湘教版数学八年级下册-第3章
湘教版八年级数学下册第3章达标检测卷附答案
湘教版八年级数学下册第3章达标检测卷一、选择题(每题3分,共30分)1.如果座位表上“5列2行”记作(5,2),那么(4,3)表示( ) A.3列5行 B.5列3行 C.4列3行 D.3列4行2.根据下列表述,能确定位置的是( )A.红星电影院2排 B.北京市四环路C.北偏东30° D.东经118°,北纬40°3.如图,在直角坐标系中,卡片盖住的数可能是( ) A.(2,3) B.(-2,1) C.(-2,-2.5) D.(3,-2)4.在平面直角坐标系中,将点(1,2)向右平移2个单位长度后得到的点是( )A.(3,2) B.(-1,2) C.(1,4) D.(1,0)5.已知点M(1-2m,m-1)在第四象限,则m的取值范围在数轴上表示正确的是( )6.如图,若在象棋棋盘上建立平面直角坐标系,使“帅”位于点(-2,-2),“马”位于点(1,-2),则“兵”位于点( )A.(-1,1) B.(-2,-1) C.(-4,1) D.(1,-2)7.如图,将长为3的长方形ABCD放在平面直角坐标系中(AB⊥x轴),若点D的坐标为(6,3),则点A的坐标为( )A.(5,3) B.(4,3) C.(4,2) D.(3,3)8.在平面直角坐标系xOy中,若点A的坐标为(-3,3),点B的坐标为(2,0),则△ABO的面积是( )A.15 B.7.5 C.6 D.39.已知点P的坐标为(2-a,3a+6),且点P到两坐标轴的距离相等,则点P的坐标是( )A.(3,3) B.(3,-3) C.(6,-6) D.(3,3)或(6,-6) 10.如图,在平面直角坐标系中,对△ABC进行循环往复的轴对称变换,若原来点A的坐标是(a,b),则经过第2 022次变换后所得的点A的对应点坐标是( )A.(a,b) B.(a,-b) C.(-a,-b) D.(-a,b)二、填空题(每题3分,共24分)11.点P(m+3,m+1)在x轴上,则点P的坐标为________.12.点(-2,3)关于x轴对称的点的坐标是________.13.在直角坐标系中,第四象限内一点P到x轴的距离为2,到y轴的距离为5,那么点P的坐标是________.14.如图是某市3个旅游景点的示意图,图中景点A所在地用坐标表示为(1,0),景点B所在地用坐标表示为(-3,-1),那么景点C所在地用坐标表示为________.15.已知点A(m,-2)和点B(3,m-1),且直线AB∥x轴,则m的值为________.16.如图,点A,B的坐标分别为(2,4),(6,0),点P是x轴上一点,且△ABP的面积为6,则点P的坐标为____________.17.如图,长方形OABC的边OA,OC分别在x轴、y轴上,点B的坐标为(3,2).点D,E分别在AB,BC边上,BD=BE=1.沿直线DE 将△BDE翻折,点B落在点B′处,则点B′的坐标为________.18.在平面直角坐标系xOy中,点P(0,1),点P第1次向右平移1个单位长度,向下平移2个单位长度至点P1(1,-1),第2次向右平移1个单位长度,向上平移3个单位长度至点P2(2,2),第3次向右平移1个单位长度,向下平移4个单位长度至点P3(3,-2),第4次向右平移1个单位长度,向上平移5个单位长度至点P4(4,3),…,按照此规律,点P第2 023次平移至点P2 023的坐标是____________.三、解答题(19,20题每题8分,21,22题每题9分,25题12分,其余每题10分,共66分)19.如图,如果规定北偏东30°的方向记作30°,从O点出发沿这个方向走50 m记作50,图中点A记作(30°,50);北偏西45°的方向记作-45°,从O点出发沿着这个方向的反方向走20 m 记作-20,图中点B记作(-45°,-20).(1)(-75°,-15),(10°,-25)分别表示什么意义?(2)在图中标出点(60°,-30)和(-30°,40).20.春天到了,七(1)班组织同学到人民公园春游,张明、李华对着公园示意图(如图)描述牡丹园的位置(图中小正方形的边长为100 m).张明:“牡丹园的坐标是(300,300).”李华:“牡丹园在中心广场东北方向约424 m处.”实际上,他们所说的位置都是正确的.根据所学的知识解答下列问题:(1)请指出张明同学是如何在公园示意图上建立平面直角坐标系的,并在图中画出所建立的平面直角坐标系.(2)李华同学是用什么来描述牡丹园的位置的?请用张明同学所用的方法,描述出公园内其他地方的位置.21.已知点P(2x,3x-1)是平面直角坐标系内的点.(1)若点P在第三象限,且到两坐标轴的距离和为11,求x的值.(2)已知点A(3,-1),点B(-5,-1),点P在直线AB的上方,且到直线AB的距离为5,求x的值.22.△ABC在平面直角坐标系中的位置如图所示.(1)画出△ABC关于y轴对称的△A1B1C1;(2)将△ABC向右平移6个单位长度,作出平移后的△A2B2C2,并写出△A2B2C2各顶点的坐标.23.如图,A,B,C为一个平行四边形的三个顶点,且A,B,C三点的坐标分别为(3,3),(6,4),(4,6).(1)请直接写出这个平行四边形第四个顶点的坐标;(2)求这个平行四边形的面积.24.如图,四边形ABCD 是边长为4的正方形,在正方形的一个角上剪去长方形CEFG ,其中E ,G 分别是边CD ,BC 上的点,且CE =3,CG =2,剩余部分是六边形ABGFED ,请你建立适当的直角坐标系求六边形ABGFED 各顶点的坐标.25.如图,在平面直角坐标系中,已知A (0,a ),B (b ,0),其中a ,b 满足|a -2|+(b -3)2=0.(1)求a ,b 的值;(2)如果在第二象限内有一点M (m ,1),请用含m 的式子表示四边形ABOM 的面积;(3)在(2)的条件下,当m =-32时,在坐标轴的负半轴上是否存在点N ,使得四边形ABOM 的面积与△ABN 的面积相等?若存在,求出点N 的坐标;若不存在,请说明理由.答案一、1.C 2.D 3.D 4.A 5.B 6.C7.D 8.D 9.D10.C 提示:点A第1次变换后的点为(a,-b),第2次变换后的点为(-a,-b),第3次变换后的点为(-a,b),第4次变换后的点为(a,b),每4次变换为一个循环,∵2 022÷4=505……2,∴第2 022次变换后所得的点A的对应点的位置与第2次变换后的相同,在第三象限,坐标为(-a,-b).二、11.(2,0) 12.(-2,-3)13.(5,-2) 14.(2,4) 15.-116.(3,0)或(9,0)17.(2,1) 提示:由题意知四边形BEB′D是正方形,所以点B′的横坐标与点E的横坐标相同,点B′的纵坐标与点D的纵坐标相同.所以点B′的坐标为(2,1).18.(2 023,-1 012) 提示:由题意可知点P第2 023次平移至点P2 023的横坐标是0+1×2 023=2 023,纵坐标是1-2+3-4+5-6+7-…+2 023-2 024=-1 012,即点P2 023的坐标是(2 023,-1 012).三、19.解:(1)(-75°,-15)表示南偏东75°距O点15 m处,(10°,-25)表示南偏西10°距O点25 m处.(2)如图.20.解:(1)张明同学是以中心广场为原点、正东方向为x 轴正方向、正北方向为y 轴正方向建立平面直角坐标系的,图略.(2)李华同学是用方位角和距离描述牡丹园的位置的.用张明同学所用的方法,描述如下:中心广场(0,0),音乐台(0,400),望春亭(-200,-100),游乐园(200,-400),南门(100,-600).21.解:(1)∵点P 在第三象限,P (2x ,3x -1),∴点P 到x 轴的距离为1-3x ,到y 轴的距离为-2x .故1-3x -2x =11,解得x =-2.(2)易知直线AB ∥x 轴.由点P 在直线AB 的上方且到直线AB 的距离为5,得3x -1-(-1)=5,解得x =53. 22.解:(1)如图.(2)如图,A 2(6,4),B 2(4,2),C 2(5,1).23.解:(1)(7,7)或(1,5)或(5,1).(2)因为S△ABC=3×3-12×(1×3+1×3+2×2)=4,所以这个平行四边形的面积=2×S△ABC=2×4=8.24.解:以点A为原点,分别以边AB,AD所在的直线为坐标轴,建立直角坐标系,如图所示.因为点A是原点,所以A(0,0).因为点B,D分别在x轴,y轴上,且AB=AD=4,所以点B(4,0),点D(0,4).因为点D与点E的纵坐标相等,且DE=CD-CE=1,所以E(1,4).因为点B与点G的横坐标相等,且BG=BC-CG=2,所以G(4,2).因为点F与点E的横坐标相等,与点G的纵坐标相等,所以点F(1,2).综上所述,六边形ABGFED各顶点的坐标分别为A(0,0),B(4,0),G(4,2),F(1,2),E(1,4),D(0,4).(此题答案不唯一,建立的直角坐标系不同,各点坐标也不同)25.解:(1)∵a ,b 满足|a -2|+(b -3)2=0,∴a -2=0,b -3=0,解得a =2,b =3.(2)过点M 作MC ⊥y 轴于点C .四边形AMOB 的面积=S △AMO +S △AOB=12MC ·OA +12OA ·OB =12×(-m )×2+12×2×3 =-m +3.(3)当m =-32时,四边形ABOM 的面积为4.5.∴S △ABN =4.5, ①当点N 在x 轴负半轴上时,设N (x ,0),则S △ABN =12AO ·NB =12×2×(3-x )=4.5,解得x =-1.5; ②当点N 在y 轴负半轴上时,设N (0,y ),则S △ABN =12BO ·AN =12×3×(2-y )=4.5,解得y =-1. ∴点N 的坐标为(0,-1)或(-1.5,0).湘教版八年级数学下册期末达标检测卷一、选择题(每题3分,共30分)1.下列图形中,是中心对称图形的是( )2.在函数y=1x-2中,自变量x的取值范围是( )A.x≥2 B.x>2 C.x≤2 D.x<23.已知坐标平面内点A(m,m)在第四象限,那么点B(m,m)在( )A.第一象限 B.第二象限 C.第三象限 D.第四象限4.下列线段的长为三边的三角形中,能构成直角三角形的是( )A.2,3,4 B.3,4,5 C.5,13,14 D.2,2, 25.在四边形ABCD中,AB=DC,AD=BC.请再添加一个条件,使四边形ABCD是矩形,添加的条件不能是( )A.AB∥DC B.∠A=90° C.∠B=90° D.AC=BD6.一次函数y=k x+k的图象可能是( )7.如图,∠AOC=∠BOC,点P在OC上,PD⊥OA于点D,PE⊥OB于点E.若OD=8,OP=10,则PE的长为( )A.5 B.6 C.7 D.88.如图,有一张一个角为30°,最小边长为2的直角三角形纸片,沿图中所示的中位线剪开后,将两部分拼成一个四边形,所得四边形的周长是( )A.8或2 3 B.10或4+2 3 C.10或2 3 D.8或4+2 39.某次数学测验,抽取部分同学的成绩(得分为整数),整理制成如图所示的频数直方图,根据图示信息描述不正确的是( )A.抽样的学生共50人B.估计这次测验的及格率(60分为及格)在92%左右C.估计优秀率(80分以上为优秀)在36%左右D.60.5~70.5这一分数段的频数为1210.