锅炉控制
锅炉dcs控制系统
锅炉dcs控制系统锅炉DCS控制系统锅炉是工业生产中常见的热能设备,它能将水加热为蒸汽,为生产提供所需的热能。
为了提高锅炉的安全可靠性以及运行效率,人们研发出了锅炉DCS控制系统。
锅炉DCS控制系统是一种基于分散控制系统(DCS)的设备,它采用先进的技术与算法,对锅炉的生产过程进行监控与控制。
它包括硬件与软件两个方面的内容,通过自动化的手段来实现对锅炉的精确控制。
锅炉DCS控制系统的硬件部分主要包括主机、控制柜、仪表、传感器等设备。
主机是整个系统的核心,它负责处理各种控制指令,并将结果传达给其他部件。
控制柜是主机的辅助设备,用于集中管理和监控系统的运行状态。
仪表是系统的感知器,它能够对温度、压力、流量等参数进行测量和监测。
传感器是主机的数据输入设备,它能够将现场的物理量转化为电信号,并传输给主机进行处理。
锅炉DCS控制系统的软件部分主要包括操作系统、数据处理程序以及控制算法等。
操作系统是系统的管理者,它能够协调各个组件间的工作,确保整个系统能够正常运行。
数据处理程序是系统的大脑,它能够对传感器采集到的数据进行处理和分析,从而生成相应的控制策略。
控制算法是系统的决策者,它能够根据所设定的目标和约束条件,自动调节锅炉的工作参数,以达到最佳的运行状态。
锅炉DCS控制系统的优势主要体现在以下几个方面:首先,锅炉DCS控制系统能够实现对锅炉的智能化控制。
通过采集和处理大量的实时数据,系统能够准确地判断当前的工作状态,并根据设定的控制策略,自动调整相关参数,以实现最佳的控制效果。
其次,锅炉DCS控制系统能够提高锅炉的安全性。
系统能够实时监测锅炉的工作状态和各种异常情况,并在发生故障时自动切换到备用设备,以保证生产过程的连续性和安全性。
再次,锅炉DCS控制系统能够提高锅炉的能源利用率。
通过对锅炉的工作参数进行优化调整,系统能够使得锅炉的能源利用率达到最高,从而实现能源的节约和环境的保护。
最后,锅炉DCS控制系统能够提高生产的自动化程度。
电锅炉控制方案范文
电锅炉控制方案范文电锅炉作为一种常用的取暖设备,具有节能、环保和安全等优点,因此在市场上得到了广泛的应用。
为了更好地控制电锅炉的工作状态,提高取暖的效果和舒适度,可以采用多种控制方案。
本文将介绍几种常用的电锅炉控制方案。
1.温度控制方案:温度控制是电锅炉的主要工作参数之一,合理控制温度可以提高取暖效果。
温度控制方案可以采用PID控制器,通过对温度的实时监测和反馈控制,控制锅炉的工作状态。
PID控制器可根据温度的变化情况,动态调整加热功率,使温度保持在设定范围内。
此外,还可以设置温度传感器以检测室内温度,并根据设定值自动调整电锅炉的工作状态。
2.时间控制方案:时间控制是电锅炉的另一种常用控制方式,通过设置定时开关,可以预先设定电锅炉的工作时间,提前几个小时开启锅炉供暖,提供热水。
在定时开关的基础上,还可以结合温度传感器和温度控制方案,根据温度的变化情况动态调整锅炉的工作状态。
例如,在室内温度较低时,定时开关可以提前几个小时开启锅炉供暖,而在室内温度较高时,可以自动关闭锅炉,以节约能源。
3.调速控制方案:电锅炉的运行状态和供暖效果与水泵的转速密切相关。
因此,调速控制方案可以通过控制水泵的转速来调整锅炉的供暖效果。
可以使用变频器控制水泵的转速,根据室内温度的变化情况自动调整水泵的转速,以提供舒适的供暖效果。
另外,还可以使用压力传感器来实时监测供水压力,并根据设定值自动调整水泵的转速,保证供暖水的稳定供应。
4.多区域控制方案:多区域控制方案适用于大型建筑物或多户家庭,可以通过划分不同的供暖区域来提高供暖效果,并可单独控制每个区域的温度。
可以在每个供暖区域设置温度传感器,并根据设定值和实际温度的差异,控制电锅炉的工作状态。
此外,还可以设置各个区域的开关阀门,以实现不同区域的独立控制,节约能源和提高舒适度。
综上所述,电锅炉的控制方案可以从温度控制、时间控制、调速控制和多区域控制等方面进行优化。
通过合理选择和组合这些方案,可以实现电锅炉的精确控制和高效运行,提高取暖效果和舒适度,同时也节约能源,减少对环境的影响。
锅炉DCS
锅炉DCS锅炉DCS系统一、锅炉控制系统工艺概述1 、锅炉控制工艺流程图2 、锅炉控制方案锅炉是一个多输入、多输出、多回路、非线性的相互关联的复杂的控制系统,调节参数与被调节参数之间,存在着许多交叉的影响,调节难度非常大。
我们采用将系统控制分散成一个一个的闭环控制:给煤控制,送风控制,汽包液位控制,炉膛负压控制等。
a 给煤控制锅炉燃烧系统自动调节的基本任务,是使燃料燃烧所产生的热量,适应蒸汽负荷的需要,同时还要保持经济燃烧和锅炉的安全运行。
目前,中小型煤粉炉控制系统效果不佳主要体现在送风和给煤控制上。
送风控制系统应与给煤控制相协调,控制在一定的风煤比,维持燃烧处在最佳经济状态。
其控制原理框图如下:b 送风控制送风调节是通过负荷规则调节器实现“加负荷时,先加风后加煤;减负荷时,先减煤后减风的控制规则。
其控制原理框图如下:c 炉膛负压控制炉膛负压反映了送风量与引风量之间的平衡关系,目标就是要保证锅炉在运行过程中,始终保持在微负压的稳定状态,以保证其安全有效运行。
