若π3cos()65α+=,则πsin()12α-=( ) A .210 B .210- C .45 D .45- 【解析】因为α为锐角,所以ππ2π,663α⎛⎫+∈ ⎪⎝⎭,因为π3cos()65α+=,所以π4sin()65α+=,故πππππsin()sin sin cos 126464ααα⎡⎤⎛⎫⎛⎫-=+-=+- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦ππ2432cos sin 6425510α⎛⎫⎛⎫+=-= ⎪ ⎪⎝⎭⎝⎭.故选A.【答案】A7.设函数2()sin sin f x x b x c =++,则()f x 的最小正周期( )A .与b 有关,且与c 有关B .与b 有关,但与c 无关C .与b 无关,且与c 无关D .与b 无关,但与c 有关【解析】本题考查的是二倍角的降幂公式与三角函数的最小正周期,先利用三角恒等变换(降幂公式)化简函数()f x ,再判断b 和c 的取值是否影响函数()f x 的最小正周期.21cos 2cos 21()sin sin sin sin 222-=++=++=-+++x x f x x b x c b x c b x c ,其中当0=b 时,cos 21()22=-++x f x c ,此时周期是π;当0≠b 时,周期为2π,而c 不影响周期.故选B . 【答案】B8.已知34cos sin =-αα,则=α2sin ( ) A .97- B .92- C .92 D .97【解析】本题的考点是二倍角的正弦正逆用,将34cos sin =-αα两边平方()2234cos sin ⎪⎭⎫ ⎝⎛=-αα, 化简后可得916cos sin 2cos sin 22=-+αααα即=α2sin 97-.【答案】A 9.函数()⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛+=6cos 3sin 51ππx x x f 的最大值为( ) A .56B .1C .53D .51【解析】将()⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛+=6cos 3sin 51ππx x x f 化简,利用两角和、差的正余弦公式及辅助角公式,三角函数 最值的性质可以求得函数最大值.由()6sin sin 6cos cos 3sin cos 3cos sin 51ππππx x x x x f ++⎪⎭⎫ ⎝⎛+= x x x x sin 21cos 23cos 103sin 101+++=⎪⎪⎭⎫ ⎝⎛+=+=x x x x cos 23sin 2156cos 533sin 53⎪⎭⎫ ⎝⎛+=3sin 56πx , 因为13sin 1≤⎪⎭⎫ ⎝⎛+≤-πx ,所以函数的最大值为56.【答案】A10.若tan 2tan 5πα=,则3cos()10sin()5παπα-=-( ) A.1 B.2 C.3 D.4【解析】本题考点是两角和与差的正弦(余弦)公式,同角间的三角函数关系,三角函数的恒等变换. 三角恒等变换的主要是求值,在求值时只要根据求解目标的需要,结合已知条件选用合适的公式计算.本例应用两角和与差的正弦(余弦)公式化简所求式子,利用同角关系式求出使已知条件可代入的值,然后再化简,求解过程中注意公式的顺用和逆用.3cos()10sin()5παπα-=-33cos cos sin sin 1010sin cos cos sin 55ππααππαα+-33cos tan sin 1010tan cos sin 55ππαππα+=-33cos 2tan sin 105102tan cos sin 555ππππππ+=- 33cos cos 2sin sin 510510sin cos 55ππππππ+==333cos cos sin sin sin sin 510510510sin cos 55ππππππππ++ =333cos cos sin 5101010sin cos 55ππππππ⎛⎫-+ ⎪⎝⎭=13cos sin 1025sin cos 55ππππ+1cos cos 10210sin cos 55ππππ+=1cos cos 1021014sin 210πππ+= 3cos103cos 10ππ==.【答案】C11.已知向量a r =(sin θ,2-),b r =(1,cos θ),且a r ⊥b r ,则sin 2θ+cos 2θ的值为( )A .1B .2C .12D .3 【解析】本题考点是三角函数的恒等变换及化简求值,数量积判断两个平面向量的垂直关系.由题意可得a r ·b r =sin θ-2cos θ=0,即tan θ=2.∴sin 2θ+cos 2θ=2222sin cos +cos cos +sin θθθθθ=22tan +11+tan θθ=1,故选A . 【答案】A12.已知cos θ=-725,θ∈(-π,0),则sin 2θ+cos 2θ=( )A .125B .15±C .15D .15- 【解析】∵cos θ=-725,θ∈(-π,0), ∴cos 22θ-sin 22θ=(cos 2θ+sin 2θ)(cos 2θ-sin 2θ)<0,2θ∈(π2-,0), ∴sin 2θ+cos 2θ<0,cos 2θ-sin 2θ>0,∵(sin 2θ+cos 2θ)2=1+sin θ=1-491625-=125,∴sin 2θ+cos 2θ=15-.故选D .【答案】D13. =+οο75sin 15sin .【解析】本题考查的是三角恒等变换及特殊角的三角函数值的求解. 法一、6sin15sin 75sin15cos152sin(1545)2+=+=+=o o o o o o . 法二、6sin15sin 75sin(4530)sin(4530)2sin 45cos302+=-++==o o o o o o o o . 法三、62626sin15sin 75442-++=+=o o . 【答案】62. 14.在锐角三角形ABC 中,若sin 2sin sin A B C =,则tan tan tan A B C 的最小值是 .