八年级下学期-数学-知识点总结(湘教版)
湘教版八年级下册数学知识点总结讲义

湘教版八年级下册数学知识点总结讲义一、内容概览代数部分:重点回顾一元一次方程与不等式的解法,二元一次方程组的解法及其应用,以及分式的概念与性质等关键知识点。
几何部分:梳理了平面图形的性质,包括平行四边形、三角形、梯形等图形的性质与判定定理,以及相似三角形与圆的性质等。
函数初步:介绍了函数的基本概念,包括正比例函数、反比例函数以及一次函数的性质与图像。
概率初步:掌握概率的基本概念,如随机事件、概率计算等,并学习绘制概率分布图。
拓展知识:涉及一些数学广角内容,如黄金分割、图形的旋转与平移等,旨在拓宽学生的数学视野。
1. 概括本学期数学课程的重要性和主要学习内容。
数学作为自然科学的基石,在八年级下册的学习中具有举足轻重的地位。
这一阶段数学课程的学习不仅是为了应对考试,更是为了培养学生的逻辑思维、空间想象、推理分析和解决实际问题的能力。
学生将逐渐建立起数学与日常生活、其他学科之间的联系,为未来的学习和生活奠定坚实的数学基础。
代数部分:重点学习一元一次不等式的解法及其应用,二次根式的概念和性质,分式的概念和基本性质等。
这些内容是数学中基础而重要的知识点,对于培养学生的数学运算能力和解决实际问题的能力至关重要。
几何部分:主要学习图形的相似与全等的性质、三角形与四边形的进一步性质等。
学生将建立起空间观念和几何直觉,增强对图形的感知和理解。
数据处理:引入统计初步知识,让学生理解数据的收集、整理和分析方法,培养从数据中提取信息的能力。
这些主要学习内容相互联系,共同构成了八年级下册的数学知识体系,为后续学习打下坚实的基础。
学生应认真掌握每一个知识点,培养自己的数学素养和解决问题的能力。
2. 强调复习和巩固知识点的重要性,以便更好地掌握数学知识和应用技能。
复习和巩固是数学学习中不可或缺的重要环节。
在湘教版八年级下册数学课程中,所涵盖的知识点既多且深,从基础的算术运算到复杂的几何证明,每一个环节都是构建学生数学知识体系的关键部分。
湘教版八年级数学(下)知识点

第一章直角三角形一、直角三角形的性质和判定1.直角三角形:有一个内角是直角的三角形。
三角形内角和等于180°。
三角形中线:连接三角形的一个顶点与它的对边中点的线段。
2.直角三角形的性质A.直角三角形的两个锐角互余。
B.直角三角形斜边上的中线等于斜边的一半。
C.在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半。
D.在直角三角形中,如果一条直角边等于斜边的一半,那么这条直角边所对的角等于30°。
3.直角三角形的判定A.有两个角互余的三角形是直角三角形。
B.如果三角形一边的中线等于这条边的一半,那么这个三角形是直角三角形。
二、勾股定理1.勾股定理:直角三角形两直角边a,b的平方和,等于斜边的c的平方,即a2+b2=c2。
2.在直角三角形中,已知任意两条边长,可以根据勾股定理求出第三边的长。
3.如果三角形的三边长a,b,c有下面关系:a2+b2=c2,那么这个三角形是直角三角形。
三、直角三角形全等的判定1.斜边和一条直角边对应相等的两个直角三角形全等(HL)。
2.直角三角形全等的条件(A表示对应角相等、S表示对应边相等)四、角平分线的性质1.角平分线上的点到角的两边的距离相等。
2.角的内部到角的两边距离相等的点在叫的平分线上。
第二章 四边形一、多边形1.多边形:在平面内,由一些线段首尾顺次相接组成的封闭图形叫做多边形。
A .组成多边形的各条线段叫做多边形的边。
B .每相邻两条边的公共端点叫做多边形的焦点。
C .连接不相邻两个顶点的线段叫做多边形的对角线。
D .相邻两边组成的角叫作多边形的内角,简称多边形的角。
