化工原理干燥PPT课件

合集下载

化工原理 PPT 第5章 干燥

化工原理 PPT  第5章 干燥
式中:
k H rt w

( H s ,t w H )

:空气向湿棉布的对流传热系数,W/(m2 •℃);
k H :以湿度差为推动力的传质系数,kg/(m2 •s•H);
rtw
H
:湿球温度下水的汽化潜热,kJ/kg水;
H s ,tw:湿球温度tw下空气的饱和湿度,kg水/kg绝干气;
:空气的湿度, kg水/kg绝干气。
30
(2)湿空气状态点的确定
31
(3)简单分析:
a.当H、p一定时, 。 t
因此,提高湿空气温度 t,不仅提高了湿 空气的焓值,使其作为载热体外,也降低了相
对湿度使其作为载湿体。
pv b.因pv py、ps f t 及 100% pS 故t一定时,p ,故加压对干燥不利。
H f ( p,pV )
当p为一定值时,
H f ( pV )
当空气达到饱和时,相应的湿度称为饱和湿度 Hs,此时湿空气中的水汽分压等于该空气温度下纯 水的饱和蒸气压 ps。
0.622pS HS p-pS
即:
H S f (t,p)
10
2.相对湿度百分数(简称相对湿度) 定义:在一定总压下,湿空气中水汽分压pV与同
20
影响湿球温度tw的三方面因素: ①物系性质:与α 、 kH有关的物性; ②空气状态:t、H; ③流动条件: α/kH 。 实验表明,α与 kH都与空气速度的 0.8次幂成正比,故α与kH之比值与流速 无关,只与物性有关。当物系已确定, 则物系性质就不再改变,此时,湿球温 度只与气相状态有关,即:
tas :是由热量衡算与物料衡算导出的,属于静平衡。
• tw与tas 数值上的差异取决于α/kH与cH两者之间的差别。 (1)空气—水蒸气体系, c H ,r0 rt 得 t w t as w kH (2)空气—甲苯体系, k 1.8c H ,tw tas

化工原理下册课件第5章 干燥(湿物料的性质)

化工原理下册课件第5章 干燥(湿物料的性质)
问题:临界含水量是结合水和非结合水的分界点吗?
影响降速阶段的因素: • 干燥速率主要决定于物料本身的结构、形状和大小
(水分在物料内部的迁移速率)。而与空气的性质 关系很小。
三、临界含水量
临界含水量=f(物料的性质、厚度、干燥速率、干燥器 的种类、干燥操作条件)
无孔吸水性材料XC>多孔材料XC 厚度增加 XC 分散越细, 干燥面积 XC 恒速段干燥速率 XC
定时测定物料的质量变化,并记录每一时间间隔D内 的物料的质量变化DW及表面温度q,直到物料的质量
恒定为止。此时物料所含的水分即为该条件下的平衡 水分。
干燥曲线和干燥速率曲线
AB和A’B的区别:AB段是在物料初始温度小于空 气的湿球温度,而A’B段则是物料的初始温度大于 空气的湿球温度
• AB(或A’B)段: AB为湿物料不稳定的加热过程。 该过程的时间很短, 将其作为恒速干燥的一部分。 X下降,θ增加至空气的湿球温度。
生产中为保证产品质量,降低XC 措施:减小物料的厚度
非结合水分:包括机械地附着于固体表面的水分,如 物料表面的吸附水分、较大孔隙中的水分等。
特点:物料中非结合水分与物料的结合力弱,其蒸汽 压与同温度下纯水的饱和蒸汽压相同,干燥过程中除 去非结合水分较容易。
ቤተ መጻሕፍቲ ባይዱ强调:
物料的结合水分和非结合水分的划分只取决于物料
本身的性质,而与干燥介质的状态无关;
平衡水分与自由水分则还取决于干燥介质的状态。
二、结合水分(bound water)与非结合水分(unbound water)
划分依据:根据物料与水分结合力的状况 结合水分: 包括物料细胞壁内的水分、物料内毛细 管中的水分、及以结晶水的形态存在于固体物料之中 的水分等。