其控制原理框图如下:d 汽包液位控制锅炉给水自动调节的任务是使给水量跟踪锅炉的蒸发量,并使汽包液位保持在工艺允许的范围内。
液位控制是有以下三种:①单冲量控制,即以水位为唯一调节信号的单参数、单回路控制系统;②双冲量控制,即以蒸汽流量作为补充信号的双参数控制系统;③三冲量控制,即以给水流量、主蒸汽流量作为补充信号的三参数控制系统。
其中三冲量调节系统还可分为三冲量单级调节和三冲量串级调节。
三冲量串级控制系统控制原理框图如下:三冲量串级控制系统控制原理框图e 过热蒸汽出口温度控制保证过热蒸汽出口蒸汽温度在允许的范围内,保护过热器,使过热器管壁温度不超过允许的温度范围。
其控制原理框图如下:过热蒸汽出口温度控制原理框图3、锅炉的自动保护系统?锅炉的保护系统是锅炉控制系统的重要组成部分。
其保护内容取决于锅炉设备本身的结构、容量、技术特性和运行方式。
一般设有汽压保护、汽包水位保护、锅炉灭火保护、连锁保护和紧急停炉保护等。
燃气锅炉控制原理
燃气锅炉控制原理
燃气锅炉控制原理是基于自动化技术,通过对燃气供应、燃烧过程、水位控制、温度控制等参数进行监测和调节,以实现锅炉的安全运行和高效燃烧。
以下将详细介绍燃气锅炉控制原理的几个关键方面。
1. 燃气供应控制:燃气锅炉的燃烧过程需要有足够的燃气供应,控制系统通过监测燃气压力和流量,调节燃气阀门的开启程度,以保证燃气的稳定供应。
2. 燃烧过程控制:燃气锅炉的燃烧过程主要包括燃烧区的通风、燃烧的燃气和空气的配比等。
控制系统会通过多个传感器监测燃烧区的氧气含量、烟尘排放量等参数,并对燃气和空气的配比进行调节,以实现燃烧的高效率和低排放。
3. 水位控制:燃气锅炉内有水和蒸汽两种介质,水位过高或过低都会对锅炉的安全运行造成影响。
控制系统通过水位传感器监测锅炉内水位的变化,并根据设定值来控制给水泵的运行,以维持合适的水位。
4. 温度控制:燃气锅炉需要在一定的温度范围内工作,控制系统通过温度传感器监测锅炉的水温和蒸汽温度,并通过控制阀门或调节燃气与空气的配比来调节燃烧热功率,以达到所需的温度。
以上是燃气锅炉控制原理的主要内容,通过对这些参数的监测和调节,可以实现燃气锅炉的安全运行和高效能利用。
电锅炉控制方案范文
电锅炉控制方案范文一、控制原理:二、主要控制参数:1.温度控制参数:包括设定温度和控制温度范围。
设定温度:根据实际需要设定的锅炉工作温度。
控制温度范围:控制器设定的工作温度上下限,超过该范围就会触发相应的保护措施。
2.压力控制参数:主要包括设定压力和控制压力范围。
设定压力:根据实际需要设定的锅炉工作压力。
控制压力范围:控制器设定的工作压力上下限,超过该范围就会触发相应的保护措施。
3.水位控制参数:主要包括设定水位和控制水位范围。
设定水位:根据实际需要设定的锅炉工作水位。
控制水位范围:控制器设定的工作水位上下限,超过该范围就会触发相应的保护措施。
三、控制策略:1.温度控制策略:电锅炉的温度控制可以采用比例控制或PID控制。
比例控制可以根据设定温度和实际温度之间的偏差,通过调整电锅炉的加热功率来实现温度的稳定控制。
PID控制则可以根据设定温度、实际温度和温度变化速度的综合信息,通过调整比例、积分和微分参数来实现更加精准的温度控制。
2.压力控制策略:电锅炉的压力控制可以采用比例控制或PID控制。
比例控制可以根据设定压力和实际压力之间的偏差,通过调整燃烧器的燃烧强度来实现压力的稳定控制。
PID控制则可以根据设定压力、实际压力和压力变化速度的综合信息,通过调整比例、积分和微分参数来实现更加精准的压力控制。
3.水位控制策略:电锅炉的水位控制可以采用开关控制或PID控制。
开关控制可以根据设定水位和实际水位之间的偏差,通过控制给水泵的运行状态来实现水位的稳定控制。
PID控制则可以根据设定水位、实际水位和水位变化速度的综合信息,通过调整比例、积分和微分参数来实现更加精准的水位控制。
四、安全保护措施:1.缺水保护:当电锅炉水位低于一定水位时,自动停炉,同时报警。
2.过温保护:当电锅炉温度超过设定温度上限时,自动停炉,同时报警。
3.过压保护:当电锅炉压力超过设定压力上限时,自动停炉,同时报警。
4.燃烧器故障保护:当燃烧器发生故障或运行异常时,自动停炉,同时报警。
锅炉自动控制系统原理
锅炉自动控制系统原理
锅炉自动控制系统原理,是指通过改变给水量、燃料量和空气量等参数,以实现锅炉运行状态的自动调节和控制。
其基本原理如下:
1. 反馈控制原理:锅炉自动控制系统通过传感器获取锅炉各种参数的实时数值,如水位、压力、温度等,并将这些数值反馈到控制器中。
控制器根据设定的目标值和实际值之间的差异,计算出调节量,并将调节量输出到执行机构,对给水量、燃料量和空气量进行调节,使得锅炉保持在预定的运行状态。
2. 控制策略原理:锅炉自动控制系统采用不同的控制策略,以满足不同的运行需求。
常见的控制策略包括比例控制、积分控制和微分控制。
比例控制是根据实际值与目标值的差异,按比例调节输出量;积分控制是根据实际值与目标值的累积差异,按比例调节输出量;微分控制是根据实际值的变化速率,按比例调节输出量。
通过合理地组合这些控制策略,可以实现锅炉自动控制系统的精确调节和稳定运行。
3. 安全保护原理:锅炉自动控制系统在设计中考虑了安全保护功能。
