2014年四川省自贡市中考数学试卷及答案(Word版)

合集下载

自贡市2014-2015学年八年级上期末统一考试数学试题及解答

自贡市2014-2015学年八年级上期末统一考试数学试题及解答

F
又 AE CE ∴ AE EF CE EF 即 AF CE …… (2 分) B
C
AD CB
在r ADF 和 r CBE 中 A C
AF CE
∴ r ADF ≌ r CBE
…… (4 分)
∴ B D …… (5 分)
18、先化简,再求值: a
D.30°或 150°
考点:三角形高的定义,三角形内角和及其推论,等腰三角形的定义,直角三角形两锐角互 余.
V 分析:等腰三角形一腰上高可能在腰上,也有可能在此腰的延长线上,见示意图,若
AB AC , BD 是等腰 ABC 一腰的高, 1 60 o .
A
略⑴.解在:图甲中,∵ BD 是等腰
四、解答题(本题有 3 道小题,每小题 6 分,共计 18分)
求证: B D
考点:平行线的性质、三角形全等的判定、全等三角形的性质. A
D
分析:要证明 B D ,可以通过证明r ADF ≌ r CBE 来解决. 而 AD P BC, AE CE 能提供 A C 和 AF CE .
E
略证:∵ AD P BC ∴ A C …… (1 分)
12、如图,在△ ABC 中, C 90 o, ABC 60 o, BD 平分 ABC ,若 AD 6 ,则 AC
=.
C
考点:角平分线的定义和性质,等腰三角形的判定,直角三角形的性质.
D
分析:主要是抓住 AC AD DC ,由于 AD 6 ,所以关键是求CD 通过题中
条件可以求出 DB DA 6 , DBC 30 o,所以根据根据直角三角形的性A 质中的在直角三角形中,30°锐角所对的直角边等于斜边的一半,可

2014年四川中考数学真题卷含答案解析

2014年四川中考数学真题卷含答案解析

2014年成都市高中阶段教育学校统一招生考试数学试题(含答案全解全析)A卷(共100分)一、选择题(本大题共10个小题,每小题3分,共30分,每小题均有四个选项,其中只有一项符合题目要求)1.在-2,-1,0,2这四个数中,最大的数是( )A.-2B.-1C.0D.22.下列几何体的主视图是三角形的是( )3.正在建设的成都第二绕城高速全长超过220公里,串起我市二、三圈层以及周边的广汉、简阳等地,总投资达到290亿元.用科学记数法表示290亿元应为( )A.290×108元B.290×109元C.2.90×1010元D.2.90×1011元4.下列计算正确的是( )A.x+x2=x3B.2x+3x=5xC.(x2)3=x5D.x6÷x3=x25.下列图形中,不是..轴对称图形的是( )6.函数y=√x-5中,自变量x的取值范围是( )A.x≥-5B.x≤-5C.x≥5D.x≤57.如图,把三角板的直角顶点放在直尺的一边上,若∠1=30°,则∠2的度数为( )A.60°B.50°C.40°D.30°8.近年来,我国持续大面积的雾霾天气让环保和健康问题成为焦点.为进一步普及环保和健康知识,我市某校举行了“建设宜居四川成都,关注环境保护”的知识竞赛,某班学生的成绩统计如下:成绩(分)60708090100人数4812115则该班学生成绩的众数和中位数分别是( )A.70分,80分B.80分,80分C.90分,80分D.80分,90分9.将二次函数y=x2-2x+3化为y=(x-h)2+k的形式,结果为( )A.y=(x+1)2+4B.y=(x+1)2+2C.y=(x-1)2+4D.y=(x-1)2+210.在圆心角为120°的扇形AOB中,半径OA=6cm,则扇形AOB的面积是( )A.6πcm2B.8πcm2C.12πcm2D.24πcm2二、填空题(本大题共4个小题,每小题4分,共16分)11.计算:|-√2|= .12.如图,为估计池塘岸边A,B 两点间的距离,在池塘的一侧选取点O,分别取OA,OB 的中点M,N,测得MN=32 m,则A,B 两点间的距离是 m.13.在平面直角坐标系中,已知一次函数y=2x+1的图象经过P 1(x 1,y 1),P 2(x 2,y 2)两点,若x 1<x 2,则y 1 y 2.(填“>”“<”或“=”)14.如图,AB 是☉O 的直径,点C 在AB 的延长线上,CD 切☉O 于点D,连结AD.若∠A=25°,则∠C= 度.三、解答题(本大题共6个小题,共54分)15.(本小题满分12分,每题6分) (1)计算:√9-4sin 30°+(2 014-π)0-22;(2)解不等式组:{3x -1>5, ①2(x +2)<x +7.②16.(本小题满分6分)如图,在一次数学课外实践活动中,小文在点C 处测得树的顶端A 的仰角为37°,BC=20 m,求树的高度AB.(参考数据:sin 37°≈0.60,cos 37°≈0.80,tan 37°≈0.75)17.(本小题满分8分)先化简,再求值:(aa-b -1)÷ba2-b2,其中a=√3+1,b=√3-1.18.(本小题满分8分)第十五届中国“西博会”将于2014年10月底在成都召开,现有20名志愿者准备参加某分会场的工作,其中男生8人,女生12人.(1)若从这20人中随机选取一人作为联络员,求选到女生的概率;(2)若该分会场的某项工作只在甲、乙两人中选一人,他们准备以游戏的方式决定由谁参加,游戏规则如下:将四张牌面数字分别为2,3,4,5的扑克牌洗匀后,数字朝下放于桌面,从中任取2张,若牌面数字之和为偶数,则甲参加,否则乙参加.试问这个游戏公平吗?请用树状图或列表法说明理由.19.(本小题满分10分)如图,一次函数y=kx+5(k为常数,且k≠0)的图象与反比例函数y=-8x的图象交于A(-2,b),B两点.(1)求一次函数的表达式;(2)若将直线AB向下平移m(m>0)个单位长度后与反比例函数的图象有且只有一个公共点,求m的值.20.(本小题满分10分)如图,矩形ABCD中,AD=2AB,E是AD边上一点,DE=1nAD(n为大于2的整数),连结BE,作BE的垂直平分线分别交AD,BC于点F,G,FG与BE的交点为O,连结BF和EG.(1)试判断四边形BFEG的形状,并说明理由;(2)当AB=a(a为常数),n=3时,求FG的长;(3)记四边形BFEG的面积为S1,矩形ABCD的面积为S2,当S1S2=1730时,求n的值.(直接写出结果,不必写出解答过程)B卷(共50分)一、填空题(本大题共5个小题,每小题4分,共20分)21.在开展“国学诵读”活动中,某校为了解全校1300名学生课外阅读的情况,随机调查了50名学生一周的课外阅读时间,并绘制成如图所示的条形统计图.根据图中数据,估计该校1 300名学生一周的课外阅读时间不少于7小时的人数是.22.已知关于x 的分式方程x+k x+1-kx -1=1的解为负数,则k 的取值范围是 .23.在边长为1的小正方形组成的方格纸中,称小正方形的顶点为“格点”,顶点全在格点上的多边形为“格点多边形”.格点多边形的面积记为S,其内部的格点数记为N,边界上的格点数记为L.例如,图中三角形ABC 是格点三角形,其中S=2,N=0,L=6;图中格点多边形DEFGHI 所对应的S,N,L 分别是 .经探究发现,任意格点多边形的面积S 可表示为S=aN+bL+c,其中a,b,c 为常数,则当N=5,L=14时,S= .(用数值作答)24.如图,在边长为2的菱形ABCD 中,∠A=60°,M 是AD 边的中点,N 是AB 边上一动点,将△AMN 沿MN 所在直线翻折得到△A'MN,连结A'C,则A'C 长度的最小值是 .25.如图,在平面直角坐标系xOy 中,直线y=32x 与双曲线y=6x 相交于A,B 两点,C 是第一象限内双曲线上一点,连结CA 并延长交y 轴于点P,连结BP,BC.若△PBC 的面积是20,则点C 的坐标为 .二、解答题(本大题共3个小题,共30分)26.(本小题满分8分)在美化校园的活动中,某兴趣小组想借助如图所示的直角墙角(两边足够长),用28 m 长的篱笆围成一个矩形花园ABCD(篱笆只围AB,BC 两边),设AB=x m.(1)若花园的面积为192 m 2,求x 的值;(2)若在P 处有一棵树与墙CD,AD 的距离分别是15 m 和6 m,要将这棵树围在花园内(含边界,不考虑树的粗细),求花园面积S 的最大值.27.(本小题满分10分)如图,在☉O的内接△ABC中,∠ACB=90°,AC=2BC,过C作AB的垂线l交☉O于另一点D,垂足⏜上异于A,C的一个动点,射线AP交l于点F,连结PC与PD,PD交AB于点G.为E.设P是AC(1)求证:△PAC∽△PDF;⏜=BP⏜,求PD的长;(2)若AB=5,AP=x,tan∠AFD=y,求y与x之间的函数关系式.(不要求写出x的取(3)在点P运动过程中,设AGBG值范围)28.(本小题满分12分)(x+2)(x-4)(k为常数,且k>0)与x轴从左至右依次交于A,B两点,与y 如图,已知抛物线y=k8x+b与抛物线的另一交点为D.轴交于点C,经过点B的直线y=-√33(1)若点D的横坐标为-5,求抛物线的函数表达式;(2)若在第一象限内的抛物线上有点P,使得以A,B,P为顶点的三角形与△ABC相似,求k的值;(3)在(1)的条件下,设F为线段BD上一点(不含端点),连结AF.一动点M从点A出发,沿线段AF以每秒1个单位的速度运动到F,再沿线段FD以每秒2个单位的速度运动到D后停止.当点F的坐标是多少时,点M在整个运动过程中用时最少?答案全解全析:A卷一、选择题1.D根据“正数大于0,0大于负数,正数大于负数,两负数绝对值大的反而小”可知-2<-1<0<2.故选D.2.B从正面看该几何体得到的平面图形就是其主视图,结合各选项,显然主视图是三角形的几何体只有圆锥,故选B.3.C科学记数法的表示形式为a×10n(其中1≤|a|<10,n为整数),∴290亿元=2.90×1010元.故选C.评析本题考查用科学记数法表示一个较大的数,熟记科学记数法的表示形式,即a×10n(其中1≤|a|<10,n为整数)是解答此类题的关键,属容易题,但要注意:①a的取值要求;②题干中的数与选项中的数的单位的变化.4.B选项A中,x与x2不是同类项,无法合并,所以选项A不正确;选项B中,2x与3x是同类项,所以2x+3x=(2+3)x=5x,故选项B正确;选项C中,(x2)3=x2×3=x6,显然选项C不正确;选项D 中,x6÷x3=x6-3=x3,显然选项D也不正确.综上,只有选项B正确,故选B.评析本题考查积的乘方、同底数幂的除法、合并同类项,属容易题.5.A根据轴对称图形的概念可知,选项B、C、D中的图形均为轴对称图形,只有选项A中的图形不是轴对称图形.故选A.6.C根据“二次根式的被开方数大于或等于0”知x-5≥0.解得x≥5.故选C.评析本题考查二次根式的概念、不等式的解法的简单应用,通常学生易忽略“等于0”的情况,属容易题.7.A由题图可知∠1的余角是60°,根据“两直线平行,同位角相等”知∠2与∠1的余角相等,即∠2=60°.故选A.8.B由题中表格的数据可以看出:①数据80出现的次数最多,所以众数是80分;②全班40人,按成绩从低到高的顺序排列,中位数应该为第20和21位学生的成绩的平均数,即(80+80)÷2=80(分),所以众数是80分,中位数是80分,故选B.9.D y=x2-2x+3=(x2-2x+1)+2=(x-1)2+2.故选D.10.C扇形AOB的面积S=nπR 2360=120×π×62360=12π(cm2),故选C.二、填空题11.答案√2解析因为负数的绝对值等于它的相反数,所以|-√2|=√2,故答案为√2.12.答案64解析 由题意易知MN 为△OAB 的中位线,根据三角形中位线的性质可得AB=2MN=2×32=64 m,故答案为64. 13.答案 <解析 在y=2x+1中,∵k=2>0,∴y 随x 的增大而增大,又x 1<x 2,∴y 1<y 2. 14.答案 40解析 如图,连结OD.∵∠A=25°,∴∠DOC=50°.∵CD 切☉O 于D,∴∠ODC=90°. ∴∠C=90°-∠DOC=90°-50°=40°.故填40.三、解答题15.解析 (1)原式=3-4×12+1-4(4分)=3-2+1-4 =-2.(6分)(2)解不等式①得x>2;(2分) 解不等式②得x<3.(4分)∴不等式组的解集为2<x<3.(6分)评析 本题是一道综合性较强的基础知识题,主要考查了算术平方根、锐角三角函数、有理数乘方、非零的数的零次幂的混合运算以及不等式组的解法,熟练掌握相关的知识是解题的关键,属容易题.16.解析 由题意知∠B=90°. ∴ABBC=tan C.(3分)则AB=BC ·tan C.∵BC=20 m,∠C=37°,∴AB=20×tan 37°≈15(m). 答:树高AB 约为15 m.(6分) 17.解析 原式=(aa -b -a -b a -b )·a 2-b 2b(2分)=b a -b ·(a+b)(a -b)b(4分)=a+b.(6分)当a=√3+1,b=√3-1时, 原式=(√3+1)+(√3-1) =2√3.(8分)评析 本题主要考查分式的化简.熟练掌握分式的运算法则和因式分解的方法是解答此类题的关键.18.解析 (1)P(选到女生)=1220=35.(3分) (2)用列表法表示如下: 第一张和第二张 234 5 2 5 6 7 3 5 7 8 4 6795 7 8 9(6分)或画树状图如下:(6分)由表(或树状图)可知,共有12种等可能的结果,其中和为偶数的有4种,和为奇数的有8种, 所以P(甲参加)=412=13,P(乙参加)=812=23. 所以这个游戏不公平,乙参加的机会更大.(8分) 19.解析 (1)∵点A(-2,b)在反比例函数y=-8x 的图象上, ∴b=-8-2=4,即点A 的坐标为(-2,4).(2分) 将点A 的坐标代入y=kx+5,得-2k+5=4,解得k=12. ∴一次函数的表达式是y=12x+5.(4分)(2)直线AB 向下平移m 个单位长度后的表达式为y=12x+5-m.(5分) 联立{y =-8x,y =12x +5-m.消去y,整理得x 2+2(5-m)x+16=0.(7分)∵平移后的直线与反比例函数的图象有且只有一个公共点,∴Δ=4(5-m)2-64=0. 解得m=1或m=9.(10分)20.解析 (1)四边形BFEG 是菱形.(1分) 理由如下:∵FG 垂直平分BE,∴∠BOG=∠EOF=90°,BO=EO.在矩形ABCD 中,AD ∥BC,∴∠GBO=∠FEO. ∴△BOG ≌△EOF(ASA).(2分) ∴BG=EF.∴四边形BFEG 是平行四边形. 又∵FG ⊥BE,∴平行四边形BFEG 是菱形.(3分) (2)当AB=a,n=3时,AD=2a,AE=23AD=43a.在Rt △ABE 中,由勾股定理得BE=√AB 2+AE 2=53a.(4分) ∴OE=12BE=56a.∵∠A=∠EOF=90°,∠AEB=∠OEF, ∴△ABE ∽△OFE.(5分)∴OF AB =OE AE ,即OF=OE AE ·AB=56a 43a·a=58a. ∴FG=2OF=54a.(7分) (3)n=6.(10分)详解:设AB=x,则DE=2xn . 当S 1S 2=1730时,BG ·AB AB ·AD =1730,解得BG=1715x.又由(1)知四边形BFEG 是菱形,则BF=EF=BG=1715x. 在Rt △ABF 中,∵AB 2+AF 2=BF 2,∴AF=815x. ∴AE=AF+EF=53x,∴DE=AD -AE=13x. ∴2x n =13x,∴n=6.评析 本题是以矩形为基础,综合性较强的几何推理计算题,主要考查矩形的性质、全等三角形的判定与性质、平行四边形的判定与性质、菱形的判定与性质、勾股定理、相似三角形的判定与性质以及方程思想、转化思想的综合应用.尤其是第(3)小题,利用菱形性质和勾股定理求得AF 的长是解题关键.属于较难题.B 卷一、填空题 21.答案 520解析 由题图可以看出抽查的50名学生中,一周的课外阅读时间不少于7小时的有15+5=20(名),所以全校1 300名学生中,一周的课外阅读时间不少于7小时的人数是1 300×2050=520.故填520. 22.答案 k>12,且k ≠1解析 解分式方程得x=1-2k,又由题意知x<0,且(x+1)·(x-1)≠0,所以{1-2k <0,(1-2k +1)(1-2k -1)≠0,解得k>12,且k ≠1.故填k>12,且k ≠1.评析 本题主要考查分式方程的解法、不等式组的解法以及转化思想.属中等难度题.23.答案 7,3,10;11解析 根据S,N,L 分别表示的意义,仔细观察格点多边形DEFGHI 可知S=7,N=3,L=10.任意取一个边长为2的格点正方形,观察其面积S=4,内部格点数N=1,边界格点数L=8.由题意得{3a +10b +c =7,a +8b +c =4,6b +c =2,解得{a =1,b =12,c =-1,∴S=N+12L-1.∴当N=5,L=14时,S=5+12×14-1=11.评析 本题是一道以格点多边形为背景的阅读理解题,主要考查学生的观察、阅读、理解、转化等多种综合能力.解决此类题目的关键是读懂题意,借助图形观察分析,但第二个填空题设置有一定难度,需再借助图形另取任意格点多边形求出S 、N 、L,然后结合前两组数列出方程组,确定关系式中的a 、b 、c 的值.属中等难度题.24.答案 √7-1解析 过点M 作MF ⊥CD 交CD 的延长线于F.由题意可知MA 、MA'是定值,A'C 的长度最小时,A'在MC 上(如图).∵菱形ABCD 的边长为2,∠A=60°,M 是AD 的中点,∴MD=MA=1,∠MDF=60°.∴MF=MDsin 60°=√32,DF=MDcos 60°=12.∴CF=CD+DF=52.在Rt △MFC 中,由勾股定理得MC=√MF 2+CF 2=√7.∵△AMN 沿MN 所在直线翻折得到△A'MN,∴MA'=MA=1.∴A'C=MC -MA'=√7-1.故答案为√7-1.评析 本题是一道以菱形为依托的动点探究问题,主要考查菱形、轴对称(翻折)、锐角三角函数、勾股定理等知识的综合应用.根据已知分析确定点A'的位置是本题的解题关键.25.答案 (143,97) 解析 由题意可设C (a,6a),BC 交y 轴于D, 解方程组{y =32x,y =6x得{x =2,y =3或{x =-2,y =-3, ∴A 点坐标为(2,3),B 点坐标为(-2,-3).设直线BC 的解析式为y=kx+b,把B(-2,-3),C (a,6a )代入,得{-2k +b =-3,ak +b =6,解得{k =3a ,b =6a -3,∴直线BC 的解析式为y=3a x+6a -3,当x=0时,y=6a -3,∴D 点坐标为(0,6a -3).设直线AC 的解析式为y=mx+n,把A(2,3),C (a,6)代入,得{2m +n =3,am +n =6,解得{m =-3a ,n =6a +3, ∴直线AC 的解析式为y=-3a x+6a +3,当x=0时,y=6a +3,∴P 点坐标为(0,6a +3).∴PD=6.∵S △PBC =S △PBD +S △CPD ,∴12×2×6+12×a×6=20,解得a=143,∴C 点坐标为(143,97).故答案为(143,97).评析 本题主要考查函数图象的交点与方程组的解的关系、方程组的解法、待定系数法确定函数的解析式以及用割补法解决有关面积问题等知识的综合应用,运算量稍大,属较难题.二、解答题26.解析 (1)由题意得x(28-x)=192,(1分)解这个方程得x 1=12,x 2=16.(3分)(2)花园面积S=x(28-x)=-(x-14)2+196.(4分)由题意知{x ≥6,28-x ≥15,解得6≤x ≤13.(6分) 在6≤x ≤13范围内,S 随x 的增大而增大.∴当x=13时,S 最大值=-(13-14)2+196=195.故花园面积最大为195 m 2.(8分)评析 这是一道综合一元二次方程、不等式组和二次函数知识的实际应用题,主要考查学生的转化思想和建模思想.能根据题意找出等量关系列出方程和函数关系式是本题的解题关键,尤其第(2)小题中,根据题目隐含条件列出不等式组确定自变量取值范围更是重要环节.属中等难度题.27.解析 (1)证明:连结PB.∵∠ACB=90°,∴AB 是☉O 的直径.∴∠APB=90°,∴∠PAB+∠PBA=90°.∵l ⊥AB 于E,∴∠AFE+∠FAE=90°.∵∠PAB=∠FAE,∴∠PBA=∠AFE.∵∠ABP=∠ACP,∴∠AFE=∠ACP.又∵∠PAC=∠PDC,∴△PAC ∽△PDF.(3分)(2)在Rt △ABC 中,AC=2BC,AB=5,由勾股定理得AC=2√5,BC=√5.∵S △ABC =12AB ·CE=12AC ·BC,∴CE=2,可得AE=4.(4分)∵AP⏜=BP ⏜,∴PA=PB,则△ABP 为等腰直角三角形. ∴∠PAB=45°,AP=√22AB=5√22. ∵EF ⊥AB,∠PAB=45°.∴EF=AE=4.由垂径定理得DE=CE=2,则DF=DE+EF=6.由(1)知△PAC ∽△PDF,∴PD =DF .故PD=DF ·PA AC =6×52√22√5=3√102.(7分)(3)解法一:过点G 作GH ∥BP 交AP 于点H. 则GH ⊥AP,∠AGH=∠ABP=∠AFD,AH PH =AG BG=x. ∵l ⊥AB,∴AC⏜=AD ⏜,∴∠ABC=∠APD. ∴GH PH =tan ∠APD=tan ∠ABC=AC BC =2,即GH=2PH.∴y=tan ∠AFD=tan ∠AGH=AH GH =AH 2PH =12x. 即y 与x 之间的函数关系式为y=12x.(10分)解法二:连结AD,BD,则AD=AC,BD=BC.∵∠APG=∠DBG,∠AGP=∠DGB,∴△APG ∽△DBG,则AP DB =AG DG . ①同理,由△PBG ∽△ADG,得PB =BG . ②由①÷②,得AP PB ·AD DB =AG BG, 即AP PB =AG BG ·BD AD =AG BG ·BC AC =12x. ∴y=tan ∠AFD=tan ∠ABP=AP PB =12x.即y 与x 之间的函数关系式为y=12x.(10分)评析 本题是一道较复杂的以圆为载体的动点几何综合题,涉及了圆、三角形、锐角三角函数等重要知识,难度较大,体现对学生思维能力的考查.28.解析 (1)由抛物线y=k 8(x+2)(x-4)与x 轴从左至右依次交于A,B 两点,得A(-2,0),B(4,0).∵直线y=-√33x+b 经过点B(4,0),∴b=4√33.(1分) ∵点D 的横坐标为-5,且在直线y=-√33x+4√33上, ∴点D 的坐标为(-5,3√3).把D(-5,3√3)代入y=k 8(x+2)(x-4),解得k=89√3. ∴抛物线的函数表达式为y=√39x 2-2√39x-8√39.(3分)(2)易得C(0,-k),OA=2,OB=4,OC=k.由勾股定理得AC=√k 2+4,BC=√k 2+16.显然∠ABP 为钝角,∠CAB 与∠ABC 是锐角,∴只有如下两种情况:i)当△PAB ∽△ABC 时,有PA AB =AB BC ,∠PAB=∠ABC,则PA=AB 2BC =2√k +16=36√k 2+16k 2+16.过P 作PH ⊥x 轴于H,则△PAH ∽△CBO.有AH =PH =PA =36k 2+16,∴AH=144k 2+16,PH=36k k 2+16. 可得点P 坐标为(144k 2+16-2,36k k 2+16), 代入y=k 8(x+2)(x-4),得36kk 2+16=k 8·144k 2+16·(144k 2+16-6). 化简得144k 2+16-6=2,即k 2=2.又k>0,∴k=√2.(6分)ii)当△APB ∽△ABC 时,有AP AB =AB AC ,∠PAB=∠BAC.则AP=AB 2AC =62√k +4=36√k 2+4k 2+4. 过P 作PH ⊥x 轴于H,则△PAH ∽△CAO.有AH AO =PH CO =AP AC =36k 2+4,∴AH=72k 2+4,PH=36k k 2+4. 可得点P 坐标为(72k 2+4-2,36k k 2+4), 代入y=k 8(x+2)(x-4),得36kk 2+4=k ·72k 2+4·(72k 2+4-6). 化简得72k 2+4-6=4,即k 2=165.又k>0,∴k=4√55. 综上,k=√2或k=4√55.(8分)(3)过D 作DG ⊥y 轴于G,过A 作AQ ⊥DG 于Q,过F 作FQ'⊥DG 于Q'.设直线BD 交y 轴于E,则E (0,4√33). 在Rt △BOE 中,tan ∠EBO=EO OB =√33,则∠EBO=30°.由DG ∥AB,得∠EDG=30°,∴DF=2FQ'.动点M 在整个运动过程中所用时间为t=AF 1+FD 2=AF 1+2FQ'2=(AF+FQ')秒. 根据“垂线段最短”,知AF+FQ'≥AQ.∴当点F 为AQ 与BD 的交点时,点M 在整个运动过程中用时最少.(11分)此时,由DG ⊥y 轴,AQ ⊥DG,得x F =x A =-2.又点F 在直线BD 上,∴y F =2√3.∴点F 的坐标是(-2,2√3).(12分)评析 本题是以二次函数为载体,综合一次函数、相似三角形、勾股定理、锐角三角函数等知识的动点探究题,主要考查利用待定系数法确定函数的解析式、二次函数的最值、“动中取静”的解题策略以及分类、转化、方程等数学思想的妙用.题目设置具有梯度性,第(1)问较容易,第(2)问有一定难度,尤其注意“相似”的文字表述与数学符号“∽”的区别,前者必须分类讨论求解,不可忽略.第(3)问难度较大,将动点运动时间最少问题转化为线段长度最短问题,利用垂线段最短这一性质是解答关键.。