2.多边形的内角和n 边形的内角和等于(n -2)*180°。
3.多边形的外角和A .多边形外角的定义:多边形的内角的一边与另一边的方向延长线所组成的角。
B .多边形外角和的定义:在多边形的每一个顶点处取一个外角,它们的和。
C .多边形外角和定理:任意多边形的外角和等于360°。
新湘教版八年级下数学知识点大全

C BAC BAcba CB ADCBAP F ED CB21APE DC BAFE CBA 新湘教版八年级下册数学复习资料一、直角三角形1、角平分线: 角平分线上的点到这个角的两边的距离相等 如图,∵AD 是∠BAC 的平分线(或∠1=∠2),PE ⊥AC ,PF ⊥AB ∴PE=PF角平分线的逆定理; 角内部的点到角两边的距离相等,那么这一点到角的角平分线上。
∵PE ⊥AC ,PF ⊥AB PE=PF ∴点P 在∠BAC 的平分线AD 上2、线段垂直平分线:线段垂直平分线上的点到这条线段两个端点 的距离相等 。
如图,∵CD 是线段AB 的垂直平分线,∴PA=PB3、勾股定理及其逆定理①勾股定理:直角三角形两直角边a 、b 的平方和等于斜边c 的平方,即222a b c+=。
求斜边,则c a b =②逆定理 如果三角形的三边长a 、b 、c 有关系222a b c +=,那么这个三角形是直角三角形 。
分别计算“22ab +”和“2c ”,相等就是Rt ∆,不相等就不是Rt ∆。
4、直角三角形全等方法:SAS 、ASA 、SSS 、AAS 、HL 。
HL: 斜边和一条直角边分别对应相等的两个直角三角形全等。
5、直角三角形的其它性质直角三角形两锐角互余②直角三角形斜边上的中线等于斜边上的一半如图,在Rt ∆ABC 中,∵CD 是斜边AB 的中线,∴CD=12AB。
②在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半如图,在Rt ∆ABC 中,∵∠A=30°,∴BC=12AB。
③在直角三角形中,如果一条直角边等于斜边的一半,那么 这条直角边所对的角等于30°如图,在Rt ∆ABC 中,∵BC=12AB,∴∠A=30°。
6、直角三角形的判定1、有一个角是直角的三角形是直角三角形。
2、如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形。
新湘教版八年级下数学知识点大全(精编文档).doc

【最新整理,下载后即可编辑】C BACBAcb aCBAD C BA P F E D C B21A PE DCB A 【最新整理,下载后即可编辑】新湘教版八年级下册数学复习资料一、直角三角形 1、角平分线: 角平分线上的点到这个角的两边的距离相等如图,∵AD 是∠BAC 的平分线(或∠1=∠2),PE ⊥AC ,PF ⊥AB ∴PE=PF角平分线的逆定理; 角内部的点到角两边的距离相等,那么这一点到角的角平分线上。
∵PE ⊥AC ,PF ⊥AB PE=PF ∴点P 在∠BAC 的平分线AD 上 2、线段垂直平分线:线段垂直平分线上的点到这条线段两个端点的距离相等 。
如图,∵CD 是线段AB 的垂直平分线,∴PA=PB3、勾股定理及其逆定理①勾股定理:直角三角形两直角边a 、b 的平方和等于斜边c 的平方,即222a b c +=。
求斜边,则c =;求直角边,则a =或b =②逆定理 如果三角形的三边长a 、b 、c 有关系222a b c +=,那么这个三角形是直角三角形 。
分别计算“22a b +”和“2c ”,相等就是Rt ∆,不相等就不是Rt ∆。
4、直角三角形全等 方法:SAS 、ASA 、SSS 、AAS 、HL 。
HL: 斜边和一条直角边分别对应相等的两个直角三角形全等。