当锅炉出现异常情况时,如超过安全压力、水位过低等,系统会发出报警信号,并采取相应的措施进行保护。
常见的安全保护功能包括水位控制、燃料气动比控制、过热保护等。
这些保护功能可以有效地避免锅炉的过载运行和危险事故的发生。
总之,锅炉自动控制系统原理主要包括反馈控制原理、控制策
略原理和安全保护原理。
通过科学合理地运用这些原理,可以实现锅炉自动控制系统的高效运行和安全保护。
锅炉控制原理
锅炉控制原理
锅炉控制原理是指通过对锅炉的温度、压力、流量和排放等参数进行监测和调节,实现对锅炉运行的自动控制。
其主要原理包括三个方面:传感器检测、控制器处理和执行器执行。
传感器检测是通过安装在锅炉上的各种传感器,如温度传感器、压力传感器和流量传感器等来检测锅炉运行状态的各项参数。
通过传感器采集到的数据,可以实时监测锅炉的运行情况。
控制器处理是指将传感器采集到的数据送入控制器进行处理,通过比较测量值与设定值之间的差异,控制器可以判断出锅炉是否需要调整运行状态。
控制器可以是单一控制器,也可以是多级复杂控制系统,根据实际需求来选择。
执行器执行是指根据控制器的指令,通过执行器对锅炉进行相应的调节。
常见的执行器包括阀门、电机和风机等,通过改变阀门的开度、电机的转速以及风机的送风量等,可以实现对锅炉的温度、压力和流量等参数的调节。
锅炉控制原理的关键在于对传感器的准确性和控制器的灵敏度的要求,只有传感器能够准确地检测到锅炉的各项参数,并将这些数据传递给控制器,同时控制器能够快速反应并对执行器发出指令,才能实现对锅炉运行的精确控制。
总的来说,锅炉控制原理是通过传感器检测锅炉运行参数、控制器处理传感器数据并发出指令、执行器执行控制器指令来实
现对锅炉的自动控制。
这一原理是现代锅炉运行的重要基础,能够提高锅炉的效率和安全性。
简述锅炉运行管理要点
简述锅炉运行管理要点
锅炉运行管理要点包括以下几个方面:
1. 锅炉燃烧控制:锅炉燃烧控制是锅炉运行中最重要的环节。
燃烧控制的主要目的是维持锅炉燃烧的稳定性和经济性,同时避免锅炉过热、超压等安全问题。
燃烧控制的手段包括风量、燃料量、给水量等的控制。
2. 蒸汽参数控制:蒸汽参数的控制包括过热温度、过热度、压力等参数的控制。
这些参数的控制需要根据锅炉的特性和负荷要求进行优化,以保证锅炉的热效率、安全性和经济性。
3. 燃料管理:锅炉燃料的管理包括燃料的采购、储存、输送、燃烧等各个环节。
锅炉燃料的管理需要根据锅炉的特性和要求进行选择和调整,以保证锅炉的运行安全和经济性。
4. 设备维护:锅炉运行需要依靠各种设备,如燃烧设备、汽水系统、冷却系统等。
设备的维护和保养对于保证锅炉正常运行和延长设备寿命至关重要。
需要进行定期的设备维护和保养,以确保设备的可靠性和安全性。
5. 运行记录:锅炉运行需要记录各种参数和指标,如温度、压力、流量、燃料消耗等。
这些记录可以帮助锅炉运行人员了解锅炉的性能、优化锅炉的运行方式和提高锅炉的经济性。
锅炉自动控制系统的设计与调试
锅炉自动控制系统的设计与调试锅炉自动控制系统是现代工业中常见的关键设备之一,它能够确保锅炉能够高效、安全地运行。
设计和调试这样一个复杂的系统需要综合考虑多个因素,包括控制策略、传感器选择、控制器配置等等。
本文将深入探讨锅炉自动控制系统的设计与调试过程。
首先,设计一个合理的控制策略是锅炉自动控制系统的关键。
常见的控制策略包括比例控制、比例积分控制、模糊控制和模型预测控制等。
在选择控制策略时,需要考虑锅炉的特性、工艺要求以及可用的控制器等因素。
比例控制是最简单的控制策略,它根据当前错误信号的大小来控制执行机构输出。
比例积分控制在比例控制的基础上增加了积分部分,用于消除静态偏差。
模糊控制则通过模糊规则和模糊集合来实现控制,它能够应对非线性系统。
模型预测控制基于数学模型预测未来的系统行为,并制定最优的控制策略。
根据具体的需求和实际情况选择合适的控制策略非常重要。
其次,选择合适的传感器对于控制系统的稳定性和精确度来说也至关重要。
常用的锅炉传感器包括压力传感器、温度传感器、流量传感器等。
压力传感器用于监测锅炉内部压力的变化,温度传感器则用于测量锅炉内部温度的变化。
流量传感器可用于测量锅炉进出口的流量,以便精确控制水的供给。
传感器的选择需要考虑其精确度、响应速度和适应环境等因素。
同时,还需要考虑传感器与控制器之间的数据传输方式,如4-20mA信号或数字信号等,以确保数据准确传递。
控制器的配置也是锅炉自动控制系统设计中不可忽视的一环。
现代控制器提供了更多的功能和选项,如PID参数调整、通信接口、报警功能等。
PID控制器是最常见的控制器类型,通过调整比例、积分和微分参数来实现控制。
在配置PID控制器时,需要首先根据实际情况调整比例、积分和微分参数,以达到理想的控制效果。
另外,现代控制器通常具有通信接口,可以与上位机或网络连接,以实现远程监控和数据采集。
此外,控制器还应具备相应的报警功能,在发生异常情况时及时报警,保障安全运行。
锅炉控制系统的主要任务和种类
锅炉控制的基本任务是什么?锅炉控制的基本任务是确保锅炉安全、高效运行,同时满足对热量或蒸汽的需求。
具体来说,锅炉控制的基本任务包括以下几个方面:1.确保锅炉的安全运行:包括水位、压力、温度等各种参数的监控和控制,以避免过热、爆炸等危险情况的发生。
