八数(上)期末模拟2
2021-2022学年北京市丰台区八年级(上)期末数学模拟练习试卷(2)
2021-2022学年北京市丰台区八年级(上)期末数学模拟练习试卷(2)1.(单选)“KN95”表示此类型的口罩能过滤空气中95%的粒径约为0.0000003m的非油性颗粒.其中,0.0000003用科学记数法表示为()A.3×10-6B.3×10-7C.0.3×10-6D.0.3×10-72.(单选)下列体育运动图案中,属于轴对称图形的是()A.B.C.D.3.(单选)下列计算正确的是()A.a2•a3=a5B.(a3)2=a5C.(2ab2)3=6a3b6aD.3a2÷4a2= 344.(单选)下列多边形中,内角和为720°的图形是()A.B.C.D.5.(单选)用三角板作△ABC的边BC上的高,下列三角板的摆放位置正确的是()A.B.C.D.6.(单选)已知点A(3,y)和点B(x,4)关于x轴对称,则()A.x=3,y=4B.x=-3,y=4C.x=3,y=-4D.x=-3,y=-47.(单选)如图所示,点O是△ABC内一点,BO平分∠ABC,OD⊥BC于点D,连接OA,若OD=5,AB=20,则△AOB的面积是()A.20B.30C.50D.1008.(单选)设a,b是实数,定义一种新运算:a*b=(a-b)2.下面有四个推断:① a*b=b*a;② (a*b)2=a2*b2;③ (-a)*b=a*(-b);④ a*(b+c)=a*b+a*c.其中所有正确推断的序号是()A. ① ② ③ ④B. ① ③ ④C. ① ②D. ① ③9.(填空)写出一个含有字母m,且m≠2的分式,这个分式可以是___ .10.(填空)分解因式:3x2+6x+3=___ .11.(填空)如果等腰三角形的两边长分别是4、8,那么它的周长是___ .12.(填空)如图所示,已知P是AD上的一点,∠ABP=∠ACP,请再添加一个条件:___ ,使得△ABP≌△ACP.13.(填空)如图,已知∠AOB=30°,P是∠AOB平分线上一点,CP || OB,交OA于点C,PD⊥OB,垂足为点D,且PC=4,则PD等于___ .14.(填空)如图,MN是正方形ABCD的一条对称轴,点P是直线MN上的一个动点,当PC+PD最小时,∠PCD=___ °.15.(填空)如图1,先将边长为a的大正方形纸片ABCD剪去一个边长为b的小正方形EBGF,然后沿直线EF将纸片剪开,再将所得的两个长方形按如图2所示的方式拼接(无缝隙,无重叠),得到一个大的长方形AEGC .根据图1和图2的面积关系写出一个等式:___ .(用含a ,b 的式子表示)16.(填空)如图,在Rt△ABC 中,∠C=90°,以△ABC 的一边为边画等腰三角形,使得它的第三个顶点在△ABC 的其他边上,则可以画出的不同的等腰三角形的个数最多为 ___ .17.(问答)计算: √9 +(2-π)0-( 12 )-2.18.(问答)计算:(2x-3)2-(x-3)(2x+1).19.(问答)解方程: x+1x−1 + 4x 2−1 =1.20.(问答)下面是小芳同学设计的“过直线外一点作这条直线垂线”的尺规作图过程. 已知:如图1,直线l 及直线l 外一点P .求作:直线l 的垂线,使它经过点P .作法:如图2,① 以P 为圆心,大于P 到直线l 的距离为半径作弧,交直线l 于A 、B 两点;② 连接PA 和PB ;③ 作∠APB 的角平分线PQ ,交直线l 于点Q .④ 作直线PQ .∴直线PQ就是所求的直线.根据小芳设计的尺规作图过程,解答下列问题:(1)使用直尺和圆规,补全图2(保留作图痕迹);(2)补全下面证明过程:证明:∵PQ平分∠APB,∴∠APQ=∠QPB.又∵PA=___ ,PQ=PQ,∴△APQ≌△BPQ ___ (填推理依据).∴∠PQA=∠PQB ___ (填推理依据).又∵∠PQA+∠PQB=180°,∴∠PQA=∠PQB=90°.∴PQ⊥l.21.(问答)如图,点B在线段AD上,BC || DE,AB=ED,BC=DB.求证:∠A=∠E.22.(问答)已知:x2+3x=1,求代数式1x−1• x2−2x+1x+2- x−2x+1的值.23.(问答)从图1的风筝图形可以抽象出几何图形,我们把这种几何图形叫做“筝形”.具体定义如下:如图2,在四边形ABCD中,AB=AD,BC=DC,我们把这种两组邻边分别相等的四边形叫做“筝形”.(1)结合图3,通过观察、测量,可以猜想“筝形”具有诸如“AC 平分∠BAD 和∠BCD”这样的性质,请结合图形,再写出两条“筝形”的性质:① ___ ;② ___ .(2)从你写出的两条性质中,任选一条“筝形”的性质给出证明.24.(问答)下面是两位同学的一段对话:聪聪:周末我们去国家博物馆参观“伟大的变革--庆祝改革开放40周年大型展览”吧.明明:好啊,我家离国家博物馆约30km ,我坐地铁先走,地铁的平均行驶速度是公交车的1.5倍呢.聪聪:嗯,我周末住奶奶家,离国家博物馆只有5km ,坐公交车,你出发40分钟后我再出发就能和你同时到达.根据对话内容,请你求出公交车和地铁的平均行驶速度.25.(问答)阅读理解材料1:小学时常常会遇到将一个假分数写成带分数的问题,在这个计算的过程中,先计算分子中有几个分母求出整数部分,再把剩余的部分写成一个真分数,例如: 53 =1+ 23 =1 23 . 类似的,我们可以将下列的分式写成一个整数与一个新分式的和.例如:x+1x =1+ 1x. x+1x−1 = (x−1)+2x−1 =1+ 2x−1 .材料2:为了研究字母x 和分式 1x 值的变化关系,小明制作了表格,并得到数据如下: x … -4 -3 -2 -1 1 2 3 4 …1x … -0.25 -0. 3• -0.5 -1 无意义 1 0.5 0. 3• 0.25 …请根据上述材料完成下列问题: (1)把下面的分式写成一个整数与一个新分式的和的形式:x+2x =___ ; x+1x−2 =___ ; (2)当x >0时,随着x 的增大,分式 x+2x的值 ___ (增大或减小); (3)当x >-1时,随着x 的增大,分式2x+3x+1 的值无限趋近一个数,请写出这个数,并说明理由.26.(问答)已知:线段AB 及过点A 的直线l .如果线段AC 与线段AB 关于直线l 对称,连接BC 交直线l 于点D ,以AC 为边作等边△ACE ,使得点E 在AC 的下方,作射线BE 交直线l 于点F ,连接CF .(1)根据题意将图1补全;(2)如图1,如果∠BAD=α(30°<α<60°)① ∠BAE=___ ,∠ABE=___ ;(用含有α代数式表示)② 用等式表示线段FA ,FE 与FC 的数量关系,并证明;(3)如图2,如果60°<α<90°,直接写出线段FA ,FE 与FC 的数量关系,不证明.27.(问答)在平面直角坐标系xOy 中,直线l 为二、四象限角平分线,图形T 关于x 轴的对称图形称为图形T 的一次反射图形,记作图形T 1;图形T 1关于直线l 的对称图形称为图形T 的二次反射图形,记作图形T 2.例如,点(2,5)的一次反射点为(2,-5),二次反射点为(5,-2),根据定义,回答下列问题:(1) ① 点(-2,5)的一次反射点为 ___ ,二次反射点为 ___ ;② 当点A 在第二象限时,点M (3,1)、N (3,-1),P (5,-1)中可以是点A 的二次反射点的是 ___ .(2)若点A在第一象限,点A1,A2分别是点A的一次、二次反射点,△OA1A2为等边三角形,求射线OA与y轴所夹锐角的度数;(3)已知点E(1,n),F(2,n).若以EF为边的正方形的二次反射图形与直线x=3有公共点,则n的取值范围为 ___ .。
2022-2023学年北师大版八年级上册数学期末模拟卷-原卷版
2022-2023学年北师大版八年级上册数学期末模拟卷一.选择题(共10小题)1.将一副直角三角板按如图所示的位置放置,两直角三角板各有一条直角边在同一条直线上,则∠α的度数是()A.75°B.90°C.105°D.120°2.满足下列条件时,△ABC不是直角三角形的为()A.AB=,BC=4,AC=5B.AB:BC:AC=3:4:5C.∠A:∠B:∠C=3:4:5D.∠A=61°,∠B=29°3.某生物小组观察一植物生长,得到的植物高度y(单位:厘米)与观察时间x(单位:天)的关系,并画出如图所示的图象(AC是线段,直线CD平行于x轴).下列说法正确的是()①该植物开始的高度为6厘米;②直线AC的函数表达式为;③第40天,该植物的高度为14厘米;④该植物最高为15厘米;⑤该植物的高度随时间的增加而增高.A.①②③B.②④C.②③⑤D.①②③④4.下列命题中,为真命题的是()A.内错角相等B.同位角相等C.若a2=b2,则a=﹣b D.若a=b,则﹣2a=﹣2b5.某校评选先进班集体,从“学习”、“卫生”、“纪律”、“活动参与”四个方面综合考核打分,各项满分均为100,所占比例如下表:项目学习卫生纪律活动参与所占比例40%25%25%10%某班这四项得分依次为85,90,80,75,则该班四项综合得分为()A.84B.83.5C.83D.82.56.小亮用100元钱去买单价是5元的笔记本,则他剩余的钱y(元)与他买这种笔记本的本数x之间的表达式是()A.y=5x B.y=100﹣5x C.y=5x﹣100D.y=5x+1007.如图,棱柱的底面是边长为8的正方形,侧面都是长为16的长方形,点D是BC的中点,在棱柱下底面的A点处有一只蚂蚁,它想吃到上底面点D处的食物,需要爬行的最短路程是s,则s2的值为()A.784B.464C.400D.3368.如图,在△ABC中,AB=AC=5,BC=6,则AC边上的高BD的长为()A.4B.C.D.59.如图所示为“赵爽弦图”,其中△ABE、△CBF、△CDG、△ADH是四个全等的直角三角形,且两条直角边之比为1:2,连接BG、DE,分别交AE、CG于点M、N,则四边形GBED和四边形GMEN的面积比为()A.5:2B.2:1C.:1D.:110.一条公路旁依次有A,B,C三个村庄,甲、乙两人骑自行车分别从A村、B村同时出发前往C村,甲、乙之间的距离s(km)与骑行时间t(h)之间的函数关系如图所示,下列结论:①A,B两村相距10km;②甲出发2h后到达C村;③甲每小时比乙多骑行8km;④相遇后,乙又骑行了30min或55min时两人相距4km.其中正确的是()A.①③④B.①②③C.①②④D.①②③④二.填空题(共5小题)11.若等腰三角形两边x、y满足,等腰三角形的周长为.12.已知正比例函数y=kx中,y的值随x的增大而增大,则在第象限.13.如图,有一个圆柱,它的高等于12cm,底面上圆的周长等于18cm,在圆柱下底面的点A处有一只蚂蚁,它想吃到上底面与点A相对的点B处的食物,则蚂蚁沿圆柱侧面爬行的最短路程是cm.14.如图,在平面直角坐标系中,一次函数y=﹣2x+4的图象与x轴、y轴分别交于点A和点B,过点B的直线BC:y=kx+b交x轴于点C(﹣8,0).(1)k的值为;(2)点M为直线BC上一点,若∠MAB=∠ABO,则点M的坐标是.15.如图,RtABC中,∠ABC=90°,BM⊥AC,垂足为M,在下列说法中:①以AB2,BC2,AC2为长度的线段首尾相连能够组成一个三角形;②以,,为长度的线段首尾相连能够组成一个三角形;③以(AC+BM),(AB+CB),BM为长度的线段首尾相连能够组成一个直角三角形;④以,,为长度的线段首尾相连不能组成直角三角形;其中正确的说法有(填写正确说法的序号).三.解答题(共5小题)16.解方程组.17.2021年在国务院办公厅发布《双减和五项管理方案》之后,某校为了调查本校学生对双减政策和五项管理制度的了解程度,随机抽取了部分学生进行一次问卷调查,并根据调查结果绘制了如图的统计图,请根据图中所给的信息,解答下列问题:(1)本次接受问卷调查的学生总人数是;(2)补全折线统计图.(3)扇形统计图中,“了解”所对应扇形的圆心角的度数为,m的值为.(4)若该校共有学生3000名,请根据上述调查结果估算该校学生对双减政策和五项管理制度的了解程度为“不了解”的人数.18.如图,在△ABC中,∠B=48°,三角形的外角∠DAC和∠ACF的平分线交于点E.求∠AEC的度数.19.如图,在平面直角坐标系中,直线AB与x轴,y轴分别相交于点A,B,且OA=6,OB=8.(1)求直线AB的函数表达式;(2)若点P(x,y)是第三象限内直线AB上的一个动点.①请求出△OP A的面积S与x之间的函数关系式,并写出自变量的取值范围;②当点P移动到使PO=P A的位置上时,请求出此时P点的坐标和△OP A的面积.20.如图1,在平面直角坐标系中,直线l1:y=kx+b过点A(10,0)和B(0,5),l1与l2互相垂直,且相交于点C(2,a),D为x轴上一动点.(1)求直线l1与直线l2的函数表达式;(2)如图2,当D在x轴负半轴上运动时,若△BCD的面积为8,求D点的坐标;(3)如图3,过D作x轴垂线,与l1交于点M.在x轴正半轴上是否存在点D使△BDM 为等腰三角形?若存在,请直接写出D点坐标.。
浙江省金华市2022-2023学年度上学期八年级期末考试模拟数学卷(含解析)
浙江省金华市2022年八年级数学(上)期末考试模拟卷一、选择题(共30分)1.下列各组数不可能是一个三角形的边长的是()A.1,2,3B.4,4,4C.6,6,8D.7,8,92.下列图形中,是轴对称图形的是()A.B.C.D.3.下列命题中,属于假命题的是()A.三角形三个内角的和等于180°B.全等三角形的对应角相等C.等腰三角形的两个底角相等D.相等的角是对顶角4.在数轴上表示不等式x-1<0的解集,正确的是()A.B.C.D.5.已知点A(2,7),AB//x轴,3AB ,则B点的坐标为()A.(5,7)B.(2,10)C.(2,10)或(2,4)D.(5,7)或(-1,7)6.关于一次函数y=x+2,下列说法正确的是()A.y随x的增大而减小B.经过第一、三、四象限C.与y轴交于(0,2)D.与x轴交于(2,0)7.如图,在△ABC中,△C=90°,以A为圆心,任意长为半径画弧,分别交AC,AB于点M,N,再分别以M,N MN长为半径画弧,两弧交点O,作射线AD,交BC于点E.己知CE=3,BE=5,则AC的长为为圆心,大于12()A.8B.7C.6D.58.在正比例函数y=kx中,y的值随着x值的增大而减小,则一次函数y=kx+k在平面直角坐标系中的图象大致是( )A .B .C .D .9.小明和爸爸从家里出发,沿同一路线到学校.小明匀速跑步先出发,2分钟后,爸爸骑自行车出发,匀速骑行一段时间后,在途中商店购买水果花费了5分钟,这时发现小明已经跑到前面,爸爸骑车速度增加60米/分钟,结果与小明同时到达学校.小明和爸爸两人离开家的路程s (米)与爸爸出发时间t (分钟)之间的函数图象如图所示.则下列说法错误的是( )A .a =15B .小明的速度是150米/分钟C .爸爸从家到商店的速度为200米/分钟D .爸爸出发7分钟追上小明10.如图,已知长方形纸板的边长10DE =,11EF =,在纸板内部画Rt ABC △,并分别以三边为边长向外作正方形,当边HI 、LM 和点K 、J 都恰好在长方形纸板的边上时,则ABC 的面积为( )A .6B .112C .254D .二、填空题(共24分)11.若x 的2倍与y 的差小于3,用不等式可以表示为______.12.如图,点D 、E 分别在线段AB ,AC 上,AE =AD ,不添加新的线段和字母,要使△ABE 和△ACD 全等判定依据是AAS ,需添加的一个条件是 _____.13.己知点A (m +1,1)与点B (2,n +1)关于x 轴对称,则m +n 的值为 _____.14.△ABC 为等腰三角形,周长为7cm ,且各边长为整数,则该三角形最长边的长为______cm .15.如图,OP 平分△MON ,P A △ON 于点A ,点Q 是射线OM 上一个动点,若P A =3,则PQ 的最小值为_____.16.已知直线y =13x +2与函数y =()()1111x x x x ⎧+≥-⎪⎨--<-⎪⎩的 图象交于A ,B 两点(点A 在点B 的左边). (1)点A 的坐标是_____;(2)已知O 是坐标原点,现把两个函数图象水平向右平移m 个单位,点A ,B 平移后的对应点分别为A ′,B ′,连结OA ′,OB ′.当m =_____时,|OA '﹣OB '|取最大值.三、解答题(共66分)17.(本题6分)解不等式组52331132x x x x -≤⎧⎪-+⎨<-⎪⎩,并将不等式组的解集表示在数轴上.18.(本题6分)如图,已知△ABC ,其中AB =AC .作AC 的垂直平分线DE ,交AC 于点D ,交AB 于点E ,连结CE (尺规作图,不写作法,保留作图痕迹);在(1)所作的图中.若BC=7.AC=9.求△BCE的周长.19.(本题6分)如图,函数y=-2x和y=kx+3的图象相交于点A(m,2).(1)求m和k的值.(2)根据图象,直接写出不等式23-<+的解.x kx20.(本题8分)已知一次函数y=kx+b的图象经过点A(-4,0),B(2,6)两点.(1)求一次函数y=kx+b的表达式;(2)在直角坐标系中,画出这个函数的图象;(3)求这个一次函数与坐标轴围成的三角形面积.21.(本题8分)已知,如图,延长ABC的各边,使得BF AC,,,得到DEF==,顺次连接D E F=,AE CD AB为等边三角形.≌;求证:(1)AEF CDE(2)ABC为等边三角形.22.(本题10分)某校为“防疫知识小竞赛”准备奖品,购进A,B两种文具共40件作为奖品,设购进A种文具x件,总费用为y元.已知A、B文具的费用与x的部分对应数据如下表.(1)将表格补充完整:a=;b=;(2)求y关于x的函数表达式;(3)当A种文具的费用不大于B种文具的费用时,求总费用y的最小值.23.(本题10分)以△ABC的AB,AC为边作△ABD和△ACE,且AD=AB,AE=AC,△DAB=△CAE=α.CD与BE 相交于O,连接AO,如图△所示.(1)求证:BE=CD;(2)判断△AOD与△AOE的大小,并说明理由.(3)在EB上取使F,使EF=OC,如图△,请直接写出△AFO与α的数量关系.24.(本题12分)在平面直角坐标系中,点A的坐标为(4,0),直线l是经过点(0,52)且平行于x轴的直线,点B在直线l上,连接AB,设点B的横坐标为m(m>0).(1)如图1,当m=9时,以AB为直角边作等腰直角三角形ABC,使△BAC=90°,求直线BC的函数表达式.(2)在图2中以AB为直角边作等腰直角三角形ABD,使△ABD=90°,连结OD,求△AOD的面积(用含m的代数式表示).(3)在图3中以AB为直角边作等腰直角三角形ABP,当点P落在直线y=58x+52上时,求m的值.参考答案1.A【分析】看哪个选项中两条较小的边的和不大于最大的边即可.【详解】解:A、1+2=3,不能构成三角形;B、4+4>4,能构成三角形;C、6+6>8,能构成三角形;D、7+8>9,能构成三角形.故选:A.【点睛】本题主要考查了三角形的三边关系定理:任意两边之和大于第三边,只要满足两短边的和大于最长的边,就可以构成三角形.2.A【分析】根据如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析即可.【详解】解:B,C,D选项中的图形都不能找到这样的一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以不是轴对称图形;A选项中的图形能找到这样的一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以是轴对称图形;故选:A.【点睛】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.3.D【分析】根据三角形内角和定理,等腰三角形的性质,全等三角形性质,对顶角的定义,逐项分析判断即可求解.【详解】解:A. 三角形三个内角的和等于180°,是真命题,故该选项不符合题意;B. 全等三角形的对应角相等,是真命题,故该选项不符合题意;C. 等腰三角形的两个底角相等,是真命题,故该选项不符合题意;D. 有公共的顶点,角的两边互为反向延长线是对顶角,是假命题,故该选项符合题意.故选:D.【点睛】本题考查了判断命题真假,掌握三角形内角和定理,等腰三角形的性质,全等三角形性质,对顶角的定义是解题的关键.4.B【详解】x-1<0的解集为x<1,它在数轴上表示如图所示,故选B .5.D【详解】解:AB//x 轴,则B 点坐标对应y 值和A 点坐标对应y 值相等,所以y=7.因为AB=3,而点A 对应x=2,则B 对应x 值为(x+3)=5或(x -3)=-1.