5、直角三角形的其它性质 ① 直角三角形两锐角互余②直角三角形斜边上的中线等于斜边上的一半 如图,在Rt ∆ABC 中,∵CD 是斜边AB 的中线,∴CD=12AB 。
②在直角三角形中,如果一个锐角等于30°那么它所对的直角 边等于斜边的一半如图,在Rt ∆ABC 中,∵∠A=30°,∴BC=12AB 。
③在直角三角形中,如果一条直角边等于斜边的一半,那么【最新整理,下载后即可编辑】F E CB A oBADC这条直角边所对的角等于30°如图,在Rt ∆ABC 中,∵BC=12AB ,∴∠A=30°。
湘教版八年级数学(下)知识点

第一章直角三角形一、直角三角形的性质和判定1。
直角三角形:有一个内角是直角的三角形.三角形内角和等于180°.三角形中线:连接三角形的一个顶点与它的对边中点的线段.2.直角三角形的性质A.直角三角形的两个锐角互余。
B。
直角三角形斜边上的中线等于斜边的一半。
C.在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半.D.在直角三角形中,如果一条直角边等于斜边的一半,那么这条直角边所对的角等于30°。
3。
直角三角形的判定A。
有两个角互余的三角形是直角三角形.B.如果三角形一边的中线等于这条边的一半,那么这个三角形是直角三角形。
二、勾股定理1.勾股定理:直角三角形两直角边a,b的平方和,等于斜边的c的平方,即a2+b2=c2。
2。
在直角三角形中,已知任意两条边长,可以根据勾股定理求出第三边的长。
3.如果三角形的三边长a,b,c有下面关系:a2+b2=c2,那么这个三角形是直角三角形。
三、直角三角形全等的判定1。
斜边和一条直角边对应相等的两个直角三角形全等(HL)。
2.直角三角形全等的条件(A表示对应角相等、S表示对应边相等)1 / 112 / 11四、角平分线的性质 1.角平分线上的点到角的两边的距离相等。
2.角的内部到角的两边距离相等的点在叫的平分线上。
第二章 四边形一、多边形1.多边形:在平面内,由一些线段首尾顺次相接组成的封闭图形叫做多边形.A .组成多边形的各条线段叫做多边形的边。
B 。
每相邻两条边的公共端点叫做多边形的焦点。
C 。
连接不相邻两个顶点的线段叫做多边形的对角线。
D 。
相邻两边组成的角叫作多边形的内角,简称多边形的角.2。
多边形的内角和n 边形的内角和等于(n -2)*180°。
3.多边形的外角和A .多边形外角的定义:多边形的内角的一边与另一边的方向延长线所组成的角。
B .多边形外角和的定义:在多边形的每一个顶点处取一个外角,它们的和。
八年级数学下册知识点归纳湖南教育出版社

八年级下册数学知识点归纳第一章直角三角形1.直角三角形的性质(1)直角三角形的两个锐角互余。
可表示如下:/ C=90 ZA+-ZB=90°(2)在直角三角形中,30°角所对的直角边等于斜边的一半1如图:若/ACB=90 , /A=30 则BC=1AB2(3)在直角三角形中,如果一条直角边等于斜边的一半,那么这条直角边所对的角等于30°如图:若/ ACB=90 , BC=1AB 则/A=30°2CB(4)直角三角形斜边上的中线等于斜边的一半即a2+b2=c2如图:若/ACB=90 , D为AB的中点则CD =1AB = BD = AD 2(5)勾股定理:直角三角形两直角边a,b的平方和,等于斜边c的平方2.直角三角形的判定(1)有两个角互余的三角形是直角三角形(2)如果三角形一边上的中线等于这条边的一半,则这个三角形是直角三角形(3)勾股定理逆定理:如果三角形三边长a,b,c满足a2+b2=c2。