数学:中考2014年各地数学试题解答 四川绵阳、四川泸州

数学:中考2014年各地数学试题解答 四川绵阳、四川泸州

四川省绵阳市2014年中考数学试卷一、选择题(共12小题,每小题3分,满分36分)1.(3分)(2014•绵阳)2的相反数是()C.D.2A.﹣2B.考点:相反数分析:利用相反数的概念:只有符号不同的两个数叫做互为相反数,进而得出答案.解答:解:2的相反数是﹣2.故选:A.点评:此题主要考查了相反数的概念,正确把握定义是解题关键.2.(3分)(2014•绵阳)下列四个图案中,属于中心对称图形的是()A.B.C.D.考点:中心对称图形.分析:根据中心对称的概念和各图形的特点即可求解.解答:解:A、不是中心对称图形,故本选项错误;B、不是中心对称图形,故本选项错误;C、不是中心对称图形,故本选项错误;D、是中心对称图形,故本选项正确.故选D.点评:本题考查中心对称图形的概念:在同一平面内,如果把一个图形绕某一点旋转180度,旋转后的图形能和原图形完全重合,那么这个图形就叫做中心对称图形.3.(3分)(2014•绵阳)下列计算正确的是()A.a2•a=a2B.a2÷a=a C.a2+a=a3D.a2﹣a=a考点:同底数幂的除法;合并同类项;同底数幂的乘法.分析:根据合并同类项的法则,同底数幂的乘法与除法的知识求解即可求得答案.解答:解:A、a2a=a3,故A选项错误;B、a2÷a=a,故B选项正确;C、a2+a=a3,不是同类项不能计算,故错误;D、a2﹣a=a,不是同类项不能计算,故错误;故选:B.点评:本题主要考查合并同类项的法则,同底数幂的乘法与除法的知识,熟记法则是解题的关键.4.(3分)(2014•绵阳)若代数式有意义,则x的取值范围是()A.x<B.x≤C.x>D.x≥考点:二次根式有意义的条件.分析:根据被开方数大于等于0列式计算即可得解.解答:解:由题意得,3x﹣1≥0,解得x≥.故选D.点评:本题考查的知识点为:二次根式的被开方数是非负数.5.(3分)(2014•绵阳)一儿童行走在如图所示的地板上,当他随意停下时,最终停在地板上阴影部分的概率是()A.B.C.D.考点:几何概率.分析:根据几何概率的求法:最终停留在黑色的方砖上的概率就是黑色区域的面积与总面积的比值.解答:解:观察这个图可知:黑色区域(3块)的面积占总面积(9块)的,故其概率为.故选:A.点评:本题考查几何概率的求法:首先根据题意将代数关系用面积表示出来,一般用阴影区域表示所求事件(A);然后计算阴影区域的面积在总面积中占的比例,这个比例即事件(A)发生的概率.6.(3分)(2014•绵阳)如图所示的正三棱柱,它的主视图是()A.B.C.D.考点:简单几何体的三视图.分析:根据主视图是从物体正面看所得到的图形求解.解答:解:从几何体的正面看所得到的形状是矩形.故选B.点评:本题考查了几何体的三视图,掌握定义是关键.注意所有的看到的棱都应表现在三视图中.7.(3分)(2014•绵阳)线段EF是由线段PQ平移得到的,点P(﹣1,4)的对应点为E (4,7),则点Q(﹣3,1)的对应点F的坐标为()A.(﹣8,﹣2)B.(﹣2,﹣2)C.(2,4)D.(﹣6,﹣1)考点:坐标与图形变化-平移分析:首先根据P点的对应点为E可得点的坐标的变化规律,则点Q的坐标的变化规律与P 点的坐标的变化规律相同即可.解答:解:∵点P(﹣1,4)的对应点为E(4,7),∴P点是横坐标+5,纵坐标+3得到的,∴点Q(﹣3,1)的对应点N坐标为(﹣3+5,1+3),即(2,4).故选:C.点评:此题主要考查了坐标与图形变化﹣平移,关键是掌握把一个图形平移后,个点的变化规律都相同.8.(3分)(2014•绵阳)如图,一艘海轮位于灯塔P的北偏东30°方向,距离灯塔80海里的A处,它沿正南方向航行一段时间后,到达位于灯塔P的南偏东45°方向上的B处,这时,海轮所在的B处与灯塔P的距离为()A.40海里B.40海里C.80海里D.40海里考点:解直角三角形的应用-方向角问题.分析:根据题意画出图形,进而得出PA,PC的长,即可得出答案.解答:解:过点P作PC⊥AB于点C,由题意可得出:∠A=30°,∠B=45°,AP=80海里,故CP=AP=40(海里),则PB==40(海里).故选:A.点评:此题主要考查了方向角问题以及锐角三角函数关系等知识,得出各角度数是解题关键.9.(3分)(2014•绵阳)下列命题中正确的是()A.对角线相等的四边形是矩形B.对角线互相垂直的四边形是菱形C.对角线互相垂直平分且相等的四边形是正方形D.一组对边相等,另一组对边平行的四边形是平行四边形考点:命题与定理.分析:根据根据矩形、菱形、正方形和平行四边形的判定方法对各选项进行判断.解答:解:A、对角线相等的平行四边形是矩形,所以A选项错误;B、对角线互相垂直的平行四边形是菱形,所以B选项错误;C、对角线互相垂直平分且相等的四边形是正方形,所以C选项正确;D、一组对边相等且平行的四边形是平行四边形,所以D选项错误.故选C.点评:本题考查了命题与定理:判断事物的语句叫命题;正确的命题称为真命题,错误的命题称为假命题;经过推理论证的真命题称为定理.10.(3分)(2014•绵阳)某商品的标价比成本价高m%,根据市场需要,该商品需降价n%出售,为了不亏本,n应满足()A.n≤m B.n≤C.n≤D.n≤考点:一元一次不等式的应用分析:根据最大的降价率即是保证售价大于等于成本价相等,进而得出不等式即可.解答:解:设进价为a元,由题意可得:a(1+m%)(1﹣n%)﹣a≥0,则(1+m%)(1﹣n%)﹣1≥0,整理得:100n+mn≤100m,故n≤.故选:B.点评:此题主要考查了一元一次不等式的应用,得出正确的不等关系是解题关键.11.(3分)(2014•绵阳)在边长为正整数的△ABC中,AB=AC,且AB边上的中线CD将△ABC的周长分为1:2的两部分,则△ABC面积的最小值为()A.B.C.D.考点:勾股定理;三角形的面积;三角形三边关系;等腰三角形的性质.分析:设这个等腰三角形的腰为x,底为y,分为的两部分边长分别为n和2n,再根据题意列出关于x、n、y的方程组,用n表示出x、y的值,由三角形的三边关系舍去不符合条件的x、y的值,由n是正整数求出△ABC面积的最小值即可.解答:解:设这个等腰三角形的腰为x,底为y,分为的两部分边长分别为n和2n,得或,解得或,∵2×<(此时不能构成三角形,舍去)∴取,其中n是3的倍数∴三角形的面积S△=××=n2,对于S△=n2=n2,当n≥0时,S△随着n的增大而增大,故当n=3时,S△=取最小.故选:C.点评:本题考查的是三角形的面积及三角形的三边关系,根据题意列出关于x、n、y的方程组是解答此题的关键.12.(3分)(2014•绵阳)如图,AB是半圆O的直径,C是半圆O上一点,OQ⊥BC于点Q,过点B作半圆O的切线,交OQ的延长线于点P,PA交半圆O于R,则下列等式中正确的是()A.=B.=C.=D.=考点:切线的性质;平行线的判定与性质;三角形中位线定理;垂径定理;相似三角形的判定与性质专题:探究型.分析:(1)连接AQ,易证△OQB∽△OBP,得到,也就有,可得△OAQ∽OPA,从而有∠OAQ=∠APO.易证∠CAP=∠APO,从而有∠CAP=∠OAQ,则有∠CAQ=∠BAP,从而可证△ACQ∽△ABP,可得,所以A正确.(2)由△OBP∽△OQB得,即,由AQ≠OP得,故C不正确.(3)连接OR,易得=,=2,得到,故B不正确.(4)由及AC=2OQ,AB=2OB,OB=OR可得,由AB≠AP得,故D不正确.解答:解:(1)连接AQ,如图1,∵BP与半圆O于点B,AB是半圆O的直径,∴∠ABP=∠ACB=90°.∵OQ⊥BC,∴∠OQB=90°.∴∠OQB=∠OBP=90°.又∵∠BOQ=∠POB,∴△OQB∽△OBP.∴.∵OA=OB,∴.又∵∠AOQ=∠POA,∴△OAQ∽△OPA.∴∠OAQ=∠APO.∵∠OQB=∠ACB=90°,∴AC∥OP.∴∠CAP=∠APO.∴∠CAP=∠OAQ.∴∠CAQ=∠BAP.∵∠ACQ=∠ABP=90°,∴△ACQ∽△ABP.∴.故A正确.(2)如图1,∵△OBP∽△OQB,∴.∴.∵AQ≠OP,∴.故C不正确.(3)连接OR,如图2所示.∵OQ⊥BC,∴BQ=CQ.∵AO=BO,∴OQ=AC.∵OR=AB.∴=,=2.∴≠.∴.故B不正确.(4)如图2,∵,且AC=2OQ,AB=2OB,OB=OR,∴.∵AB≠AP,∴.故D不正确.故选:A.点评:本题考查了切线的性质,相似三角形的判定与性质、平行线的判定与性质、垂径定理、三角形的中位线等知识,综合性较强,有一定的难度.二、填空题(共6小题,每小题4分,满分24分)13.(4分)(2014•绵阳)2﹣2=.考点:负整数指数幂分析:根据负整数指数幂的运算法则直接进行计算即可.解答:解:2﹣2==.故答案为:.点评:本题主要考查负整数指数幂,幂的负整数指数运算,先把底数化成其倒数,然后将负整数指数幂当成正的进行计算.14.(4分)(2014•绵阳)“五一”小长假,以生态休闲为特色的绵阳近郊游倍受青睐.假期三天,我市主要景区景点人气火爆,据市旅游局统计,本次小长假共实现旅游收入5610万元,将这一数据用科学记数法表示为 5.61×107元.考点:科学记数法—表示较大的数分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:将5610万元用科学记数法表示为:5.61×107.故答案为:5.61×107.点评:此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.15.(4分)(2014•绵阳)如图,l∥m,等边△ABC的顶点A在直线m上,则∠α=20°.考点:平行线的性质;等边三角形的性质分析:延长CB交直线m于D,根据根据两直线平行,内错角相等解答即可,再根据三角形的一个外角等于与它不相邻的两个内角的和列式求出∠α.解答:解:如图,延长CB交直线m于D,∵△ABC是等边三角形,∴∠ABC=60°,∵l∥m,∴∠1=40°.∴∠α=∠ABC﹣∠1=60°﹣40°=20°.故答案是:20.点评:本题考查了平行线的性质,等边三角形的性质,熟记性质并作辅助线是解题的关键,也是本题的难点.16.(4分)(2014•绵阳)如图,⊙O的半径为1cm,正六边形ABCDEF内接于⊙O,则图中阴影部分面积为cm2.(结果保留π)考点:正多边形和圆分析:根据题意得出△COW≌△ABW,进而得出图中阴影部分面积为:S扇形OBC 进而得出答案.解答:解:如图所示:连接BO,CO,∵正六边形ABCDEF内接于⊙O,∴AB=BC=CO=1,∠ABC=120°,△OBC是等边三角形,∴CO∥AB,在△COW和△ABW中,∴△COW≌△ABW(AAS),∴图中阴影部分面积为:S扇形OBC==.故答案为:.点评:此题主要考查了正多边形和圆以及扇形面积求法,得出阴影部分面积=S扇形OBC 是解题关键.17.(4分)(2014•绵阳)如图,在正方形ABCD中,E、F分别是边BC、CD上的点,∠EAF=45°,△ECF的周长为4,则正方形ABCD的边长为2.考点:旋转的性质;全等三角形的判定与性质;勾股定理;正方形的性质.分析:根据旋转的性质得出∠EAF′=45°,进而得出△FAE≌△EAF′,即可得出EF+EC+FC=FC+CE+EF′=FC+BC+BF′=4,得出正方形边长即可.解答:解:将△DAF绕点A顺时针旋转90度到△BAF′位置,由题意可得出:△DAF≌△BAF′,∴DF=BF′,∠DAF=∠BAF′,∴∠EAF′=45°,在△FAE和△EAF′中,∴△FAE≌△EAF′(SAS),∴EF=EF′,∵△ECF的周长为4,∴EF+EC+FC=FC+CE+EF′=FC+BC+BF′=4,∴2BC=4,∴BC=2.故答案为:2.点评:此题主要考查了旋转的性质以及全等三角形的判定与性质等知识,得出△FAE≌△EAF′是解题关键.18.(4分)(2014•绵阳)将边长为1的正方形纸片按图1所示方法进行对折,记第1次对折后得到的图形面积为S1,第2次对折后得到的图形面积为S2,…,第n次对折后得到的图形面积为S n,请根据图2化简,S1+S2+S3+…+S2014=1﹣.考点:规律型:图形的变化类分析:观察图形的变化发现每次折叠后的面积与正方形的关系,从而写出面积和的通项公式.解答:解:观察发现S1+S2+S3+…+S2014=+++…+=1﹣,故答案为:1﹣.点评:本题考查了图形的变化类问题,解题的关键是仔细观察图形的变化,并找到图形的变化规律.三、解答题(共7小题,满分90分)19.(16分)(2014•绵阳)(1)计算:(2014﹣)0+|3﹣|﹣;(2)化简:(1﹣)÷(﹣2)考点:二次根式的混合运算;分式的混合运算;零指数幂.专题:计算题.分析:(1)根据零指数幂和分母有理化得到原式=1+2﹣3﹣2,然后合并即可;(2)先把前面括号内通分,再把分子分母因式分解和除法运算化为乘法运算,然后约分即可.解答:解:(1)原式=1+2﹣3﹣2=﹣2;(2)原式=÷=•=.点评:本题考查了二次根式的混合运算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.也考查了零指数幂和分式的混合运算.20.(12分)(2014•绵阳)四川省“单独两孩”政策于2014年3月20日正式开始实施,该政策的实施可能给我们的生活带来一些变化,绵阳市人口计生部门抽样调查了部分市民(每个参与调查的市民必须且只能在以下6种变化中选择一项),并将调查结果绘制成统计图:种类ABCDEF变化有利于延缓社会老龄化现象导致人口暴增提升家庭抗风险能力增大社会基本公共服务的压力环节男女比例不平衡现象促进人口与社会、资源、环境的协调可持续发展根据统计图,回答下列问题:(1)参与调查的市民一共有2000人;(2)参与调查的市民中选择C 的人数是400人;(3)∠α=54°;(4)请补全条形统计图.考点:条形统计图;统计表;扇形统计图.分析:(1)根据A 类的有700人,所占的比例是35%,据此即可求得总人数;(2)利用总人数乘以对应的比例即可求解;(3)利用360°乘以对应的比例即可求解;(4)利用总人数乘以对应的比例求得D 类的人数,然后根据(1)即可作出统计图.解答:解:(1)参与调查的市民一共有:700÷35%=2000(人);(2)参与调查的市民中选择C 的人数是:2000(1﹣35%﹣5%﹣10%﹣15%﹣15%)=400(人);(3)α=360°×15%=54°;(4)D的人数:2000×10%=200(人).点评:本题考查的是条形统计图的综合运用.读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.21.(12分)(2014•绵阳)绵州大剧院矩形专场音乐会,成人票每张20元,学生票每张5元,暑假期间,为了丰富广大师生的业余文化生活,影剧院制定了两种优惠方案,方案1:购买一张成人票赠送一张学生票;方案2:按总价的90%付款,某校有4名老师与若干名(不少于4人)学生听音乐会.(1)设学生人数为x(人),付款总金额为y(元),分别建立两种优惠方案中y与x的函数关系式;(2)请计算并确定出最节省费用的购票方案.考点:一次函数的应用.分析:(1)首先根据优惠方案①:付款总金额=购买成人票金额+除去4人后的儿童票金额;优惠方案②:付款总金额=(购买成人票金额+购买儿童票金额)×打折率,列出y关于x的函数关系式,(2)根据(1)的函数关系式求出当两种方案付款总金额相等时,购买的票数.再就三种情况讨论.解答:解:(1)按优惠方案①可得y1=20×4+(x﹣4)×5=5x+60(x≥4),按优惠方案②可得y2=(5x+20×4)×90%=4.5x+72(x≥4);(2)因为y1﹣y2=0.5x﹣12(x≥4),①当y1﹣y2=0时,得0.5x﹣12=0,解得x=24,∴当购买24张票时,两种优惠方案付款一样多.②当y1﹣y2<0时,得0.5x﹣12<0,解得x<24,∴4≤x<24时,y1<y2,优惠方案①付款较少.③当y1﹣y2>0时,得0.5x﹣12>0,解得x>24,当x>24时,y1>y2,优惠方案②付款较少.点评:本题根据实际问题考查了一次函数的运用.解决本题的关键是根据题意正确列出两种方案的解析式,进而计算出临界点x的取值,再进一步讨论.22.(12分)(2014•绵阳)如图,已知反比例函数y=(k>0)的图象经过点A(1,m),过点A作AB⊥y轴于点B,且△AOB的面积为1.(1)求m,k的值;(2)若一次函数y=nx+2(n≠0)的图象与反比例函数y=的图象有两个不同的公共点,求实数n的取值范围.考点:反比例函数与一次函数的交点问题.分析:(1)根据三角形的面积公式即可求得m的值;(2)若一次函数y=nx+2(n≠0)的图象与反比例函数y=的图象有两个不同的公共点,则方程=nx+2有两个不同的解,利用根的判别式即可求解.解答:=×1×m=1,解:(1)由已知得:S△AOB解得:m=2,把A(1,2)代入反比例函数解析式得:k=2;(2)由(1)知反比例函数解析式是y=,则=nx+2有两个不同的解,方程去分母,得:nx2+2x﹣2=0,则△=4+8n>0,解得:n>﹣且n≠0.点评:本题综合考查反比例函数与方程组的相关知识点.先由点的坐标求函数解析式,然后解由解析式组成的方程组求出交点的坐标,体现了数形结合的思想.23.(12分)(2014•绵阳)如图,已知△ABC内接于⊙O,AB是⊙O的直径,点F在⊙O 上,且满足=,过点C作⊙O的切线交AB的延长线于D点,交AF的延长线于E点.(1)求证:AE⊥DE;(2)若tan∠CBA=,AE=3,求AF的长.考点:切线的性质分析:(1)首先连接OC,由OC=OA,=,易证得OC∥AE,又由过点C作⊙O的切线交AB的延长线于D点,易证得AE⊥DE;(2)由AB是⊙O的直径,可得△ABC是直角三角形,易得△AEC为直角三角形,AE=3,然后连接OF,可得△OAF为等边三角形,继而求得答案.解答:(1)证明:连接OC,∵OC=OA,∴∠BAC=∠OCA,∵=,∴∠BAC=∠EAC,∴∠EAC=∠OCA,∴OC∥AE,∵DE且⊙O于点C,∴OC⊥DE,∴AE⊥DE;(2)解:∵AB是⊙O的直径,∴△ABC是直角三角形,∵tan∠CBA=,∴∠CBA=60°,∴∠BAC=∠EAC=30°,∵△AEC为直角三角形,AE=3,∴AC=2,连接OF,∵OF=OA,∠OAF=∠BAC+∠EAC=60°,∴△OAF为等边三角形,∴AF=OA=AB,在Rt△ACB中,AC=2,tan∠CBA=,∴BC=2,∴AB=4,∴AF=2.点评:此题考查了切线的性质、直角三角形的性质、等边三角形的判定与性质以及圆周角定理.此题难度适中,注意掌握辅助线的作法,注意掌握数形结合思想的应用.24.(12分)(2014•绵阳)如图1,矩形ABCD中,AB=4,AD=3,把矩形沿直线AC折叠,使点B落在点E处,AE交CD于点F,连接DE.(1)求证:△DEC≌△EDA;(2)求DF的值;(3)如图2,若P为线段EC上一动点,过点P作△AEC的内接矩形,使其定点Q落在线段AE上,定点M、N落在线段AC上,当线段PE的长为何值时,矩形PQMN的面积最大?并求出其最大值.考点:四边形综合题.分析:(1)由矩形的性质可知△ADC≌△CEA,得出AD=CE,DC=EA,∠ACD=∠CAE,从而求得△DEC≌△EDA;(2)根据勾股定理即可求得.(3))有矩形PQMN的性质得PQ∥CA,所以,从而求得PQ,由PN∥EG,得出=,求得PN,然后根据矩形的面积公式求得解析式,即可求得.解答:(1)证明:由矩形的性质可知△ADC≌△CEA,∴AD=CE,DC=EA,∠ACD=∠CAE,在△ADE与△CED中∴△DEC≌△EDA(SSS);(2)解:如图1,∵∠ACD=∠CAE,∴AF=CF,设DF=x,则AF=CF=4﹣x,在RT△ADF中,AD2+DF2=AF2,即32+x2=(4﹣x)2,解得;x=,即DF=.(3)解:如图2,由矩形PQMN的性质得PQ∥CA∴又∵CE=3,AC==5设PE=x(0<x<3),则,即PQ=过E作EG⊥AC于G,则PN∥EG,∴=又∵在Rt△AEC中,EG•AC=AE•CE,解得EG=∴=,即PN=(3﹣x)设矩形PQMN的面积为S则S=PQ•PN=﹣x2+4x=﹣+3(0<x<3)所以当x=,即PE=时,矩形PQMN的面积最大,最大面积为3.点评:本题考查了全等三角形的判定和性质,勾股定理的应用,平行线分线段成比例定理.25.(14分)(2014•绵阳)如图,抛物线y=ax2+bx+c(a≠0)的图象过点M(﹣2,),顶点坐标为N(﹣1,),且与x轴交于A、B两点,与y轴交于C点.(1)求抛物线的解析式;(2)点P为抛物线对称轴上的动点,当△PBC为等腰三角形时,求点P的坐标;(3)在直线AC上是否存在一点Q,使△QBM的周长最小?若存在,求出Q点坐标;若不存在,请说明理由.考点:二次函数综合题.分析:(1)先由抛物线的顶点坐标为N(﹣1,),可设其解析式为y=a(x+1)2+,再将M(﹣2,)代入,得=a(﹣2+1)2+,解方程求出a的值即可得到抛物线的解析式;(2)先求出抛物线y=﹣x2﹣x+与x轴交点A、B,与y轴交点C的坐标,再根据勾股定理得到BC==2.设P(﹣1,m),显然PB≠PC,所以当△PBC为等腰三角形时分两种情况进行讨论:①CP=CB;②BP=BC;(3)先由勾股定理的逆定理得出BC⊥AC,连结BC并延长至B′,使B′C=BC,连结B′M,交直线AC于点Q,由轴对称的性质可知此时△QBM的周长最小,由B(﹣3,0),C(0,),根据中点坐标公式求出B′(3,2),再运用待定系数法求出直线MB′的解析式为y=x+,直线AC的解析式为y=﹣x+,然后解方程组,即可求出Q点的坐标.解答:解:(1)由抛物线顶点坐标为N(﹣1,),可设其解析式为y=a(x+1)2+,将M(﹣2,)代入,得=a(﹣2+1)2+,解得a=﹣,故所求抛物线的解析式为y=﹣x2﹣x+;(2)∵y=﹣x2﹣x+,∴x=0时,y=,∴C(0,).y=0时,﹣x2﹣x+=0,解得x=1或x=﹣3,∴A(1,0),B(﹣3,0),∴BC==2.设P(﹣1,m),显然PB≠PC,所以当CP=CB时,有CP==2,解得m=±;当BP=BC时,有BP==2,解得m=±2.综上,当△PBC为等腰三角形时,点P的坐标为(﹣1,+),(﹣1,﹣),(﹣1,2),(﹣1,﹣2);(3)由(2)知BC=2,AC=2,AB=4,所以BC2+AC2=AB2,即BC⊥AC.连结BC并延长至B′,使B′C=BC,连结B′M,交直线AC于点Q,∵B、B′关于直线AC对称,∴QB=QB′,∴QB+QM=QB′+QM=MB′,又BM=2,所以此时△QBM的周长最小.由B(﹣3,0),C(0,),易得B′(3,2).设直线MB′的解析式为y=kx+n,将M(﹣2,),B′(3,2)代入,得,解得,即直线MB′的解析式为y=x+.同理可求得直线AC的解析式为y=﹣x+.由,解得,即Q(﹣,).所以在直线AC上存在一点Q(﹣,),使△QBM的周长最小.点评:本题是二次函数的综合题型,其中涉及到运用待定系数法求二次函数、一次函数的解析式,等腰三角形的性质,轴对称的性质,中点坐标公式,两函数交点坐标的求法等知识,运用数形结合、分类讨论及方程思想是解题的关键.四川省泸州市2014年中考数学试卷一、选择题(本大题共12小题,每题3分,共36分.只有一项是符合题目要求的.)1.5的倒数为()A.B.5C.D.﹣5解答:解:5的倒数是,故选:A.点评:本题考查了倒数,分子分母交换位置是求一个数的倒数的关键.2.计算x2•x3的结果为()A.2x2B.x5C.2x3D.x6解答:解:原式=x2+3=x5.故选:B.点评:本题考查了同底数幂的乘法,底数不变指数相加是解题关键.3.如图的几何图形的俯视图为()A.B.C.D.解答:解:从上面看:里边是圆,外边是矩形,故选:C.点评:本题考查了简单组合体的三视图,注意所有的看到的棱都应表现在俯视图中.4.某校八年级(2)班5名女同学的体重(单位:kg)分别为35,36,40,42,42,则这组数据的中位数是()A.38B.39C.40D.42解答:解:题目中数据共有5个,中位数是按从小到大排列后第3个数作为中位数,故这组数据的中位数是40.故选C.点评:本题属于基础题,考查了确定一组数据的中位数的能力.要明确定义:将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数)叫做这组数据的中位数,比较简单.5.如图,等边△ABC中,点D、E分别为边AB、AC的中点,则∠DEC的度数为()A.30°B.60°C.120°D.150°解答:解:由等边△ABC得∠C=60°,由三角形中位线的性质得DE∥BC,∠DEC=180°﹣∠C=180°﹣60°=120°,故选:C.点评:本题考查了三角形中位线定理,三角形的中位线平行于第三边且等于第三边的一半.6.已知实数x、y满足+|y+3|=0,则x+y的值为()A.﹣2B.2C.4D.﹣4解答:解:∵+|y+3|=0,∴x﹣1=0,y+3=0;∴x=1,y=﹣3,∴原式=1+(﹣3)=﹣2故选:A.点评:本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.7.一个圆锥的底面半径是6cm,其侧面展开图为半圆,则圆锥的母线长为()A.9cm B.12cm C.15cm D.18cm解答:解:圆锥的母线长=2×π×6×=12cm,故选B.点评:本题考查圆锥的母线长的求法,注意利用圆锥的弧长等于底面周长这个知识点.8.已知抛物线y=x2﹣2x+m+1与x轴有两个不同的交点,则函数y=的大致图象是()A.B.C.D.解答:解:抛物线y=x2﹣2x+m+1与x轴有两个不同的交点,∴△=(﹣2)2﹣4(m+1)>0∴函数y=的图象位于二、四象限,故选:A.点评:本题考查了反比例函数图象,先求出m的值,再判断函数图象的位置.9.“五一节”期间,王老师一家自驾游去了离家170千米的某地,下面是他们家的距离y(千米)与汽车行驶时间x(小时)之间的函数图象,当他们离目的地还有20千米时,汽车一共行驶的时间是()A.2小时B.2.2小时C.2.25小时D.2.4小时解答:解:设AB段的函数解析式是y=kx+b,y=kx+b的图象过A(1.5,90),B(2.5,170),,解得∴AB段函数的解析式是y=80x﹣30,离目的地还有20千米时,即y=170﹣20=150km,当y=150时,80x﹣30=150x=2.25h,故选:C.点评:本题考查了一次函数的应用,利用了待定系数法求解析式,利用函数值求自变量的值.10.如图,⊙O1,⊙O2的圆心O1,O2都在直线l上,且半径分别为2cm,3cm,O1O2=8cm.若⊙O1以1cm/s的速度沿直线l向右匀速运动(⊙O2保持静止),则在7s时刻⊙O1与⊙O2的位置关系是()A.外切B.相交C.内含D.内切解答:解:∵O1O2=8cm,⊙O1以1cm/s的速度沿直线l向右运动,7s后停止运动,∴7s后两圆的圆心距为:1cm,此时两圆的半径的差为:3﹣2=1cm,故选D.点评:本题考查了圆与圆的位置关系,解题的关键是根据圆的移动速度确定两圆的圆心距,然后根据圆心距和两圆的半径确定答案.11.如图,在直角梯形ABCD中,DC∥AB,∠DAB=90°,AC⊥BC,AC=BC,∠ABC的平分线分别交AD、AC于点E,F,则的值是()A.B.C.D.解答:解:作FG⊥AB于点G,∵∠DAB=90°,∴AE∥FG,∴=,∵AC⊥BC,∴∠ACB=90°,又∵BE是∠ABC的平分线,∴FG=FC,在RT△BGF和RT△BCF中,∴RT△BGF≌RT△BCF(HL),∴CB=GB,∵AC=BC,∴∠CBA=45°,∴AB=BC,∴====+1.故选:C.点评:本题主要考查了平行线分线段成比例,全等三角形及角平分线的知识,解题的关键是找出线段之间的关系,CB=GB,AB=BC再利用比例式求解..12.如图,在平面直角坐标系中,⊙P的圆心坐标是(3,a)(a>3),半径为3,函数y=x的图象被⊙P截得的弦AB的长为,则a的值是()A.4B.C.D.解答:解:作PC⊥x轴于C,交AB于D,作PE⊥AB于E,连结PB,如图,∵⊙P的圆心坐标是(3,a),∴OC=3,PC=a,把x=3代入y=x得y=3,∴D点坐标为(3,3),∴CD=3,∴△OCD为等腰直角三角形,∴△PED也为等腰直角三角形,∵PE⊥AB,∴AE=BE=AB=×4=2,在Rt△PBE中,PB=3,∴PE=,∴PD=PE=,∴a=3+.故选B.点评:本题考查了垂径定理:平分弦的直径平分这条弦,并且平分弦所对的两条弧.也考查了勾股定理和等腰直角三角形的性质.二、填空题(本大题共4小题,每小题3分,共12分.请将最后答案直接填在题中横线上.)13.分解因式:3a2+6a+3=3(a+1)2.解答:解:3a2+6a+3,=3(a2+2a+1),=3(a+1)2.故答案为:3(a+1)2.点评:本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.14.使函数y=+有意义的自变量x的取值范围是x>﹣2,且x≠1.解答:解:根据题意得:x+2≥0且(x﹣1)(x+2)≠0,解得x≥﹣2,且x≠1,x≠﹣2,故答案为:x>﹣2,且x≠1.点评:本题考查了函数自变量的取值范围,函数自变量的范围一般从三个方面考虑:当函数表达式是整式时,自变量可取全体实数;当函数表达式是分式时,考虑分式的分母不能为0;当函数表达式是二次根式时,被开方数非负.15.一个平行四边形的一条边长为3,两条对角线的长分别为4和,则它的面积为4.解答:解:∵平行四边形两条对角线互相平分,∴它们的一半分别为2和,∵22+()2=32,∴两条对角线互相垂直,∴这个四边形是菱形,S=4×2=4.点评:本题考查了菱形的判定与性质,利用了对角线互相垂直的平行四边形是菱形,菱形的面积是对角线乘积的一半.16.(3分)(2014•泸州)如图,矩形AOBC的顶点坐标分别为A(0,3),O(0,0),B(4,0),C(4,3),动点F在边BC上(不与B、C重合),过点F的反比例函数的图象与边AC交于点E,直线EF分别与y轴和x轴相交于点D和G.给出下列命题:①若k=4,则△OEF的面积为;②若,则点C关于直线EF的对称点在x轴上;③满足题设的k的取值范围是0<k≤12;④若DE•EG=,则k=1.其中正确的命题的序号是②④(写出所有正确命题的序号).。

四川省自贡解中2014届九年级上期中考试数学试题及答案

四川省自贡解中2014届九年级上期中考试数学试题及答案

四、解答题(共 2 个题,每小题 8 分,共 16分)
18.如图,河对岸有铁塔 AB,在 C 处测得塔顶 A 的仰角为 30°,向塔前进 20米到达 D, 在 D 处测得 A 的仰角为 45°,求铁塔 AB的高。
A
-3-
C
D
B
19.用配方法解关于 x 的一元二次方程 m x nx p 0,(其中n 4mp 0) .
D. 8a 4
4.已知 a b 2 3 1,ab 3 ,则 (a 1)(b 1) 的值为( )
A. 3
B. 3 3
C. 3 2 2
5.一元二次方程 x2+x+2=0的根的情况为( )
D. 3 1
A、有两个不相等的正根。 C、有两个不相等的负根
B、没有实数根。 D、有两个相等的实数根。
11.
;12.
;13.

14.
;15.
.
三、解答题(共 2 个题,每题 8 分,共 16分)
16.①解方程: 2x2 3x 5x
1 ②计算: 2 18 32 8
17.①.已知: x 2 10 ,求代数式 x2 4x 6 的值.
②.已知 Rt△ABC 中, C 90, tan A 3 , BC 12, 求 AC、和 cosB. 4
解中 2014级(初三上)期中考试 数学试题 2013.11
(时间:120分钟 满分:150分)
第Ⅰ卷 选择题(共 40分) 注意:选择题填在机读卡上,填空题填在答题卷上。
一、选择题(共 10个小题,每小题 4 分,共 40分) 1.在下图右侧的四个三角形中,不能由△ABC 经过旋转或平移得到的是( )