2.维持锅炉的稳定运行:锅炉在运行中需要保持一定的稳定性,避免过热、过冷等问题的出现,同时也需要保证锅炉的热效率。
3.控制锅炉的燃料供给:锅炉需要通过燃料供给产生热量,因此需要对燃料的供给进行控制,以保证锅炉的热量输出能够满足需求。
4.控制锅炉的水位和水质:锅炉的水位和水质对锅炉的安全和稳定运行非常重要,因此需要对水位和水质进行监控和调节。
5.维护锅炉的清洁和维护:锅炉的清洁和维护对锅炉的安全和稳定运行也非常关键,因此需要对锅炉进行定期的清洗和维护。
它有哪些主要的控制系统?锅炉控制系统通常包括以下几个主要的控制系统:1.燃烧控制系统:燃烧控制系统用于控制锅炉的燃料供给和燃烧过程,以确保锅炉燃烧的安全、高效和环保。
燃烧控制系统包括燃料输送系统、点火系统、燃烧调节系统等。
2.水位控制系统:水位控制系统用于监测和控制锅炉的水位,以避免水位过高或过低导致的危险情况。
水位控制系统包括水位传感器、水位控制器、水位报警系统等。
3.压力控制系统:压力控制系统用于监测和控制锅炉的压力,以确保锅炉的安全运行。
压力控制系统包括压力传感器、压力控制器、压力保护系统等。
4.温度控制系统:温度控制系统用于监测和控制锅炉的温度,以确保锅炉的热效率和安全运行。
温度控制系统包括温度传感器、温度控制器、温度保护系统等。
5.氧量控制系统:氧量控制系统用于监测和控制锅炉燃烧过程中的氧气含量,以确保燃烧的高效和环保。
氧量控制系统包括氧气传感器、氧量控制器等。
此外,还有一些辅助控制系统,如排污控制系统、风机控制系统、给水控制系统等,它们都是锅炉控制系统不可或缺的组成部分。
第二章+锅炉自动控制系统
串级三冲量给水控制系统图
燃烧率阶跃扰动下的水位响应曲线
在燃烧率Q阶跃变化时,水位的响应曲线如图2-8所示。水位变化的动态特 性用下列传递函数表示:
GHQ ( s)
——为迟延时间(s)。
H (s) K [ ]e s Q( s ) (1 Ts)2 s
上式与蒸汽流量的扰动影响下的传递函数相类似,但增加了一个纯迟延环节。
(4) 根据运行中汽包“虚假水位”现象的 情况。设定蒸汽流量信号强度系数 D 。如“虚假水位”现象严重,可适当加强蒸 汽流量信号,例如可使蒸汽流量信号强度为 给水流量信号强度的1~3倍。但若因此需要 减小给水流量信号强度,则需要重新修正主、 副调节器的整定参数。 (5) 进行机组负荷扰动试验,要求同单级三 冲量系统。
1) 串级三冲量给水控制系统的组成为: (1) 给水流量W、给水流量变送器 rw 和给水流量反馈装置 aw 、副调节器PI2、 执行机构 K Z 、调节阀 K 组成的内回路(或称副回路)。
(2) 由水位控制对象 W01 s 、水位变送器 rH 、主调节器PI1和内回路组成 的外回路(或称主回路)。 (3) 由蒸汽流量信号D及蒸汽流量测量装置 rD 、蒸汽流量前馈装置
本章主要学习模拟量控制系统中锅炉部分的各主要子控制系统:给水控制系统、气 温控制系统和燃烧控制系统。
一、 模拟量闭环控制系统(MCS)
主要包括以下子系统: 1.锅炉给水控制系统 锅炉给水控制系统是调节锅炉的给水量以适应机组负荷(蒸汽量)的变化, 保持汽包水位稳定(对于汽包锅炉)或保持在不同锅炉负荷下的最佳燃水 比(对于直流锅炉) 2.汽温控制系统 汽温控制的质量直接影响到机组的安全与经济运行。它包括主蒸汽温度控制和 再热蒸汽温度控制 (过热气温调节:喷减温水;再热气温调节:烟气挡板位置)
锅炉控制方案
锅炉控制方案为了确保锅炉运行的安全稳定以及提高能源利用效率,设计一个有效的锅炉控制方案是至关重要的。
本文将详细介绍一个可行的锅炉控制方案,从控制策略、传感器配置到控制系统的搭建,旨在实现锅炉的智能化控制。
1.控制策略在锅炉控制方案中,选择合适的控制策略是基础。
一种常用的控制策略是PID控制,其中P代表比例控制、I代表积分控制、D代表微分控制。
PID控制通过对锅炉的输出进行调整,使得温度、压力等参数能够稳定在设定值附近。
除了PID控制,还可以应用先进的模型预测控制(MPC)策略。
MPC利用数学模型预测未来的系统行为,并通过对控制输入进行优化,使得系统能够更准确地达到设定要求。
MPC相比于传统的PID控制,更加灵活且具有更好的响应速度和控制精度。
2.传感器配置为了实现对锅炉进行精确控制,适当配置传感器是必不可少的。
常用的锅炉传感器包括温度传感器、压力传感器和流量传感器。
温度传感器主要用于监测锅炉内的温度变化,确保锅炉工作在安全温度范围内。
压力传感器用于监测锅炉的压力变化,避免压力过高或过低对设备造成的损坏。
流量传感器则用于监测介质流量,调节锅炉的供给量。
此外,还可以增加其他特殊传感器,如氧气含量传感器、烟气成分传感器等,以全面了解和控制锅炉的工作状态。
3.控制系统搭建构建一个高效的锅炉控制系统需要结合控制算法和可靠的硬件实施。
控制器的选择应根据具体的需求和控制策略来决定,可以使用单片机、PLC(可编程逻辑控制器)或者DCS(分布式控制系统)。
在选择硬件时,要考虑控制系统的稳定性和可靠性。
控制系统应具备良好的抗干扰能力和实时性,以应对各种工况变化。
同时,还需要采用可靠的通信网络和数据存储设备,确保控制系统的数据传输和存储的安全性和稳定性。