,那么这个三角形是直角三角形3.直角三角形全等的判定斜边、直角边定理:斜边和一条直角边对应相等的两个直角三角形全等( HL)4.角平分线(1)角的平分线上的点到角的两边的距离相等(2)角的内部到角的两边距离相等的点在这个角的平分线上5.全等三角形判定SAS ASA AAS SSS HL第二章四边形1.多边形(1)n边形的内角和等于(n —2) .180(2)任意多边形的外角和等于36002、平行四边形(1)定义:有两组对边分别平行的四边形叫做平行四边形。
(2 )性质:平行四边形的对边相等;对角相等;对角线互相平分。
B C(3)列J定:1. 两组对边分别平行的四边形是平行四边形;(AB//CD,AD//BC)2.两组对边分别相等的四边形是平行四边形;(AB=CD,AD=BC)3.对角线互相平分的四边形是平行四边形;(AO=CO,BO=OD)4. 一组对边平行且相等的四边形是平行四边形。
八年级数学下册湘教知识点

八年级数学下册湘教知识点八年级数学下册湘教教材是中国湖南教育出版社出版的教材,它涵盖了很多数学知识点。
在这篇文章中,我们将会介绍八年级数学下册湘教的一些重要知识点,帮助同学们更好地学习和掌握这门学科。
一、有理数及其运算有理数是整数和分数的统称,它们可以用分数表示,并且可以进行四则运算。
在学习有理数的过程中,我们需要掌握有理数的符号、绝对值、相反数以及常见的有理数运算法则。
二、代数式及其运算代数式是由数字、字母以及运算符号组成的式子,它们可以用于表示数学问题中的未知数和关系式,常见代数式包括单项式和多项式。
在代数式的运算中,我们需要了解同类项的概念,以及加法、减法、乘法、除法等基本运算法则。
三、一次函数及其应用一次函数是一种常见的函数类型,它可以表示成y=kx+b的形式,其中k和b是常数。
在学习一次函数时,我们需要了解函数图像的特征,掌握斜率的概念和计算方法,以及应用一次函数解决实际问题的方法。
四、平面图形与容积平面图形包括多边形、圆形和弧形等,其中三角形、矩形、平行四边形、正方形、圆形等是我们需要重点掌握的图形类型。
在学习平面图形时,我们需要学习计算图形的周长和面积的方法以及一些常见的相关定理。
容积是由长度、宽度和高度三个方向确定的立体图形的体积大小。
在学习容积时,我们需要了解立方体、长方体、棱柱、棱锥和棱台等常见图形的容积计算方法。
五、统计统计是一种数学方法,它可以用于收集、整理、分析和解释数据。
在学习统计时,我们需要掌握常见的统计图表的绘制和解析方法,包括条形图、折线图、饼图、散点图等。
六、几何变换几何变换是指对几何图形进行旋转、翻转、平移、放缩等操作,使得它们的位置、大小、方向发生改变。
在学习几何变换时,我们需要了解变换的定义和分类,掌握平移、旋转、翻转和放缩的基本操作,以及应用几何变换解决实际问题的方法。
七、等比数列等比数列是一种特殊的数列,它的相邻两项之比保持不变。
在学习等比数列时,我们需要了解数列的概念以及等比数列的性质,掌握计算等比数列的通项公式和前n项和公式,以及应用等比数列解决实际问题的方法。
新湘教版八年级下数学知识点大全精编版

新湘教版八年级下数学知识点大全精编版MQS system office room 【MQS16H-TTMS2A-MQSS8Q8-MQSH16898】CBAC BAc baCB A DCBAPF E DCB21APEDCB AFECBA 新湘教版八年级下册数学复习资料 一、直角三角形1、角平分线: 角平分线上的点到这个角的两边的距离相等如图,∵AD 是∠BAC 的平分线(或∠1=∠2),PE ⊥AC ,PF ⊥AB ∴PE=PF角平分线的逆定理; 角内部的点到角两边的距离相等,那么这一点到角的角平分线上。
∵PE ⊥AC ,PF ⊥AB PE=PF ∴点P 在∠BAC 的平分线AD 上2、线段垂直平分线:线段垂直平分线上的点到这条线段两个端点的距离相等 。
如图,∵CD 是线段AB 的垂直平分线,∴PA=PB 3、勾股定理及其逆定理①勾股定理:直角三角形两直角边a 、b 的平方和等于斜边c 的平方,即222a b c +=。