2014-2015年四川省自贡市七年级(上)期末数学试卷和参考答案

2014-2015年四川省自贡市七年级(上)期末数学试卷和参考答案

2014-2015学年四川省自贡市七年级(上)期末数学试卷一、选择题(本题有8个小题,每小题3分,满分24分,每小题只有一个选项符合题意)1.(3分)|﹣3|的相反数是()A.﹣3 B.|﹣3|C.3 D.|3|2.(3分)图中几何体的左视图是()A.B.C.D.3.(3分)下列计算中正确的是()A.3a+2b=5ab B.5x﹣3x=2C.7y+y=7y2D.3a2b﹣2ba2=a2b4.(3分)森林是地球之肺,每年能为人类提供大约28.3亿吨的有机物.28.3亿吨用科学记数法表示为()A.28.3×107B.2.83×108C.0.283×1010D.2.83×1095.(3分)借助一副三角尺,你能画出的角的度数是()A.65°B.15°C.85°D.95°6.(3分)如图,把一张长方形的纸片按如图那样折叠后,C、D两点落在H、G 点处,若∠AEG=70°,则∠FED的度数为()A.55°B.60°C.65°D.70°7.(3分)七年级学生计划乘客车去春游,如果减少一辆客车,每辆车正好坐60人.如果增加一辆客车,每辆正好坐45人,则七年级共有学生()A.240人B.300人C.360人D.420人8.(3分)有理数a、b在数轴上的位置如图所示,在下列结论中:①ab<0;②a+b>0;③a3>b2;④(a﹣b)3<0;⑤a<﹣b<b<﹣a;⑥|b﹣a|﹣|a|=b.其中正确的结论有()A.2个 B.3个 C.4个 D.5个二、填空题(本题有6个小题,每小题3分,共计18分)9.(3分)某高山上的温度从山脚处开始每升高100米,降低0.7℃.若山脚处温度是28℃,则山上500米处的温度是℃.10.(3分)若关于x的方程5x2n+1﹣1=0是一元一次方程,则n=.11.(3分)若单项式﹣5x2y m与3x n y是同类项,则m n的倒数为.12.(3分)一个角等于它的余角的,则这个角的度数是°,这个角的补角的度数是°.13.(3分)一项工程甲单独做要40天完成,乙单独做需要50天完成,甲先单独做4天,然后两人合作x天完成这项工程,则可列的方程是.14.(3分)已知:2+=22×,3+=32×,4+=42×,5+=52×,…,若10+=102×符合前面式子的规律,则a+b=.三、解答题(本题有5个小题,每小题5分,共计25分)15.(5分)计算:﹣12+|﹣2|﹣3﹣(﹣1).16.(5分)化简:﹣2a+(3a﹣1)﹣(a﹣5).17.(5分)计算:﹣6÷2+(﹣)×12+(﹣3)218.(5分)解方程:﹣﹣=1.19.(5分)如图,已知A、B、C、D四个点.(1)画直线AB、CD相交于点P;(2)连接AC和BD并延长AC和BD相交于点Q;(3)连接AD、BC相交于点O;(4)以点C为端点的射线有条;(5)以点C为一个端点的线段有条.四、解答题(本题有3道小题,每小题6分,共计18分)20.(6分)若a与b互为相反数,c是最大的负整数,d的绝对值是1.求(a+b)2014+(﹣c)2015﹣2d的值.21.(6分)先化简,再求值:(3x2﹣xy+7)﹣(5xy﹣4x2+7),其中x、y满足(x ﹣2)2+|3y﹣1|=0.22.(6分)如图,O为直线AB上一点,∠AOC=58°,OD平分∠AOC,∠DOE=90°.(1)求出∠BOD的度数;(2)请通过计算说明:OE是否平分∠BOC.五、解答下列各题(第23题7分,第24题8分,共计15分)23.(7分)(1)已知x=﹣3是关于x的方程2k﹣x﹣k(x+4)=5的解,求k的值.(2)在(1)的条件下,已知线段AB=12cm,点C是直线AB上一点,且AC:BC=1:k,若点D是AC的中点,求线段CD的长.24.(8分)假期快到了,富有经济头脑的小强准备用900元购买同一款式的玩具共50个拿去出售,经过了解得知该款式玩具分别有三种不同的型号,其进价分别是甲种玩具每个21元,乙种玩具每个15元,丙种玩具每个25元.(1)若小强同时购进其中两种不同型号的玩具共50个,刚好用去900元,请你帮小强研究一下进货方案;(2)若小强卖出一个甲种玩具可赚10元,卖出一个乙种玩具可赚8元,卖出一个丙种玩具可赚12元,在同时购进两种不同型号玩具的方案中,为了赚的钱更多,小强该选择哪种方案?2014-2015学年四川省自贡市七年级(上)期末数学试卷参考答案与试题解析一、选择题(本题有8个小题,每小题3分,满分24分,每小题只有一个选项符合题意)1.(3分)|﹣3|的相反数是()A.﹣3 B.|﹣3|C.3 D.|3|【解答】解:|﹣3|=3,所以,|﹣3|的相反数是﹣3.故选:A.2.(3分)图中几何体的左视图是()A.B.C.D.【解答】解:从物体左面看,第一层3个正方形,第二层左上角1个正方形.故选:B.3.(3分)下列计算中正确的是()A.3a+2b=5ab B.5x﹣3x=2C.7y+y=7y2D.3a2b﹣2ba2=a2b【解答】解:A、不是同类项不能合并,故A错误;B、系数相加字母部分不变,故B错误;C、系数相加字母部分不变,故C错误;D、系数相加字母部分不变,故D正确;故选:D.4.(3分)森林是地球之肺,每年能为人类提供大约28.3亿吨的有机物.28.3亿吨用科学记数法表示为()A.28.3×107B.2.83×108C.0.283×1010D.2.83×109【解答】解:28.3亿=28.3×108=2.83×109.故选:D.5.(3分)借助一副三角尺,你能画出的角的度数是()A.65°B.15°C.85°D.95°【解答】解:利用一幅三角尺可以画出15°角,用45°和30°组合即可;故选:B.6.(3分)如图,把一张长方形的纸片按如图那样折叠后,C、D两点落在H、G 点处,若∠AEG=70°,则∠FED的度数为()A.55°B.60°C.65°D.70°【解答】解:根据题意得:∠FED=∠GEF,∵∠AEG=70°,∴∠FED=(180°﹣70°)÷2=55°.故选:A.7.(3分)七年级学生计划乘客车去春游,如果减少一辆客车,每辆车正好坐60人.如果增加一辆客车,每辆正好坐45人,则七年级共有学生()A.240人B.300人C.360人D.420人【解答】解:设七年级共有x名学生则根据题意有:+1=﹣1,解得x=360.答:七年级共有360名学生.故选:C.8.(3分)有理数a、b在数轴上的位置如图所示,在下列结论中:①ab<0;②a+b>0;③a3>b2;④(a﹣b)3<0;⑤a<﹣b<b<﹣a;⑥|b﹣a|﹣|a|=b.其中正确的结论有()A.2个 B.3个 C.4个 D.5个【解答】解:由数轴上点的位置,得a<0<b,①ab<0,故①正确;②a+b<0,故②错误;③a3<0<b2,故③错误;④a﹣b<0,(a﹣b)3<0,故④正确;⑤由数轴上的点表示的数右边的总比左边的大,得a<﹣b<b<﹣a,故⑤正确;⑥|b﹣a|﹣|a|=b﹣a﹣(﹣a)=b﹣a+a=b,故⑥正确;故选:C.二、填空题(本题有6个小题,每小题3分,共计18分)9.(3分)某高山上的温度从山脚处开始每升高100米,降低0.7℃.若山脚处温度是28℃,则山上500米处的温度是24.5℃.【解答】解:每升高100米,降低0.7℃.那么升高500米则降低5×0.7=3.5℃,∴山上500米处的温度是28﹣(500÷100)×0.7=24.5℃.10.(3分)若关于x的方程5x2n+1﹣1=0是一元一次方程,则n=0.【解答】解:由关于x的方程5x2n+1﹣1=0是一元一次方程,得2n+1=1,解得n=0.故答案为:0.11.(3分)若单项式﹣5x2y m与3x n y是同类项,则m n的倒数为1.【解答】解:∵单项式﹣5x2y m与3x n y是同类项,∴n=2,m=1∴m n的倒数为:=1.故答案是:1.12.(3分)一个角等于它的余角的,则这个角的度数是18°,这个角的补角的度数是162°.【解答】解:设这个角为∠A,根据题意得:∠A=(90°﹣∠A),解得:∠A=18°,补角为180°﹣18°=162°.故答案为:18,162.13.(3分)一项工程甲单独做要40天完成,乙单独做需要50天完成,甲先单独做4天,然后两人合作x天完成这项工程,则可列的方程是++=1.【解答】解:设整个工程为1,根据关系式甲完成的部分+两人共同完成的部分=1列出方程式为:++=1.故答案为:++=1.14.(3分)已知:2+=22×,3+=32×,4+=42×,5+=52×,…,若10+=102×符合前面式子的规律,则a+b=109.【解答】解:根据题中材料可知=,∵10+=102×,∴b=10,a=99,a+b=109.三、解答题(本题有5个小题,每小题5分,共计25分)15.(5分)计算:﹣12+|﹣2|﹣3﹣(﹣1).【解答】解:原式=﹣1+2﹣3+1=﹣4+3=﹣1.16.(5分)化简:﹣2a+(3a﹣1)﹣(a﹣5).【解答】解:原式=﹣2a+3a﹣1﹣a+5=4.17.(5分)计算:﹣6÷2+(﹣)×12+(﹣3)2【解答】解:原式=﹣3+4﹣9+9=1.18.(5分)解方程:﹣﹣=1.【解答】解:去分母得:3(x﹣1)﹣2(2x+1)﹣(x﹣1)=6,去括号得:3x﹣3﹣4x﹣2﹣x+1=6,移项合并得:﹣2x=10,解得:x=﹣5.19.(5分)如图,已知A、B、C、D四个点.(1)画直线AB、CD相交于点P;(2)连接AC和BD并延长AC和BD相交于点Q;(3)连接AD、BC相交于点O;(4)以点C为端点的射线有3条;(5)以点C为一个端点的线段有6条.【解答】解:(1)、(2)、(3),如图所示:(4)以点C为端点的射线有3条,分别是:射线CP、射线CD、射线CQ,故答案为:3;(5)以点C为一个端点的线段有6条,分别是:线段CP、线段CD、线段CA、线段CQ、线段CO、线段CB,故答案为:6.四、解答题(本题有3道小题,每小题6分,共计18分)20.(6分)若a与b互为相反数,c是最大的负整数,d的绝对值是1.求(a+b)2014+(﹣c)2015﹣2d的值.【解答】解:∵a与b互为相反数,则a+b=0;c是最大的负整数,则c=﹣1;d 的绝对值是1,则d=±1,∴当d=1时,原式=0+1﹣2=﹣1;当d=﹣1时,原式=0+1+2=3.21.(6分)先化简,再求值:(3x2﹣xy+7)﹣(5xy﹣4x2+7),其中x、y满足(x ﹣2)2+|3y﹣1|=0.【解答】解:(3x2﹣xy+7)﹣(5xy﹣4x2+7)=3x2﹣xy+7﹣5xy+4x2﹣7=7x2﹣6xy,∵(x﹣2)2≥0,|3y﹣1|≥0,且(x﹣2)2+|3y﹣1|=0,∴x﹣2=0,3y﹣1=0,即x=2,y=,则原式=28﹣4=24.22.(6分)如图,O为直线AB上一点,∠AOC=58°,OD平分∠AOC,∠DOE=90°.(1)求出∠BOD的度数;(2)请通过计算说明:OE是否平分∠BOC.【解答】解:(1)∵∠AOC=58°,OD平分∠AOC,∴∠AOD=29°,∴∠BOD=180°﹣29°=151°;(2)OE是∠BOC的平分线.理由如下:∵∠AOC=58°,∴∠BOC=122°.∵OD平分∠AOC,∴∠DOC=×58°=29°.∵∠DOE=90°,∴∠COE=90°﹣29°=61°,∴∠COE=∠BOC,即OE是∠BOC的平分线.五、解答下列各题(第23题7分,第24题8分,共计15分)23.(7分)(1)已知x=﹣3是关于x的方程2k﹣x﹣k(x+4)=5的解,求k的值.(2)在(1)的条件下,已知线段AB=12cm,点C是直线AB上一点,且AC:BC=1:k,若点D是AC的中点,求线段CD的长.【解答】解:(1)将x=﹣3代入原方程2k﹣x﹣k(x+4)=5整理得2k+3﹣k=5,移项,合并同类项,得k=2;(2)将k=2代入AC:BC=1:k,得AC:BC=1:2,有两种情况,①当点C在线段AB上,3AC=AB,∵AB=12cm,∴AC=4,又∵点D是AC的中点,CD=2cm.②当点C在线段BA延长线上,则由AC:BC=1:2,∵AB=12cm,∴AC=12cm,又∵点D是AC的中点,∴CD=6cm.答:CD为2cm或6cm.24.(8分)假期快到了,富有经济头脑的小强准备用900元购买同一款式的玩具共50个拿去出售,经过了解得知该款式玩具分别有三种不同的型号,其进价分别是甲种玩具每个21元,乙种玩具每个15元,丙种玩具每个25元.(1)若小强同时购进其中两种不同型号的玩具共50个,刚好用去900元,请你帮小强研究一下进货方案;(2)若小强卖出一个甲种玩具可赚10元,卖出一个乙种玩具可赚8元,卖出一个丙种玩具可赚12元,在同时购进两种不同型号玩具的方案中,为了赚的钱更多,小强该选择哪种方案?【解答】解:(1)有三种不同型号玩具,但小强同时购进的其中两种不同型号的玩具,所以要分情况讨论:①若购进的是甲种玩具和乙种玩具时,设甲种玩具为x个,可列方程:21x+15(50﹣x)=900,解得:x=25(符合题意),则50﹣x=50﹣25=25.所以这种情况的进货方案是:甲种玩具25个和乙种玩具25个;②若购进的是甲种玩具和丙种玩具时,设甲种玩具为y个,可列方程:21y+25(50﹣y)=900,解得:y=85(不符合题意),所这种情况行不通,不存在;③若购进的是乙种玩具和丙种玩具时,设甲种玩具为z个,可列方程:15z+25(50﹣z)=900,解得:z=35(符合题意),则50﹣z=50﹣35=15.所以这种进货方案是:乙种玩具35个和丙种玩具15个.所以小强同时购进其中两种不同型号的玩具共50个,刚好用去900元,可以“购进甲种玩具25个和乙种玩具25个”或“购进乙种玩具35个和丙种玩具15个”;(2)根据(1)得出的进货方案,结合本问的条件:当“购进甲种玩具25个和乙种玩具25个”出售时可赚:10×25+8×25=250+200=450(元).当“购进乙种玩具35个和丙种玩具15个”出售时可赚:8×35+12×15=280+180=460(元).由于460>450,故小强该选择“购进乙种玩具35个和丙种玩具15个”的进货方案.。

四川省自贡市初中毕业暨升学考试数学试题 参考答案

四川省自贡市初中毕业暨升学考试数学试题 参考答案

九年级暨升学考试数 学 试 卷一、选择题:本大题共11小题,每小题3分,共33分.在每小题给出的四个选项中,只有一个选项是符合题目要求的.1.下列各式中,p ,q 互为相反数的是( ) A .pq =1 B .pq =-1C .p +q =0D .p -q =02.下列计算正确的是( ) A .)(818181y x y x +=+ B .xzyz y x y 2=+C .yy x y x 21212=+-D .011=-+-xy y x 3.a 是实数,且x >y ,则下列不等式中,正确的是( ) A .ax >ayB. a 2x ≤a 2yC .a 2x >a 2yD. a 2x ≥a 2y4.矩形、菱形、正方形都具有的性质是( ) A .每一条对角线平分一组对角 B .对角线相等 C .对角线互相平分D .对角线互相垂直5.用配方法解关于x 的方程x 2+mx +n =0,此方程可变形为( ) A .44)2(22m n m x -=+B .44)2(22nm m x -=+C . 24)2(22nm m x -=+D .24)2(22m n m x -=+6.进入夏季后,某电器商场为减少库存,对电热取暖器连续进行两次降价.若设平均每次降价的百分率是x ,降价后的价格为y 元,原价为a 元,则y 与x 之间的函数关系式为( )A .y =2a (x -1)B .y =2a (1-x )C .y =a (1-x 2)D .y =a (1-x )2相信自己一定成功!7.若等腰三角形一腰上的高和另一腰的夹角为25°,则该三角形的一个底角为()A.32.5°B.57.5°C.65°或57.5°D.32.5°或57.5°8.随机抛掷一枚均匀的硬币两次,则出现两面不一样的概率是()A .41B.21C.43D.1 9.两圆的半径分别为7和1,圆心距为10,则其内公切线长和外公切线长分别为()A.6,8B.6,10C.8,2D.8,610.我市某风景区,在“五一“长假期间,接待游人情况如下图所示,则这七天游览该风景区的平均人数为()A.2800人B.3000人C.3200人D.3500人11.小洋用彩色纸制做了一个圆锥型的生日帽,其底面半径为6cm,母线长为12cm,不考虑接缝,这个生日帽的侧面积为()A.36πcm2B.72πcm2C.100πcm2D.144πcm2二、填空题:本大题共5小题,每小题4分,共20分12、一生物教师在显微镜下发现,某种植物的细胞直径约为0.00012mm,用科学记数法表示这个数为____________mm.13.请写出一个值k=___________,使一元二次方程x2-7x+k=0有两个不相等的非0实数根.(答案不唯一)你可要小心点14.有4条长度分别为1,3,5,7的线段,现从中任取三条能构成三角形的概率是__________.15.如图是中国共产主义青年团团旗上的图案(图案本身没有字母),5个角的顶点A ,B ,C ,D ,E 把外面的圆5等分,则∠A +∠B +∠C +∠D +∠E =__________________.16.一个叫巴尔末的中学教师成功地从光谱数据59,1216,2125,3236,…中得到巴尔末公式,从而打开了光谱奥秘的大门,请你按照这种规律,写出第n (n ≥1)个数据是___________.三、解答题:本大题共4个小题,每小题6分,共24分.17.解方程组:⎩⎨⎧=--=-+063042y x y x18.解方程:2121=++x x19.计算:2010011(20072009)(1)(1233)3-⎛⎫+-+-+- ⎪⎝⎭·tan30°①②20.学校举行百科知识抢答赛,共有20道题,规定每答对一题记10分,答错或放弃记-4分.九年级一班代表队的得分目标为不低于88分.问这个队至少要答对多少道题才能达到目标要求?四、解答题:本大题共3个小题,每小题7分,共21分.21.按规定尺寸作出下面图形的三视图.22.如图所示,我市某中学数学课外活动小组的同学,利用所学知识去测量沱江流经我市某段的河宽.小凡同学在点A处观测到对岸C点,测得∠CAD=45°,又在距A处60米远的B处测得∠CBA=30°,请你根据这些数据算出河宽是多少?(精确到0.01m)23.某商店按图(Ⅰ)给出的比例,从甲、乙、丙三个厂家共购回饮水机150台,商店质检员对购进的这批饮水机进行检测,并绘制了如图所示的统计图(Ⅱ).请根据图中提供的信息回答下列问题.(Ⅰ)(Ⅱ)(1)求该商店从乙厂购买的饮水机台数?(2)求所购买的饮水机中,非优等品的台数?(3)从优等品的角度考虑,哪个工厂的产品质量较好些?为什么?五、解答题:本大题共2个小题,每小题7分,共14分.24.如图,AB是⊙O的直径,AE平分∠BAC交⊙O于点E,过E作⊙O的切线ME交AC于点D.试判断△AED的形状,并说明理由.25.已知:三角形ABC中,∠A=90°,AB=AC,D为BC的中点,(1)如图,E,F分别是AB,AC上的点,且BE=AF,求证:△DEF为等腰直角三角形.(2)若E,F分别为AB,CA延长线上的点,仍有BE=AF,其他条件不变,那么,△DEF是否仍为等腰直角三角形?证明你的结论.六、解答题:本大题8分.26.△ABC中,∠A,∠B,∠C的对边分别为a,b,c,抛物线y=x2-2ax+b2交x轴于两点M,N,交y轴于点P,其中M的坐标是(a+c,0).(1)求证:△ABC是直角三角形.(2)若S△MNP=3S△NOP,①求cos C的值;②判断△ABC的三边长能否取一组适当的值,使三角形MND(D为抛物线的顶点)是等腰直角三角形?如能,请求出这组值;如不能,请说明理由.四川省自贡市初中毕业暨升学考试数学参考答案及评分标准说明: 一.如果考生的解法与下面提供的参考解法不同,只要正确一律给满分,若某一步出现错误,可参照该题的评分意见进行评分. 二.评阅试卷时,不要因解答中出现错误而中断对该题的评阅,当解答中某一步出现错误,影响了后继部分,但该步以后的解答未改变这一道题的内容和难度,后来发生第二次错误前,出现错误的那一步不给分,后面部分只给应给分数之半;明显笔误,可酌情少扣;如有严重概念性错误,则不给分;在同一解答中,对发生第二次错误起的部分不给分. 三.涉及计算过程,允许合理省略非关键性步骤.四.在几何题中,考生若使用符号“⇒”进行推理,其每一步应得分数,可参照该题的评分意见进行评分.一.选择题:本大题共11个小题,每小题3分,共33分. 1.C 2.D 3.D 4.C 5.B6.D 7.D 8.B 9.A 10.B 11.B二.填空题:(每小题4分,共计20分) 12.1.2×10-4 13.10(答案不唯一) 14.4115.180° 16.)4()2(2++n n n 或4)2()2(22-++n n (只填一个均可) 三.解答题:(每小题6分,共计24分)17.解:由①+②得 5x =10 ········································································ 2分 x =2 ··········································································· 3分 将x =2代入①得 y =0 ················································································ 5分 ∴原方程组的解为⎩⎨⎧==02y x ················································································ 6分 18.解:x +(x +2)=2x (x +2) ··········································································· 2分整理得:x 2+x -1=0 ····················································································· 3分 ∴x =251±- ······························································································ 4分 经检验x =251±-均为原方程的解 ·································································· 5发 ∴原方程的解为x =251±- ··········································································· 6分 19.解:原式=9+1-1+(23-33)·33 ··················································· 2.5分 =9+(-3)·33 ····················································································· 4.5分 =9-1 ········································································································ 5分 =8 ············································································································ 6分20.解:设九年级一班代表队至少要答对x 道题才能达到目标要求. ······················ 1分 由题意得:10x -4(20-x )≥88 ········································································· 4分 10x -80+4x ≥88 ································································································ 14x ≥168 x ≥12 ········································································································· 5分 答:这个队至少要答对12道题才能达到目标要求. ············································· 6分 四.解答题:(每小题7分,共计21分) 21.解:主视图 左视图俯视图(三个视图各2分,位置正确给1分,共7分.) 22.解:如图,过C 作CE ⊥AB 于E ················ 1分 则CE 为河宽 设CE =x (米),于是BE =x +60(米) ··········· 2分 在Rt △BCE 中 tan30°=EBCE······························································································· 3分 ∴3x =x +60 ····························································································· 4分 ∴x =30(3+1) ·························································································· 5分 ≈81.96(米) ···························································································· 6分 答:河宽约为81.96米. ················································································ 7分 23.解:(1)150×40%=60(台) ·································································· 2分 ∴设商店从乙厂购买的饮水机台数为60台 (2)由图(II )知优等品的台数为 50+51+26=127(台)∴非优等品的台数为150-127=23(台) ·························································· 4分 (3)由题意知: 甲厂的优等品率为6050%4015050=⨯ ··································································· 4.5人乙厂的优等品率为6051%4015051=⨯ ····································································· 5分丙厂的优等品率为3026%2015026=⨯ ··································································· 5.5分又3026>6051>6050 ·························································································· 6分 ∴丙厂的产品质量较好. ··············································································· 7分 五.解答题:(每小题7分,共计14分) 24.解AED △为直角三角形 ······························· 1分 理由:连结BE ················································· 2分 ∵AB 是直径∴∠BEA =90° ················································ 3分 ∴∠B +∠BAE =90° ········································ 4分 又∵AE 平分∠BAC ∴∠BAE =∠EAD ··········································· 4.5分 ∵ME 切O 于点E ∴∠AED =∠B ····························································································· 5分 ∴∠AED +∠EAD =90° ················································································ 6分 ∴AED △是直角三角形 ················································································· 7分 25.证明:①连结AD ················································································· 0.5分 ∵AB AC = ∠BAC =90° D 为BC 的中点 ∴AD ⊥BC BD =AD ······································· 1分 ∴∠B =∠DAC =45° ········································ 1.5分 又BE =AF∴△BDE ≌△ADF (S.A.S ) ································2分 ∴ED =FD ∠BDE =∠ADF ······································································· 2.5分 ∴∠EDF =∠EDA +∠ADF =∠EDA +∠BDE =∠BDA =90° ∴△DEF 为等腰直角三角形 ············································································ 3分 ②若E ,F 分别是AB ,CA 延长线上的点,如图所示. 连结AD ································································································· 4分 ∵AB =AC ∠BAC =90° D 为BC 的中点 ∴AD =BD AD ⊥BC ··································· 5分 ∴∠DAC =∠ABD =45° ∴∠DAF =∠DBE =135° ···························· 5.5分 又AF =BE∴△DAF ≌△DBE (S.A.S ) ························· 6分 ∴FD =ED ∠FDA =∠EDB ························· 6.5分∴∠EDF =∠EDB +∠FDB =∠FDA +∠FDB =∠ADB =90° ∴△DEF 仍为等腰直角三角形 ········································································· 7分 六.解答题:(共8分) 26.解:(1)证明:∵抛物线y =x 2-2ax +b 2 经过点(0)M a c +, ∴22()2()0a c a a c b +-++= ··········································································· 1分 ∴22222220a ac c a ac b ++--+=∴222b c a += ····························································································· 1.5分 由勾股定理的逆定理得:ABC △为直角三角形 ···································································· 2分 (2)解:①如图所示; ∵3MNP NOP S S =△△∴3MN ON = 即4MO ON = ····················· 2.5分又(0)M a c +, ∴04a c N +⎛⎫⎪⎝⎭, ···················· 3分 ∴a c +,4a c+是方程x 2-2ax +b 2=0的两根 ∴()24a ca c a +++= ··················································································· 3.5分 ∴35c a = ···································································································· 4分由(1)知:在ABC △中,∠A =90°由勾股定理得45b a = ··················································································· 4.5分∴4cos 5b C a == ···························································································· 5分 ②能 ········································································································· 5.5分由(1)知 222222222()y x ax b x ax a c x a c =-+=-+-=--∴顶点2()D a c -, ·························································································· 6分过D 作DE ⊥x 轴于点E 则NE =EM DN =DM 要使MND △为等腰直角三角形,只须ED =21MN =EM ······································ 6.5分 ∵(0)M a c +, 2()D a c -,∴2DE c = EM c =∴2c c = 又c >0,∴c =1 ············································································ 7分 由于c =53a b =54a ∴a =35b =34 ························································ 7.5分 ∴当a =35,b =34,c =1时,MNP △为等腰直角三角形8分。

自贡市2013-2014上期七年级期末统一考试 数学试题 (Word版,含答题卡和参考答案)

自贡市2013-2014上期七年级期末统一考试  数学试题 (Word版,含答题卡和参考答案)

秘密★启用前〖考试时间:2014年元月7日上午9:00-11:00 共120分钟〗自贡市2013-2014学年度上期末义教七年级统一检测数 学 试 卷重新制版:赵化中学 郑宗平注意事项:1、本试卷共4页,满分100分.考试时间120分钟.考试结束后,将答题卡和所有试卷一并交回,并密封装订.2、答卷前,考试务必将答题卡的各项填写清楚.3、请考生将试题答案做在答题卡上.一、选择题(本题有8个小题,每小题3分,满分24分,每小题只有一个选项符合题意)1、下列算式中,运算结果为负数的是 ( )A 、13-B 、 ()22-C 、12⎛⎫-- ⎪⎝⎭ D 、23-2、将802000000用科学记数法表示为 ( ) A 、.980210⨯ B 、.880210⨯ C 、.9080210⨯ D 、.80802108⨯3、下列说法正确的是 ( )A 、a 的系数是0B 、1x是一次单项式 C 、0是单项式 D 、5y -的系数是54、在墙壁上固定一根横放的木条,所需钉子至少要 ( ) A 、1颗 B 、2颗 C 、3颗 D 、随便多少颗5、用一副三角板不能画出的角是 ( ) A 、100° B 、75° C 、15° D 、135°6、下列图中不是正方体展开图的是 ( )7、如图,把一张报纸的一角斜折过去,使点A 落在E 处,BC为折痕,BD平分∠EBM 的平分线,则∠CBD 等于 ( )A 、90°B 、85°C 、80°D 、75°8、随着通讯市场竞争日益激烈,某通讯公司的手机市话费标准按原价标准每分钟降低a 元后,再次下调25%,现在的收费标准是每分钟b 元,则收费标准是每分钟 ( )A 、4b a 5⎛⎫+ ⎪⎝⎭元B 、5b a 4⎛⎫+ ⎪⎝⎭元C 、3b a 4⎛⎫+ ⎪⎝⎭元D 、4b a 3⎛⎫+ ⎪⎝⎭元二、填空题(本题有6个小题,每小题3分,共计18分)9、113-的倒数是 ,相反数是 .10、数轴上与原点距离为3的点有 个,表示的数是 . 11、如果一个角的度数是'''322410,则它的余角度数是 .12、一个两位数,十位上的数字为a ,个位上的数字比a 大3,且十位上的数字与个位上的数字之和为9,则这个两位数是 .13、如图OA,OB 是两条射线,C 是OA 上一点,D 、E 分别是OB 上两点,则图中共有 线段.14、如图,在数轴上,从-1到1有3个整数,它们是-1,0 ,1;从-2到2有5个整数,它们是-2,-1,0 ,1,2;从-3到3有7个整数,它们是-3,-2,-1,0 ,1,2,3; 从n -到n (n 为正整数)有个整数 个整数.三、解答题(本题有5个小题,每小题5分,共计25分)15.计算: ().160222⎛⎫+----- ⎪⎝⎭.16.计算: ()2312316⎡⎤-⨯---⎣⎦.17.解方程:x 1x 1123+=-+.18.当x 2=时。

四川省自贡市2013-2014学年度八年级上期末测试数学试题及答案(WORD版)【新课标人教版】

四川省自贡市2013-2014学年度八年级上期末测试数学试题及答案(WORD版)【新课标人教版】

2013-2014学年四川省自贡市八年级(上)期末数学试卷一、选择题(本题有8个小题,每小题3分,满分24分.每小题只有一个选项符合题意)..+y3.已知,则的值是()5.在分式中,若将x、y都扩大为原来的2倍,则所得分式的值()三角形,则符合条件的点P共有()二、填空题(本题有6个小题,每小题3分,共18分)9.要使分式有意义,x需满足的条件是_________.10.已知一个多边形的内角和等于900°,则这个多边形的边数是_________.11.汉字“王、中、田”等都是轴对称图形,请再写出一个这样的汉字_________.12.若x2﹣kxy+25y2是一个完全平方式,则k的值是_________.13.三角形周长是奇数,其中两边的长是2和5,则第三边长是_________.14.如图,在ABC中,AP=DP,DE=DF,DE⊥AB于E,DF⊥AC于F,则下列结论:①AD平分∠BAC;②△BED≌△FPD;③DP∥AB;④DF是PC的垂直平分线.其中正确的是_________.三、(本大题有5小题,每小题5分,共25分)15.因式分解:x3+2x2y+xy2.16.解方程:.17.如图,在△ABC中,D是AB上一点,DF交AC于点E,DE=FE,AE=CE,AB与CF有什么位置关系?证明你的结论.18.先化简:÷(a﹣2+),然后任选一个你喜欢的a的值代入求值.19.已知(a+2b)(2a+b)=2a2+5ab+2b2,如图是正方形和长方形卡片(各有若干张),你能用拼图的方法说明上式吗?四、(本大题有3小题,每小题6分,共18分)20.(6分)作图题(不写作法)已知:如下图所示,①作出△ABC关于y轴对称的△A1B1C1,并写出△A1B1C1三个顶点的坐标.②在x轴上确定点P,使PA+PC最小.21.(6分)仔细阅读下面例题,解答问题:例题:已知二次三项式x2﹣4x+m有一个因式是(x+3),求另一个因式以及m的值.解:设另一个因式为(x+n),得x2﹣4x+m=(x+3)(x+n)则x2﹣4x+m=x2+(n+3)x+3n∴.解得:n=﹣7,m=﹣21∴另一个因式为(x﹣7),m的值为﹣21问题:仿照以上方法解答下面问题:已知二次三项式2x2+3x﹣k有一个因式是(2x﹣5),求另一个因式以及k的值.22.(6分)D是等边三角形内一点,DB=DA,BP=AB,∠DBP=∠DBC,求∠BPD的度数.五、(本大题有2小题,23小题7分.24小题8分.共15分)23.(7分)在长江某处一座桥的维修工程中,拟由甲、乙两个工程队共同完成某项目.从两个工程队的资料可以知道:若两个工程队合作24天恰好完成;若两个工程队合作18天后,甲工程队再单独做10天,也恰好完成,请问:(1)甲、乙两个工程队单独完成该项目各需多少天?(2)又已知甲工程队每天的施工费为0.6万元,乙工程队每天的施工费为0.35万元.要使该项目总的施工费不超过22万元,则乙工程队最少施工多少天?24.(8分)数学课上,李老师出示了如下的题目:“在等边三角形ABC中,点E在AB上,点D在CB的延长线上,且ED=EC,如图,试确定线段AE与DB的大小关系,并说明理由”.小敏与同桌小聪讨论后,进行了如下解答:(1)特殊情况,探索结论当点E为AB的中点时,如图1,确定线段AE与DB的大小关系,请你直接写出结论:AE_________ DB(填“>”,“<”或“=”).(2)特例启发,解答题目解:题目中,AE与DB的大小关系是:AE_________DB(填“>”,“<”或“=”).理由如下:如图2,过点E作EF∥BC,交AC于点F.(请你完成以下解答过程)(3)拓展结论,设计新题在等边三角形ABC中,点E在直线AB上,点D在直线BC上,且ED=EC.若△ABC的边长为1,AE=2,求CD的长(请你直接写出结果).2013-2014学年八年级上学期期末考试数学参考答案一、选择题:本大题共8个小题,每小题3分,共24分.1.C 2.D 3.B 4.D 5.A 6.C 7.A 8.D 二、填空题:本大题共6个小题,每小题3分,共18分.9. 10.7;11.干 ; 12. ;13.4或6 ; 14.①③⑤.三、解答题(每小题5分,共25分)15.解:原式=22(2)x x xy y ++ ……(3分) =2()x x y + ……(5分) 16.解:方程两边同乘以24x -得 ……(2分)2(2)14x x x +-=- 22214x x x +-=- ∴ 32x =- ……(4分) 经检验32x =-是原方程的解 ∴ 方程的解是32x =- ……(5分) 17. FC 与AB 是平行关系 ……(1分)证明:∵ AC 、DF 交于E , ∴ ∠1=∠2 ……(2分)∵12AE CEDE FE =⎧⎪∠=∠⎨⎪=⎩∴ A E D C E F ∆≅∆ ……(3分)∴ A D E C F E ∠=∠ ……(4分) ∴ FC ∥AB ……(5分)18.解:原式= 2121()a a a a a--+÷……(1分) = 21(1)a a a a -⋅- ……(3分)= 11a - ……(4分) 2a =时,原式值为1. ……(5分)当19.解:……(4分)由图知22(2)(2)252a b a b a ab b ++=++ …(5分)3;x ≠10;k =±ABC ··· B 1C 1A 1P · ·A ′四、解答题(每小题6分,共18分) 20.解:(1)1(1,2)A -,1(3,1)B -,1(4,4)C -…(3分) (2)点P 是CA ′与x 轴的交点.…(6分) 21.解:设另一个因式为()x n + …(1分) 223(25)()x x k x x n --=-+则 22232(52)5x x k x n x n --=--- ……(2分)∴ 5235n k n-=⎧⎨=⎩ 解得1n = 5k = ……(4分)∴ 另一个因式是(1)x + k 的值是5. ……(6分)22.解: ∵ △ABC 为等边三角形∴ AC=BC=AB ∠ACB =60︒又DB =DA DC=DC ∴ △DCA ≌△DCB (SSS) ……(2分) ∴∠DCB=∠DCA=12∠ACB=30︒ ……(3分) 又 BP=AB ∴ BP=BC ∴ ∠DBP=∠DBC BD=BD △DBP ≌△DBC (SAS ) …(5分) ∴ ∠BPD=∠BCD=30︒ ……(6分) 五、解答题(23题7分,24题8分,共15分)23.解:(1)设甲、乙两工程队单独完成此项工程各需x 天,y 天, …(0.5分)由题得 11(2411110(181x y x yx ⎧+⨯=⎪⎪⎨⎪+⨯+=⎪⎩ 解得4060x y =⎧⎨=⎩……(2.5分) 经检验4060x y =⎧⎨=⎩是原方程组的解且符合题意 …(3.5分)答:甲、乙单独完成各需40天和60天. ……(4分)(2)甲队工程队施工a 天,乙工程队施工b 天时总的施工费不超过22万元…(4.5分)由题意有 140600.60.3522a b a b ⎧+=⎪⎨⎪+≤⎩ 解得 40b ≥ ……(6.5分)答:乙工程至少施工40天. ……(7分)24.解:(1)AE=DB …(1分)(2) AE与DB的大小关系是AE=DB理由如下:如图10,过点E作EF∥AC交AC于F∵△ABC为正△∴△AEF为正△,AE=EF BE=CF …(2分)图10 ∵ED=EC ∴∠D= ∠ECD又∠DEB=60︒-∠D∠ECF=60︒-∠ECD∴∠DEB=∠ECF又DE=CE , BE=CF ∴△DBE≌△EFC (SAS)∴DB=EF ∴DB=AE ……(4分)(3)图①图②①如图①点E在AB的延长线上时,可证得△DBE≌△EFCDB=EF=2 BC=1 ∴CD=3 ……(6分)②如图②当E在BA的延长线上时,可证得△DBE≌△EFCDB=EF=2 BC=1 ∴CD=1 ……(8分)。