大学化学《化工原理-干燥DRY3》课件

大学化学《化工原理-干燥DRY3》课件

p-X图
T ?
p
0
X
四种水
平衡水 Ps p
结合水 0
T
自由水
非结合水 X
四种水的定义
• 平衡水: 用此种空气无法再去除的水; • 自由水: • 非结合水: 机械地附着在物料表面, 产生
的蒸汽压与纯水无异; • 结合水: 与物料之间有物理化学作用, 因
而产生的蒸汽压低于同温度下纯水的饱 和蒸汽压.
作业
• 1. 如果让你选择的话, 你会选择哪种作为 干燥介质?
• 2. 想一想, 为什么要混起来呢?
第四章 干燥(DRYING)
第一节 概述 第二节 湿空气的性质 第三节 干燥的平衡关系 第四节 干燥过程的动力学 第五节 干燥设备 第六节 干燥过程和设备的设计计算 讨论课 小结
X-图
• 是什么?
X*
0
X-图
• 为什么?
– 如何从p-X图得到 X-图? – 有何区别?(T) – 有何好处?(不同温度下曲线变化幅度很小,
便于估算)
X-图


X*



何Hale Waihona Puke 表示0?
第三节 干燥的平衡关系
1. 气体的组成 2. 固体的组成 3. 平衡关系图 4. 几个定义和为什么
– 平衡水, 自由水等 – 为什么用X-相对湿度图?
第三节 干燥的平衡关系
1. 气体的组成 2. 固体的组成 3. 平衡关系图 4. 几个定义和为什么
– 平衡水, 自由水等 – 为什么用X-相对湿度图?
水在气体和固体中组成之间的 关系
1. 气体的组成: pw,H…. 2. 固体的组成:
X(干基含水量, kg水/kg绝干物料) w(湿基含水量, kg水/kg湿物料)

化工原理干燥精品PPT课件

化工原理干燥精品PPT课件

(2)湿度 ---又称湿含量,单位kg水/kg干空气
水汽的质量 H 绝干空气的质量
水汽的摩尔数 绝干空气的摩尔数
Mv Ma
pw P pw
18 29
思考1:H属于前面介绍的哪一类浓度?
质量比
思考2:取1kg干空气作为湿度定义基准又何好处?
干燥过程中干空气的质量不变
《化工原理》电子教案/第十三章
5/101
t
空气
t, H
t, H
《化工原理》电子教案/第十三章
10/101
一.湿空气的性质
6、湿球温度 tw
----用湿球温度计测出的空气温度
❖大量、快速流动的空气(空气的 流速应大于5m/s)与少量水接触;
湿球温度计
❖传质----因存在传质推动力,湿纱布
中的水汽化进入空气,此过程需要吸 热(水提供),因此水温下降;
V T P0 V0标态 T0 P
V T 1.013105
n 22.4 273
P 7/101
《化工原理》电子教案/第十三章
一.湿空气的性质
3.湿比热容cH ----kJ/(kg干气K) 此时,湿空气的质量=(1+H)kg
比热容的一般定义: kJ/(kgK)
cH ca cw H 1.01 1.88H

ca干空气的比热,kJ/(kg·K) 1.01kJ/(kg·K) cw水气的比热,kJ/(kg·K) 1.88kJ/(kg·K)
《化工原理》电子教案/第十三章
8/101
一.湿空气的性质
4.湿空气的焓I ----kJ/ kg干气
此时,湿空气的质量=(1+H)kg
I Ia IwH
ca cw H t r0 H