求斜边,则c =a =b =②逆定理 如果三角形的三边长a 、b 、c 有关系222a b c +=,那么这个三角形是直角三角形 。
分别计算“22a b +”和“2c ”,相等就是Rt ∆,不相等就不是Rt ∆。
4、直角三角形全等方法:SAS 、ASA 、SSS 、AAS 、HL 。
HL: 斜边和一条直角边分别对应相等的两个直角三角形全等。
5、直角三角形的其它性质直角三角形两锐角互余②直角三角形斜边上的中线等于斜边上的一半 如图,在Rt ∆ABC 中,∵CD 是斜边AB 的中线,∴CD=12AB。
②在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半如图,在Rt ∆ABC 中,∵∠A=30°,∴BC=12AB 。
③在直角三角形中,如果一条直角边等于斜边的一半,那么这条直角边所对的角等于30°Rt ∆ABC 中,如图,在∵BC=12AB ,∴∠A=30°。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
C BAC BAc ba CB ADCBAP FE D CB21A PE DCB A F E CB AoBADC新湘教版八年级下册数学复习资料一、直角三角形1、角平分线: 角平分线上的点到这个角的两边的距离相等 如图,∵AD 是∠BAC 的平分线(或∠1=∠2), PE ⊥AC ,PF ⊥AB ∴PE=PF角平分线的逆定理; 角内部的点到角两边的距离相等,那么这一点到角的角平分线上。
∵PE ⊥AC ,PF ⊥AB PE=PF ∴点P 在∠BAC 的平分线AD 上2、线段垂直平分线:线段垂直平分线上的点到这条线段两个端点的距离相等 。
如图,∵CD 是线段AB 的垂直平分线,∴PA=PB3、勾股定理及其逆定理①勾股定理:直角三角形两直角边a 、b 的平方和等于斜边c 的平方,即222abc +=。
求斜边,则c =a =b =②逆定理 如果三角形的三边长a 、b 、c 有关系222a b c +=,那么这个三角形是直角三角形 。
分别计算“22a b +”和“2c ”,相等就是Rt ∆,不相等就不是Rt ∆。
4、直角三角形全等方法:SAS 、ASA 、SSS 、AAS 、HL 。
HL: 斜边和一条直角边分别对应相等的两个直角三角形全等。
5、直角三角形的其它性质① 直角三角形两锐角互余②直角三角形斜边上的中线等于斜边上的一半如图,在Rt ∆ABC 中,∵CD 是斜边AB 的中线,∴CD=12AB。
②在直角三角形中,如果一个锐角等于30°那么它所对的直角 边等于斜边的一半如图,在Rt ∆ABC 中,∵∠A=30°,∴BC=12AB。
③在直角三角形中,如果一条直角边等于斜边的一半,那么这条直角边所对的角等于30°如图,在Rt ∆ABC 中,∵BC=12AB,∴∠A=30°。
6、直角三角形的判定1、有一个角是直角的三角形是直角三角形。
2、如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形。
3、勾股定理的逆定理:如果三角形的三边长a ,b ,c 有关系222c b a =+,那么这个三角形是直角三角形。
7、三角形中位线定义:连接三角形两边中点的线段叫做中位线。
