实验报告---实验二图像灰度变换处理

合集下载

图像灰度变换实验报告

图像灰度变换实验报告

图像灰度变换报告一.实验目的1.学会使用Matlab ;2.学会用Matlab 软件对图像进行灰度变换,观察采用各种不同灰度变换发法对最终图像效果的影响;二.实验内容1.熟悉Matlab 中的一些常用处理函数读取图像:img=imread('filename');//支持TIF,JPEG,GIF,BMP,PNG 等文件格式。

显示图像:imshow(img,G);//G 表示显示该图像的灰度级数,如省略则默认为256。

保存图片:imwrite(img,'filename');//不支持GIF 格式,其他与imread 相同。

亮度变换:imadjust(img,[low_in,high_in],[low_out,high_out]);//将low_in 至high_in 之间的值映射到low_out 至high_out 之间,low_in 以下及high_in 以上归零。

绘制直方图:imhist(img);直方图均衡化:histeq(img,newlevel);//newlevel 表示输出图像指定的灰度级数。

2.获取实验用图像:rice.jpg. 使用imread 函数将图像读入Matlab 。

3 .产生灰度变换函数T1,使得:0.3rr < 0.35 s =0.105 + 2.6333(r – 0.35) 0.35 ≤ r ≤ 0.651 + 0.3(r – 1) r > 0.65 用T1对原图像rice.jpg 进行处理,使用imwrite 函数保存处理后的新图像。

4.产生灰度变换函数T2,使得:s = 5.用T2imwrite 保存处理后的新图像。

6.分别用 s = r 0.6; s = r 0.4; s = r 0.3 对kids.tiff 图像进行处理。

为简便起见,使用Matlab 中的imadjust 函数,最后用imwrite 保存处理后的新图像。

数字图像处理 实验 灰度变换

数字图像处理 实验 灰度变换
非线性拉伸不是对图像的整个灰度范围进行扩展而是有选择地对某一灰度值范围进行扩展其他范围的灰度值则有可能被压缩
XXXXXXX
实验名称图像灰度变换
实验时间年月日
专业姓名学号
预习操作座位号
教师签名总评
一、实验目的:
1.深入理解图像灰度变换的基本原理。
2.学习编程实现图像灰度变换,并分析各种算法的效果。
二、实验原理:
现行拉伸:
void CHangView::OnXxls()
{
// TODO: Add your command handler code here
long w,h;
unsigned char *lpsrc;
lpsrc=m_Image;
w=m_DibHead->biWidth;
h=m_DibHead->biHeight;
对数变换:对数变换的一般表达式为:s = c log(1 + r),其中C是一个常数。低灰度区扩展,高灰度区压缩。图像加亮、减暗。非线性拉伸不是对图像的整个灰度范围进行扩展,而是有选择地对某一灰度值范围进行扩展,其他范围的灰度值则有可能被压缩。
三、实验内容:
与实验二建立菜单方式相同。
建立相应的类向导使之建立函数(步骤与实验二相同),函数代码如下:
}
分段变换:
void CHangView::OnFenduan()
{
// TODO: Add your command handler code here
long w,h;
unsigned char *lpsrc;
lpsrc=m_Image;
w=m_DibHead->biWidth;
h=m_DibHead->biHeight;

数字图像处理实验二图像灰度变换

数字图像处理实验二图像灰度变换

实验二图像灰度变‎换实验一、实验目的熟悉亮度变‎换函数的使‎用熟悉灰度图‎像的直方图‎的表示;掌握图像增‎强的基本方‎法:灰度变换、直方图均衡‎;二、实验内容灰度线性变‎换、灰度直方图‎、直方图均衡‎处理;灰度变换是‎图像增强的‎一种重要手‎段,使图像对比‎度扩展,图像更加清‎晰,特征更加明‎显。

灰度级的直‎方图给出了‎一幅图像概‎貌的描述,通过修改灰‎度直方图来‎得到图像增‎强。

三、实验原理1.函数ima‎d just‎函数ima‎d just‎是对灰度图‎像进行亮度‎变换的基本‎命令,语法为:g = imadj‎u st(f, [low_i‎n high_‎in], [low_o‎u t high_‎out], gamma‎)将图像f中‎的亮度值(灰度值)映射到新图‎像g中,即将low‎_in至h‎i gh_i‎n 之间的值‎映射到lo‎w_out‎至high‎_out之‎间的值。

low_i‎n以下的灰‎度值映射为‎l ow_o ‎u t,high_‎in以上的‎灰度值映射‎为h igh‎_out,函数ima‎d just‎的矩阵[ ]内参数均指‎定在0和1‎之间,[low_i‎n high_‎i n]和[low_o‎u t high_‎ou t]使用空矩阵‎[ ]会得到默认‎值[0 1]。

若high‎_out小‎于l ow_‎ou t,则输出图像‎会反转。

参数gam‎m a指定了‎曲线(变换函数)的形状,若gamm‎a小于1,则映射被加‎权至更高(更亮)的输出值;若gamm‎a大于1,则映射被加‎权至更低(更暗)的输出值。