干燥基础知识ppt课件-PPT课件

干燥基础知识ppt课件-PPT课件
《化工原理》 Principles of Chemical Engineering
第十二章 干 燥
Chapter 12 Drying
概述(Introduction)
在化学工业生产中所得到的固态产品或半成品往往含有过 多的水分或有机溶剂 (湿份),要制得合格的产品需要除去 固体物料中多余的湿份。
除湿方法:机械除湿——如离心分离、沉降、过滤。 干燥 ——利用热能使湿物料中的湿份汽化。除 湿程度高,但能耗大。 惯用做法:先采用机械方法把固体所含的绝大部分湿份除 去,然后再通过加热把机械方法无法脱除的湿份干燥掉, 以降低除湿的成本。
3.比热cH (Humid heat)或比热容KJ/(kg· ℃) 比热:1kg 绝干空气及相应水汽温度升高1℃所需要的热量
c c 1 c H H g v
式中:cg — 绝干空气的比热,KJ/(kg· ℃); cv — 水汽的比热,KJ/(kg· ℃) 。
对于空气-水系统: cg=1.01 kJ/(kg· ℃),cv=1.88 kJ/(kg· ℃)
干燥过程基本问题
除水分量 空气消耗量 干燥产品量 热量消耗 干燥时间 能量衡算 涉及干燥速率和水在 气固相的平衡关系 物料衡算 涉及湿空气的性质
解决这些问题需要掌握的基本知识有: (1) 湿分在气固两相间的传递规律; (2) 湿气体的性质及在干燥过程中的状态变化; (3) 物料的含水类型及在干燥过程中的一般特征; (4) 干燥过程中物料衡算关系、热量衡算关系和速率关系。 本章主要介绍运用上述基本知识解决工程中物料干燥的基 本问题,介绍的范围主要针对连续稳态的干燥过程。
由于温差的存在,气体以对流方 式向固体物料传热,使湿份汽化; 在分压差的作用下,湿份由物料 表面向气流主体扩散,并被气流 带走。 干燥是热、质同时传递的过程 干燥介质:用来传递热量(载热 体)和湿份(载湿体)的介质。

化工原理下册第十一章干燥课件1PPT

化工原理下册第十一章干燥课件1PPT

Q hA(t tW ) wrw
w k H (H w H ) A
稳态时, 空气传入的显热等于水的汽化潜热。
补充液,温度 tw
A( t t ) k r A( H H )
W
H
w
w
k H rW tW t ( HW H ) h
注意:湿球温度不是状态函数 。
空气
湿度 H
PS H 0.622 P S 总 P
H=f(,t)
(3) 湿比体积H (m3/kg干空气)
在p=101.3 kN/m2时
H H
22.4 273 t 22.4 273 t H 29 273 18 273 273 t (0.773 1.244H ) 273
对全塔作热量衡算得:
cH 1.01 1.88H
空气
tas、Has
as
c ( t t ) ( H H )r
H as as
r t t (H H ) c
as as as H
t、H
空气 补充水
② 绝热饱和温度是状态函数
t as f (t , H )
③ 绝热饱和过程可当作等焓处理
绝热饱和塔示意图
即空气的入口焓近似等于空气的出口焓。
(7) 露点td 保持空气的H不变,降低温度,使其达到饱和状态时的温度。
Pd H 0.622 P pd
pd :为露点 td 时饱和蒸汽压,既该空气在初始状态下的水蒸
气分压pv。
HP pd 0.622 H
11.2.3 湿空气的湿球温度 ① 空气的干球温度与湿球温度 干球温度:普通温度计测出的空气温度; 湿球温度:湿球温度计 。 气流吹过——湿份气化——表面降温——热量传递