在一张矩形纸片ABCD中,AB=4,BC=8,点E,F分别在AD,BC上,将纸片ABCD沿直线EF折叠,点C落在边AD上的点H处,点D落在点G处,连接CH,CE.下列四个结论:①四边形CFHE是菱形;②CE平分∠DCH;③线段BF的最小值为3;④当点H与点A重合时,EF=2 5.其中正确的有( )A.1个 B.2个 C.3个 D.4个二、填空题(每题3分,共24分)11.一次函数y=(k-3)x+2,若y随x的增大而增大,则k的值可以是 ________. 12.若正多边形的一个内角等于140°,则这个正多边形的边数是________.13.如图,△ABC向右平移4个单位后得到△A′B′C′,则A′点的坐标是________.14.已知在一个样本中,50个数据分别落在5个组内,第一、二、三、四、五组数据的个数分别是3,7,18,12,10,则第四组的频数为________,频率为________.15.已知点A(1,0),B(0,2),点P在x轴上,且△PAB的面积为5,则点P的坐标是____________.16.如图,在等边三角形ABC中,BC=4,D,E分别是AB,AC的中点,过点E 作EF⊥BC于点F,连接DF,则DF的长为________.17.今年“五一”节,小明外出爬山,他从山脚爬到山顶的过程中,中途休息了一段时间.设他从山脚出发后所用时间为t(mim),所走的路程为s(m),s 与t之间的函数关系如图所示.下列四种说法:①小明中途休息用了20 mim;②小明休息前爬山的平均速度为70 m/mim;③小明在上述过程中所走的路程为6 600 m;④小明休息前爬山的平均速度大于休息后爬山的平均速度.其中正确的是________(填序号).18.如图,点E在正方形ABCD的边BC上,连接AE,设点B关于直线AE的对称点为点B′,且点B′在正方形内部,连接EB′并延长交边CD于点F,过点E作EG⊥AE交射线AF于点G,连接CG,若BE=17,则CG的长为________.三、解答题(19题6分,20题8分,21,22题每题9分,23题10分,其余每题12分,共66分)19.如图,在△ABC中,BE平分∠ABC,AF⊥BE于点F,D为AB的中点,求证:DF∥BC.20.如图,在▱ABCD中,E为BC边上一点,且∠B=∠AEB.求证:AC=ED. 21.如图,在平面直角坐标系中,△ABC的顶点坐标分别是A(0,0),B(3,1),C(2,2).(1)在平面直角坐标系中描出点A,B,C,并作出△ABC关于y轴对称的△A1B1C1;(2)如果将△ABC向上平移1个单位长度,再向左平移2个单位长度,得到△A 2B2C2,直接写出B2,C2的坐标,并求△A2B2C2的面积.22.如图,在平面直角坐标系中,点A(2,m),B(m,m)(m>2),D(p,q)(q<m),点B,D在直线y=12x+1上.四边形ABCD的对角线AC,BD相交于点E,且AB∥CD,CD=4,BE=DE,△AEB的面积是2. 求证:四边形ABCD是矩形.23.某学校为加强学生的安全意识,组织了全校1 500名学生参加安全知识竞赛,从中抽取了部分学生成绩(得分取正整数,满分为100分)进行统计.请根据尚未完成的频数分布表和频数直方图(如图),解答下列问题:(1)这次抽取了________名学生的竞赛成绩进行统计,其中:m=________,m=________;(2)补全频数直方图;(3)若成绩在70分以下(含70分)的学生安全意识不强,有待进一步加强安全教育,则该校安全意识不强的学生约有多少名?24.甲、乙两家草莓采摘园的草莓品质相同,销售价格也相同.“五一”假期,两家均推出了优惠方案,甲采摘园的优惠方案:游客进园需购买60元的门票,采摘的草莓六折优惠;乙采摘园的优惠方案:游客进园不需购买门票,采摘的草莓超过一定数量后,超过部分打折优惠.优惠期间,设某游客的草莓采摘量为x(千克),在甲采摘园所需总费用为y1(元),在乙采摘园所需总费用为y2(元),图中折线OAB表示y2与x之间的函数关系.(1)甲、乙两采摘园优惠前的草莓销售价格是每千克________;(2)求y1,y2与x的函数表达式;(3)在图中画出y1与x的函数图象,并写出选择甲采摘园所需总费用较少时,草莓采摘量x的范围.25.如图,在▱ABCD中,AB⊥AC,AB=1,BC=5,对角线BD,AC交于点O,将直线AC绕点O顺时针旋转分别交BC,AD于点E,F.(1)试说明在旋转过程中,AF与CE总保持相等;(2)证明:当旋转角为90°时,四边形ABEF是平行四边形;(3)在旋转过程中,四边形BEDF可能是菱形吗?如果不可能,请说明理由;如果可能,求出此时AC绕点O顺时针旋转的角度.答案一、1.A 2.B 3.B 4.B 5.A 6.B7.B 提示:∵PD ⊥OA ,∴∠PDO =90°.∵OD =8,OP =10,∴PD =OP 2-OD 2=6.∵∠AOC =∠BOC ,点P 在OC 上,PD ⊥OA ,PE ⊥OB ,∴PE =PD =6. 8.D 9.D10.C 提示:如图①,由折叠可知EF 垂直平分HC ,∴HE =CE .易得∠1=∠2.∵AD ∥BC ,∴∠2=∠3.∴∠1=∠3.∴HF ∥CE .又∵HE ∥CF ,∴四边形CFHE 是平行四边形.又∵HE =CE ,∴四边形CFHE 是菱形,故①正确.∴∠BCH =∠ECH ,∴只有∠DCE =30°时,才有CE 平分∠DCH ,故②错误. 当点H 与点A 重合时,如图②,此时,BF 的值最小,设BF =x ,则AF =FC =8-x .在Rt △ABF 中,AB 2+BF 2=AF 2,即42+x 2=(8-x )2,解得x =3,∴线段BF 的最小值为3,故③正确.如图②,易知∠AFB =∠CED ,在△ABF 与△CDE 中,⎩⎨⎧∠AFB =∠CED ,∠ABF =∠CDE ,AB =CD ,∴△ABF ≌△CDE ,∴DE =BF =3.过点F 作FM ⊥AD 于点M ,则ME =(8-3)-3=2,由勾股定理,得EF =MF 2+ME 2=42+22=25,故④正确.综上所述,结论正确的有①③④,共3个.二、11.4(答案不唯一) 12.9 13.(1,2)14.12;0.24 15.(-4,0)或(6,0)16.7 17.①②④18.17 2 提示:如图,过G 作GH ⊥BC 于H ,则∠EHG =90°,∵点B关于直线AE的对称点为点B′,∴AB=AB′,BE=B′E,而AE=AE,∴△ABE≌△AB′E(SSS),∴∠BAE=∠B′AE,∠AB′E=∠B=90°,∴∠D=∠AB′F=90°.又∵AD=AB′,AF=AF,∴Rt△ADF≌Rt△AB′F(H L),∴∠DAF=∠B′AF,∴∠EAF=12∠BAD=45°.又∵EG⊥AE,∴△AEG是等腰直角三角形,∴AE=GE.∴∠BAE+∠AEB=∠HEG+∠AEB=90°,∴∠BAE=∠HEG.又∵∠B=∠EHG=90°,∴△ABE≌△EHG(AAS),∴BE=GH=17,AB=EH=BC,∴BE=CH=17,∴Rt△CHG中,CG=GH2+CH2=172+172=17 2.三、19.证明:∵AF⊥BE,∴∠AFB=90°,∵点D是AB的中点,∴DF=12AB=BD.∴∠DFB=∠DBF.∵BE平分∠ABC,∴∠FBC=∠FBD.∴∠DFB=∠FBC.∴DF∥BC.20.证明:∵四边形ABCD是平行四边形,∴AB=CD,∠B=∠ADC,AD∥BC,∴∠DAE=∠AEB.∵∠B=∠AEB,∴AE=AB,∠ADC=∠DAE,∴CD=EA.又∵AD=DA,∴△ADC≌△DAE(SAS).∴AC=ED.21.解:(1)如图,△A1B1C1即为所求.(2)B2(1,2),C2(0,3).S△A2B2C2=3×2-12×2×2-12×1×1-12×3×1=2.22.证明:∵AB∥CD,∴∠EAB=∠ECD,∠EBA=∠EDC. ∵BE=DE,∴△AEB≌△CED.∴AB=CD=4.∵AB∥CD,∴四边形ABCD是平行四边形.∵A(2,n),B(m,n)(m>2),∴AB∥x轴,且CD∥x轴.∵m>2,∴m=6.∴n=12×6+1=4.∴点B的坐标为(6,4).∵△AEB的面积是2,∴△AEB的AB边上的高是1.∴平行四边形ABCD的AB边上的高是2. ∵q<n,∴q=4-2=2.∴p=2,即点D的坐标为(2,2).又∵点A的坐标为(2,4),∴DA∥y轴.∴AD⊥CD,即∠ADC=90°.∴四边形ABCD是矩形.23.解:(1)200;70;0.12(2)补全后的频数直方图如图.(3)(40+16)÷200×1 500=420(名),∴该校安全意识不强的学生约有420名.24.解:(1)30元(2)∵甲需要购买60元的门票,采摘的草莓六折优惠, ∴y 1=0.6×30x +60=18x +60.直线OA 段:y 2=30x .直线AB 段:设直线AB 段表达式为y 2=kx +b .∴⎩⎨⎧10k +b =300,20k +b =450,解得⎩⎨⎧k =15,b =150,∴y 2=15x +150.∴y 1与x 的函数表达式为y 1=18x +60,y 2与x 的函数表达式为y 2=⎩⎨⎧30x (0≤x ≤10),15x +150(x >10). (3)当直线y 1与y 2交于OA 段时,18x +60=30x ,解得x =5,此时y 1=y 2=150; 当直线y 1与y 2交于AB 段时,18x +60=15x +150,解得x =30,此时y 1=y 2=600.y 1与x 的函数图象如图所示.故当5<x <30时,选择甲采摘园所需总费用较少.25.(1)解:∵四边形ABCD 是平行四边形,∴AO =CO ,AD ∥BC ,∴∠FAO =∠ECO ,在△AOF 和△COE 中,∠AOF =∠COE ,AO =CO ,∠FAO =∠ECO , ∴△AOF ≌△COE ,∴AF =CE .(2)证明:当旋转角为90°时,AC旋转后的位置如图所示,∵∠AOF=∠BAC=90°,∴AB∥FE,∵AD∥BC,∴四边形ABEF是平行四边形.(3)解:可能,当EF⊥BD时,四边形BEDF为菱形,∵△AOF≌△COE,∴FO=EO,又∵四边形ABCD是平行四边形,∴BO=DO,又EF⊥BD,∴四边形BEDF为菱形.∵AB=1,BC=5,∴AC=BC2-AB2=(52-12)=2,∴AO=12AC=1,∴△ABO是等腰直角三角形,∠AOB=45°. 又∠BOF=90°.∴∠AOF=45°,即旋转角为45°.。
八年级数学下册第三章《图形与坐标》测试题-湘教版(含答案)