故选D考点:直角坐标系点评:本题难度较低,主要考查学生对直角坐标系上点的坐标知识点的掌握.分析与x 轴平行线上点的坐标的特点是解题关键.6.C【分析】根据一次函数解析式可得10,20k b =>=>,进而判断A ,B 选项,分别0,0x y ==即可求得与y 轴,x 轴的交点坐标,进而判断C ,D 选项,即可求解.【详解】解:由y =x +2,10,20k b =>=>,令0x =,得2y =,令0y =,得2x =-,A . y 随x 的增大而增大,故该选项不正确,不符合题意;B . 图像经过第一、二、三象限,故该选项不正确,不符合题意;C . 与y 轴交于(0,2),故该选项正确,符合题意;D . 与x 轴交于(-2,0)故该选项不正确,不符合题意.故选:C .【点睛】本题考查了一次函数的性质,一次函数与坐标轴的交点,掌握一次函数的性质是解题的关键.7.C【分析】直接利用基本作图方法得出AE 是△CAB 的平分线,进而结合全等三角形的判定与性质得出AC =AD ,再利用勾股定理得出AC 的长.【详解】解:过点E 作ED △AB 于点D ,由作图方法可得出AE 是△CAB 的平分线,△EC △AC ,ED △AB ,△EC =ED =3,在Rt △ACE 和Rt △ADE 中,AE AE EC ED =⎧⎨=⎩, △Rt △ACE △Rt △ADE (HL ),△AC =AD ,△在Rt △EDB 中,DE =3,BE =5,△BD =4,设AC =x ,则AB =4+x ,故在Rt △ACB 中,AC 2+BC 2=AB 2,即x 2+82=(x +4)2,解得:x =6,即AC 的长为:6.故选:C .【点睛】此题主要考查了基本作图以及全等三角形的判定与性质、勾股定理等知识,正确得出BD 的长是解题关键.8.D【分析】根据正比例函数y =kx 中,y 的值随着x 值的增大而减小,可得k <0,从而可以判断一次函数图像经过第二、三、四象限,由此求解即可.【详解】解:△正比例函数y =kx 中,y 的值随着x 值的增大而减小,△k <0,△一次函数y =kx +k 与y 轴的交点在y 轴的负半轴,△一次函数y =kx +k 的图像经过第二、三、四象限,故选D .【点睛】本题主要考查了正比例函数的性质,一次函数的性质,解题的关键在于能够求出k <0.9.D【分析】利用到商店时间+停留时间可确定A ,利用爸爸所用时间+2分与路程3300米可求小明速度可确定B ,利用设爸爸开始时车速为x 米/分,列方程10x+5(x+60)=3300,解出可确定C ,利用小明和爸爸行走路程一样,设t 分爸爸追上小明,列方程150(t+2)=200t ,求解可知D .【详解】解:A .a =10+5=15,故A 正确,不合题意;B .小明的速度为3300÷22=150米/分,故B 正确,不合题意;C .设爸爸开始时车速为x 米/分,10x+5(x+60)=3300,解得x=200米/分,故爸爸从家到商店的速度为200米/分钟正确,不合题意;D .设t 分爸爸追上小明,150(t+2)=200t ,t=6,故爸爸出发7分钟追上小明不正确,故选择:D .【点睛】本题考查行程问题的函数图像,会看图像,能从中获取信息,掌握速度,时间与路程三者关系,把握基准时间是解题关键.10.A【分析】延长CA 与GF 交于点N ,延长CB 与EF 交于点P ,设AC =b ,BC =a ,则AB △ABC △△BJK △△JKF △△KAN ,再利用长方形DEFG 的面积=十个小图形的面积和进而求得ab =12,即可求解.【详解】解:延长CA 与GF 交于点N ,延长CB 与EF 交于点P ,设AC =b ,BC =a ,则AB△四边形ABJK 是正方形,四边形ACML 是正方形,四边形BCHI 是正方形,△AB =BJ ,△ABJ =90°,△△ABC +△PBJ =90°=△ABC +△BAC ,△△BAC =△JBP ,△△ACB =△BPJ =90°,△△ABC △△BJK (AAS ),同理△ABC △△BJK △△JKF △△KAN ,△AC =BP =JF =KN =NG =b ,BC =PJ =FK =AN =PE =a ,△DE =10,EF =11,△2b +a =10,2a +b =11,△a +b =7,△a 2+b 2=49-2ab ,△长方形DEFG 的面积=十个小图形的面积和,△10×11=3ab +12ab ×4+a 2+b 22, 整理得:5ab +2(a 2+b 2)=110,把a 2+b 2=49-2ab ,代入得:5ab +2(49-2ab )=110,△ab =12,△△ABC 的面积为12ab =6, 故选:A .【点睛】本题主要考查了全等三角形的性质与判定,勾股定理,关键是构造全等三角形和直角三角形. 11.23x y -<【分析】根据x 的2倍与y 的差是2x y -,小于表示为:<,列出不等式即可求解.【详解】解:x 的2倍与y 的差小于3,用不等式可以表示为23x y -<.故答案为:23x y -<.【点睛】本题考查了由实际问题抽象一元一次不等式的知识,关键是将文字描述转化为数学语言.12.B C ∠=∠【分析】根据题目条件和图形可知,AE =AD ,公共角A A ∠=∠,不添加新的线段和字母,要使△ABE 和△ACD 全等判定依据是AAS ,添加的条件是B C ∠=∠即可得到结论.【详解】解:添加的条件是B C ∠=∠.理由如下:在△ABE 和△ACD 中,B C A A AE AD ∠∠⎧⎪∠∠⎨⎪⎩===,△△ABE △△ACD (AAS ),故答案为:B C ∠=∠.【点睛】本题考查全等三角形判定的应用,熟练掌握三角形全等的判定定理有SAS ,ASA ,AAS ,SSS ,HL 是解决问题的关键.13.﹣1【分析】利用关于x 轴对称点的性质得出m ,n 的值,进而求出即可.关于x 轴的对称点的坐标特点:横坐标不变,纵坐标互为相反数.【详解】解:△点A (m +1,1)与点B (2,n +1)关于x 轴对称,△m +1=2,n +1=﹣1,解得:m =1,n =﹣2,△m +n =1﹣2=﹣1.故答案为:﹣1.【点睛】此题主要考查了关于x 轴对称点的性质,利用横纵坐标关系得出m 和n 的值是解题关键.14.3【分析】设腰长为x ,则底边为10-2x ,根据三角形三边关系定理可得10-2x -x <x <10-2x +x ,解不等式组即可.【详解】解:设腰长为x ,则底边为7-2x .△7-2x -x <x <7-2x +x ,△1.75<x <3.5,△三边长均为整数,△x 可取的值为2或3,故各边的长为2,2,3或3,3,1.△该三角形最长边的长为3cm .故答案为:3.【点睛】本题主要考查等腰三角形的性质及三角形三边关系的综合运用,要注意三角形形成的条件:任意两边之和>第三边,任意两边之差<第三边.15.3【分析】由垂线段最短可知,当PQ 与OM 垂直的时候,PQ 的值最小.【详解】解:由垂线段最短可知,当PQ 与OM 垂直的时候,PQ 的值最小,根据角平分线的性质可知,此时P A =PQ =3.故答案为:3.【点睛】本题考查了角平分线的性质,垂线段最短,解题的关键是掌握垂线段距离最短.16. (95-44,); 6. 【分析】(1)分别求解如下两个方程组1231y x y x ⎧=+⎪⎨⎪=--⎩,1231y x y x ⎧=+⎪⎨⎪=+⎩,再根据已知条件即可得答案;(2)当O 、A′、B′三点共线时,|OA '﹣OB '|取最大值.即直线123=+y x 平移后过原点即可,平移的距离为m ,平移后的直线为()123y x m =-+把原点坐标代入计算即可. 【详解】(1)联立1231y x y x ⎧=+⎪⎨⎪=--⎩,解得9=-454x y ⎧⎪⎪⎨⎪=⎪⎩,则交点坐标为(95-44,), 联立1231y x y x ⎧=+⎪⎨⎪=+⎩,解得3=252x y ⎧⎪⎪⎨⎪=⎪⎩,则交点坐标为(3522,), 又点A 在点B 的左边,所以A (95-44,),故答案为:(95-44,); (2)当O 、A′、B′三点共线时,|OA '﹣OB '|取最大值. 即直线123=+y x 平移后过原点即可,平移的距离为m , 平移后的直线为()123y x m =-+, 则()10023m =-+, 解得6m =,当m =6时,|OA '﹣OB '|取最大值.故答案为:6.【点睛】本题考查一次函数与分段函数综合问题,会识别分段函数与一次函数的交点在哪一分支上,会利用平移解决最大距离问题是解题关.17.31x -<≤,见解析【分析】分别求出每一个不等式的解集,并在数轴上表示,即可确定不等式组的解集. 【详解】解:52331132x x x x -≤⎧⎪-+⎨<-⎪⎩①② 解不等式①,得:1x ≤,解不等式②,得:3x >-,则不等式组的解集为31-<≤x ,将不等式组的解集表示在数轴上如下:【点睛】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”或根据数轴表示解集是解答此题的关键18.(1)作图见解析;(2)16.【分析】(1)利用线段垂直平分线的作法作图即可;(2)首先根据等腰三角形的性质,得到AB =AC =9,再根据垂直平分线的性质可得AE =CE ,进而可算出周长.【详解】解:(1)如图所示:直线DE 即为所求;(2)△AB =AC =9,△DE 垂直平分AB ,△AE =EC ,△△BCE 的周长=BC +BE +CE =BC +BE +AE =BC +AB =16.【点睛】本题主要考查了基本作图,以及线段垂直平分线的作法,等腰三角形的性质,关键是掌握线段垂直平分线的作法.19.(1)1,1m k =-=(2)1x >-【分析】(1)将点A (m ,2)代入2y x =-求得m 的值,进而求得()1,2A -,代入y =kx +3即可求解;(2)根据图象,求得直线y =kx +3在y =-2x 上方时x 的取值范围,即可求解.(1)将点A (m ,2)代入2y x =-,即22m =-,解得1m =-,∴()1,2A -,将点()1,2A -代入y =kx +3,得()213k =⨯-+,解得1k =,(2)△()1,2A -,根据图象可知, 23x kx -<+的解集为1x >-.【点睛】本题考查了一次函数的性质,待定系数法求解析式,根据两直线交点坐标求不等式的解集,数形结合是解题的关键.20.(1);(2)函数图像见详解;(3)8【分析】(1)由图象经过两点A (-4,0)、B (2,6)根据待定系数法即得结果;(2)根据两点法即可确定函数的图象;(3)求出图象与x 轴及y 轴的交点坐标,然后根据直角三角形的面积公式求解即可.【详解】(1)△一次函数y=kx+b 的图象经过两点A (-4,0)、B (2,6),解得,△函数解析式为:;(2)函数图像如图:(3)△一次函数与y轴的交点为C(0,4),△△AOC的面积=4×4÷2=8.【点睛】本题考查的是待定系数法求一次函数解析式,一次函数的图象,解答本题的关键是熟练掌握待定系数法求一次函数解析式,同时正确得到坐标与线段长度的转化.21.(1)见解析;(2)见解析.【分析】(1)关键是证出CE=AF,可由AE=AB,AC=BF,两两相加可得.再结合已知条件可证出△AEF△△CDE.(2)有(1)中的全等关系,可得出△AFE=△CED,再结合△DEF是等边三角形,可知△DEF=60°,从而得出△BAC=60°,同理可得△ACB=60°,那么△ABC=60°.因而△ABC是等边三角形.【详解】证明:(1)△BF=AC,AB=AE(已知)△FA=EC(等量加等量和相等).△△DEF是等边三角形(已知),△EF=DE(等边三角形的性质).又△AE=CD(已知),△△AEF△△CDE(SSS).(2)由△AEF△△CDE,得△FEA=△EDC(对应角相等),△△BCA=△EDC+△DEC=△FEA+△DEC=△DEF(等量代换),△DEF是等边三角形(已知),△△DEF=60°(等边三角形的性质),△△BCA=60°(等量代换),由△AEF△△CDE,得△EFA=△DEC,△△DEC+△FEC=60°,△△EFA+△FEC=60°,又△BAC是△AEF的外角,△△BAC=△EFA+△FEC=60°,△△ABC 中,AB=BC (等角对等边).△△ABC 是等边三角形(等边三角形的判定).22.(1)600;180;(2)5800y x =-+;(3)690.【分析】(1)A 文具的单价:120÷8=15元,B 文具的单价:640÷(40-32)=20元,计算b =12×15,a =(40-10)×20填入表格中即可,注意a ,b 的位置;(2)根据总费用=购进A 文具总费用+购进B 文具总费用列解析式并化简即可;(3)利用A 种文具的费用不大于B 种文具的费用列为不等式,后利用一次函数的增减性求最值即可.(1)解:△买卖8件A 文具时,A 种文具费用120元,B 种文具费用640元,△ A 文具的单价为:120÷8=15(元),B 文具的单价:640÷(40-8)=20(元) ,△20(4010)600a =⨯-=,1512180a =⨯=.填入表格如下:故答案为:600;180.(2)由 (1)得,A 种文具15元/件,B 种文具20元/件,设购进A 种文具x 件,则B 种文具数量为()40x -件,△()1520405800y x x x =+-=-+;(3)△A 种文具的费用不大于B 种文具的费用△()152040x x ≤-,△6227x ≤,△x 为正整数,△22x ≤.△5800y x =-+,50k =-<,△y 随着x 的增大而减小,△当22x =时,522800690min y =-⨯+=,答:总费用最少为690元.【点睛】本题考查了一次函数的应用,求一次函数的解析式,一次函数的增减性,不等式的构造与求解,熟练运用生活经验,把生活问题准确转化为函数模型求解是解题的关键.23.(1)见详解(2)△AOD =△AOE ,理由见详解(3)2△AFO =180°−α【分析】(1)证明△DAC △△BAE (SAS )即可;(2)过点A 作AM △CD 于点M ,作AN △BE 于点N ,证明△ADM △△ABN (AAS ),即有AM =AN ,即可证明AO 平分△AOE ,问题得解;(3)证明△AEF △△ACO (SAS ),即有△AFE =△AOC ,AF =AO ,结合(2)的结论有:△AFO =△AOF =△AOD ,即可的得解.(1)△△DAB =△CAE ,△△DAB +△BAC =△CAE +△BAC ,△△DAC =△BAE ,△AD =AB ,AC =AE ,△△DAC △△BAE (SAS ),△BE =CD ,得证;(2)△AOD =△AOE ,理由如下,过点A 作AM △CD 于点M ,作AN △BE 于点N ,如图,△AM△CD,AN△BE,△△AMD=△ANB=90°,△△DAC△△BAE,△△ABE=△ADC,又△AD=AB,△△ADM△△ABN(AAS),△AM=AN,△AM△OD,AN△OE,△AO平分△AOE,△△AOD=△AOE,得证;(3)△△DAC△△BAE,△△AEF=△ACO,AE=AC,又△EF=CO,△△AEF△△ACO(SAS),△△AFE=△AOC,AF=AO,△结合(2)的结论有:△AFO=△AOF=△AOD.△△ADC=△ABE,△DAB=α,△△DAB=△DOB=α,△2△AFO=2△AOF=△AOF+△AOD=180°-△DOB,△2△AFO=180°−α.【点睛】本题是三角形综合题,考查了全等三角形的判定和性质,等腰三角形的性质,角平分线的性质,掌握全等三角形的判定定理是本题的关键.24.(1)直线BC的解析式为11132y x=-+;(2)23S m=-( 1.5m≥);32S m=-(0 1.5m<<);213S m=-( 6.5m≥);132S m=-(0 6.5m<<);(3)m的值为132或11916.【分析】(1)作CN△x轴于N,BM△x轴于M,易证Rt△NCA≅Rt△MAB,可求得点C的坐标为(32,5),再利用待定系数法即可求解;(2)过B作直线EF△x轴于F,过D作DE△EF交直线EF于E,易证Rt△F AB≅Rt△EBD,可求得点D的坐标为(52m-,32m-),再利用三角形面积公式即可求解;(3)题中只给定了AB为直角边,所以分△△ABP=90°、△△BAP=90°两种情况讨论,即可求解.【详解】(1)作CN△x轴于N,BM△x轴于M,如图:△△BAC=90°,△△NAC+△NCA=△NAC+△MAB=90°,△△NCA=△MAB,△CA= AB,△Rt△NCA≅Rt△MAB,△NC= MA,NA= MB,△点B的横坐标为9m=,△点B的坐标为(9,52),△NC= MA= MO-OA=9-4=5,NA= MB=52,ON= OA-NA=32,△点C的坐标为(32,5),设直线BC的解析式为y kx b=+,则592352k bk b⎧+=⎪⎪⎨⎪+=⎪⎩,解得:13112kb⎧=-⎪⎪⎨⎪=⎪⎩,△直线BC的解析式为11132y x=-+;(2)过B作直线EF△x轴于F,过D1作D1E△EF交直线EF于E,过D2作D2E△EF交直线EF于M,如图:同理可证Rt △F AB △Rt △EBD 1△Rt △MBD 2,△AF = BE =MB ,FB = D 1E = D 2M ,△点B 的横坐标为m ,△AF = BE =MB =4m -,FB = D 1E = D 2M =52, △点D 1的坐标为(52m -,542m -+),即D 1(52m -,32m -),点D 2的坐标为(52m +,542m -+),即D 2(52m +,132m -), △1OAD 12D SOA y =⋅, 1342322S m m ⎛⎫=⨯⨯-=- ⎪⎝⎭( 1.5m ≥);1343222S m m ⎛⎫=⨯⨯-=- ⎪⎝⎭(0 1.5m <<); 2OAD 12D S OA y =⋅, 113421322S m m ⎛⎫=⨯⨯-=- ⎪⎝⎭( 6.5m ≥);113413222S m m ⎛⎫=⨯⨯-=- ⎪⎝⎭(0 6.5m <<); (3)△当△ABP =90°时,由(2)可知D 与P 重合,△点P 的坐标为(52m -,32m -), 由题意得,点P 在直线5582y x =+上, △35552822m m ⎛⎫-=-+ ⎪⎝⎭, 解得:132m =; △当△BAP =90°时,如图:同理可证明Rt△HAP≅Rt△GP A,△点B的坐标为(m,52),△PH=AG=4m-,AH=BG=52,△点P的坐标为(542-,4m-),即(32,4m-),点P在直线5582y x=+上,△5354822m-=⨯+,解得:11916m=;综上,m的值为132或11916.【点睛】本题考查了全等三角形的判定与性质,坐标与图形性质,等腰直角三角形的性质,以及待定系数法求一次函数解析式,熟练掌握待定系数法是解本题的关键.。
2022——2023学年安徽省合肥市八年级上册数学期末专项提升模拟卷卷一卷二(含答案)