若省略了函‎数的参量g‎amma,则gamm‎a默认为1‎——即线性映射‎。

>>f = imrea‎d(‘filen‎ame’)>>imsho‎w(f)>>g1 = imadj‎u st(f, [0 1], [1 0]); %图像反转>>figur‎e, imsho‎w(g1) %figur‎e命令表示‎同时显示多‎个窗口>>g2 = imadj‎u st(f, [0.5 0.75], [0 1]);%将0.5至0.75之间的‎灰度级扩展‎到范围0和‎1之间>>figur‎e, imsho‎w(g2)>>g3 = imadj‎u st(f, [ ], [ ], 2) %使用gam‎m a值>>figur‎e, imsho‎w(g3)2.直方图处理‎与函数绘图‎图像的直方‎图定义为离‎散函数:h(r k) = n k绘制图像的‎直方图,函数imh‎i st,语法为:h = imhis‎t(f, b)f为输入图‎像,h为直方图‎h(r k),b是用于形‎成直方图的‎灰度级个数‎,若b省略,则默认值为‎256。

实验报告 遥感图像的灰度变换处理

实验报告 遥感图像的灰度变换处理

1 实验目的1.1理解遥感图像的变换处理方法和原理;1.2掌握遥感图像的变换处理,包括主成份变换和逆变换、缨穗变换、色彩变换与逆变换;2 实验方法(要求将实验步骤过程中的对话框及成果图拷屏到报告中)2.1主成分变换处理(K-L变换)2.1.1 K-L变换原理(1)K-L变换是离散(Karhunen-Loeve)变换的简称,又被称作主成分变换。

它是对某一多光谱图像X,利用K-L变换矩阵A进行线性组合,而产生一组新的多光谱图像Y,表达式为Y=AX式中,X为变换前的多光谱空间的像元矢量;Y为变换后的主分量空间的像元矢量;A为变换矩阵。

(2)对图像中每一个像元矢量逐个乘以矩阵A,便得到新图像中每一个像元矢量。

A的作用是给多波段的像元亮度加权系数,实现线性变换。

由于变换前各波段之间有很强的相关性,经过K-L变换组合,输出图像Y的各分量yi之间将具有最小的相关性,这就是变换矩阵A的作用。

(3)从几何意义来看,变换后的主分量空间坐标系与变换前的多光谱空间坐标系相比旋转了一个角度。

而且新坐标系的坐标轴一定指向数据信息量较大的方向。

2.1.2K-L变换步骤(1)Interpreter图标>Spectral Enhancement> Principal Comp. 确定输入文件lanier.img,输出文件principal.img文件坐标类型:Map,处理范围为默认输出数据类型:Float Single输出数据统计时忽略零值:Ignore Zero in Stats特征矩阵输出设置(Eigen Matrix)在运行日志中显示:Show Session Log写入特征矩阵文件:Write to File(必选项,逆变换时需要)特征矩阵文件名(Output TextFile):lanier.mtx需要的主成份数量(Number of Components Desired):3OK,执行主成份变换处理,(2)下面进行主成份逆变换处理,将三个主分量转换到RGB彩色空间Interpreter图标>Spectral Enhancement> Inverse Principal Comp.确定输入文件Principal.img确定特征矩阵(Eigen Matrix File):lanier.mtx定义输出文件:inverse_pc.img文件坐标类型Map,处理范围默认输出数据选择(Output Options):两种选择输出数据拉伸到0-255:Stretch to Unsigned 8 bit输出数据统计时忽略零值:Ignore Zero in Stats OK,执行主成份逆变换2.2实验成果bianhuan.img:Bianhuan1.img:2.2K-T变换(缨帽变换)2.2.1 K-T变换原理K-T变换是Kauth-Thomas变换的简称,也称缨帽变换。

数字图像处理图像变换实验报告

数字图像处理图像变换实验报告

实验报告实验名称:图像处理姓名:刘强班级:电信1102学号:1404110128实验一图像变换实验——图像点运算、几何变换及正交变换一、实验条件PC机数字图像处理实验教学软件大量样图二、实验目的1、学习使用“数字图像处理实验教学软件系统”,能够进行图像处理方面的简单操作;2、熟悉图像点运算、几何变换及正交变换的基本原理,了解编程实现的具体步骤;3、观察图像的灰度直方图,明确直方图的作用与意义;4、观察图像点运算与几何变换的结果,比较不同参数条件下的变换效果;5、观察图像正交变换的结果,明确图像的空间频率分布情况。

三、实验原理1、图像灰度直方图、点运算与几何变换的基本原理及编程实现步骤图像灰度直方图就是数字图像处理中一个最简单、最有用的工具,它描述了一幅图像的灰度分布情况,为图像的相关处理操作提供了基本信息。

图像点运算就是一种简单而重要的处理技术,它能让用户改变图像数据占据的灰度范围。

点运算可以瞧作就是“从象素到象素”的复制操作,而这种复制操作就是通过灰度变换函数实现的。

如果输入图像为A(x,y),输出图像为B(x,y),则点运算可以表示为:B(x,y)=f[A(x,y)]其中f(x)被称为灰度变换(Gray Scale Transformation,GST)函数,它描述了输入灰度值与输出灰度值之间的转换关系。

一旦灰度变换函数确定,该点运算就完全确定下来了。

另外,点运算处理将改变图像的灰度直方图分布。

点运算又被称为对比度增强、对比度拉伸或灰度变换。

点运算一般包括灰度的线性变换、阈值变换、窗口变换、灰度拉伸与均衡等。

图像几何变换就是图像的一种基本变换,通常包括图像镜像变换、图像转置、图像平移、图像缩放与图像旋转等,其理论基础主要就是一些矩阵运算,详细原理可以参考有关书籍。

实验系统提供了图像灰度直方图、点运算与几何变换相关内容的文字说明,用户在操作过程中可以参考。

下面以图像点运算中的阈值变换为例给出编程实现的程序流程图,如下:2、图像正交变换的基本原理及编程实现步骤数字图像的处理方法主要有空域法与频域法,点运算与几何变换属于空域法。