2024年四川省自贡市中考数学试卷(附答案)

2024年四川省自贡市中考数学试卷(附答案)

2024年四川省自贡市中考数学试卷(附答案)一、选择题(共12个小题,每小题4分,共48分,在每题给出的四个选项中,只有一项是符合题目要求的)1.(4分)在0,﹣2,,π四个数中,最大的数是()A.﹣2B.0C.πD.【分析】根据大小比较,选出最大的数.【解答】解:∵﹣2<<0<π,∴最大的数为π,故选:C.【点评】本题考查了实数的大小比较,掌握负数<0<正数是解题的关键.2.(4分)据统计,今年“五一”小长假期间,近70000人次游览了自贡中华彩灯大世界.70000用科学记数法表示为()A.0.7×105B.7×104C.7×105D.0.7×104【分析】70000用科学记数法表示为7×104.【解答】解:70000用科学记数法表示为7×104,故选:B.【点评】本题考查了科学记数法的定义,掌握1≤<10是解题的关键.3.(4分)如图,以点A为圆心,适当的长为半径画弧,交∠A两边于点M,N,再分别以M、N为圆心,AM的长为半径画弧,两弧交于点B,连接MB,NB.若∠A=40°,则∠MBN=()A.40°B.50°C.60°D.140°【分析】判断出四边形AMBN是菱形,可得结论.【解答】解:由作图可知AM=AN=MB=NB,∴四边形AMBN是菱形,∴∠MBN=∠A=40°.故选:A.【点评】本题考查作图﹣基本作图,菱形的判定和性质等知识,解题的关键是读懂图象信息,灵活运用所学知识解决问题.4.(4分)下列几何体中,俯视图与主视图形状相同的是()A.B.C.D.【分析】根据圆锥、圆柱、正方体和棱台的主视图、俯视图进行判断即可.【解答】解:圆锥的主视图是等腰三角形,俯视图是带圆心的圆,故选项A不符合题意;圆柱的主视图是矩形,俯视图是圆,故B不符合题意正方体的主视图和俯视图都是正方形,故C符合题意;棱台的主视图是梯形,俯视图是正方形,故D不符合题意;故选:C.【点评】本题考查简单几何体的三视图,理解三视图的意义,明确各种几何体的三视图的形状是正确判断的前提.5.(4分)学校群文阅读活动中,某学习小组五名同学阅读课外书的本数分别为3,5,7,4,5.这组数据的中位数和众数分别是()A.3,4B.4,4C.4,5D.5,5【分析】将数据从小到大排列,中间的数为中位数;出现次数最多的数为众数.【解答】解:将数据从小到大排列为:3,4,5,5,7,∴中位数是5,众数是5,故选:D.【点评】本题考查了中位数和众数,掌握中位数和众数的定义是解题的关键.6.(4分)如图,在平面直角坐标系中,D(4,﹣2),将Rt△OCD绕点O逆时针旋转90°到△OAB位置.则点B坐标为()A.(2,4)B.(4,2)C.(﹣4,﹣2)D.(﹣2,4)【分析】根据点D的坐标得出OC=4,CD=2,根据旋转得出OA=OC=4,AB=CD=2,从而得到B 的坐标为(2,4).【解答】解:∵D(4,﹣2),∴OC=4,CD=2,∵旋转,∴OA=OC=4,AB=CD=2,∴B(2,4),故选:A.【点评】本题考查了坐标系中旋转的特点,掌握旋转前后两个图形全等是解题的关键.7.(4分)我国汉代数学家赵爽在他所著《勾股圆方图注》中,运用弦图(如图所示)巧妙地证明了勾股定理.“赵爽弦图”曾作为2002年第24届国际数学家大会的会徽图案.下列关于“赵爽弦图”说法正确的是()A.是轴对称图形B.是中心对称图形C.既是轴对称图形又是中心对称图形D.既不是轴对称图形也不是中心对称图形【分析】轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合,结合选项分析即可.【解答】解:“赵爽弦图”是中心对称图形,但不是轴对称图形.故选:B.【点评】本题考查的是中心对称图形与轴对称图形,熟知轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后与自身重合是解题的关键.8.(4分)关于x的方程x2+mx﹣2=0根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.只有一个实数根D.没有实数根【分析】根据一元二次方程根的判别式解答即可.【解答】解:关于x的方程x2+mx﹣2=0中,∵a=1,b=m,c=﹣2,∴Δ=m2+8>0,∴方程有两个不相等的实数根.故选:A.【点评】本题考查的是一元二次方程根的判别式,熟知一元二次方程ax2+bx+c=0(a≠0)的根与Δ=b2﹣4ac有如下关系:当△>0时,方程有两个不相等的两个实数根;当Δ=0时,方程有两个相等的两个实数根;当Δ<0时,方程无实数根是解题的关键.9.(4分)一次函数y=x﹣2n+4,二次函数y=x2+(n﹣1)x﹣3,反比例函数在同一直角坐标系中图象如图所示,则n的取值范围是()A.n>﹣1B.n>2C.﹣1<n<1D.1<n<2【分析】根据题意列不等式组,解不等式组即可得到结论.【解答】解:根据题意得,解得﹣1<n<1,∴n的取值范围是﹣1<n<1,故选:C.【点评】本题考查了反比例函数的图象,一次函数图象,二次函数的图象与系数的关系,正确地识别图形是解题的关键.10.(4分)如图,在▱ABCD中,∠B=60°,AB=6cm,BC=12cm.点P从点A出发,以1cm/s的速度沿A→D运动,同时点Q从点C出发,以3cm/s的速度沿C→B→C→…往复运动,当点P到达端点D 时,点Q随之停止运动.在此运动过程中,线段PQ=CD出现的次数是()A.3B.4C.5D.6【分析】由已知可得,P从A到D需12s,Q从C到B(或从B到C)需4s,设P,Q运动时间为t s,分三种情况画出图形:①当0≤t≤4时,过Q作QH⊥AD于H,过C作CG⊥AD于G,由四边形CQPD 是等腰梯形,可得t+3+3t+3=12,t=1.5;当四边形CQPD是平行四边形时,t+3t=12,得t=3;②当4<t≤8时,若四边形CQPD是平行四边形,可得3(t﹣4)=t,t=6;而四边形CQPD是等腰梯形,则PD>6cm,这种情况在4<t≤8时不存在;③当8<t≤12时,若四边形CQPD是平行四边形,3(t ﹣8)=12﹣t,得t=9,即可得到答案.【解答】解:由已知可得,P从A到D需12s,Q从C到B(或从B到C)需4s,设P,Q运动时间为t s,①当0≤t≤4时,过Q作QH⊥AD于H,过C作CG⊥AD于G,如图:由题可知,AP=t cm,CQ=3t cm=GH,∵PD∥CQ,PQ=CD,∴四边形CQPD是等腰梯形,∴∠QPH=∠D=∠B=60°,∵PQ=CD=AB=6cm,∴PH=PQ=3cm,DG=CD=3cm,∵AP+PH+GH+DG=AD=BC=12,∴t+3+3t+3=12,解得t=1.5;当四边形CQPD是平行四边形时,如图:此时PD=CQ=3t cm,∴t+3t=12,解得t=3,∴t为1.5s或3s时,PQ=CD;②当4<t≤8时,若四边形CQPD是平行四边形,如图:此时BQ=3(t﹣4)cm,AP=t cm,∵AD=BC,PD=CQ,∴BQ=AP,∴3(t﹣4)=t,解得t=6;由①知,若四边形CQPD是CD,PQ为腰的等腰梯形,则PD>6cm,这种情况在4<t≤8时不存在;∴t为6s时,PQ=CD;③当8<t≤12时,若四边形CQPD是平行四边形,如图:此时CQ=3(t﹣8),PD=12﹣t,∴3(t﹣8)=12﹣t,解得t=9,∴t为9s时,PQ=CD;综上所述,t为1.5s或3s或6s或9s时,PQ=CD;故选:B.【点评】本题考查平行四边形,等腰梯形的性质及应用,解题的关键是分类讨论思想的应用.11.(4分)如图,等边△ABC钢架的立柱CD⊥AB于点D,AB长12m.现将钢架立柱缩短成DE,∠BED =60°.则新钢架减少用钢()A.(24﹣12)m B.(24﹣8)m C.(24﹣6)m D.(24﹣4)m【分析】根据特殊直角三角形求出DE,CD和BE的长,从而得出减少用钢的长度.【解答】解:∵△ABC是等边三角形,∴∠ABC=60°,AB=BC=AC=12,BD=6,∴CD=,∵∠BED=60°,∴DE=,BE=AE=,∴减少用钢为(AB+AC+BC+CD)﹣(AE+BE+AB+DE)=AC+BC+CD﹣AE﹣BE﹣DE=24﹣(cm),故选:D.【点评】本题考查了等边三角形的性质,特殊直角三角形的三边关系,掌握特殊角的三边关系是解题的关键.12.(4分)如图,在矩形ABCD中,AF平分∠BAC,将矩形沿直线EF折叠,使点A,B分别落在边AD、BC上的点A′,B′处,EF,A′F分别交AC于点G,H.若GH=2,HC=8,则BF的长为()A.B.C.D.5【分析】由AD∥BC,推出=,=,推出=,推出=,可得=.解得AG=,再证明FG=AG,利用勾股定理求出CF,再利用平行线分线段成比例定理求出BF.【解答】解:∵四边形ABCD 是矩形,∴AD ∥BC ,∴=,=,∴=,∴=,∴=.∴AG =,∵AF 平分∠BAC ,∴∠BAF =∠FAC ,∵EF ∥AB ,∴∠BAF =∠AFG ,∴∠GAF =∠GFA ,∴FG =AG =,∵CF ===,∵BF :CF =AG :CG =1:3,∴BF =CF =.故选:A .【点评】本题考查翻折变换,角平分线的性质,矩形的性质,勾股定理,平行线分线段成比例定理等知识,解题的关键是理解题意,灵活运用所学知识解决问题.二、填空题(共6个小题,每小题4分,共24分)13.(4分)分解因式:x 2﹣3x =x (x ﹣3).【分析】原式提取x 即可得到结果.【解答】解:原式=x (x ﹣3),故答案为:x (x ﹣3)【点评】此题考查了因式分解﹣提公因式法,熟练掌握提取公因式的方法是解本题的关键.14.(4分)计算:﹣=1.【分析】利用分式的化简方法逐步化简即可.【解答】解:﹣===1,故答案为:1.【点评】本题考查了分式的化简,属于简单题.15.(4分)凸七边形的内角和是900度.【分析】根据多边形内角和公式180°(n﹣2)计算即可.【解答】解:∵n=7,∴内角和为:180°×(7﹣2)=900°,故答案为:900.【点评】本题考查了多边形内角和,掌握内角和公式是解题的关键.16.(4分)一次函数y=(3m+1)x﹣2的值随x的增大而增大,请写出一个满足条件的m的值1.【分析】根据一次函数y的值随x的增大而增大,得出k>0,写一个满足条件的m的值即可.【解答】解:∵y=(3m+1)x﹣2的值随x的增大而增大,∴3m+1>0,∴m>,∴m可以为:1,故答案为:1.【点评】本题考查了一次函数的性质,根据k的正负性判断函数增减性是解题的关键.17.(4分)龚扇是自贡“小三绝”之一,为弘扬民族传统文化,某校手工兴趣小组将一个废弃的大纸杯侧面剪开直接当作扇面,制作了一个龚扇模型(如图),扇形外侧两竹条AB,AC夹角为120°,AB长30cm,扇面的BD边长为18cm,则扇面面积为252πcm2(结果保留π).【分析】根据扇形公式进行计算即可.【解答】解:扇面面积=扇形BAC的面积﹣扇形DAE的面积=﹣=252π(cm2),故答案为:252π.【点评】本题考查了扇面面积计算,掌握扇面面积等于两个扇形面积相减是解题的关键.18.(4分)九(1)班劳动实践基地内有一块面积足够大的平整空地,地上两段围墙AB⊥CD于点O(如图),其中AB上的EO段围墙空缺.同学们测得AE=6.6m,OE=1.4m,OB=6m,OC=5m,OD=3m,班长买来可切断的围栏16m,准备利用已有围墙,围出一块封闭的矩形菜地,则该菜地最大面积是46.4m2.【分析】要利用围墙和围栏围成一个面积最大的封闭的矩形菜地,那就必须尽量使用原来的围墙,那么由图可知,我们尽量利用围墙的AO段和CO段,也就是说:矩形的两个边,一边在射线OA上.一边在射线OC上.设射线OA上的这一段边长为x m.x可能小于等于AO的长8,也有可能大于AO的长8,所以分成两种情况进行讨论【解答】解:设矩形在射线OA上的一段长为x m.(1)当x≤8时,,当x=8时,S=46.4,(2)当x>8时,,由于在x>8的范围内,S均小于46.4.所以由(1)(2)得最大面积为46.4m2.故答案为:46.4.【点评】本题考查二次函数的应用,解题的关键是理解题意,学会构建二次函数解决问题.三、解答题(共8个题,共78分)19.(8分)计算:(tan45°﹣2)0+|2﹣3|﹣.【分析】先根据零指数幂的运算法则,绝对值的性质及数的开方法则分别计算出各数,再根据实数的运算法则进行计算即可.【解答】解:(tan45°﹣2)0+|2﹣3|﹣=1+1﹣3=﹣1.【点评】本题考查的是实数的运算,零指数幂的运算法则,绝对值的性质及数的开方法则,熟知以上知识是解题的关键.20.(8分)如图,在△ABC中,DE∥BC,∠EDF=∠C.(1)求证:∠BDF=∠A;(2)若∠A=45°,DF平分∠BDE,请直接写出△ABC的形状.【分析】(1)根据DE∥BC,得到∠C=∠AED,再根据∠EDF=∠C,得到∠AED=∠EDF,从而得到DF∥AC,得出∠BDF=∠A;(2)通过(1)得出∠BDF=45°,再根据角平分线,得出∠BDE=90°=∠B,由此得出△ABC是等腰直角三角形.【解答】(1)证明:∵DE∥BC,∴∠C=∠AED,∵∠EDF=∠C,∴∠AED=∠EDF,∴DF∥AC,∴∠BDF=∠A;(2)解:∵∠A=45°,∴∠BDF=45°,∵DF平分∠BDE,∴∠BDE=2∠BDF=90°,∵DE∥BC,∴∠B=90°,∴△ABC是等腰直角三角形.【点评】本题考查了平行线的性质与判定,等腰直角三角形的判定,掌握判定方法是解题的关键.21.(8分)为传承我国传统节日文化,端午节前夕,某校组织了包粽子活动.已知七(3)班甲组同学平均每小时比乙组多包20个粽子,甲组包150个粽子所用的时间与乙组包120个粽子所用的时间相同.求甲,乙两组同学平均每小时各包多少个粽子.【分析】设乙组同学平均每小时包x个粽子,则甲组同学平均每小时包(x+20)个粽子,根据“甲组包150个粽子所用的时间与乙组包120个粽子所用的时间相同”列出分式方程,求解即可.【解答】解:设乙组同学平均每小时包x个粽子,则甲组同学平均每小时包(x+20)个粽子,根据题意得=,解得x=80,经检验,x=80是原方程的解,x+20=100.答:甲组同学平均每小时包100个粽子,乙组同学平均每小时包80个粽子.【点评】本题主要考查了分式方程的应用,正确找出等量关系是解决问题的关键.22.(8分)在Rt△ABC中,∠C=90°,⊙O是△ABC的内切圆,切点分别为D,E,F.(1)图1中三组相等的线段分别是CE=CF,AF=AD,BD=BE;若AC=3,BC=4,则⊙O 半径长为1;(2)如图2,延长AC到点M,使AM=AB,过点M作MN⊥AB于点N.求证:MN是⊙O的切线.【分析】(1)连接OE,OF,由切线长定理可知,AF=AD,BD=BE,根据∠C=90°,⊙O是△ABC 的内切圆,可得∠C=∠OEC=∠OFC=90°,OE=OF,故四边形OECF是正方形,设OE=OF=CF =CE=x,可得4﹣x+3﹣x=5,解得x=1,即⊙O半径长为1;(2)过O作OH⊥MN于H,连接OD,OE,OF,根据∠ANM=90°=∠ACB,∠A=∠A,AM=AB,可得△AMN≌△ABC(AAS),从而AN=AC,即可得DN=CF,又CF=OE,有DN=OE,证明四边形OHND是矩形,即可得OH=OE,即OH是⊙O的半径,故MN是⊙O的切线.【解答】(1)解:连接OE,OF,如图:由切线长定理可知,AF=AD,BD=BE,∵∠C=90°,⊙O是△ABC的内切圆,∴∠C=∠OEC=∠OFC=90°,OE=OF,∴四边形OECF是正方形,设OE=OF=CF=CE=x,则BE=BC﹣CE=4﹣x=BD,AF=AC﹣CF=3﹣x=AD,∵BD+AD=AB===5,∴4﹣x+3﹣x=5,解得x=1,∴OE=1,即⊙O半径长为1;故答案为:AD,BE,1;(2)证明:过O作OH⊥MN于H,连接OD,OE,OF,如图:∵∠ANM=90°=∠ACB,∠A=∠A,AM=AB,∴△AMN≌△ABC(AAS),∴AN=AC,∵AD=AF,∴AN﹣AD=AC﹣AF,即DN=CF,同(1)可知,CF=OE,∴DN=OE,∵∠ANM=90°=∠ODN=∠OHN,∴四边形OHND是矩形,∴OH=DN,∴OH=OE,即OH是⊙O的半径,∵OH⊥MN,∴MN是⊙O的切线.【点评】本题考查三角形内切圆,圆的切线判定与性质,涉及全等三角形的判定与性质,正方形判定与性质,解题的关键是掌握切线长定理和切线的判定定理.23.(10分)某校为了解学生身体健康状况,从全校600名学生的体质健康测试结果登记表中,随机选取了部分学生的测试数据进行初步整理(如表),并绘制出不完整的条形统计图(如图).学生体质健康统计表成绩频数百分比不及格3a及格b20%良好45c优秀3232%(1)如表中a=3%,b=20,c=45%;(2)请补全如图的条形统计图,并估计该校学生体质健康测试结果为“良好”和“优秀”的总人数;(3)为听取测试建议,学校选出了3名“良好”1名“优秀”学生,再从这4名学生中随机抽取2人参加学校体质健康测试交流会,请用列表或画树状图的方法,计算所抽取的两人均为“良好”的概率.【分析】(1)先根据选取的优秀人数和百分比求出选取的人数,再根据总数、频数、百分比的关系即可求得答案;(2)根据及格的人数,补全条形统计图即可;(3)画树状图列出所有等可能的结果,再找出恰好选中两人均为“良好”的结果,利用概率公式可得出答案.【解答】解:(1)这次调查的人数为:32÷32%=100(人),a=×100%=3%,b=100×20%=20,c=×100%=45%,故答案为:3%,20,45%;(2)补全条形统计图如下:估计该校学生体质健康测试结果为“良好”和“优秀”的总人数为462人;(3)设3名“良好”分别为甲、乙、丙,1名“优秀”学生为丁,画树状图如图:∵共有12种等可能的结果,其中恰好选中两人均为“良好”的结果有6种,∴所抽取的两人均为“良好”的概率为=.【点评】本题考查条形统计图、扇形统计图、用样本估计总体、列表法与树状图法,熟练掌握条形统计图与扇形统计图以及列表法与树状图法求概率是解答本题的关键.24.(10分)如图,在平面直角坐标系中,一次函数y=kx+b的图象与反比例函数y=的图象交于A(﹣6,1),B(1,n)两点.(1)求反比例函数和一次函数的解析式;(2)P是直线x=﹣2上的一个动点,△PAB的面积为21,求点P坐标;(3)点Q在反比例函数y=位于第四象限的图象上,△QAB的面积为21,请直接写出Q点坐标.【分析】(1)把A(﹣6,1)代入y=得m=﹣6,可得反比例函数的解析式为y=﹣,即可求出B (1,﹣6),再用待定系数法得一次函数的解析式为y=﹣x﹣5;(2)设直线x=﹣2交直线AB于H,求出N(﹣2,﹣3),由△PAB的面积为21,可得PH×(1+6)=21,PH=6,故P的坐标为(﹣2,3)或(﹣2,﹣9);(3)过Q作QM∥x轴交直线AB于M,设Q(t,﹣),可得M(﹣5,﹣),MQ=|﹣5﹣t|,故MQ•|y A﹣y B|=21,即×|﹣5﹣t|×7=21,解出t的值并检验可得Q的坐标为(,﹣)或(3,﹣2).【解答】解:(1)把A(﹣6,1)代入y=得:1=,∴m=﹣6,∴反比例函数的解析式为y=﹣;把B(1,n)代入y=﹣得:n=﹣6,∴B(1,﹣6),把A(﹣6,1),B(1,﹣6)代入y=kx+b得:,解得,∴一次函数的解析式为y=﹣x﹣5;(2)设直线x=﹣2交直线AB于H,如图:在y=﹣x﹣5中,令x=﹣2得y=﹣3,∴N(﹣2,﹣3),∵△PAB的面积为21,∴PH•|x B﹣x A|=21,即PH×(1+6)=21,∴PH=6,∵﹣3+6=3,﹣3﹣6=﹣9,∴P的坐标为(﹣2,3)或(﹣2,﹣9);(3)过Q作QM∥x轴交直线AB于M,如图:设Q(t,﹣),在y=﹣x﹣5中,令y=﹣得x=﹣5,∴M(﹣5,﹣),∴MQ=|﹣5﹣t|,∵△QAB的面积为21,∴MQ•|y A﹣y B|=21,即×|﹣5﹣t|×7=21,∴﹣5﹣t=6或﹣5﹣t=﹣6,解得t=或t=﹣2或t=3,经检验,t=,t=3符合题意,∴Q的坐标为(,﹣)或(3,﹣2).【点评】本题考查反比例函数与一次函数交点问题,解题的关键是掌握直角坐标系中三角形面积的求法.25.(12分)为测量水平操场上旗杆的高度,九(2)班各学习小组运用了多种测量方法.(1)如图1,小张在测量时发现,自己在操场上的影长EF恰好等于自己的身高DE.此时,小组同学测得旗杆AB的影长BC为11.3m,据此可得旗杆高度为11.3m;(2)如图2,小李站在操场上E点处,前面水平放置镜面C,并通过镜面观测到旗杆顶部A.小组同学测得小李的眼睛距地面高度DE=1.5m,小李到镜面距离EC=2m,镜面到旗杆的距离CB=16m.求旗杆高度;(3)小王所在小组采用图3的方法测量,结果误差较大.在更新测量工具,优化测量方法后,测量精度明显提高,研学旅行时,他们利用自制工具,成功测量了江姐故里广场雕塑的高度.方法如下:如图4,在透明的塑料软管内注入适量的水,利用连通器原理,保持管内水面M,N两点始终处于同一水平线上.如图5,在支架上端P处,用细线系小重物Q,标高线PQ始终垂直于水平地面.如图6,在江姐故里广场上E点处,同学们用注水管确定与雕塑底部B处于同一水平线的D,G两点,并标记观测视线DA与标高线交点C,测得标高CG=1.8m,DG=1.5m.将观测点D后移24m到D′处.采用同样方法,测得C′G′=1.2m,D′G′=2m.求雕塑高度(结果精确到1m).【分析】(1)由影长EF恰好等于自己的身高DE,知△DEF是等腰直角三角形,△ABC是等腰直角三角形,故AB=BC=11.3m,(2)证明△DEC∽△ABC,可得=,故AB=12,即旗杆高度为12米;(3)由△DCG ∽△DAB ,得=,设AB =x m ,BD =y m ,则=,知y =x ,同理可得=,即得=,从而=,解出x 即可得雕塑高度约为31m .【解答】解:(1)∵影长EF 恰好等于自己的身高DE ,∴△DEF 是等腰直角三角形,由平行投影性质可知,△ABC 是等腰直角三角形,∴AB =BC =11.3m ,故答案为:11.3;(2)如图:由反射定律可知,∠DCE =∠ACB ,又∠DEC =90°=∠ABC ,∴△DEC ∽△ABC ,∴=,即=,解得AB =12,∴旗杆高度为12米;(3)如图:∵∠CDG =∠ADB ,∠CGD =90°=∠ABD ,∴△DCG ∽△DAB ,∴=,设AB=x m,BD=y m,则=,∴y=x,同理可得=,∴=,∴=,解得x=28.8;经检验,x=28.8是原方程的解,故AB≈29m,∴雕塑高度AB约为29m.【点评】本题考查解直角三角形应用,涉及相似三角形判定与性质,解题的关键是读懂题意,列出方程解决问题.26.(14分)如图,抛物线与x轴交于A(﹣1,0),B(4,0)两点,顶点为P.(1)求抛物线的解析式及P点坐标;(2)抛物线交y轴于点C,经过点A,B,C的圆与y轴的另一个交点为D,求线段CD的长;(3)过点P的直线y=kx+n分别与抛物线、直线x=﹣1交于x轴下方的点M,N,直线NB交抛物线对称轴于点E,点P关于E的对称点为Q,MH⊥x轴于点H.请判断点H与直线NQ的位置关系,并证明你的结论.【分析】(1)用待定系数法可得抛物线解析式为y=x2﹣x﹣2,即可知抛物线顶点P的坐标为(,﹣);(2)求出C(0,﹣2),可得tan∠ACO==,tan∠CBO===,故∠ACO=∠CBO,可得∠ACB=90°,从而AB是经过点A、B、C的圆的直径,又AB⊥CD,故CD=2CO=4;(3)将代入y=kx+n得n=﹣k﹣,直线MN解析式为y=kx﹣k﹣,联立,可得M(2k+,2k2﹣),H(2k+,0),求出N(﹣1,﹣k﹣),由GE∥AN,点G为AB中点,知点E为BN中点,故E(,﹣k﹣),可得Q(,﹣k),直线NQ 解析式为y=x﹣k﹣,令y=0得x=2k+,可知直线NQ与x轴交于(2k+,0),即直线NQ 与x轴交于点H.【解答】解:(1)∵抛物线与x轴交于A(﹣1,0),B(4,0)两点,∴,解得:,∴抛物线解析式为y=x2﹣x﹣2,而,∴抛物线顶点P的坐标为(,﹣);(2)如图:在y=x2﹣x﹣2中,令x=0得y=﹣2,∴点C(0,﹣2),∵A(﹣1,0),B(4,0),∴tan∠ACO==,tan∠CBO===,∴∠ACO=∠CBO,∵∠CBO+∠OCB=90°,∴∠ACO+∠OCB=90°,即∠ACB=90°,∴AB是经过点A、B、C的圆的直径,∵AB⊥CD,AB经过圆心,∴CD=2CO=4;(3)H在直线NQ上,证明如下:如图:将代入y=kx+n得:,∴n=﹣k﹣,∴直线MN解析式为y=kx﹣k﹣,联立,解得或,∴M(2k+,2k2﹣),∵MH⊥x轴于点H,∴H(2k+,0),在y=kx﹣k﹣中,令x=﹣1得y=﹣k﹣k﹣=﹣k﹣,∴N(﹣1,﹣k﹣),∵GE⊥x轴,AN⊥x轴,∴GE∥AN,点G为AB中点,∴,∴点E为BN中点,∵N(﹣1,﹣k﹣),B(4,0),∴E(,﹣k﹣),∵P,Q关于E对称,即E为PQ中点,∴Q(,﹣k),由N(﹣1,﹣k﹣),Q(,﹣k)可得直线NQ解析式为y=x﹣k﹣,在y=x﹣k﹣中,令y=0得x=2k+,∴直线NQ与x轴交于(2k+,0),即直线NQ与x轴交于点H,∴H在直线NQ上.。

四川省自贡市2014-2015学年下学期八年级期末统一考试++数学试卷(Word版-含答题卡)

四川省自贡市2014-2015学年下学期八年级期末统一考试++数学试卷(Word版-含答题卡)