八年级数学下册第三章《图形与坐标》测试题-湘教版(含答案)一.选择题1.当2<m<3时,点P(m﹣2,m﹣3)在第()A.一象限B.二象限C.三象限D.四象限2.在直角坐标系中,M(﹣3,4),M到x、y轴的距离与M′到x、y轴的距离相等,则M′的坐标不可能为()A.(﹣3,﹣4)B.(3,4)C.(3,﹣4)D.(3,0)3.若点(a,﹣3)与点(2,b)关于y轴对称,则a,b的值为()A.a=2,b=3B.a=2,b=﹣3C.a=﹣2,b=﹣3D.a=﹣2,b=3 4.在平面直角坐标系中,点Q(﹣1,3)向右平移3个单位长度后的坐标为()A.(﹣1,0)B.(﹣1,6)C.(2,3)D.(2,6)5.如果点A(2,﹣3)和点B关于原点对称,则点B的坐标为()A.(﹣2,3)B.(﹣2,﹣3)C.(2,﹣3)D.(2,3)6.如图,一个动点P在平面直角坐标系中按箭头所示方向做折线运动,即第一次从原点运动到(1,1),第二次从(1,1)运动到(2,0),第三次从(2,0)运动到(3,2),第四次从(3,2)运动到(4,0),第五次从(4,0)运动到(5,1),…,按这样的运动规律,经过第2013次运动后,动点P的坐标是()A.(2012,1)B.(2012,2)C.(2013,1)D.(2013,2)7.在y轴上,与点A(3,﹣2)的距离等于3的点有()A.1个B.2个C.4个D.0个8.如图,在直角坐标系中,▱OABC的顶点A为(1,3)、C为(5,0),则B的坐标为()A.(6,3)B.(5,5)C.(4,3)D.无法确定9.如图,△AOB关于x轴对称图形△A′OB,若△AOB内任意一点P的坐标是(a,b),则△A′OB中的对应点Q的坐标是()A.(a,b)B.(﹣a,b)C.(﹣a,﹣b)D.(a,﹣b)10.根据指令[s,A](s≥0,0°≤A<360°)机器人在平面上能完成如下动作:先在原地顺时针旋转角度A,再朝其面对的方向沿直线行走距离s.现在机器人在平面直角坐标系的原点,且面对y轴的负方向,为使其移动到点(﹣3,0),应下的指令是()A.[3,90°]B.[90°,3]C.[﹣3,90°]D.[3,270°]二.填空题11.已知点A(2,3)在第一象限,则与点A关于x轴对称的点的坐标为,与点A 关于y轴对称的点的坐标为,与点A关于原点对称的点的坐标为.12.若点A(﹣1,a),B(b,2)两点关于y轴对称,则a=,b=.13.点P(1,2)关于点Q(﹣1,1)的对称点的坐标为.14.定义:在平面直角坐标系内,对于点P(x,y),我们把Q(﹣y+1,x+3)叫做它的伴随点.如点(2,1)的伴随点为(﹣1+1,2+3),即(0,5).若点M的伴随点坐标为(﹣5,3),则点M的坐标为.15.将点N(﹣1,2)向右平移3个单位,再向下平移4个单位后,其坐标变为.16.坐标系中M(﹣3,2),N(3,2)之间距离是.17.点M(﹣3,5)关于直线x=1对称的点M′的坐标为.18.如图,规定列号写在前面,行号写在后面,如用数对的方法,棋盘中“帅”与“卒”的位置可分别表示为(e,4)和(g,3),则“马”的位置可表示为.19.在x轴上与点(0,﹣2)距离是4个单位长度的点有.20.如图,直线OD与x轴所夹的锐角为30°,OA1的长为1,△A1A2B1,△A2A3B2,△A3A4B3,…,△A n A n+1B n均为等边三角形,点A1,A2,A3,…,A n+1在x轴的正半轴上依次排列,点B1,B2,B3,…,B n在直线OD上依次排列,那么B2020的坐标为.三.解答题21.自然数按如图规律排列,14这个数位于第4行,第3列,记作(4,3),那么124这个数记作什么?…12510……43611……98712….…16151413………………….22.已知平面直角坐标系中,点P(1﹣a,2a﹣5)到两坐标轴的距离相等,求a值并确定点P的坐标.23.已知A(0,0)、D(4,2)、E(6,6)、C(2,4),依次连接各点得到四边形ADEC,按要求绘制下列图形.(1)横坐标、纵坐标都乘以﹣1;(2)纵坐标不变,横坐标扩大为原来的2倍;(3)横坐标都加2,同时纵坐标都减5;(4)如果坐标不变,纵坐标都扩大为原来的2倍,同时再加上3,不画图,你能叙述图形的变化吗?24.点P(x+1,2x﹣1)关于原点的对称点在第一象限,试化简:|x﹣3|﹣|1﹣x|25.如图,分别说明:△ABC从(1)→(2),再从(2)→(3)…一直到(5),它的横、纵坐标依次是如何变化的?26.当m为何值时,点P(3m﹣1,m﹣2)到y轴的距离是到x轴距离的3倍?求出此时点P到原点的距离.27.已知在平面直角坐标系中,点A、B的坐标分别为:A(﹣3,4),B(4,﹣2).(1)求点A、B关于y轴对称的点的坐标;(2)在平面直角坐标系中分别作出点A、B关于x轴的对称点M、N,顺次连接AM、BM、BN、AN,求四边形AMBN的面积.参考答案一.选择题1.解:∵2<m<3时,∴m﹣2>0,m﹣3<0,∴点P在第四象限.故选:D.2.解:∵M点的坐标为(﹣3,4),∴M到x、y轴的距离分别为4,3,而M到x、y轴的距离与M′到x、y轴的距离相等,∴M′到x、y轴的距离也为4,3,结合各选项A、B、C到x、y轴的距离分别为4,3,D到x、y轴的距离分别为0,3,故D符合题意.故选:D.3.解:∵点(a,﹣3)与点(2,6)关于y轴对称,∴a=﹣2,b=﹣3,故选:C.4.解:点Q(﹣1,3)向右平移3个单位长度后的坐标为(2,3).故选:C.5.解:∵点A(2,﹣3)和点B关于原点对称,∴点B的坐标为(﹣2,3).故选:A.6.解:∵第一次从原点运动到(1,1),第二次从(1,1)运动到(2,0),第三次从(2,0)运动到(3,2),第四次从(3,2)运动到(4,0),第五次从(4,0)运动到(5,1),…,∴按这样的运动规律,第几次横坐标即为几,纵坐标为:1,0,2,0,1,0,2,0 (4)个一循环,∵=503…1,∴经过第2013次运动后,动点P的坐标是:(2013,1).故选:C.7.解:在y轴上,与点A(3,﹣2)的距离等于3的点有(0,﹣2),即只有1个点.故选:A.8.解:由题意得AB∥x轴,那么点A和B的纵坐标相等为3,∵OC=5,那么点B的横坐标为1+5=6.故选:A.9.解:∵△AOB与△A'OB关于x轴对称,∴点P(a,b)关于x轴的对称点为(a,﹣b),∴点P的对应点Q的坐标是(a,﹣b).故选:D.10.解:根据点(0,0)到点(﹣3,0),即可知机器人先顺时针转动90°,再向左平移3个单位,于是应下指令为[3,90°].故选:A.二.填空题11.解:∵点A(2,3)在第一象限,∴与点A关于x轴对称的点的坐标为:(2,﹣3),与点A关于y轴对称的点的坐标为:(﹣2,3),与点A关于原点对称的点的坐标为:(﹣2,﹣3).故答案为:(2,﹣3),(﹣2,3),(﹣2,﹣3).12.解:∵点A(﹣1,a),B(b,2)两点关于y轴对称,∴b=1,a=2,故答案为:2;1.13.解:设点P(1,2)关于点Q(﹣1,1)的对称点的坐标为(a,b),则=﹣1,=1,解得:a=﹣3,b=0,∴点P(1,2)关于点Q(﹣1,1)的对称点的坐标为(﹣3,0),故答案为:(﹣3,0).14.解:设点M(m,n),则它的伴随点为(﹣n+1,m+3),∵点M的伴随点坐标为(﹣5,3),∴﹣n+1=﹣5,m+3=3,解得,m=0,n=6,∴M(0,6).故答案为(0,6).15.解:点N(﹣1,2)向右平移3个单位,再向下平移4个单位后,其坐标为(﹣1+3,2﹣4),即:(2,﹣2),故答案为:(2,﹣2).16.解:∵M(﹣3,2),N(3,2),∴MN∥x轴,∴MN=3﹣(﹣3)=3+3=6.故答案为:6.17.解:∵点M(﹣3,5)与点N关于直线x=1对称,而1×2﹣(﹣3)=5,∴点M(﹣3,5)关于直线x=1对称的点N的坐标是(5,5),故答案为(5,5).18.解:根据题意知“马”的位置可表示为(c,3),故答案为:(c,3).19.解:∵点在x轴上,∴点的纵坐标为0,∵距离(0,﹣2)的距离是4,∴所求点的横坐标为±=±2,∴所求点的坐标是(2,0)或(﹣2,0).故答案填:(2,0)或(﹣2,0).20.解:∵△A1B1A2为等边三角形,∴∠B1A1A2=60°,∵∠B1OA2=30°,∴∠B1OA2=∠A1B1O=30°,∴OA2=2OA1=2,同理可得,OA n=2n﹣1,∵∠B n OA n+1=30°,∠B n A n A n+1=60°,∴∠B n OA n+1=∠OB n A n=30°,∴B n A n=OA n=2n﹣1,即△A n B n A n+1的边长为2n﹣1,则可求得其高为×2n﹣1=×2n﹣2,∴点B n的横坐标为×2n﹣1+2n﹣1=×2n﹣1=3×2n﹣2,∴点B n的坐标为(3×2n﹣2,×2n﹣2),∴点B2020的坐标为(3×22018,×22018).故答案为(3×22018,×22018).三.解答题21.解:第一单元是:1,第二单元是:2,3,4,第三单元是:5,6,7,8,9,第四单元是:10,11,12,13,14,15,16,第五单元是:17,18,19,20,21,22,23,24,25,…,所以,124在第12单元,第3个数,即第3行第12个数,∴124这个数记作(3,12).22.解:∵点P(1﹣a,2a﹣5)到两坐标轴的距离相等,∴符合题的点P的横、纵坐标相等或互为相反数,∴|1﹣a|=|2a﹣5|,∴1﹣a=±(2a﹣5)解得:a=2或a=4,则1﹣2=﹣1,2×2﹣5=﹣1,1﹣4=﹣3,2×4﹣5=3,所以P的坐标为(﹣1,﹣1)或(﹣3,3).23.解:(1)如图所示:四边形A′D′E′C′即为所求;(2)如图所示:四边形A″D″E″C″即为所求;(3)如图所示:四边形A1D1E1C1即为所求;(4)图形在原基础上各点向上平移纵坐标个单位后,再将整体图形向上平移3个单位.24.解:∵点P(x+1,2x﹣1)关于原点的对称点P′的坐标为(﹣x﹣1,﹣2x+1),而P′在第一象限,∴﹣x﹣1>0,且﹣2x+1>0,∴x<﹣1,∴|x﹣3|﹣|1﹣x|=﹣(x﹣3)﹣(1﹣x)=﹣x+3﹣1+x=2.25.解:(1)→(2)纵坐标不变,横坐标都加1,(2)→(3)横坐标不变,纵坐标都加1,(3)→(4)横、纵坐标都乘以﹣1,(4)→(5)横坐标不变,纵坐标都乘以﹣1.26.解:根据题意得到|3m﹣1|=3|m﹣2|,两边平方,解得m=因而P的坐标是(,﹣),则OP=.27.解:(1)根据轴对称的性质,得A(﹣3,4)关于y轴对称的点的坐标是(3,4);点B(4,﹣2)关于y轴对称的点的坐标是(﹣4,﹣2).(2)根据题意:点M、N与点A、B关于x轴对称,可得M(﹣3,﹣4),N(4,2);进而可得四边形AMBN为梯形,且AM=8,BN=4.故四边形AMBN的面积为•(8+4)×7=42.。
湘教版八年级数学下册第3章综合素质评价 附答案