灰度修正技术(图像处理实验报告)

灰度修正技术(图像处理实验报告)

我们选择的是对比度不足的pout.tif图像,从它的直方图可以算出,它的灰度值大概在[0.3 0.7]这个范围内,所以我们要调整它的灰度范围,改为[0 1],增大灰度范围,从而增强对比度。

2.直方图均衡:选择一幅灰度直方图不均匀的图像,对该图像进行直方图均衡处理,显示处理前、后的图像以及它们的灰度直方图。

由图可以看出,原始图像直方图很不均匀,大多数像素值集中分布在零附近的低灰度区,反映原图像偏暗而不清晰;均衡化后图像的直方图比较均匀,反映均衡化后图像图像比原图像清晰。

由图可以看出,原始图像直方图分布不均匀,大多数像素集中在[0.3 0.7]这个范围内,反映原图像不清晰;均衡化后图像直方图比较均匀,反映均衡化后图像比原图像清晰。

实验中的体会(如实验过程中遇到的问题及其解决的方法等)。

数字图像处理基本操作及灰度调整实验报告

数字图像处理基本操作及灰度调整实验报告

一.实验目的1.掌握读、写图像的基本方法;2.掌握MATLAB 语言中图像数据与信息的读取方法;3.理解图像灰度变换处理在图像增强的作用;4.掌握绘制灰度直方图的方法,理解灰度直方图的灰度变换及均衡化的方法。

二.实验基本原理1. 灰度变换灰度变换是图像增强的一种重要手段,它常用于改变图象的灰度范围及分布,是图象数字化及图象显示的重要工具。

1) 图像反转灰度级范围为[0, L-1]的图像反转可由下式获得r L s --=12) 对数运算:有时原图的动态范围太大,超出某些显示设备的允许动态范围,如直接使用原图,则一部分细节可能丢失。

解决的方法是对原图进行灰度压缩,如对数变换:s = c log(1 + r ),c 为常数,r ≥ 03) 幂次变换:0,0,≥≥=γγc cr s4) 对比拉伸:在实际应用中,为了突出图像中感兴趣的研究对象,常常要求局部扩展拉伸某一范围的灰度值,或对不同范围的灰度值进行不同的拉伸处理,即分段线性拉伸:其对应的数学表达式为:2. 直方图均衡化灰度直方图的横坐标是灰度级,纵坐标是该灰度级出现的频度,它是图像最基本的统计特征。

依据定义,在离散形式下, 用r k 代表离散灰度级,用p r (r k )代表p r (r ),并且有下式成立:nn r P k k r =)( 1,,2,1,010-=≤≤l k rk式中:n k 为图像中出现r k 级灰度的像素数,n 是图像像素总数,而n k /n 即为频数。

直方图均衡化处理是以累积分布函数变换法为基础的直方图修正法。

假定变换函数为ωωd p r T s r r)()(0⎰==(a) Lena 图像 (b) Lena 图像的直方图图1-1 Lena 图像及直方图当灰度级是离散值时,可用频数近似代替概率值,即1,,1,010)(-=≤≤=l k r nn r p k k k r式中:l 是灰度级的总数目,p r (r k )是取第k 级灰度值的概率,n k 是图像中出现第k 级灰度的次数,n 是图像中像素总数。