2022-2023学年安徽省合肥市八年级上册数学期末专项提升模拟卷(卷一)一、选一选:(每小题4分,共40分.)1.如图,若∠A=27°,∠B=45°,∠C=38°,则∠DFE等于()A.120°B.115°C.110°D.105°2.小明没有小心把一块三角形形状的玻璃打碎成了三块,如图①②③,他想要到玻璃店去配一块大小形状完全一样的玻璃,你认为应带()A.①B.②C.③D.①和②3.如图,AB∥CD,BP和CP分别平分∠ABC和∠DCB,AD过点P,且与AB垂直.若AD=8,则点P到BC的距离是()A.8B.6C.4D.24.如图,把一个正方形三次对折后沿虚线剪下,得到的图形是()A. B. C. D.5.如图,在ABC 中,90BAC ∠= ,3AB =,4AC =,5BC =,EF 垂直平分BC ,点P 为直线EF 上的任一点,则AP BP +的最小值是()A.3B.4C.5D.66.如图所示,△ABC 是等边三角形,且BD =CE ,∠1=15°,则∠2的度数为()A.15°B.30°C.45°D.60°7.平面直角坐标系中,已知A (2,2)、B (4,0).若在坐标轴上取点C ,使△ABC 为等腰三角形,则满足条件的点C 的个数是()A.5B.6C.7D.88.下列等式从左到右的变形,属于因式分解的是()A.a (x -y )=ax -ayB.x 2-1=(x +1)(x -1)C.(x +1)(x +3)=x 2+4x +3 D.x 2+2x +1=x (x +2)+19.如图,在边长为a 的正方形中挖掉一个边长为b 的小正方形()a b >,把余下的部分剪成一个矩形,通过计算两个图形(阴影部分)的面积,验证了一个等式是()A.22()()a b a b a b -=+- B.222()2a b a ab b+=++C.222()2a b a ab b -=-+D.22(2)()2a b a b a ab b +-=+-10.某工厂现在平均每天比原计划多生产50台机器,现在生产600台机器所用的时间与原计划生产450台机器所用的时间相同.若设原计划平均每天生产x 台机器,则可列方程为()A.600x =45050x + B.600x =45050x - C.60050x +=450xD.60050x -=450x二、填空题:(每小题4分,共20分)11.如图,将一副直角三角板,按如图所示的方式摆放,则∠α的度数是___________.12.如图,在Rt △ABC 中,∠C =90°,AD 平分∠BAC 交BC 于D ,若BC =15,且BD ∶DC =3∶2,则D 到边AB 的距离是_________.13.如图所示,顶角A 为120°的等腰△ABC 中,DE 垂直平分AB 于D ,若DE =2,则EC =_________.14.已知x 2-2(m +3)x +9是一个完全平方式,则m =____________.15.已知113a b+=,求5756a ab b a ab b ++-+=___________.三、解答题:(共90分)16.(1)计算:1002-992+982-972+962-952+…+22-1;(2)计算.2214(1)1m m m m-+÷++(3)因式分解:-4a2b+24ab-36b.17.作图题(没有写作图步骤,保留作图痕迹).已知:如图,求作点P,使点P到A、B两点的距离相等,且P到∠MON两边的距离也相等.18.如图①是一个长为2m,宽为2n的长方形,沿图中虚线用剪刀将其平均分成四块小长方形,然后按图②的形状拼成一个正方形.(1)图②中阴影部分的面积为________;(2)观察图②,请你写出三个代数式(m+n)2,(m-n)2,mn之间的等量关系是____________;(3)若x+y=-6,xy=2.75,利用(2)得出的等量关系计算x-y的值.19.一个多边形切去一个角后,形成的另一个多边形的内角和为1080°,求原多边形的边数.20.如图,在等边△ABC中,点E为边AB上任意一点,点D在边CB的延长线上,且ED=EC.(1)当点E为AB的中点时(如图1),则有AE DB(填“>”“<”或“=”);(2)猜想AE与DB的数量关系,并证明你的猜想.21.如图,在△ABC中,AD平分∠BAC,∠C=2∠B,试判断AB,AC,CD三者之间的数量关系,并说明理由.(想一想,你会几种方法)22.已知:如图,AD,AE分别是△ABC和△ABD的中线,且BA=BD.求证:AE=1AC.223.某商场用24000元购入一批空调,然后以每台3000元的价格,因天气炎热.空调很快售完;商场又用52000元再次购入一批该种型号的空调,数量是次购入的2倍,但购入的单价上调了200元,每台的售价也上调了200元.(1)商场次购入的空调每台进价是多少元?(2)商场既要尽快售完第二次购入的空调,又要在第二次空调中获得的利润率没有低于20%,打算将第二次购入的部分空调按每台九五折出售,至多可将多少台空调打折出售?2022-2023学年安徽省合肥市八年级上册数学期末专项提升模拟卷(卷一)一、选一选:(每小题4分,共40分.)1.如图,若∠A=27°,∠B=45°,∠C=38°,则∠DFE等于()A.120°B.115°C.110°D.105°【正确答案】C【分析】根据三角形外角的性质三角形的一个外角等于和它没有相邻的两个内角的和可得∠AEB=∠A+∠C=65°,∠DFE=∠B+∠AEB,进而可得答案.【详解】因为∠A=27°,∠C=38°,所以∠AEB=∠A+∠C=65°,又因∠B=45°,所以∠DFE=∠B+∠AEB=110°,故选C.此题主要考查了三角形外角的性质和三角形内角和定理,关键是掌握三角形的一个外角等于和它没有相邻的两个内角的和.2.小明没有小心把一块三角形形状的玻璃打碎成了三块,如图①②③,他想要到玻璃店去配一块大小形状完全一样的玻璃,你认为应带()A.①B.②C.③D.①和②【正确答案】C【分析】已知三角形破损部分的边角,得到原来三角形的边角,根据三角形全等的判定方法,即可求解.【详解】块和第二块只保留了原三角形的一个角和部分边,根据这两块中的任一块均没有能配一块与原来完全一样的;第三块没有仅保留了原来三角形的两个角还保留了一边,则可以根据ASA来配一块一样的玻璃.故选C.考点:全等的条件.3.如图,AB∥CD,BP和CP分别平分∠ABC和∠DCB,AD过点P,且与AB垂直.若AD=8,则点P到BC的距离是()A.8B.6C.4D.2【正确答案】C【详解】过点P作PE⊥BC于E,∵AB∥CD,PA⊥AB,∴PD⊥CD,∵BP和CP分别平分∠ABC和∠DCB,∴PA=PE,PD=PE,∴PE=PA=PD,∵PA+PD=AD=8,∴PA=PD=4,∴PE=4.故选C.4.如图,把一个正方形三次对折后沿虚线剪下,得到的图形是()A. B. C. D.【正确答案】C【分析】按照题中所述,进行实际操作,答案就会很直观地呈现.【详解】解:将图形按三次对折的方式展开,依次为:.故选:C .本题主要考查学生的动手能力及空间想象能力,对于此类问题,学生只要亲自动手操作,答案就会很直观地呈现.5.如图,在ABC 中,90BAC ∠= ,3AB =,4AC =,5BC =,EF 垂直平分BC ,点P 为直线EF 上的任一点,则AP BP +的最小值是()A.3B.4C.5D.6【正确答案】B【分析】根据题意知点B 关于直线EF 的对称点为点C ,故当点P 在AC 上时,AP BP +有最小值.【详解】解:连接PC .EF垂直平分BC,=,∴BP CP+=+,∴AP BP AP CP∴当点A,P,C在一条直线上时,AP BPAC=.+有最小值,最小值为4故选:B.+有最本题考查了轴对称中的最短路线问题,明确当点A,P,C在一条直线上时,AP BP小值是解题的关键.6.如图所示,△ABC是等边三角形,且BD=CE,∠1=15°,则∠2的度数为()A.15°B.30°C.45°D.60°【正确答案】D【详解】因为△ABC是等边三角形,所以∠ABD=∠BCE=60°,AB=BC.因为BD=CE,所以△ABD≌△BCE,所以∠1=∠CBE.因为∠CBE+∠ABE=60°,所以∠1+∠ABE=60°.因为∠2=∠1+∠ABE,所以∠2=60°.故选D.7.平面直角坐标系中,已知A(2,2)、B(4,0).若在坐标轴上取点C,使△ABC为等腰三角形,则满足条件的点C的个数是()A.5B.6C.7D.8【正确答案】A【详解】试题分析:构造等腰三角形,①分别以A ,B 为圆心,以AB 的长为半径作圆;②作AB 的中垂线.如图,一共有5个C 点,注意,与B 重合及与AB 共线的点要排除.故答案选A.考点:等腰三角形的判定;坐标与图形性质.8.下列等式从左到右的变形,属于因式分解的是()A.a (x -y )=ax -ayB.x 2-1=(x +1)(x -1)C.(x +1)(x +3)=x 2+4x +3D.x 2+2x +1=x (x +2)+1【正确答案】B【分析】直接利用因式分解的定义分析得出答案.【详解】解:A 、a (x -y )=ax -ay ,是多项式的乘法运算,故此选项错误;B 、x 2-1=(x +1)(x -1),正确;C 、(x +1)(x +3)=x 2+4x +3是多项式的乘法,故此选项错误;D 、x 2+2x +1=x (x +2)+1,没有符合因式分解的定义,故此选项错误.故选:B .9.如图,在边长为a 的正方形中挖掉一个边长为b 的小正方形()a b >,把余下的部分剪成一个矩形,通过计算两个图形(阴影部分)的面积,验证了一个等式是()A.22()()a b a b a b -=+-B.222()2a b a ab b +=++C.222()2a b a ab b -=-+ D.22(2)()2a b a b a ab b +-=+-【正确答案】A 【分析】左图中阴影部分的面积=a 2−b 2,右图中矩形面积=(a +b )(a −b ),根据二者面积相等,即可解答.【详解】解:由题意可得:a 2−b 2=(a −b )(a +b ).故选:A .此题主要考查了乘法的平方差公式,属于基础题型.10.某工厂现在平均每天比原计划多生产50台机器,现在生产600台机器所用的时间与原计划生产450台机器所用的时间相同.若设原计划平均每天生产x 台机器,则可列方程为()A.600x =45050x + B.600x =45050x - C.60050x +=450x D.60050x -=450x【正确答案】C【分析】根据现在生产600台机器的时间与原计划生产450台机器的时间相同,所以可得等量关系为:现在生产600台机器时间=原计划生产450台时间.【详解】解:设原计划每天生产x 台机器,则现在可生产(x +50)台.依题意得:60050x +=450x.故选:C .此题主要考查了列分式方程应用,利用本题中“现在平均每天比原计划多生产50台机器”这一个隐含条件,进而得出等式方程是解题关键.二、填空题:(每小题4分,共20分)11.如图,将一副直角三角板,按如图所示的方式摆放,则∠α的度数是___________.【正确答案】75︒【分析】根据直角三角板的已知角度以及三角形外角性质即可求解.【详解】如图,304575DCB ABC α∠=∠+∠=︒+︒=︒故75︒本题考查了三角板中角度的计算,三角形外角的性质,掌握三角形外角的性质是解题的关键.12.如图,在Rt △ABC 中,∠C =90°,AD 平分∠BAC 交BC 于D ,若BC =15,且BD ∶DC =3∶2,则D 到边AB 的距离是_________.【正确答案】6【详解】过点D 作DE ⊥AB 于点E ,∵在直角△ABC 中,∠C=90°,AD 平分∠BAC ,∴CD=DE∵BD :CD=3:2,BC=15∴CD=6,∴DE=6.故答案为6.13.如图所示,顶角A 为120°的等腰△ABC 中,DE 垂直平分AB 于D ,若DE =2,则EC =_________.【正确答案】8.【详解】因为AB=AC,∠BAC=120°,所以∠B=∠C=30°.因为DE 垂直平分AB ,所以EA=EB,∠ADE=90°,所以∠B=∠EAB=30°,所以∠EAC=120°-30°=90°.Rt △ADE 中,AE=2DE=2×2=4.Rt △CAE 中,CE=2AE=2×4=8.故答案为8.14.已知x 2-2(m +3)x +9是一个完全平方式,则m =____________.【正确答案】-6或0.【分析】根据完全平方公式建立方程求解即可.【详解】解:由题意得-2(m +3)=2()3⨯±,所以解得m =-6或0.故-6或0.15.已知113a b+=,求5756a ab b a ab b ++-+=___________.【正确答案】223-.【详解】已知等式整理得:3a b ab+=,即3a b ab +=,则原式5()71572222.()63633a b ab ab ab ab a b ab ab ab ab +++====-+---故答案为22.3-三、解答题:(共90分)16.(1)计算:1002-992+982-972+962-952+…+22-1;(2)计算.2214(1)1m m m m-+÷++(3)因式分解:-4a 2b +24ab -36b .【正确答案】(1)5050;(2)2m m -;(3)24(3)b a --.【详解】试题分析:()1首先数字分组,从个数起两两为一组,一正一负,进一步利用平方差公式分解,化为100+99+…+2+1,进一步计算求得结果即可.()2根据分式混合运算步骤进行运算即可.()3提公因式法和公式法相.试题解析:(1)原式=(1002-992)+(982-972)+(962-952)+…+(22-1)=(100+99)+(98+97)+(96+95)+…+(2+1)=(100+1)+(99+2)+(98+3)+(97+4)+…+(51+50)=50×(100+1)=5050.(2)原式()()()12.1222m m m m m m m m ++=⋅=++--(3)原式()()2246943.b a a b a =--+=--17.作图题(没有写作图步骤,保留作图痕迹).已知:如图,求作点P ,使点P 到A 、B 两点的距离相等,且P 到∠MON 两边的距离也相等.【正确答案】答案见解析.【详解】试题分析:作∠MON的角平分线及线段AB的垂直平分线,交点P即为所求.如图所示:考点:本题考查的是基本作图点评:解答本题的关键是熟练掌握线段的垂直平分线上的点到线段两端的距离相等,角平分线上的点到角两边的距离相等.18.如图①是一个长为2m,宽为2n的长方形,沿图中虚线用剪刀将其平均分成四块小长方形,然后按图②的形状拼成一个正方形.(1)图②中阴影部分的面积为________;(2)观察图②,请你写出三个代数式(m+n)2,(m-n)2,mn之间的等量关系是____________;(3)若x+y=-6,xy=2.75,利用(2)得出的等量关系计算x-y的值.±.【正确答案】(1)(m-n)2;(2)(m+n)2-(m-n)2=4mn;(3)5【详解】试题分析:试题解析:(1)利用矩形面积公式计算.(2)根据矩形面积公式可得到m,n关系.(3)利用(2)的公式计算.(4)根据矩形面积公式分别用整体方法和部分的和的方法列等式.试题解析:(1)图2中阴影部分的边长是m-n,面积为(m-n)2;(2)观察图2,请你写出式子(m+n)2,(m-n)2,mn之间的等量关系:大正方形面积是(m+n)2,阴影部分面积是(m-n)2,四个矩形面积是4mn,所以(m+n)2-(m-n)2=4mn;(3)因为x+y=-6,xy=2.75,利用公式(m+n)2-(m-n)2=4mn,x y-=⨯,则()26--24 2.75解得x-y=±5.19.一个多边形切去一个角后,形成的另一个多边形的内角和为1080°,求原多边形的边数.【正确答案】7、8或9.【详解】试题分析:根据切后的内角和可以求出切后的多边形边数,然后又知一个多边形切去一个角可得到的多边形有三种可能,分别是比原边数少1,相等,多1.所以可求得原多边形边数.设切去一角后的多边形为n边形.根据题意有(n-2)·180°=1080°.解得n=8.因为一个多边形切去一个角后形成的多边形边数有三种可能:比原多边形边数小1、相等、大1,所以原多边形的边数可能为7、8或9.20.如图,在等边△ABC中,点E为边AB上任意一点,点D在边CB的延长线上,且ED=EC.(1)当点E为AB的中点时(如图1),则有AE DB(填“>”“<”或“=”);(2)猜想AE与DB的数量关系,并证明你的猜想.【正确答案】(1)=;(2)AE=BD.【详解】试题分析:(1)△BCE中可证,∠BCE=30°,又EB=EC,则∠D=∠ECB=30°,所以△BCE是等腰三角形,AE=BE即可;(2)过E作EF∥BC交AC于F,用AAS证明△DEB≌△ECF.试题解析:(1)∵△ABC是等边三角形,∴∠ABC=60°,AB=AC=BC.∵E为AB的中点,所以∠BCE=30°.∵ED=EC,∴∠D=∠BCE=30°,∴∠BED=30°,∴∠D=∠BED,∴BD=BE,∴BD=AE.(2)当点E为AB上任意一点时,AE与DB的大小关系没有会改变.理由如下:过E作EF∥BC交AC于F,∵△ABC是等边三角形,∴∠ABC=∠ACB=∠A=60°,AB=AC=BC.∴∠AEF =∠ABC =60°,∠AFE =∠ACB =60°,即∠AEF =∠AFE =∠A =60°.∴△AEF 是等边三角形.∴AE =EF =AF.∵∠ABC =∠ACB =∠AFE =60°,∴∠DBE =∠EFC =120°,∠D +∠BED =∠FCE +∠ECD =60°.∵DE =EC ,∴∠D =∠ECD.∴∠BED =∠ECF.在△DEB 和△ECF 中,∴△DEB ≌△ECF(AAS ).∴BD =EF =AE ,即AE =BD.点睛:本题主要考查了等边三角形的性质和全等三角形的判定与性质,等边三角形的三条边相等,三个角也相等,由于等边三角形是的等腰三角形,所以等腰三角形的性质等边三角形都有,在等边三角形中通过作平行线构造全等三角形是常用的方法.21.如图,在△ABC 中,AD 平分∠BAC ,∠C =2∠B ,试判断AB ,AC ,CD 三者之间的数量关系,并说明理由.(想一想,你会几种方法)【正确答案】AB =AC +CD .【详解】试题分析:AB AC CD =+;在AB 上取点E ,使得AE AC =,则可证得AED ≌ACD ,可得2AED C B ED CD ∠=∠=∠=,,可证得BDE 为等腰三角形,所以有BE DE CD ==,可得结论.试题解析:AB AC CD =+.理由:方法1:在AB 上截取AE AC =,连接DE .易证AED ≌ACD △(SAS ),ED CD AED C ∴=∠=∠,.AED B EDB ∠=∠+∠ ,C AED B EDB ∴∠=∠=∠+∠.又2C B ∠=∠ ,B EDB ∴∠=∠,BE DE ∴=,AB AE BE AC DE AC CD .∴=+=+=+22.已知:如图,AD ,AE 分别是△ABC 和△ABD 的中线,且BA =BD .求证:AE =12AC .【正确答案】证明见解析.【详解】试题分析:首先根据题意延长AE 至点F ,使EF AE =,连结DF ,根据三角形中线的性质得到BE DE =,然后利用SAS 判定ABE △≌FDE V (SAS ),再根据全等三角形的性质得到AB DF BAE EFD =∠=∠,;利用外角性质及等式的性质得到ADF ADC ∠=∠,利用SAS 得到ADF ≌ADC ,利用全等三角形的对应边相等得到AF AC =,由12AE AF =,等量代换即可得证.试题解析:证明:延长AE 至点F ,使EF AE =,连结DF ,∵AE 是ABD △的中线,BE DE ∴=.AEB FED ,∠=∠∴ABE △≌FDE V (SAS ),B BDF AB DF ∴∠=∠=,.BA BD BAD BDA BD DF =∴∠=∠= ,,.ADF BDA BDF ADC BAD B ∠=∠+∠∠=∠+∠ ,,ADF ADC ∴∠=∠.AD 是ABC 的中线,BD CD DF CD ,.∴=∴=又AD AD = ,∴ADF ≌ADC (SAS ),2AC AF AE ,∴==即12AE AC =.23.某商场用24000元购入一批空调,然后以每台3000元的价格,因天气炎热.空调很快售完;商场又用52000元再次购入一批该种型号的空调,数量是次购入的2倍,但购入的单价上调了200元,每台的售价也上调了200元.(1)商场次购入的空调每台进价是多少元?(2)商场既要尽快售完第二次购入的空调,又要在第二次空调中获得的利润率没有低于20%,打算将第二次购入的部分空调按每台九五折出售,至多可将多少台空调打折出售?【正确答案】(1)2400元;(2)10台【分析】(1)设商场次购入的空调每台进价是x 元,根据题目条件“商场又以52000元的价格再次购入该种型号的空调,数量是次购入的2倍,但购入的单价上调了200元,每台的售价也上调了200元”列出分式方程解答即可;(2)设将y 台空调打折出售,根据题目条件“在这两次空调中获得的利润率没有低于20%,打算将第二次购入的部分空调按每台九五折出售”列出没有等式并解答即可.【详解】解:(1)设商场次购入的空调每台进价是x 元,由题意列方程得:240002x ⨯=52000200x +,解得:x =2400,经检验x =2400是原方程的根,答:商场次购入的空调每台进价是2400元;(2)设将y 台空调打折出售,根据题意,得:(3000+200)×0.95y +(3000+200)×(520002400200+﹣y )≥52000×(1+20%),解得:y ≤10,答:至多将10台空调打折出售.本题考查了分式方程的应用和一元没有等式的应用.利用分式方程解应用题时,一般题目中会有两个相等关系,这时要根据题目所要解决的问题,选择其中的一个相等关系作为列方程的依据,而另一个则用来设未知数.解答分式方程时,还要一定要注意验根.2022-2023学年安徽省合肥市八年级上册数学期末专项提升模拟卷(卷二)一、选一选(本题共30分,每小题3分)1.世界上最小的鸟是生活在古巴的吸蜜蜂鸟,它的质量约为0.056盎司.将0.056用科学记数法表示为()A.5.6×10﹣1B.5.6×10﹣2C.5.6×10﹣3D.0.56×10﹣12.江永女书诞生于宋朝,是世界上一种女性文字,主要书写在精制布面、扇面、布帕等物品上,是一种独特而神奇的文化现象.下列四个文字依次为某女书传人书写的“女书文化”四个字,基本是轴对称图形的是()A. B. C. D.3.下列式子为最简二次根式的是()A.B.C.D.4.