4.远程监控与管理随着互联网技术的发展,远程监控和管理系统在锅炉控制中扮演着越来越重要的角色。
通过互联网连接,可以实现对锅炉的实时监控和远程操作。
远程监控和管理系统能够提供更加便捷和高效的运维方式。
锅炉温度控制器原理
锅炉温度控制器原理
锅炉温度控制器是一种用于监测和调节锅炉温度的装置,常用于工业锅炉和家用锅炉中。
它的工作原理通常包括以下几个部分:
1. 温度传感器:温度传感器一般采用热电偶或热电阻等装置,用于测量锅炉内部的温度。
传感器将温度转换为电信号后,传送给控制器。
2. 控制器:控制器接收温度传感器的信号,并根据设定的温度范围进行判断和控制。
控制器一般包括一个微处理器或专用的控制芯片,用于读取和处理传感器信号。
3. 比较器:比较器是控制器中的一个核心部件,用于将实测温度信号与设定温度信号进行比较。
如果实测温度高于设定温度,比较器就会发送控制信号。
4. 控制执行器:控制执行器接收比较器发送的控制信号,并执行相应的控制操作。
例如,如果实测温度高于设定温度,控制执行器可能会打开水泵或控制燃烧器的供气量,以降低锅炉温度。
总的来说,锅炉温度控制器通过温度传感器监测锅炉温度,控制器根据设定温度范围进行逻辑判断,比较器将判断结果转化为控制信号,控制执行器根据信号执行相应操作,从而实现对锅炉温度的控制。
通过这种方式,锅炉温度可以在预定范围内保持稳定,确保锅炉工作的安全性和高效性。
锅炉远程操作方法
锅炉远程操作方法
锅炉远程操作方法通常采用以下步骤:
1. 安装远程控制系统:首先需要在锅炉上安装远程控制系统,该系统可以通过WI-FI、蓝牙或其他无线通信方式与操作终端相连。
2. 连接操作终端:用户需要使用手机、平板电脑或电脑等设备下载并安装相应的远程控制APP或软件,然后通过登录账号将操作终端与锅炉的远程控制系统连接在一起。
3. 远程监控和设置参数:一旦操作终端与锅炉成功连接,用户可以使用APP或软件进行远程监控和设置参数。
这样,用户可以实时监测锅炉的工作状态、温度、压力等参数,并根据实际情况进行调整。
4. 远程开关机控制:用户可以通过远程控制系统对锅炉进行远程开关机操作。
当发现锅炉工作异常或临时不需要使用时,用户可以远程关闭锅炉;而在需要使用时,用户可以远程开启锅炉。
需要注意的是,锅炉远程操作方法可能因不同的锅炉品牌和型号而有所差异。
因此,在使用过程中,应仔细阅读设备说明书,并按照相应的操作指南进行操作。
此外,为确保远程控制的安全和稳定性,还应注意网络连接的稳定性和密码的安
全性。
锅炉控制原理
锅炉控制原理锅炉控制是指通过对锅炉的燃烧、供水、排烟等参数进行监测和调节,以保证锅炉运行的安全、稳定和经济。
锅炉控制系统主要包括燃烧控制、水位控制、压力控制和排烟控制等部分。
下面将逐一介绍锅炉控制的原理和方法。
首先是燃烧控制。
燃烧控制是锅炉控制系统中最重要的一部分,它直接影响锅炉的燃烧效率和排放水平。
燃烧控制的原理是根据锅炉的负荷情况和燃料的特性,通过调节燃料的供给量、风量和空气分配,使燃烧过程达到最佳状态,从而保证锅炉的热效率和安全性。
其次是水位控制。
水位控制是保证锅炉安全运行的重要环节,它的原理是通过控制给水泵的启停和给水阀的开关,使锅炉水位保持在安全范围内。
当锅炉水位过高时,会导致锅炉的泄漏和水锤现象,而水位过低则会导致锅炉爆炸的危险,因此水位控制必须严格执行。
另外是压力控制。
锅炉在运行过程中,需要保持一定的压力才能保证热能的传递和利用。
压力控制的原理是通过调节锅炉的燃烧和给水系统,使锅炉的压力保持在设定范围内。
当锅炉压力过高时,会导致安全阀的打开和锅炉的停止运行,而压力过低则会影响锅炉的热效率和供热能力。
最后是排烟控制。
排烟控制是保证锅炉排放的烟气符合环保要求的重要环节。
排烟控制的原理是通过调节燃烧系统和烟气处理设备,使锅炉排放的烟气达到国家和地方的排放标准。
排烟控制需要对燃烧过程和烟气的处理进行全面监测和调节,以保证锅炉的环保性能。
总之,锅炉控制原理是通过对锅炉的燃烧、供水、排烟等参数进行监测和调节,以保证锅炉运行的安全、稳定和经济。
锅炉控制系统需要严格遵循相关的操作规程和标准,以保证锅炉的安全性和环保性能。
同时,锅炉控制系统也需要定期进行维护和检修,以保证其长期稳定运行。
锅炉燃烧过程控制系统
乘法器为燃料调节对象的一部分,选择合适的函数f(x),则可以做到不管给煤 机投入的台数如何,都可以保持燃料调节对象增益不变,这样就不必调整燃 料调节器的控制参数了。增益调整与平衡器(GAIN CHANGER & BALANCER),就是完成该功能。
三、风煤交叉限制
为了在机组增、减负荷动态过程中,使燃料得到充分燃烧就要保证有足够的风 量。需要保持一定的过量空气系数,因此,在机组增负荷时,就要求先加风 后加煤;在机组减负荷时,就要求先减煤后减风。这样就存在一个风煤交叉
~ 发电机
Pem
3UI
cos
3
EqU Xd
sin
2.汽机跟随控制方式
锅炉控制 系统
燃烧率μB
锅炉
BD
汽轮机 主控器
TD 汽轮机控制 系统
锅炉 主控器
- p0
+ pT
μT 调节阀
汽轮机
图2 汽机跟随控制方式
+
P0
— —
PE
~ 发电机