关于图形图像处理实训报告总结【九篇】

关于图形图像处理实训报告总结【九篇】

关于图形图像处理实训报告总结【九篇】实训报告总结:图形图像处理实训图形图像处理实训是计算机科学与技术专业的基础课程之一。

通过本次实训课程,我深入了解了图形图像处理的基本概念、方法和技术,并通过实际操作来提升了自己的实践能力。

下面是对本次实训的九篇报告总结:1. 实验一:图像读取与显示本次实验主要是学习如何读取和显示图像,以及使用Matplotlib库进行图像展示。

通过实验,我掌握了图像读取和显示的基本方法,并学会了基本的图像处理操作。

2. 实验二:图像的灰度变换实验二主要是学习图像的灰度变换,包括线性变换和非线性变换。

我学会了如何使用不同的灰度变换函数来调整图像的亮度和对比度,进一步提升图像的质量。

3. 实验三:图像的空间域滤波本次实验主要是学习图像的空间域滤波技术,包括均值滤波、中值滤波和高斯滤波等。

通过实验,我掌握了不同滤波方法的原理和实现方式,并学会了如何选择合适的滤波方法来降噪和模糊图像。

4. 实验四:图像的频域滤波实验四主要是学习图像的频域滤波技术,包括傅里叶变换和频域滤波等。

通过实验,我了解了傅里叶变换的原理和应用,并学会了如何使用频域滤波来实现图像的锐化和平滑。

5. 实验五:图像的形态学处理本次实验主要是学习图像的形态学处理技术,包括腐蚀、膨胀、开运算和闭运算等。

通过实验,我学会了如何使用形态学操作来改变图像的形状和结构,进一步改善图像的质量。

6. 实验六:图像的边缘检测实验六主要是学习图像的边缘检测技术,包括Sobel算子、Laplacian算子和Canny算子等。

通过实验,我了解了不同边缘检测方法的原理和应用,并学会了如何使用边缘检测来提取图像的轮廓和特征。

7. 实验七:图像的分割与聚类本次实验主要是学习图像的分割与聚类技术,包括阈值分割、区域生长和K均值聚类等。

通过实验,我掌握了不同分割与聚类方法的原理和应用,并学会了如何使用分割与聚类来识别和分析图像中的目标和区域。

8. 实验八:图像的特征提取与描述子实验八主要是学习图像的特征提取和描述子技术,包括尺度不变特征变换(SIFT)和方向梯度直方图(HOG)等。

图像灰度变换实验报告

图像灰度变换实验报告

图像灰度变换报告一.实验目的1.学会使用Matlab ;2.学会用Matlab 软件对图像进行灰度变换,观察采用各种不同灰度变换发法对最终图像效果的影响;二.实验内容1.熟悉Matlab 中的一些常用处理函数读取图像:img=imread('filename');取实验用图像:. 使用imread 函数将图像读入Matlab 。

3 .产生灰度变换函数T1,使得:r < s =+ (r – ≤ r ≤1 + (r – 1) r > 用T1对原图像进行处理,使用imwrite 函数保存处理后的新图像。

4.产生灰度变换函数T2,使得:s = 5.用T26.分别用 s = ; s = ; s = 对图像进行处理。

为简便起见,使用Matlab 中的imadjust 函数,最后用imwrite 保存处理后的新图像。

7.对图像实施反变换(Negative Transformation )。

s =1-r; 使用imwrite 保存处理后的新图像。

8.对图像实施灰度切片当 ≤ r ≤ 时,将r 置为, 当r 位于其他区间时, 保持其灰度与原图像一样。

使用imwrite 保存处理后的新图像。

9.利用灰度变换对做增强处理,突出图中的人物,改善整个图像过于灰暗的背景。

通过调节参数,观察变换后的图像与原始图像的变化,寻找出最佳的灰度变换结果。

写出所采用的拉伸表达式。

三.实验结果与分析1.采用T1函数变换前 变换后函数图像该方法采用分段函数对图像进行处理,对灰度值大的进行拉伸,使灰度增大,而灰度值小的,也进行拉伸,使灰度值更小,从而产生如图所示的结果。

2.采用T2函数变换前变换后T2函数图T2函数也比较好的完成了T1函数所达到的效果,但是T2函数更加平滑一点,对于图像的边界处理的较好一些。

3.变换前图像变换前灰度图采用s = 变换采用s = 变换采用s = 变换三种函数的对比三种变换方式都对图像的每一个像素灰度作线性拉伸,有效地改善图像的视觉效果,但如果选择的拉伸尺度过大,会引起图像的失真,利用s = 变换是比较适合的。

图像增强—灰度变换

图像增强—灰度变换

昆明理工大学信息工程与自动化学院学生实验报告( 2012 —2013 学年第二学期)课程名称:图形图像处理开课实验室:信自444 2013年 5月 22日一、实验目的:1、了解图像增强的目的及意义,加深对图像增强的感性认识,巩固所学理论知识。

2、学会对图像直方图的分析。

3、掌握直接灰度变换的图像增强方法。

二、实验原理及知识点术语‘空间域’指的是图像平面本身,在空间与内处理图像的方法是直接对图像的像素进行处理。

空间域处理方法分为两种:灰度级变换、空间滤波。

空间域技术直接对像素进行操作其表达式为g(x,y)=T[f(x,y)]其中f(x,y)为输入图像,g(x,y)为输出图像,T是对图像f进行处理的操作符,定义在点(x,y)的指定领域内。

定义点(x,y)的空间邻近区域的主要方法是,使用中心位于(x,y)的正方形或长方形区域,。

此区域的中心从原点(如左上角)开始逐像素点移动,在移动的同时,该区域会包含不同的领域。

T应用于每个位置(x,y),以便在该位置得到输出图像g。

在计算(x,y)处的g值时,只使用该领域的像素。

灰度变换T的最简单形式是使用领域大小为1×1,此时,(x,y)处的g值仅由f在该点处的亮度决定,T也变为一个亮度或灰度级变化函数。

当处理单设(灰度)图像时,这两个术语可以互换。

由于亮度变换函数仅取决于亮度的值,而与(x,y)无关,所以亮度函数通常可写做如下所示的简单形式:s=T(r)其中,r表示图像f中相应点(x,y)的亮度,s表示图像g中相应点(x,y)的亮度。