秘密★启用前〖考试时间:2015年6月30日上午9:00-11:00 共120分钟〗自贡市2014-2015学年八年级下学期期末考试数学试卷注意事项:1、答题前,考生务必将自己的姓名、班级、考号(用0.5毫米的黑色签字笔)填写在答题卡上,并检查条形码粘贴是否正确.2、选择题使用2B铅笔填涂在答题卡对应题目标号的位置上,非选择题用0.5毫米的黑色签字笔书写在答题卡的对应框内,超出答题区域的书写的答案无效,在草稿纸、试题卷上答题无效.3、考试结束后,将答题卡收回.一、选择题(本题有8个小题,每小题3分,满分24分,每小题只有一个选项符合题意)1x的取值范围是()A.x2> B.x2≤ C.x2< D.x2≥2、下列各式是最简二次根式的是()3、一组数据:,,,,,358235的中位数是()A.2B.3C.4D.54、下列各图能表示y是x的函数的是()5、直角三角形的两边长分别为3和5,则另一边长为()C.46、若点(),m n在函数y2x1=+的图象上,则2m n-的值是()A.2B.-2C.-1D.17、甲、乙两艘客轮同时离开港口,航行的速度都是40m/min,甲客轮15min到达点A ,乙客轮用20min到达B点,若A、B 两点的直线距离为1000m.甲客轮沿北偏东30°的方向航行,则乙客轮的航行方向可能是()A.南偏东60°B.南偏西30°C.北偏西30°D.南偏西60°8、如图,两直线2y x3=-+与1y2x=相交于点A,下列错误的是)A.x3<时,12y y3-> B.当12y y>时,x1>C.1y0>且2y0>时,0x3<< D.x0<时,1y0<且2y3>二、填空题(本题有6个小题,每小题3分,共计18分)9、把直线y2x1=--沿y轴向上平移2个单位,所得直线解析式为 .10、数据201202203,,的方差是 .11. 如图,字母b的取值如图所示,化简:b2-= .12、已知正比例函数()25my m1x-=-的图象在第二、四象限,则m的值为 .13、如图,22⨯的方格中,小正方形的边长是1,点A B C、、都在格点上,则△ABC中AB边上的高长为 .14、如图,将两张长为6cm,宽为3cm的矩形纸条交叉,使重叠部分是一个菱形,那么菱形周长的最大值是 .三、解答题(本题有5个小题,每小题5分,共计25分)1516、如图,BD是菱形ABCD的对角线,点E F、分别在边CD DA、上,且CE AF=.求证:BE BF=17、如图,在Rt△ABC中,BAC90AD BC∠=⊥,于点D,AB8AC6==,.求AD的长.18、已知:如图,点E F、分别是□ABCD中AB DC、边上的点,且AE CF=,连接DE BF、.求证:四边形DEBF是平行四边形.A D0b5自贡市2014-2015下学期八数期末检测第 1页(共 4页)第 2页(共 4页)自贡市2014-2015下学期八数期末检测 第 3页(共 4页) 第 4页 (共 4页)19、如图所示,有一条宽度相等的小路穿过矩形草地ABCD ,若,AB 60m =BC 81m =,AE 100m =,则这 条小路的面积是多少? 四、解答题(本题有3道小题,每小题6分,共计18分)20、正方形ABCD 中,点M 是边DC 上的任意一点,BE AM ⊥ 于点E ,DF AM ⊥于点F ,若,BE 7DF 4==,求EF 的长.21、某公司为了了解员工每人所创年利润情况,公司从各部抽取部分员工对每年所创年利润情况进行统计,并绘制如图1,图2统计图.⑴.将图形补充完整;⑵.每人所创年利润的平均数是 . ⑶.若每人创造利润10万元及以上为优秀员工,在公司1200名员工中估计有多少可以评为优秀员工?22、点(),P x y 在直线x y 8+=上,且,x 0y 0>>,点A 的坐标为(),A 60 , 设△OPA 的面积为S .⑴.求S 与x 的函数关系式,并直接写出x 的取值范围;⑵.当S 9=时,求点P 的坐标.五、解答下列各题(第23题7分,第24题8分,共计1523、阅读下列材料,然后回答问题:一样的式子,其实我们还可以将其进一步化简:==(Ⅰ)==;(Ⅱ) )22212111⨯⨯==- . (Ⅲ)以上这种化简的步骤叫分母有理化.还可以用以下方法化简:221111-====.(Ⅳ)⑴.请用不同方法化简①.参照(Ⅲ)式得= ;②.参照(Ⅳ)式得= .⑵.化简:2n +++24、如图1,在平面直角坐标系xoy 中,等腰直角△AOB 的斜边OB 在x 轴上,顶点A 的坐标为(),22⑴.求直线OA 的解析式;⑵.如图2,如果点P 是x 轴正半轴上的一动点,过点P 作PC ∥y 轴,叫直线OA 于点C ,设点P 的坐标为(),m 0,以A C P B 、、、为顶点的四边形面积为S ,求S 与m 之间的函数关系式; ⑶.如图3,如果(),D 1a 在直线AB 上.过点O D 、作直线OD ,交直线PC 于点E ,在CE 的右侧作矩形CGFE ,其中3CG 2=,请你直接写出矩形CGFE 与△AOB 重叠部分为轴对称图形时m 的取值范围.图 1图 2图 3图 102468101214163581015每年所创利润/万元图 2自贡市14-15下期八数期末考试 答题卡 第1页 共6页 第 2页 共6页 第3页 共6页2014~2015学年八年级下学期期末考试数 学 答 题 卡请在各题目的答题区域内作答,超出答题区域的答案无效准考证号姓 名 设计:郑宗平14-15下期八数期末考试 答题卡 第4页 共6页 第 5页 共6页 第6页 共6页请在各题目的答题区域内作答,超出答题区域的答案无效请在各题目的答题区域内作答,超出答题区域的答案无效 ..自贡市14-15下期八数期末考试 答题卡 第7页 共6页 第 8页 共6页 第9页 共6页2014—2015学年八年级下学期期末考试数学试卷参考答案及评分标准一、选择题 1 D ,2 B ,3 C ,4 D ,5 C ,6 C ,7 A ,8 A.二、填空题 9.y=﹣2x+1, 10.32, 11.3, 12.-2, 13.553, 14.15cm . 三、解答题 15.解:原式232122162÷+⨯-= ……………………3分 4616662+=+-= ……………5分16.证明:∵四边形ABCD 是菱形,∴∠A=∠C ,AB=CB …………………2分 ∵AF=CE,∴△ABF≌△CBE(SAS). ………………4分∴BE=BF ………………………5分 其他证法相应给分. 17.解:在Rt △ABC中 由勾股定理有10682222=+=+=AC AB BC ……… 2分∴S△ABC=21AB ∙AC=21BC ∙AD,∴8.4,1068=∴⨯=⨯AD AD , …… 4分答:AD 的长为4.8. …………………………5分18.证明:∵四边形ABCD 是平行四边形, ∴AB =CD ,AB ∥CD . ... (2)分∵AE =CF ,∴AB -AE =CD -CF ,即EB =DF .∴EBDF ……………… ……………………… …………………4分∴四边形DEBF 是平行四边形. …………5分 其他证法相应给分.19.解:在Rt △ABE 中,=80, ……………2分∴EC=81-80=1, 由题意知四边形AECF 是平行四边形 ……………3分∴S 阴=1×60=60(m 2). 答:这条小路面积为60 m 2. ……………5分 四、解答题20.解:∵四边形ABCD 为正方形, ∴AB=AD ,∠BAD=900∵AM BE ⊥,AM DF ⊥,∴∠BEA=∠AFD=900, ∵∠BAE+∠DAF=∠BAE+∠ABE=900 ∴∠DAF=∠ABE , ……………………2分 又∵AB=AD,∴△ADF≌△BAE(AAS) ……………………………………4分 ∴ AF=BE=7,AE=DF=4, ∴ EF=AF-AE=7-4=3 答:EF 的长为3 . ………………………………………………………6分 21.解:(1)如图所示,写出3万元员工数占8% , ………………1分画出5万元和8万元的员工人数条形图各1分, ………………3分不写解答过程.(2)8.12万元.…………………………………………………………………………4分(3)抽取员工总数为:10÷20%=50(人),1200×=384(人)答:在公司1200员工中估计有384人可以评为优秀员工. (6)分自贡市14-15下期八数期末考试 答题卡 第10页 共6页 第 11页 共6页 第12页 共6页22.解:(1)∵点P (x ,y )在直线x +y = 8上,∴y = 8﹣x , ………1分∵点A (6,0),∴S =21×6(8﹣x )=24﹣3x , 即S=24﹣3x (0<x <8); ………………………4分 (其中写出范围1分)(2)当S=9时,24﹣3x =9,x =5,∴y = 8﹣5=3 ∴P (5,3). …………6分五、解答下列各题 23.解:(1)===,………2分(过程与答案各1分)3535+- ;………4分 (过程与答案各1分) (2)原式=++…………5分 =++++………………………………6分…………………………7分24.解:(1)设直线OA 的解析式为y=kx . ∵直线OA 经过点A (2,2), ∴2=2k ,解得 k=1.∴直线OA 的解析式为y=x . ………2分 (2)过点A 作AM ⊥x 轴于点M . ∴M (2,0),B (4,0),P (m ,0),C (m ,m ). 01. 当0<m <2时,如图①. S=S △AOB ﹣S △COP =OB •AM ﹣OP •PC2214212421m m m -=∙-⨯⨯=即2214m s -= …4分02. 当2≤m ≤4时,如图②.S=S △COB ﹣S △AOP=OB •PC ﹣OP •AMm m m =∙⨯-∙⨯=221421 即 m s = ………………5分 >4时,如图③.S=S △COP ﹣S △AOB =OP •PC ﹣OB •AM4212421212-=⨯⨯-∙⨯=m m m 即 4212-=m s ………………………6分(3)如下图所示,当C 在直线OA 上,G 在直线AB 上时,矩形CGFE 与△AOB 重叠部分为轴对称图形,此时m=45;当m=2时C 点和A 点重合,则矩形CGFE 与△AOB 无重叠部分.所以m 的取值范围是45≤m <2.(直接写出结果即可.)…………8分=。

2014-2015年四川省自贡市初三上学期期末数学试卷及答案

2014-2015年四川省自贡市初三上学期期末数学试卷及答案

2014-2015学年四川省自贡市初三上学期期末数学试卷一、选择题(每小题4分,共40分)1.(4分)方程x(x﹣2)=2﹣x的解是()A.2B.﹣2,1C.﹣1D.2,﹣1 2.(4分)抛物线y=(2x﹣3)2+3的顶点坐标是()A.(4,3)B.(,3)C.(﹣3,3)D.(3,3)3.(4分)关于x的一元二次方程x2﹣2x+a=0有两个不相等的实数根,则a的取值范围是()A.a<1B.a<﹣1C.a>1D.a>﹣1 4.(4分)方程x2+6x=5的左边配成完全平方后所得方程为()A.(x+3)2=14B.(x﹣3)2=14C.(x+6)2=12D.以上答案均不对5.(4分)如图,△ABC的顶点A、B、C均在⊙O上,∠ABC+∠AOC=90°,则∠AOC等于()A.30°B.45°C.60°D.75°6.(4分)给任意实数n,得到不同的抛物线y=﹣x2+n,当n=0,±1时,关于这些抛物线有以下结论:①开口方向不同;②对称轴不同;③都有最低点;④可以通过一个抛物线平移得到另一个.其中判断正确的个数是()A.0B.1C.2D.37.(4分)如图,⊙O的半径为5,弦AB的长为8,M是弦AB上的一个动点,则线段OM长的最小值为()A.3B.2C.5D.48.(4分)在正方形ABCD中,E为DC边上的点,连接BE,将△BCE绕点C顺时针旋转90°,得到△DFC,连接EF,若∠BEC=60°,则∠EFD等于()A.10°B.25°C.20°D.15°9.(4分)已知二次函数y=kx2﹣6x+3,若k在数组(﹣3,﹣2,﹣1,1,2,3,4)中随机取一个,则所得抛物线的对称轴在直线x=1的右方的概率为()A.B.C.D.10.(4分)如图,已知:正方形ABCD边长为1,E、F、G、H分别为各边上的点,且AE=BF=CG=DH,设小正方形EFGH的面积为s,AE为x,则s关于x的函数图象大致是()A.B.C.D.二、填空题(共5个小题,每小题4分,共20分)11.(4分)若一个75°的角绕顶点旋转15°,则重叠部分的角的大小是.12.(4分)若圆锥的底面半径为4,高为3,则圆锥的侧面展开图的面积是.13.(4分)同一圆中的内接正六边形和内接正方形的周长比为.14.(4分)某校举行以“保护环境,从我做起”为主题的演讲比赛.经预赛,七、八年级各有一名同学进入决赛,九年级有两名同学进入决赛.前两名都是九年级同学的概率是.15.(4分)如图是二次函数y=ax2+bx+c(a≠0)的图象,有以下结论:①ab>0;②a+b+c<0;③b+2c<0;④a﹣2b+4c>0;⑤a=b.其中正确的有(把你认为正确的结论序号都填上).三、解答题(共2个题,每题8分,共16分)16.(8分)x2﹣x﹣6=0.17.(8分)求证:圆的内接四边形对角互补.四、解答题(共2个题,每小题8分,共16分)18.(8分)已知二次函数y=x2﹣4x+3.(1)在给出的直角坐标系中画出它的示意图;(2)观察图象填空:①当x时,y随x的增大而增大;②使x2﹣4x+3<0的x的取值范围是;③将图象向左平移1个单位再向上平移2个单位,所得的抛物线的解析式.19.(8分)如图,AB为⊙O的直径,PD切⊙O于点C,交AB的延长线于点D,且∠D=2∠CAD.(1)求∠D的度数;(2)若CD=1,求BD的长.五、解答题(共2个题,每题10分,共20分)20.(10分)九年级三班班委主动为班上一位生病住院的同学筹集部分医药费,计划筹集450元,由全体班委分担,有5名同学闻讯后也自愿参加捐助,和班委一起平均分担,因此每个班委比原先少分担45元.问:该班班委有几个人?21.(10分)在3×3的方格纸中,点A、B、C、D、E、F分别位于如图所示的小正方形的顶点上.(1)从A、D、E、F四个点中任意取一点,以所取的这一点及点B、C为顶点画三角形,则所画三角形是等腰三角形的概率是;(2)从A、D、E、F四个点中先后任意取两个不同的点,以所取的这两点及点B、C为顶点画四边形,求所画四边形是平行四边形的概率是(用树状图或列表法求解).六、解答题(本题满分12分)22.(12分)若x1、x2是关于一元二次方程ax2+bx+c(a≠0)的两个根,则方程的两个根x1、x2和系数a、b、c有如下关系:x1+x2=﹣,x1•x2=.把它称为一元二次方程根与系数关系定理.如果设二次函数y=ax2+bx+c(a≠0)的图象与x轴的两个交点为A(x1,0),B(x2,0).利用根与系数关系定理可以得到A、B两个交点间的距离为:AB=|x1﹣x2|====;参考以上定理和结论,解答下列问题:设二次函数y=ax2+bx+c(a>0)的图象与x轴的两个交点A(x1,0),B(x2,0),抛物线的顶点为C,显然△ABC为等腰三角形.(1)当△ABC为直角三角形时,求b2﹣4ac的值;(2)当△ABC为等边三角形时,求b2﹣4ac的值.七、解答题(本题满分12分)23.(12分)如图,三角板ABC中,∠ACB=90°,AB=2,∠A=30°,三角板ABC 绕直角顶点C顺时针旋转90°得到△A1B1C,求:(1)的长;(2)在这个旋转过程中三角板AC边所扫过的扇形ACA1的面积;(3)在这个旋转过程中三角板所扫过的图形面积.八、解答题(本题满分14分)24.(14分)如图,在平面直角坐标系中,抛物线y=ax2+bx+6经过点A(﹣3,0)和点B(2,0).直线y=h(h为常数,且0<h<6)与BC交于点D,与y轴交于点E,与AC交于点F,与抛物线在第二象限交于点G.(1)求抛物线的解析式;(2)连接BE,求h为何值时,△BDE的面积最大;(3)已知一定点M(﹣2,0).问:是否存在这样的直线y=h,使△OMF是等腰三角形?若存在,请求出h的值和点G的坐标;若不存在,请说明理由.2014-2015学年四川省自贡市初三上学期期末数学试卷参考答案与试题解析一、选择题(每小题4分,共40分)1.(4分)方程x(x﹣2)=2﹣x的解是()A.2B.﹣2,1C.﹣1D.2,﹣1【解答】解:x(x﹣2)+(x﹣2)=0,(x﹣2)(x+1)=0,x﹣2=0或x+1=0,所以x1=2,x2=﹣1.故选:D.2.(4分)抛物线y=(2x﹣3)2+3的顶点坐标是()A.(4,3)B.(,3)C.(﹣3,3)D.(3,3)【解答】解:y=(2x﹣3)2+3=4(x﹣)2+3,故顶点坐标为(,3),故选:B.3.(4分)关于x的一元二次方程x2﹣2x+a=0有两个不相等的实数根,则a的取值范围是()A.a<1B.a<﹣1C.a>1D.a>﹣1【解答】解:∵关于x的一元二次方程x2﹣2x+a=0有两个不相等的实数根,∴△>0,∴4﹣4a>0,∴a<1,故选:A.4.(4分)方程x2+6x=5的左边配成完全平方后所得方程为()A.(x+3)2=14B.(x﹣3)2=14C.(x+6)2=12D.以上答案均不对【解答】解:x2+6x=5,x2+6x+9=5+9,(x+3)2=14,故选:A.5.(4分)如图,△ABC的顶点A、B、C均在⊙O上,∠ABC+∠AOC=90°,则∠AOC等于()A.30°B.45°C.60°D.75°【解答】解:设∠AOC=x度,∠ABC=x度,则x+x=90,解得x=60.故选:C.6.(4分)给任意实数n,得到不同的抛物线y=﹣x2+n,当n=0,±1时,关于这些抛物线有以下结论:①开口方向不同;②对称轴不同;③都有最低点;④可以通过一个抛物线平移得到另一个.其中判断正确的个数是()A.0B.1C.2D.3【解答】解:抛物线y=﹣x2+n,当n取0,±1时,关于这些抛物线有以下判断:①开口方向都向下,故相同,错误;②对称轴都是y轴,故相同;错误,③都有最高点,错误;④可以通过一个抛物线平移得到另一个,正确.其中判断正确的是④.故选:B.7.(4分)如图,⊙O的半径为5,弦AB的长为8,M是弦AB上的一个动点,则线段OM长的最小值为()A.3B.2C.5D.4【解答】解:如图所示,过O作OM′⊥AB,连接OA,∵过直线外一点与直线上的所有连线中垂线段最短,∴当OM于OM′重合时OM最短,∵AB=8,OA=5,∴AM′=×8=4,∴在Rt△OAM′中,OM′===3,∴线段OM长的最小值为3.故选:A.8.(4分)在正方形ABCD中,E为DC边上的点,连接BE,将△BCE绕点C顺时针旋转90°,得到△DFC,连接EF,若∠BEC=60°,则∠EFD等于()A.10°B.25°C.20°D.15°【解答】解:如图,由题意得:△BCE≌△DCF,∴∠BEC=DCF=60°,CE=CF;而∠ECF=90°,∴∠CEF=∠CFE=45°,∴∠EFD=60°﹣45°=15°,故选:D.9.(4分)已知二次函数y=kx2﹣6x+3,若k在数组(﹣3,﹣2,﹣1,1,2,3,4)中随机取一个,则所得抛物线的对称轴在直线x=1的右方的概率为()A.B.C.D.【解答】解:这个函数的对称轴是x=,当k为2或者1这两个数的时候,所得抛物线的对称轴在直线x=1的右方,所以概率为.故选:C.10.(4分)如图,已知:正方形ABCD边长为1,E、F、G、H分别为各边上的点,且AE=BF=CG=DH,设小正方形EFGH的面积为s,AE为x,则s关于x的函数图象大致是()A.B.C.D.【解答】解:∵根据正方形的四边相等,四个角都是直角,且AE=BF=CG=DH,∴可证△AEH≌△BFE≌△CGF≌△DHG.设AE为x,则AH=1﹣x,根据勾股定理,得EH2=AE2+AH2=x2+(1﹣x)2即s=x2+(1﹣x)2.s=2x2﹣2x+1,∴所求函数是一个开口向上,对称轴是直线x=.∴自变量的取值范围是大于0小于1.故选:B.二、填空题(共5个小题,每小题4分,共20分)11.(4分)若一个75°的角绕顶点旋转15°,则重叠部分的角的大小是60°.【解答】解:∵∠AOB=75°,∠BOD=15°,∴∠AOD=∠AOB﹣∠BOD=75°﹣15°=60°,故答案为:60°.12.(4分)若圆锥的底面半径为4,高为3,则圆锥的侧面展开图的面积是20π.【解答】解:因为圆锥的底面半径为4,高为3,所以圆锥的母线长==5,所以圆锥的侧面展开图的面积=•2π•4•5=20π.故答案为20π.13.(4分)同一圆中的内接正六边形和内接正方形的周长比为3:4.【解答】解:设圆的半径为r,∵∠AOB=60°,AO=OB=r,∴AB=r,∴正六边形的周长为:6r,∵∠NOH=90°,NO=OH=r,∴NH==r,∴正方形周长是:4r,∴正六边形和正方形的周长比为:6r:4r=3:4,故答案为:3:4.14.(4分)某校举行以“保护环境,从我做起”为主题的演讲比赛.经预赛,七、八年级各有一名同学进入决赛,九年级有两名同学进入决赛.前两名都是九年级同学的概率是.【解答】解:四名同学排列共有:4×3×2×1=24种,九年级同学排在前面的情况为:九1、九2、七、八;九1、九2、八、七;九2、九1、七、八;九2、九1、八、七.共4种;前两名都是九年级同学的概率是:=.15.(4分)如图是二次函数y=ax2+bx+c(a≠0)的图象,有以下结论:①ab>0;②a+b+c<0;③b+2c<0;④a﹣2b+4c>0;⑤a=b.其中正确的有①②④⑤(把你认为正确的结论序号都填上).【解答】解:∵抛物线开口向下,∴a<0,∵抛物线的对称轴为直线x=﹣=﹣,∴b=a<0,∴ac>0,所以①正确;∵x=1时,y<0,∴a+b+c<0,所以②正确;∵b=a,∴a=b,所以⑤正确;而a=﹣1时,y>0,即a﹣b+c>0,∴b﹣b+c>0,∴b+2c>0,所以③错误;∵x=﹣时,y>0,∴a﹣b+c>0,∴a﹣2b+4c>0,所以④正确.故答案为①②④⑤.三、解答题(共2个题,每题8分,共16分)16.(8分)x2﹣x﹣6=0.【解答】解:方程可化为:(x﹣3)(x+2)=0x﹣3=0或x+2=0∴x1=3,x2=﹣2.17.(8分)求证:圆的内接四边形对角互补.【解答】解:已知:四边形ABCD为⊙O的内接四边形,求证:∠B+∠D=180°,证明:连接AO,CO,由圆周角定理得:∠B=∠1,∠D=∠2,∵∠1+∠2=360°,∴∠B+∠D=180°四、解答题(共2个题,每小题8分,共16分)18.(8分)已知二次函数y=x2﹣4x+3.(1)在给出的直角坐标系中画出它的示意图;(2)观察图象填空:①当x>2时,y随x的增大而增大;②使x2﹣4x+3<0的x的取值范围是1<x<3;③将图象向左平移1个单位再向上平移2个单位,所得的抛物线的解析式y=(x﹣1)2+1.【解答】解:(1)∵二次函数y=x2﹣4x+3,∴y=(x﹣2)2﹣1,作图如右:(2)由图象可知①当x>2时,y随x的增大而增大;②使x2﹣4x+3<0的x的取值范围是1<x<3;③将图象向左平移1个单位再向上平移2个单位,所得的抛物线的解析式y=(x﹣1)2+1.故答案为:>2;1<x<3;y=(x﹣1)2+1.19.(8分)如图,AB为⊙O的直径,PD切⊙O于点C,交AB的延长线于点D,且∠D=2∠CAD.(1)求∠D的度数;(2)若CD=1,求BD的长.【解答】解:(1)∵PD切⊙O于点C,∴OC⊥CD,∴∠OCD=90°,∵OA=OC,∴∠A=∠OCA,∴∠COD=2∠A,∵∠D=2∠CAD,∴∠COD=∠D,∴△COD为等腰直角三角形,∴∠D=45°;(2)∵△COD为等腰直角三角形,∴CO=CD=1,OD=CD=,∴OB=OC=1,∴BD=OD﹣OB=﹣1.五、解答题(共2个题,每题10分,共20分)20.(10分)九年级三班班委主动为班上一位生病住院的同学筹集部分医药费,计划筹集450元,由全体班委分担,有5名同学闻讯后也自愿参加捐助,和班委一起平均分担,因此每个班委比原先少分担45元.问:该班班委有几个人?【解答】解:设该班班委有x个人.则:﹣=45.解得:x1=5,x2=﹣10.经检验:x1=5,x2=﹣10是原方程的解,但人数为负数应舍去.答:该班班委有5人.21.(10分)在3×3的方格纸中,点A、B、C、D、E、F分别位于如图所示的小正方形的顶点上.(1)从A、D、E、F四个点中任意取一点,以所取的这一点及点B、C为顶点画三角形,则所画三角形是等腰三角形的概率是;(2)从A、D、E、F四个点中先后任意取两个不同的点,以所取的这两点及点B、C为顶点画四边形,求所画四边形是平行四边形的概率是(用树状图或列表法求解).【解答】解:(1)根据从A、D、E、F四个点中任意取一点,一共有4种可能,只有选取D点时,所画三角形是等腰三角形,故P(所画三角形是等腰三角形)=;(2)用“树状图”或利用表格列出所有可能的结果:∵以点A、E、B、C为顶点及以D、F、B、C为顶点所画的四边形是平行四边形,∴所画的四边形是平行四边形的概率P==.故答案为:(1),(2).六、解答题(本题满分12分)22.(12分)若x1、x2是关于一元二次方程ax2+bx+c(a≠0)的两个根,则方程的两个根x1、x2和系数a、b、c有如下关系:x1+x2=﹣,x1•x2=.把它称为一元二次方程根与系数关系定理.如果设二次函数y=ax2+bx+c(a≠0)的图象与x轴的两个交点为A(x1,0),B(x2,0).利用根与系数关系定理可以得到A、B两个交点间的距离为:AB=|x1﹣x2|====;参考以上定理和结论,解答下列问题:设二次函数y=ax2+bx+c(a>0)的图象与x轴的两个交点A(x1,0),B(x2,0),抛物线的顶点为C,显然△ABC为等腰三角形.(1)当△ABC为直角三角形时,求b2﹣4ac的值;(2)当△ABC为等边三角形时,求b2﹣4ac的值.【解答】解:(1)当△ABC为直角三角形时,过C作CE⊥AB于E,则AB=2CE.∵抛物线与x轴有两个交点,∴△=b2﹣4ac>0,则|b2﹣4ac|=b2﹣4ac.∵a>0,∴AB=,又∵CE=||=,∴,∴,∴,∵b2﹣4ac>0,∴b2﹣4ac=4;(2)当△ABC为等边三角形时,由(1)可知CE=,∴,∵b2﹣4ac>0,∴=,∴b2﹣4ac=12.七、解答题(本题满分12分)23.(12分)如图,三角板ABC中,∠ACB=90°,AB=2,∠A=30°,三角板ABC 绕直角顶点C顺时针旋转90°得到△A1B1C,求:(1)的长;(2)在这个旋转过程中三角板AC边所扫过的扇形ACA1的面积;(3)在这个旋转过程中三角板所扫过的图形面积.【解答】解:(1)∵∠ACB=90°,AB=2,∠A=30°,∴BC=AB=×2=1,根据勾股定理,AC===, ∴的长==π; (2)扇形ACA 1的面积==π;(3)设与AB 相交于D ,∵∠ACB=90°,∠A=30°,∴∠B=90°﹣30°=60°,又∵BC=CD ,∴△BCD 是等边三角形,∴BD=BC=1,∴AD=AB ﹣BD=2﹣1=1,∴S △ACD =S △ABC =××1×=,∴三角板所扫过的图形面积=S 扇形BCD +S 扇形ACA1+S △ACD=++=π+.八、解答题(本题满分14分)24.(14分)如图,在平面直角坐标系中,抛物线y=ax 2+bx +6经过点A (﹣3,0)和点B (2,0).直线y=h (h 为常数,且0<h <6)与BC 交于点D ,与y 轴交于点E,与AC交于点F,与抛物线在第二象限交于点G.(1)求抛物线的解析式;(2)连接BE,求h为何值时,△BDE的面积最大;(3)已知一定点M(﹣2,0).问:是否存在这样的直线y=h,使△OMF是等腰三角形?若存在,请求出h的值和点G的坐标;若不存在,请说明理由.【解答】解:(1)∵抛物线y=ax2+bx+6经过点A(﹣3,0)和点B(2,0),∴.解得:.∴抛物线的解析式为y=﹣x2﹣x+6.(2)∵把x=0代入y=﹣x2﹣x+6,得y=6.∴点C的坐标为(0,6).设经过点B和点C的直线的解析式为y=mx+n,则,解得.∴经过点B和点C的直线的解析式为:y=﹣3x+6.∵点E在直线y=h上,∴点E的坐标为(0,h).∴OE=h.∵点D在直线y=h上,∴点D的纵坐标为h.把y=h代入y=﹣3x+6,得h=﹣3x+6.解得x=.∴点D的坐标为(,h).∴DE=.=•OE•DE=•h•=﹣(h﹣3)2+.∴S△BDE∵﹣<0且0<h<6,∴当h=3时,△BDE的面积最大,最大面积是.(3)存在符合题意的直线y=h.设经过点A和点C的直线的解析式为y=kx+p,则,解得.故经过点A和点C的直线的解析式为y=2x+6.把y=h代入y=2x+6,得h=2x+6.解得x=.∴点F的坐标为(,h).在△OFM中,OM=2,OF=,MF=.①若OF=OM,则=2,整理,得5h2﹣12h+20=0.∵△=(﹣12)2﹣4×5×20=﹣256<0,∴此方程无解.∴OF=OM不成立.②若OF=MF,则=,解得h=4.把y=h=4代入y=﹣x2﹣x+6,得﹣x2﹣x+6=4,解得x1=﹣2,x2=1.∵点G在第二象限,∴点G的坐标为(﹣2,4).③若MF=OM,则=2,解得h1=2,h2=﹣(不合题意,舍去).把y=h1=2代入y=﹣x2﹣x+6,得﹣x2﹣x+6=2.解得x1=,x2=.∵点G在第二象限,∴点G的坐标为(,2).综上所述,存在这样的直线y=2或y=4,使△OMF是等腰三角形,当h=4时,点G的坐标为(﹣2,4);当h=2时,点G的坐标为(,2).。