湘教版八年级数学下册第3章综合素质评价一、选择题(每题3分,共30分)1.云南是一个神奇美丽的地方,这里有美丽的边疆、美丽的城市、美丽的村庄、美丽的风情,云南的省会城市昆明更有着四季如春的美誉,下列表示昆明市地理位置最合理的是( )A .在中国西南地区B .在云贵高原的中部C .距离北京2 600千米D .东经102°、北纬24°2.如图,科考队探测到目标位于图中阴影区域内,则目标的坐标可能是( )A .(20,30)B .(15,-28)C .(-40,-10)D .(-35,19)3.【教材P 88练习T 2变式】某镇初级中学在镇政府的南偏西60°方向上,且距离镇政府1 500 m ,则如图所示的表示方法正确的是( )4.已知点P (-2,3)与Q (-2,5),下列说法不正确的是( )A .PQ ∥y 轴B .PQ =2C .PQ =8D .P ,Q 都在第二象限5.已知AB ∥x 轴,且点A 的坐标为(m ,2m +1),点B 的坐标为(2,4),则点A 的坐标为( )A.⎝ ⎛⎭⎪⎫32,4 B .(2,5) C .(-2,-4)D .(2,-4)6.【2022·金华】如图是城市某区域的示意图,建立平面直角坐标系后,学校和体育场的坐标分别是(3,1),(4,-2).下列各地点中,离原点最近的是( ) A .超市 B .医院 C .体育场 D .学校7.在平面直角坐标系xOy中,若点A的坐标为(-3,3),点B的坐标为(2,0),则三角形ABO的面积是()A.15 B.7.5 C.6 D.38.如图,将三角形ABC先向上平移1个单位,再向左平移3个单位,则点A的对应点的坐标是()A.(1,1) B.(1,3) C.(7,1) D.(7,3)9.【2022·绥化】如图,线段OA在平面直角坐标系内,A点的坐标为(2,5),线段OA绕原点O逆时针旋转90°,得到线段OA′,则点A′的坐标为()A.(-5,2) B.(5,2) C.(2,-5) D.(5,-2) 10.【规律题】如图,一个动点按如图所示的方向在第一象限内及x轴和y轴上运动,每次运动1个单位,第一次运动到(1,0),第二次运动到(1,1),第三次运动到(0,1),……,那么第20次运动到()A.(3,4) B.(4,4) C.(4,3) D.(4,2)二、填空题(每题3分,共24分)11.七年级三班座位按7排8列排列,王东的座位是3排4列,简记为(3,4),张三的座位是5排2列,可简记为________.12.在平面直角坐标系中,第三象限内一点P到x轴的距离为2,到y轴的距离为5,那么点P的坐标是________.13.大同方特欢乐世界是晋北地区新时代高科技主题公园,以科幻和互动体验为最大特色,里面设有很多游玩的主题项目区.若利用网格(如图)建立适当的平面直角坐标系,且表示“星际航班”主题项目区的坐标为A(2,1),表示“生命之光”主题项目区的坐标为B(-4,2),则主题项目区“魔法城堡”所在的位置C的坐标应是________.14.若(a-2)2+|b+3|=0,则P(a,b)在第__________象限.15.若点P(a2-4,a-1)在y轴的正半轴上,则点P的坐标为________.16.如图,点A,B的坐标分别为(2,4),(6,0),点P是x轴上一点,且三角形ABP的面积为6,则点P的坐标为________.17.在平面直角坐标系中,点A的坐标为(1,1),点B的坐标为(11,1),点C到直线AB的距离为4,三角形ABC是直角三角形且∠C不是直角,则满足条件的点C有________个.18.如图,一束光线从点A(3,3)出发,经过y轴上的点C反射后经过点B(1,0),则光线从点A到点B经过的路径长为________.三、解答题(23题12分,24题14分,其余每题10分,共66分) 19.【2022·张家界节选】如图所示的方格纸(1格长为一个单位)中,△AOB的顶点坐标分别为A(3,0),O(0,0),B(3,4).(1)将△AOB沿x轴向左平移5个单位,画出平移后的△A1O1B1(不写作法,但要标出顶点字母);(2)将△AOB绕点O顺时针旋转90°,画出旋转后的△A2OB2(不写作法,但要标出顶点字母).20.已知点P(2m+4,m-1),请分别根据下列条件,求出点P的坐标.(1)点P在y轴上;(2)点P的纵坐标比横坐标大3;(3)点P到y轴的距离是2.21.【教材P105复习题T4拓展】如图,P(x0,y0)为三角形ABC内任意一点,若将三角形ABC作平移变换,使点A落在点B的位置上,已知点A(3,4),B(-2,2),C(2,-2).(1)请写出点B,C,P的对应点B1,C1,P1的坐标;(2)求S三角形AOC.22.如图,A,B,C为一个平行四边形的三个顶点,且A,B,C三点的坐标分别为(3,3),(6,4),(4,6).(1)请直接写出这个平行四边形第四个顶点的坐标;(2)求这个平行四边形的面积.23.如图,在平面直角坐标系中,AB∥CD∥x轴,BC∥DE∥y轴,且AB=CD=4,OA=5,DE=2,动点P从点A出发,沿A→B→C的路线运动到点C停止;动点Q从点O出发,沿O→E→D的路线运动到点D停止.若P,Q两点同时出发,且P,Q运动的速度均为每秒钟一个单位.(1)直接写出B,C,D三个点的坐标;(2)当P,Q两点出发6 s时,试求三角形POQ的面积.24.如图,在平面直角坐标系中,已知A(a,0),B(b,0),其中a,b满足|a+1|+(b-3)2=0.(1)填空:a=________,b=________;(2)如果在第三象限内有一点M(-2,m),请用含m的式子表示三角形ABM的面积;(3)在(2)的条件下,当m=-32时,在y轴上有一点P,使得三角形BMP的面积与三角形ABM的面积相等,请求出点P的坐标.答案一、1.D 2.D 3.A 4.C 5.A 6.A 7.D 8.B9.A 提示:如图,过点A 作AB ⊥x 轴于点B ,过点A ′作A ′C ⊥x 轴于点C .∵A 点的坐标为(2,5), ∴OB =2,AB =5.由题意知∠AOA ′=90°,OA =OA ′, ∴∠AOB +∠A ′OC =90°. ∵∠A ′OC +∠A ′=90°, ∴∠A ′=∠AOB . 在△A ′OC 和△OAB 中,⎩⎨⎧∠A ′=∠AOB ,∠A ′CO =∠OBA =90°,OA ′=AO ,∴△A ′OC ≌△OAB (AAS). ∴A ′C =OB =2,OC =AB =5. ∴A ′(-5,2).10.B 提示:本题考查了坐标与图形的变化规律,解答本题的关键是结合图形找出坐标的移动规律,从移动规律中计算其纵坐标和横坐标的变化,从而计算出第20次的坐标.二、11.(5,2) 12.(-5,-2) 13.(-6,-2) 14.四 15.(0,1)16.(3,0)或(9,0) 提示:设点P 的坐标为(x ,0),根据题意,得12×4×|6-x |=6,解得x =3或9,所以点P 的坐标为(3,0)或(9,0). 17.4 18.5三、19.解:(1)如图,△A 1O 1B 1即为所求.(2)如图,△A 2OB 2即为所求. 20.解:(1)由题意知2m +4=0,解得m =-2,所以P (0,-3). (2)由题意知m -1=2m +4+3, 解得m =-8,所以P (-12,-9). (3)由题意知|2m +4|=2,所以2m +4=±2,解得m =-1或-3, 所以点P 的坐标是(-2,-4)或(2,-2).21.解:(1)因为点A (3,4)平移后的对应点的坐标为(-2,2),所以需将三角形ABC先向左平移5个单位,再向下平移2个单位,则点B (-2,2)的对应点B 1的坐标为(-7,0),点C (2,-2)的对应点C 1的坐标为(-3,-4),点P (x 0,y 0)的对应点P 1的坐标为(x 0-5,y 0-2).(2)过点A 作AD ⊥y 轴于点D ,过点C 作CE ⊥y 轴于点E ,则AD =3,CE =2,OD =4,OE =2, 所以DE =6,所以S 三角形AOC =12×(2+3)×6-12×3×4-12×2×2=7. 22.解:(1)(7,7)或(1,5)或(5,1).(2)以A ,B ,C 为顶点的三角形的面积为3×3-12×3×1-12×2×2-12×1×3=4,所以这个平行四边形的面积为4×2=8.23.解:(1)B (4,5),C (4,2),D (8,2).(2)当P ,Q 两点出发6 s 时,P 点的坐标为(4,3),Q 点的坐标为(6,0), 所以S 三角形POQ =12×6×3=9. 24.解:(1)-1;3(2)如图①,过点M 作MN ⊥x 轴于点N . 因为A (-1,0),B (3,0),所以AB =1+3=4. 又因为点M (-2,m )在第三象限, 所以MN =|m |=-m ,所以S 三角形ABM =12AB ·MN =12×4×(-m )=-2m . (3)当m =-32时,点M 的坐标为⎝ ⎛⎭⎪⎫-2,-32,所以S 三角形ABM =-2×⎝ ⎛⎭⎪⎫-32=3. 点P 的位置有两种情况:(ⅰ)如图②,当点P 在y 轴的正半轴上时,设点P 的坐标为(0,k ),则S 三角形BMP =5⎝ ⎛⎭⎪⎫32+k -12×2⎝ ⎛⎭⎪⎫32+k -12×5×32-12×3 k =52k +94. 因为S 三角形BMP =S 三角形ABM , 所以52k +94=3,解得k =310, 所以点P 的坐标为⎝ ⎛⎭⎪⎫0,310;(ⅱ)如图③,当点P 在y 轴的负半轴上时,设点P 的坐标为(0,n ),则S 三角形BMP =-5n -12×2⎝ ⎛⎭⎪⎫-n -32-12×5×32-12×3×(-n )=-52n -94. 因为S 三角形BMP =S 三角形ABM , 所以-52n -94=3, 解得n =-2110,所以点P 的坐标为⎝ ⎛⎭⎪⎫0,-2110.综上所述,点P 的坐标为⎝ ⎛⎭⎪⎫0,310或⎝ ⎛⎭⎪⎫0,-2110.。
八年级数学下册(湘教版)第3章 图形与坐标 小结与复习3
为
。
-1
y 4
3
●
A(x1,y) 2
A′
1
● -4 -3 -2 -1 0
-1
-2
●
B(x2,y)
A B′
B
●●
●
12345x
-3
1、如图,点A(1,0),B(4,0)则-4AB= 4-1=3
2、如图,点A′(-4,0),B ′ (2,0)-5 则A ′ B ′ =
2-(-4)=6
x轴上两点间距离:点A(x1,0),B( x2 ,0)
用坐标表示平移
知识框架
平
纵轴 y
y轴
面
3
(● 2,3)
直
2
角 坐
原点 1
x轴
标
-4 -3 -2 -1 0 1 2 3 x 横轴
系
-1
-2
1、横坐标刻画了点到原点(或y轴)的水平距离,横坐标 绝对值越大,则说明该点到原点-3(或y轴)越远。
2、纵坐标刻画了点到原点(或x-4轴)的竖直距离,纵坐标
绝对值越大,则说明该点到原点(或x轴)越远。即:纵坐 标越在大平,面说内有明公该共点原点位而置且越互相高垂,直纵的坐两条标数越轴小,构,成说了明平面该直点角位坐标置系.简 称越坐低标。系。
y
3
第二象限
2
(-,1 0 -1
第三象限
-2
(-, -)
-3
-4
12 3 x
第四象限 (+, -)
坐标系中的图形变换
坐标的变化
图象的变化
(x,y) (-x, y) (x,y) (x, -y) (x,y) (-x, -y) (x,y) (x+a,y+b)
湘教版八年级下册数学全册课件
求证:△ABC是直角三角形.
证明:
CD
1 2
AB=
BD=
AD,
∴ ∠1=∠A,∠2=∠B .
∵∠A+∠B+∠ACB =180°, 即∠A+∠B+∠1+∠2=180°,
2(∠A+∠B)=180°.
∴ ∠A+∠B =90°.
∴ △ABC是直角三角形.
2021/8/7
例6 如图,在△ABC中,AD是高,E、F分别 是AB、AC的中点.
∴ BDCB. ∴ CD= BD.
故得
CD=
AD=
BD=
1 2
AB.
∴ 点D'是斜边上的中点,即CD' 是斜边AB的中线.
从而CD与CD' 重合,且 CD 1 AB.
2
性质 直角三角形斜边上的中线等于斜边的一半.
2021/8/7
例5 已知:如图,CD是△ABC的AB边上的中线,
且
CD
1 2
AB
.
2021/8/7
三 直角三角形斜边上的中线等于斜边的一半
问题: 如图,画一个Rt△ABC, 并作出斜边AB上 的中线CD,比较线段CD 与线段AB 之间的数量关 系,你能得出什么结论?
2021/8/7
线段CD 比线段 AB短.
我测量后发现
1
CD = 2 AB.
试给出 数学证
明.
猜想:直角三角形斜边上的中线等于斜边的一半.