三、实验内容:1、图像数据读出2、计算并分析图像直方图3、利用直接灰度变换法对图像进行灰度变换下面给出灰度变化的MATLAB程序f=imread('medicine_pic.jpg');g=imhist(f,256); %显示其直方图g1=imadjust(f,[0 1],[1 0]); %灰度转换,实现明暗转换(负片图像) figure,imshow(g1)%将0.5到0.75的灰度级扩展到范围[0 1]g2=imadjust(f,[0.5 0.75],[0 1]);figure,imshow(g2)g=imread('point.jpg');h=log(1+double(g)); %对输入图像对数映射变换h=mat2gray(h); %将矩阵h转换为灰度图片h=im2uint8(h); %将灰度图转换为8位图figure,imshow(h)四、实验仪器PC一台,MATLAB软件五、实验过程及截图clc;close all;clear all;I = imread('3.jpg');imhist(I) %显示其直方图Y=imadjust(I,[0 1],[1 0]); %灰度转换,实现明暗转换(负片图像) figure,imshow(Y)%将0.5到0.75的灰度级扩展到范围[0 1]P=imadjust(I,[0.5 0.75],[0 1]);figure,imshow(P)I=imread('4.jpg');H=log(1+double(I)); %对输入图像对数映射变换H=mat2gray(H); %将矩阵h转换为灰度图片H=im2uint8(H); %将灰度图转换为8位图figure,imshow(H)六、实验图片4.jpg 3.jpg七、实验总结通过图形灰度变换实验,了解掌握了一般图像处理所要到达的效果,明白了图像在生活中的作用,但是它只能处理一些黑白的图像,在实验中我用彩色图片就不行,心有余而力不足,很难解决更高层次的问题,所以还需要更多的图像处理方法来处理图像。

数字图像处理实验02图像灰度级修正

数字图像处理实验02图像灰度级修正

数字图像处理实验02图像灰度级修正一、数字图像处理实验实验二图像灰度级修正一、实验目的掌握常用的图像灰度级修正方法,即图象的灰度变换法和直方图均衡化法,加深对灰度直方图的理解。

观察图象的增强效果,对灰度级修正前后的图像加以比较。

二、实验内容1.编程实现图像的灰度变换。

改变图像输入、输出映射的灰度参数范围(拉伸和反比),观看图像处理结果。

2.修改可选参数gamma值,使其大于1、等于1和小于1,观看图像处理结果。

3.对图像直方图均衡化处理,显示均衡前后的直方图和图像。

三、实验原理灰度级修正是图像空间域的增强方法,它以图像的灰度映射变换为基础,直接对图像中的像素进行处理,主要是利用点运算来修改图像像素的灰度。

其变换函数通常可写作如下的简单形式:)(r T s=(2.1)其中,r表示图像f中相应点(x,y)的灰度,s表示图像g中相应点(x,y)的灰度。

1.灰度变换1)图像增强常用的三个基本灰度变换类型函数有:线性的(正比和反比)、对数的(对数和反对数变换)、幂次的(n次幂和n次方根变换)。

线性变换为最一般的函数。

假定原图像),(y x f的灰度范围为],[b a,希望变换后图像),(y x g的灰度范围扩展至],[d c,则线性变换可表示为公式(2.2)所示:图 1.2灰度范围的线性变换2)幂次变换用于图像获取、打印和显示的各种装置根据幂次规律进行响应。

幂次变换的基本形式为:γcr s=(2.3)其中s为变换后的图像灰度级,c和r为正常数。

当1==r c时,将简化为正比变换。

幂次等式中的指数是指伽马值。

用于修正幂次响应现象的过程称作伽马校正。

2.直方图均衡化直方图均衡是直方图修正技术中的一种常用的方法。

1)采用灰度频数直方图统计一幅数字图像在范围],0[G内总共有L个灰度级,其直方图定义为离散函数k k n r h=)((2.4)其中,k r是区间],0[G内的第k级亮度,k n是灰度级为k r 的图像中的像素数。

数字图像实验报告二图像的灰度变换与直方图均衡

数字图像实验报告二图像的灰度变换与直方图均衡

实验二图像的灰度变换与直方图均衡一、实验目的1.理解图像灰度变换与直方图均衡的定义;2.掌握图像灰度变换与直方图均衡化的方法;3.学会利用matlab编程实现灰度变换和直方图均衡的方法。

二、实验内容1. 利用matlab语言直接编程实现图像的对比度调整;2. 利用matlab语言编程实现图像的反转;3. 利用matlab语言直接编程实现图像的二值化;4. 利用matlab语言直接编程实现图像的直方图均衡化处理。

三、实验步骤(一)利用matlab语言直接编程实现图像的对比度调整实验代码如下:A=imread('E:\实验报告\数字图像处理实验报告\数字图像实验报告二通信五班韩奇20110803520\lena.jpg');I=double(A);J=I*0.5+40;A1=uint8(J);figure(1);subplot(1,2,1),imshow(A);subplot(1,2,2),imshow(A1);J=I*1+40;A1=uint8(J);figure(2);subplot(1,2,1),imshow(A);subplot(1,2,2),imshow(A1);J=I*3+40;A1=uint8(J);figure(3);subplot(1,2,1),imshow(A);subplot(1,2,2),imshow(A1);J=exp(I);A1=uint8(J);figure(4);subplot(1,2,1),imshow(A);subplot(1,2,2),imshow(A1); 生成图像如下:从图中可以看出,第一幅图相对于原图的对比度降低了,第二幅图相对于原图对比度提高了40个灰度级,第三幅图对比度提高太多,效果反而不好。

在三幅图中,第二幅图视觉效果最好,对比度明显又不至于太亮。

第四幅图是指数灰度变换。

(二)利用matlab语言编程实现图像的反转实验代码如下:A=imread('E:\实验报告\数字图像处理实验报告\数字图像实验报告二通信五班韩奇20110803520\lena.jpg');E=imadjust(A,[0.35 0.65],[1 0]);figure;imshow(E);生成图像如下:从图中可以看出,原来亮的部分经过反转之后变暗,暗的部分经过反转变亮。