3.机炉协调控制方式
BD
锅炉控制 系统
燃烧率μB
锅炉
锅炉主控器
锅炉燃烧过程控制系统
第一节 概述
一、单元机组的基本控制方式
(1)锅炉跟随控制方式 (2)汽机跟随控制方式 (3)机炉协调控制方式
1.锅炉跟随控制方式
BD
锅炉控制 系统
锅炉 主控器
燃烧率μB
锅炉
+ p0 —
pT
TD
汽轮机控制 系统
μT 调节阀
汽轮机 主控器
汽轮 机
图1 锅炉跟随控制方式
+ P0
— PE
GV
(s)
KV (Ts 1)2
锅炉控制方案
锅炉控制方案锅炉控制方案引言锅炉是工厂、发电站等各类工程中常见的设备之一,负责产生高温蒸汽或热水供应给其他设备使用。
为了确保锅炉的正常运行和安全性,需要配备一套适当的锅炉控制方案。
本文将介绍一种常见的锅炉控制方案,以保证锅炉的稳定运行。
1. 控制策略锅炉的控制策略应包括主要的控制过程和相应的辅助控制过程。
主要的控制过程包括水位控制、压力控制和温度控制,辅助控制过程包括燃料控制和排烟控制。
1.1 水位控制水位控制是锅炉控制中最重要的一环,主要通过控制给水泵的进水量来实现。
水位过低会导致锅炉运行不稳定,甚至发生爆炸等严重事故;水位过高则会浪费能源,增加锅炉压力。
使用比例控制、微分控制和积分控制的组合可以实现精确的水位控制。
1.2 压力控制锅炉的压力控制要求在一定范围内维持稳定。
压力过低会导致供应蒸汽或热水的能力不足,压力过高则可能导致系统泄漏或损坏。
通常使用PID控制器来控制锅炉的压力,通过控制给水泵的进水量来调节锅炉压力。
1.3 温度控制锅炉的温度控制要求能够稳定控制燃烧过程和蒸汽或热水的温度。
温度过低会影响锅炉的效率,温度过高则可能导致锅炉热损失、燃烧不完全等问题。
常见的温度控制策略包括PID控制和模糊控制等。
1.4 燃料控制燃料控制是锅炉控制中的一个重要环节,要求能够精确控制燃料的供应量。
过少的燃料供应会导致燃烧不完全,过多则会浪费能源。
常见的燃料控制策略包括比例控制和反馈控制等。
1.5 排烟控制排烟控制主要是通过控制锅炉的排烟风扇和燃烧器来调整锅炉排烟量。
排烟量的控制需要同时考虑环境保护和能源利用的因素。
2. 控制系统设计为了实现锅炉的稳定运行和高效控制,需要设计一个合理的控制系统。
一个典型的锅炉控制系统包括传感器、执行器和控制器等组成。
2.1 传感器传感器用于监测锅炉的运行状态和参数,如水位传感器、压力传感器和温度传感器等。
这些传感器将锅炉的实时数据反馈给控制器,以便进行相应的调节。
2.2 执行器执行器用于控制锅炉的不同操作,如给水泵、排烟风扇和燃烧器等。
锅炉水位控制原理
锅炉水位控制原理
锅炉水位控制原理是指通过不同的控制方式,使锅炉内的水位保持在一定的范围内,以确保锅炉正常运行,并避免发生火灾和爆炸等危险。
具体的水位控制原理如下:
1. 开关控制方式:通过在锅炉上装设的上、下限水位控制器,当水位达到上限时,控制器向水位控制系统发送信号,关闭给水阀,停止给水;当水位低于下限时,控制器发送信号,打开给水阀,补充水量,以维持水位在安全范围内。
2. 比例控制方式:在锅炉上安装水位比例调节器,根据给定的水位设定值,调节给水阀的开度。
当实际水位偏离设定值时,比例调节器会自动调整给水阀的开度,使水位恢复到设定范围内。
3. 反馈控制方式:通过将水位传感器安装在锅炉底部,实时监测锅炉内的水位情况,并将信号传输给水位控制系统。
控制系统会根据传感器信号的变化,自动调整给水阀的开度,实现水位的控制。
4. 压力控制方式:在锅炉上安装压力控制器,该控制器可根据锅炉内的压力变化,自动调整给水阀的开度。
当压力过高时,控制器会减小给水阀的开度,以降低锅炉压力,保持水位稳定。
需要注意的是,锅炉水位控制原理是保证锅炉安全运行的重要手段,但也需要合理设置水位上下限,避免水位控制过严或过
松,从而影响锅炉的正常运行。
同时,定期的维护和检修也是确保锅炉水位控制的关键,以便发现和解决可能存在的问题。
锅炉自控方案
锅炉自控方案锅炉自控方案1. 简介锅炉自控方案是一种用于锅炉系统自动控制的解决方案。
通过引入先进的自动化控制设备和技术,该方案可以实现对锅炉的安全稳定运行、高效能利用以及节能减排的控制管理。
2. 自控原理锅炉自控方案基于控制理论和现代电子技术,通过感知锅炉运行参数,比如温度、压力、流量等,以及环境条件,进行数据分析和处理,进而实现对锅炉运行状态的全面监控和控制。
主要的自控原理包括以下几个方面:2.1 反馈控制通过传感器采集锅炉运行参数的实时数据,将数据传输给控制器进行处理。
控制器根据预设的目标值和控制算法,比较实际值和目标值的差异,并通过执行器对锅炉进行调节,使实际值逐渐趋近于目标值,从而实现对锅炉运行状态的自动调控。
2.2 前馈控制前馈控制是指根据已知的外部干扰信号,提前对锅炉进行调节,以减小或抵消干扰对系统的影响。
通过对锅炉运行参数的预测和分析,结合控制算法,预先对锅炉进行调整,以提高系统的鲁棒性和干扰抑制能力。
2.3 智能优化锅炉自控方案采用智能化的控制算法和优化模型,结合锅炉系统的实际运行特点和需求,通过模糊控制、遗传算法、神经网络等技术手段,对控制策略进行优化和调整。
通过不断的学习和自适应,使系统能够在各种复杂工况下实现最佳的运行状态。