【解析】本题考查的是三角恒等变换及正切的性质,本题要求会利用三角形中隐含的边角关系作为消元依据,同时要记住斜三角形ABC 中恒有tan tan tan tan tan tan A B C A B C =++,sin sin(B C)2sin sin tan tan 2tan tan A B C B C B C =+=⇒+=,因此tan tan tan tan tan tan tan 2tan tan 22tan tan tan tan tan tan 8A B C A B C A B C A B C A B C =++=+≥⇒≥,即最小值为8.【答案】8.15.【2018江苏卷16】已知,αβ为锐角,4tan 3α=,5cos()5αβ+=-. (1)求cos2α的值;(2)求tan()αβ-的值.【解析】(1)因为,,所以. 4tan 3α=sin tan cos ααα=4sin cos 3αα=因为,所以, 因此,. (2)因为为锐角,所以.又因为,所以, 因此.因为,所以, 因此,. 16.【2016高考山东理数】在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,已知tan tan 2(tan tan ).cos cos A B A B B A +=+ (Ⅰ)证明:a +b =2c ;(Ⅱ)求cos C 的最小值.【解析】试题分析:(Ⅰ)根据两角和的正弦公式、正切公式、正弦定理即可证明;(Ⅱ)根据余弦定理公式表示出cosC ,由基本不等式求cos C 的最小值.试题解析:()I 由题意知sin sin sin sin 2cos cos cos cos cos cos A B A B A B A B A B ⎛⎫+=+ ⎪⎝⎭, 化简得()2sin cos sin cos sin sin A B B A A B +=+,即()2sin sin sin A B A B +=+.因为A B C π++=,所以()()sin sin sin A B C C π+=-=.从而sin sin =2sin A B C +.由正弦定理得2a b c +=.()∏由()I 知2a b c +=, 所以 2222222cos 22a b a b a b c C ab ab +⎛⎫+- ⎪+-⎝⎭==311842b a a b ⎛⎫=+-≥ ⎪⎝⎭, 当且仅当a b =时,等号成立.故 cos C 的最小值为12. 17.已知函数()22sin sin 6f x x x π⎛⎫=-- ⎪⎝⎭,R x ∈ 22sin cos 1αα+=29cos 25α=27cos22cos 125αα=-=-,αβ(0,π)αβ+∈5cos()5αβ+=-225sin()1cos ()5αβαβ+=-+=tan()2αβ+=-4tan 3α=22tan 24tan 21tan 7ααα==--tan 2tan()2tan()tan[2()]1+tan 2tan()11ααβαβααβααβ-+-=-+==-+(I)求()f x 最小正周期;(II)求()f x 在区间[,]34p p -上的最大值和最小值. 【解析】本题考点两角和与差的正余弦公式、二倍角的正余弦公式、三角函数的图象与性质.综合运用三角 知识,从正确求函数解析式出发,考查最小正周期的求法与函数单调性的应用,从而求出函数的最大值与最小值,体现数学思想与方法的应用.(I) 由已知,有1cos 21cos211313()cos2sin 2cos2222222x x f x x x x π⎛⎫-- ⎪⎛⎫-⎝⎭=-=+- ⎪⎝⎭ 311sin 2cos2sin 24426x x x π⎛⎫--=- ⎪⎝⎭. 所以()f x 的最小正周期22T ππ==. (II)因为()f x 在区间[,]36p p --上是减函数,在区间[,]64p p -上是增函数, 113(),(),()346244f f f πππ-=--=-=,所以()f x 在区间[,]34p p -上的最大值为34,最小值为12-. 【答案】(I)π; (II) max 3()4f x =,min 1()2f x =-.。
高中数学:3.2 简单的三角恒等变换(2)教案
3.2 简单的三角恒等变换(2)一、教学目标:知识与技能:1、加深对和差角、二倍角公式的记忆,推导降幂公式及其它变形形式。
2、理解三角恒等变换的基本思想,培养的定向思考和逆向思维能力,理解化归思想。
3、能独立分析和解决一些三角问题。
过程与方法:理解并掌握二倍角的正弦、余弦、正切公式,并会利用公式进行简单的恒等变形,体会三角恒等变换在数学中的应用.情感、态度与价值观通过例题的解答,引导学生对变换对象目标进行对比、分析,促使学生形成对解题过程中如何选择公式,如何根据问题的条件进行公式变形,以及变换过程中体现的换元、逆向使用公式等数学思想方法的认识,从而加深理解变换思想,提高学生的推理能力. 二.重点难点重点:三角恒等变换的模式难点:降次、化为一个角的三角函数三、教材与学情分析本节把三角恒等变换的应用放在三角变换与三角函数间的内在联系上,从而使三角函数性质的研究得到延伸.三角恒等变换不同于代数变换,后者往往着眼于式子结构形式的变换,变换内容比较单一.而对于三角变换,不仅要考虑三角函数是结构方面的差异,还要考虑三角函数式所包含的角,以及这些角的三角函数种类方面的差异,它是一种立体的综合性变换.从函数式结构、函数种类、角与角之间的联系等方面找一个切入点,并以此为依据选择可以联系它们的适当公式进行转化变形,是三角恒等变换的重要特点. 四、教学方法问题引导,主动探究,启发式教学.五、教学过程(一)导入新课前面已经学过如何把形如y=asinx+bcosx的函数转化为形如y=Asin(ωx+φ)的函数,本节主要研究函数y=asinx+bcosx的周期、最值等性质.三角函数和代数、几何知识联系密切,它是研究其他各类知识的重要工具.高考题中与三角函数有关的问题,大都以恒等变形为研究手段.三角变换是运算、化简、求值、证明过程中不可缺少的解题技巧,要学会创设条件灵活运用三角公式,掌握运算,化简的方法和技能.