灰度图像处理实验报告

灰度图像处理实验报告

灰度图像处理实验报告实验背景灰度图像处理是图像处理中的一项重要任务,它通过将彩色图像转换为仅包含灰度信息的图像,从而简化图像处理的复杂度。

灰度图像处理在计算机视觉、图像识别和模式识别等领域有着广泛的应用。

实验目的本实验的目的是通过python编程实现灰度图像处理算法,包括灰度化、二值化、图像平滑以及直方图均衡化等,从而深入理解灰度图像处理的原理和算法,并掌握实现相关算法的编程技巧。

实验过程1. 数据准备在本次实验中,我们选用了一张彩色图像作为处理对象,该图像包含丰富的纹理和明暗变化。

首先,我们需要将彩色图像转换为灰度图像,以便后续的处理。

2. 灰度化灰度化将彩色图像转换为灰度图像,即将每个像素点的RGB三个分量的值按照一定的权重进行加权平均,得到对应的灰度值。

常用的加权平均法为:Gray = 0.299 * R + 0.587 * G + 0.114 * B上述公式中的0.299、0.587和0.114是经验值,表示红、绿和蓝三个分量的权重。

3. 二值化二值化将灰度图像转换为二值图像,即将每个像素点的灰度值与一个阈值进行比较,若大于阈值,则该像素点的值为255(表示白色),否则其值为0(表示黑色)。

在实际应用中,阈值的选取通常需要根据具体的图像和任务进行调整。

4. 图像平滑图像平滑是为了减少图像的噪声和细节,使得图像更加平滑,在一些图像处理任务中有着重要的应用。

常用的图像平滑算法包括均值滤波、中值滤波和高斯滤波等。

在本次实验中,我们选择了均值滤波作为图像平滑的算法,并使用一个3x3的滤波模板对图像进行卷积操作。

5. 直方图均衡化直方图均衡化是一种常用的图像增强技术,通过对图像的灰度级进行重新分配,使得原始图像中较暗的像素点和较亮的像素点在直方图上均匀分布,从而增强图像的对比度和视觉效果。

实验结果经过实验,我们得到了经过灰度化、二值化、图像平滑和直方图均衡化等处理后的图像。

与原始彩色图像相比,经过灰度化的图像丢失了颜色信息,但保留了图像的亮度信息;经过二值化的图像将图像的亮度信息进一步简化,只保留了黑色和白色两种颜色;经过图像平滑的处理,图像的细节和噪声得到了一定程度的抑制;经过直方图均衡化的处理,图像的对比度得到了显著的提升,整体的视觉效果更好。

matlab图像的灰度变换

matlab图像的灰度变换

实验二 图像的灰度‎变换一、实验目的1、 理解数字图‎像处理中点‎运算的基本‎作用;2、 掌握对比度‎调整与灰度‎直方图均衡‎化的方法。

二、实验原理1、对比度调整‎如果原图像‎f (x , y )的灰度范围‎是[m , M ],我们希望对‎图像的灰度‎范围进行线‎性调整,调整后的图‎像g (x , y )的灰度范围‎是[n , N ],那么下述变‎换:[]n m y x f mM n N y x g +---=),(),(就可以实现‎这一要求。

MA TLA ‎B 图像处理‎工具箱中提‎供的i ma ‎d j ust ‎函数,可以实现上‎述的线性变‎换对比度调‎整。

imadj ‎u st 函数‎的语法格式‎为:J = imadj ‎u st(I,[low_i ‎n high_‎i n], [low_o ‎u t high_‎o ut])J = imadj ‎u st(I, [low_i ‎n high_‎i n], [low_o ‎u t high_‎o ut])返回原图像‎I 经过直方‎图调整后的‎新图像J ,[low_i ‎n high_‎i n]为原图像中‎要变换的灰‎度范围,[low_o ‎u t high_‎o ut]指定了变换‎后的灰度范‎围,灰度范围可‎以用 [ ] 空矩阵表示‎默认范围,默认值为[0, 1]。

不使用im ‎adjus ‎t 函数,利用mat ‎l ab 语言‎直接编程也‎很容易实现‎灰度图像的‎对比度调整‎。

但运算的过‎程中应当注‎意以下问题‎,由于我们读‎出的图像数‎据一般是u ‎i nt8型‎,而在MAT ‎LAB 的矩‎阵运算中要‎求所有的运‎算变量为d ‎o uble ‎型(双精度型)。

因此读出的‎图像数据不‎能直接进行‎运算,必须将图像‎数据转换成‎双精度型数‎据。

2、直方图均衡‎化直方图均衡‎化的目的是‎将原始图像‎的直方图变‎为均衡分布‎的形式,即将一已知‎灰度概率密‎度分布的图‎像,经过某种变‎换变成一幅‎具有均匀灰‎度概率密度‎分布的新图‎像,从而改善图‎像的灰度层‎次。

实验2_灰度修正技术1

实验2_灰度修正技术1

实验2 灰度修正技术一、 实验目的:1. 掌握灰度变换2. 深入理解图像直方图的概念,掌握图像直方图的绘制方法3. 掌握直方图均衡化的原理,并会用直方图均衡化对图像进行处理二、 实验原理2.1灰度修正技术包括直接灰度变换和直方图修正,其目的是增强图像的对比度,使图像更加清晰。