湘教版八年级下册数学全册课件
第1章 直角三角形
1.1 直角三角形的性质和判定(Ⅰ)
第1课时 直角三角形的性质和判定
2021/8/7
学习目标
(全优)湘教版八年级下册数学第3章 图形与坐标含答案
湘教版八年级下册数学第3章图形与坐标含答案一、单选题(共15题,共计45分)1、如图,在平面直角坐标系中,△ABC的三个顶点的坐标分别为A(﹣1,0),B(﹣2,3),C(﹣3,1).将△ABC沿y轴翻折得到△A′B′C′,则点B′的坐标为()A.(2,1)B.(2,3)C.(4,1)D.(0,2)2、在平面直角坐标系中,点A的坐标是(3,a),点B的坐标是(b,-1),若点A与点B关于原点O对称,则ab=( )A.3B.2C.-6D.-33、在平面直角坐标系中,点为,连接并把线段绕原点逆时针旋转90°,所得到的对应点的坐标为()A. B. C. D.4、在平面坐标系中,正方形ABCD的位置如图所示,点A的坐标为(1,0),点D的坐标为(0,2),延长CB交x轴于点A1,作正方形A1B1C1C,延长C1B1交x轴于点A2,作正方形A2B2C2C1,………按这样的规律进行下去,第2012个正方形的面积为()A. B. C. D.5、如果p(a-3,a+1)在第二象限,那么a的取值范围是A.a>-1B.a<3C.-3<a<3D.-1<a<36、若,则点P(x,y)一定在A.x轴上.B.y轴上.C.坐标轴上.D.原点.7、如图,正方形OABC对角线交点为D,过D的直线分别交AB,OC于E,F,已知点E关于y轴的对称点坐标为(﹣,2),则图中阴影部分的面积是()A.1B.2C.3D.48、平面直角坐标系中,点A的坐标为(4,3),将线段OA绕原点O顺时针旋转90°得到OA',则点A'的坐标是A.(-4,3)B.(-3,4)C.(3,4)D.(4,-3)9、如图,⊙C过原点,且与两坐标轴分别交于点A、点B,点A的坐标为(0,3),M是第三象限内上一点,∠BMO=120°,则⊙C的半径长为()A.6B.5C.3D.310、在平面直角坐标系中,点关于轴对称的点的坐标是()A. B. C. D.11、在平面直角坐标系中,将点P(-2,3)沿X轴方向向右平移3个单位得到点Q,则点Q的坐标是()A.(-2,6)B.(-2,0)C.(-5,3 )D.(1,3)12、点P(a , b)关于x轴的对称点为P'(1,-6),则a , b的值分别为( )A.-1,6B.-1,-6C.1,-6D.1,613、点P(-3,5)所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限14、点C在x轴的下方,y轴的右侧,距离x轴3个单位长度,距离y轴5个单位长度,则点C的坐标为().A.(-3,5)B.(3,-5)C.(5,-3)D.(-5,3)15、如图,在平面直角坐标系中,以O为圆心,适当长为半径画弧,交X轴于点M,交Y轴于点N,再分别以点M、N为圆心,大于MN的长为半径画弧,两弧在第二象限交于点P.若点P的坐标为(3a-1,b),则a与b的数量关系为()A. B. C. D.二、填空题(共10题,共计30分)16、如图,在直角坐标系中,点A,B的坐标分别为(1,4)和(3,0),点C 是y轴上的一个动点,且A,B,C三点不在同一条直线上,当△ABC的周长最小时,点C的坐标是________.17、如图,在平面直角坐标系xOy中,点A1, A2, A3,…,An在x轴的正半轴上,且OA1=2,OA2=2OA1, OA3=2OA2,…,OAn=2OAn﹣1,点B1, B2,B 3,…,Bn在第一象限的角平分线l上,且A1B1, A2B2,…,AnBn都与射线l垂直,则B1的坐标是________,B3的坐标是________,Bn的坐标是________.18、如图,在平面直角坐标系中,一动点从原点O出发,按向上、向右、向下、向右的方向不断地移动,每次移动1个单位长度,得到点A1(0,1),A2(1,1),A3(1,0),A4(2,0),…,那么点A2 019的坐标为________.19、在平面直角坐标系中,点A(0,-4)到x轴的距离为________.20、在平面直角坐标系xOy中,已知直线l:y=x,作A1(1,0)关于y=x 的对称点B1,将点B1向右水平平移2个单位得到点A2;再作A2关于y=x的对称点B2,将点B2向右水平平移2个单位得到点A3;….请继续操作并探究:点A3的坐标是________,点B2014的坐标是________.21、在平面直角坐标系xOy中,已知A(0,1),B(1,0),C(3,1),若以A、B、C、D为顶点的四边形是平行四边形,则点D的坐标是________.22、把点P(1,1)向右平移3个单位长度,再向上平移2个单位长度后的坐标为________.23、如图,在平面直角坐标系中,将点P(-4,2)绕原点顺时针旋转90°,则其对应点Q的坐标为________.24、若A(1,2),B(3,﹣3),C(x,y)三点可以确定一个圆,则x、y需要满足的条件是________.25、如图,在平面直角坐标系xOy中,若菱形ABCD的顶点A,B的坐标分别为(-3,0),(2,0),点D在y轴上,则点C的坐标是________.三、解答题(共5题,共计25分)26、已知点A 和点B 关于轴对称,求的值.27、多多和爸爸、妈妈周末到动物园游玩,回到家后,她利用平面直角坐标系画出了动物园的景区地图,如图所示.可是她忘记了在图中标出原点和x轴、y 轴.只知道马场的坐标为(﹣1,﹣2),你能帮她建立平面直角坐标系并求出其他各景点的坐标?(图中每个小正方形的边长为1 )28、已知四边形AOCD是放置在平面直角坐标系内的梯形,其中O是坐标原点,点A,C,D的坐标分别为(0,8),(5,0),(3,8).若点P在梯形内,且△PAD的面积等于△POC的面积,△PAO的面积等于△PCD的面积. 求点P的坐标.29、在平面直角坐标系中,一蚂蚁从原点O出发,按向上、向右、向下、向右的方向依次不断移动,每次移动1个单位.其行走路线如图所示.(1)填写下列各点的坐标:A4(,),A8(,),A12(,);(2)写出点A4n的坐标(n是正整数)(,);(3)指出蚂蚁从点A2014到点A2015的移动方向为.30、如图的方格中有25个汉字,如四1表示“天”,请沿着以下路径去寻找你的礼物:(1)一1→三2→二4→四3→五1(2)五3→二1→二3→一5→三4(3)四5→四1→一2→三3→五2.参考答案一、单选题(共15题,共计45分)1、B2、D3、D4、D5、D6、C7、B8、C9、C10、C11、D12、D13、B14、C15、A二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)26、29、30、。
湘教版八年级数学下册第3章学情评估附答案
湘教版八年级数学下册第3章学情评估一、选择题(每题3分,共18分)1.在平面直角坐标系中,点(0,4)的位置在()A.第一象限B.x轴正半轴上C.第二象限D.y轴正半轴上2.点A(3,5)关于x轴的对称点的坐标为()A.(3,-5) B.(-3,-5)C.(-3,5) D.(-5,3)3.将点A(-3,7)向右平移3个单位得到点A′,则点A′的坐标是() A.(-6,7) B.(0,7)C.(3,7) D.(-3,10)4.在平面直角坐标系中,点(-3,-a2-1)一定在()A.第一象限B.第二象限C.第三象限D.第四象限5.在平面直角坐标系中的第一象限内有一点P,点P到x轴的距离为8,到y轴的距离为10,则点P的坐标为()A.(8,-10) B.(-10,-8)C.(8,10) D.(10,8)6.甲、乙、丙三人所处位置不同,甲说:“以我为坐标原点,乙的坐标是(2,3).”丙说:“以我为坐标原点,乙的坐标是(-3,-2).”若以乙为坐标原点,则甲、丙的坐标分别是(已知三人所建立的坐标系的x轴、y轴的正方向相同,且单位长度也相同)()A.(-3,-2),(2,-3) B.(-3,2),(2,3)C.(-2,-3),(3,2) D.(-3,-2),(-2,-3)二、填空题(每题4分,共24分)7.已知点P的坐标为(1,-2),则点P到x轴的距离是________.8.在平面直角坐标系中,点A,B的坐标分别为(4,0),(0,3),则线段AB的长为________.9.点A(m+1,3m-7)在第一、三象限的角平分线上,则m=________.10.在平面直角坐标系中,将点A(-3,-5)先向上平移6个单位,再向左平移2个单位得到点B,则点B的坐标为________.11.在平面直角坐标系中,点A在第一象限,点B在x轴的正半轴上,∠AOB=60°,OA=8.点A的坐标是______________.12.如图,所有正方形的中心均在坐标原点,且各边与坐标轴平行,从内到外,它们的边长依次为2,4,6,8,…,顶点依次为A1,A2,A3,A4,…,则顶点A2 023的坐标是________.三、解答题(第13~15题每题8分,第16题10分,第17~18题每题12分,共58分)13.在如图所示的直角坐标系中,描出下列各点:(0,4),(-1,1),(-4,1),(-2,-1),(-3,-4),(0,-2),(3,-4),(2,-1),(4,1),(1,1).(1)依次连接各点;(2)观察得到的图形,你觉得它像什么?14.根据如图所示的标示,填一填,标一标.(1)图书馆在学校的______________的方向上,距离学校________m;(2)游泳池在学校的______________的方向上,距离学校________m;(3)广场在学校的______________的方向上,距离学校________m;(4)儿童乐园在学校的南偏东45°的方向上,距离学校3 800 m,请你标出儿童乐园的位置.15.如图,点P是平面直角坐标系中第一象限内的一点,连接OP,过点P作P A ⊥x轴于点A,∠OP A的平分线交y轴于点B,若OP=7,求点B的坐标.16.在边长为1个单位长度的正方形网格中建立如图所示的平面直角坐标系,△ABC的顶点都在格点上(小正方形的顶点称为格点),请解答下列问题:(1)作出△ABC关于y轴对称的△A1B1C1,点A1与A、B1与B、C1与C分别对应,并回答下列两个问题:①写出点C1的坐标;②已知点P是线段AA1上任意一点,用恰当的方式表示点P的坐标.(2)若△ABC经过平移后得到△A2B2C2,A的对应点A2的坐标为(-1,-1),写出点B的对应点B2的坐标,并画出△A2B2C2.17.在平面直角坐标系中,点A关于x轴对称的点的坐标为(x+2y-3,y-x+2),点A关于y轴对称的点的坐标为(2y+2x+1,2x-y+2),求x,y的值.18.在如图所示的平面直角坐标系中,已知A (0,a ),B (b ,0),C (3,c )三点,若a ,b ,c 满足关系式:|a -2|+(b -3)2+c -4=0. (1)求a ,b ,c 的值; (2)求四边形AOBC 的面积;(3)是否存在点P ⎝ ⎛⎭⎪⎫x ,-12x ,使△AOP 的面积为四边形AOBC 的面积的2倍?若存在,求出点P 的坐标;若不存在,请说明理由.答案一、1.D 2.A 3.B 4.C 5.D 6.C二、7.2提示:因为点(a,b)到x轴的距离为|b|,所以点P(1,-2)到x轴的距离为2.8.5提示:因为点A,B的坐标分别为(4,0),(0,3),所以BO=3,AO=4,所以AB=32+42=5.9.4提示:因为点A(m+1,3m-7)在第一、三象限的角平分线上,所以m+1=3m-7,解得m=4.10.(-5,1)11.(4,4 3)12.(506,506)三、13.解:描点如图.(1)如图.(2)五角星.14.解:(1)北偏西74°;5 200(2)北偏东42°;2 500(3)南偏西60°;3 800(4)儿童乐园的位置如图所示.15.解:因为PB平分∠OP A,所以∠OPB=∠APB.