三角形中位线定理 三角形的中位线平行于第三边,并且等于它的一半 如图,在⊿ABC 中,∵E 是AB 的中点,F 是AC 的中点,即EF 是⊿ABC 的中位线 ∴EF ∥BC 且EF=21BC二、四边形1、多边形内角和公式:n 边形的内角和=(n -2)·180º;任意多边形的外角和:360求n 边形的方法:2180n =+内角和n 边形的对角线共有2)3(-n n 条 2、中心对称:(在直角坐标系中即关于原点对称,其横、纵坐标都互为相反数) ※1.成中心对称的两个图形是全等.※2.成中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分. ※3.如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称.会画与某某图形成中心对称图形会辨别图形、实物、汉字、英文字母、扑克等是否中心对称图形 3、特殊四边形的性质和判定平行四边行性质⎪⎪⎪⎩⎪⎪⎪⎨⎧.54321)邻角互补()对角线互相平分;()两组对角分别相等;()两组对边分别相等;()两组对边分别平行;(是平行四边形)对角线互相平分()一组对边平行且相等()两组对角分别相等()两组对边分别相等()两组对边分别平行(ABCD 54321⎪⎪⎪⎭⎪⎪⎪⎬⎫矩形的性质⎪⎩⎪⎨⎧.3;2;1)对角线相等()四个角都是直角(有通性)具有平行四边形的所( ⎪⎭⎪⎬⎫+边形)对角线相等的平行四()三个角都是直角(一个直角)平行四边形(321⇒四边形ABCD 是矩形.菱形的性质⎪⎩⎪⎨⎧.321角)对角线垂直且平分对()四个边都相等;(有通性;)具有平行四边形的所( ⎪⎭⎪⎬⎫+边形)对角线垂直的平行四()四个边都相等(一组邻边等)平行四边形(321⇒四边形四边形ABCD 是菱形. 正方形⎪⎩⎪⎨⎧.321分对角)对角线相等垂直且平(角都是直角;)四个边都相等,四个(有通性;)具有平行四边形的所( ⎪⎭⎪⎬⎫++++一组邻边等矩形)(一个直角)菱形(一个直角一组邻边等)平行四边形(321⇒四边形ABCD 是正方形4、面积公式①S 平行四边形=底×高 ②S 矩形=长×宽 ③S 正方形=边长×边长 ④S 菱形=底×高=×(对角线的积),即:S=(a ×b)÷2 5、有关中点四边形问题的知识点:(1)顺次连接任意四边形的四边中点所得的四边形是平行四边形; (2)顺次连接矩形的四边中点所得的四边形是菱形;(3)顺次连接菱形的四边中点所得的四边形是矩形;(4)顺次连接等腰梯形的四边中点所得的四边形是菱形;(5)顺次连接对角线相等的四边形四边中点所得的四边形是菱形;(6)顺次连接对角线互相垂直的四边形四边中点所得的四边形是矩形;(7)顺次连接对角线互相垂直且相等的四边形四边中点所得的四边形是正方形; 6、四边形、矩形、菱形、正方形、梯形、等腰梯形、直角梯形的关系图:三、图形与坐标1、有序实数对:一组有顺序的数。
记作(a ,b )2、平面直角坐标系:两条互相垂直,原点重合的数轴,组成平面直角坐标系。
横轴x 轴,向右为正;纵轴y 轴,向上为正。
3、不同位置的点的坐标的特征 (1)各象限内点的坐标的特征点P(x,y) 在第一象限0,0>>⇔y x (+,+);在第二象限0,0><⇔y x (-,+)在第三象限0,0<<⇔y x (-,-);在第四象限0,0<>⇔y x (+,-)(2)坐标轴上的点的特征(坐标轴上的点不属于任何象限) 在x 轴上→(x,0)→横坐标轴上的点,纵坐标等于0; 在y 轴上→(0,y)→纵坐标轴上的点,横坐标等于0;点P(x,y)既在x 轴上,又在y 轴上⇔即点P 坐标为(0,0)原点。
(3)两条坐标轴夹角平分线上点的坐标的特征点P(x,y)在第一、三象限夹角平分线(直线y=x )上⇔x 与y 相等; 点P(x,y)在第二、四象限夹角平分线上⇔x 与y 互为相反数。
(4)和坐标轴平行的直线上点的坐标的特征平行于x 轴的直线上的各点的纵坐标相同;A D BCA DBCOCDBAOC D A B平行于y 轴的直线上的各点的横坐标相同。
4、点的对称性:关于什么轴对称什么坐标不变关于x 轴对称的点,横坐标相同,纵坐标相反;P(x,y)→(x,-y) 关于y 轴对称的点,横坐标相反,纵坐标相同;P(x,y)→(-x,y) 关于原点对称的点,横、纵坐标都相反;P(x,y)→(-x,-y) 解题方法:相等时用“=”连结,相反时两式相加=0。