四川省自贡市2013-2014学年下学期八年级期末统一考试 数学试题(Word·版

四川省自贡市2013-2014学年下学期八年级期末统一考试   数学试题(Word·版

秘密★启用前〖考试时间:2014年7月1日上午9:00-11:00 共120分钟〗自贡市2013-2014学年八年级下学期期末考试数学试卷重新制版:赵化中学郑宗平注意事项:1、答题前,考生务必将自己的姓名、班级、考号(用0.5毫米的黑色签字笔)填写在答题卡上,并检查条形码粘贴是否正确.2、选择题使用2B铅笔填涂在答题卡对应题目标号的位置上,非选择题用0.5毫米的黑色签字笔书写在答题卡的对应框内,超出答题区域的书写的答案无效,在草稿纸、试题卷上答题无效.3、考试结束后,将答题卡收回.一、选择题(本题有8个小题,每小题3分,满分24分,每小题只有一个选项符合题意)1、下列二次根式中属于最简二次根式的是()ABCD2、对角线互相垂直平分的四边形是()A、菱形B、矩形C、平行四边形D、任意四边形3、已知,,,,41212--,下面结果中,错误的是()A、中位数为1B、方差为26C、众数为2D、平均数为04、下图中,y是x的函数图象的是()5、如图,在55⨯的正方形网格中,小正方形的边长都是1,小正方形的顶点为格点,则与点P()A、4个B、3个C、2个D、1个6、如图,在ABCD中,,AB4cm AD7cm==,ABC∠平分线交AD于E,交CD于F,则DF= ()A、2cm B、5cmC、4cmD、3cm7、如图,正方形ABCD的边长为4cm,则图中的阴影部分的面积为()2cm A、6 B、8C、16D、不能确定8、如图所示,直线:1l y ax b=+和:l y bx a=-在同一坐标系的大致图象是()二、填空题(本题有6个小题,每小题3分,共计18分)9、随机从甲、乙两块试验田中各抽取100株麦苗测量高度,计算平均数和方差的结果:..====22x13x13S36S158甲乙乙甲,,,,则小麦长势比较整齐的试验田是 .10、命题“全等三角形的对应边相等”的逆命题是,该逆命题是(填“真命题”或“假命题”).11.如图ABCD中,CE AB⊥,垂足为E,如果=A115∠,则BCE∠ = .12、一次函数()y2m1x3=-+,若y随x的增大而增大,则m的取值范围是 .13,6,按照上述规律,则第15个数据是 .14、某市在旧城改造中,计划在市内一块如图所示的三角形空地上种植草皮以化环境,已知这中行草皮每平方米售价为a元,则购买这种草皮至少需要元.三、解答题(本题有5个小题,每小题5分,共计25分)15、计算:-16、某班有学生52人,期末数学考试平均成绩是72分,有两名同学下学期要转学,已知他俩的成绩分别为70分和80分,求他俩转学后该班的数学平均分.BA C DBABAC13m14m15m17、已知:如图,E 为正方形ABCD 对角线AC 上一点,且,AE AB EF AC =⊥,交BC 于F .求证:BF EC =. 18、已知1m m -=,求+1m m的值.19、如图,在ABCD 中,点E F 、在对角线AC 上,且AE CF =,请你以F 为一个端点,和图中已标明字母的某一点连成一条线段,猜想并证明它和图中已有的某一线段相等(只需证明一组线段相等即可).⑴.连结 ;⑵.猜想: = ; ⑶.证明:四、解答题(本题有3道小题,每小题6分,共计18分)20、已知:一次函数y kx b =+的图象过点()(),,,1331-⑴.求这个一次函数的解析式;⑵.画出这个函数的图象,并求出它与坐标轴的交点; ⑶.求原点到直线y kx b =+的距离. 21、某地为了从2004年以来初中学生参加基础教育课程改革的情况,随机调查了本地区1000名初中生学习能力优秀的学生.调查时,每名学生可在动手能力、表达能力、创新能力、解题技巧、阅读能力和自主学习等六个方面选择自己认为是优秀的项.调查后绘制了如下图所示的统计图.请同学们根据统计图中反映的信息解答下列问题;⑴.学生获得优秀的人数最多的一项和最有待加强的一项个是什么?⑵.这1000名学生平均每人获得几个项目优秀?⑶.若该地共有2万名初中生,请估计他们表达能力为优秀的学生有多少人?22、叙述并证明三角形中位线定理.五、解答下列各题(第23题7分,第24题8分,共计15分) 23、如图,矩形ABCD 中,点P 是线段AD 上的一动点,O 为BD 的中点,PO 的延长线交BC 于点Q . ⑴.求证:OP OQ =;⑵.若,AD 8cm AB 6cm ==,P 从A 出发,以每秒1cm 的速 度向D 运动(不与D 重合),设点P 运动时间为t 秒,请 用t 表示PD 的长;并求t 为何值时,四边形PBQD 是菱形.24、如图,直线y 2x 1=-与x 轴、y 轴分别交于B 、⑴.求点B 的坐标;⑵.点(),A x y 是直线y 2x 1=-上的一个动点,试写 出AOB 的面积S 与x 的函数关系式; ⑶.探究:①.当点A 运动到什么位置时,AOB 的面积为14,并说明理由.②.在①成立的情况下,x 轴上是否存在点P ,使是等腰三角形;若存在,请直接写出满足条件的所有坐标;若不存在,请说明理由.D 人数/百人A B2013~2014学年八年级下学期期末考试数 学 答 题 卡请在各题目的答题区域内作答,超出答题区域的答案无效.19准考证号姓 名 设计:郑宗平 A请在各题目的答题区域内作答,超出答题区域的答案无效请在各题目的答题区域内作答,超出答题区域的答案无效自贡市2013-2014学年八年级下学期期末考试 数学参考答案及评分标准一、选择题(每小题3分,共24分)二、填空题(每小题3分,共18分)9.甲;10.对应边相等的三角形全等, 真命题;11.25°;12. 21>m ;13.60;14.a 84. 三、解答题(每小题5分,共计25分)15、解:原式342)642(26⋅--=……(2分) =383263-⋅-……(4分)3203-=……(5分) 16、解:方法一:52人总分为 37447252=⨯ ……(2分)50人平均分为88.71501503744=- ……(5分) 方法二: 50722)8070(72⨯-+- ……(3分)=50672- =71.88 …… (5分)17、证明:连结AF ∵ AC EF ⊥∴∠FEA=∠FEC=90° ……(1分) 又 ∵ ABCD 是正方形 ∴∠B =90° ……(2分)在ABF Rt AEF Rt ∆∆和中 ⎩⎨⎧==AF AF ABAE∴ ABF AEF ∆≅∆ (HL) ∴ BF EF = ……(3分) 又 ∵ AC 是正方形ABCD 的对角线, ∴ ∠ACB =45° ……(4分) ∴ CEF ∆为等腰直角三角形 ∴ EF CE = ∴ CF BF = ……(5分)18、解:由 21=-mm 得:22)2()1(=-m m ……(2分)21222=+-m m4122=+m m , 61222=++m m ……(4分)∴ 61±=+mm ……(5分)19、解:法一 (1).连结DF …(1分) 法二 (1)连结 BF ……(1分) (2).猜想: BE DF = …(2分) ( 2)猜想: DE BF = …(2分)(3).证明: 由□ABCD 得CD AB // (3)证明: 由□ABCD 得BC AD //∴ DCF BAE ∠=∠ …(3分) ∴BCF DAE ∠=∠ …(3分)在CDF ABE ∆∆和中 在CBF ADE ∆∆和中⎪⎩⎪⎨⎧=∠=∠=CF AE DCF BAE CD AB ⎪⎩⎪⎨⎧=∠=∠=CF AE BCF DAE BC AD∴ )(SAS CDF ABE ∆≅∆ ∴ )(SAS CDF ADE ∆≅∆ ∴ BE DF = …(5分) ∴ DE BF = ……(5分)四、解答题(每小题6分,共18分) 20、解:(1).将(-1,3),(3,1)代入得 :⎩⎨⎧=+=+-133b k b k ⎪⎩⎪⎨⎧=-=2521b k …(1分) ∴ 2521+-=x y ……(2分)(2).当0=y 时解得 5=x∴ 与x 轴交点坐标为)0,5(A …(3分)与y 轴交点坐标为)25,0(B ……(4分) (3).过O 点作AB OC ⊥于C 点 ,在AOB Rt ∆中22OA OB AB +==5255)25(22=+ ……(5分)OA OB OC AB ⋅=⋅2121 525525⋅=⋅=AB OA OB OC ∴ 5=OC 即原点到直线b kx y +=的距离为5. ……(6分)21、解:(1).学生获得优秀人数最多的一项是解题技巧;最有待加强的一项是动手能力. ……(2分) (2).84.2105.34.24.84.65.32.2=+++++(项)∴ 1000名学生平均每人获得2.84项目优秀. ……(4分) (3).7000200001000350=⨯(人) ∴ 2万名初中学生表达能力为优秀的学生有7000人. ……(6分)22、三角形的中位线平行于三角形的等三边且等于第三边的一半.……(1分) 已知DE 是ABC ∆的中位线,求证 BC DE //且 BC DE 21= ……(2分) 证明:延长线DE 至F ,使得EF DE =,连结CF ……(3分)∵DE 是ABC ∆的中位线 ∴ BD AD =,CE AE = 在CFE ADE ∆∆和中⎪⎩⎪⎨⎧=∠=∠=EF DE CEF AED CE AE∴ )(SAS CFE ADE ∆≅∆ ∴ AD CF =, ECF A ∠=∠……(4分) ∴ BD CF // ∴ 四边形BCFD 是平行四边形 ……(5分) 即 BC DE // ∴ BC DE //且 BC DE 21=……(6分) 五、解答下列各题(23小题7分,24小题8分,共计15分)23、证明:(1)O 为BD 的中点 ∴ OD OB = 在矩形ABCD 中BC AD // , ∴ DBQ PDO ∠=∠ ……(1分)在QOB POD ∆∆和中 ⎪⎩⎪⎨⎧∠=∠=∠=∠BOQ POD OB OD OBQ PDO ∴ )(ASA QOB POD ∆≅∆ ……(3分)∴ OQ OP =, ……(4分)(2) .t AP =, t PD -=8 由(1)得 OQ OP = OD OB =∴ 四边形 PBQD 是□ ,……(5分) 当PB PD =时,四边形PBQD 是菱形在ABP Rt ∆中 222AP AB BP += ……(5分) ∴ 2226)8(t t +=- )(47S t = ……(6分) ∴ 当 47=t 时,四边形 PBQD 是菱形. ……(7分) 24、解:(1).当0=y 时,得21=x ∴ )0,21(B ……(1分)(2).21=OB ∴ ||21y OB S AOB ⋅=∆|12|41-=x ……(2分)① .当012≥-x 即 21≥x 时4121-=x S )21(≥x ……(3分)②. 当012<-x 即 21<x 时x S 2141-= )21(<x (4))(3) . ①414121=-x 或412141=-x 1=x 或 0=x ……(5分)∴ )1,1(A 或 )1,0(-A 时 41=∆AOB S ……(6分)②存在这样的P点有)0,2(1-P ,)0,2(2P ,)0,1(3P ,)0,2(4P ,)0,1(5-P ……(8分)。

2014-2015年四川省自贡市八年级(上)期末数学试卷含参考答案

2014-2015年四川省自贡市八年级(上)期末数学试卷含参考答案

2014-2015学年四川省自贡市八年级(上)期末数学试卷一、选择题(本题有8个小题,每小题3分,满分24分,每小题只有一个选项符合题意)1.(3分)下列计算正确的是()A.(﹣mn)4÷(﹣mn)2=m2n2B.a3•a4=a12C.(x3)3=x6D.3a+2a=5a22.(3分)如(x+m)与(x﹣2)的乘积中不含x一次项,则m的值为()A.﹣2B.2C.0D.13.(3分)多项式x2+ax+4公式分解因式,则a值是()A.4B.﹣4C.±2D.±44.(3分)若分式无意义,则a值的是()A.0B.﹣2C.0或2D.±25.(3分)下列图案是轴对称图形的有()个.A.1B.2C.3D.46.(3分)长为9,6,5,4的四根木条,选其中三根组成三角形,选法有()A.1种B.2种C.3种D.4种7.(3分)等腰三角形一腰上的高与另一腰的夹角为60°,则顶角的度数为()A.30°B.60°C.60°或120°D.30°或150°8.(3分)如图,△ABC中BD、CD平分∠ABC、∠ACB过D作直线平行于BC,交AB、AC于E、F,当∠A的位置及大小变化时,线段EF和BE+CF的大小关系是()A.EF=BE+CF B.EF>BE+CF C.EF<BE+CF D.不能确定二、填空题(本题有6个小题,每小题3分,共计18分)9.(3分)因式分解:3a2﹣6a+3=.10.(3分)有一个多边形的内角和为540°,则它的对角线共有条.11.(3分)在平面直角坐标系中,点A(1,2)关于y轴对称的点为B (a,2),则a=.12.(3分)如图,在△ABC中,∠C=90°,∠ABC=60°,BD平分∠ABC,若AD=6,则AC=.13.(3分)新定义:|a,b|为分式(a≠0,a,b为实数)的“关联数”,若“关联数”|m,m﹣2|的分式的值为0,则关于x的方程+=1的解是.14.(3分)观察下列各式:①12+22+32=2(12+22+2)②22+32+52=2(22+32+6)③32+42+72=2(32+42+12)则第n个式子为.三、解答题(本题有5个小题,每小题5分,共计25分)15.(5分)计算:(2ab2)4•(﹣6a2b)÷(﹣12a6b7)16.(5分)解方程:﹣﹣=1.17.(5分)如图,点A、E、F、C线上,AD∥BC,AD=CB,AE=CE,求证:∠B=∠D.18.(5分)先化简,再求值:(﹣)÷,其中a=﹣4.19.(5分)如图,在△ABC中,∠B=36°,∠C=66°,AE是高,AD是角平分线,求∠EAD的度数.四、解答题(本题有3道小题,每小题6分,共计18分)20.(6分)叙述并证明角平分线性质定理.21.(6分)如图,在边长为a的正方形中剪去一个边长为b小正方形(a>b),把剩下的部分拼成一个梯形,请利用甲、乙两图验证我们本学期学过的一个乘法公式.22.(6分)已知四边形ABCD中,AB∥CD,∠1=∠2,∠3=∠4,求证:BC=AB+CD.五、解答下列各题(第23题7分,第24题8分,共计15分)23.(7分)某一工程,在工程招标时,接到甲,乙两个工程队的投标书.施工一天,需付甲工程队工程款1.2万元,乙工程队工程款0.5万元.工程领导小组根据甲,乙两队的投标书测算,有如下方案:(1)甲队单独完成这项工程刚好如期完成;(2)乙队单独完成这项工程要比规定日期多用6天;(3)若甲,乙两队合做3天,余下的工程由乙队单独做也正好如期完成.试问:在不耽误工期的前提下,你觉得哪一种施工方案最节省工程款?请说明理由.24.(8分)如图,点O是等边△ABC内一点,∠AOB=110°,∠BOC=α.以OC为一边作等边三角形OCD,连接AC、AD.(1)当α=150°时,试判断△AOD的形状,并说明理由;(2)探究:当a为多少度时,△AOD是等腰三角形?2014-2015学年四川省自贡市八年级(上)期末数学试卷参考答案与试题解析一、选择题(本题有8个小题,每小题3分,满分24分,每小题只有一个选项符合题意)1.(3分)下列计算正确的是()A.(﹣mn)4÷(﹣mn)2=m2n2B.a3•a4=a12C.(x3)3=x6D.3a+2a=5a2【分析】根据积的乘方、合并同类项、同底数幂的乘法与幂的乘方等知识点进行作答.【解答】解:A、(﹣mn)4÷(﹣mn)2=m2n2,故本选项正确;B、a3•a4=a7,故本选项错误;C、(x3)3=x9,故本选项错误;D、3a+2a=5a,故本选项错误.故选:A.2.(3分)如(x+m)与(x﹣2)的乘积中不含x一次项,则m的值为()A.﹣2B.2C.0D.1【分析】根据多项式乘多项式的法则,可表示为(a+b)(m+n)=am+an+bm+bn,计算即可.【解答】解:根据题意得:(x+m)(x﹣2)=x2﹣2x﹣2m+mx,∵x+m与x﹣2的乘积中不含x的一次项,∴m=2.故选:B.3.(3分)多项式x2+ax+4公式分解因式,则a值是()A.4B.﹣4C.±2D.±4【分析】直接利用完全平方公式分解因式得出答案.【解答】解:∵x2+ax+4=(x±2)2=x2±4x+4,∴a值是:±4.故选:D.4.(3分)若分式无意义,则a值的是()A.0B.﹣2C.0或2D.±2【分析】根据分式无意义,分母等于0列式计算即可得解.【解答】解:由题意得,a2﹣2a=0,解得a=0或2.故选:C.5.(3分)下列图案是轴对称图形的有()个.A.1B.2C.3D.4【分析】根据轴对称图形的概念对个图形分析判断即可得解.【解答】解:第一个图形是轴对称图形,第二个图形不是轴对称图形,第三个图形不是轴对称图形,第四个图形是轴对称图形,综上所述,轴对称图形共有2个.故选:B.6.(3分)长为9,6,5,4的四根木条,选其中三根组成三角形,选法有()A.1种B.2种C.3种D.4种【分析】要把四条线段的所有组合列出来,再根据三角形的三边关系判断能组成三角形的组数.【解答】解:四根木条的所有组合:9,6,5和9,6,4和9,5,4和6,5,4;根据三角形的三边关系,得能组成三角形的有9,6,5和9,6,4和6,5,4.故选:C.7.(3分)等腰三角形一腰上的高与另一腰的夹角为60°,则顶角的度数为()A.30°B.60°C.60°或120°D.30°或150°【分析】本题要分情况讨论.当等腰三角形的顶角是钝角或者等腰三角形的顶角是锐角两种情况.【解答】解:①当为锐角三角形时,如图1,∵∠ABD=60°,BD⊥AC,∴∠A=90°﹣60°=30°,∴三角形的顶角为30°;②当为钝角三角形时,如图2,∵∠ABD=60°,BD⊥AC,∴∠BAD=90°﹣60°=30°,∵∠BAD+∠BAC=180°,∴∠BAC=150°∴三角形的顶角为150°,故选:D.8.(3分)如图,△ABC中BD、CD平分∠ABC、∠ACB过D作直线平行于BC,交AB、AC于E、F,当∠A的位置及大小变化时,线段EF和BE+CF的大小关系是()A.EF=BE+CF B.EF>BE+CF C.EF<BE+CF D.不能确定【分析】由平行的性质和角平分线的定义可得ED=BE,DF=CF,可得到EF=BE+CF.【解答】解:∵EF∥BC,∴∠EDB=∠DBC,∵BD平分∠ABC,∴∠EBD=∠DBC,∴∠EBD=∠EDB,∴ED=BE,同理可得FD=CF,∴EF=ED+DF=BE+CF,故选:A.二、填空题(本题有6个小题,每小题3分,共计18分)9.(3分)因式分解:3a2﹣6a+3=3(a﹣1)2.【分析】先提取公因式﹣3,再对余下的多项式利用完全平方公式继续分解.【解答】解:3a2﹣6a+3,=3(a2﹣2a+1),=3(a﹣1)2.10.(3分)有一个多边形的内角和为540°,则它的对角线共有5条.【分析】根据n边形的内角和定理得到关于n的方程(n﹣2)•180°=540°,解方程求得n,然后利用n边形的对角线条数为n•(n﹣3)计算即可.【解答】解:设该多边形的边数为n,∴(n﹣2)•180°=540°,解得n=5;∴这个五边形共有对角线×5×(5﹣3)=5条.故答案为:5.11.(3分)在平面直角坐标系中,点A(1,2)关于y轴对称的点为B (a,2),则a=﹣1.【分析】根据关于y轴对称点的坐标特点:横坐标互为相反数,纵坐标不变,即点(x,y)关于y轴的对称点的坐标是(﹣x,y)即可得到a的值.【解答】解:∵点A(1,2)关于y轴对称的点为B (a,2),∴a=﹣1.故答案为﹣1.12.(3分)如图,在△ABC中,∠C=90°,∠ABC=60°,BD平分∠ABC,若AD=6,则AC=9.【分析】根据三角形内角和定理和角平分线定义求出∠A=∠ABD=∠CBD=30°,求出AD=BD=6,CD=BD=3,即可求出答案.【解答】解:∵在△ABC中,∠C=90°,∠ABC=60°,BD平分∠ABC,∠A=90°﹣60°=30°,∠CBD=∠ABD=∠ABC=30°,∴∠A=∠ABD,∴AD=BD=,∵AD=6,∴BD=6,∴CD=BD=3,∴AC=6+3=9,故答案为:9.13.(3分)新定义:|a,b|为分式(a≠0,a,b为实数)的“关联数”,若“关联数”|m,m﹣2|的分式的值为0,则关于x的方程+=1的解是x=3.【分析】利用题中的新定义求出m的值,代入分式方程即可求出解.【解答】解:根据题中的新定义得:|m,m﹣2|==0,解得:m=2,分式方程为+=1,去分母得:x﹣1=2,解得:x=3,经检验x=3是分式方程的解.故答案为:x=314.(3分)观察下列各式:①12+22+32=2(12+22+2)②22+32+52=2(22+32+6)③32+42+72=2(32+42+12)则第n个式子为n2+(n+1)2+(2n+1)2=2[n2+(n+1)2+2n(n+1)] .【分析】等号的左边是连续两个自然数的平方和加上这两个自然数和的平方,等号的右边是2乘这连续两个自然数的平方和加上这两个自然数积的2倍,由此规律得出答案即可.【解答】解:①12+22+32=2(12+22+2),②22+32+52=2(22+32+6),③32+42+72=2(32+42+12),…则第n个式子为n2+(n+1)2+(n+n+1)2=2[n2+(n+1)2+2n(n+1)],即n2+(n+1)2+(2n+1)2=2[n2+(n+1)2+2n(n+1)].故答案为:n2+(n+1)2+(2n+1)2=2[n2+(n+1)2+2n(n+1)].三、解答题(本题有5个小题,每小题5分,共计25分)15.(5分)计算:(2ab2)4•(﹣6a2b)÷(﹣12a6b7)【分析】根据积的乘方、幂的乘方以及单项式的乘法进行计算即可.【解答】解:原式=16a4b8•6a2b÷12a6b7=8a4+2﹣6b8+1﹣7=8a0b2=8b2.16.(5分)解方程:﹣﹣=1.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:x(x﹣1)﹣x﹣1﹣x+1=x2﹣1,去括号得:x2﹣x﹣x﹣1﹣x+1=x2﹣1,有限合伙得:﹣3x=﹣1,解得:x=,经检验x=是分式方程的解.17.(5分)如图,点A、E、F、C线上,AD∥BC,AD=CB,AE=CE,求证:∠B=∠D.【分析】根据平行线的性质证明AF=CE,然后根据SAS即可证明△ADF≌△CBE,然后根据全等三角形的对应角相等即可证得.【解答】证明:∵AD∥BC,∴∠A=∠C.∵AE=CF,∴AF=CE.在△ADF和△CBE中,,∴△ADF≌△CBE(SAS),∴∠B=∠D.18.(5分)先化简,再求值:(﹣)÷,其中a=﹣4.【分析】首先利用分式的混合运算法则化简分式进而将已知数据代入求出即可.【解答】解:原式=×﹣×=﹣=a+4,当a=﹣4,代入原式=a+4=﹣4+4=0.19.(5分)如图,在△ABC中,∠B=36°,∠C=66°,AE是高,AD是角平分线,求∠EAD的度数.【分析】根据三角形内角和定理求出∠BAC,再根据角平分线的定义求出∠BAD,根据直角三角形两锐角互余求出∠BAE,然后求解即可.【解答】解:∵∠B=36°,∠C=66°,∴∠BAC=180°﹣∠B﹣∠C=180°﹣36°﹣66°=78°,∵AD是角平分线,∴∠BAD=∠BAC=×78°=39°,∵AE是高,∴∠BAE=90°﹣∠B=90°﹣36°=54°,∴∠DAE=∠BAE﹣∠BAD=54°﹣39°=15°四、解答题(本题有3道小题,每小题6分,共计18分)20.(6分)叙述并证明角平分线性质定理.【分析】角平分线性质定理:角平分线上的任意一点,到角两边的距离相等.首先根据题意画出图形,写出已知、求证,再利用AAS证明三角形全等,根据全等三角形对应边相等即可证明.【解答】角平分线性质定理:角平分线上的任意一点,到角两边的距离相等.已知:如图,OC是∠AOB的平分线,P是OC上任意一点,PM⊥OA于M,PN ⊥OB于N.求证:PM=PN.证明:在△PMO与△PNO中,,∴△PMO≌△PNO(AAS),∴PM=PN.21.(6分)如图,在边长为a的正方形中剪去一个边长为b小正方形(a>b),把剩下的部分拼成一个梯形,请利用甲、乙两图验证我们本学期学过的一个乘法公式.【分析】利用左图中阴影部分的面积是a2﹣b2等于右图中梯形的面积是(2a+2b)(a﹣b)=(a+b)(a﹣b)即可解答.【解答】解:左图中阴影部分的面积是a2﹣b2,右图中梯形的面积是(2a+2b)(a﹣b)=(a+b)(a﹣b),∵左右的阴影部分的面积相等,∴a2﹣b2=(a+b)(a﹣b).22.(6分)已知四边形ABCD中,AB∥CD,∠1=∠2,∠3=∠4,求证:BC=AB+CD.【分析】在BC上截取BF=AB,利用“边角边”证明△ABE和△FBE全等,根据全等三角形对应角相等可得∠AEB=∠FEB,再根据两直线平行,同旁内角互补可得∠ABC+∠BCD=180°,然后求出∠2+∠3=90°,从而得到∠BEC=90°,再根据等角的余角相等求出∠CEF=∠CED,然后利用“角边角”证明△CEF和△CED全等,根据全等三角形对应边相等可得CD=CF,再根据BC=BF+CF等量代换即可得证.【解答】证明:如图,在BC上截取BF=AB,在△ABE和△FBE中,,∴△ABE≌△FBE(SAS),∵AB∥CD,∴∠ABC+∠BCD=180°,∵∠1=∠2,∠3=∠4,∴∠2+∠3=90°,∴∠BEC=90°,∴∠CEF=∠CED,在△CEF和△CED中,,∴△CEF≌△CED(ASA),∴CD=CF,∵BC=BF+CF,∴BC=AB+CD.五、解答下列各题(第23题7分,第24题8分,共计15分)23.(7分)某一工程,在工程招标时,接到甲,乙两个工程队的投标书.施工一天,需付甲工程队工程款1.2万元,乙工程队工程款0.5万元.工程领导小组根据甲,乙两队的投标书测算,有如下方案:(1)甲队单独完成这项工程刚好如期完成;(2)乙队单独完成这项工程要比规定日期多用6天;(3)若甲,乙两队合做3天,余下的工程由乙队单独做也正好如期完成.试问:在不耽误工期的前提下,你觉得哪一种施工方案最节省工程款?请说明理由.【分析】关键描述语为:“甲,乙两队合做3天,余下的工程由乙队单独做也正好如期完成”;说明甲队实际工作了3天,乙队工作了x天完成任务,工作量=工作时间×工作效率等量关系为:甲3天的工作量+乙规定日期的工作量=1列方程.再看费用情况:方案(1)、(3)不耽误工期,符合要求,可以求费用,方案(2)显然不符合要求.【解答】解:设规定日期为x天.由题意得++=1,.3(x+6)+x2=x(x+6),3x=18,解之得:x=6.经检验:x=6是原方程的根.方案(1):1.2×6=7.2(万元);方案(2)比规定日期多用6天,显然不符合要求;方案(3):1.2×3+0.5×6=6.6(万元).∵7.2>6.6,∴在不耽误工期的前提下,选第三种施工方案最节省工程款.24.(8分)如图,点O是等边△ABC内一点,∠AOB=110°,∠BOC=α.以OC为一边作等边三角形OCD,连接AC、AD.(1)当α=150°时,试判断△AOD的形状,并说明理由;(2)探究:当a为多少度时,△AOD是等腰三角形?【分析】(1)首先根据已知条件可以证明△BOC≌△ADC,然后利用全等三角形的性质可以求出∠ADO的度数,由此即可判定△AOD的形状;(2)利用(1)和已知条件及等腰三角形的性质即可求解.【解答】解:(1)∵△OCD是等边三角形,∴OC=CD,而△ABC是等边三角形,∴BC=AC,∵∠ACB=∠OCD=60°,∴∠BCO=∠ACD,在△BOC与△ADC中,∵,∴△BOC≌△ADC,∴∠BOC=∠ADC,而∠BOC=α=150°,∠ODC=60°,∴∠ADO=150°﹣60°=90°,∴△ADO是直角三角形;(2)∵设∠CBO=∠CAD=a,∠ABO=b,∠BAO=c,∠CAO=d,则a+b=60°,b+c=180°﹣110°=70°,c+d=60°,∴b﹣d=10°,∴(60°﹣a)﹣d=10°,∴a+d=50°,即∠DAO=50°,①要使AO=AD,需∠AOD=∠ADO,∴190°﹣α=α﹣60°,∴α=125°;②要使OA=OD,需∠OAD=∠ADO,∴α﹣60°=50°,∴α=110°;③要使OD=AD,需∠OAD=∠AOD,∴190°﹣α=50°,∴α=140°.所以当α为110°、125°、140°时,三角形AOD是等腰三角形.。