因为P A⊥x轴,所以P A∥y轴,所以∠APB=∠OBP,所以∠OPB=∠OBP,所以OB=OP=7,所以点B的坐标为(0,-7).16.解:(1)如图所示.①点C1的坐标为(-3,2).②点P 的坐标为(x ,4)(-2≤x ≤2).(2)点B 2的坐标为(-2,-4),如图.17.解:因为点A 关于x 轴对称的点的坐标为(x +2y -3,y -x +2),所以A 点坐标为(x +2y -3,-y +x -2).因为点A 关于y 轴对称的点的坐标为(2y +2x +1,2x -y +2), 所以A 点坐标为(-2y -2x -1,2x -y +2), 所以⎩⎨⎧x +2y -3=-2y -2x -1,-y +x -2=2x -y +2,解得⎩⎪⎨⎪⎧x =-4,y =72.18.解:(1)因为|a -2|+(b -3)2+c -4=0,所以a -2=0,b -3=0,c -4=0,所以a =2,b =3,c =4.(2)易知A (0,2),O (0,0),B (3,0),C (3,4),所以四边形AOBC 为直角梯形,且OA =2,BC =4,OB =3,所以四边形AOBC 的面积为12×(OA +BC )×OB =12×(2+4)×3=9. (3)存在.因为△AOP 的面积为四边形AOBC 的面积的2倍, 所以△AOP 的面积为12×2×|x |=2×9, 所以|x |=18,所以x =±18.所以点P 的坐标为(18,-9)或(-18,9).湘教版八年级数学下册期中学情评估一、选择题(每题3分,共30分)1.在Rt △ABC 中,∠C =90°,∠B =40°,则∠A 的度数是( )A .60°B .30°C .50°D .40°2.以下有关勾股定理证明的图形中,不是中心对称图形的是()3.在▱ABCD中,AC,BD是它的两条对角线,下列条件中,能判定这个平行四边形是矩形的是()A.AB=BC B.∠DCA=∠DACC.∠BAC=∠ABD D.AC⊥BD4.如图,在Rt△ABC中,∠ACB=90°,点D为斜边AB的中点,若CD=3 cm,则下列说法正确的是()A.AC=3 cm B.BC=6 cmC.AB=6 cm D.AC=AD=3 cm(第4题)(第6题)5.已知▱ABCD的周长为20,且AB BC=23,则CD的长为() A.4 B.5 C.6 D.86.如图,在Rt△ABC中,∠ACB=90°,∠A=30°,D,E,F分别是AB,AC,AD的中点,若BC=2,则EF的长度为()A.12B.1 C.32 D. 37.如图,OF是∠AOB内的一条射线,点E是射线OF上一点,EC⊥OA于点C,ED⊥OB于点D,若DE=CE,则下列结论不一定成立的是()A.OE平分∠AOBB.∠OED=∠OECC.OE=2CED.OE是线段CD的垂直平分线8. 已知下列命题,其中真命题有()①对角线相互垂直的四边形是菱形;②成中心对称的两个图形是全等形;③平行四边形的对称中心是对角线的交点;④正方形的对角线平分一组对角.A.1个B.2个C.3个D.4个9.如图,在∠AOB中,以点O为圆心,任意长为半径作弧,交射线OA于点C,交射线OB于点D,再分别以C,D为圆心,OC的长为半径作弧,两弧在∠AOB的内部交于点E,作射线OE,若OC=10,OE=16,则C,D两点之间距离为()A.10 B.12 C.13 D.8 3(第9题)(第10题)(第12题)10.如图,点P是正方形ABCD的对角线BD上一点,PE⊥BC于点E,PF⊥CD 于点F,连接EF,AP.给出下列5个结论:①AP=EF;②AP⊥EF;③△APD 一定是等腰三角形;④∠PFE=∠BAP;⑤PD=2EC.其中正确的结论有()A.2个B.3个C.4个D.5个二、填空题(每题3分,共15分)11.正五边形每个外角的大小是________度.12.如图,A,B两点被池塘隔开,不能直接测量其距离.于是,小明在岸边选一点C,连接CA,CB,分别延长CA,CB到点M,N,使AM=AC,BN =BC,测得MN=200 m,则A,B间的距离为________m.13. 如图,已知AB⊥CF于点B,DE⊥CF于点E,CE=FB,AC=DF,运用所给条件判定△ABC≌△DEF的依据为________.(第13题)(第14题)(第15题)14.如图,矩形ABCD的对角线AC和BD相交于点O,∠ADB=30°,AB=4,则OC=________.15. 如图,菱形ABCD的两条对角线长分别为AC=6,BD=8,点P是边BC上的一动点,则AP的最小值为________.三、解答题(第16~17题每题6分,第18~20题每题8分,第21~22题每题12分,第23题15分,共75分)16.如图,在Rt△ABC中,∠BAC=90°,AD是边BC上的中线,ED⊥BC于点D,交BA的延长线于点E,若∠E=35°,求∠BDA的度数.17.如图,在正方形网格中,每个小正方形的边长均为1,△ABC的三个顶点都在格点上.(1)求AB,AC,BC的长;(2)判断△ABC的形状,并说明理由.18. 如图,D,E,F分别是△ABC各边的中点.(1)四边形ADEF是怎样的四边形?证明你的结论.(2)若∠A=90°,且AB=AC,判断四边形ADEF是怎样的四边形?证明你的结论.19.如图,在△ABC中,∠B=50°,∠C=70°,AD是△ABC的角平分线,DE⊥AB于点E.(1)求∠EDA的度数;(2)若AB=10,AC=8,DE=3,求S△ABC.20.如图,把矩形ABCD沿对角线BD折叠使点C落在F处,BF交AD于点E.(1)求证:△BEA≌△DEF;(2)若AB=2,AD=4,求AE的长.21.如图,在▱ABCD中,以点A为圆心,AB长为半径画弧交AD于点F,再分别以点B,F为圆心,大于12BF的长为半径画弧,两弧交于一点P,连接AP并延长交BC于点E,连接EF.(1)根据条件与作图信息知四边形ABEF是________;A.非特殊的平行四边形B.矩形C.菱形D.正方形(2)设AE与BF相交于点O,若四边形ABEF的周长为16,BF=4,求AE的长和∠C的度数.22.如图,在Rt△ABC中,∠BAC=90°,D是BC的中点,E是AD的中点,过点A作AF∥BC交BE的延长线于点F,连接CF.(1)证明:四边形ADCF是菱形;(2)若AC=4,AB=5,求菱形ADCF的面积.23.如图,已知四边形ABCD为正方形,点E为线段AC上一点,连接DE,过点E作EF⊥DE,交BC于点F,以DE,EF为邻边作矩形DEFG,连接CG.(1)求证:矩形DEFG是正方形;(2)若AB=2,CE=2,求CG的长度;(3)当线段DE与正方形ABCD的某条边的夹角是30°时,直接写出∠EFC的度数.答案一、1.C 2.A 3.C 4.C 5.A6.B提示:∵∠ACB=90°,∠A=30°,∴AB=2BC=4.又∵D是AB的中点,∴CD=12AB=2.∵E,F分别是AC,AD的中点,∴EF为△ACD的中位线,∴EF=12CD=1.7.C8.C9.B提示:如图,连接CD交OE于点F,连接DE,CE,由作图过程可知OC=OD=DE=CE,∴四边形ODEC是菱形.∴OE⊥CD,OF=FE=12OE=8.∵OC=10,∴CF=DF=102-82=6,∴CD=2CF=12.10.C二、11.7212.10013.HL14.415.4.8三、16.解:∵ED⊥BC,∴∠BDE=90°.又∵∠E=35°,∴∠B=55°.∵∠BAC=90°,AD是边BC上的中线,∴DA=DB,∴∠B=∠DAB=55°,∴∠BDA=180°-55°-55°=70°.17.解:(1)根据勾股定理,得AB=5,AC=5,BC=10.(2)△ABC是等腰直角三角形.理由如下:∵AB2+AC2=5+5=10=BC2,∴△ABC是直角三角形.又∵AB=AC,∴△ABC是等腰直角三角形.18.解:(1)四边形ADEF 是平行四边形.证明:∵D ,E ,F 分别是△ABC 各边的中点,∴DE ∥AC ,EF ∥AB ,∴四边形ADEF 是平行四边形.(2)四边形ADEF 是正方形.证明:由(1)知,四边形ADEF 是平行四边形.∵∠A =90°,∴▱ADEF 是矩形.∵AB =AC ,D ,F 分别是AB ,AC 的中点,∴AD =AF ,∴矩形ADEF 是正方形.即四边形ADEF 是正方形.19.解:(1)∵在△ABC 中,∠B =50°,∠C =70°,∴∠BAC =180°-∠B -∠C =180°-50°-70°=60°.∵AD 是△ABC 的角平分线,∴∠BAD =12∠BAC =12×60°=30°.∵DE ⊥AB ,∴∠DEA =90°,∴∠EDA =180°-∠BAD -∠DEA =180°-30°-90°=60°.(2)过点D 作DF ⊥AC 于点F .∵AD 是△ABC 的角平分线,DE ⊥AB ,∴DF =DE =3.又∵AB =10,AC =8,∴S △ABC =12AB ×DE +12AC ×DF=12×10×3+12×8×3=27.20.(1)证明:∵四边形ABCD 是矩形,∴AB =CD ,∠A =∠C =90°.由折叠的性质,得DF =CD ,∠F =∠C =90°,∴AB =FD ,∠A =∠F .在△BEA 和△DEF 中,⎩⎨⎧∠AEB =∠FED ,∠A =∠F ,AB =FD ,∴△BEA ≌△DEF .(2)解:∵△BEA ≌△DEF ,∴BE =DE =AD -AE =4-AE .在Rt △BAE 中,由勾股定理,得AB 2+AE 2=BE 2.设AE =x ,则BE =4-x ,∴22+x 2=(4-x )2.解得x =32,故AE 的长为32.21.解:(1)C(2)易知AE ⊥BF ,OB =OF ,AO =EO ,BE =EF ,AB ∥EF .∵BF =4,∴OB =12BF =2.∵四边形ABEF 的周长为16,四边形ABEF 是菱形,∴BE =4.在Rt △OBE 中,根据勾股定理,得OE =2 3,∴AE =2OE =4 3.∵BE =BF =EF =4,∴△BEF 是等边三角形,∴∠FEB =60°.∵四边形ABCD 是平行四边形,∴AB ∥CD .∵AB ∥EF ,∴CD ∥EF ,∴∠C =∠BEF =60°.22.(1)证明:∵AF ∥BC ,∴∠AFE =∠DBE .∵E 是AD 的中点,∴AE =DE .在△AFE 和△DBE 中,⎩⎨⎧∠AFE =∠DBE ,∠FEA =∠BED ,AE =DE ,∴△AFE ≌△DBE .∴AF =DB .∵D 是BC 的中点,∴DB =DC ,∴AF =CD .又∵AF ∥DC ,∴四边形ADCF 是平行四边形.∵∠BAC =90°,D 是BC 的中点,∴AD =12BC =DC ,∴四边形ADCF 是菱形.(2)解:连接DF .∵AF ∥BC ,且由(1)知AF =BD ,∴四边形ABDF 是平行四边形,∴DF =AB =5,∴S 菱形ADCF =12AC ×DF =12×4×5=10.23.(1)证明:过点E 作EP ⊥CD 于点P ,EQ ⊥BC 于点Q .∵四边形ABCD 为正方形,∴∠DCA =∠BCA ,∴EQ =EP .由题易知∠QEF +∠FEC =45°,∠PED +∠FEC =45°,∴∠QEF =∠PED .在△EQF 和△EPD 中,⎩⎨⎧∠QEF =∠PED ,EQ =EP ,∠EQF =∠EPD =90°,∴△EQF ≌△EPD ,∴EF =ED ,∴矩形DEFG 是正方形.(2)解:由题意知AC =2 2.∵CE =2,∴AE = 2.∴AE =CE .∴点F 与点C 重合,此时△DCG 是等腰直角三角形,易知CG = 2.(3)解:∠EFC =120°或30°.。
湘教版初中数学八年级下册课程目录与教学计划表
湘教版初中数学八年级下册课程目录与教学计划表
教材课本目录是一本书的纲领,是教与学的路线图。
不管是做教学计划、实施教学活动,还是做复习安排、工作总结,都离不开目录。
目录是一本书的知识框架,要做到心中有书、胸有成竹,就从目录开始吧!