(二)新知探究、提出问题①三角函数y=sinx ,y=cosx 的周期,最大值和最小值是多少?②函数y=asinx+bcosx 的变形与应用是怎样的?③三角变换在几何问题中有什么应用?活动:教师引导学生对前面已学习过的三角函数的图象与性质进行复习与回顾,我们知道正弦函数,余弦函数的图象都具有周期性、对称性、单调性等性质.而且正弦函数,余弦函数的周期都是2kπ(k ∈Z 且k≠0),最小正周期都是2π.三角函数的定义与变化时,会对其周期性产生一定的影响,例如,函数y=sinx 的周期是2kπ(k ∈Z 且k≠0),且最小正周期是2π,函数y=sin2x 的周期是kπ(k ∈Z 且k≠0),且最小正周期是π.正弦函数,余弦函数的最大值是1,最小值是-1,所以这两个函数的值域都是[-1,1].函数y=asinx+bcosx=22b a +(2222sin b a b x b a a+++cosx ), ∵(sin ,cos 1)()(2222222222=+=+=+++b a b b a a ba b b a aϕ从而可令φ, 则有asinx+bcosx=22b a +(sinxcosφ+cosxsinφ)=22b a +sin (x+φ).因此,我们有如下结论:asinx+bcosx=22b a +sin (x+φ),其中tanφ=ab .在以后的学习中可以用此结论进行求几何中的最值问题或者角度问题.我们知道角的概念起源于几何图形,从而使得三角函数与平面几何有着密切的内在联系.几何中的角度、长度、面积等几何问题,常需借助三角函数的变换来解决,通过三角变换来解决几何中的有关问题,是一种重要的数学方法.讨论结果:①y=sinx ,y=cosx 的周期是2kπ(k ∈Z 且k≠0),最小正周期都是2π;最大值都是1,最小值都是-1.②—③(略)见活动.(三)应用示例例1 求函数y=sin 4x+23sinxcosx-cos 4x 的最小正周期和最小值;并写出该函数在[0,π]上的单调递增区间.活动:教师引导学生利用公式解题,本题主要考查二倍角公式以及三角函数的单调性和周期性等基础知识.先用二倍角公式把函数化成最简形式,然后再解决与此相关的问题.解:y=sin 4x+23sinxcosx-cos 4x=(sin 2x+cos 2x)(sin 2x-cos 2x)+3sin2x=3sin2x-cos2x=2sin (2x-6π).故该函数的最小正周期是π;最小值是-2;在[0,π]上单调增区间是[0, 3π],[65π,π]. 点评:本题主要考查二倍角公式以及三角函数的单调性和周期性等基础知识. 变式训练1.已知函数f(x)=cos 4x-2sinxcosx-sin 4x,(1)求f(x)的最小正周期;(2)若x ∈[0,2π],求f(x)的最大、最小值.解:f(x)=cos 4x-2sinxcosx-sin 4x=(cos 2x+sin 2x)(cos 2x-sin 2x)-sin2x=cos2x-sin2x=2cos(2x+4π), 所以,f(x)的最小正周期T=22π=π. (2)因为x ∈[0,2π],所以2x+4π∈[4π,45π]. 当2x+4π=4π时,cos(2x+4π)取得最大值22, 当2x+4π=π时,cos(2x+4π)取得最小值-1.所以,在[0,2π]上的最大值为1,最小值为-2.例2. 已知函数f(x)=sin(ωx+φ)(ω>0,0≤φ≤π)是R 上的偶函数,其图象关于点M(43π,0)对称,且在区间[0,2π]上是单调函数,求φ和ω的值.活动:提醒学生在解此题时,对f(x)是偶函数这一条件的运用不在问题上,而在对“f(x)的图象关于M(43π,0)对称”这一条件的使用上,多数考生都存在一定问题.一般地:定义在R 上的函数y=f(x)对定义域内任意x 满足条件:f(x+a)=2b-f(a-x),则y=f(x)的图象关于点(a,b)对称,反之亦然.教师在这类问题的教学时要给予充分的提示与总结,多做些这种类型的变式训练. 解:由f(x)是偶函数,得f(-x)=f(x),即sin(-ωx+φ)=sin(ωx+φ),所以-cosφsinωx=cosφsinωx对任意x 都成立.又ω>0,所以,得cosφ=0.依题设0≤φ≤π,所以,解得φ=2π. 由f(x)的图象关于点M 对称,得f(43π-x)=-f(43π+x).取x=0,得f(43π)=-f(43π),所以f(43π)=0. ∵f(43π)=sin(43ωπ+2π)=cos 43ωπ,∴cos 43ωπ=0.又ω>0,得43ωπ=2π+kπ,k=0,1,2,…. ∴ω=32(2k+1),k=0,1,2,….当k=0时,ω=32,f(x)=sin(32x+2π)在[0,2π]上是减函数; 当k=1时,ω=2,f(x)=sin(2x+2π)在[0,2π]上是减函数; 当k≥2时,ω≥310,f(x)=sin(ωx+2π)在[0,2π]上不是单调函数.所以,综合得ω=32或ω=2. 点评:利用函数思想进行解题,结合三角函数的图象与性质,对函数进行变换然后进而解决此题.例3. 如图1,已知OPQ 是半径为1,圆心角为3π的扇形,C 是扇形弧上的动点,ABCD 是扇形的内接矩形.记∠COP=α,求当角α取何值时,矩形ABCD 的面积最大?并求出这个最大面积. 活动:要求当角α取何值时,矩形ABCD 的面积S 最大,先找出S 与α之间的函数关系,再求函数的最值.找S 与α之间的函数关系可以让学生自己解决,得到:S=AB·BC=(cosα33-sinα)sinα=sinαcosα-33-sin 2α. 求这种y=asin 2x+bsinxcosx+ccos 2x 函数的最值,应先降幂,再利用公式化成Asin(ωx+φ)型的三角函数求最值.教师引导学生思考:要求当角α取何值时,矩形ABCD 的面积S 最大,可分两步进行:图1(1)找出S 与α之间的函数关系;(2)由得出的函数关系,求S 的最大值.解:在Rt △OBC 中,BC=cosα,BC=sinα,在Rt △OAD 中,OADA =tan60°=3, 所以OA=33DA=33BC=33sinα.所以AB=OB-OA=c osα33-sinα.