化工原理-干燥ppt课件

化工原理-干燥ppt课件

V nRT P
V T P0 V0 P T0
V T P0 n22.4 273 P
干燥
湿空气的性质*
3.比热容(湿比热)cH
比热容是指常压下,含1kg绝干气的湿空气之温度升高(或降低)1℃所吸 收(或放出)的热量,cH。
cHcgcvH
1.011.88H
[kJ/(kg干气℃)]
cHf H
cg干空气的比热,kJ/(kg·℃) 1.01kJ/(kg·℃)
将湿球温度计置于温度为t、湿度为H的流
动不饱和空气中,湿纱布中的水分汽化,并向 空气主流中扩散;同时汽化吸热使湿纱布中的 水温下降,与空气间出现温差,引起空气向水 分传热。
湿球温度tw:当空气传给水分的显热恰好等 于水分汽化所需的潜热时,空气与湿纱布间的 热质传递达到平衡,湿球温度计上的温度维持 恒定。此时湿球温度计所测得的温度称为湿空 气的湿球温度。
一干燥器的主要型式677喷雾干燥器一干燥器的主要型式喷雾器结构68一干燥器的主要型式8滚筒干燥器双滚筒干燥器69一干燥器的主要型式真空耙式干燥器冷冻干燥器7055干燥器二干燥器的选型主要干燥器的选择表湿物料的状态物料的实例处理量适用的干燥器液体或泥浆状洗涤剂树脂溶液盐溶液牛奶等大批量喷雾干煤器小批量滚筒干燥器泥糊状染料颜料硅胶淀粉粘土碳酸钙等的滤饼或沉大批量气流干燥器带式干燥器小批量真空转筒干燥器粉粒状00120m聚氯乙烯等合成树脂合成肥料磷肥活性炭石膏钛铁矿谷物大批量气流干燥器转筒干燥器流化床干燥器小批量转筒干燥器厢式干燥器块状20100m煤焦碳矿石等大批量转筒干燥器小批量厢式干燥器片状烟叶薯片大批量带式干燥器转筒干燥器小批量穿流厢式干燥器小批量高频干燥器短纤维酯酸纤维硝酸纤维大批量带式干燥器小批量穿流厢式干燥器一定大小的物料或制品陶瓷器胶合板皮革等大批量隧道干燥器71对流传导辐射气流喷雾流化床干燥实验干燥曲线x干燥章小结湿空气性质及湿焓图性质湿度h0622干球温度t湿球温度t10118810118824902490188干燥过程物料的平衡关系与速率关系结合水分与非结合水分平衡水分x与自由水分恒定干燥条件下的干燥速率恒定干燥条件下的干燥时间等i过程干燥速率udwgdxsdsd干燥速率曲线ux临界含水量x干燥方法干燥器对流式

化工原理模块5干燥.ppt

化工原理模块5干燥.ppt
相对湿度 :在总压和温度一定时,湿空气中水汽的分压 p 与系统温
度下水的饱和蒸汽压 ps 之比的百分数。
p 100 %
ps
值说明湿空气偏离饱和空气或绝干空气的程度, 值越小吸湿能力
越大;
= 0 ,p=0时,表示湿空气中不含水分,为绝干空气。 = 1 ,p=ps时,表示湿空气被水汽所饱和,不能再吸湿。
——湿度性质(湿度H,相对湿度φ,绝对湿度百分数)
空气是气体,应适用于气体状态方程,即温度、压力、体积。所以要 研究,
——温度性质(干球温度t、湿球温度tw、绝热饱和湿度tas、露点td) ——容积性质(湿容积、饱和湿容积)。由于大气压力,对一定地区, 约为定值,所以不研究压力性质。
要研究空气对湿物料的传热,所以要研究,
对于空气-水系统: H 0.622 ps P ps
➢ 若 t < 总压下湿空气的沸点,0 100%; ➢ 若 t >总压下湿空气的沸点,湿份 ps> P,最大 (空气全为水汽)
< 100%。故工业上常用过热蒸汽做干燥介质;
➢ 若 t > 湿份的临界温度,气体中的湿份已是真实气体,此时 =0,
干燥是热、质同时传递的过程
干燥介质:用来传递热量(载热体)和 湿份(载湿体)的介质。
H
t
ti
q
pi
W
M
p
注意:只要物料表面的湿份分压高于气体中湿份分压,干燥即可进 行,与气体的温度无关。气体预热并不是干燥的充要条件,其目的 在于加快湿份汽化和物料干燥的速度,达到一定的生产能力。
空气
预热器
干燥产品
干燥器
惯用做法:先采用机械方法把固体所含的绝大部分湿份除去,然 后再通过加热把机械方法无法脱除的湿份干燥掉,以降低除湿的 成本。