5、坐标平移: 左右平移:横坐标右加左减,纵坐标不变;上下平移:横坐标不变,纵坐标上加下减。
6、点到坐标轴及原点的距离 (1)点P(x,y)到x 轴的距离等于y(2)点P(x,y)到y 轴的距离等于x(3)点P(x,y)到原点的距离等于22y x +7、坐标轴上两点的距离:点A (x 1,0)点(x 2,0)则AB 距离为 点A (0,y 1)点(0, y 2)则AB 距离为 点A (x 1,y 1)点(x 2, y 2)则AB 距离为 8、中点坐标点A (x 1,0)点(x 2,0)则AB 中点坐标为 点A (0,y 1)点(0, y 2)则AB 中点坐标为 点A (x 1,y 1)点(x 2, y 2)则AB 中点坐标为 四、一次函数1、判断函数:两个变量;区分自变量,因变量;自变量取一个值因变量有唯一的一个值与它相对应,一一对应。
2、函数自变量的取值:整式取全体实数,分式则分母不为0;二次根式则根号下的式子被开方式≥0;零次幂和负指数次幂底数≠0;组合的公共部分;实际情况实际分析。
3、函数值;函数的表示方法:列表法、图像法、公式法。
画函数图像的步骤:列表、描点、连线。
4、用待定系数法确定一次函数解析式的一般步骤: (1)解设:函数关系式y=kx +b ;(2)代;将x 、y 的几对值或图象上的几个点的坐标代入上述函数关系式中得到关于k ,b 的二元一次方程组; (3)解;求k ,b ;(4)写;写出所求函数的解析式.5、一次函数与一元一次方程的关系:任何一个一元一次方程都可转化为:kx+b=0(k 、b 为常数,k ≠0)的形式 而一次函数解析式形式正是y=kx+b (k 、b 为常数,k ≠0).当函数值为0时,•即kx+b=0就与一元一次方程完全相同. 结论:由于任何一元一次方程都可转化为kx+b=0(k 、b 为常数,k ≠0)的形式.所以解一元一次方程可以转化为:当一次函数值为0时,求相应的自变量的值. 从图象上看,这相当于已知直线y=kx+b 确定它与x 轴交点的横坐标值.6、正比例函数与一次函数之间的关系一次函数y=kx +b 的图象是一条直线,它可以看作是由直线y=kx 平移|b|个单位长度而得到(当b>0时,向上平移;当b<0时,向下平移) 7、直线11b x k y+=(01≠k )与22b x k y +=(02≠k )位置关系(1)两直线平行⇔21k k =且21b b ≠ (2)两直线相交⇔21k k ≠(3)两直线重合⇔21k k =且21b b = (4)两直线垂直⇔121-=k k8、坐标轴上点的特征:x 轴上的点纵坐标为0即(a ,0);y 轴上的点横坐标为0.即(0,b )。
9、一次函数、正比例函数图像的主要特征:一次函数b kx y +=的图像是经过点(0,b )、( ,0)的直线;正比例函数kx y =的图像是经过原点(0,0)的直线。
b>0b<0b=0k>0经过第一、二、三象限经过第一、三、四象限经过第一、三象限图象从左到右上升,y 随x 的增大而增大k<0经过第一、二、四象限经过第二、三、四象限经过第二、四象限图象从左到右下降,y 随x 的增大而减小五、数据的频数分布1、频数与频率:频率=总数频数,频数=频率×总数;各小组的频数之和等于总数,各小组的频率之和等于1。
2、画频数分布直方图步骤:a 分组:找最大值,最小值;极差=最大值-最小值;组数自定(一般5—6组);组距=极差÷组数;b 列频数分布表;c 画频数分布直方图(无缝隙,小矩形宽是组距,个数是组数,高是频数)2、频数分布直方图:会读图,计算并将直方图补充完整。
六、辅助线作法人说几何很困难,难点就在辅助线。
辅助线,是虚线,画图注意勿改变。