设矩形ABCD 的面积为S,则S=AB·BC=(cosα33-sinα)sinα=sinαcosα33-sin 2α =21sin2α+63cos2α-63=31(23sin2α+21cos2α)-63=31sin(2α+6π)-63. 由于0<α<3π,所以当2α+6π=2π,即α=6π时,S 最大=31-63=63. 因此,当α=6π时,矩形ABCD 的面积最大,最大面积为63. 点评:可以看到,通过三角变换,我们把形如y=asinx+bcosx 的函数转化为形如y=Asin(ωx+φ)的函数,从而使问题得到简化.这个过程中蕴涵了化归思想.此题可引申即可以去掉“记∠COP=α”,结论改成“求矩形ABCD 的最大面积”,这时,对自变量可多一种选择,如设AD=x,S=x(x x 3312--),尽管对所得函数还暂时无法求其最大值,但能促进学生对函数模型多样性的理解,并能使学生感受到以角为自变量的优点.变式训练2. 已知如图2的Rt △ABC 中,∠A=90°,a 为斜边,∠B 、∠C 的内角平分线BD 、CE的长分别为m 、n,且a 2=2mn.问:是否能在区间(π,2π]中找到角θ,恰使等式cosθ-sinθ=4(cos2C B +-cos 2C B -)成立?若能,找出这样的角θ;若不能,请说明理由. 解:在Rt △BAD 中,m AB =cos 2B ,在Rt △BAC 中,a AB =sinC,∴mcos 2B =asinC.图2同理,ncos2C =asinB.∴mncos 2B cos 2C =a 2sinBsinC.而a 2=2mn, ∴cos 2B cos 2C =2sinBsinC=8sin 2B ·cos 2B cos 2C sin 2C .∴sin 2B sin 2C =81. 积化和差,得4(cos 2C B +-cos 2C B -)=-1, 若存在θ使等式cosθ-sinθ=4(cos 2C B +-cos 2C B -)成立,则2cos(θ+4π)=-1, ∴cos(θ+4π)=22.而π<θ≤2π,∴45π<θ+4π≤29π.∴这样的θ不存在.点评:对于不确定的开放式问题,通常称之为存在性问题.处理这类问题的一般思路是先假设结论是肯定的,再进行演绎推理,若推证出现矛盾,即可否定假设;若推出合理结果,即假设成立.这个探索结论的过程可概括为假设——推证——定论.例4. 已知tan(α-β)=21,tanβ=71-,且α,β∈(0,π),求2α-β的值. 解:∵2α-β=2(α-β)+β,tan(α-β)=21,∴tan2(α-β)=)(tan 1)tan(22βαβα---=34. 从而tan(2α-β)=tan [2(α-β)+β]=713417134tan )(2tan 1tan )(2tan ⨯+-=--+-ββαββα=121252125=. 又∵tanα=tan [(α-β)+β]=ββαββαtan )tan(1tan )tan(--+-=31<1.且0<α<π,∴0<α<4π.∴0<2α<2π. 又tanβ=71-<0,且β∈(0,π),∴2π<β<π,-π<-β<2π-.∴-π<2α-β<0.∴2α-β=43π-. 点评:本题通过变形转化为已知三角函数值求角的问题,关键在于对角的范围的讨论,注意合理利用不等式的性质,必要时,根据三角函数值,缩小角的范围,从而求出准确角.另外,求角一般都通过三角函数值来实现,但求该角的哪一种函数值,往往有一定的规律,若α∈(0,π),则求cosα;若α∈(2π-,2π),则求sinα等.变式训练3.若α,β为锐角,且3sin 2α+2sin 2β=1,3sin2α-2sin2β=0,求证:α+2β=2π.证明:已知两个等式可化为3sin 2α=cos2β, ①3sinαcosα=sin2β, ② ①÷②,得a a cos sin =ββ2sin 2cos ,即cosαcos2β-sinαsin2β=0, ∴cos(α+2β)=0.∵0<α<2π,0<β<2π,∴0<α+2β<23π.∴α+2β=2π. 六、课堂小结本节课主要研究了通过三角恒等变形,把形如y=asinx+bcosx 的函数转化为形如y=Asin(ωx+φ)的函数,从而能顺利考查函数的若干性质,达到解决问题的目的,充分体现出生活的数学和“活”的数学.七、课后作业1.课时练与测八、教学反思。
板块2 核心考点突破拿高分 专题1 第2讲 三角恒等变换与解三角形(小题)
√A.a=2b
B.b=2a
C.A=2B
D.B=2A
解析 ∵等式右边=sin Acos C+(sin Acos C+cos Asin C)=sin Acos C+sin(A+C) =sin Acos C+sin B, 等式左边=sin B+2sin Bcos C, ∴sin B+2sin Bcos C=sin Acos C+sin B. 由cos C>0,得sin A=2sin B. 根据正弦定理,得a=2b.
√ A.α+β=π2
B.α-β=π4
C.αan
α=1-cossin2β2β=cos2β+csoisn22ββ--s2insi2nβ
βcos
β=cos
β+sin βcos cos β-sin
β-sin β2
β
=cos cos
β+sin β-sin
ββ=11+ -ttaann
例 3 (1)某游轮在 A 处看灯塔 B 在 A 的北偏东 75°的方向上,距 A 12 6 海里处,
灯塔 C 在 A 的北偏西 30°的方向上,距 A 8 3 海里处,游轮由 A 处向正北方向航行
到 D 处时再看灯塔 B 在南偏东 60°的方向上,则此时灯塔 C 与游轮的距离为
A.20 海里
√B.8 3 海里
ββ=tanπ4+β,
又因为 α∈0,π2,β∈0,π2, 所以 α=π4+β,即 α-β=π4.
热点二 利用正弦、余弦定理解三角形
1.正弦定理:在△ABC 中,sina A=sinb B=sinc C=2R(R 为△ABC 的外接圆半径). 变形:a=2Rsin A,b=2Rsin B,c=2Rsin C,sin A=2aR,sin B=2bR,sin C=2cR, a∶b∶c=sin A∶sin B∶sin C等.