课程目录教学计划、进度、课时安排
第1章直角三角形
1.1 直角三角形的性质和判定(Ⅰ)
1.2 直角三角形的性质和判定(Ⅱ)
1.3 直角三角形全等的判定
1.4 角平分线的性质
小结与复习
第2章四边形
2.1 多边形
2.2 平行四边形
2.2.1 平行四边形的性质
2.2.2 平行四边形的判定
2.3 中心对称和中心对称图形
2.4 三角形的中位线
2.5 矩形
2.5.1 矩形的性质
2.5.2 矩形的判定
2.6 菱形
2.6.1 菱形的性质
2.6.2 菱形的判定
2.7 正方形
小结与复习
第3章图形与坐标
3.1 平面直角坐标系
3.2 简单图形的坐标表示
3.3 轴对称和平移的坐标表示
小结与复习
第4章一次函数
4.1 函数和它的表示法
4.2 一次函数
4.3 一次函数的图象
4.4 用待定系数法确定一次函数表达式4.5 一次函数的应用
小结与复习
第5章数据的频数分布
5.1 频数与频率
5.2 频数直方图
小结与复习
总复习。
湘教版初中八年级下册数学 第3章 图形与坐标 知识归纳
三、图形与坐标1.点的对称性:关于x轴对称的点,横坐标相反,纵坐标相等;关于y轴对称的点,横坐标相等,纵坐标相反;关于原点对称的点,横、纵坐标都相反。
若直角坐标系内一点P(a,b),则P关于x轴对称的点为P1(a,-b),P关于y轴对称的点为P2(-a,b),关于原点对称的点为P3(-a,-b)。
解题方法:相等时用“=”连结,相反时两式相加=0。
·已知A、B两点的坐标分别是(-2,3)和(2,3),则下面四个结论:① A、B关于x轴对称;② A、B关于y轴对称;③ A、B关于原点对称;④A、B之间的距离为4。
其中正确的有个。
·已知点A(m-1,3)与点B(2,n-1)关于x轴对称,则m= ,n= 。
·已知点P(3,-1)关于y轴对称点Q的坐标是(a+b,1-b),则b a的值是。
2.坐标平移:左右平移:横坐标右加左减,纵坐标不变;上下平移:横坐标不变,纵坐标上加下减。
例如:若直角坐标系内一点P(a,b)向左平移h个单位,坐标变为P(a-h,b),向右平移h个单位,坐标变为P(a+h,b);向上平移h 个单位,坐标变为P(a,b+h),向下平移h个单位,坐标变为P(a,b -h).如:点A(2,-1)向上平移2个单位,再向右平移5个单位,则坐标变为A(7,1).·将四边形ABCD先向左平移3个单位,再想上平移2个单位,那么点A(3,-2)的对应点A 的坐标是_____.·已知点A(m,n),把它向左平移3个单位后与点B(4,-3)关于y轴对称,则m=__,n=__.·在平面直角坐标系中,点M的坐标为(b,-2b),将点M向左平移2个单位,再向上平移1个单位后得到点N,当点N在第三象限时,则b的取值范围是___.3.在平面直角坐标系中会画轴对称、平移后的图形,并写出图形顶点的坐标。
·在平面直角坐标系中描出点A(3,5)、B(1,1)、C(5,3)的位置,连成△ABC.①作出△ABC关于x轴对称的ΔA B C,111并写出三个顶点的坐标;图3相帅炮②作出△ABC 关于原点O 成中心对称 的222ΔA B C ,并写出三个顶点的坐标; ③将△ABC 向左平移6个单位长度,画出平 移后的333ΔA B C ,并写出三个顶点的坐标; ④求出四边形123BB B B 的面积。
湘教版八年级数学下册第三章3.3.2 简单平移的坐标表示 同步练习题( 教师版)
湘教版八年级数学下册第三章3.3.2 简单平移的坐标表示同步练习题一、选择题1.将平面直角坐标系中点(-1,2)向右平移1个单位长度后得到的点的坐标是(A)A.(0,2)B.(-2,2)C.(-1,3)D.(-1,1)2.将平面直角坐标系中某点向上或向下平移,则点的(A)A.横坐标不变B.纵坐标不变C.横、纵坐标都变D.无法确定3.点M(2,-1)向上平移2个单位长度得到的点的坐标是(B)A.(2,0)B.(2,1)C.(2,2)D.(2,-3)4.在平面直角坐标系中,将点P(-2,3)向下平移4个单位长度得到点P′,则点P′所在象限为(C)A.第一象限B.第二象限C.第三象限D.第四象限5.点A(-1,a)向上平移3个单位长度正好在坐标轴上,则a的值为(C)A.1B.-1C.-3D.36.平面直角坐标系中,将三角形各点的纵坐标都减去-3,横坐标保持不变,所得图形与原图形相比(A)A.向上平移了3个单位长度B.向下平移了3个单位长度C.向右平移了3个单位长度D.向左平移了3个单位长度7.若将点A(1,3)向左平移2个单位长度,再向下平移4个单位长度得到点B,则点B的坐标为(B)A.(-1,0)B.(-1,-1)C.(-2,0)D.(-2,-1)8.如图,将“笑脸”图标向右平移4个单位长度,再向下平移2个单位长度,点P的对应点P′的坐标是(C)A.(-1,6)B.(-9,6)C.(-1,2)D.(-9,2)9.在平面直角坐标系Oxy中,线段AB的两个端点坐标分别为A(-1,-2),B(2,1),平移线段AB,得到线段A′B′.已知点A′的坐标为(2,1),则点B′的坐标为(D)A.(4,2)B.(5,2)C.(6,4)D.(5,4)二、填空题10.在平面直角坐标系中,把点A(2,3)向左平移1个单位长度得到点A′,则点A′的坐标为(1,3).11.如图所示,由图1变到图2,是将图1的金鱼向下平移了1个单位长度.图1 图212.如图,在平面直角坐标系中,点A的坐标为(-1,2),点C的坐标为(-3,0),将点C绕点A逆时针旋转90°,再向下平移3个单位长度,此时点C的对应点的坐标为(1,-3).13.在平面直角坐标系中,将点A(-2,3)向右平移3个单位长度,再向下平移2个单位长度,那么平移后对应的点A′的坐标是(1,1).14.平面直角坐标系中,△ABC的三个顶点的坐标分别是A(-2,3),B(-4,-1),C(2,0),将△ABC平移至△A1B1C1的位置,点A,B,C的对应点分别是A1,B1,C1.若点A1的坐标为(3,1),则点C1的坐标为(7,-2).15.已知坐标平面内的点A(-2,5),若将平面直角坐标系先向右平移3个单位长度,再向上平移4个单位长度,则点A在平移后的坐标系中的坐标是(-5,1).16.如图,线段AB经过平移得到线段A′B′,其中点A,B的对应点分别为点A′,B′,这四个点都在格点上.若线段AB上有一个点P(a,b),则点P在A′B′上的对应点P′的坐标为(A)A.(a-2,b+3)B.(a-2,b-3)C.(a+2,b+3)D.(a+2,b-3)三、解答题17.如图,在平面直角坐标系中,点A,B的坐标分别为(2,3),(4,1),将△ABO向下平移3个单位长度后得到△A′B′O′,请画出△A′B′O′,并写出点A′,B′的坐标.解:如图所示.A′(2,0),B′(4,-2).18.如图,在平面直角坐标系中,△ABC的三个顶点分别为A(-1,-2),B(-2,-4),C(-4,-1).(1)把△ABC向上平移3个单位长度后得到△A1B1C1,请画出△A1B1C1并写出点B1的坐标;(2)已知点A与点A2(2,1)关于直线l成轴对称,请画出直线l及△ABC关于直线l对称的△A2B2C2.解:(1)如图,△A1B1C1即为所求,B1(-2,-1).(2)如图,直线l及△A2B2C2即为所求.19.如图,将△ABC先向上平移4个单位长度,再向左平移5个单位长度,得到△A′B′C′,写出△A′B′C′的顶点坐标,并画出该图形.解:如图,A′(-2,3),B′(-4,2),C′(-2,0),△A′B′C′即为所求.20.已知:如图,下列网格中,每个小正方形的边长都是1个单位长度,四边形ABCD的各个顶点A,B,C,D都在格点上.(1)把四边形ABCD先向右平移4个单位长度,再向上平移2个单位长度,请你画出平移后得到的图形;(2)写出A,B,C,D四点平移后的对应点A′,B′,C′,D′的坐标.解:(1)如图所示,四边形A′B′C′D′即为所求.(2)A′(4,2),B′(0,6),C′(2,2),D′(1,1).21.点A在平面直角坐标系Oxy中的坐标为(2,5),将平面直角坐标系Oxy中的x轴向上平移2个单位长度,y轴向左平移3个单位长度,得到平面直角坐标系O′x′y′,在新的平面直角坐标系O′x′y′中,点A的坐标为(5,3).22.如图所示,矩形ABCD在平面直角坐标系内,点A的坐标是A(2,1),且边AB,CD与x轴平行,边AD,BC与y轴平行,AB=4,AD=2.(1)求B,C,D三点的坐标;(2)怎样平移,才能使A点与原点重合?2,1),AB=4,AD=2,∴BC到y轴的距离为4+2,CD到x轴的距离为2+1=3.∴B(4+2,1),C(4+2,3),D(2,3).(2)由图可知,将矩形先向下平移1个单位长度,再向左平移2个单位长度(或先向左平移2个单位长度,再向下平移1个单位长度),能使A点与原点重合.23.一个正方形在平面直角坐标系内的位置如图所示,已知点A的坐标为(3,0),线段AC与BD的交点是点M.(1)写出点M,B,C,D的坐标;(2)当正方形中的点M由现在的位置经过平移后,得到点M′(-4,6)时,写出点A,B,C,D的对应点A′,B′,C′,D′的坐标.解:(1)M(3,3),B(6,3),C(3,6),D(0,3).(2)A′(-4,3),B′(-1,6),C′(-4,9),D′(-7,6).24.在方格纸中,把一个图形先沿水平方向平移|a|格(当a为正数时,表示向右平移;当a为负数时,表示向左平移),再沿竖直方向平移|b|格(当b为正数时,表示向上平移;当b为负数时,表示向下平移),得到一个新的图形,我们把这个过程记为[a,b].例如,把图中的△ABC先向右平移3格,再向下平移5格得到△A′B′C′,可以把这个过程记为[3,-5].若△A′B′C′经过[5,7]得到△A″B″C″.(1)在图中画出△A″B″C″;(2)写出△ABC经过平移得到△A″B″C″的过程:把图中的△ABC先向右平移3格,再向下平移5格得到△A′B′C′,把△A′B′C′向右平移5格,然后向上平移7格得到△A″B″C″;(3)若△ABC经过[m,n]得到△DEF,△DEF再经过[p,q]后得到△A″B″C″,试求m与p,n与q分别满足的数量关系.解:(1)如图所示.(3)根据平移的性质:“上加下减,左减右加”,可知m+p=8,n+q=2.。
湘教版数学八年级下册第三章《图形与坐标》教学设计
湘教版数学八年级下册第三章《图形与坐标》教学设计一. 教材分析湘教版数学八年级下册第三章《图形与坐标》主要内容包括坐标系的建立、坐标轴上的点的坐标、坐标平面内的点的坐标、用坐标表示直线上的点、用坐标表示多边形等。
本章内容是学生进一步理解数学与现实生活的联系,培养学生的空间观念和几何思维的重要章节。
二. 学情分析学生在学习本章内容之前,已经学习了平面几何的基本概念和性质,对几何图形的认知有了一定的基础。
但部分学生对坐标系的理解和运用可能还存在困难,因此,在教学过程中,需要关注学生的学习差异,针对性地进行教学。
三. 教学目标1.理解坐标系的建立和坐标轴上的点的坐标、坐标平面内的点的坐标的概念。
2.学会用坐标表示直线上的点和多边形,培养学生的空间观念和几何思维。
3.培养学生运用坐标解决实际问题的能力。
四. 教学重难点1.坐标系的建立和坐标轴上的点的坐标、坐标平面内的点的坐标的理解。
2.用坐标表示直线上的点和多边形的运用。
五. 教学方法采用问题驱动法、案例教学法、合作学习法等多种教学方法,引导学生通过观察、思考、实践等方式掌握坐标系的相关知识和运用。
六. 教学准备1.教学PPT、教学案例、练习题等教学资源。
2.坐标系模型、几何图形等教具。
七. 教学过程1.导入(5分钟)通过一个实际问题引入坐标系的概念,如:“如何在平面直角坐标系中表示两个城市A和B的位置?”引发学生对坐标系的思考。
2.呈现(10分钟)呈现坐标系的建立过程,引导学生观察坐标轴上的点的坐标、坐标平面内的点的坐标,让学生通过观察、思考,理解坐标系的含义。