若分式23x x -+的值为0,则x 的值等于()A.0B.2C.3D.-35.下列运算正确的是A.532b b b ÷= B.527()b b = C.248·b b b = D.2·22a a b a ab-=+()6.如图,在△ABC 中,∠B =∠C =60°,点D 为AB 边的中点,DE ⊥BC 于E ,若BE=1,则AC 的长为()A.2B.C.4D.7.如图,小敏做了一个角平分仪ABCD ,其中AB =AD ,BC =DC ,将仪器上的点A 与∠PRQ 的顶点R 重合,调整AB 和AD ,使它们分别落在角的两边上,过点A ,C 画一条射线AE ,AE 就是∠PRQ 的平分线.此角平分仪的画图原理是:根据仪器结构,可得△ABC ≌△ADC ,这样就有∠QAE =∠PAE .则说明这两个三角形全等的依据是()A.SASB.ASAC.AASD.SSS8.如图,根据计算长方形ABCD 的面积,可以说明下列哪个等式成立()A.222()2a b a ab b +=++B.222()2a b a ab b -=-+C.22()()a b a b a b +-=- D.2()a a b a ab+=+9.如图,已知在△ABC ,AB =AC .若以点B 为圆心,BC 长为半径画弧,交腰AC 于点E ,则下列结论一定正确的是()A.AE =ECB.AE =BEC.∠EBC =∠BACD.∠EBC =∠ABE10.如图,点P 是∠AOB 内任意一点,且∠AOB =40°,点M 和点N 分别是射线OA 和射线OB 上的动点,当△PMN 周长取最小值时,则∠MPN 的度数为()A.140°B.100°C.50°D.40°二、填空题:(本题共16分,每小题2分)11.若代数式x的取值范围是_______.12.在平面直角坐标系xOy中,点P(2,1)关于y轴对称的点的坐标是_____.13.如图,点B、F、C、E在一条直线上,已知BF=CE,AC∥DF,请你添加一个适当的条件______,使得△ABC≌△DEF.14.等腰三角形一边等于5,另一边等于8,则其周长是_________.15.如图,△ABC≌△ADE,∠EAC=40°,则∠B=_______°.16.如图,在△ABC中,∠ACB=90°,AD是△ABC的角平分线,BC=10cm,BD:DC=3:2,则点D到AB的距离为_____.17.如果实数a,b满足a+b=6,ab=8,那么a2+b2=_____.18.阅读下面材料:在数学课上,老师提出如下问题:小红的作法如下:老师说:“小红的作确.”请回答:小红的作图依据是_________________________.三、解答题(本题共9个小题,共54分,解答应写出文字说明,证明过程或演算步骤)19.计算:)1112-⎛⎫++-- ⎪⎝⎭20.因式分解:(1)24x -(2)2244ax axy ay -+21.如图,点E 、F 在线段AB 上,且AD =BC ,∠A =∠B ,AE =BF .求证:DF =CE .22.已知2+2x x =,求()()()()22311x x x x x +-+++-的值23.解分式方程.11222x x x-+=--24.先化简,再求值:259123x x x ,-⎛⎫-÷⎪++⎝⎭2x =.列分式方程解应用题:25.列分式方程解应用题:北京条地铁线路于1971年1月15日正式开通运营.截至2017年1月,北京地铁共有19条运营线路,覆盖北京市11个辖区.据统计,2017年地铁每小时客运量是2002年地铁每小时客运量的4倍,2017年客运240万人所用的时间比2002年客运240万人所用的时间少30小时,求2017年地铁每小时的客运量.26.如图,在△ABC 中,AB =AC ,AD ⊥BC 于点D ,AM 是△ABC 的外角∠CAE 的平分线.(1)求证:AM ∥BC ;(2)若DN 平分∠ADC 交AM 于点N ,判断△ADN 的形状并说明理由.27.定义:任意两个数,a b ,按规则c ab a b =++扩充得到一个新数c ,称所得的新数c 为“如意数”.(1)若1,a b ==直接写出,a b 的“如意数”c ;(2)如果4,a m b m =-=-,求,a b 的“如意数”c ,并证明“如意数”0c ≤;(3)已知()2=10a x x -≠,且,a b 的“如意数”3231,c x x =+-,则b =_______________________(用含x 的式子表示)28.如图,在等边三角形ABC 的外侧作直线AP ,点C 关于直线AP 的对称点为点D ,连接AD ,BD ,其中BD 交直线AP 于点E .(1)依题意补全图形;(2)若∠PAC =20°,求∠AEB 的度数;(3)连结CE ,写出AE ,BE ,CE 之间的数量关系,并证明你的结论.2022-2023学年安徽省合肥市八年级上册数学期末专项提升模拟卷(卷二)一、选一选(本题共30分,每小题3分)1.世界上最小的鸟是生活在古巴的吸蜜蜂鸟,它的质量约为0.056盎司.将0.056用科学记数法表示为()A.5.6×10﹣1B.5.6×10﹣2C.5.6×10﹣3D.0.56×10﹣1【正确答案】B【详解】0.056用科学记数法表示为:0.056=-25.610 ,故选B.2.江永女书诞生于宋朝,是世界上一种女性文字,主要书写在精制布面、扇面、布帕等物品上,是一种独特而神奇的文化现象.下列四个文字依次为某女书传人书写的“女书文化”四个字,基本是轴对称图形的是()A.B.C. D.【正确答案】A【详解】试题解析:选项A 是轴对称图形,选项B 、C 、D 都没有是轴对称图形,判断一个图形是没有是轴对称图形,关键在于看是否存在一条直线,使得这个图形关于这条直线对称.故选A.考点:轴对称图形.3.下列式子为最简二次根式的是()A.B.C.D.【正确答案】C【详解】选项A ,a b +;选项B ,=;选项C ,次根式;选项D ,=22.故选C.4.若分式23x x -+的值为0,则x 的值等于()A.0B.2C.3D.-3【正确答案】B【详解】分式的值为0,分子为0分母没有为0,由此可得x-2=0且x+3≠0,解得x=2,故选B.5.下列运算正确的是A.532b b b ÷= B.527()b b = C.248·b b b = D.2·22a a b a ab-=+()【正确答案】A【详解】选项A ,532b b b ÷=,正确;选项B ,()25b =10b ,错误;选项C ,24·b b =6b ,错误;选项D ,2·22a a b a ab -=-,错误.故选A.6.如图,在△ABC 中,∠B =∠C =60°,点D 为AB 边的中点,DE ⊥BC 于E ,若BE=1,则AC 的长为()A.2B.C.4D.【正确答案】C【详解】解:∵∠B=60°,DE⊥BC,∴BD=2BE=2,∵D 为AB 边的中点,∴AB=2BD=4,∵∠B=∠C=60°,∴△ABC 为等边三角形,∴AC=AB=4,故选:C.7.如图,小敏做了一个角平分仪ABCD ,其中AB =AD ,BC =DC ,将仪器上的点A 与∠PRQ 的顶点R 重合,调整AB 和AD ,使它们分别落在角的两边上,过点A ,C 画一条射线AE ,AE 就是∠PRQ 的平分线.此角平分仪的画图原理是:根据仪器结构,可得△ABC ≌△ADC ,这样就有∠QAE =∠PAE .则说明这两个三角形全等的依据是()A.SASB.ASAC.AASD.SSS【正确答案】D【详解】解:在△ADC 和△ABC 中,AD AB DC BC AC AC ⎧⎪⎨⎪⎩===,∴△ADC ≌△ABC (SSS ),∴∠DAC =∠BAC ,即∠QAE =∠PAE .故选D .8.如图,根据计算长方形ABCD 的面积,可以说明下列哪个等式成立()A.222()2a b a ab b +=++B.222()2a b a ab b -=-+C.22()()a b a b a b +-=-D.2()a a b a ab+=+【正确答案】D【详解】长方形ABCD 的面积的两种表示方法可得()2a ab a ab +=+,故选D.9.如图,已知在△ABC ,AB =AC .若以点B 为圆心,BC 长为半径画弧,交腰AC 于点E ,则下列结论一定正确的是()A.AE =ECB.AE =BEC.∠EBC =∠BACD.∠EBC =∠ABE 【正确答案】C【详解】解:∵AB =AC ,∴∠ABC =∠ACB .∵以点B 为圆心,BC 长为半径画弧,交腰AC 于点E ,∴BE =BC ,∴∠ACB =∠BEC ,∴∠BEC =∠ABC =∠ACB ,∴∠BAC=∠EBC.C选项符合题意,其他选项均没有符合题意,故选C.本题考查了等腰三角形的性质,当等腰三角形的底角对应相等时其顶角也相等,难度没有大.10.如图,点P是∠AOB内任意一点,且∠AOB=40°,点M和点N分别是射线OA和射线OB 上的动点,当△PMN周长取最小值时,则∠MPN的度数为()A.140°B.100°C.50°D.40°【正确答案】B【分析】根据轴对称的性质证得△OCD是等腰三角形,求得得∠OCD=∠ODC=50°,再利用SAS 证明△CON≌△PON,△ODM≌△OPM,根据全等三角形的性质可得∠OCN=∠NPO=50°,∠OPM=∠ODM=50°,再由∠MPN=∠NPO+∠OPM即可求解.【详解】解∶如图,分别作点P关于OB、OA的对称点C、D,连接CD,分别交OA、OB于点M、N,连接OC、OD、PM、PN、MN,此时△PMN周长取最小值.∴OC=OP=OD,∠CON=∠PON,∠POM=∠DOM;∵∠AOB=∠MOP+∠PON=40°,∴∠COD=2∠AOB=80°,在△COD中,OC=OD,∠AOB=40°,∴∠OCD=∠ODC=50°;在△CON和△PON中,OC=OP,∠CON=∠PON,ON=ON,∴△CON≌△PON,∴∠OCN =∠NPO =50°,同理∠OPM =∠ODM =50°,∴∠MPN =∠NPO +∠OPM =50°+50°=100°.故选:B .本题考查了轴对称的性质、等腰三角形的性质、三角形的内角和定理、全等三角形的判定与性质等知识点.二、填空题:(本题共16分,每小题2分)11.若代数式x 的取值范围是_______.【正确答案】1≥x 【分析】先根据二次根式有意义的条件列出关于x 的没有等式,求出x 的取值范围即可.∴x -1≥0,解得x ≥1.故答案为:x ≥1.本题考查的是二次根式有意义的条件,即被开方数大于等于0.12.在平面直角坐标系xOy 中,点P (2,1)关于y 轴对称的点的坐标是_____.【正确答案】(-2,1)【详解】关于y 轴对称的点,纵坐标相同,横坐标互为相反数,由此可得点P (2,1)关于y 轴对称的点的坐标是(-2,1).13.如图,点B 、F 、C 、E 在一条直线上,已知BF =CE ,AC ∥DF ,请你添加一个适当的条件______,使得△ABC ≌△DEF .【正确答案】∠A =∠D (答案没有)【详解】添加∠A =∠D .理由如下:∵FB =CE ,∴BC =EF .又∵AC ∥DF ,∴∠ACB =∠DFE .∴在△ABC 与△DEF 中,A D ACB DFE BC EF ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ABC ≌△DEF (AAS ).14.等腰三角形一边等于5,另一边等于8,则其周长是_________.【正确答案】18或21【详解】分两种情况:①当8为腰时,此三角形的周长=8+8+5=21;②当5为腰时,此三角形的周长=8+5+5=18.15.如图,△ABC ≌△ADE ,∠EAC =40°,则∠B =_______°.【正确答案】70【分析】根据全等三角形的对应边相等、对应角相等得到∠BAC=∠DAE ,AB=AD ,根据等腰三角形的性质和三角形内角和定理计算即可.【详解】∵△ABC ≌△ADE ,∴∠BAC=∠DAE ,AB=AD ,∴∠BAD=∠EAC=40°,∴∠B=(180°-40°)÷2=70°,故答案为70.本题考查的是全等三角形的性质和三角形内角和定理,掌握全等三角形的对应边相等、对应角相等是解题的关键.16.如图,在△ABC 中,∠ACB =90°,AD 是△ABC 的角平分线,BC =10cm ,BD :DC =3:2,则点D 到AB 的距离为_____.【正确答案】4cm【详解】∵BC=10cm ,BD :DC=3:2,∴BD=6cm ,CD=4cm ,∵AD 是△ABC 的角平分线,∠ACB=90°,∴点D 到AB 的距离等于DC ,即点D 到AB 的距离等于4cm .17.如果实数a ,b 满足a +b =6,ab =8,那么a 2+b 2=_____.【正确答案】20【详解】∵6,a b +=∴222()236,a b a ab b +=++=∵ab=8,∴22a b +=36-2ab=36-2×8=20.本题考查了完全平方公式的变形应用,熟练进行完全平方公式的变形是解题的关键.18.阅读下面材料:在数学课上,老师提出如下问题:小红的作法如下:老师说:“小红的作确.”请回答:小红的作图依据是_________________________.【正确答案】到线段两个端点距离相等的点在这条线段的垂直平分线上,两点确定一条直线.【分析】根据线段垂直平分线的作法即可得出结论.【详解】如图,∵由作图可知,AC =BC =AD =BD ,∴直线CD 就是线段AB 的垂直平分线.故答案为到线段两个端点距离相等的点在这条线段的垂直平分线上;两点确定一条直线.本题考查了作图—基本作图及线段垂直平分线的性质,熟练掌握性质定理是解题的关键.三、解答题(本题共9个小题,共54分,解答应写出文字说明,证明过程或演算步骤)19.计算:)10112-⎛⎫++-- ⎪⎝⎭【正确答案】【分析】根据值的性质、二次根式的乘法法则、负整数指数幂的性质、零指数幂的性质分别计算各项后,再化简合并即可.【详解】解:原式=)10112-⎛⎫+- ⎪⎝⎭,21=-,.本题考查了实数的运算,二次根式的运算,负整指数幂和零指数幂,掌握这些运算的法则是解题的关键.20.因式分解:(1)24x -(2)2244ax axy ay -+【正确答案】(1)x 2)(2)x -+((2)2(2)a x y -【详解】试题分析:(1)直接利用平方差公式因式分解即可;(2)提公因式a 后再利用完全平方公式因式分解即可.试题解析:(1)()24=x 2)2x x --+(;(2)()()2222244442ax axy ay a x xy y a x y -+=-+=-.21.如图,点E 、F 在线段AB 上,且AD =BC ,∠A =∠B ,AE =BF .求证:DF =CE .【正确答案】证明见解析【详解】试题分析:由AE =BF 可证得AF =BE ,已知条件利用SAS 证明△ADF ≌△BCE ,根据全等三角形的对应边相等的性质即可得结论.试题解析:证明:∵点E ,F 在线段AB 上,AE =BF .。
人教版2022-2023学年八年级数学上册期末模拟测试题(附答案)
2022-2023学年八年级数学上册期末模拟测试题(附答案)一、选择题(共计24分)1.点P(1,2)关于y轴对称点的坐标是()A.(﹣1,2)B.(1,﹣2)C.(1,2)D.(﹣1,﹣2)2.将下列长度的三根木棒首尾顺次连接,能组成直角三角形的是()A.1、2、3B.2、3、4C.3、4、5D.4、5、63.如图,点D为△ABC的边BC延长线上一点,关于∠B与∠ACD的大小关系,下列说法正确的是()A.∠B>∠ACD B.∠B=∠ACD C.∠B<∠ACD D.无法确定4.明明在对一组数据:9,1■,25,25,进行统计分析,发现其中一个两位数的个位数字被墨水涂污看不到了,则计算结果与被涂污数字无关的是()A.众数B.中位数C.平均数D.方差5.代入法解方程组时,代入正确的是()A.x﹣2﹣x=7B.x﹣2﹣2x=7C.x﹣2+2x=7D.x﹣2+x=7 6.下列计算不正确的是()A.3﹣=2B.×=C.+==3D.÷==27.中国清代算书《御制数理精蕴》中有这样一题:“马四匹、牛六头,共价四十八两(我国古代货币单位);马三匹、牛五头,共价三十八两.问马、牛各价几何?”设马每匹价值x两,牛每头y两,根据题意可列方程组为()A.B.C.D.8.下表中列出的是一个一次函数的自变量x与函数y的几组对应值:x…﹣2﹣11…y…﹣128…若将该一次函数的图象向下平移2个单位,得到一个新一次函数,下列关于新一次函数的说法中,正确的是()A.函数值y随自变量x的增大而减小B.函数图象不经过第四象限C.函数图象经过原点D.当x=2时,y的值为7二、填空题(共计15分)9.请写出一个大于3的无理数.10.命题“同位角相等”是命题(填“真”或“假”).11.甲,乙两人进行射击比赛,每人射击5次,所得平均环数相等,其中甲所得环数的方差为 2.1,乙所得环数分别为:8,7,9,7,9,那么成绩较稳定的是(填“甲”或“乙”).12.如图,点P(m+n,4m﹣n)为平面直角坐标系中第一象限内一点,PM⊥x轴于点M,PN⊥y轴于点N,若四边形OMPN是边长为5的正方形,则mn的值为.13.如图,长方体的高为9dm,底面是边长为6dm的正方形,一只蚂蚁从顶点A开始爬向顶点B,那么它爬行的最短路程为dm.三、解答题(计81分)14.计算:(π﹣3)0﹣×+|﹣1|.15.解方程组:16.如图,求图中x的值.17.若是二元一次方程4x﹣3y=10的一个解,求m的值.18.某校招聘一名数学老师,对应聘者分别进行了教学能力、教研能力和组织能力三项测试,并按教学能力占70%,教研能力占20%,组织能力占10%,计算加权平均数,作为最后评定的总成绩.王伟和李婷都应聘了该岗位,经计算,王伟的最后评定总成绩为87.8分,已知李婷的教学能力、教研能力和组织能力三项成绩依次为88分、84分、86分.若该校要在李婷和王伟两人中录用一人,谁将被录用?19.已知a+b是25的算术平方根,2a﹣b是﹣8的立方根,c是的整数部分,求a+bc的平方根.20.已知:如图:∠BEC=∠B+∠C.求证:AB∥CD.21.2021年12月12日是西安事变85周年纪念日,西安事变及其和平解决在中国社会发展中占有重要的历史地位,为中国社会的发展起到了无可替代的作用.为此,某社区开展了系列纪念活动,如图,有一块三角形空地ABC,社区计划将其布置成展区,△BCD区域摆放花草,阴影部分陈列有关西安事变的历史图片,现测得AB=20米,AC=10米,BD=6米,CD=8米,且∠BDC=90°.(1)求BC的长;(2)求阴影部分的面积.22.为巩固“精准扶贫”成果,市农科院专家指导李大爷种植某种优质水果喜获丰收,上市20天全部销售完,专家对销售情况进行了跟踪记录,并将记录情况绘制成如图所示的函数图象,其中x(天)表示上市时间,y(千克)表示日销售量.(1)当12≤x≤20时,求日销售量y与上市时间x的函数关系式;(2)求出第15天的日销售量.23.如图,在平面直角坐标系中,已知四边形ABCD的四个顶点都在网格的格点上.(1)在图中画出四边形ABCD关于x轴对称的四边形A'B'C'D';(2)在(1)的条件下,分别写出点A、B、D的对应点A'、B'、D'的坐标.24.某公司对消费者进行了随机问卷调查,共发放1000份调查问卷,并全部收回,根据调查问卷,将消费者年收入情况整理后,制成如下表格(被调查的消费者年收入情况):年收入/万元38102050被调查的消费者数/人1005003005050(1)根据表中数据,被调查的消费者平均年收入为多少万元?(2)被调查的消费者年收入的中位数和众数分别是和万元.(3)在平均数、中位数这两个数据中,谁更能反映被调查的消费者的收入水平?请说明理由.25.某山区有23名中、小学生因贫困失学需要捐助.资助一名中学生的学习费用需要a元,一名小学生的学习费用需要b元.某校学生积极捐助,初中各年级学生捐款数额与用其恰好捐助贫困中学生和小学生人数的部分情况如下表:年级捐款数额(元)捐助贫困中学生人数(名)捐助贫困小学生人数(名)初一年级400024初二年级420033初三年级7400(1)求a、b的值;(2)初三年级学生的捐款解决了其余贫困中小学生的学习费用,求初三年级学生可捐助的贫困中小学生人数.26.如图,已知直线AB经过点(1,﹣2),且与x轴交于点A(2,0),与y轴交于点B,作直线AB关于y轴对称的直线BC交x轴于点C,点P为OC的中点.(1)求直线AB的函数表达式和点B的坐标;(2)若经过点P的直线l将△ABC的面积分为1:3的两部分,求所有符合条件的直线l的函数表达式.参考答案一、选择题(共计24分)1.解:∵点P(1,2)关于y轴对称,∴点P(1,2)关于y轴对称的点的坐标是(﹣1,2).故选:A.2.解:A、∵12+22≠32,∴不能组成直角三角形,故A选项错误;B、∵22+32≠42,∴不能组成直角三角形,故B选项错误;C、∵32+42=52,∴组成直角三角形,故C选项正确;D、∵42+52≠62,∴不能组成直角三角形,故D选项错误.