2019年高考数学考纲解读与热点难点突破专题08三角恒等变换与解三角形教学案理(含解析)
三角恒等变换与解三角形【2019年高考考纲解读】正弦定理、余弦定理以及解三角形问题是高考的必考内容,主要考查:1.边和角的计算.2.三角形形状的判断.3.面积的计算.4.有关参数的范围问题.由于此内容应用性较强,与实际问题结合起来进行命题将是今后高考的一个关注点,不可轻视. 【重点、难点剖析】1.两角和与差的正弦、余弦、正切公式 (1)sin(α±β)=sin αcos β±cos αsin β. (2)cos(α±β)=cos αcos β∓sin αsin β. (3)tan(α±β)=tan α±tan β1∓tan αtan β.2.二倍角的正弦、余弦、正切公式 (1)sin 2α=2sin αcos α.(2)cos 2α=cos 2α-sin 2α=2cos 2α-1=1-2sin 2α. (3)tan 2α=2tan α1-tan 2α. 3.正弦定理a sin A =b sin B =csin C=2R (2R 为△ABC 外接圆的直径).变形:a =2R sin A ,b =2R sin B ,c =2R sin C . sin A =a 2R ,sin B =b 2R ,sin C =c2R.a ∶b ∶c =sin A ∶sin B ∶sin C .4.余弦定理a 2=b 2+c 2-2bc cos A ,b 2=a 2+c 2-2ac cos B , c 2=a 2+b 2-2ab cos C .推论:cos A =b 2+c 2-a 22bc ,cos B =a 2+c 2-b 22ac ,cos C =a 2+b 2-c 22ab.5.三角形面积公式S △ABC =12bc sin A =12ac sin B =12ab sin C .6.三角恒等变换的基本思路(1)“化异为同”,“切化弦”,“1”的代换是三角恒等变换的常用技巧.如1=cos 2θ+sin 2θ=tan 45°等.“化异为同”是指“化异名为同名”,“化异次为同次”,“化异角为同角”.(2)角的变换是三角变换的核心,如β=(α+β)-α,2α=(α+β)+(α-β),α+β2=⎝⎛⎭⎪⎫α-β2-⎝ ⎛⎭⎪⎫α2-β等.7.解三角形的四种类型及求解方法 (1)已知两角及一边,利用正弦定理求解.(2)已知两边及一边的对角,利用正弦定理或余弦定理求解,解的情况可能不唯一. (3)已知两边及其夹角,利用余弦定理求解. (4)已知三边,利用余弦定理求解. 8.利用解三角形的知识解决实际问题的思路把实际问题中的要素归入到一个或几个相互关联的三角形中,通过解这样的三角形即可求出实际问题的答案.注意要检验解出的结果是否具有实际意义,对结果进行取舍,从而得出正确结果. 【题型示例】题型一、三角变换及应用【例1】(2018·全国Ⅱ)已知sin α+cos β=1,cos α+sin β=0,则sin(α+β)=________. 答案 -12解析 ∵sin α+cos β=1,① cos α+sin β=0,②∴①2+②2得1+2(sin αcos β+cos αsin β)+1=1, ∴sin αcos β+cos αsin β=-12,∴sin(α+β)=-12.【变式探究】(1)已知cos ⎝ ⎛⎭⎪⎫π2+α=3sin ⎝ ⎛⎭⎪⎫α+7π6,则tan ⎝ ⎛⎭⎪⎫π12+α=________.答案 23-4解析 ∵cos ⎝ ⎛⎭⎪⎫π2+α=3sin ⎝ ⎛⎭⎪⎫α+7π6,∴-sin α=-3sin ⎝⎛⎭⎪⎫α+π6,∴sin α=3sin ⎝ ⎛⎭⎪⎫α+π6=3sin αcos π6+3cos αsin π6 =332sin α+32cos α, ∴tan α=32-33,又tan π12=tan ⎝ ⎛⎭⎪⎫π3-π4=tan π3-tanπ41+tan π3tanπ4=3-11+3=2-3, ∴tan ⎝ ⎛⎭⎪⎫π12+α=tan π12+tan α1-tan π12tan α=()2-3+32-331-()2-3×32-33=23-4.(2)若2cos 2θcos ⎝ ⎛⎭⎪⎫π4+θ=3sin 2θ,则sin 2θ等于( )A.13 B .-23 C.23 D .-13 答案 B解析 由题意得2cos 2θcos ⎝ ⎛⎭⎪⎫π4+θ=22θ-sin 2θ22θ-sin θ=2(cos θ+sin θ)=3sin 2θ,将上式两边分别平方,得4+4sin 2θ=3sin 22θ, 即3sin 22θ-4sin 2θ-4=0,解得sin 2θ=-23或sin 2θ=2(舍去),所以sin 2θ=-23.【变式探究】【2017山东,理9】在C ∆AB 中,角A ,B ,C 的对边分别为a ,b ,c .若C ∆AB 为锐角三角形,且满足,则下列等式成立的是(A )2a b = (B )2b a = (C )2A =B (D )2B =A 【答案】A 【解析】 所以,选A.【变式探究】若tan α>0,则( ) A .sin α>0 B .cos α>0 C .sin 2α>0 D .cos 2α>0【举一反三】 (2015·新课标全国Ⅰ,2)sin 20°cos 10°-cos 160°sin 10°=( ) A .-32 B.32 C .-12D.12解析 sin 20°cos 10°-cos 160°sin 10°=sin 20°cos 10°+cos 20°sin 10°=sin 30°=12.答案 D【变式探究】(2015·四川,12)sin 15°+sin 75°的值是________.解析 sin 15°+sin 75°=sin 15°+c os 15°=2sin(15°+45°)=2sin 60°=62. 答案62【举一反三】(2015·江苏,8)已知tan α=-2,tan(α+β)=17,则tan β的值为________.解析 ∵tan α=-2,∴tan(α+β)=tan α+tan β1-tan αtan β=-2+tan β1+2tan β=17,解得tan β=3.答案 3 【感悟提升】(1)此类问题的着眼点是“一角、二名、三结构”,即一看角的差异,二看名称的差异,三看结构形式的差异,然后多角度使用三角公式求解.(2)对于三角函数中角的求值问题,关键在于“变角”,将“目标角”变换成“已知角”.若角所在象限没有确定,则应分情况讨论,要注意三角公式的正用、逆用、变形运用,掌握其结构特征,还要注意拆角、拼角等技巧的运用.(3)求三角函数的化简求值问题的一般思路:“五遇六想一引”,即遇正切,想化弦;遇多元,想消元;遇差异,想联系;遇高次,想降次;遇特角,想求值;想消元,引辅角.【变式探究】(2015·广东,11)设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .若a =3,sin B =12,C =π6,则b =________. 解析 因为sin B =12且B ∈(0,π),所以B =π6或B =5π6.又C =π6,所以B =π6,A =π-B -C =2π3.又a=3,由正弦定理得a sin A =b sin B ,即3sin 2π3=bsinπ6,解得b =1.答案 1题型二、正、余弦定理【例2】(2018·全国Ⅰ)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知b sin C +c sin B =4a sin B sin C ,b 2+c 2-a 2=8,则△ABC 的面积为________.答案233解析 ∵b sin C +c sin B =4a sin B sin C , ∴由正弦定理得sin B sin C +sin C sin B =4sin A sin B sin C . 又sin B sin C >0,∴sin A =12.由余弦定理得cos A =b 2+c 2-a 22bc =82bc =4bc>0,∴cos A =32,bc =4cos A =833, ∴S △ABC =12bc sin A =12×833×12=233.【举一反三】【2017课标II ,理17】ABC ∆的内角A B C 、、所对的边分别为,,a b c ,已知,(1)求cos B ;(2)若6a c +=,ABC ∆的面积为2,求b 。
三角恒等变换(第一课时)导学案 高一上学期数学人教A版(2019)必修第一册
5.5三角恒等变换(第一课时)班级:姓名:小组:【学习目标】1.两角和(差)的正弦、余弦、正切公式2二倍角的正弦、余弦、正切公式【重点难点】【教学重点】正弦、余弦、正切公式【教学难点】会利用公式求角,求值预习案一.知识梳理【知识点一】两角和(差)的正弦、余弦、正切公式名称公式两角和(差)的余弦公式两角和(差)的正弦公式两角和(差)的正切公式【知识点二】二倍角的正弦、余弦、正切公式1.二倍角的正弦、余弦、正切公式α2sin=α2cos= = =α2tan=2.二倍角公式的变形α2sin= α2cos=ααcossin= ,α2sin1±=二、自习检测1.tan 255°等于()A.-2- 3 B.-2+ 3 C.2- 3 D.2+ 3 2.已知sinα=35,cosα=45,则sin 2α=.3.已知cosα=13,则cos 2α= 。
4.︒-︒45sin45cos22=.5.已知tanα=43,则tan 2α=.三、探究未知请同学们写出自己的疑惑,至少两点。
1.___________________________________________________________2.___________________________________________________________探究案【探究点一】两角和(差)公式例1 求下列各式的值()()()1sin72cos42cos72sin422cos20cos70sin20sin701tan1531tan15--+-【探究点二】二倍角的正弦、余弦、正切公式例2 求下列各式的值:(1)sinπ12cos π12; (2)tan 22.5°1-tan 222.5°; (3)cos 4π12-sin 4π12.【探究点三】给值求值例3 已知sin α=—35,α为第四象限角,求sin ,cos ,tan 444πππααα⎛⎫⎛⎫⎛⎫--- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭的值.例4 已知5sin2,,sin4cos4tan41342ππααααα=<<求,,的值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1清远市华侨中学2019届高三 数学 科导学案编写: 冯朝华 审核: 备课1组 时间:专题一:三角恒等变换与解三角形(二)一、高考定位:1.三角函数的化简与求值是高考的命题热点,其中关键是利用两角和与差、二倍角的正弦、余弦、正切公式等进行恒等变换,“角”的变换是三角恒等变换的核心;2.正弦定理与余弦定理以及解三角形问题是高考的必考内容,主要考查边、角、面积的计算及有关的范围问题.二、课前训练1.(2018·全国Ⅱ卷)在△ABC 中,cos C 2=55,BC =1,AC =5,则AB =( ) A .4 2B .30C .29D .2 5解析 因为cos C 2=55,所以cos C =2cos 2C2-1=2×⎝⎛⎭⎫552-1=-35. 于是,在△ABC 中,由余弦定理得 AB 2=AC 2+BC 2-2AC ×BC ×cos C=52+12-2×5×1×⎝⎛⎭⎫-35=32. 所以AB =42.2.(16全国II 卷)ABC △的内角A ,B ,C 的对边分别为a ,b ,c ,若4cos 5A =,5cos 13C =,1a =,则b =______. 解析 ∵4cos 5A =,5cos 13C =,3sin 5A =,12sin 13C =,()63sin sin sin cos cos sin 65B AC A C A C =+=+=,由正弦定理得:sin sin b aB A=,解得2113b =.3.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若cb <cos A ,则△ABC 为( ). A .钝角三角形 B .直角三角形 C .锐角三角形 D .等边三角形解析 依题意得sin Csin B<cos A ,sin C <sin B cos A ,所以sin(A +B )<sin B cos A ,即sin B cos A +cos B sin A -sinB ·cos A <0,所以cos B sin A <0.又sin A >0,于是有cos B <0,B 为钝角,△ABC 是钝角三角形,选A.4.(2016·全国Ⅲ卷)在△ABC 中,B =π4,BC 边上的高等于13BC ,则cos A =( ) A .31010B.1010C .-1010D .-31010解析 设BC 边上的高线为AD ,则3BC AD =,所以AC ,AB . 由余弦定理,知222222cos 2AB AC BC A AB AC +-===⋅,故选C .三、热点题型题型1利用正(余)弦定理进行边角计算【例1】(2018·潍坊一模)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知(a +2c )cos B +b cos A =0. (1)求B ;(2)若b =3,△ABC 的周长为3+23,求△ABC 的面积.