3. 自控设备实施锅炉自控方案需要使用一系列自控设备,包括传感器、执行器和控制器等,以实现对锅炉系统的实时监测和控制。
3.1 传感器传感器用于感知和采集锅炉系统的运行参数,包括温度、压力、流量、液位等。
常见的传感器类型有温度传感器、压力传感器、流量传感器和液位传感器等。
3.2 执行器执行器用于根据控制器的指令,对锅炉系统进行调节和控制。
常见的执行器包括阀门、电机、泵等设备,通过改变锅炉的输入量,来实现对锅炉运行状态的调整。
3.3 控制器控制器是锅炉自控方案的核心设备,负责接收传感器采集到的数据,进行数据处理和控制计算,并根据结果生成控制指令,驱动执行器对锅炉进行调节。
锅炉危险点及控制措施
锅炉危险点及控制措施内容摘要:危险因素及危险分析:1、汽泵跳闸,电泵联启后调整不当,造成易容塞烧坏;2、若跳闸联动备用泵过程中调整不及时就会造成锅炉缺水,造成设备损坏事故;3、跳闸电动给水泵未正常联动,而手动不起来,降负荷不及时造成缺水停炉停机或者调整不当造成熄火停机;4、一台汽泵跳闸,电动给水泵联动成功后未及时联系汽机关闭电泵再循环,而给水自动失灵造成电泵联动后仍然不能及时向锅炉补水造成缺水。
具体控制措施:1、一台汽泵跳闸后,一定要看电泵是否联动,要及时联系汽机抢合电泵,若抢合不起,则应紧急降负荷,同时调整运行汽泵出力,直到给水流量与蒸气流量平衡;2、一台汽泵跳闸后备用电泵联动成功在调整水位过程中,调节水位的运行人员一定要根据蒸汽流量,给水流量来调整,若汽包水位偏低,要让给水流量稍大于蒸汽流量,让水位平稳上涨;3、调节电泵勺管时,要点动,点动后要看给水流量的变化,若不够,再点动,再看给水流量的变化,千万不能一直将给水泵勺管调节门长期开或关,大幅度的调整;4、若电泵联动成功后,要及时联系汽机关闭再循环门;5、给水泵跳闸后在处理过程中,水位保护达MFT动作值而MFT未动,应立即手动MFT;锅炉危险点及控制措施危险点名称在锅炉12.6m至炉顶等处高空作业1、作业人员高空坠落;2、高空落物伤及他人;3、搞高温、高压管道工作时易烫伤;4、靠近看火孔打焦孔搞工作时易烧伤;5、上下楼梯易滑跌。
1、作业人员该系安全带时应系好安全带;2、若有高空落物,则在相应的地方设临时围栏如9米等;3、靠近高压、高温管道工作应穿防烫工作服;4、靠近看火孔打焦孔搞工作时应穿防火服;5、上下楼梯应抓好扶手;6、作业人员开关阀门用力要均匀,防止搬钩滑落,造成人员高空坠落;7、长时间工作时应联系主操,在盘上挂警告标志。
危险点名称锅炉炉水封挡板未完善,易引起误动1、突然送电,水封挡板全部开启;2、送电后,操作人员不会操作;3、水封挡板执行机构不完善;4、引起锅炉灭火或超温,影响锅炉安全运行;5、周围有人,易造成人身伤害。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
θs
过热蒸汽 减温器 过热器
θ1
TC
θ2
θ1
减 温 水
G ff
FC
Σ
过热蒸汽温度控制方案1 过热蒸汽温度控制方案1
过热蒸汽温度控制方案2 过热蒸汽温度控制方案2
燃烧控制基本方案
PtC
蒸汽
O2 烟气
FBC
PfC
燃料 进风
O2C
×
FVC
锅炉蒸汽压力的比值控制
燃料量 蒸汽压力 空气量 含氧量
Q1 I4
PC
Q2 × I3
HS FC AC
K
FC
LS
Ip I2
I1
燃料阀
空气阀
稳态: I1= I2 = I3 = I4 = Ip Q1 = KQ2 分析提降量过程?
炉膛负压控制系统
锅炉汽包水位的控制
给水方面的干扰。例如,给水压力、 ① 给水方面的干扰。例如,给水压力、 减温器控制阀开度变化等。 减温器控制阀开度变化等。 蒸汽用量的干扰。 ② 蒸汽用量的干扰。包括管路阻力变化 和负荷设备控制阀开度变化等。 和负荷设备控制阀开度变化等。 燃料量的干扰。包括燃料热值、 ③ 燃料量的干扰。包括燃料热值、燃料 压力、含水量等。 压力、含水量等。 ④ 汽包压力变化
H (s) K1 K2 =− + D( s) s T2 s + 1 H ( s ) ( K 2 − K1T2 ) s − K1 − K1 (−T0 s + 1) = = D( s) s (T2 s + 1) s (T2 s + 1)
K2 T0 = − T2 K1
对象为非最小相位(存在位于复平面右半平面的零 点)的条件为 K2 T0 = − T2 > 0 K1
锅炉的控制
内容
锅炉设备的介绍 汽包水位控制 PM 减温器 负荷设备 调节阀 过热蒸汽送 负荷设备
汽 包
炉墙
过热器 炉 膛
省 煤 器
热空气 送往炉膛 空气预热器 给水
热空气 燃料 燃料嘴
冷空气 烟气 (经引风机送往烟囱)
锅炉设备的控制问题
负 荷 给水量 减温水 燃料量 送风量 引风量 锅炉设备 水 位
系数符号的选取原则
系数取正号还是负号( 系数取正号还是负号(即进行加法还是 减法), ),要根据调节阀的特性是气开还 减法),要根据调节阀的特性是气开还 是气关而定。 是气关而定。 若调节阀为气开型,则取正号; 若调节阀为气开型,则取正号;若为气 关型,则取负号。 关型,则取负号。
C2的数值设置
汽包水位的对象特性
干扰通道的动态特性 蒸汽负荷对水位的影响
D
t H H2