故选:C.3.解:∵∠ACD是△ABC的外角,∴∠ACD=∠B+∠A,∴∠B<∠ACD.故选:C.4.解:这组数据的平均数、方差和中位数都与被涂污数字有关,而这组数据的众数为25,与被涂污数字无关.故选:A.5.解:把②代入①得,x﹣2(1﹣x)=7,去括号得,x﹣2+2x=7.故选:C.6.解:A.3﹣=2,故此选项不合题意;B.×=,故此选项不合题意;C.+无法合并计算,故此选项符合题意;D.÷==2,故此选项不合题意.故选:C.7.解:设马每匹x两,牛每头y两,根据题意可列方程组为:.故选:A.8.解:设原来的一次函数解析式为y=kx+b(k≠0),代入(﹣2,﹣1),(﹣1,2),得,解得,∴原来的一次函数解析式为y=3x+5,将该一次函数图象向下平移2个单位,得到新的一次函数的解析式为y=3x+3,∵k=3>0,∴函数值y随自变量x的增大而增大,故A选项不符合题意;∵函数y=3x+3经过第一、二、三象限,不经过第四象限,故B选项符合题意;∵函数y=3x+3不是正比例函数,不经过原点,故C选项不符合题意;当x=2时,y=3×2+3=9,故D选项不符合题意,故选:B.二、填空题(共计15分)9.解:由题意可得,>3,并且是无理数.故答案为:.10.解:两直线平行,同位角相等,命题“同位角相等”是假命题,因为没有说明前提条件.故答案为:假.11.解:∵乙的平均环数为=8,∴乙射击成绩的方差为×[2×(7﹣8)2+(8﹣8)2+2×(9﹣8)2]=0.8,∵甲所得环数的方差为2.1,0.8<2.1,∴成绩比较稳定的是乙,故答案为:乙.12.解:∵P(m+n,4m﹣n)为平面直角坐标系中第一象限内一点,PM⊥x轴于点M,PN⊥y轴于点N,∴PN=m+n,PM=4m﹣n,∵四边形OMPN是边长为5的正方形,∴PM=PN=5,,∴,则mn的值为6.故答案为:6.13.解:如图,(1)AB===3;(2)AB==15,由于15<3;则蚂蚁爬行的最短路程为15dm.故答案为:15.三、解答题(共计81分)14.解:(π﹣3)0﹣×+|﹣1|=1﹣3+﹣1=﹣2.15.解:①×2得:4x+6y=16③,③﹣②得:11y=22,解得:y=2,把y=2代入②,得4x﹣10=﹣6,解得:x=1,故原方程组的解为:.16.解:由题意得:x°+(x+10)°=(x+70)°,解得:x=60.即x的值为60.17.解:把代入方程4x﹣3y=10,可得:12m+4﹣6m+6=10,解得:m=0.18.解:李婷的最后评定总成绩为:88×70%+84×20%+86×10%=87(分),∵王伟的最后评定总成绩为87.8分,87<87.8,∴王伟将被录用.19.解:∵a+b是25的算术平方根,2a﹣b是﹣8的立方根,∴,解得:,∵4<5<9,∴2<<3,∴的整数部分是2,∴c=2,∴a+bc=1+4×2=1+8=9,∴a+bc的平方根为±3.20.证明:如图,过点E作EM∥AB,∴∠B=∠BEM,∵∠BEC=∠B+∠C,∠BEC=∠BEM+∠CEM,∴∠C=∠CEM,∴EM∥CD,∴AB∥CD.21.解:(1)∵BD=6米,CD=8米,∠BDC=90°,∴BC===10(米),答:BC的长为10米;(2)∵AB=20米,AC=10米,BC=10米,∴AB2+BC2=202+102=(10)2=AC2,∴△ABC是直角三角形,且∠ABC=90,∴S阴影=S△ABC﹣S△BCD=AB•BC﹣BD•CD=×20×10﹣×6×8=76(平方米).22.解:(1)当12≤x≤20时,设y与x的函数关系式为y=kx+b,由题意得:,解得:,∴当12≤x≤20时,y与x的函数关系式为:y=﹣120x+2 400;(2)当x=15时,y=﹣120×15+2 400=600,所以第15天的日销售量为600千克.23.解:(1)如图所示:四边形A'B'C'D'即为所求;(2)点A、B、D的对应点:A'(﹣5,﹣6),B'(﹣5,﹣2),D'(3,﹣7).24.解:(1)==10.8(万元),答:被调查的消费者平均年收入约为10.8万元;(2)这组数据从小到大排列后,处在中间位置的两个数都是8万元,因此中位数为8万元;这组数据中出现次数最多的是8万元,因此众数为8万元;故答案为:8,8;(3)中位数更能反映被调查的消费者的收入水平,理由:虽然平均数,中位数均能反映一组数据的集中程度,但平均数易受极端数值影响,所以中位数更能反映被调查的消费者的收入水平.25.解:(1)依题意得:,解得:.答:a的值为800,b的值为600.(2)设初三年级学生可捐助贫困中学生x人,小学生y人,依题意得:,解得:.答:初三年级学生可捐助贫困中学生4人,小学生7人.26.解:(1)设直线AB的函数表达式为y=kx+b(h≠0).把点(1,﹣2),(2,0)代入得,解得,∴直线AB为y=2x﹣4.当x=0时,y=2x﹣4=﹣4,∴B(0,﹣4).(2)①当直线l经过点B时,如图1.∵直线AB关于y轴对称的直线BC交x轴于点C,∴OA=OC=2,∴C(﹣2,0).∵P为OC的中点,∴P(﹣1,0),∴AP=3CP,∴S△BCP:S△BAP=1:3.设此时直线l的表达式为y=mx+n(m≠0).将点P(﹣1,0)、B(0,﹣4)代入得,解得,∴此时直线l的表达式为y=﹣4x﹣4;②当直线l与AB的交点D在第四象限时,如图2.∵A(2,0),C(﹣2,0),B(0,﹣4),∴AC=4,OB=4,∴S△ABC=AC•OB=×4×4=8.∵直线l将△ABC的面积分为1:3的两部分,∴S△APD=S△ABC=2,∴•AP•|y D|=2,即×3×|y D|=2,解得|y D|=,将y=﹣代入y=2x﹣4,得x=,∴D(,﹣).设此时直线l的函数表达式为y=m2x+n2(m2≠0).将点D(,﹣)、P(﹣1,0)代入得,解得,∴此时直线l的函数表达式为y=﹣.综上所述,所有符合条件的直线l的函数表达式为y=﹣4x﹣4或y=﹣x﹣.。
浙教版2022-2023学年八年级上学期期末数学模拟测试卷(二)(解析版)
浙教版2022-2023学年八年级上学期期末数学模拟测试卷(二)(解析版)一、选择题(本大题有10小题,每小题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的.1.下列图案中,不是轴对称图形的是()A.B.C.D.【答案】C【解析】A、是轴对称图形,不符合题意;B、是轴对称图形,不符合题意;C、不是轴对称图形,符合题意;D、是轴对称图形,不符合题意;故答案为:C.2.在圆周长计算公式C=2πr中,对半径不同的圆,变量有()A.C,r B.C,π,r C.C,πD.C,2π,r【答案】A【解析】∵在圆的周长公式C=2πr中,C与r是改变的,π是不变的;∴变量是C,r,常量是2π.故选A.3.若实数a,b满足a>b,则下列不等式一定成立的是()A.a>b+2B.a﹣1>b﹣2C.﹣a>﹣b D.a2>b2【答案】B【解析】当a>b时,a>b+2不一定成立,故错误;当a>b时,a﹣1>b﹣1>b﹣2,成立,当a>b时,﹣a<﹣b,故错误;当a>b时,a2>b2不一定成立,故错误;故答案为:B.4.仔细观察用直尺和圆规作一个角等于已知角的示意图,请根据三角形全等的有关知识,说明画出∠AOB=∠CPD的依据是()A.SAS B.AAS C.ASA D.SSS【答案】D【解析】由作法易得OG=PM,OH=PN,GH=MN,在△GOH与△MPN中,{OG=PM OH=PN GH=MN,∴△GOH≌△MPN(SSS),∴∠AOB=∠CPD(全等三角形的对应角相等).故答案为:D.5.已知点A的坐标为(1,2),直线AB∥x轴,且AB=5,则点B的坐标为()A.(5,2)或(4,2)B.(6,2)或(-4,2)C.(6,2)或(-5,2)D.(1,7)或(1,-3)【答案】B【解析】∵AB∥x轴,点A的坐标为(1,2),∴点B 的纵坐标为2, ∵AB=5,∴点B 在点A 的左边时,横坐标为1-5=-4, 点B 在点A 的右边时,横坐标为1+5=6, ∴点B 的坐标为(-4,2)或(6,2). 故答案为:B .6.已知等腰三角形中有一个角等于 40° ,则这个等腰三角形的顶角的度数为( ) A .40° B .100° C .40° 或 70° D .40° 或 100° 【答案】D【解析】∵等腰三角形中有一个角等于40°,∴①若40°为顶角,则这个等腰三角形的顶角的度数为40°;②若40°为底角,则这个等腰三角形的顶角的度数为:180°-40°×2=100°. ∴这个等腰三角形的顶角的度数为:40°或100°. 故答案为:D.7.如图,在∥ABC 中,∥B =46°,∥C =52°,AD 平分∥BAC ,交BC 于点D ,DE∥AB ,交AC 于点E ,则∥ADE =( )A .45°B .41°C .40°D .50° 【答案】B【解析】∵∥B =46°,∥C =52°,∴∥BAC =180°-∥B -∥C =180°-46°-52°=82°, 又∵AD 平分∥BAC ,∴∥BAD =∥BAC =12×82°=41°,∵DE∥AB ,∴∥ADE =∥BAD =41°. 故答案为:B .8.在平面直角坐标系中,若点(x 1,-1),(x 2,-2),(x 3,1)都在直线y=-2x+b 上,则x 1,x 2,x 3的大小关系是( ) A .x 1>x 2>x 3 B .x 3>x 2>x 1 C .x 2>x 1>x 3 D .x 2>x 3>x 1 【答案】C【解析】∵y=-2x+b 中k=-2<0 ∴y 随x 的增大而减小 ∵-2<-1<1 ∴x 2>x 1>x 3. 故答案为:C.9.在∥ABC 中,AB=15,AC=13,BC 上的高AD 长为12,则∥ABC 的面积为( ) A .84 B .24 C .24或84 D .42或84 【答案】C 【解析】(1)∥ABC 为锐角三角形,高AD 在三角形ABC 的内部, ∴BD= √AB 2−AD 2 =9,CD= √AC 2−AD 2 =5, ∴∥ABC 的面积为 12×(9+5)×12 =84,( 2 )∥ABC 为钝角三角形,高AD 在三角形ABC 的外部,∴BD= √AB 2−AD 2 =9,CD= √AC 2−AD 2 =5,∴∥ABC 的面积为 12×(9−5)×12 =24,故答案为:C.10.定义:∥ABC 中,一个内角的度数为 α ,另一个内角的度数为 β ,若满足 α+2β=90° ,则称这个三角形为“准直角三角形”.如图,在Rt∥ABC 中,∥C=90°, AC=8,BC=6,D 是BC 上的一个动点,连接AD ,若∥ABD 是“准直角三角形”,则CD 的长是( )A .127B .2413C .83D .135【答案】C【解析】如图,过D 作DE∥AB ,∵∥C=90°,∴AB=√AC 2+BC 2=√82+62=10, ∴设∥ABD= α,∥BAD= β ,∵∥BAD+∥CAD+∥ABD=90°, 即α+β+∥CAD=90°∵, ∴∥CAD=∥BAD=β,∴AD 是∥CAB 的平分线, ∴DE=DC ,AE=AC ,BE=AB -AE=10-8=2, 设DC=DE=x, 则BD=BC -DC=6-x, ∵BD 2=BE 2+DE 2, ∴(6-x )2=22+x 2, 整理得12x=32, ∴x=83.故答案为:C.二、填空题(本大题有6小题,每小题4分,共24分)要注意认真看清题目的条件和要填写的内容,尽量完整地填写答案. 11.如果点P (6,1+m )在第四象限,m 的取值范围是 . 【答案】m <﹣1【解析】∵点P (6,1+m )在第四象限, ∴1+m <0,解得:m <﹣1, 故答案为:m <﹣1.12.已知一个三角形三边的长分别为 √5,√10,√15 ,则这个三角形的面积是 .【答案】52√2【解析】∵(√5)2+(√10)2=15 , (√15)2=15 ,∴(√5)2+(√10)2=(√15)2 , ∴该三角形为直角三角形,∴其面积为 12×√5×√10=52√2 ,故答案为: 52√2 .13.在平面直角坐标系中,直线y =−34x +3与x 轴、y 轴交于点A 、B ,点C 在x 轴负半轴上,若ΔABC 为等腰三角形,则点C 的坐标为 . 【答案】(-4,0)或(-1,0)【解析】直线y =−34x +3与x 轴、y 轴交于点A 、B ,则点A 的坐标为(4,0),点B 的坐标为(0,3),∴AB =√OA 2+OB 2=5. 分两种情况考虑,如图所示.①当BA=BC 时,OC =OA =4, ∴点C 1的坐标为 (-4,0) ;②当AB=AC 时,∵AB =5,OA =4, ∴OC =5−4=1,∴点C 2的坐标为 (-1,0) .∴点C 的坐标为为(-4,0)或(-1,0). 故答案为:(-4,0)或(-1,0).14.如图,六边形 ABCDEF 的六个内角都等于120°,若 AB =BC =CD =6cm , DE =4cm ,则这个六边形的周长等于 cm .【答案】34【解析】如图,分别作AB 、CD 、EF 的延长线和反向延长线,使它们交于点G 、H 、P ,∵六边形ABCDEF的六个角都是120°,∴六边形ABCDEF的每一个外角的度数都是60°,∴∥APF、∥BGC、∥DHE、∥GHP都是等边三角形,∴GC=BC=6cm,DH=DE=4cm,PF=PA=FA,∴GH=6+6+4=16cm,∴FA=PA=PG-AB-BG=16-6-6=4cm,EF=PH-PF-EH=16-4-4=8cm,∴六边形的周长为6+6+6+4+8+4=34cm.故答案为:34.15.如图,在Rt△ABC中,∠ACB=90∘,∠A>∠B,将△ABC第一次沿折痕CE折叠,使得点A能落在BC上,铺平后,将∠B沿折痕GF折叠,使点B与点A重合,FG分别交BC边,AB边于点F,点G,CD是斜边上的高线,若∠DCE=∠B,则BFCE=.【答案】√2【解析】连接AF,∵将△ABC第一次沿折痕CE折叠,使得点A能落在BC上,∴∠ACE=∠BCE=45°,∵将∠B沿折痕GF折叠,使点B与点A重合,∴∠B=∠FAB,FA=FB,∵∠ACD+∠DCB=∠B+∠DCB=90°,∴∠ACD=∠B,∵∠DCE=∠B,∴∠ACD=∠DCE=∠B=12∠ACE=22.5°,∴∠AFC=∠B+∠FAB=2∠B=45°,∴△AFC为等腰直角三角形,设AC=CF=a,则AF=√a2+a2=√2a,∵∠CAB=90°−∠B=67.5°,∠CEA=∠B+∠BCE=67.5°,即∠CAE=∠CEA,∴CA=CE,∴BF CE=AFCA=√2aa=√2,故答案为:√2.16.在∥ABC中,∥C=90°,D是边BC上一点,连接AD,若∥BAD+3∥CAD=90°,DC=a,BD =b,则AB=. (用含a,b的式子表示)【答案】2a+b【解析】如图,延长BC至点E,使CE=CD,连接AE,∵∥ACB=90°,∴∥CAB+∥B=90°,AC∥CD,∵∥BAD+3∥CAD=90°,∥BAD+∥CAD=∥BAC,∴∥B=2∥CAD,∵CE=CD,AC∥CD,∴AC垂直平分ED,∴AE=AD,即∥AED是等腰三角形,∴∥EAC=∥CAD,∴∥EAD=2∥CAD=∥B,∴∥EAB=∥B+∥BAD,∵∥E=∥ADE=∥B+∥BAD,∴∥E=∥EAB,∴AB=EB,∵EB=EC+CD+BD=a+a+b=2a+b,∴AB=2a+b.故填:2a+b.三、解答题(本题有8小题,第17~19题每题6分,第20、21题每题8分,第22、23题每题10分,第24题12分,共66分)解答应写出文字说明,证明过程或推演步骤.17.解下列不等式(组).(1)3(x﹣1)﹣5<2x;(2){1−2x−23⩽5−3x2 3−2x>1−3x【答案】(1)解:去括号得:3x﹣3﹣5<2x,移项得:3x﹣2x<3+5,合并得:x<8(2)解:{1−2x−23⩽5−3x2①3−2x>1−3x②,由①得:x≤1,由②得:x>﹣2,∴原不等式组的解集为﹣2<x≤118.如图,已知∠BAC,用三种不同的方法画出∠BAC的平分线.要求:( 1 )画图工具:带有刻度的直角三角板; ( 2 )保留画图痕迹,简要写出画法.【答案】 解:①在AC 上取线段AD ,AB 上取线段AE ,使AE =AD ,再连接DE ,并取DE 中点F ,最后连接AF 并延长,则AF 即为∠BAC 的平分线;②在AC 上取线段AG ,AB 上取线段AH ,使AG =AH .再过点G 作GJ ⊥AC ,过点H 作IH ⊥AB ,GJ 和HI 交于点K ,最后连接AK 并延长,则AK 即为∠BAC 的平分线;③在AC 上取线段AR ,在AB 上取线段AP ,使AR=AP ,过点P 作PQ//AC ,再在PQ 上取线段PO ,使PO=AR ,连接AO 并延长,则AO 即为∠BAC 的平分线.19.已知点P (32a +2,2a −3),根据下列条件,求出点P 的坐标.(1)点P 在y 轴上;(2)点Q 的坐标为(-3,3),直线PQ ∥x 轴. 【答案】(1)解:∵点P 在y 轴上, ∴点P 的横坐标为0,即32a +2=0解得:a =−43,∴2a −3=2×(−43)−3=−173,∴点P 的坐标为(0,−173);(2)解:∵直线PQ ∥x 轴,∴点P 、Q 的纵坐标相等,即2a −3=3,解得:a =3,∴32a +2=32×3+2=132∴点P 的坐标为(132,3).20.如图,AD 是∥ABC 的高,CE 是∥ACB 的角平分线,F 是AC 中点,∥ACB =50°,∥BAD =65°.(1)求∥AEC 的度数;(2)若∥BCF 与∥BAF 的周长差为3,AB =7,AC =4,则BC = . 【答案】(1)解:∵AD 是∥ABC 的高, ∴∥ADB =90°, ∵∥BAD =65°,∴∥ABD =90°﹣65°=25°,∵CE 是∥ACB 的角平分线,∥ACB =50°, ∴∥ECB = 12∥ACB =25°,∴∥AEC =∥ABD+∥ECB =25°+25°=50° (2)10 【解析】(2)∵F 是AC 中点, ∴AF =FC ,∵∥BCF 与∥BAF 的周长差为3,∴(BC+CF+BF )﹣(AB+AF+BF )=3, ∴BC ﹣AB =3, ∵AB =7, ∴BC =10, 故答案为:10.21.如图,在一条绷紧的绳索一端系着一艘小船.河岸上一男孩拽着绳子另一端向右走,绳端从C 移动到E ,同时小船从A 移动到B ,且绳长始终保持不变.A 、B 、F 三点在一条直线上,CF ⊥AF .回答下列问题:(1)根据题意可知:AC BC +CE (填“>”、“<”、“=”).(2)若CF =6米,AF =8米,AB =3米,求小男孩需向右移动的距离(结果保留根号). 【答案】(1)=(2)解:∵A 、B 、F 三点共线, ∴在Rt △CFA 中,AC =√AF 2+CF 2=10,∵BF =AF −AB =8−3=5, ∴在Rt △CFB 中,BC =√CF 2+BF 2=√61, 由(1)可得:AC =BC +CE , ∴CE =AC −BC =10−√61,∴小男孩需移动的距离为(10−√61)米. 【解析】(1)∵AC 的长度是男孩拽之前的绳长,(BC +CE)是男孩拽之后的绳长,绳长始终未变, ∴AC =BC +CE ,故答案为:=;22.每年11月份脐橙和蜜桔进入销售旺季.某水果专销商购进脐橙和蜜桔共1000箱.设购进蜜桔x(2)为了迎接“双11”活动,商家决定进行组合促销活动:两种水果各一箱打包成一组,售价为55元/组,其组数为购进蜜桔箱数的 15,未打包的按原价出售.若这两种水果全部卖出,利润不少于6500元,则该商家至少要购进蜜桔多少箱? 【答案】(1)解:售完1000箱水果所获得的利润为8x +6(1000−x)=2x +6000(2)解:由题意可知,购进蜜桔x 箱,则脐橙(1000-x)箱8⋅45x +6⋅(1000−x −15x)+10⋅15x ≥6500 解得 x ≥41623∵x 为整数,且为5的倍数 ∴至少为420箱.23.在等腰三角形∥ABC 中,AC =BC ,D 、E 分别为AB 、BC 上一点,∠CDE =∠A .(1)如图1,若BC =BD ,求证:△ADC ≅△BED ;(2)如图2,过点C 作CH ⊥DE ,垂足为H ,若CD =BD ,EH =3. ①求证:CE =DE ; ②求CE -BE 的值. 【答案】(1)证明:∵AC =BC ,∠CDE =∠A , ∴∠A =∠B =∠CDE ,∵∠CDB =∠A +∠ACD =∠CDE +∠BDE , ∴∠ACD =∠BDE . 又∵BC =BD , ∴BD =AC .在∥ADC 和∥BED 中,{∠ACD =∠BDE AC =BD ∠A =∠B△ADC ≅△BED(ASA)(2)解:①证明:∵CD =BD , ∴∠B =∠DCB .由(1)知:∠CDE =∠B , ∴∠DCB =∠CDE , ∴CE =DE ;②如图,在DE 上取点F ,使DF =BE ,在∥CDF 和∥DBE 中, {DF =BE ∠CDE =∠B CD =BD, ∴△CDF ≅△DBE(SAS), ∴CF =DE =CE , 又∵CH ⊥EF , ∴FH =HE ,∴CE −BE =DE −DF =EF =2HE =2×3=6.24.如图1,一次函数y =43x+4的图象与x 轴、y 轴分别交于点A 、B.(1)则点A 的坐标为 ,点B 的坐标为 ; (2)如图2,点P 为y 轴上的动点,以点P 为圆心,PB 长为半径画弧,与BA 的延长线交于点E ,连接PE ,已知PB =PE ,求证:∥BPE =2∥OAB ;(3)在(2)的条件下,如图3,连接PA ,以PA 为腰作等腰三角形PAQ ,其中PA =PQ ,∥APQ =2∥OAB.连接OQ.①则图中(不添加其他辅助线)与∥EPA 相等的角有 ;(都写出来) ②试求线段OQ 长的最小值. 【答案】(1)(﹣3,0);(0,4)(2)证明:如图2中,设∥ABO =α,则∥OAB =90°﹣α, ∵PB =PE ,∴∥PBE =∥PEB =α,∴∥BPE =180°﹣∥PBE ﹣∥PEB =180°﹣2α=2(90°﹣α), ∴∥BPE =2∥OAB.(3)①∥QPO ,∥BAQ ;②如图3中,连接BQ 交x 轴于T.∵AP =PQ ,PE =PB ,∥APQ =∥BPE , ∴∥APE =∥QPB ,在∥APE 和∥QPB 中,{PA=PQ∠APE=∠QPBPE=PB,∴∥APE∥∥QPB(SAS),∴∥AEP=∥QBP,∵∥AEP=∥EBP,∴∥ABO=∥QBP,∵∥ABO+∥BAO=90°,∥OBT+∥OTB=90°,∴∥BAO=∥BTO,∴BA=BT,∵BO∥A T,∴OA=OT,∴直线BT的解析式为为:y=﹣43x+4 ,∴点Q在直线上y=﹣43x+4运动,∵B(0,4),T(3,0).∴BT=5.当OQ∥BT时,OQ最小.∵S∥BOT=12×3×4=12×5×OQ.∴OQ=12 5.∴线段OQ长的最小值为12 5.【解析】(1)解:在y=43x+4中,令y=0,得0=43x+4,解得x=﹣3,∴A(﹣3,0),在y=43x+4中,令x=0,得y=4,∴B(0,4);故答案为:(﹣3,0),(0,4);(3)解:①结论:∥QPO,∥BAQ理由:如图3中,∵∥APQ=2∥OAB,∥BPE=2∥OAB,∴∥APQ=∥BPE.∴∥APQ﹣∥APB=∥BPE﹣∥APB.∴∥QPO=∥EPA.又∵PE=PB,AP=PQ∴∥PEB=∥PBE=∥PAQ=∥AQP.∴∥BAQ=180°﹣∥EAQ=180°﹣∥APQ=∥EPA.∴与∥EPA相等的角有∥QPO,∥BAQ.故答案为:∥QPO,∥BAQ;。