2024年四川省自贡市中考真题数学试卷含答案解析

2024年四川省自贡市中考真题数学试卷含答案解析

2024年四川省自贡市中考数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.在0,2-,π四个数中,最大的数是( )A .2-B .0C .πD .2.据统计,今年“五一”小长假期间,近70000人次游览了自贡中华彩灯大世界.70000用科学记数法表示为( )A .50.710⨯B .4710⨯C .5710⨯D .40.710⨯3.如图,以点A 为圆心,适当的长为半径画弧,交A ∠两边于点M ,N ,再分别以M 、N 为圆心,AM 的长为半径画弧,两弧交于点B ,连接MB NB ,.若40A ∠=︒,则MBN ∠=( )A .40︒B .50︒C .60︒D .140︒【答案】A 【分析】本题考查了菱形的判定和性质.证明四边形AMBN 是菱形,即可求解.【详解】解:由作图知AM AN BM BN ===,∴四边形AMBN 是菱形,∵40A ∠=︒,∴40MBN A ︒∠∠==,故选:A .4.下列几何体中,俯视图与主视图形状相同的是( )A .B .C .D .【答案】C【分析】本题考查了几何体的三视图,根据俯视图是从上面往下面看到的图形,主视图是从正面看到的图形,据此逐项分析,即可作答.【详解】解:A 、的俯视图与主视图分别是带圆心的圆和三角形,故该选项是错误的;B 、的俯视图与主视图分别是圆和长方形,故该选项是错误的;C 、的俯视图与主视图都是正方形,故该选项是正确的;D 、的俯视图与主视图分别是长方形和梯形,故该选项是错误的;故选:C .5.学校群文阅读活动中,某学习小组五名同学阅读课外书的本数分别为3,5,7,4,5.这组数据的中位数和众数分别是( )A .3,4B .4,4C .4,5D .5,5【答案】D 【分析】本题考查中位数和众数.将所给数据从小到大排列,第三和第四个数据的平均数即为中位数,出现次数最多的即为众数.【详解】解:将这组数据从小到大排列:3,4,5,5,7.则这组数据的中位数为5,5出现次数最多,则众数为5,故选:D .6.如图,在平面直角坐标系中,(4,2)D -,将Rt OCD △绕点O 逆时针旋转90︒到OAB 位置,则点B 坐标为( )A .(2,4)B .(4,2)C .(4,2)--D .(2,4)-【答案】A 【分析】本题考查坐标与图形,三角形全等的判定和性质.由旋转的性质得到Rt Rt OAB OCD ≌△△,推出4OA OC ==,2AB CD ==即可求解.【详解】解:∵(4,2)D -,∴4OC =,2CD =,∵将Rt OCD △绕点O 逆时针旋转90︒到OAB ,∴Rt Rt OAB OCD ≌△△,∴4OA OC ==,2AB CD ==,∴点B 坐标为(2,4),故选:A .7.我国汉代数学家赵爽在他所著《勾股圆方图注》中,运用弦图(如图所示)巧妙地证明了勾股定理.“赵爽弦图”曾作为2002年第24届国际数学家大会的会徽图案.下列关于“赵爽弦图”说法正确的是( )A .是轴对称图形B .是中心对称图形C .既是轴对称图形又是中心对称图形D .既不是轴对称图形也不是中心对称图形【答案】B 【分析】本题考查了轴对称图形的定义、中心对称图形的定义;平面内,一个图形沿一条直线折叠,直线两旁的部分能够完全重合的图形,这个图形就叫做轴对称图形;在平面内,把一个图形绕着某个点旋转180︒,如果旋转后的图形能与原来的图形重合,那么这个图形叫做中心对称图形,即可作答.【详解】解:是中心对称图形,但不是轴对称图形故选:B8.关于x 的一元二次方程220x kx +-=的根的情况是( )A .有两个不相等的实数根B .有两个相等的实数根C .只有一个实数根D .没有实数根【答案】A【分析】本题考查的是一元二次方程根的判别式,熟知一元二次方程20(0)ax bx c a ++=≠中,当0∆>时,方程有两个不相等的实数根是解题的关键.根据一元二次方程根的判别式解答即可.【详解】解: △()2241280k k =-⨯⨯-=+>,∴方程有两个不相等的实数根.故选:A .9.一次函数24y x n =-+,二次函数2(1)3y x n x =+--,反比例函数1n y x+=在同一直角坐标系中图象如图所示,则n 的取值范围是( )A .1n >-B .2n >C .11n -<<D .12n <<10.如图,在ABCD Y 中,60B ∠=︒,6cm =AB ,12cm BC =.A 点P 从点A 出发、以1cm/s 的速度沿A D →运动,同时点Q 从点C 出发,以3cm/s 的速度沿C B C →→→⋅⋅⋅往复运动,当点P 到达端点D 时,点Q 随之停止运动.在此运动过程中,线段PQ CD =出现的次数是( )A .3B .4C .5D .6【答案】B 【分析】本题考查了平行四边形的判定与性质,一元一次方程的应用,全等三角形的判定与性质,分四种情况:当04t<≤时,当48t <≤时,当812t <≤时,四边形CDPQ 为平行四边形;当04t <≤时,四边形CDPQ 为等腰梯形,分别求解即可,掌握相关知识是解题的关键.【详解】解:在ABCD Y 中, 6cm =AB ,12cm BC =,∴6cm CD AB ==12cm AD BC ==,AD BC ∥,∵点P 从点A 出发、以1cm/s 的速度沿A D→运动,∴点P 从点A 出发到达D 点的时间为:()1214s ÷=,∵点Q 从点C 出发,以3cm/s 的速度沿C B C →→→⋅⋅⋅往复运动,∴点Q 从点C 出发到B 点的时间为:1234÷=,∵AD BC ∥,∴DP CQ ∥,当DP CQ =时,四边形CDPQ 为平行四边形,∴PQ CD =,当PQ AB =时,四边形CDPQ 为等腰梯形,∴PQ AB CD ==,设P Q 、同时运动的时间为()s t ,当04t <≤时,123t t -=,∴3t =,此时DP CQ =,四边形CDPQ 为平行四边形,PQ CD =,如图:过点A P 、分别作BC 的垂线,分别交BC 于点M N 、,∴四边形AMNP 是矩形,∴MN AP t ==,AM PN =,∵四边形ABQP 是等腰梯形,∴PQ AB =,PQN B ∠=∠,∵90BAM B ∠=︒-∠,90QPN PQN ∠=︒-∠,∴BAM QPN ∠=∠,∵AM PN BAM QPN AB PQ =⎧⎪∠=∠⎨⎪=⎩,∴()SAS ABM PQN ≌,11.如图,等边ABC 钢架的立柱CD AB ⊥于点D ,AB 长12m .现将钢架立柱缩短成DE ,60BED ∠=︒.则新钢架减少用钢( )A .(24m -B .(24m-C .(24m -D .(24m -12.如图,在矩形ABCD 中,AF 平分BAC ∠,将矩形沿直线EF 折叠,使点A ,B 分别落在边AD BC 、上的点A ',B '处,EF ,A F '分别交AC 于点G ,H .若2GH =,8HC =,则BF 的长为( )A B C D .5∵矩形ABCD,∥,∴AD BC由折叠的性质得AE A'=,∴AB EF OB'二、填空题13.分解因式:23x x -= .【答案】()3x x -【分析】根据提取公因式法因式分解进行计算即可.【详解】解:()233x x x x -=-,故答案为:()3x x -.【点睛】此题考查了提公因式法因式分解,熟练掌握提取公因式的方法是解本题的关键.14.计算:31211a a a a +-=++ .15.凸七边形的内角和是度.【答案】900【分析】本题主要考查了多边形内角和定理.应用多边形的内角和公式计算即可.【详解】解:七边形的内角和()()218072180900n =-⨯︒=-⨯︒=︒,故答案为:900.16.一次函数(31)2y m x =+-的值随x 的增大而增大,请写出一个满足条件的m 的值.【答案】1(答案不唯一)【分析】本题考查了一次函数的性质,根据一次函数)的值随x 的增大而增大,得出0k >,写一个满足条件的m 的值即可,根据k 的正负性判断函数增减性是解题的关键.【详解】解:∵(31)2y m x =+-的值随x 的增大而增大,17.龚扇是自贡“小三绝”之一.为弘扬民族传统文化,某校手工兴趣小组将一个废弃的大纸杯侧面剪开直接当作扇面,制作了一个龚扇模型(如图).扇形外侧两竹条AB AC ,夹角为120︒.AB 长30cm ,扇面的BD 边长为18cm ,则扇面面积为 2cm (结果保留π).18.九(1)班劳动实践基地内有一块面积足够大的平整空地.地上两段围墙AB CD ⊥于点O (如图),其中AB 上的EO 段围墙空缺.同学们测得 6.6AE =m , 1.4OE =m ,6OB =m ,5OC =m ,3OD =m .班长买来可切断的围栏16m ,准备利用已有围墙,围出一块封闭的矩形菜地,则该菜地最大面积是 2cm .【答案】46.4【分析】本题考查了二次函数的应用.要利用围墙和围栏围成一个面积最大的封闭的矩形菜16 1.4--x++则矩形菜园的总长为(16 6.6故答案为:46.4.三、解答题19.计算:()0tan 452|23|︒-+-20.如图,在ABC 中,DE BC ∥,EDF C ∠=∠.(1)求证:BDF A ∠=∠;(2)若45A ∠=︒,DF 平分BDE ∠,请直接写出ABC 的形状.【答案】(1)见解析(2)ABC 是等腰直角三角形.【分析】本题考查了平行线的判定和性质,等腰直角三角形的判定.(1)由平行证明AED C ∠=∠,由等量代换得到EDF AED ∠=∠,利用平行线的判定“内错角相等,两直线平行”证明DF AC ∥,即可证明BDF A ∠=∠;(2)利用平行线的性质结合角平分线的定义求得90BDE ∠=︒,90B Ð=°,据此即可得到ABC 是等腰直角三角形.【详解】(1)证明:∵DE BC ∥,∴AED C ∠=∠,∵EDF C ∠=∠,∴EDF AED ∠=∠,∴DF AC ∥,∴BDF A ∠=∠;(2)解:ABC 是等腰直角三角形.∵BDF A ∠=∠,∴45BDF A ∠=∠=︒,∵DF 平分BDE ∠,∴BDF 90BDE 2∠=︒∠=,∵DE BC ∥,∴09018B BDE ∠︒=︒-∠=,∴18045C A B A ∠=︒-∠-∠=︒=∠,∴ABC 是等腰直角三角形.21.为传承我国传统节日文化,端午节前夕,某校组织了包粽子活动.已知七(3)班甲组同学平均每小时比乙组多包20个粽子,甲组包150个粽子所用的时间与乙组包120个粽子所用的时间相同.求甲,乙两组同学平均每小时各包多少个粽子.22.在Rt ABC △中,90C ∠=︒,O 是ABC 的内切圆,切点分别为D ,E ,F .(1)图1中三组相等的线段分别是CE CF =,AF =________,BD =________;若3AC =,4BC =,则O 半径长为________;(2)如图2,延长AC 到点M ,使AM AB =,过点M 作MN AB ⊥于点N .求证:MN 是O 的切线.∵O 是ABC 的内切圆,切点分别为∴CE CF =,AF =在四边形OFCE 中,∴四边形ODCE 为矩形,又因为OF OE =,设O 半径为r ,∵MN AB ⊥,∴90ACB ANM ∠=∠=︒,∵CAB NAM ∠=∠,AM AB =∴CAB NAM ≌△△,23.某校为了解学生身体健康状况,从全校600名学生的体质健康测试结果登记表中,随机选取了部分学生的测试数据进行初步整理(如图1).并绘制出不完整的条形统计图(如图2).成绩频数百分比不及格3a及格b20%良好45c优秀3232%图1学生体质健康统计表a________,b=________,c=________;(1)图1中=(2)请补全图2的条形统计图,并估计该校学生体质健康测试结果为“良好”和“优秀”的总人数;(3)为听取测试建议,学校选出了3名“良好”1名“优秀”学生,再从这4名学生中随机抽取2人参加学校体质健康测试交流会.请用列表或画树状图的方法,计算所抽取的两人均为“良好”的概率.600估计该校学生体质健康测试结果为“良好”和(3)解:设3名“良好”分别用A、B、C表示,A B CA(B,A)(C,A)B(A,B)(C,B)C(A,C)(B,C)24.如图,在平面直角坐标系中,一次函数y kx b =+的图象与反比例函数m y x=的图象交于(6,1)A -,(1,)B n 两点.(1)求反比例函数和一次函数的解析式;(2)P 是直线2x =-上的一个动点,PAB 的面积为21,求点P 坐标;(3)点Q 在反比例函数m y x=位于第四象限的图象上,QAB 的面积为21,请直接写出Q 点坐标.∵=5y x --∴当2x =-时,则5253y x =--=-=-∵QAB 的面积为21,(6,1)A -∴()()(121166162q =+⨯+-⨯+491∵QAB 的面积为21,(6,1)A -∴()616211612q q ⎛⎫⎛=+⨯+-⨯ ⎪ ⎝⎭⎝612171⎛⎫⎛=⨯+-⨯25.为测量水平操场上旗杆的高度,九(2)班各学习小组运用了多种测量方法.(1)如图1,小张在测量时发现,自己在操场上的影长EF 恰好等于自己的身高DE .此时,小组同学测得旗杆AB 的影长BC 为11.3m ,据此可得旗杆高度为________m ;(2)如图2,小李站在操场上E 点处,前面水平放置镜面C ,并通过镜面观测到旗杆顶部A .小组同学测得小李的眼睛距地面高度 1.5m DE =,小李到镜面距离2m EC =,镜面到旗杆的距离16m CB =.求旗杆高度;(3)小王所在小组采用图3的方法测量,结果误差较大.在更新测量工具,优化测量方法后,测量精度明显提高,研学旅行时,他们利用自制工具,成功测量了江姐故里广场雕塑的高度.方法如下:如图4,在透明的塑料软管内注入适量的水,利用连通器原理,保持管内水面M ,N 两点始终处于同一水平线上.如图5,在支架上端P 处,用细线系小重物Q ,标高线PQ 始终垂直于水平地面.如图6,在江姐故里广场上E 点处,同学们用注水管确定与雕塑底部B 处于同一水平线的D ,G 两点,并标记观测视线DA 与标高线交点C ,测得标高 1.8m CG =, 1.5m DG =.将观测点D 后移24m 到D ¢处,采用同样方法,测得 1.2m C G ='',2m D G ''=.求雕塑高度(结果精确到1m).∠根据镜面反射可知:ACB⊥,⊥AB BE,DE BE∴,∠=∠=︒ABC DEC90△△,ACB DCE∴∽26.如图,抛物线232y ax x c =-+与x 轴交于(1,0)A -,(4,0)B 两点,顶点为P .(1)求抛物线的解析式及P 点坐标;(2)抛物线交y 轴于点C ,经过点A ,B ,C 的圆与y 轴的另一个交点为D ,求线段CD 的长;(3)过点P 的直线y kx n =+分别与抛物线、直线=1x -交于x 轴下方的点M ,N ,直线NB 交抛物线对称轴于点E ,点P 关于E 的对称点为Q ,MH x ⊥轴于点H .请判断点H 与直线NQ 的位置关系,并证明你的结论.当0x =时,=2y -,∴点()0,2C -,∵(1,0)A -,(4,0)B ,将点325,28P ⎛⎫- ⎪⎝⎭代入y kx n =+,得32528k n +=-,∴32528n k =--,把点N 横坐标1N x =-,代入得3255282N y k k ⎛=---=- ⎝∵GE x ⊥轴,AN x ⊥轴,∴GE AN ∥,点G 为AB 中点,∴1BE NG EN AG==,∴点E 为BN 中点,∴525416E y k ⎛⎫=-+ ⎪⎝⎭,。

四川省自贡市2013-2014学年九年级上学期期末考试数学试卷(20201103190631)

四川省自贡市2013-2014学年九年级上学期期末考试数学试卷(20201103190631)

.
3、考试结束后,将答题卡收回 .
第Ⅰ卷 选择题 (共 40 分)
一、选择题(每小题 4 分,共 40 分) 1、下列各式中一定是二次根式的是
A、 - 32
B
、x
C
、 -2
()
D
、 -0. 32
2、下列方程中,一元二次方程共
()
①、 3x 2 +x 20 ;②、 x2 +y 2 5 ;③、 x 2 - 1 4 ;④、 x 2 =1 ;⑤、 x2 - x 3 0 .
. 附近,所以我们可以通
过多次实验,用同一事件发生的
来估计这事件发生的概率 . (填“频率”或“概率” )
13、已知点 A( 2a 3b, 2) 和 B(0, 3a 2b) 关于原点对称,则 a b =
.
14、要用一条长为 24cm的铁丝围成一个斜边是 10cm的直角三角形,则两条直角边的长分别

.
…… 5 分
( 2) . 等式成立的卡片有 C. D;等式不成立的有 A. B.
所以小明的胜率为
2
P( 小明 )
12
1
. …7 分
6
小强的胜率为 P( 小强) 10
5
.
…9分
12 6
∵P( 小明 ) < P( 小强)
∴游戏不公平,对小强有利 . … 10 分
六、解答题 (本题 12 分)
22. 解:∵ x1 x2 是方程 x 2 4x 2 0 的两根 ∴ x1 x2 4
A
二、填空题:本大题共 5 个小题,每小题 4 分,共 20 分.
11.
2 12. 概率、频率 13.
三、解答题(每题 8 分,共 16 分)

自贡市2013-2014学年下学期七年级数学期末统一考试 (Word·版.含答题卡和参考答案)

自贡市2013-2014学年下学期七年级数学期末统一考试  (Word·版.含答题卡和参考答案)

自贡市2013-2014下学期七数期末检测 第 1页(共 4页) 第 2页 (共 4页)秘密★启用前〖考试时间:2014年7月2日上午9:00-11:00 共120分钟〗自贡市2013-2014学年七年级下学期期末考试数 学 试 卷重新制版:赵化中学 郑宗平 注意事项:1、答题前,考生务必将自己的姓名、班级、考号(用0.5毫米的黑色签字笔)填写在答题卡上,并检查条形码粘贴是否正确.2、选择题使用2B 铅笔填涂在答题卡对应题目标号的位置上,非选择题用0.5毫米的黑色签字笔书写在答题卡的对应框内,超出答题区域的书写的答案无效,在草稿纸、试题卷上答题无效.3、考试结束后,将答题卡收回.一、选择题(本题有8个小题,每小题3分,满分24分,每小题只有一个选项符合题意)1、下列各数中没有平方根的是 ( )A.()-23 B.0 C.18D.36-2、如果,a b c 0><,那么下列不等式成立的是 ( )A.a c b c +>+B.c a c b ->-C.ac bc >D.a bc c>32237π、、中,无理数有 ( )个A.1B.2C.3D.44、已知点()A 12AC x ⊥,,轴于点C ,则点C 的坐标为 ( )A.(),10B.(),20C.(),02D.(),01 5、空气是由多种气体混合而成的,为了简明扼要地介绍空气的组成情况,较好地描述数据,最适合使用的统计图是 ( ) A.条形统计图 B.折线统计图 C.6、如图,已知12355∠=∠=∠=,则4∠的度数为 ( )A.55°B.75°C.105°D.125°7、方程组2x y x y 3+=⎧⎨+=⎩ 的解为x 2y =⎧⎨=⎩ ,则被遮盖的前后两个数分别为 ( )A.1、2B.1、5C. 5、1D.2、48、某种商品的进价为800元,出售标价为1200元,后来由于该商品积压,商店准备打折销售,但要保证利润率不低于5%,则最多可打 ( ) A.6折 B.7折 C.8折 D.9折二、填空题(本题有6个小题,每小题3分,共计18分)9、在方程x 2y 5+=中,用含x 的代数式表示y 为 .10、不等式62x 4-≥的解集是 .11. 如图,已知直线AB CD 、 相交于点O ,OB 平分DOE ∠,DOE 80∠=,则AOC ∠ = .12、若点(),P m 3m 1-+在第二象限,则m 的取值范围是 .13、甲、乙两种水果单价分别为20元/千克,15元/千克,若购买甲、乙两种水果共30千克,恰好用去500元,则购买甲水果 千克,乙水果 千克.14、规定符号[]a 表示实数a 的整数部分,[],.=1041543⎡⎤=⎢⎥⎣⎦.按此规定2⎤⎦的值为 .三、解答题(本题有5个小题,每小题5分,共计25分)1516、解方程组:()()()x 33y 1022x 32y 110-⎧--=⎪⎨⎪---=⎩17.解不等式组5x 0x 12x 12->⎧⎪⎨-≥+⎪⎩,并将其解集在数轴上表示出来.18、推理填空:如图,已知,12B C ∠=∠∠=∠,可推得AB CD ,∵12∠=∠(已知),且14∠=∠(∴24∠=∠( )∴CE BF ( ) ∴C 3∠=∠( ) 又∵B C ∠=∠(已知) ∴3B ∠=∠(等量代换)C自贡市2013-2014下学期七数期末检测 第 3页(共 4页) 第 4页 (共 4页)∴AB CD ( )19、在同一平面内,垂直于同一条直线的两条直线平行吗?为什么?四、解答题(本题有3道小题,每小题6分,共计18分)20、某中学为促进课堂教学,提高教学质量,对七年级学生进行了一次“你最喜欢的课堂教学方式”的问卷调查.根据收回的答卷,学校绘制了“频率分布表”和“频数分布条形图”.请你根据图表中提供的信息,解答下列问题. ⑴.补全“频率分布表”;⑵.在“频数分布条形图”中,将代号为“4”的部分补充完整;⑶.你最喜欢以上哪种教学方式或另外的教学方式,请提出你的建议,并简要说明理由(字数在20字以内)21、已知:()()()A 01B 20C 43,,,,,. ⑴.求ABC 的面积;⑵.设点P 在坐标轴上,且ABP 与ABC 的面积相等,求点P 的坐标.22、为建设节约型、环境友好型社会,克服因干旱而造成的电力紧张困难,切实做好节能减排工作.某地决定对居民家庭用电实行“阶梯电价”,电力公司规定:居民家庭每月用电量在80千瓦时以下(含80千瓦,1千瓦时俗称1度)时,实行“基本电价”;当具名家庭月用电量超过80千瓦时时,超过的部分实行“提高电价”.⑴.小张2011年4月份用电100千瓦时,上缴电费68元;5月份用电120千瓦时,上缴电费88元,求“基本电价”和“提高电价”分别为多少元/千瓦时?⑵.若6月份小张家预计用电130千瓦时,请预算小张家6月份应上缴的电费.五、解答下列各题(第23题7分,第24题8分,共计15分)23、解不等式-x 21≤时,我们可以采用下面的解法:①.当x 20-≥时,x 2x 2-=- ∴原不等式可以化为x 21-≤可得不等式组x 20x 21-≥⎧⎨-≤⎩解得 2x 3≤≤ ②. 当x 20-<时,x 22x -=- ∴原不等式可以化为2x 1-≤可得不等式组x 20x 21-<⎧⎨-≤⎩解得 1x 2≤≤综上可得原不等式的解集为 1x 3≤≤.请你仿照上面的解法,尝试解不等式 -x 12≤24、在平面直角坐标系中,()()(),,,,A a 0B b 0C 12-,(见图1),且2a b 10++ ⑴.求a b 、的值;⑵.①.在x 轴的正半轴上存在一点M ,使COM 的面积=12ABC 的面积,求出点M 的坐标;②.在坐标轴的其它位置是否存在点M ,使COM 的面积=12ABC 的面积仍然成立,若存在,请直接写出符合条件的点M 的坐标;⑶.如图2,过点C 作CD y ⊥轴交y 轴于点D ,点P 为线段CD 延长线上的一动点,连接OP ,OE 平分AOP OF OE ∠⊥,.当点运动时,OPDDOE ∠∠的值是否会改变?若不变,求其值;若改变,说明理由.图 22013-2014下期七数期末检测 答题卡 第1页 共6页 第 2页 共6页 第3页 共6页2013~2014学年七年级下学期期末考试数 学 答 题 卡请在各题目的答题区域内作答,超出答题区域的答案无效准考证号姓 名 设计:郑宗平 C F下期七数期末检测 答题卡 第4页 共6页 第 5页 共6页 第6页 共6页请在各题目的答题区域内作答,超出答题区域的答案无效请在各题目的答题区域内作答,超出答题区域的答案无效 ).2).3自贡市2013-2014下学期七数期末检测 参考答案 第 1页(共 4页) 第 2页 (共 4页)自贡市2013-2014学年七年级下学期期末考试 数学参考答案及评分标准一、选择题(每小题3分,共24分)二、填空题(每小题3分,共18分) 9.25xy -=;10.1≤x ; 11.40°; 12.31<<-m ; 13. 10,20; 14. 5.三、解答题(每小题5分,共计25分)15、解:原式=33)2(23+---……(4分) =27 ……(5分)16、解:原方程组化为:⎪⎩⎪⎨⎧=---=---②y x ①y x 5)1()3(0)1(6)3( ……(1分)①-②: 5)1(5-=--y 2=y ……(3分) 将2=y 代入 得: 9=x ……(4分)∴ 原方程组的解为⎩⎨⎧==29y x ……(5分)17、解: ⎩⎨⎧-≤<15x x ……(2分) ∴ 原不等式组的解集为 1-≤x ……(3分)……(5分)18、解:依次填写 (对顶角相等)(等量代换) (同位角相等,两直线平行) (两直线平行,同位角相等)(内错角相等,两直线平行) ……(错一个扣1分) 19、解:平行. ……(1分)已知:如图,直线CD ⊥直线AB 于点M ,直线EF ⊥直线AB 于点N 求证:CD ∥EF , ……(2分)证明:∵ CD ⊥AB∴ ∠CMB =90° ……(3分)又∵ EF ⊥AB ∴ ∠ENB =90° ……(4分)∴ ∠CMB=∠ENB ∴ CD ∥EF ……(5分)四、解答题(每小题6分,共18分)20、解:⑴.(2分); ⑵.(2分); ⑶.略.(2分).21、解:(1).ABC S SS S ∆∆∆=--梯形422132********⨯⨯-⨯⨯-⨯⨯-⨯ =43112---= 4 ……(2分) (2). ∵ ABC ABP S S ∆∆= ∴ 4=∆ABP S500. 50AB自贡市2013-2014下学期七数期末检测 参考答案 第 3页(共 4页) 第 4页 (共 4页)∴421421=⋅=⋅BO PA AO PB 或 ……(3分) ∴ 8=PB 或 4=PA ……(4分)∴ )0,6(1-P )0,10(2P )5,0(3P )3,0(4-P ……(6分) 22、解:⑴.设基本电价为x 元/千瓦时,提高电价为y 元/千瓦时.⎩⎨⎧=+=+884080682080y x y x 解这个方程组,得 ⎩⎨⎧==16.0y x 答:基本电价为0.6元/千瓦时,提高电价为1元/千瓦时. ……(4分) ⑵.1)80130(6.080⨯-+⨯=48+50×1=98(元)答: 小张家6月份应上缴98元电费. ……(6分)五、解答下列各题(23小题7分,24小题8分,共计15分)23、解:⑴. 当01<-x ,即1<x 时 x x -=-1|1|∴ 原不等式化为: 21≤-x 可得不等式组 ⎩⎨⎧≤-<-2101x x 解得11<≤-x ……(3分)⑵. 当01≥-x ,即1≥x 时 1|1|-=-x x∴ 原不等式化为:21≤-x 可得不等式组 ⎩⎨⎧≥-≤-0121x x 解得31≤≤x ……(6分)综上可得原不等式的解集为 31≤≤-x . ……(7分)24、解:⑴.依题意得 ⎩⎨⎧=-+=++042012b a b a ⎩⎨⎧=-=32b a ……(2分)⑵.①∵ABC COM S S ∆∆=21且M 在x 轴正半轴上 ∴||2121||210c y AB y OM ⨯⨯=⋅∴25|)2(3|2121=--⨯==AB OM又∵ M 在正半轴上 ∴ )0,25(M ……(4分)②存在)0,25(1-M ,)5,0(2M )5,0(3-M ……(5分)⑶.DOEOPD∠∠的值不会改变理由如下:设α=∠OPD β=∠DOE (见下面示意图)∵CP ∥AB ∴ POB ∠=∠α ∵︒=∠+∠901EOP ∴︒=∠+∠902AOE又∵AOE EOP ∠+∠ ∴ 21∠=∠ ∴ 12∠=α ……(6分)又∵ ︒=∠+∠+9013β ︒=∠+903α∴1∠+=βα ∴ 1∠-=αβ1112∠=∠-∠= ……(7分)∴2112=∠∠==∠∠βαDOE OPD∴DOEOPD∠∠的值不会改变,且比值为2. ……(8分)。

2014年四川省自贡市中考数学试题及参考答案(word解析版)

2014年四川省自贡市中考数学试题及参考答案(word解析版)

2014年四川省自贡市中考数学试题及参考答案与解析一、选择题(本大题共10小题,每小题4分,共40分)1.比﹣1大1的数是()A.2 B.1 C.0 D.﹣2.2.(x4)2等于()A.x6B.x8C.x16D.2x43.如图,是由几个小立方体所搭成的几何体的俯视图,小正方形中的数字表示在该位置上的立方体的个数,这个几何体的正视图是()A.B.C.D.4.拒绝“餐桌浪费”刻不容缓,据统计全国每年浪费食物总量约为50000000000千克,这个数据用科学记数法表示为()A.5×1010B.0.5×1011C.5×1011D.0.5×10105.一元二次方程x2﹣4x+5=0的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.只有一个实数根D.没有实数根6.下面的图形中,既是轴对称图形又是中心对称图形的是()A B C D7.一组数据,6、4、a、3、2的平均数是5,这组数据的方差为()A.8 B.5 C.D.3.8.一个扇形的半径为8cm,弧长为163cmπ,则扇形的圆心角为()A.60°B. 120°C.150°D.180°9.关于x的函数y=k(x+1)和kyx=(k≠0)在同一坐标系中的图象大致是()A B C D10.如图,在半径为1的⊙O 中,∠AOB=45°,则sinC 的值为( )A .2 BCD.4 二.填空题:(本大题共5小题,每小题4分,共20分) 11.分解因式:x 2y ﹣y= .12.不等式组23010x x -+⎧⎨-⎩≥>的解集是 .13.一个多边形的内角和比外角和的3倍多180°,则它的边数是 .14.一个边长为4cm 的等边三角形ABC 与⊙O 等高,如图放置,⊙O 与BC 相切于点C ,⊙O 与AC 相交于点E ,则CE 的长为 cm .15.一次函数y=kx+b ,当1≤x≤4时,3≤y≤6,则bk的值是 . 三.解答题:(本大题共2小题,每小题8分,共16分) 16.(8分)解方程:3x (x ﹣2)=2(2﹣x ) 17.(8分)计算:()213.14|14cos 452π-⎛⎫-+-+-︒ ⎪⎝⎭. 四.解答题:(本大题共2小题,每小题8分,共16分)18.(8分)如图,某学校新建了一座吴玉章雕塑,小林站在距离雕塑2.7米的A 处自B 点看雕塑头顶D 的仰角为45°,看雕塑底部C 的仰角为30°,求塑像CD 的高度.(最后结果精确到0.1米,参1.7≈)19.(8分)如图,四边形ABCD是正方形,BE⊥BF,BE=BF,EF与BC交于点G.(1)求证:AE=CF;(2)若∠ABE=55°,求∠EGC的大小.五.解答题:(共2小题,每小题10分,共20分)20.(10分)为了提高学生书写汉字的能力,增强保护汉字的意识,我市举办了首届“汉字听写大赛”,经选拔后有50名学生参加决赛,这50名学生同时听写50个汉字,若每正确听写出一个汉字得1分,根据测试成绩绘制出部分频数分布表和部分频数分布直方图如图表:请结合图表完成下列各题:(1)求表中a的值;(2)请把频数分布直方图补充完整;(3)若测试成绩不低于40分为优秀,则本次测试的优秀率是多少?(4)第5组10名同学中,有4名男同学,现将这10名同学平均分成两组进行对抗练习,且4名男同学每组分两人,求小宇与小强两名男同学能分在同一组的概率.21.(10分)学校新到一批理、化、生实验器材需要整理,若实验管理员李老师一人单独整理需要40分钟完成,现在李老师与工人王师傅共同整理20分钟后,李老师因事外出,王师傅再单独整理了20分钟才完成任务.(1)王师傅单独整理这批实验器材需要多少分钟?(2)学校要求王师傅的工作时间不能超过30分钟,要完成整理这批器材,李老师至少要工作多少分钟?六.解答题:(本题满分12分)22.(12分)如图,一次函数y=kx+b 与反比例函数()60y x x=>的图象交于A (m ,6),B (3,n )两点.(1)求一次函数的解析式;(2)根据图象直接写出60kx b x+-<的x 的取值范围; (3)求△AOB 的面积.七.解答题:(本题满分12分) 23.(12分)阅读理解:如图①,在四边形ABCD 的边AB 上任取一点E (点E 不与A 、B 重合),分别连接ED 、EC ,可以把四边形ABCD 分成三个三角形,如果其中有两个三角形相似,我们就把E 叫做四边形ABCD 的边AB 上的“相似点”;如果这三个三角形都相似,我们就把E 叫做四边形ABCD 的边AB 上的“强相似点”.解决问题:(1)如图①,∠A=∠B=∠DEC=45°,试判断点E 是否是四边形ABCD 的边AB 上的相似点,并说明理由;(2)如图②,在矩形ABCD 中,A 、B 、C 、D 四点均在正方形网格(网格中每个小正方形的边长为1)的格点(即每个小正方形的顶点)上,试在图②中画出矩形ABCD 的边AB 上的强相似点; (3)如图③,将矩形ABCD 沿CM 折叠,使点D 落在AB 边上的点E 处,若点E 恰好是四边形ABCM 的边AB 上的一个强相似点,试探究AB 与BC 的数量关系.八.解答题:(本题满分14分)24.(14分)如图,已知抛物线23 2y ax x c=-+与x轴相交于A、B两点,并与直线122y x=-交于B、C两点,其中点C是直线122y x=-与y轴的交点,连接AC.(1)求抛物线的解析式;(2)证明:△ABC为直角三角形;(3)△ABC内部能否截出面积最大的矩形DEFG?(顶点D、E、F、G在△ABC各边上)若能,求出最大面积;若不能,请说明理由.参考答案与解析一、选择题(本大题共10小题,每小题4分,共40分)1.比﹣1大1的数是()A.2 B.1 C.0 D.﹣2.【知识考点】有理数的加法.【思路分析】根据有理数的加法,可得答案.【解答过程】解:(﹣1)+1=0,比﹣1大1的数,0,故选:C.【总结归纳】本题考查了有理数的加法,互为相反数的和为0.2.(x4)2等于()A.x6B.x8C.x16D.2x4【知识考点】幂的乘方与积的乘方.【思路分析】根据幂的乘方等于底数不变指数相乘,可得答案.【解答过程】解:原式=x4×2=x8,故选:B.【总结归纳】本题考查了幂的乘方,底数不变指数相乘是解题关键.。

四川省自贡市2014年中考数学试卷(word版,含解析)

四川省自贡市2014年中考数学试卷(word版,含解析)