解 (1)由已知及正弦定理得 (sin A +2sin C )cos B +sin B cos A =0, (sin A cos B +sin B cos A )+2sin C cos B =0, sin(A +B )+2sin C cos B =0,又sin(A +B )=sin C ,且C ∈(0,π),sin C ≠0,2∴cos B =-12,∵0<B <π,∴B =23π.(2)由余弦定理,得9=a 2+c 2-2ac cos B . ∴a 2+c 2+ac =9,则(a +c )2-ac =9. ∵a +b +c =3+23,∴a +c =23, ∴ac =3,∴S △ABC =12ac sin B =12×3×32=334.【题型小结】1.高考中主要涉及利用正弦、余弦定理求三角形的边长、角、面积等基本计算,或将两个定理与三角恒等变换相结合综合解三角形.2.关于解三角形问题,一般要用到三角形的内角和定理,正、余弦定理及有关三角形的性质,常见的三角变换方法和原则都适用,同时要注意“三统一”,即“统一角、统一函数、统一结构”,这是使问题获得解决的突破口.【训练1】(2017·全国Ⅱ卷)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知sin(A +C )=8sin 2B2.(1)求cos B ;(2)若a +c =6,△ABC 面积为2,求b . 解 (1)由题设及A +B +C =π,得sin B =8sin 2B2,故sin B =4(1-cos B ).上式两边平方,整理得17cos 2B -32cos B +15=0, 解得cos B =1(舍去),cos B =1517.(2)由cos B =1517及B 为三角形一内角,得sin B =817,故S △ABC =12ac sin B =417ac .又S △ABC =2,则ac =172.由余弦定理及a +c =6得b 2=a 2+c 2-2ac cos B =(a +c )2-2ac (1+cos B ) =36-2×172×⎝⎛⎭⎫1+1517=4. 所以b =2.题型2三角形中的取值范围(最值)问题【例2】在【例1】第(2)问中,保留条件b =3,删去“条件△ABC 的周长为3+23”,试求△ABC 面积的最大值.解 由b 2=a 2+c 2-2ac cos B =a 2+c 2-ac , 则9=a 2+c 2-ac ≥2ac -ac =ac ,所以ac ≤9(当且仅当a =c =3时,取等号), 故S △ABC =12ac sin B ≤12×9sin 2π3=934,所以△ABC 面积的最大值为934.【题型小结】三角形中的最值问题就是把边角进行统一,方法有二:一、化角为边,根据需要,利用基本不等式或重要不等式,将余弦定理中的b a +与ab 进行转换;二、化边为角,通过三角形的内角关系,得到所求问题与其中一角的关系,结合辅助角公式化为)sin(ϕω+=x A y 的形式,结合自变量范围,求出函数的取值范围(或最值).【训练2】(2016北京卷)在△ABC 中,a 2+c 2=b 2+2ac . (1)求角B 的大小;(2)求C A cos cos 2+的最大值.解 (1)∵a 2+c 2=b 2+2ac .∴a 2+c 2-b 2=2ac∴22222cos 222==-+=ac ac ac b c a B ,π<<B 0 ∴4π=B(2).∵π=++C B A ,∴43π=+C A∴)43cos(cos 2cos cos 2A A C A -+=+π)sin 22cos 22(cos 2A A A +-+= )4sin()sin 22cos 22π+=+=A A A3∵43π=+C A ,∴)43,0(π∈A ,∴),4(4πππ∈+A ∴)4sin(π+A 的最大值为1从而C A cos cos 2+的最大值为1题型3应用类问题【例3-1】多边形(多三角形)问题(2013全国I 卷)如图,在△ABC 中,∠ABC =90°,AB = 3 ,BC =1,P 为△ABC 内一点,∠BPC =90° (1)若PB =12,求P A ;(2)若∠APB =150°,求tan ∠PBA解 (1)由已知得,∠PBC =o60,∴∠PBA =30o ,在△PBA 中,由余弦定理得2PA=o 1132cos3042+-=74,∴P A(2)设∠PBA =α,由已知得,PB =sin α,在△PBA 中,由正弦定理得,o sin sin(30)αα=-,4sin αα=,∴tan αtan PBA ∠.【例3-2】实际应用类如图,一辆汽车在一条水平的公路上向正西行驶,到A 处时测得公路北侧一山顶D 在西偏北30°的方向上,行驶600m 后到达B 处,测得此山顶在西偏北75°的方向上,仰角为30°,则此山的高度CD =________m . 解析 由题意,在△ABC 中,∠BAC =30°,∠ABC =180°-75°=105°,故∠ACB =45°. 又AB =600.m ,故由正弦定理得600sin 45°=BCsin 30°,解得BC =3002(m).在Rt △BCD 中,CD =BC ·tan .30°=3002×33=1006(m).【题型小结】1.实际问题经抽象概括后,已知量与未知量全部集中在一个三角形中,可用正弦定理或余弦定理求解.2.实际问题经抽象概括后,已知量与未知量涉及两个或两个以上的三角形,这时需作出这些三角形,先解够条件的三角形,然后逐步求解其他三角形,有时需设出未知量,从几个三角形中列出方程(组),解方程(组)得出所要求的解.【训练3】一艘海监船在某海域实施巡航监视,由A 岛向正北方向行驶80海里至M 处,然后沿东偏南30°方向行驶50海里至N 处,再沿南偏东30°方向行驶海里至B 岛,则A ,B 两岛之间距离是______海里.解 连接AN ,则在△AMN 中,由余弦定理得702150802508022=⨯⨯⨯-+=AN141170802250049006400cos =⨯⨯-+=∠MAN∴1433)30cos(cos =∠+︒=∠MAN ANB 7023333070227004900=⨯⨯⨯-+=AB ∴A ,B 两岛之间距离是70海里题型四 与解三角形有关的创新交汇问题【例4】(2018·郑州质检)已知向量m =(2sin ωx ,cos2ωx-4sin 2ωx ),n =(3cos ωx ,1),其中ω>0,x ∈R .若函数f (x )=m ·n 的最小正周期为π. (1)求ω的值;(2)在△ABC 中,若f (B )=-2,BC =3,sin B =3sin A ,求BA →·BC →的值.解 (1)f (x )=m ·n =23sin ωx cos ωx +cos 2ωx -sin 2ωx =3sin2ωx +cos2ωx =2sin ⎝⎛⎭⎫2ωx +π6. 因为f (x )的最小正周期为π,所以T =2π2|ω|=π.