2022-2023学年人教版八年级数学上册期末模拟测试题含答案
2022-2023学年八年级上册期末数学模拟试卷一、选择题(本题共36分,每小题3分)在下列各题的四个备选答案中,只有一个符合题意.请将正确选项前的字母填在表格中相应的位置.1.(3分)如图所示的汽车标志中,不是轴对称图形的是()A.B.C.D.2.(3分)下列运算中正确的是()A.2x+3y=5xy B.x8÷x2=x4C.(x2y)3=x6y3D.2x3•x2=2x63.(3分)在平面直角坐标系xOy中,点P(﹣3,5)关于x轴的对称点的坐标是()A.(3,5)B.(3,﹣5)C.(5,﹣3)D.(﹣3,﹣5)4.(3分)若分式的值为0,则x的值为()A.0B.1C.﹣1D.±15.(3分)如图,将三角形纸片ABC沿直线DE折叠后,使得点B与点A重合,折痕分别交BC,AB于点D,E.如果AC=5cm,△ADC的周长为17cm,那么BC的长为()A.7cm B.10cm C.12cm D.22cm6.(3分)下列各式中,正确的是()A.B.C.D.7.(3分)某园林公司增加了人力进行园林绿化,现在平均每天比原计划多植树50棵,现在植树600棵所需的时间与原计划植树450棵所需的时间相同,如果设原计划平均每天植树x棵,那么下面所列方程中,正确的是()A.B.C.D.8.(3分)如图,把△ABC沿EF对折,叠合后的图形如图所示.若∠A=60°,∠1=95°,则∠2的度数为()A.24°B.25°C.30°D.35°9.(3分)在下列各式的计算中,正确的是()A.a2+a3=a5B.2a(a+1)=2a2+2aC.(ab3)2=a2b5D.(y﹣2x)(y+2x)=y2﹣2x210.(3分)已知等腰三角形的两边长分别为7和3,则第三边的长是()A.7B.4C.3D.3或711.(3分)化简结果正确的是()A.ab B.﹣ab C.a2﹣b2D.b2﹣a212.(3分)当x分别取﹣2014、﹣2013、﹣2012、….﹣2、﹣1、0、1、、、…、、、时,计算分式的值,再将所得结果相加,其和等于()A.﹣1B.1C.0D.2014二、填空题:(本题共24分,每小题3分)13.(3分)如果分式的值为0,那么x的值为.14.(3分)计算:=.15.(3分)分解因式:3a3﹣12a=.16.(3分)若关于x的二次三项式x2+kx+b因式分解为(x﹣1)(x﹣3),则k+b的值为.17.(3分)如图是两个全等三角形,图中的字母表示三角形的边长,那么根据图中提供的信息可知∠1的度数为 .18.(3分)约分:=.19.(3分)如图,△ABC ≌△DEF ,点F 在BC 边上,AB 与EF 相交于点P .若∠DEF =37°,PB =PF ,则∠APF = °.20.(3分)如图,图中的方格均是边长为1的正方形,每一个正方形的顶点都称为格点.图①~⑥这些多边形的顶点都在格点上,且其内部没有格点,象这样的多边形我们称为“内空格点多边形”. (1)当内空格点多边形边上的格点数为10时,此多边形的面积为 ;(2)设内空格点多边形边上的格点数为L ,面积为S ,请写出用L 表示S 的关系式 .三、解答题:(本题共14分,第21题9分,第22题5分) 21.(9分)(1)因式分解:3m 2﹣24m +48. (2)计算:. (3)解关于x 的方程:.22.(5分)已知,y =﹣2,求代数式(x +2y )2﹣(x ﹣2y )(x +2y )的值.四、解答题:(本题共9分,第23题4分,第24题5分)23.(4分)如图,点F 、C 在BE 上,BF =CE ,AB =DE ,∠B =∠E .求证:∠A =∠D .24.(5分)列方程解应用题2014年11月,APEC (“亚太经济合作组织”的简称)会议在中国北京成功召开.会议期间为方便市民出行,某路公交车每天比原来的运行增加30车次.经调研得知,原来这路公交车平均每天共运送乘客5600人,APEC 会议期间这路公交车平均每天共运送乘客8000人,且平均每车次运送乘客与原来的数量基本相同,问APEC 会议期间这路公交车每天运行多少车次? 五、解答题:(本题共17分,第25题5分,第26题6分,第27题6分) 25.(5分)已知:如图,△ABC ,射线AM 平分∠BAC .(1)尺规作图(不写作法,保留作图痕迹)作BC 的中垂线,与AM 相交于点G ,连接BG 、CG . (2)在(1)的条件下,∠BAC 和∠BGC 的等量关系为 ,证明你的结论.26.(6分)阅读:对于两个不等的非零实数a 、b ,若分式的值为零,则x =a 或x =b .又因为==x +﹣(a +b ),所以关于x 的方程x +=a +b 有两个解,分别为x 1=a ,x 2=b .应用上面的结论解答下列问题:(1)方程x +=6的两个解中较大的一个为 ; (2)关于x 的方程x +=的两个解分别为x 1、x 2(x 1<x 2),若x 1与x 2互为倒数,则x 1= ,x 2= ;(3)关于x 的方程2x +=2n +3的两个解分别为x 1、x 2(x 1<x 2),求的值.27.(6分)在△ABC 中,已知D 为直线BC 上一点,若∠ABC =x °,∠BAD =y °.(1)当D为边BC上一点,并且CD=CA,x=40,y=30时,则AB AC(填“=”或“≠”);(2)如果把(1)中的条件“CD=CA”变为“CD=AB”,且x,y的取值不变,那么(1)中的结论是否仍成立?若成立请写出证明过程,若不成立请说明理由.2022-2023学年八年级(上)期末数学模拟试卷参考答案与试题解析一、选择题(本题共36分,每小题3分)在下列各题的四个备选答案中,只有一个符合题意.请将正确选项前的字母填在表格中相应的位置.1.(3分)如图所示的汽车标志中,不是轴对称图形的是()A.B.C.D.【解答】解:A、不是轴对称图形,故本选项正确;B、是轴对称图形,不合题意,故本选项错误;C、轴对称图形,不合题意,故本选项错误;D、轴对称图形,不合题意,故本选项错误;故选:A.2.(3分)下列运算中正确的是()A.2x+3y=5xy B.x8÷x2=x4C.(x2y)3=x6y3D.2x3•x2=2x6【解答】解:A、2x和5y不是同类项,不能合并,故本选项错误;B、x8÷x2=x6,原式计算错误,故本选项错误;C、(x2y)3=x6y3,计算正确,故本选项正确;D、2x3•x2=2x5,原式计算错误,故本选项错误.故选:C.3.(3分)在平面直角坐标系xOy中,点P(﹣3,5)关于x轴的对称点的坐标是()A.(3,5)B.(3,﹣5)C.(5,﹣3)D.(﹣3,﹣5)【解答】解:∵关于x轴对称的两点的横坐标相等,纵坐标互为相反数∴点P(﹣3,5)关于x轴的对称点的坐标是(﹣3,﹣5).故选:D.4.(3分)若分式的值为0,则x的值为()A.0B.1C.﹣1D.±1【解答】解:∵分式的值为0,∴x2﹣1=0,且x﹣1≠0,解得:x=﹣1.故选:C.5.(3分)如图,将三角形纸片ABC沿直线DE折叠后,使得点B与点A重合,折痕分别交BC,AB于点D,E.如果AC=5cm,△ADC的周长为17cm,那么BC的长为()A.7cm B.10cm C.12cm D.22cm【解答】解:∵将△ABC沿直线DE折叠后,使得点B与点A重合,∴AD=BD,∵AC=5cm,△ADC的周长为17cm,∴AD+CD=BC=17﹣5=12(cm).故选:C.6.(3分)下列各式中,正确的是()A.B.C.D.【解答】解:A分母中的a没除以b,故A错误;B异分母分式不能直接相加,故B错误;C分式的分子分母没同乘或除以同一个不为零整式,故C错误;D分式的分子分母都乘以(a﹣2),故D正确;故选:D.7.(3分)某园林公司增加了人力进行园林绿化,现在平均每天比原计划多植树50棵,现在植树600棵所需的时间与原计划植树450棵所需的时间相同,如果设原计划平均每天植树x棵,那么下面所列方程中,正确的是()A.B.C.D.【解答】解:设原计划平均每天植树棵x棵,现在每天植树(x+50)棵,依题意得,=.故选:B.8.(3分)如图,把△ABC沿EF对折,叠合后的图形如图所示.若∠A=60°,∠1=95°,则∠2的度数为()A.24°B.25°C.30°D.35°【解答】解:∵∠A=60°,∴∠AEF+∠AFE=180°﹣60°=120°,∴∠FEB+∠EFC=360°﹣120°=240°,∵由折叠可得:∠B′EF+∠EFC′=∠FEB+∠EFC=240°,∴∠1+∠2=240°﹣120°=120°,∵∠1=95°,∴∠2=120°﹣95°=25°,故选:B.9.(3分)在下列各式的计算中,正确的是()A.a2+a3=a5B.2a(a+1)=2a2+2aC.(ab3)2=a2b5D.(y﹣2x)(y+2x)=y2﹣2x2【解答】解:A、不是同类项,不能合并,故选项错误;B、正确;C、(ab3)2=a2b6,故选项错误;D、(y﹣2x)(y+2x)=y2﹣4x2,故选项错误.故选:B.10.(3分)已知等腰三角形的两边长分别为7和3,则第三边的长是()A.7B.4C.3D.3或7【解答】解:①7是腰长时,三角形的三边分别为7、7、3,能组成三角形,所以,第三边为7;②7是底边时,三角形的三边分别为3、3、7,∵3+3=6<7,∴不能组成三角形,综上所述,第三边为7.故选:A.11.(3分)化简结果正确的是()A.ab B.﹣ab C.a2﹣b2D.b2﹣a2【解答】解:==﹣ab.故选:B.12.(3分)当x分别取﹣2014、﹣2013、﹣2012、….﹣2、﹣1、0、1、、、…、、、时,计算分式的值,再将所得结果相加,其和等于()A.﹣1B.1C.0D.2014【解答】解:因为+=+=0,即当x分别取值,n(n为正整数)时,计算所得的代数式的值之和为0;而当x=0时,==﹣1.因此,当x分别取﹣2014、﹣2013、﹣2012、….﹣2、﹣1、0、1、、、…、、、时,计算分式的值,再将所得结果相加和﹣1,故选:A.二、填空题:(本题共24分,每小题3分)13.(3分)如果分式的值为0,那么x的值为3.【解答】解:x﹣3=0,且x+2≠0,x=3,故答案为:3. 14.(3分)计算:= ﹣1.【解答】解:==﹣1.故答案为:﹣1.15.(3分)分解因式:3a 3﹣12a = 3a (a +2)(a ﹣2) . 【解答】解:3a 3﹣12a =3a (a 2﹣4), =3a (a +2)(a ﹣2).故答案为:3a (a +2)(a ﹣2).16.(3分)若关于x 的二次三项式x 2+kx +b 因式分解为(x ﹣1)(x ﹣3),则k +b 的值为 ﹣1 . 【解答】解:由题意得:x 2+kx +b =(x ﹣1)(x ﹣3)=x 2﹣4x +3, ∴k =﹣4,b =3, 则k +b =﹣4+3=﹣1. 故答案为:﹣117.(3分)如图是两个全等三角形,图中的字母表示三角形的边长,那么根据图中提供的信息可知∠1的度数为 70° .【解答】解:根据三角形内角和可得∠2=180°﹣50°﹣60°=70°, 因为两个全等三角形, 所以∠1=∠2=70°, 故答案为:70°.18.(3分)约分:=. 【解答】解:原式==.故答案为.19.(3分)如图,△ABC ≌△DEF ,点F 在BC 边上,AB 与EF 相交于点P .若∠DEF =37°,PB =PF ,则∠APF = 74 °.【解答】解:∵△ABC ≌△DEF , ∴∠E =∠B =37°, ∵PB =PF ,∴∠PFB =∠B =37°, ∴∠APF =37°+37°=74°, 故答案为:74.20.(3分)如图,图中的方格均是边长为1的正方形,每一个正方形的顶点都称为格点.图①~⑥这些多边形的顶点都在格点上,且其内部没有格点,象这样的多边形我们称为“内空格点多边形”. (1)当内空格点多边形边上的格点数为10时,此多边形的面积为 4 ;(2)设内空格点多边形边上的格点数为L ,面积为S ,请写出用L 表示S 的关系式 S =L ﹣1 .【解答】解:(1)由图形可知当内空格点多边形边上的格点数为10时,此多边形的面积=4个小正方形的面积=4×1=4,(2)当格点为3时,内空格点三边形的面积为=×3﹣1;当格点为4时,内空格点四边形的面积为1=×4﹣1; 当格点为5时,内空格点五边形的面积为=×5﹣1; …依此类推,当内空格点多边形边上的格点数为L ,面积为S =L ﹣1,故答案为:4;S=L﹣1.三、解答题:(本题共14分,第21题9分,第22题5分)21.(9分)(1)因式分解:3m2﹣24m+48.(2)计算:.(3)解关于x的方程:.【解答】解:(1)3m2﹣24m+48,=3(m2﹣8m+16),=3(m﹣4)2;(2)÷•,=••,=;(3)=1+,方程两边都乘(x﹣1)(x+3),得x(x﹣1)=(x﹣1)(x+3)+2(x+3),解得:x=﹣,检验,当x=﹣时,(x﹣1)(x+3)≠0,所以x=﹣是原方程的解,即原方程的解是x=﹣.22.(5分)已知,y=﹣2,求代数式(x+2y)2﹣(x﹣2y)(x+2y)的值.【解答】解:原式=x2+4xy+4y2﹣(x2﹣4y2)=x2+4xy+4y2﹣x2+4y2=4xy+8y2,当x=,y=﹣2时,原式=4××(﹣2)+8×(﹣2)2=﹣4+32=28.四、解答题:(本题共9分,第23题4分,第24题5分)23.(4分)如图,点F、C在BE上,BF=CE,AB=DE,∠B=∠E.求证:∠A=∠D.【解答】证明:∵BF=CE,∴BF+FC=CE+FC,∴BC=EF,在△ABC和△DEF中,∴△ABC≌△DEF(SAS),∴∠A=∠D.24.(5分)列方程解应用题2014年11月,APEC(“亚太经济合作组织”的简称)会议在中国北京成功召开.会议期间为方便市民出行,某路公交车每天比原来的运行增加30车次.经调研得知,原来这路公交车平均每天共运送乘客5600人,APEC会议期间这路公交车平均每天共运送乘客8000人,且平均每车次运送乘客与原来的数量基本相同,问APEC会议期间这路公交车每天运行多少车次?【解答】解:设APEC会议期间这路公交车每天运行x车次,则原来的运行为(x﹣30)车次,由题意得,=,解得:x=100,经检验,x=100是原分式方程的解,且符合题意.答:APEC会议期间这路公交车每天运行100车次.五、解答题:(本题共17分,第25题5分,第26题6分,第27题6分)25.(5分)已知:如图,△ABC,射线AM平分∠BAC.(1)尺规作图(不写作法,保留作图痕迹)作BC的中垂线,与AM相交于点G,连接BG、CG.(2)在(1)的条件下,∠BAC和∠BGC的等量关系为互补,证明你的结论.【解答】解:(1)如图1;(2)互补.证明:作GD ⊥AB ,GK ⊥AC , ∵AG 为∠BAC 的平分线, ∴GD =GK ,∵EF 为BC 的垂直平分线, ∴GB =GC ,在△GBD 与△GCK 中,,∴△GBD ≌△GCK (HL ), ∴∠BGC =∠DGK , ∵∠DGK +∠BAC =180°, ∴∠BGC +∠BAC =180°, ∴∠BAC 和∠BGC 互补. 故答案为:互补.26.(6分)阅读:对于两个不等的非零实数a 、b ,若分式的值为零,则x =a 或x =b .又因为==x +﹣(a +b ),所以关于x 的方程x +=a +b 有两个解,分别为x 1=a ,x 2=b .应用上面的结论解答下列问题:(1)方程x +=6的两个解中较大的一个为 4 ;(2)关于x 的方程x +=的两个解分别为x 1、x 2(x 1<x 2),若x 1与x 2互为倒数,则x 1=,x 2= 2 ; (3)关于x 的方程2x +=2n +3的两个解分别为x 1、x 2(x 1<x 2),求的值.【解答】解:(1)方程x +=6变形得:x +=2+4,根据题意得:x 1=2,x 2=4, 则方程较大的一个解为4;(2)方程变形得:x +=+2,由题中的结论得:方程有一根为2,另一根为, 则x 1=,x 2=2;故答案为:(1)4;(2);2(3)方程整理得:2x ﹣1+=n ﹣1+n +3,得2x ﹣1=n ﹣1或2x ﹣1=n +3,可得x 1=,x 2=,则原式==.27.(6分)在△ABC 中,已知D 为直线BC 上一点,若∠ABC =x °,∠BAD =y °.(1)当D 为边BC 上一点,并且CD =CA ,x =40,y =30时,则AB = AC (填“=”或“≠”); (2)如果把(1)中的条件“CD =CA ”变为“CD =AB ”,且x ,y 的取值不变,那么(1)中的结论是否仍成立?若成立请写出证明过程,若不成立请说明理由.【解答】解:(1)∵CD =CA ,∠ABC =x °=40°,∠BAD =y °=30°,∴∠ADC=∠ABC+∠BAD=70°,∵CD=CA,∴∠CAD=∠CDA=70°,∴∠C=40°,∴∠C=∠ABC,∴AB=AC;故答案为:=;(2)成立.理由:在BC上取点E,使BE=CD=AB,连接AE,则∠AEB=∠EAB=(180°﹣40°)=70°,∴∠AEB=∠ADE=70°,∴AD=AE,∴∠ADB=∠AEC=180°﹣70°=110°,∵BD=BE﹣DE,CE=CD﹣DE,∴BD=EC,在△ADB和△AEC中,,∴△ADB≌△AEC(SAS),∴AB=AC.∴AB=AC=CD,由(1)可知,3x+2y=180.。
2023-2024学年沪科版(安徽)八年级上学期数学期末模拟试卷