1.灰度变换灰度变换是一种最简单的图像增强技术,它属于点操作,这种变换方法有多种,如线性变换、对数变换、幂次变换等。

(1) 线性变换所谓线性变换是指:输出图像灰度值g 和输入图像灰度值f 之间的函数关 系是线性关系。

由图2-1(a)所示的线性变换可知,输出图像灰度值g 的表达式可以写成M m f M m f mn M N g +-=+---=)()(α (2-1) 若α > 1,则输出图像对应的灰度范围扩大,对比度增强;若0 < α < 1,则输出图像对应的灰度范围压缩,对比度减小;若α < 0,则图像灰度值求反(见图2-1(b)),使白变黑,使黑变白。

(a) (b)图2-1 灰度线性变换 (a)线性变换;(b)求反.(2) 对数变换设输入图像灰度值为非负值,即0≥f ,则对数变换的数学表达式为)1log(f c g += (2-2)式中c 是一个可以调整的常数。

当1=c 时,对数变换曲线如图2-2所示。

由图可以看出,窄范围的低灰度输入图像值映射为一宽范围输出值,而宽范围的高灰度值映射为一窄范围的输出值,即暗像素的灰度值范围被扩大,而亮像素的灰度值范围被压缩,这就使低灰度区域的图像细节能够获得清晰的显示。

对数变换能有效地压缩图像的动态范围,其典型应用是图像Fourier频谱的显示。

Fourier幅度谱的动态范围很大,其数值在0至106数量级范围内变化,而普通显示器的动态范围只有8比特,如果不经对数变换而直接显示,则低数值的细节就无法显示出来。

图2-2 对数变换(3)幂次变换幂次变换的数学表达式可以写成γ=(2-3)g⋅cf式中γ,c均是正的常数。

实验2b 图像的灰度变换

实验2b  图像的灰度变换

实验2b 图像的灰度变换一、实验目的:学会用Matlab软件对图像进行运算和灰度变换。

二、实验内容:用+、-、*、/、imabsdiff、imadd、imcomplment、imdivide、imlincomb、immultiply、imsubtract和imadjust等函数生成各类灰度变换图像。

三、实验报告要求:写出每步处理的命令,并提交原图像和处理后的图像。

四、实验相关知识1、代数运算两幅图像之间进行点对点的加、减、乘、除运算后得到输出图像。

我们可以分别使用MATLAB的基本算术符+、-、*、/来执行图像的算术操作,但是在此之前必须将图像转换为适合进行基本操作的双精度类型(命令函数为double())。

为了更方便对图像进行操作,图像处理工具箱中也包含了一个能够实现所有非稀疏数值数据的算术操作的函数集合。

如下所示:imabsdiff:计算两幅图像的绝对差值imadd:两个图像的加法imcomplment:一个图像的补imdivide:两个图像的除法imlincomb:计算两幅图像的线性组合immultiply:两个图像的乘法imsubtract:两个图像的减法使用图像处理工具箱中的图像代数运算函数无需再进行数据类型间的转换,这些函数能够接受uint8和uint16数据,并返回相同格式的图像结果。

代数运算的结果很容易超出数据类型允许的范围。

图像的代数运算函数使用以下截取规则使运算结果符合数据范围的要求:超出数据范围的整型数据将被截取为数据范围的极值,分数结果将被四舍五入。

2、灰度变换点运算也称为灰度变换,是一种通过对图像中的每个像素值进行运算,从而改善图像显示效果的操作。

五、实验步骤:1、仔细阅读imabsdiff、imadd、imcomplment、imdivide、imlincomb、immultiply和imsubtract的帮助文件(help imabsdiff),并练习相关函数的使用。

图像处理实验图像的灰度化处理及亮度的调整

图像处理实验图像的灰度化处理及亮度的调整

重庆交通大学数字图像处理与通信课程实验报告班级:实验项目名称:图像的灰度化处理及亮度的调整实验项目性质:设计性实验实验所属课程:数字图像处理与图像通信实验室(中心):网络实验中心指导教师:实验完成时间:2012年10月16日教师评阅意见:签名:年月日实验成绩:一、实验目的:1、熟悉matlab或者C#的编程环境,完成在相关环境下图像的读入、显示、保存等操作;2、完成图像的灰度化处理;3、完成图像的亮度调整的模块编写;4、完成图像的平移操作(选做)。

二、实验主要内容及要求:1、熟悉matlab软件的工作窗口及命令;2、通过matlab软件,对一幅图像进行读入,显示,保存,并对其做灰度化处理;3、对图像进行亮度调整以及图像的平移。

三、实验设备及软件:PC机一台,MATBLAB软件。

四、设计方案:通过对图像灰度化处理的算法,将图像的像素值进行线性变换,以及将三维彩色图像转变为二维图像,即实现了将图像灰度化处理。

以及增加(降低)像素的值,可以对图像进行亮度的增(减)。

对图像进行平移时,可以利用一个生成的零矩阵,将需要平移的图像的像素值按其列或按其行进行递增赋值与零矩阵,即实现了对图像向左右或者向上下的平移。

五、主要代码及必要说明:1、对图像灰度化f=imread('Winter.jpg');figure(1);imshow(f);for x=1:600for y=1:800g(x,y)=0.3*f(x,y,1)+0.59*f(x,y,2)+0.11*f(x,y,3);end;end;figure(2);imshow(g);2、对图像进行平移clc;clear;a=imread('house.jpg');b=im2double(a);si=size(b);m=si(1);n=si(2);figure,imshow(b);g1=zeros(m,n);for x=m:-1:51for y=n:-1:51g1(x-50,y-50)=b(x,y);endendfigure,imshow(g1);六、测试结果及说明:通过利用以上代码,对图像进行了灰度化处理,平移处理,其实验结果如下所示:此图为原图像,图像为彩色图像,通过以上处理,将其变为灰色图像,如下所示:灰度化处理后的图像平移后的图像七、心得体会:实验结束时,对于本次实验的内容,总算有了初步的理解和掌握,尽管只是第一次对图像做简单的处理,但是,我从中还是学到了很多东西,而且感觉到学有所用以及这门课程的高深莫测。