3.操练(10分钟)让学生分组讨论,用坐标表示直线上的点和多边形,并选取部分学生进行解答展示,教师点评并指导。
4.巩固(10分钟)针对本节课的重点知识,设计一些练习题,让学生独立完成,教师及时批改并讲解。
5.拓展(10分钟)让学生运用坐标解决实际问题,如:“某商品的原价为100元,现在进行打折促销,打折后的价格是多少?”教师引导学生思考,并给予解答指导。
湘教版八年级数学第3章《实数》知识清单
实数知识点总结3.1平方根知识点1 平方根及其性质1、定义如果有一个数x,使得x²=a,那么我们把x叫作a的一个平方根,或者二次方根.这就是说,若x²=a,则x是a的一个平方根。
表示方法:一个非负数a的平方根记作±√a,读作“正、负根号a”,其中a叫作被开方数。
例:49的平方根是±7,表示方法:±√49 = ±7 .2.平方根的性质:(1)一个正数有两个平方根,它们互为相反数;(2)0的平方根是0;(3)负数没有平方根。
3.开平方:求一个非负数的平方根的运算,叫作开平方。
常用平方数(熟记)12=1 22=4 32=9 42=16 52=2562=36 72=49 82=64 92=81 102=100112=121 122=144 132=169 142=196 152=225162=256 172=289 182=324 192=361 202=400 302=900 402=1600 502=2500 602=3600 702=4900 802=6400 152=225 252=625 352=1225 452=2025 552=3025 652=4225 752=5625 852=7225 952=9025知识点2 算术平方根及其性质1.定义:正数a的正平方根叫作a的算术平方根.规定:0的算术平方根是0.表示方法:非负数a的算术平方根记作√a,读作“根号a”.特别解读:√a(1)算术平方根√a具有双重非负性:①根号内的数a是非负数,即a≥0;②算术平方根√a是非负数,即√a≥0(2)算术平方根是它本身的数只有0和1 .2.性质:(1)正数的算术平方根是一个正数;(2)0的算术平方根是0;(3)负数没有算术平方根.(4)根号内的数越大,对应的算术平方根也越大.提分必记特别提醒◆求一个正数的算术平方根与求一个正数的平方刚好是互逆的两个运算.◆任何一个数的平方都是非负数,所以求算术平方根时,根号内的数必须是非负数.3.平方根与算术平方根的区别与联系:总结:根号求根一定坑,先算根号是关键.算术平方根与平方根区别:数量和符号.知识点3无理数定义:无限不循环小数叫作无理数判断标准:小数位数无限,小数部分的数字不循环2.三种常见形式(1)开方开不尽的数,如√3, √5,…;(2)含有π的一类数,如2π,π+1,…;3.无理数与有理数的区别;(1)有理数是有限小数或无限循环小数,而无理数是无限不循环小数;2)所有的有理数都可以写成分数的形式(整数可以看成分母为1的分数),而无理数不能写成分数的形式。
湘教版八年级数学下册《矩形的性质》评课稿
湘教版八年级数学下册《矩形的性质》评课稿一、引言本评课稿主要对湘教版八年级数学下册中的《矩形的性质》进行评价和总结。
通过对该章节的学习过程进行深入的剖析和分析,旨在探讨学生在学习《矩形的性质》时的优点、不足以及可能存在的问题,以便教师能够在教学过程中有针对性地进行调整和改进。
以下将从教材编排、教学目标、教学过程和教学评价等方面进行评述。
二、教材编排湘教版八年级数学下册的《矩形的性质》是该册数学教材的第三个单元。
该单元共分为五个主题,分别为矩形的定义、矩形的性质、平行四边形的定义、平行四边形的性质以及矩形和平行四边形的运用。
从整体结构来看,该单元的编排合理,以性质为核心进行延伸和拓展,有助于学生对矩形和平行四边形的理解和应用。
三、教学目标1. 知识目标•掌握矩形和平行四边形的定义;•理解矩形和平行四边形的性质;•能够应用矩形和平行四边形的性质解决实际问题。
2. 能力目标•培养学生观察和归纳问题的能力;•培养学生分析和解决问题的能力;•培养学生运用数学知识解决实际问题的能力。
四、教学过程1. 引入教师可通过提问的方式引入本课内容,例如:“你们在日常生活中见过哪些矩形和平行四边形?它们有什么共同的性质?”让学生先思考并展示他们对矩形和平行四边形的已有认知。
2. 概念解释与示例呈现在引入部分的基础上,教师可对矩形和平行四边形的定义进行解释,并通过图示给出实例,引导学生感知和理解矩形和平行四边形的特点。
3. 性质总结与规律探究在学生对矩形和平行四边形的定义有一定了解之后,教师可组织学生参与性质总结与规律探究的活动。
例如,教师可以给出几个具体的矩形和平行四边形,让学生观察并归纳它们的性质和规律,激发学生自主思考的能力。
4. 性质运用与问题解决在学生理解了矩形和平行四边形的性质后,教师可通过一些实际问题的提出,引导学生运用所学知识解决问题。
例如,教师可以提出一道关于房间地板铺设的问题:“你有一个长方形房间,长3.6米,宽2.8米,你打算用砖块铺满整个房间,每块砖块的边长为20厘米,请问你需要多少块砖块?”通过这样的问题,既能够锻炼学生的计算能力,又能够巩固和应用所学的矩形和平行四边形的知识。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初中数学试卷
湖南省澧县张公庙镇中学2014-2015学年八年级数学第3章
《图形与坐标》检测试卷
一、选择题(本大题共8个小题,每小题3分,共24分)
1.在平面直角坐标系中,若点P (x -2,x )在第二象限,则x 的取值范围为( )
A.0<x <2
B.x <2
C.x >0
D.x >2
2.直角坐标系中,已知A (1,1),在x 轴上确定点P ,使△AOP 为等腰三角形,则符
合条件的点P 共有 ( )
A.1个
B.2个
C.3个
D.4个
3.如图,小手盖住的点的坐标可能为( )
A .(5,2)
B .(–6,3)
C .(–4,–6)
D .(3,–
4)
4.如图,将正方形OABC 放在平面直角坐标系中,O 是原点,A 的坐标为(1,
),则点C 的坐标为( )
A .(﹣
,1) B .(﹣1,) C .(
,1) D .(﹣,﹣1)
5.若定义变换:f (a,b )=(-a,b ),g (m,n )=(m,-n )(,)(,)f a b a b =-,
(,)(,)g m n m n =-,
如:(1,2)(1,2)f =-,(4,5)(4,5)g --=-,则((2,3))g f -=( ) A .(2,3)- B .(2,3)- C .(2,3) D .(2,3)--
6.在直角坐标系中,A (2,3)点的横坐标乘以-1,纵坐标不变,得到A ′点,则A
与A ′的关系是( )
A .关于x 轴对称
B .关于y 轴对称
C .关于原点对称
D .将A 点向x 轴负方向平移一个单位
7.若点P (1,-n ),Q (m ,3)关于原点对称,则P ,Q 两点的距离为( )
A 、8
B 、22
C 、10
D 、102
A .(0,-2)
B .(2,0)
C .(4,0)
D .(0,-4)
二、填空题(本大题共8个小题,每小题3分,共24分)
9.若点M(2,a+3)与点N (2,2a-15)关于x轴对称,
则a2+3=
10.已知等腰三角形ABC 的底边AB 在x 轴上,A 点坐标为
点C 的纵坐标为4,AC=,则B 点的坐标为
(1,0)顶11.若点M (a+3,a-2)在y 轴上,则点M 的坐标是__________。
12.已知y 轴上的点P 到原点的距离为5,则点P 的坐标为 。
13.已知0=mn ,则点(m ,n )在
14.如图,在平面直角坐标系中,已知点A (3,4),将OA
绕坐标原点O 逆时针旋转90°至OA ′,则点A ′的坐标
是 .
15.一束光线从y 轴上点A(0,1)出发,经过x 轴上点C 反射后经过点B(3,3),则光线从
A 点到
B 点经过的路线长是 。
16.点P 在第二象限内,P 到轴的距离是4,到轴的距离是3,那么点P 的坐标为____
四、解答题(填空请直接写出答案,解答请写出必要的演算过程或推理步骤。
)
17.如图,在平面直角坐标系xoy 中,(15)A -,,(10)B -,
,(43)C -,.
(1)ABC △的面积是 .(2分)
(2)在下图中画出ABC △向下平移2个单位,
向右平移5个单位后的111A B C △.(3分)
(3)写出点111A B C ,,的坐标.(3分)
18.如图,在平面直角坐标系中,A (a ,0),B (b ,0),C (-2,
217x y C y
(1)求a,b的值;(3分)
(2)在y轴上存在一点D,使得△COD的面积是△ABC面积的两倍,求出点D的坐标.(3分)
(3)在x轴上是否存在这样的点,存在请直接写出点D的坐标,
不存在请说明理由.(3分)
19.在图所示的平面直角坐标系中表示下面各点.
A(0,3) B(1,-3) C(3,-5)
D(-3,-5) E(3,5) F(5,7)
(1)A点到原点O的距离是。
(2分)
(2)将点C向x轴的负方向平移6个单位,
它与点重合。
(2分)
(3)连接CE,则直线CE与y轴是什么关系?(2分)
(4)点F分别到x、y轴的距离是多少?(2分)
20.如图,正方形ABCD中,点F在边BC上,E在边BA的延长线上.
(1)若DCF
△重合.则旋转中心是点;最少旋△按顺时针方向旋转后恰好与DAE
转了度;(2分)
(2)在(1)的条件下,若3,2
AE BF
==,求四边形BFDE的
面积.(2分)
21.(每小题2分,共6分)如图,已知:在平面直角坐标系中,每
△的顶点都在格点上,点A的坐标为
个小正方形的边长为1,ABC
(-3,2)。
请按要求分别完成下列各小题:
(1)把△ABC向下平移4个单位,得到△A1B1C1,画出△A1B1C1,点A1的坐标为
(2)画出△ABC关于y轴对称的△A2B2C2;点C2的坐标是
(3)求△ABC的面积。
22.((6分))如图,在Rt△ABC中,∠ACB=90°,∠B=30°,将△ABC绕点C按顺时针方向旋转n度后,得到△DEC,点D刚好落在AB边上.
(1)求n的值;
(2)若F是DE的中点,判断四边形ACFD的形状,并说明理由.
23.(5分)如图,点O、A、B的坐标分别为(0,0)(4,2)(3,0),将△OAB绕点O按逆时针方向旋转90o后,得到△OCD.(点A转到点C)
(1)画出△OCD;(3分)
(2)C的坐标为;(2分)
24.(6分)如图,在平面直角坐标系中,A、B均在边长为1的正方形网格格点上.
(1)在网格的格点中,找一点C,使△ABC是直角三角形,且三边长均为无理数(只画出一个,并涂上阴影);
(2)若点P在图中所给网格中的格点上,△APB是等腰三角形,满足条件的点P共有___ ___个;
(3)若将线段AB绕点A顺时针旋转90°,写出旋转后点B的坐标.
湖南省澧县张公庙镇中学2014-2015学年八年级数学第3章
《图形与坐标》检测试卷
参考答案
1.A
2.D.
3.D
4.A .
5.D.
6.B
7.D
8.B
9.19.
10.(3,0)或(-1,0).
11.(0,-5)
12.(0,5)或(0,-5)
13.x 轴或y 轴上
14.(-4,3)
15.5.
16.(-3,4)
17.(1)7.5.
(2)在图,中画出ABC △向下平移2个单位,向右平移5个单位后的111A B C △.
(3)A 1(4, 3),B 1(4, -2),C 1(1, 1)
18.(1)a=-3,b=1; (2)(0,4),(0,-4); (3)(8,0),(-8,0)
19.(1)3 (2)D 点 (3)平行 (4)7和5
20.(1)D ;90 ;(2)25.
21.(1)(-3,-2) (2)(5,3) (3)
2
5 22.(1)60;(2)四边形ACFD 是菱形。
23.(1)画图略 (2)(-2,4); (35.
24.(1)画图略(2)4;(3)(3,1).。