沪科版2023-2024学年(安徽合肥)八年级上数学期末模拟试卷(含答案) (本试卷来源于安徽省合肥市蜀山区区属名校期末模拟作业试卷)沪科版11.1~15.4、共4页三大题、23小题,满分100分,时间100分钟(自创文稿,精品ID :13421203解析无耻)一、选择题(本大题共10小题,每小题3分,满分30分)1、下列图案中不是轴对称图形的是( )A B C D2、若点A (n ,-3)在y 轴上,则点B (n-1,n+1)在( )A.第一象限B.第二象限 C 第二象限 D.第四象限3、下列各组数中,不能作为一个三角形三边长的是( )A.4,4,4B.2,7,9C.3,4,5D.5,7,94、下列命题中,逆命题是真命题的是( )A.对顶角相等B.全等三角形的对应角相等C.若x 2=1,则x=1D.若a=b ,则a 2=b 25、如图,直线EF 经过AC 中点O ,交AB 于点E ,交CD 于点F ,下列哪个条件不能使△AOE ≌△COF ( )A .∠A=∠CB .AB ∥CDC .AE=CFD .OE=OF第5题图 第7题图 第9题图 第10题图6、已知△ABC 的内角分别为∠A 、∠B 、∠C ,下列能判定ΔABC 是直角三角形的条件是( )A.∠A=2∠B=3∠CB.∠C=2∠BC.∠A+∠B=∠CD.∠A :∠B :∠C= =3:4:57、如图,△ABC 中,∠ACB=90°,∠A= 30°,CD ⊥AB 于点D ,若BD=1,则AD 的长度为( )A 5B 4C 3D 28、在同一平面直角坐标系中,函数y=ax-b 和y=bx+a 的图象可能是( )A B C D9、如图,已知△ABC 的内角∠A=α,分别作内角∠ABC 与外角∠ACD 的平分线,两条平分线交于点A 1,得∠A 1;∠A 1BC 和∠A 1CD 的平分线交于点A 2,得∠A 2;…以此类推得到∠A 2024,则∠A 2024的度数是( )A 2αB 20232αC 20242αD 902α+ 10、如图,在锐角△ABC 中,BC=4,∠ABC=30°,∠ABD=15°,点D 在边AC 上,点P 、Q 分别在线段BD 、BC 上运动,则PQ+PC 的最小值是( )A 1B 2C 3D 4二、填空题(本大题6小题,每小题3分,满分18分)11.函数y=2xx中,自交量x的取值范围是12、一副分别含有30°和45°角的两个直角三角板拼成如图所示图形,则α的度数是°第12题图第13题图第14题图13、如图,在△ABC中,∠ACB=90°,∠BAC=75°,D为AB的中点,DE⊥AB交BC于点E,AC=8cm,则BE= cm14、由图可知,在平面直角坐标系中,一块等腰直角三角板如图放置,其中A(3,0),B(0,2),则点C的坐标为15、如图,OP平分∠AOB,∠AOP=15°,PC∥OA,PD⊥OA于点D.PC=10,则PD的长度是第15题图第16题图16、甲、乙两人在笔直的湖边公路上同起点、同终点、同方向匀速步行2400m,先到终点的人原地休息.已知甲先出发4min,在整个步行过程中,甲、乙两人的距离y(m)与甲出发的时间t(min)之间的关系如图所示,以下结论:①甲步行的速度为60m/min;②乙走完全程用了32min;③乙用16min追上甲;④乙到达终点时,甲离终点还有300m,其中错误的结论有(填序号).三、(本大题7小题,满分52分)17、已知△ABC的三边长分别为m+2,2m,8.(1)求m的取值范围;(2)如果△ABC是等腰三角形,求m的值.18、如图,已知△ABC 的三个顶点分别为A(-2,4)、B(-6,0)、C(-1,0).(1)将ΔABC沿y轴翻折,画出翻折后图形ΔA1B1C1,并写出点A1的坐标;(2)在y轴上确定一点P,使AP+PB的值最小,直接写出点P的坐标(3)若△DBC与△ABC全等,请找出符合条件的△DBC(点D与点A重合除外),并直接写出点D的坐标19、已知y-3与2x-1成正比例,且当x=1时,y=6.(1)求y与x之间的函数解析式.(2)当x=2时,求y的值.(3)若点A(x1,y1),B(x2,y2)都在该函数的图象上,且y1>y2,试判断x1,x2的大小关系.20、直线1与直线y=-2x+1交于点A(2,a),与直线y=-x+2交于点B(b,1)(1)求直线l的表达式;(2)求直线1、y轴、直线y=2x+1所围成的图形的面积;21、如图,在△ABC中,∠B=40°,∠C=70°,(1)用直尺和圆规按下列要求作图(保留作图痕迹,不写作法)①作∠BAC的平分线交BC于点D;②过点A作△ABC中BC边上的高AE,垂足为点E;(2)在(1)的基础上,求∠DAE的度数.22、如图,已知直线l1与y轴相交于点A(0,3),直线l2:y=-x-2交y轴于点B,交直线l1于点P(-3,m).(1)求直线l1的解析式;(2)过动点D(a,0)作x轴的垂线,与直线l1相交于点M,与直线l2相交于点N,当MN=3时求a的值;(3)点Q为l2上一点,若S△A PQ=13S△AP B.直接写出点Q的坐标.23、在等腰ΔABC中,AB=AC,点D是AC上一动点,点E在BD的延长线上,且AB=AE,AF平分∠CAE交DE于点F,连接FC。
【必考题】八年级数学上期末第一次模拟试题含答案(2)
【必考题】八年级数学上期末第一次模拟试题含答案(2)一、选择题1.如果2220m m +-=,那么代数式2442m m m m m +⎛⎫+⋅ ⎪+⎝⎭的值是()n n A .2- B .1- C .2D .3 2.下列运算正确的是( ) A .236326a a a -⋅=-B .()632422a a a ÷-=-C .326()a a -=D .326()ab ab =3.如图,△ABC 的顶点A 、B 、C 都在小正方形的顶点上,在格点F 、G 、H 、I 中选出一个点与点D 、点E 构成的三角形与△ABC 全等,则符合条件的点共有( )A .1个B .2个C .3个D .4个 4.如果分式||11x x -+的值为0,那么x 的值为( ) A .-1 B .1 C .-1或1 D .1或05.如图,在△ABC 中,CD 平分∠ACB 交AB 于点D ,DE AC ⊥于点E ,DF BC ⊥于点F ,且BC=4,DE=2,则△BCD 的面积是( )A .4B .2C .8D .6 6.已知11m n -=1,则代数式222m mn n m mn n --+-的值为( ) A .3 B .1 C .﹣1 D .﹣37.如图,在Rt ABC ∆中,90BAC ∠=︒,AB AC =,点D 为BC 的中点,点E 、F 分别在AB 、AC 上,且90EDF ∠=︒,下列结论:①DEF ∆是等腰直角三角形;②AE CF =;③BDE ADF ∆∆≌;④BE CF EF +=.其中正确的是( )A .①②④B .②③④C .①②③D .①②③④ 8.如图,直线L 上有三个正方形a ,b ,c ,若a ,c 的面积分别为1和9,则b 的面积为( )A .8B .9C .10D .119.如图,在ABC ∆中,分别以点A 和点B 为圆心,大于12AB 的长为半径画弧,两弧相交于点M ,N ,连接MN ,交BC 于点D ,连接AD ,若ADC ∆的周长为10,7AB =,则ABC ∆的周长为( )A .7B .14C .17D .2010.如图,在△ABC 中,以点B 为圆心,以BA 长为半径画弧交边BC 于点D ,连接AD .若∠B =40°,∠C =36°,则∠DAC 的度数是( )A .70°B .44°C .34°D .24° 11.一个正多边形的每个内角的度数都等于相邻外角的度数,则该正多边形的边数是( )A .3B .4C .6D .12 12.如图,把△ABC 纸片沿DE 折叠,当点A 落在四边形BCDE 内部时,则∠A 与∠1+∠2之间有一种数量关系始终保持不变.请试着找一找这个规律,你发现的规律是( )A .∠A=∠1+∠2B .2∠A=∠1+∠2C .3∠A=2∠1+∠2D .3∠A=2(∠1+∠2)二、填空题13.已知2m =a ,32n =b ,则23m +10n =________.14.如图,直线a ∥b ,∠l =60°,∠2=40°,则∠3=______.15.如图,△ABC 中,∠C =90°,AC =BC ,AD 平分∠CAB 交BC 于D ,DE ⊥AB 于点E ,且AB =6cm ,则△DEB 的周长是___;16.中国女药学家屠呦呦获2015年诺贝尔医学奖,她的突出贡献是创制新型抗疟药青蒿素和双氢青蒿素,这是中国医学界迄今为止获得的最高奖项.已知显微镜下的某种疟原虫平均长度为0.0000015米,该长度用科学记数法表示为 .17.分解因式:x 2-16y 2=_______.18.计算:()201820190.1258-⨯=________.19.若=2m x ,=3n x ,则2m n x +的值为_____.20.若n 边形内角和为900°,则边数n= .三、解答题21.如图,已知在四边形ABCD 中,点E 在AD 上,∠BCE =∠ACD =90°,∠BAC =∠D ,BC =CE .(1)求证:AC =CD ;(2)若AC =AE ,求∠DEC 的度数.22.某商店在2014年至2016年期间销售一种礼盒.2014年,该商店用3500元购进了这种礼盒并且全部售完;2016年,这种礼盒的进价比2014年下降了11元/盒,该商店用2400元购进了与2014年相同数量的礼盒也全部售完,礼盒的售价均为60元/盒.(1)2014年这种礼盒的进价是多少元/盒?(2)若该商店每年销售这种礼盒所获利润的年增长率相同,问年增长率是多少?23.先化简,再求值:222221422x x x x xx x x ⎛⎫-+-+÷ ⎪-+⎝⎭,且x 为满足22x -≤<的整数. 24.如果230x x +-=,求代数式321121x x x x x x -⎛⎫-÷ ⎪--+⎝⎭的值. 25.化简2221432a a a a a a+⋅----,并求值,其中a 与2、3构成△ABC 的三边,且a 为整数.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】分析:先把括号内通分,再把分子分解后约分得到原式22m m =+,然后利用2220m m +-=进行整体代入计算. 详解:原式2222244(2)(2)222m m m m m m m m m m m m m +++=⋅=⋅=+=+++, ∵2220m m +-=,∴222m m ,+= ∴原式=2.故选C.点睛:考查分式的混合运算,掌握运算法则是解题的关键.注意整体代入法的应用.2.C解析:C【解析】【分析】根据单项式的乘法和除法法则,以及幂的乘方法则即可作出判断.【详解】A 、-3a 2•2a 3=-6a 5,故A 错误;B 、4a 6÷(-2a 3)=-2a 3,故B 错误;C 、(-a 3)2=a 6,故C 正确;D 、(ab 3)2=a 2b 6,故B 错误;故选:C .【点睛】本题考查了单项式的乘法、除法以及幂的乘方,正确理解幂的运算法则是关键.3.B解析:B【解析】分析:根据全等三角形的判定解答即可.详解:由图形可知:AB=5,AC=3,BC=2,GD=5,DE=2,GE=3,DI=3,EI=5,所以G,I两点与点D、点E构成的三角形与△ABC全等.故选B.点睛:本题考查了全等三角形的判定,关键是根据SSS证明全等三角形.4.B解析:B【解析】【分析】根据分式的值为零的条件可以求出x的值.【详解】根据题意,得|x|-1=0且x+1≠0,解得,x=1.故选B.【点睛】本题考查了分式的值为零的条件.若分式的值为零,需同时具备两个条件:(1)分子为0;(2)分母不为0.这两个条件缺一不可.5.A解析:A【解析】【分析】根据角平分线的性质定理可得DF=DE;最后根据三角形的面积公式求解即可.【详解】:∵CD平分∠ACB,DE⊥AC,DF⊥BC,∴DF=DE=2,∴1•124242BCDS BC DF=⨯=⨯⨯=V;故答案为:A.【点睛】此题主要考查了角平分线的性质和应用,解答此题的关键是要明确:角的平分线上的点到角的两边的距离相等.6.D解析:D【解析】【分析】由11m n-=1利用分式的加减运算法则得出m-n=-mn,代入原式=222m mn nm mn n--+-计算可得.【详解】∵11m n-=1,∴n mmn mn-=1,则n mmn-=1,∴mn=n-m,即m-n=-mn,则原式=()22m n mnm n mn---+=22mn mnmn mn---+=3mnmn-=-3,故选D.【点睛】本题主要考查分式的加减法,解题的关键是掌握分式的加减运算法则和整体代入思想的运用.7.C解析:C【解析】【分析】根据等腰直角三角形的性质以及斜边上的中线的性质,易证得△CDF≌△ADE,即可判断①②;利用SSS即可证明△BDE≅△ADF,故可判断③;利用等量代换证得BE CF AB+=,从而可以判断④.【详解】∵△ABC为等腰直角三角形,且点在D为BC的中点,∴CD=AD=DB,AD⊥BC,∠DCF=∠B=∠DAE=45°,∵∠EDF=90︒,又∵∠C DF+∠FDA=∠CDA=90︒,∠EDA+∠EDA=∠EDF=90︒,∴∠C DF =∠EDA ,在△CDF 和△ADE 中,DF DCF C EDA CD AD DAE ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△CDF ≌△ADE ,∴DF=DE ,且∠EDF=90︒,故①DEF n 是等腰直角三角形,正确;CF=AE ,故②正确;∵AB=AC ,又CF=AE ,∴BE=AB-AE=AC-CF=AF ,在△BDE 和△ADF 中,BE AF DE DF BD DC =⎧⎪=⎨⎪=⎩,∴△BDE ≅△ADF ,故③正确;∵CF=AE ,∴BE CF BE AE AB EF +=+=≠,故④错误;综上:①②③正确故选:C .【点睛】本题考查了等腰直角三角形的性质,全等三角形的判定和性质,熟练掌握全等三角形的判定方法是解题的关键.8.C解析:C【解析】【分析】【详解】试题分析:运用正方形边长相等,再根据同角的余角相等可得∠BAC=∠DCE ,然后证明△ACB ≌△DCE ,再结合全等三角形的性质和勾股定理来求解即可.解:由于a 、b 、c 都是正方形,所以AC=CD ,∠ACD=90°;∵∠ACB+∠DCE=∠ACB+∠BAC=90°,即∠BAC=∠DCE ,在△ABC 和△CED 中,,∴△ACB≌△CDE(AAS),∴AB=CE,BC=DE;在Rt△ABC中,由勾股定理得:AC2=AB2+BC2=AB2+DE2,即S b=S a+S c=1+9=10,∴b的面积为10,故选C.考点:全等三角形的判定与性质;勾股定理;正方形的性质.9.C解析:C【解析】【分析】本题主要涉及到了线段垂直平分线性质,代入题目相关数据,即可解题.【详解】解:在△ABC中,以点A和点B为圆心,大于二分之一AB的长为半径画弧,两弧相交与点M,N,则直线MN为AB的垂直平分线,则DA=DB,△ADC的周长由线段AC,AD,DC组成,△ABC的周长由线段AB,BC,CA组成而DA=DB,因此△ABC的周长为10+7=17.故选C.【点睛】本题考察线段垂直平分线的根本性质,解题时要注意数形结合,从题目本身引发思考,以此为解题思路.10.C解析:C【解析】【分析】易得△ABD为等腰三角形,根据顶角可算出底角,再用三角形外角性质可求出∠DAC 【详解】∵AB=BD,∠B=40°,∴∠ADB=70°,∵∠C=36°,∴∠DAC=∠ADB﹣∠C=34°.故选C.【点睛】本题考查三角形的角度计算,熟练掌握三角形外角性质是解题的关键.11.B解析:B【解析】【分析】首先设正多边形的一个外角等于x°,由在正多边形中,一个内角的度数恰好等于它的外角的度数,即可得方程:x+x=180,解此方程即可求得答案.【详解】设正多边形的一个外角等于x°,∵一个内角的度数恰好等于它的外角的度数,∴这个正多边形的一个内角为: x°,∴x+x=180,解得:x=900,∴这个多边形的边数是:360°÷90°=4.故选B.【点睛】此题考查了多边形的内角和与外角和的知识.此题难度不大,方程思想的应用是解题的关键.12.B解析:B【解析】【分析】根据四边形的内角和为360°、平角的定义及翻折的性质,就可求出2∠A=∠1+∠2这一始终保持不变的性质.【详解】∵在四边形ADA′E中,∠A+∠A′+∠ADA′+∠AEA′=360°,则2∠A+(180°-∠2)+(180°-∠1)=360°,∴可得2∠A=∠1+∠2.故选:B【点睛】本题主要考查四边形的内角和及翻折的性质特点,解决本题的关键是熟记翻折的性质.二、填空题13.a3b2【解析】试题解析:∵32n=b∴25n=b∴23m+10n=(2m)3×(25n)2=a3b2故答案为a3b2解析:a3b2【解析】试题解析:∵32n=b,∴25n=b∴23m+10n=(2m)3×(25n)2=a3b2故答案为a3b214.80°【解析】【分析】根据平行线的性质求出∠4再根据三角形内角和定理计算即可【详解】∵a∥b∴∠4=∠l=60°∴∠3=180°-∠4-∠2=80°故答案为80°【点睛】本题考查了平行线的性质三角形解析:80°.【解析】【分析】根据平行线的性质求出∠4,再根据三角形内角和定理计算即可.【详解】∵a∥b,∴∠4=∠l=60°,∴∠3=180°-∠4-∠2=80°,故答案为80°.【点睛】本题考查了平行线的性质、三角形内角和定理,掌握两直线平行,同位角相等是解题的关键.15.6cm【解析】【分析】先利用角角边证明△ACD和△AED全等根据全等三角形对应边相等可得AC=AECD=DE然后求出BD+DE=AE进而可得△DEB的周长【详解】解:∵DE⊥AB∴∠C=∠AED=9解析:6cm【解析】【分析】先利用“角角边”证明△ACD和△AED全等,根据全等三角形对应边相等可得AC=AE,CD=DE,然后求出BD+DE=AE,进而可得△DEB的周长.【详解】解:∵DE⊥AB,∴∠C=∠AED=90°,∵AD平分∠CAB,∴∠CAD=∠EAD,在△ACD和△AED中,C AEDCAD EADAD DA∠=∠⎧⎪∠=∠⎨⎪=⎩∴△ACD≌△AED(AAS),∴AC=AE,CD=DE,∴BD+DE=BD+CD=BC=AC=AE,BD+DE+BE=AE+BE=AB=6,所以,△DEB的周长为6cm.故答案为:6cm.【点睛】本题考查了角平分线上的点到角的两边的距离相等的性质,等腰直角三角形的性质,熟记性质并准确识图是解题的关键.16.5×10-6【解析】试题分析:绝对值小于1的正数也可以利用科学记数法表示一般形式为a×10﹣n与较大数的科学记数法不同的是其所使用的是负指数幂指数由原数左边起第一个不为零的数字前面的0的个数所决定解解析:5×10-6【解析】试题分析:绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.解:0.0000015=1.5×10﹣6,故答案为1.5×10﹣6.考点:科学记数法—表示较小的数.17.(x+4y)(x-4y)【解析】试题解析:x2-16y2=x2-(4y)2=(x+4y)(x-4y)解析:(x+4y) (x-4y)【解析】试题解析:x2-16y2=x2-(4y)2=(x+4y) (x-4y).18.8【解析】【分析】根据同底数幂的乘法底数不变指数相加可化成指数相同的幂的乘法根据积的乘方可得答案【详解】原式=(−0125)2018×820188=(−0125×8 )20188=8故答案为:8【点睛解析:8【解析】【分析】根据同底数幂的乘法底数不变指数相加,可化成指数相同的幂的乘法,根据积的乘方,可得答案.【详解】原式= (−0.125)2018×82018⨯8= (−0.125×8)2018⨯8=8,故答案为:8.【点睛】本题考查的知识点是幂的乘方与积的乘方及同底数幂的乘方,解题的关键是熟练的掌握幂的乘方与积的乘方及同底数幂的乘方.19.18【解析】【分析】先把xm+2n变形为xm(xn)2再把xm=2xn=3代入计算即可【详解】∵xm=2xn=3∴xm+2n=xmx2n=xm(xn)2=2×32=2×9=18;故答案为18【点睛】解析:18【解析】【分析】先把x m+2n变形为x m(x n)2,再把x m=2,x n=3代入计算即可.【详解】∵x m=2,x n=3,∴x m+2n=x m x2n=x m(x n)2=2×32=2×9=18;故答案为18.【点睛】本题考查同底数幂的乘法、幂的乘方,熟练掌握运算性质和法则是解题的关键.20.【解析】【分析】利用多边形内角和公式建立方程求解【详解】根据题意得:180(n﹣2)=900解得:n=7故答案为7【点睛】本题考查多边形内角和公式熟记公式是解题的关键解析:【解析】【分析】利用多边形内角和公式建立方程求解.【详解】根据题意得:180(n﹣2)=900,解得:n=7.故答案为7.【点睛】本题考查多边形内角和公式,熟记公式是解题的关键.三、解答题21.(1)证明见解析;(2)112.5°.【解析】【分析】()1根据同角的余角相等可得到24=,可∠=∠,再加上BC CE∠=∠,结合条件BAC D证得结论;()2根据90∠=∠=︒,根据等腰三角形的性质得到DACD AC CD,,得到145∠=︒=DEC∠=︒-∠=︒.