化工原理干燥.课件

化工原理干燥.课件

化学工程系
➢平衡水分与自由水分 (按水分能否用干燥 方法除去的原则 )
平衡水分:干燥推动力 ∆p=p-pi=0时,物料中 存在的水分。在一定空气状态(t,φ)下, 平衡水分是湿物料干燥的极限。 自由水分:总水分-平衡水分
化学工程系
物料中所含水分的性质
对于同种物料,在一定温度下,空气的相 对湿度越大,平衡水分含量越高。
U ——干燥速率(kg/(m2·s)); W′——气化水分量(kg); S ——干燥面积(m2 ) ; τ——干燥时间(s)。
物料温度 X,kg水/kg绝干料
预 热 段
恒 速 干 燥 阶

tw
降速干燥阶段












化学工程系
U dW GcdX
Sd Sd
干燥时间
干燥曲线
化学工程系
• 对同一干燥过程,夏天的空气消耗量l 大还是冬天的消耗量l大?
化学工程系
7.3.3 干燥过程热量衡算 1.预热器的热量衡算 Qp=L(I1-I0)=L(1.01+1.88H0)(t1-t0)
L,t0,H0,I0
L,t1,H1,I1
QP
2.干燥器的热量衡算
化学工程系
LI1+GcI1′+ QD=LI2+ GcI2′+ QL L(I1-I2)+ QD= Gc(I2′-I1′)+ QL
若要得到绝干产品,只能用绝干空气作为 干燥介质。 X/kg水·(kg绝干料)-1
化学工程系
7.4.2 恒定干燥条件下的干燥速率
湿空气的状态(温度、相对湿度)不变、 空气流速不变、与物料的接触方式不变

第11章 干燥课件

第11章 干燥课件

5%10% 0
25
《化工原理》课件
第十一章 干燥 dry
第二节 湿空气的性质及湿度图
二、湿空气的湿度图及其应用
说明:
‫ ٭‬当 t一,即 定 ps一,若 定 H ,则 ;
‫٭‬当H一定 ,若t,则; ‫ ٭‬当 100%时的等线称为饱和空气线。
26
《化工原理》课件
第十一章 干燥 dry
第二节 湿空气的性质及湿度图
I1
20%
10%
100%
I
p
t1 tw , tas
td
H, p及t d
I ,t 及t
Hw
as
H1 H
注意:并非已知任意两个参数就可确定状态点 31
《化工原理》课件
第十一章 干燥 dry
第二节 湿空气的性质及湿度图
二、湿空气的湿度图及其应用
空气状态变化过程的图示
‫٭‬加热和冷却(等湿过程) t d
32
二、分类
传热方式
操作压强

连续干燥
间歇干燥
质量均匀 适应性强
传导干燥

对流干燥 热效率较低
辐射干燥 红外线 0.72 ~ 1000m
介电干燥 高频电场 300MHz

常压干燥
真空干燥
温度低和速度快
3
《化工原理》课件
第十一章 干燥 dry
《化工原理》课件
第十一章 干燥 dry
v
液态水
的水气
t℃时Hkg的水气
I H I g H v C I g t H (C v t r 0 。 )(CgHvC )tH0。 r
绝干空气和液态水在0oC时的焓为零。
10
《化工原理》课件

化工原理第八章干燥

化工原理第八章干燥
由于焓是相对值,计算焓值时必须规定基准状态 和基准温度,一般以0℃为基准,且规定在0℃时 绝干空气和液态水的焓值均为零,则
I Ig H v (c I g H v )t r c 0 H c H t r 0 H
显热项
汽化潜热项
对于空气-水系统: I(1.0 1 1.8H 8 )t24H 90