H (s) K1 K2 =− + D( s) s T2 s + 1
H0
H H1
t
汽包水位的对象特性
控制通道的动态特性 给水量对汽包水位的影响
G
t H H1 H
H ( s ) K 0 −τ s = e G(s) s
τ
t
非最小相位特性
炉膛安全控制系统
Qmin
过热蒸汽温度的自动控制
是以过热蒸汽温度为被控变量, 是以过热蒸汽温度为被控变量,喷水量 为操纵变量的温度控制系统, 为操纵变量的温度控制系统,维持过热 器出口温度在一定范围内, 器出口温度在一定范围内,并保证管壁 温度不超过允许的工作温度。 温度不超过允许的工作温度。
过热蒸汽温度控制
蒸汽温度 蒸汽压力 过剩空气 炉膛负压
锅炉设备的主要控制要求
供给蒸汽量适应负荷变化需求或保持给定负荷。 供给蒸汽量适应负荷变化需求或保持给定负荷。 锅炉供给用汽设备的蒸汽压力应保持在一定范围内 过热蒸汽温度应保持在一定范围内。 过热蒸汽温度应保持在一定范围内。 汽包水位保持在一定范围内。 汽包水位保持在一定范围内。 保持锅炉燃烧的经济性和安全运行。 保持锅炉燃烧的经济性和安全运行。 炉膛负压保持在一定范围内。 炉膛负压保持在一定范围内。
∑
FC
给水
三冲量控制——C2的数值设置
Gm3
C2
D
GPD
GC1
GC 2
Gm 2
GV
GP1
H
Gm1
C2的数值设置:
∆Qw = α∆Qs
∆Qs (Z max − Z min ) ∆PF = Qs max
∆Qw (Zmax − Zmin ) C2∆PF = Qwmax
Qs max C2 = α ⋅ Qw max
系数C0的设置 系数C0的设置 C0
是一个恒定值, 是一个恒定值,设置的目的是在正常负 荷下, 荷下,使调节器和加法器的输出都能有 一个比较适中的数值。 一个比较适中的数值。在正常负荷下值 与项恰好抵消。 与项恰好抵消。
双冲量水位控制系统的另一种接法
Σ
P
汽包水位的三冲量控制
蒸汽
PF 汽 包 省 煤 器 LC PC
三冲量控制系统的简化连接
水 位 蒸 汽 C2 C1 给 水
水 位 蒸 汽 给 水
∑
LC
C3
C1
C2
∑
C3
FC
锅炉的燃烧控制
蒸汽压力的变化反映生产的蒸汽量与消 耗的蒸汽量相适应的程度。 耗的蒸汽量相适应的程度。负荷变化时 须通过控制燃料量使蒸汽压力稳定。 ,须通过控制燃料量使蒸汽压力稳定。 燃烧控制需使引风量与送风量相配合保 证炉膛负压。 证炉膛负压。 燃料改变时须控制送风量以保证燃烧过 程的经济性。 程的经济性。
C2 =
K v (Z max − Z min )
αQs max
C1一般取值为1。 一般取值为1 C0为恒值,正常工况下与C2PF抵消。 为恒值,正常工况下与C 抵消。
系数 C1 的设置
由于是与调节器放大倍数的乘积, 由于是与调节器放大倍数的乘积,相当 于简单调节系统中调节器放大倍数的作 一般取。 用。一般取。
汽包水位的控制问题
被控变量:汽包水位, 被控变量:汽包水位,用H (s)表示 控制变量:汽包给水量, 控制变量:汽包给水量,用G (s)表示 主要干扰: 主要干扰: 蒸汽负荷(蒸汽流量), ),用 蒸汽负荷(蒸汽流量),用D (s)表示 通道对象: 通道对象: 非自衡、 非自衡、非最小相位和非线性等特性
蒸汽 PF 汽 包 省 煤 器 给 水 C1PC +C2PF+C0 LC PC
R
PF C2
Gm
D
GPD
GV
∑
GC
PC
C1
P
GPC
H
Gm1
P = C1 PC ± C2 PF + C0
前馈补偿原理: 的符号由调节阀的作用决定, 前馈补偿原理:C2的符号由调节阀的作用决定,具 体数值可现场调整或根据阀门特性计算其初始值。 体数值可现场调整或根据阀门特性计算其初始值。
锅炉控制系统
(1)锅炉汽包水位的控制 (2)锅炉燃烧系统的控制 (3)过热蒸汽系统的控制
锅炉汽包水位控制 给水自动控制系统) (给水自动控制系统)
主要从汽包内部的物料平衡, 主要从汽包内部的物料平衡,使给水量适应锅炉的蒸 发量,维持汽包中水位在工艺允许范围内。 发量,维持汽包中水位在工艺允许范围内。是保证锅 汽轮机安全运行的必要条件之一, 炉,汽轮机安全运行的必要条件之一,是锅炉正常运 行的重要指标。 行的重要指标。 控制系统的受控变量是汽包水位, 控制系统的受控变量是汽包水位,操纵变量是给水量 主要考虑汽包内部的物料平衡, 。主要考虑汽包内部的物料平衡,使给水量适应蒸发 维持汽包中水位在工艺要求的范围之内。 量,维持汽包中水位在工艺要求的范围之内。
假设线性阀门: 假设线性阀门: 流量测量变送的: 流量测量变送的:
Kv = ∆Qw ∆P
∆Qs ∆PF = ( Z max − Z min ) Qs max
∆ Qs (Z max − Z min ) ∆ Qw = K v ∆ P = K v C 2 ∆ PF = K v C 2 Qs max
取
∆Qw = α∆Qs
汽包水位的单冲量控制
蒸汽 汽 包 省 煤 器 给 水 LC
特点
结构简单,投资少。 ① 结构简单,投资少。 适用于汽包容量较大, ② 适用于汽包容量较大,虚假水位不严 负荷较平稳的场合。 重,负荷较平稳的场合。 为安全运行, ③ 为安全运行,可设置水位报警和连锁 控制系统。 控制系统。
汽包水位的双冲量控制