四川省自贡市2014年中考数学试卷一、选择题:(共10小题,每小题4分,共40分)1.(4分)(2014•自贡)比﹣1大1的数是()A.2B.1C.0D.﹣2.考点:有理数的加法分析:根据有理数的加法,可得答案.解答:解:(﹣1)+1=0,比﹣1大1的数,0,故选:C.点评:本题考查了有理数的加法,互为相反数的和为0.2.(4分)(2014•自贡)(x4)2等于()A.x6B.x8C.x16D.2x4考点:幂的乘方与积的乘方分析:根据幂的乘方等于底数不变指数相乘,可得答案.解答:解:原式=x4×2=x8,故选:B.点评:本题考查了幂的乘方,底数不变指数相乘是解题关键.3.(4分)(2014•自贡)如图,是由几个小立方体所搭成的几何体的俯视图,小正方形中的数字表示在该位置上的立方体的个数,这个几何体的正视图是()A.B.C.D.考点:由三视图判断几何体;简单组合体的三视图分析:由俯视图,想象出几何体的特征形状,然后按照三视图的要求,得出该几何体的正视图和侧视图.解答:解:由俯视图可知,小正方体的只有2排,前排右侧1叠3块;后排从做至右木块个数1,1,2;故选D.点评:本题是基础题,考查空间想象能力,绘图能力,常考题型.4.(4分)(2014•自贡)拒绝“餐桌浪费”刻不容缓,据统计全国每年浪费食物总量约为50000000000千克,这个数据用科学记数法表示为()A.5×1010B.0.5×1011C.5×1011D.0.5×1010考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:将50000000000用科学记数法表示为:5×1010.故选:A.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.5.(4分)(2014•自贡)一元二次方程x2﹣4x+5=0的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.只有一个实数根D.没有实数根考点:根的判别式.分析:把a=1,b=﹣4,c=5代入△=b2﹣4ac进行计算,根据计算结果判断方程根的情况.解答:解:∵a=1,b=﹣4,c=5,∴△=b2﹣4ac=(﹣4)2﹣4×1×5=﹣4<0,所以原方程没有实数根.故选:D.点评:本题考查了一元二次方程ax2+bx+c=0(a≠0,a,b,c为常数)的根的判别式△=b2﹣4ac.当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.6.(4分)(2014•自贡)下面的图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.考点:中心对称图形;轴对称图形.专题:常规题型.分析:根据轴对称图形与中心对称图形的概念求解.解答:解:A、不是轴对称图形,是中心对称图形,不符合题意;B、不是轴对称图形,是中心对称图形,不符合题意;C、既是轴对称图形,也是中心对称图形,符合题意;D、是轴对称图形,不是中心对称图形,不符合题意.故选C.点评:本题考查了中心对称及轴对称的知识,解题时掌握好中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.7.(4分)(2014•自贡)一组数据,6、4、a、3、2的平均数是5,这组数据的方差为()A.8B.5C.D.3.考点:方差;算术平均数分析:根据平均数的计算公式先求出a的值,再根据方差公式S2= [(x1﹣)2+(x2﹣)2+…+(x n﹣)2],代数计算即可.解答:解:∵6、4、a、3、2的平均数是5,∴(6+4+a+3+2)÷5=5,解得:a=10,则这组数据的方差S2= [(6﹣5)2+(4﹣5)2+(10﹣5)2+(3﹣5)2+(2﹣5)2]=8;故选A.点评:本题考查了方差,一般地设n个数据,x1,x2,…x n的平均数为,则方差S2= [(x1﹣)2+(x2﹣)2+…+(x n﹣)2].8.(4分)(2014•自贡)一个扇形的半径为8cm,弧长为cm,则扇形的圆心角为()A.60°B.120°C.150°D.180°考点:弧长的计算分析:首先设扇形圆心角为x°,根据弧长公式可得:=,再解方程即可.解答:解:设扇形圆心角为x°,根据弧长公式可得:=,解得:n=120,故选:B.点评:此题主要考查了弧长计算,关键是掌握弧长计算公式:l=.9.(4分)(2014•自贡)关于x的函数y=k(x+1)和y=(k≠0)在同一坐标系中的图象大致是()A.B.C.D.考点:反比例函数的图象;一次函数的图象分析:根据反比例函数的比例系数可得经过的象限,一次函数的比例系数和常数项可得一次函数图象经过的象限.解答:解:若k>0时,反比例函数图象经过一三象限;一次函数图象经过一二三象限,所给各选项没有此种图形;若k<0时,反比例函数经过二四象限;一次函数经过二三四象限,D答案符合;故选D.点评:考查反比例函数和一次函数图象的性质;若反比例函数的比例系数大于0,图象过一三象限;若小于0则过二四象限;若一次函数的比例系数大于0,常数项大于0,图象过一二三象限;若一次函数的比例系数小于0,常数项小于0,图象过二三四象限.10.(4分)(2014•自贡)如图,在半径为1的⊙O中,∠AOB=45°,则sinC的值为()A.B.C.D.考点:圆周角定理;勾股定理;锐角三角函数的定义专题:压轴题.分析:首先过点A作AD⊥OB于点D,由在Rt△AOD中,∠AOB=45°,可求得AD与OD 的长,继而可得BD的长,然后由勾股定理求得AB的长,继而可求得sinC的值.解答:解:过点A作AD⊥OB于点D,∵在Rt△AOD中,∠AOB=45°,∴OD=AD=OA•cos45°=×1=,∴BD=OB﹣OD=1﹣,∴AB==,∵AC是⊙O的直径,∴∠ABC=90°,AC=2,∴sinC=.故选B.点评:此题考查了圆周角定理、三角函数以及勾股定理.此题难度适中,注意掌握辅助线的作法,注意数形结合思想的应用.二.填空题:(共5小题,每小题4分,共20分)11.(4分)(2014•自贡)分解因式:x2y﹣y=y(x+1)(x﹣1).考点:提公因式法与公式法的综合运用分析:观察原式x2y﹣y,找到公因式y后,提出公因式后发现x2﹣1符合平方差公式,利用平方差公式继续分解可得.解答:解:x2y﹣y,=y(x2﹣1),=y(x+1)(x﹣1).点评:本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.12.(4分)(2014•自贡)不等式组的解集是1<x≤.考点:解一元一次不等式组分析:分别求出各不等式的解集,再求出其公共解集即可.解答:解:,由①得,x≤,由②得,x>1,故此不等式组的解集为:1<x≤.故答案为:1<x≤.点评:本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.13.(4分)(2014•自贡)一个多边形的内角和比外角和的3倍多180°,则它的边数是9.考点:多边形内角与外角分析:多边形的内角和比外角和的3倍多180°,而多边形的外角和是360°,则内角和是1360度.n边形的内角和可以表示成(n﹣2)•180°,设这个多边形的边数是n,就得到方程,从而求出边数.解答:解:根据题意,得(n﹣2)•180=1360,解得:n=9.则这个多边形的边数是9.故答案为:9.点评:考查了多边形内角与外角,此题只要结合多边形的内角和公式寻求等量关系,构建方程即可求解.14.(4分)(2014•自贡)一个边长为4cm的等边三角形ABC与⊙O等高,如图放置,⊙O 与BC相切于点C,⊙O与AC相交于点E,则CE的长为3cm.考点:切线的性质;垂径定理;圆周角定理;弦切角定理分析:连接OC,并过点O作OF⊥CE于F,根据等边三角形的性质,等边三角形的高等于底边高的倍.题目中一个边长为4cm的等边三角形ABC与⊙O等高,说明⊙O的半径为,即OC=,又∠ACB=60°,故有∠OCF=30°,在Rt△OFC中,可得出FC的长,利用垂径定理即可得出CE的长.解答:解:连接OC,并过点O作OF⊥CE于F,且△ABC为等边三角形,边长为4,故高为2,即OC=,又∠ACB=60°,故有∠OCF=30°,在Rt△OFC中,可得FC=,即CE=3.故答案为:3.点评:本题主要考查了切线的性质和等边三角形的性质和解直角三角形的有关知识.题目不是太难,属于基础性题目.15.(4分)(2014•自贡)一次函数y=kx+b,当1≤x≤4时,3≤y≤6,则的值是2或﹣7.考点:一次函数的性质分析:由于k的符号不能确定,故应分k>0和k<0两种进行解答.解答:解:当k>0时,此函数是增函数,∵当1≤x≤4时,3≤y≤6,∴当x=1时,y=3;当x=4时,y=6,∴,解得,∴=2;当k<0时,此函数是减函数,∵当1≤x≤4时,3≤y≤6,∴当x=1时,y=6;当x=4时,y=3,∴,解得,∴=﹣7.故答案为:2或﹣7.点评:本题考查的是一次函数的性质,在解答此题时要注意分类讨论,不要漏解.三.解答题:(共2小题,每小题8分,共16分)16.(8分)(2014•自贡)解方程:3x(x﹣2)=2(2﹣x)考点:解一元二次方程-因式分解法分析:先移项,然后提取公因式(x﹣2),对等式的左边进行因式分解.解答:解:由原方程,得(3x+2)(x﹣2)=0,所以3x+2=0或x﹣2=0,解得x1=﹣,x2=2.点评:本题考查了解一元二次方程﹣﹣因式分解法.因式分解法就是利用因式分解求出方程的解的方法,这种方法简便易用,是解一元二次方程最常用的方法.17.(8分)(2014•自贡)计算:(3.14﹣π)0+(﹣)﹣2+|1﹣|﹣4cos45°.考点:实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值专题:计算题.分析:原式第一项利用零指数幂法则计算,第二项利用负指数幂法则计算,第三项利用绝对值的代数意义化简,最后一项利用特殊角的三角函数值计算即可得到结果.解答:解:原式=1+4+2﹣1﹣4×=4.点评:此题考查了实数的运算,熟练掌握运算法则是解本题的关键.四.解答题:(共2小题,每小题8分,共16分)18.(8分)(2014•自贡)如图,某学校新建了一座吴玉章雕塑,小林站在距离雕塑2.7米的A处自B点看雕塑头顶D的仰角为45°,看雕塑底部C的仰角为30°,求塑像CD的高度.(最后结果精确到0.1米,参考数据:)考点:解直角三角形的应用-仰角俯角问题分析:首先分析图形:根据题意构造两个直角三角形△DEB、△CEB,再利用其公共边BE 求得DE、CE,再根据CD=DE﹣CE计算即可求出答案.解答:解:在Rt△DEB中,DE=BE•tan45°=2.7米,在Rt△CEB中,CE=BE•tan30°=0.9米,则CD=DE﹣CE=2.7﹣0.9≈1.2米.故塑像CD的高度大约为1.2米.点评:本题考查解直角三角形的知识.要先将实际问题抽象成数学模型.分别在两个不同的三角形中,借助三角函数的知识,研究角和边的关系.19.(8分)(2014•自贡)如图,四边形ABCD是正方形,BE⊥BF,BE=BF,EF与BC交于点G.(1)求证:AE=CF;(2)若∠ABE=55°,求∠EGC的大小.考点:全等三角形的判定与性质;等腰直角三角形;正方形的性质分析:(1)利用△AEB≌△CFB来求证AE=CF.(2)利用角的关系求出∠BEF和∠EBG,∠EGC=∠EBG+∠BEF求得结果.解答:证明:(1)∵四边形ABCD是正方形,∴∠ABC=90°,AB=AC,∵BE⊥BF,∴∠FBE=90°,∵∠ABE+∠EBA=90°,∠CBF+∠EBA=90°,∴∠ABE=∠CBF,在△AEB和△CFB中,∴△AEB≌△CFB(SAS),∴AE=CF.(2)∵BE⊥BF,∴∠FBE=90°,又∵BE=BF,∴∠BEF=∠EFB=45°,∵四边形ABCD是正方形,∴∠ABC=90°,又∵∠ABE=55°,∴∠EBG=90°﹣55°=35°,∴∠EGC=∠EBG+∠BEF=45°+35°=80°.点评:本题主要考查了正方形,三角形全等判定和性质及等腰三角形,解题的关键是求得△AEB≌△CFB,找出相等的线段.五.解答题:(共2小题,每小题10分,共20分)20.(10分)(2014•自贡)为了提高学生书写汉字的能力,增强保护汉字的意识,我市举办了首届“汉字听写大赛”,经选拔后有50名学生参加决赛,这50名学生同时听写50个汉字,若每正确听写出一个汉字得1分,根据测试成绩绘制出部分频数分布表和部分频数分布直方图如图表:组别成绩x分频数(人数)第1组25≤x<30 4第2组30≤x<35 8第3组35≤x<40 16第4组40≤x<45 a第5组45≤x<50 10请结合图表完成下列各题:(1)求表中a的值;(2)请把频数分布直方图补充完整;(3)若测试成绩不低于40分为优秀,则本次测试的优秀率是多少?(4)第5组10名同学中,有4名男同学,现将这10名同学平均分成两组进行对抗练习,且4名男同学每组分两人,求小宇与小强两名男同学能分在同一组的概率.考点:频数(率)分布直方图;频数(率)分布表;列表法与树状图法分析:(1)用总人数减去第1、2、3、5组的人数,即可求出a的值;(2)根据(1)得出的a的值,补全统计图;(3)用成绩不低于40分的频数乘以总数,即可得出本次测试的优秀率;(4)用A表示小宇B表示小强,C、D表示其他两名同学,画出树状图,再根据概率公式列式计算即可.解答:解:(1)表中a的值是:a=50﹣4﹣8﹣16﹣10=12;(2)根据题意画图如下:(3)本次测试的优秀率是=0.44;答:本次测试的优秀率是0.44;(4)用A表示小宇B表示小强,C、D表示其他两名同学,根据题意画树状图如下:共有12种情况,小宇与小强两名男同学分在同一组的情况有2种,则小宇与小强两名男同学分在同一组的概率是=.点评:本题考查了频数分布直方图和概率,利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题,概率=所求情况数与总情况数之比.21.(10分)(2014•自贡)学校新到一批理、化、生实验器材需要整理,若实验管理员李老师一人单独整理需要40分钟完成,现在李老师与工人王师傅共同整理20分钟后,李老师因事外出,王师傅再单独整理了20分钟才完成任务.(1)王师傅单独整理这批实验器材需要多少分钟?(2)学校要求王师傅的工作时间不能超过30分钟,要完成整理这批器材,李老师至少要工作多少分钟?考点:分式方程的应用;一元一次不等式的应用专题:应用题.分析:(1)设王师傅单独整理这批实验器材需要x分钟,则王师傅的工作效率为,根据李老师与工人王师傅共同整理20分钟的工作量+王师傅再单独整理了20分钟的工作量=1,可得方程,解出即可;(2)根据王师傅的工作时间不能超过30分钟,列出不等式求解.解答:解:(1)设王师傅单独整理这批实验器材需要x分钟,则王师傅的工作效率为,由题意,得:20(+)+20×=1,解得:x=80,经检验得:x=80是原方程的根.答:王师傅单独整理这批实验器材需要80分钟.(2)设李老师要工作y分钟,由题意,得:(1﹣)÷≤30,解得:y≥25.答:李老师至少要工作25分钟.点评:本题考查了分式方程的应用及一元一次不等式的应用,解答本题的关键是仔细审题,找到不等关系及等量关系.六.解答题:(本题满分12分)22.(12分)(2014•自贡)如图,一次函数y=kx+b与反比例函数的图象交于A(m,6),B(3,n)两点.(1)求一次函数的解析式;(2)根据图象直接写出的x的取值范围;(3)求△AOB的面积.考点:反比例函数与一次函数的交点问题专题:计算题.分析:(1)先根据反比例函数图象上点的坐标特征得到6m=6,3n=6,解得m=1,n=2,这样得到A点坐标为(1,6),B点坐标为(3,2),然后利用待定系数求一次函数的解析式;(2)观察函数图象得到在第一象限内,当0<x<1或x>3时,反比例函数图象都在一次函数图象上方;(3)先确定一次函数图象与坐标轴的交点坐标,然后利用S△AOB=S△COD﹣S△COA﹣S 进行计算.△BOD解答:解:(1)分别把A(m,6),B(3,n)代入得6m=6,3n=6,解得m=1,n=2,所以A点坐标为(1,6),B点坐标为(3,2),分别把A(1,6),B(3,2)代入y=kx+b得,解得,所以一次函数解析式为y=﹣2x+8;(2)当0<x<1或x>3时,;(3)如图,当x=0时,y=﹣2x+8=8,则C点坐标为(0,8),当y=0时,﹣2x+8=0,解得x=4,则D点坐标为(4,0),所以S△AOB=S△COD﹣S△COA﹣S△BOD=×4×8﹣×8×1﹣×4×2=8.点评:本题考查了反比例函数与一次函数的交点问题:反比例函数与一次函数图象的交点坐标满足两函数解析式.也考查了待定系数法求函数解析式以及观察函数图象的能力.七.解答题:(本题满分12分)23.(12分)(2014•自贡)阅读理解:如图①,在四边形ABCD的边AB上任取一点E(点E不与A、B重合),分别连接ED、EC,可以把四边形ABCD分成三个三角形,如果其中有两个三角形相似,我们就把E叫做四边形ABCD的边AB上的“相似点”;如果这三个三角形都相似,我们就把E叫做四边形ABCD的边AB上的“强相似点”.解决问题:(1)如图①,∠A=∠B=∠DEC=45°,试判断点E是否是四边形ABCD的边AB上的相似点,并说明理由;(2)如图②,在矩形ABCD中,A、B、C、D四点均在正方形网格(网格中每个小正方形的边长为1)的格点(即每个小正方形的顶点)上,试在图②中画出矩形ABCD的边AB上的强相似点;(3)如图③,将矩形ABCD沿CM折叠,使点D落在AB边上的点E处,若点E恰好是四边形ABCM的边AB上的一个强相似点,试探究AB与BC的数量关系.考点:相似形综合题分析:(1)要证明点E是四边形ABCD的AB边上的相似点,只要证明有一组三角形相似就行,很容易证明△ADE∽△BEC,所以问题得解.(2)以CD为直径画弧,取该弧与AB的一个交点即为所求;(3)因为点E是矩形ABCD的AB边上的一个强相似点,所以就有相似三角形出现,根据相似三角形的对应线段成比例,可以判断出AE和BE的数量关系,从而可求出解.解答:解:(1)∵∠A=∠B=∠DEC=45°,∴∠AED+∠ADE=135°,∠AED+∠CEB=135°∴∠ADE=∠CEB,在△ADE和△BCE中,,∴△ADE∽△BCE,∴点E是否是四边形ABCD的边AB上的相似点.(2)如图所示:点E是四边形ABCD的边AB上的相似点,(3)∵点E是四边形ABCM的边AB上的一个强相似点,∴△AEM∽△BCE∽△ECM,∴∠BCE=∠ECM=∠AEM.由折叠可知:△ECM≌△DCM,∴∠ECM=∠DCM,CE=CD,∴∠BCE=∠BCD=30°,BE=,在Rt△BCE中,tan∠BCE==tan30°=,∴.点评:本题是相似三角形综合题,主要考查了相似三角形的对应边成比例的性质,读懂题目信息,理解全相似点的定义,判断出∠CED=90°,从而确定作以CD为直径的圆是解题的关键.八.解答题:(本题满分14分)24.(14分)(2014•自贡)如图,已知抛物线y=ax2﹣x+c与x轴相交于A、B两点,并与直线y=x﹣2交于B、C两点,其中点C是直线y=x﹣2与y轴的交点,连接AC.(1)求抛物线的解析式;(2)证明:△ABC为直角三角形;(3)△ABC内部能否截出面积最大的矩形DEFG?(顶点D、E、F、G在△ABC各边上)若能,求出最大面积;若不能,请说明理由.考点:二次函数综合题分析:(1)由直线y=x﹣2交x轴、y轴于B、C两点,则B、C坐标可求.进而代入抛物线y=ax2﹣x+c,即得a、c的值,从而有抛物线解析式.(2)求证三角形为直角三角形,我们通常考虑证明一角为90°或勾股定理.本题中未提及特殊角度,而已经A、B、C坐标,即可知AB、AC、BC,则显然可用勾股定理证明.(3)在直角三角形中截出矩形,面积最大,我们易得两种情形,①一点为C,AB、AC、BC边上各有一点,②AB边上有两点,AC、BC边上各有一点.讨论时可设矩形一边长x,利用三角形相似等性质表示另一边,进而描述面积函数.利用二次函数最值性质可求得最大面积.解答:(1)解:∵直线y=x﹣2交x轴、y轴于B、C两点,∴B(4,0),C(0,﹣2),∵y=ax2﹣x+c过B、C两点,∴,解得,∴y=x2﹣x﹣2.(2)证明:如图1,连接AC,∵y=x2﹣x﹣2与x负半轴交于A点,∴A(﹣1,0),在Rt△AOC中,∵AO=1,OC=2,∴AC=,在Rt△BOC中,∵BO=4,OC=2,∴BC=2,∵AB=AO+BO=1+4=5,∴AB2=AC2+BC2,∴△ABC为直角三角形.(3)解:△ABC内部可截出面积最大的矩形DEFG,面积为,理由如下:①一点为C,AB、AC、BC边上各有一点,如图2,此时△AGF∽△ACB∽△FEB.设GC=x,AG=﹣x,∵,∴,∴GF=2﹣2x,∴S=GC•GF=x•(2)=﹣2x2+2x=﹣2[(x﹣)2﹣]=﹣2(x﹣)2+,即当x=时,S最大,为.②AB边上有两点,AC、BC边上各有一点,如图3,此时△CDE∽△CAB∽△GAD,设GD=x,∵,∴,∴AD=x,∴CD=CA﹣AD=﹣x,∵,∴,∴DE=5﹣x,∴S=GD•DE=x•(5﹣x)=﹣x2+5x=﹣[(x﹣1)2﹣1]=﹣(x﹣1)2+,即x=1时,S最大,为.综上所述,△ABC内部可截出面积最大的矩形DEFG,面积为.点评:本题考查了二次函数图象的基本性质,最值问题及相似三角形性质等知识点,难度适中,适合学生巩固知识.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

四川省自贡市2014年初中毕业生学业考试数 学 试 卷本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共4页;选择题部分40分,非选择题110分共150分.注意事项:1、答卷前,考生务必将自己的姓名,准考证号、考试科目涂写(用0.5毫米的黑色签字笔)在答题卡上, 并检查条形码粘贴是否正确.2、选择题使用2B 铅笔填涂在答题卡对应题目标号的位置上,如需改动,用橡皮擦擦干净后,再选涂其它答案标号,不能答在试卷中;非选择题用0.5毫米的黑色签字笔书写在答题卡的对应框内,超出答题区域的书写的答案无效,在草稿纸、试题卷上答题无效.3、考试结束后,将答题卡、试卷、草稿纸从上往下依次放好,并等待监考老师验收后一并收回.第Ⅰ卷 选择题 (共40分)一、选择题(共10个小题,每小题4分,共40分)1、比-1大1的数是 ( ) A .2 B .1 C .0 D .-2 2.()24x 等于 ( )A .6xB .8xC .16xD .42x3.如图,是由几个小立方体所搭成的几何体的俯视图,小正方形中的数字表示在该位置上的立方体的个数,这个几何体的正视图是 ( )4.拒绝“餐桌浪费”刻不容缓,据统计全国每年浪费食物总量约为50000000000千克,这个数据用科学记数法表示为 ( )A .5×1010B .0.5×1011C .5×1011D .0.5×10105.一元二次方程x 2-4x+5=0的根的情况是 ( ) A .有两个不相等的实数根B .有两个相等的实数根C .只有一个实数根D .没有实数根.6.下面的图形中,既是轴对称图形 又是中心对称图形的是 ( )7.一组数据,6、4、a 、3、2的平均数是5,这组数据的方差为 ( )A .8B .5C .D .38.一个扇形的半径为8cm ,弧长为16cm 3π,则扇形的圆心角为 ( )A .60°B .120°C .150°D .180°9.关于x 的函数()y k x 1=+和()ky k 0x=≠在同一坐标系中的 图像大致是( )10.如图,在半径为1的⊙O 中,∠AOB=45°,则sinC 的值为( )A B C D第Ⅱ卷 非选择题( 共110分)二、填空题(共5个小题,每小题4分,共20分)11.因式分解:x 2y -y= .12.不等式组⎩⎨⎧-≥+01x 03x 2->的解集是 .13.一个多边形的内角和比它的外角和的3倍少180°,则它的边数是 .14.如图,一个边长为4cm 的等边三角形ABC 的高与⊙O 的直径相等.⊙O 与BC 相切于点C 与AC 相交于点E 。

则CE 的长为 cm.15.一次函数y=kx+b ,当1≤x ≤4时,3≤y ≤6,则kb的值是 .三、解答题(共2个题,每题8分,共16分)16.解方程:()()3x x 222x -=-17..45cos 481)21()14.3(2--+-+--π四、解答题(共2个题,每小题8分,共16分)18.如图,某学校新建了一座吴玉章雕塑,小林站在距离雕塑2.7米的A 处自B 点看雕塑头顶D 的仰角为450,看雕塑底部C 的仰角为300,求塑像CD 的高度。

(最后结果精确到0.1米,参考数据:7.13≈)19.如图,四边形ABCD 是正方形,BE ⊥BF ,BE=BF ,EF 与BC 交于点G.. ⑴.求证:AE=CF⑵.若∠ABE=55°,求∠EGC 的大小。

五、解答题(共2个题,每题10分,共20分)20.为了提高学生书写汉字的能力,增强保护汉字的意识,我市举办了首届“汉字听写大赛”,经选拔后有50名学生参加决赛,这50名学生同时听写50个汉字,若每正确听写出一个汉字得1分,根据测试成绩绘制出部分频数分布表和部分频数分布直方图如下:请结合图表完成下列各题: ⑴.求表中a 的值;⑵.请把频数分布直方图补充完整;⑶.若测试成绩不低于40分为优秀,则本次测试的优秀率是多少?⑷.第5组10名同学中,有4名男同学,现将这10名同学平均分成两组进行对抗练习,且4名男同学每组分两人,求小宇与小强两名男同学能分在同一组的概率.21、学校新到一批理、化、生实验器材需要整理,若实验管理员李老师一人单独整理需要40分钟完成,现在李老师与工人王师傅共同整理20分钟后,李老师因事外出,王师傅再单独整理了20分钟才完成任务。

⑴.王师傅单独整理这批实验器材需要多少分钟?⑵.学校要求王师傅的工作时间不能超过30分钟,要完成整理这批器材,李老师至少要工作多少分钟?六、解答题(本题满分12分)22.如图,一次函数y kx b =+与反比例函数)0x (x6y >=的图像交于A(m ,6),B (3,n )两点。

⑴.求一次函数的解析式; ⑵.根据图像直接写出0x6b kx <-+的x 的取值范围; ⑶.求△AOB 的面积。

七、解答题(本题满分12分) 23. 阅读理解:如图①,在四边形ABCD 的边AB 上任取一点E (点E 不与A 、B 重合),分别连接ED 、EC ,可以把四边形ABCD 分成三个三角形,如果其中有两个三角形相似,我们就把E 叫做四边形ABCD 的边AB 上的“相似点”;如果这三个三角形都相似,我们就把E 叫做四边形ABCD 的边AB 上的“强相似点”。

解决问题: ⑴.如图①,∠A=∠B=∠DEC=45°,试判断点E 是否是四边形ABCD 的边AB 上的相似点,并说明理由; ⑵.如图②,在矩形ABCD 中,A 、B 、C 、D 四点均在正方形网格(网格中每个小正方形的边长为1)的格点(即每个小正方形的顶点)上,试在图②中画出矩形ABCD 的边AB 上的强相似点;⑶.如图③,将矩形ABCD 沿CM 折叠,使点D 落在AB 边上的点E 处,若点E 恰好是四边形ABCM 的边AB 上的一个强相似点,试探究AB 与BC 的数量关系。

八、解答题(本题满分14分)24.如图,已知抛物线23y ax x c 2=-+与x 轴相交于A 、B 两点,并与直线1y x 22=-交于B 、C 两点,其中点C 是直线1y x 22=-与y 轴的交点,连接AC 。

⑴.求抛物线的解析式;⑵.证明:△ABC 为直角三角形;⑶.△ABC 内部能否截出面积最大的矩形DEFG ?(顶点D 、E 、F 、G 在△ABC 各边上)若能,求出最大面积;若不能,请说明理由。

(答题卡上的备用图①、②供解题时选用)四川省自贡市2014年初中毕业生学业考试数 学 答 题 卡请在各题目的答题区域内作答,超出答题区域的答案无效 请在各题目的答题区域内作答,超出答题区域的答案无效准考证号姓 名 设计:郑宗平请在各题目的答题区域内作答,超出答题区域的答案无效请在各题目的答题区域内作答,超出答题区域的答案无效 .24( 第24题备用① )( 第24题备用② )四川省自贡市2014年初中毕业生学业考试 数学试卷参考答案一、选择题选择题(共10个小题,每小题4分,共40分)10题略解:过点A 作AD OB ⊥于点D. ∵在Rt AOD 中,AOB 45∠=∴cos 22OD AD OA 451==⋅=⨯= ∴BD OB OD 1=-=∴AB ∵AC 是⊙O 的直径, ∴ABC 90AC 2∠==, ∴SinC =故选B 二、填空题(共5个小题,每小题4分,共20分)11. 分解因式:2x y y -=()()y x 1x 1+-. 12. 解集是31x 2<≤. 13. 它的边数是 9 . 14. CE 的长为 3 cm .分析:作如图所示的辅助线.根据△ABC 为等边三角形,且边长为4,易求故高为即OC =ACB 60∠=,故有OCF 30∠=;在Rt OFC ,可得3CF 2=,即CE 2CF 3==.15. 2或﹣7. 分析:由于k 的符号不能确定,故应分k >0和k <0两种进行解答.三、解答题(共2个题,每题8分,共16分) 16.(8分)解方程:()()3x x 222x -=- 略解:()()3x x 22x 20-+-= ()()-x 23x 20+=所以-=x 203x 20+=或 解得:.=122x 2x 3=-,17.(8分).45cos 481)21()14.3(2 --+-+--π略解:原式=++-1414514=++=四、解答题(共2个题,每小题8分,共16分) 18.(8分)略解:在Rt DEB 中,tan .DE BE 4527=⋅=米; 在Rt CEB 中,tan .CE BE 3009=⋅=米; 则...CD DE CE 27012=-=-≈米. 故塑像CD 的高大约为1.2米. 19. 证明:五、解答题(共2个题,每题10分,共20分) 20.解答:⑴.表中a 的值是:a 5048161012=----= ⑵.根据题意画图如下:⑶.本次测试的优秀率是.+=121004450;答:本次测试的优秀率是0.44.⑷.用A 表示小宇B 表示小强,C 、D 表示其他两名同学,根据题意画树状图如下:共有12种情况,小宇与小强两名男 同学分在同一组的情况有2种,则小宇与小强两名男同学分在同一组的概率是=21126.⑴.∵四边形ABCD 是正方形 ∴∠ABC=90°,AB=AC , ∵BE⊥BF, ∴∠FBE=90°∵∠ABE+∠EBA=90° ∠CBF+∠EBA=90° ∴∠ABE=∠CBF 在△AEB 和△CFB 中∴△AEB≌△CFB(SAS ) ∴AE=CF.⑵.∵BE⊥BF, ∴∠FBE=90° 又∵BE=BF,∴∠BEF=∠EFB=45° ∵四边形ABCD 是正方形 ∴∠ABC=90° 又∵∠ABE=55°∴∠EBG=90﹣55°=35°, ∴∠EGC=∠EBG+∠BEF =45°+35°=80°DFF坚持就是胜21.略解:⑴.设王师傅单独整理这批实验器材需要x分钟,则王师傅的工作效率为1x,由题意,得:++1112020140x x⎛⎫⨯=⎪⎝⎭解得:=x80;经检验得:=x80是原方程的根.答:王师傅单独整理这批实验器材需要80分钟.⑵.设李老师要工作y分钟,由题意,得:y11304080⎛⎫-÷≤⎪⎝⎭解得:y25≥答:李老师至少要工作25分钟.六、解答题(本题满分12分)22.略解:⑴.分别把()(),,,A m 6B3n代入()6y x0x=>得,6m63n6==解得,m1n2==;所以A点坐标为(1,6),B点坐标为(3,2),分别把A(1,6),B(3,2)代入y kx b=+得k b63k b2+=⎧⎨+=⎩,解得k2b8=-⎧⎨=⎩,所以一次函数解析式为y2x8=-+;⑵.当0x1x3<<>或时,6kx b0x+-<;⑶.如图,当x0=时,y2x88=-+=,则C点坐标为(0,8);当y0=时,2x80-+=解得:x4=,则D点坐标为(4,0).所以S△AOB=S△COD﹣S△COA﹣S△BOD=×4×8﹣×8×1﹣×4×2==8.七、解答题(本题满分12分)23.解答:⑴.∵∠A=∠B=∠DEC=45°,∴∠AED+∠ADE=135°,∠AED+∠CEB=135°∴∠ADE=∠CEB,在△ADE和△BCE中,,∴△ADE∽△BCE,∴点E是否是四边形ABCD的边AB上的相似点.⑵.如图所示(图2),点E是四边形ABCD的边AB上的相似点.⑶.∵点E是四边形ABCM的边AB上的一个强相似点,△AEM∽△BCE∽△ECM.∴∠BCE=∠ECM=∠AEM.由折叠可知:△ECM≌△DCM,∴∠ECM=∠DCM,CE=CD.∴,.111BCE BCD30BE CE AB22∠=∠===在Rt△BCE中,tan tanBE3BCE30BC∠===∴AB23BC=.八、解答题(本题满分14分)解答:⑴.∵直线1y x22=-交x轴、y轴于B、C两点.∴B(4,0),C(0,﹣2).∵23y ax x c2=-+过B、C两点∴=016a6c2c-+⎧⎨-=⎩,解得1a2c2⎧=⎪⎨⎪=-⎩,∴213y x x222=--.⑵.证明:如图1,连接AC.∵213y x x222=--与x负半轴交于A点,∴A(﹣1,0);在Rt△AOC中,∵AO=1,OC=2,∴AC5在Rt△BOC中,∵BO=4,OC=2,∴BC25=∵AB=AO+BO=1+4=5, AB2=AC2+BC2,∴△ABC为直角三角形.⑶.解:△ABC内部可截出面积最大的矩形DEFG,面积为52,理由如下:①一点为C,AB、AC、BC边上各有一点,如图2,此时△AGF∽△ACB∽△FEB.设,GC x AG5x=. ,AG GF5xGF520AC CB525-===∴()=2255S GC GF x252x2x252x2⎛⋅==-+-+⎝⎭;即当5x=,S最大,为52.②AB边上有两点,AC、BC边上各有一点,如图3,此时△CDE∽△CAB∽△GAD,设GD x=,则AD GD AD55AD CD CA AD5AB CB525=∴==∴=-55CD DE DE52DE5xCA AB525=∴=∴=-()=225555S GD DE x5x x5x x12222⎛⎫⋅=-=-+=--+⎪⎝⎭,即当x1=,S最大,为52.综上所述,△ABC内部可截出面积最大的矩形DEFG,面积为52.。

相关文档
最新文档