又ω>0,所以ω=1. (2)由(1)知f (x )=2sin ⎝⎛⎭⎫2x +π6. 设△ABC 中角A ,B ,C 所对的边分别是a ,b ,c . 因为f (B )=-2,所以2sin ⎝⎛⎭⎫2B +π6=-2, 即sin ⎝⎛⎭⎫2B +π6=-1,由于0<B <π,解得B =2π3. 因为BC =3,即a =3,又sin B =3sin A , 所以b =3a ,故b =3. 由正弦定理,有3sin A =3sin2π3,解得sin A =12. 由于0<A <π3,解得A =π6.所以C =π6,所以c =a =3.所以BA →·BC →=ca cos B =3×3×cos 2π3=-32.探究提高 1.破解平面向量与“三角”相交汇题的常用方法是“化简转化法”,即先活用诱导公式、同角三角函数的基本关系式、倍角公式、辅助角公式等对三角函数进行巧“化简”;然后把以向量共线、向量垂直形式出现的条件转化为“对应坐标乘积之间的关系”;再活用正、余弦定理,对三角形的边、角进行互化.2.这种问题求解的关键是利用向量的知识将条件“脱去向量外衣”,转化为三角函数的相关知识进行求解. 【训练4】已知函数f (x )=sin 2x -cos 2x +23sin x cos x . (1)求f (x )的最小正周期;(2)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若f (A )=2,c =5,cos B =17,求△ABC 中线AD 的长.解 (1)f (x )=-cos2x +3sin2x =2sin ⎝⎛⎭⎫2x -π6. ∴T =2π2=π.∴函数f (x )的最小正周期为π.(2)由(1)知f (x )=2sin ⎝⎛⎭⎫2x -π6, ∵在△ABC 中f (A )=2,∴sin ⎝⎛⎭⎫2A -π6=1, ∴2A -π6=π2,∴A =π3.又cos B =17,∴sin B =437,∴sin C =sin(A +B )=32×17+12×437=5314, 在△ABC 中,由正弦定理c sin C =a sin A ,得55314=a32,∴a =7,∴BD =72,在△ABD 中,由余弦定理得,AD 2=AB 2+BD 2-2AB ·BD cos B =52+⎝⎛⎭⎫722-2×5×72×17=1294,∴AD =1292.【课后训练】一、选择题1.已知锐角△ABC 的内角A 、B 、C 的对边分别为a 、b 、c ,23cos 2A +cos2A =0,a =7,c =6,则b =( ) A .10 B .9 C .8 D .5 解析 化简23cos 2A +cos 2A =0,得23cos 2A +2cos 2A -1=0,又角A 为锐角, 解得cos A =15,由a 2=b 2+c 2-2bc cos A ,得b =5.2.在△ABC 中,内角A ,B ,C 所对的边分别是a ,b ,c .若c 2=(a -b )2+6,C =π3,则△ABC 的面积是( )A .3B .932C .332D .3 3解析 c 2=(a -b )2+6,即c 2=a 2+b 2-2ab +6①. ∵C =π3,由余弦定理得c 2=a 2+b 2-ab ②,由①和②得5ab =6,∴S △ABC =12ab sin C =12×6×32=332,故选C.二、填空题3.在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,已知△ABC 的面积为315,b -c =2,cos A =-14,则a 的值为________.解析 ∵cos A =-14,0<A <π,∴sin A =154,S △ABC =12bc sin A =12bc ×154=315,∴bc =24,又b -c =2,∴b 2-2bc +c 2=4,b 2+c 2=52, 由余弦定理得,a 2=b 2+c 2-2bc cos A =52-2×24×⎝⎛⎭⎫-14=64,∴a =8.4.若△ABC 的内角满足sin A +2sin B =2sin C ,则cos C的最小值是________.解析 ∵sin A +2sin B =2sin C .由正弦定理可得a +2b =2c ,即c =a +2b2,cos C =a 2+b 2-c 22ab =a 2+b 2-⎝ ⎛⎭⎪⎫a +2b 222ab=3a 2+2b 2-22ab 8ab ≥26ab -22ab 8ab =6-24,当且仅当3a 2=2b 2即a b =23时等号成立.∴cos C 的最小值为6-24.答案6-24三、解答题5.在△ABC 中,角A ,B ,C 对应的边分别是a ,b ,c .已知cos2A -3cos(B +C )=1. (1)求角A 的大小;(2)若△ABC 的面积S =53,b =5,求sin B sin C 的值. 解 (1)由cos 2A -3cos(B +C )=1,得2cos 2A +3cos A -2=0,即(2cos A -1)(cos A +2)=0,解得cos A =12或cos A=-2(舍去),因为0<A <π,所以A =π3.(2)由S =12bc sin A =12bc ·32=34bc =53,得bc =20,又b =5,知c =4,由余弦定理得a 2=b 2+c 2-2bc cos A =25+16-20=21,故a =21.又由正弦定理得sin B sin C =b a sin A ·c a sin A =bc a 2sin 2A =2021×34=57.6.设f (x )=sin x cos x -cos 2⎝⎛⎭⎫x +π4. (1)求f (x )的单调区间;(2)在锐角△ABC 中,角A ,B ,C 的对边分别为a ,b ,c .若f ⎝⎛⎫A 2=0,a =1,求△ABC 面积的最大值. 解 (1)由题意知f (x )=sin 2x2-1+cos ⎝⎛⎭⎫2x +π22=sin 2x 2-1-sin 2x 2=sin 2x -12. 由-π2+2k π≤2x ≤π2+2k π,k ∈Z,可得-π4+k π≤x ≤π4+k π,k ∈Z ;由π2+2k π≤2x ≤3π2+2k π,k ∈Z , 可得π4+k π≤x ≤3π4+k π,k ∈Z .所以f (x )的单调递增区间是⎣⎡⎦⎤-π4+k π,π4+k π(k ∈Z ); 单调递减区间是⎣⎡⎦⎤π4+k π,3π4+k π(k ∈Z ). (2)由f ⎝⎛⎭⎫A 2=sin A -12=0,得sin A =12, 由题意知A 为锐角,所以cos A =32. 由余弦定理a 2=b 2+c 2-2bc cos A , 可得1+3bc =b 2+c 2≥2bc ,即bc ≤2+3,当且仅当b =c 时等号成立.因此12bc sin A ≤2+34.所以△ABC 面积的最大值为2+34.。