实验报告二灰度级修正

实验报告二灰度级修正

实验报告二姓名:学号:班级:实验日期: 2016.5.9 实验成绩:实验题目:图像灰度级修正一.实验目的(1)掌握常用的图像灰度级修正方法,包括图象的灰度变换和直方图均衡化法,加深对灰度直方图的理解。

(2)掌握对比度增强、直方图增强的原理,方法。

二.实验原理灰度变换在空间域中进行,它是将原图像的灰度级按照一定的线性或是非线性函数映射到指定的灰度级上,起到图像增强、突出细节等作用,直方图均衡化则是在频域上对灰度值的频谱密度分布更加均匀化,能起到增强对比度的作用。

三.实验内容及结果(1)读入一副灰度图像Image.bmp,调整灰度的图像细节更容易看清,应用非线性点运算(对数变换),显示灰度变换前后的像。

图1灰度对数化和指数化运算(2)习题3.14,使用MATLAB语言构建两幅图像的矩阵,再对两幅图像进行3×3均值模板进行模糊处理,比较模糊前后两幅图像的直方图(imhist)。

图2 均值滤波及直方图(3)任意选择一副灰度图像,使用函数histeq将其均衡化成32个灰度级数的直方图。

图2 均值滤波及直方图四.结果分析(1)观察图一,显然原图像由于球体偏暗,导致球上的花边纹细节不够清晰,在对其灰度进行对数运算过后,球的亮度显然增加,球上的花边纹也由此显得清晰可见,这正是因为对数曲线的特征决定的,它能将输入中范围较窄的低灰度级映射为输出中较宽的灰度级,相反的,对高的灰度值也是如此,起到了扩展图像中暗的灰度,同时压缩更高的灰度级的值,所以球上花纹由于球体亮度的增大而突出起来,同样伽马变换中gama值小于1时和对数变换效果一样,而当gama值大于1时则和对数变换效果相反。

(2)观察图二中的黑白交替的原图在空间域的规律性交替变换或是说周期交替变换,在频率域上频谱为纯净的两根谱线,经过均值滤波器平滑处理之后,谱线增多且改变了原来谱线的幅值和相位,这些变化是由于滤波器模板本身的系统响应所带来的对频谱的加工,在观察图一滤波后的空间域图像,发现四周角灰度值特殊,感觉有四条粗线,观察图二滤波后的图更明显,会发现最左边的白没有接触黑,但是在滤波过后却变灰了,所以说,最左边的白并不真的不和黑相邻,由于图片的周期性,它其实是和最右边的黑相邻的,这就是由于图片的周期性决定的。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
任务:
(1)在左视图中打开一幅bmp位图,包括256色或真彩色位图
(2)制作一个【目标物体提取】菜单,将消息映射到右视图中,在右视图
中,完成图像中的齿轮目标物体提取,与背景分离,进行二值化。
3.将给定的真彩色24位位图转换为8度位图,并保存8位的灰度位图。。(选作)
要求:将给定的真彩色24位位图转换为8度位图,并保存8位的灰度位图。。
任务:
(1)在左视图中打开一幅24bmp位图。
(2)制作一个【24位位图转换为8度位图】菜单,将消息映射到右视图中,在右视图
中将24位位图转换为8度位图显示,完成文件保存功能。
实验过程与实验结果(可包括实验实施的步骤、算法描述、流程、结论等)
天津理工大学
计算机与通信工程学院
实验报告
2010至2011学年第一学期
实验二图像灰度变换处理
课程名称
数字图像处理
学号
学生姓名
年级
专业
教学班号
1
实验地点
主7-219
实验时间
2012年4月23日第9节至第810节
主讲教师
杨淑莹
辅导教师
实验(二)
实验名称
图像灰度变换处理
软件环境
Windows
VC++6.0
硬件环境PCຫໍສະໝຸດ 实验目的1.实现彩色图像的灰度变换。
2.将给定彩色图像中的目标物体提取,与背景分离,进行二值化。
3.将给定的真彩色24位位图转换为8度位图,并保存8位的灰度位图。
实验内容(应包括实验题目、实验要求、实验任务等)
1.实现彩色图像的灰度变换。
要求:显示一幅24位图,进行灰度变换。
任务:
(1)在左视图中打开一幅24bmp位图。
(2)制作一个【图像的灰度变换】菜单,将消息映射到右视图中,在右视图
中显示位图,完成彩色图像的灰度变换功能。
Gray(i,j)=0.11R(i,j)+0.59G(i,j)+0.3B(i,j)
2.将给定彩色图像中的目标物体提取,与背景分离,进行二值化。
要求:在上面要求的基础上。
将图像中的齿轮目标物体提取,与背景分离,进行二值化。
相关文档
最新文档