G1
W
G2中仍含少量水分-干燥产品; 注意与绝干物料G的区别。
5.2.3干燥系统的热量衡算
1、热量衡算基本方程
加入干燥系统的Q被用于: ①加热空气 ②蒸发水分 ③加热湿物料 ④热损失
2、干燥系统的热效率
说明:
* t2, H2 ;
* t2 也 不 ,一 宜 t2 般 ta 过 1s (2低 ~ 0 5)。 0 C
风风机量:V 0LH 0 vL (0.77 1.2 24 H 0)42 (27 7 t0 3)3 1 (P 0 0 1 ) 3
3.产品流量( G)2:
G c G 2 (1 w 2 ) G 1 (1 w 1 )

G2

(1 (1
w1) w2)
G1

Gc (1 w 2 )
第五章 干燥
概述
去湿定义:从物料中脱除湿分的过程称为去湿。 湿分:不一定是水分!
一、去湿方法: 1.机械法:沉降、过滤、离心分离 ——低能耗 2.化学法:使用吸附剂或干燥剂 ——成本甚高 3.干燥法: 加热→湿分汽化→蒸汽排出 ——能耗较大
注:干燥介质:是指带走湿分的外加气相
按操作压强 —

常压干燥(√)
2918
273 P
27 t3 1 .0 1 13 50 vH (0 .77 1 .2 2H 4) 4273 P

大学课件-化工原理-干燥1

大学课件-化工原理-干燥1

空气和水的系统,
h / kH=0.96~1.005
一般干燥过程H<0.01 cH=1.01+1.88H=1.01~1.03
对于空气和水的系统,不饱和空气: t > tas = tw > td 饱和空气: t = tas = tw =td
对其它物系,h/kH =1.5~2, 与cH相差很大,例如对空气和甲苯 系统h/kH = 1.8 ,此时,湿球温度高于绝热饱和温度。
H
a
V
ca: 干空气比热容,约1.01 kJ/kg干空气·C cv: 水蒸汽比热容,约1.88kJ/kg干空气·C
(5) 湿空气的焓I ( kJ/kg干空气)
基准: 0C干空气、 0C时液态水的焓为零。
I cat (r0 cV t)H (1.011.88H )t 2490H
r0: 0C时水蒸气汽化潜热,2490 kJ/kg
机理
质量传递:湿分的转移,由固相 到气相,以蒸汽分压为推动力
热量传递: 由气相到固相, 以温度差为推动力
分类: 操作压力
常压干燥 真空干燥
操作方式
间歇干燥 连续干燥
加热方式
传导干燥 对流干燥 辐射干燥 介电加热干燥
对流干燥:
利用热空气和湿物料作相对运动,气体的热量传递给 湿物料,使湿物料的湿分汽化并传递到气体中,并被带走。 对流干燥是动量、热量、质量传递同时进行的传递过程。
湿空气的四个温度t 、tw 、tas 、 td可确定空气状态。
r
t t as ( H H )
as
c
as
H
tW
t
kH rW h
(HW
H)
(1)共同点:
① 湿球温度和绝热饱和温度都不是湿气体本身的温度, 但都和湿气体的温度和湿度有关,都表达了气体入口 状态已确定时与之接触的液体温度的变化极限。

化工原理干燥.ppt

化工原理干燥.ppt

湿空气:指绝干空气与水蒸汽的混合物。在干燥过程中, 随着湿物料中水份的汽化,湿空气中水份含量不断增加, 但绝干空气的质量保持不变。因此,湿空气性质一般都以 1kg绝干空气为基准。 操作压强不太高时,空气可视为理想气体。 系统总压 P :湿空气的总压(kN/m2),即Pv 与Pg之和。 干燥过程中系统总压基本上恒定不变。且
结论: tw = f (t, H) ,气体的 t 和 H 一定,tw 为定值。
对于空气-水系统:

kH 1.09
rw tw t (H w H ) 1.09
饱和气体:H = Hs,tw = t,即饱和空气的干、湿球温度相等。 不饱和气体:H < Hs,tw < t。
b. 湿球温度的测定 湿球温度计测定湿球温度的条 件是保证纯对流传热,即气体 应有较大的流速和不太高的温 度,否则,热传导或热辐射的 影响不能忽略,测得的湿球温 度会有较大的误差。 通过测定气体的干球温度和 湿球温度,可以计算气体的 湿度。
t tw 气体
干燥器
气流干燥器
8
空气通过送风机吹入空气预热器, 预热后的热空气送入气流干燥管, 湿料由螺旋加料器推入干燥器并分 散于热气流中,受气流的输送并进 行干燥,干燥产品通过旋风分离器 从气流中分离出来,湿废气体由引 风机抽出排空。
1 2
6
7 干品 4
3
5
其他的干燥器主要还有 ; 流化床干燥器 转筒干燥器 喷雾干燥器
P= Pv +Pg
pv nv p g ng
干燥操作通常在常压下进行,常压干燥的系统总压接近 大气压力,热敏性物料的干燥一般在减压下操作。
相对湿度(Relative humidity) 湿度只表示湿空气中所含水份的绝对数,不能反映空 气偏离饱和状态的程度(即气体的吸湿能力)。 .相对湿度:在总压和温度一定时,湿空气中水汽的分 压 pv 与系统温度下水的饱和蒸汽压 ps 之比
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Q加 Q利用 Q废 Q固温升 Q损
7.2 湿空气的性质与湿度图
7.2.1 湿空气的性质 7.2.2 湿空气的湿度图及其应用
7.2.1 湿空气的性质
一、空气中水分含量的表示方法
1、水汽分压p水汽与露点td 在总压p=const,将水汽分压为p的空气
等湿冷却至饱和状态,此时的温度称为露点td
不饱和空气:t>tw(或tas)>td 饱和空气: t=tw(或tas)=td
二、与过程计算有关的参数
1、湿空气的焓I
定义:湿空气的焓为每kg干空气及其所 带kg水汽所具有的焓,kJ/kg 。
第7章 固体干燥
3、了解内容 常用干燥器的性能特点及选用原则;各种干燥 方法的基本原理、特点及应用。
7.1 概述
1、物料去湿的方法 (1)干燥工程目的:去湿——去除固体物料中 含有的湿分(水或有机溶剂) (2)去湿方法 ①机械去湿:离心过滤、压滤、抽滤等 ②吸附去湿
用某种平衡水汽分压很低的干燥剂 (如CaCl2、硅胶等)与湿物料并存,使物料种 的水分相继经气相而转入干燥剂内。
7.1 概述
(3)辐射干燥,热能以电磁波形式由辐射器发射 到湿物料表面,被物料吸收并转化为热能,使 湿分汽化。 (4)介电加热干燥,将需要干燥的物料置于高 频电场中,利用高频电场的交变作用将湿物料 加热,并汽化湿分。
本章讨论以空气为干燥介质,湿分为水 的对流干燥过程。
7.1 概述
3、对流干燥过程的特点
温度下空气中水汽分压可能达到的最大值之比
定义为相对湿度,以表示ψ 。
当ps p 当ps p
p水汽
ps
p水汽
p
7.2.1 湿空气的性质
说明:
(1)值说明湿空气偏离饱和空气或绝干空气的 程度, 值越小吸湿能力越大; (2) = 0 ,p=0时,表示湿空气中不含水分,
为绝干空气。
p const, p水汽 f td
可根据td查手册得p水汽
2、空气的湿度H
空气的湿度H定义为每kg干空气所带有的
水汽量,单位是kg/kg干气,即
H M 水 p水汽 0.622 p水汽
M 气 p p水汽
p p水汽
7.2.1 湿空气的性质
3、相对湿度ψ 定义:空气中的水汽分压p水汽与一定总压及一定
7.2.1 湿空气的性质
湿球温度的测定
湿球温度计测定湿球温度
的条件是保证纯对流传热,
t
即气体应有较大的流速和不
t
太高的温度,否则,热传导
w
或热辐射的影响不能忽略, 气体
测得的湿球温度会有较大的
误差。
通过测定气体的干球温度
和湿球温度,可以计算气体
的湿度: H

H s,twBiblioteka cH(t tw ) rw
H
传热:t> өi(物料表面温度өi
ө
t q
低于气流温度t):气体固体
i
传质: P水汽< Pi(气流中的水
p
i
W
汽分压P水汽<固体表面水分的 分压Pi):湿物料内部的水
M
P水汽
表面气相。
特点:热、质反向传递过程。
7.1 概述
4、对流干燥流程及经济性 (1)对流干燥流程: 间歇:湿物料被成批放入 干燥器内,特干燥到指定 的含湿要求后一次取出。 连续:湿物料被连续地加入与排出(并流与逆 流)。 经济性:主要取决于能耗和热的利用率。
7.1 概述
③ 热能去湿-去湿彻底,但能耗大 向物料供热以汽化其中的水分。这种
利用热能除去固体物料中湿分和单元操作称为 干燥(drying)。 2、物料的干燥方法 (1)传导干燥,热能以传导方式通过传热壁面 加热物料,使其中的湿分汽化。 (2)对流干燥,干燥介质与湿物料直接接触, 以对流方式给物料供热使湿分汽化。
(3) = 1 ,p=ps时,表示湿空气被水汽所饱和,
不能再吸湿。 (4)对于空气-水系统
H 0.622 ps p ps
7.2.1 湿空气的性质
(5)若 t < 总压下湿空气的沸点,0 100%; (6)若 t >总压下湿空气的沸点,湿份 ps> P, 最大 (空气全为水汽) < 100%。故工业上常用
7.2.1 湿空气的性质
(3)绝热饱和冷却温度tas
大量水与空气长期接触,气温变化的极
限温度称为绝热饱和温度。
tas
t

ras cH
(H as
H)
注:lewis规则:对于Air-H2O系统
cH


kH
tw
t
rtw
kH
(H s,tw
H)
tas tw
7.2.1 湿空气的性质
结论: 对于Air-H2O系统
过热蒸汽做干燥介质;
(7)若 t > 湿份的临界温度,气体中的湿份已是 真实气体,此时 =0,理论上吸湿能力不受限制。
7.2.1 湿空气的性质
4、四种温度
(1)干球温度 t :湿空气的真实温度,简称温度
(℃ 或 K)。将温度计直接插在湿空气中即可测
量。
(2) 空气的湿球温度t w(Wet-bulb
t当e热mp、er质at传ur递e)达平衡时, 气定体义对液体的供热速率恰 等于液体汽化的需热速率
气膜
对流传热 q h
液滴 表面 tw ,
Hw
时:
气体
t, H
液滴
tw
t
kH

rw (H w
H)
kH 对流传质 N
7.2.1 湿空气的性质
湿球温度是大量空气与少量水长期接
触后水面的温度(水温变化的极限温度)。
第7章 固体干燥 solid drying
7.1 概述 7.2 湿空气的性质 7.3 固体物料的干燥平衡 7.4 干燥器过程的计算 7.5 干燥速率与干燥时间 7.6干燥器 7.7固体干燥过程的强化与展望
化工原理
第7章 固体干燥
1、掌握的内家 干燥过程原理、目的及实施;湿空气性质及计算、 湿度图构成及应用;水分在气-固相间的平衡; 干燥过程的物料衡算;干燥过程中空气状态的确 定;结合水分、平衡水分和临界水分的概念及相 互关系;恒速干燥与降速干燥的特点。 2、熟悉的内容 干燥过程的热量衡算;干燥器的热效率及提高干 燥过程经济性的途径;恒定干燥条件下干燥速率 与干燥时间计算;干燥过程的强化途径。
结论: tw = f (t, H) ,气体的 t 和 H 一定,tw 为定值。 当t不太高,流速>5m/s时,Air-H2O系统
1.09
kH
tw

t

rw 1.09
(
H
s
,tw

H)
a.饱和气体:H = Hs,tw = t,即饱和空气的干、湿球
温度相等。
b.不饱和气体:H < Hs,tw < t。
相关文档
最新文档