∠=∠=︒,由平角的定义得到1805112.53567.5【详解】()1证明:Q,∠=∠=︒90BCE ACD∴∠+∠=∠+∠2334,24∴∠=∠,在△ABC 和△DEC 中,24BAC D BC CE ∠=∠⎧⎪∠=∠⎨⎪=⎩,()AAS ABC DEC ∴V V ≌,AC CD ∴=;(2)∵∠ACD =90°,AC =CD ,∴∠1=∠D =45°,∵AE =AC ,∴∠3=∠5=67.5°,∴∠DEC =180°-∠5=112.5°.22.(1)35元/盒;(2)20%.【解析】【分析】【详解】试题分析:(1)设2014年这种礼盒的进价为x 元/盒,则2016年这种礼盒的进价为(x ﹣11)元/盒,根据2014年花3500元与2016年花2400元购进的礼盒数量相同,即可得出关于x 的分式方程,解之经检验后即可得出结论;(2)设年增长率为m ,根据数量=总价÷单价求出2014年的购进数量,再根据2014年的销售利润×(1+增长率)2=2016年的销售利润,即可得出关于m 的一元二次方程,解之即可得出结论.试题解析:(1)设2014年这种礼盒的进价为x 元/盒,则2016年这种礼盒的进价为(x ﹣11)元/盒,根据题意得:3500240011x x =-,解得:x=35,经检验,x=35是原方程的解. 答:2014年这种礼盒的进价是35元/盒.(2)设年增长率为m ,2014年的销售数量为3500÷35=100(盒). 根据题意得:(60﹣35)×100(1+a )2=(60﹣35+11)×100,解得:a=0.2=20%或a=﹣2.2(不合题意,舍去).答:年增长率为20%.考点:一元二次方程的应用;分式方程的应用;增长率问题.23.232x -,52- 【解析】【分析】 先根据分式的混合运算顺序和运算法则化简原式,再选取使分式有意义的x 的值代入计算可得.【详解】解:原式2(1)(2)(2)2(1)(2)x x x x x x x x ⎡⎤-+-=+÷⎢⎥-+⎣⎦122x x x x x--⎛⎫=+÷ ⎪⎝⎭ 232x x x -=⋅ 232x -=, 0x ≠Q 且1x ≠,2x ≠-∴在22x -<…范围内符合分式的整数有1x =-, 则原式23522--==-. 【点睛】 本题考查分式的化简求值,解题的关键是掌握分式的混合运算顺序和运算法则及分式有意义的条件.24.13【解析】【分析】 先根据分式的混合运算得到21x x+,再把230x x +-=变形为2=3x x +,再代入到化简结果中计算即可.【详解】321121x x x x x x -⎛⎫-÷ ⎪--+⎝⎭, =21(1)(1)1(1)x x x x x x x -++-⎛⎫÷ ⎪--⎝⎭=1(1)1(1)x x x x -⎛⎫⋅ ⎪-+⎝⎭ =1(1)x x + =21x x+ 当230x x +-=,即23+=x x 时,原式=13. 【点睛】 本题考查了分式的化简求值,在分式的化简过程中要注意运算顺序,化简后的最后结果要化成最简分式或整式.25.13a ,1. 【解析】【分析】 原式第一项约分后,两项通分并利用同分母分式的减法法则计算得到最简结果,把a 的值代入计算即可求出值.【详解】 解:原式=a a+2a-2()()•a+2a a-3()+1a-2=1a-2a-3()()+1a-2=1+a-3a-2a-3()()=a-2a-2a-3()()=1a-3, ∵a 与2、3构成△ABC 的三边,且a 为整数,∴1<a <5,即a =2,3,4,当a =2或a =3时,原式没有意义,则a =4时,原式=1.【点睛】此题考查了分式的化简求值,以及三角形三边关系,熟练掌握运算法则是解本题的关键.。
广东省深圳市2022-2023学年八年级上册数学期末专项突破模拟(卷一卷二)含解析
广东省深圳市2022-2023学年八年级上册数学期末专项突破模拟(卷一)一.单 选 题(共10题;共30分)1. 如图所示,数轴上点 A 所表示的数为 a ,则 a 的值是( ).B. 1-112. 下列四边形中,对角线相等且互相垂直平分的是( )A. 平行四边形B. 正方形C. 等腰梯形D. 矩形3. 为某校2000名学生对新闻、体育、动画、娱乐、戏曲五类电视节目的喜爱情况,随机抽取部分学生进行,并数据作出如图所示的扇形统计图.根据统计图提供的信息,可估算出该校喜爱体育节目的学生共有【 】A. 300名B. 400名C. 500名D. 600名4. 已知:如图,∠1=∠2,则没有一定能使△ABD ≌△ACD 的条件是 ( )A. AB =ACB. BD =CDC. ∠B =∠CD. ∠BDA =∠CDA5. 在哪两个整数之间( )A. 1与2B. 2与3C. 3与4D. 4与56. 已知20102011﹣20102009=2010x ×2009×2011,那么x 的值是( )A. 2008B. 2009C. 2010D. 20117. 如图,已知AB ∥CD ,O 是∠ACD 和∠BAC 的平分线的交点,若AC=6,S △AOC =6则AB 与CD 之间的距离是( ) A. 1cmB. 2cmC. 3cmD. 4cm8. 下列命题中错误的是( )A. 矩形的两条对角线相等B. 等腰梯形的两条对角线互相垂直C. 平行四边形的两条对角线互相平分D. 正方形的两条对角线互相垂直且相等9. 矩形具有而平行四边形没有一定具有的性质是( )A. 对边平行 B. 对边相等 C. 对角线互相平分 D. 对角线相等10. 已知Rt △ABC 中,∠ABC=90°,点D 是BC 中点,分别过B 、C为圆心,大于线段BC 长为12半径作弧,两弧交于点P ,作直线PD 交AC 于点E ,连接BE ,则下列结论中没有正确的是( )A. ED ⊥BCB. BE 平分∠AEDC. E 为△ABC 的外接圆圆心D. ED=12AB二.填 空 题(共8题;共24分)11. 若两个连续整数x ,y 满足x <y ,则x+y 的值是_____12. 命题“在角的内部,到角的两边距离相等的点在角的平分线上”的逆命题是:________13. 如图,在△AOC 和△BOC 中,若∠AOC=∠BOC ,添加一个条件________,使得△AOC ≌△BOC .14. 已知长方体的体积为3a 3b 5cm 3 , 它的长为abcm ,宽为ab 2cm ,则这个长方体的高为32________ cm .15. 如图,中,是的中点,,,交ABC D AB DE AB ⊥180ACE BCE ∠+∠=EF AC ⊥于,,BC=8,则__________.ACF 12AC =AF =16. 等腰三角形的腰长为5,一腰上的高为3,则这个等腰三角形底边的长为________17. 如图,已知AC =DB ,要使△ABC ≌△DCB ,则需要补充的条件为_____.18. 如图,已知直线y =2x +4与x 轴交于点A ,与y 轴交于点B ,以点A 为圆心,AB 为半径画弧,交x 轴正半轴于点C,则点C 坐标为_____.三.解 答 题(共6题;共36分)19. 图1是一个长为2m 、宽为2n 的长方形,沿图中虚线用剪刀均分成四块小长方形,然后按图2的形状拼成一个正方形.(1)请写出图2中阴影部分的面积;(2)观察图2你能写出下列三个代数式之间的等量关系吗?代数式:(m+n )2, (m﹣n )2, mn ;(3)根据(2)中的等量关系,解决如下问题:若a+b=7,ab=5,求(a﹣b )2的值.20. 一个正方体的体积是16cm 3,另一正方体的体积是这个正方体体积的4倍,求另一个正方体的表面积.21. 如图,在▱ABCD 中,对角线 AC ,BD 相交于点 O ,过点 O 的一条直线分别交 AD ,BC 于点 E ,F .求证:AE =CF .22. 把下列各数分别填入相应的集合内:﹣2.5,0,8,﹣2,,, ﹣0.5252252225…(每两个5之间依次增加1个2).253(1)正数集合:{ …};(2)负数集合:{ …};(3)整数集合:{ …};(4)无理数集合:{ …}.23. 已知27(x-1)3=-8 ,求 x 的值.24. 化简:|.四.综合题(共10分)25. 综合题.(1)如图1,在△ABC中,AB=AC,CD⊥AB于D,BE⊥AC于E,试证明:CD=BE.(2)如图2,在△ABC中,仍然有条件“AB=AC,点D,E分别在AB和AC上”.若∠ADC+∠AEB=180°,则CD与BE是否仍相等?若相等,请证明;若没有相等,请举反例说明.广东省深圳市2022-2023学年八年级上册数学期末专项突破模拟(卷一)一.单 选 题(共10题;共30分)1. 如图所示,数轴上点 A 所表示的数为 a ,则 a 的值是( ).B. 1-11【正确答案】A【分析】首先计算出直角三角形斜边的长,然后再确定a 的值.=∴,1a =-故选:.A 此题主要考查了实数与数轴,关键是利用勾股定理计算出直角三角形斜边长.2. 下列四边形中,对角线相等且互相垂直平分的是( )A. 平行四边形 B. 正方形C. 等腰梯形D. 矩形【正确答案】B【详解】解:对角线相等且互相垂直平分的四边形是正方形,故选B .本题考查等腰梯形的性质;平行四边形的性质;矩形的性质;正方形的性质.3. 为某校2000名学生对新闻、体育、动画、娱乐、戏曲五类电视节目的喜爱情况,随机抽取部分学生进行,并数据作出如图所示的扇形统计图.根据统计图提供的信息,可估算出该校喜爱体育节目的学生共有【】A. 300名B. 400名C. 500名D. 600名【正确答案】B【详解】根据扇形图可以得出该校喜爱体育节目的学生所占比例:1-5%-35%-30%-10%=20%,从而根据用样本估计总体得出该校喜爱体育节目的学生数目:2000×20%=400.故选B.4. 已知:如图,∠1=∠2,则没有一定能使△ABD≌△ACD的条件是()A. AB=ACB. BD=CDC. ∠B=∠CD.∠BDA=∠CDA【正确答案】B【分析】利用全等三角形判定定理ASA,SAS,AAS对各个选项逐一分析即可得出答案.【详解】解:A、∵∠1=∠2,AD为公共边,若AB=AC,则△ABD≌△ACD(SAS);故A没有符合题意;B、∵∠1=∠2,AD为公共边,若BD=CD,没有符合全等三角形判定定理,没有能判定△ABD≌△ACD;故B符合题意;C、∵∠1=∠2,AD为公共边,若∠B=∠C,则△ABD≌△ACD(AAS);故C没有符合题意;D、∵∠1=∠2,AD为公共边,若∠BDA=∠CDA,则△ABD≌△ACD(ASA);故D没有符合题意.故选B.5. 在哪两个整数之间()A. 1与2B. 2与3C. 3与4D. 4与5【正确答案】D的范围,即可得出选项.4<5在4与5之间,故选D.【考点】估算无理数的大小.6. 已知20102011﹣20102009=2010x×2009×2011,那么x的值是( )A. 2008B. 2009C. 2010D. 2011【正确答案】B【详解】试题分析:解答本题要考虑先因式分解,使运算简便,所以应先提取公因式,再套用公式,而20102011﹣20102009=20102009(20102﹣1),再套用公式a2﹣b2=(a+b)(a﹣b)进一步计算即可.解:20102011﹣20102009=20102009(20102﹣1)=20102009(2010﹣1)(2010+1)=20102009×2009×2011,已知20102011﹣20102009=2010x×2009×2011,则有20102009×2009×2011=2010x×2009×2011,则有x=2009.故选B.考点:提公因式法与公式法的综合运用.点评:本题幂的运算性质考查了因式分解,对同底数幂的乘法公式(a m•b m=a m+n)的熟练应用是解题的关键.7. 如图,已知AB∥CD,O是∠ACD和∠BAC的平分线的交点,若AC=6,S△AOC=6则AB与CD之间的距离是( ) A. 1cm B. 2cmC. 3cmD. 4cm【正确答案】C【详解】过点0作AB 的垂线,交AB 于点D ,交CD 于点F,过O 作OE 垂直AC,交AC 于点E ,由题意得:OD=OE=OF ,6OE=12,解得OE=2,则DF=4.8. 下列命题中错误的是( )A. 矩形的两条对角线相等B. 等腰梯形的两条对角线互相垂直C. 平行四边形的两条对角线互相平分D. 正方形的两条对角线互相垂直且相等【正确答案】B【详解】选项A 、C 、D 正确;选项B ,等腰梯形的两条对角线相等但没有一定垂直,错误.故选B.9. 矩形具有而平行四边形没有一定具有的性质是( )A. 对边平行 B. 对边相等C. 对角线互相平分D. 对角线相等【正确答案】D【详解】矩形的对角线相等,而平行四边形的对角线没有一定相等.故选D .10. 已知Rt △ABC 中,∠ABC=90°,点D 是BC 中点,分别过B 、C为圆心,大于线段BC 长为12半径作弧,两弧交于点P ,作直线PD 交AC 于点E ,连接BE ,则下列结论中没有正确的是( )A. ED ⊥BCB. BE 平分∠AEDC. E 为△ABC 的外接圆圆心D. ED=AB12【正确答案】B【详解】根据作图过程可知:PB=CP ,∵D 为BC 的中点,∴PD 垂直平分BC ,∴ED ⊥BC 正确;∵∠ABC=90°,∴PD ∥AB ,∴E 为AC 的中点,∴EC=EA ,∵EB=EC ,∴EB 平分∠AED 错误;E 为△ABC 的外接圆圆心正确;ED=AB 正确,12故选B .二.填 空 题(共8题;共24分)11. 若两个连续整数x ,y 满足x <y ,则x+y 的值是_____【正确答案】5【详解】∵,23<<∴x=2,y=3,∴x+y=2+3=5故答案为5.12. 命题“在角的内部,到角的两边距离相等的点在角的平分线上”的逆命题是:________【正确答案】角平分线上的点到角的两边距离相等【详解】命题“在角的内部,到角的两边距离相等的点在角的平分线上”的逆命题是“角平分线上的点到这个角两边的距离相等”.13. 如图,在△AOC 和△BOC 中,若∠AOC=∠BOC ,添加一个条件________,使得△AOC ≌△BOC .【正确答案】AO=BO【详解】添加AO=BO ,再加上条件∠AOC=∠BOC ,公共边CO=CO ,可利用SAS 定理判定△AOC ≌△BOC .14. 已知长方体的体积为3a 3b 5cm 3 , 它的长为abcm ,宽为ab 2cm ,则这个长方体的高为32________ cm .【正确答案】2ab 2【详解】由题意可得这个长方体的高为:3a 3b 5÷ab÷ab 2=2ab 2 cm .3215. 如图,中,是的中点,,,交ABC D AB DE AB ⊥180ACE BCE ∠+∠=EF AC ⊥于,,BC=8,则__________.ACF 12AC =AF =【正确答案】10【分析】先连接AE ,BE ,过E 作EG ⊥BC 于G ,根据角平分线的性质以及中垂线的性质,得出EF=EG ,AE=BE ,进而判定Rt △AEF ≌Rt △BEG ,即可得到AF=BG ,据此列出方程12-x=8+x ,求得x 的值,即可得到AF 长.【详解】连接AE ,BE ,过E 作EG ⊥BC 于G,∵D 是AB 的中点,DE ⊥AB ,∴DE 垂直平分AB ,∴AE=BE ,∵∠ACE+∠BCE=180°,∠ECG+∠BCE=180°,∴∠ACE=∠ECG ,又∵EF ⊥AC ,EG ⊥BC ,∴EF=EG ,∠FEC=∠GEC ,∵CF ⊥EF ,CG ⊥EG ,∴CF=CG ,在Rt △AEF 和Rt △BEG 中,,AE BE EF EG ⎧⎨⎩==∴Rt △AEF ≌Rt △BEG (HL ),∴AF=BG ,设CF=CG=x ,则AF=AC-CF=12-x ,BG=BC+CG=8+x ,∴12-x=8+x ,解得x=2,∴AF=12-2=10.故答案为10.本题主要考查了线段垂直平分线的性质以及角平分线的性质的运用,解决问题的关键是作辅助线构造全等三角形,依据全等三角形对应边相等进行求解.解题时注意:角平分线上的点到角两边的距离相等;线段垂直平分线上任意一点,到线段两端点的距离相等.16. 等腰三角形的腰长为5,一腰上的高为3,则这个等腰三角形底边的长为________【正确答案】【详解】分两种情况:(1)顶角是钝角时,如图1所示:在Rt△ACO中,由勾股定理,得AO2=AC2-OC2=52-32=16,∴AO=4,OB=AB+AO=5+4=9,在Rt△BCO中,由勾股定理,得BC2=OB2+OC2=92+32=90,∴;(2)顶角是锐角时,如图2所示:在Rt△ACD中,由勾股定理,得AD2=AC2-DC2=52-32=16,∴AD=4,DB=AB-AD=5-4=1.在Rt△BCD中,由勾股定理,得BC2=DB2+DC2=12+32=10,∴;综上可知,这个等腰三角形的底的长度为.本题考查了勾股定理及等腰三角形的性质,难度适中,分情况讨论是解题的关键.17. 如图,已知AC=DB,要使△ABC≌△DCB,则需要补充的条件为_____.【正确答案】AB=DC(答案没有)【分析】本题中有公共边BC =CB ,利用SSS 来判定全等则只需要添加条件AB =DC 即可.【详解】解:由题意可知:AC =DB ,BC =CB ,∴利用SSS 来判定全等则只需要添加条件AB =DC ,故AB =DC (答案没有).本题考查三角形全等的判定,掌握判定定理是本题的解题关键.18. 如图,已知直线y =2x +4与x 轴交于点A ,与y 轴交于点B ,以点A 为圆心,AB 为半径画弧,交x 轴正半轴于点C ,则点C 坐标为_____.【正确答案】2,0)-【分析】先根据坐标轴上点的坐标特征得到A (﹣2,0),B (0,4),再利用勾股定理计算出AB =AC =AB =【详解】当y =0时,2x +4=0,解得x =-2,则A (-2,0);当x =0时,y =2x +4=4,则B (0,4),所以AB ,==因为以点A 为圆心,AB 为半径画弧,交x 轴于点C ,所以AC =AB所以OC =AC -AO -2.即可得点C 坐标为(2,0).本题主要考查了函数与坐标轴的交点坐标,正确求出函数与坐标轴的交点坐标是解题的关键.三.解 答 题(共6题;共36分)19. 图1是一个长为2m 、宽为2n 的长方形,沿图中虚线用剪刀均分成四块小长方形,然后按图2的形状拼成一个正方形.(1)请写出图2中阴影部分的面积;(2)观察图2你能写出下列三个代数式之间的等量关系吗?代数式:(m+n)2,(m﹣n)2,mn;(3)根据(2)中的等量关系,解决如下问题:若a+b=7,ab=5,求(a﹣b)2的值.【正确答案】(1)(m﹣n)2或(m+n)2﹣4mn;(2)(m﹣n)2=(m+n)2﹣4mn;(3)29【详解】试题分析:(1)方法一:求出正方形的边长,再根据正方形面积公式求出即可;方法二:根据大正方形面积减去4个矩形面积,即可得出答案;(2)根据两种表示阴影部分的面积的方法,即可得出等式;(3)根据等式(a-b)2=(a+b)2-4ab即可解决.试题解析:(1)(m n)2或(m+n)2 4mn;(2)(m n)2=(m+n)2 4mn;(3)当a+b=7,ab=5时,(a b)2=(a+b)2 4ab=72 4×5=49 20=29.20. 一个正方体的体积是16cm3,另一正方体的体积是这个正方体体积的4倍,求另一个正方体的表面积.【正确答案】96cm2.【详解】试题分析:根据题意知大正方体的体积为64cm3,则其棱长为体积的立方根,可求得表面积.解:根据题意大正方体的体积为16×4=64cm 3,则大正方体的棱长为:=4cm ,故大正方体的表面积为:6×4×4=96cm 2.考点:立方根.21. 如图,在▱ABCD 中,对角线 AC ,BD 相交于点 O ,过点 O 的一条直线分别交 AD ,BC 于点 E ,F .求证:AE =CF.【正确答案】证明见解析.【分析】利用平行四边形的性质得出 AO =CO ,AD BC ,进而得出∠EAC =∠FCO , 再利用 ∥ASA 求出△AOE ≌△COF ,即可得出答案.【详解】∵▱ABCD 的对角线 AC ,BD 交于点 O ,∴AO =CO ,AD BC ,∥∴∠EAC =∠FCO ,在△AOE 和△COF 中,EAO FCO AO OC AOE COF ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△AOE ≌△COF (ASA ),∴AE =CF .本题考查了全等三角形的判定与性质以及平行四边形的性质,熟练掌握全等三角形的判定方法是解题关键.22. 把下列各数分别填入相应的集合内:﹣2.5,0,8,﹣2,,, ﹣0.5252252225…(每两个5之间依次增加1个2).2π53(1)正数集合:{ …};(2)负数集合:{ …};(3)整数集合:{ …};(4)无理数集合:{ …}.【正确答案】(1)正数集合:{8,,,,…};(2)负数集合:{-2.5,-2 ,-0.525225222…,…};(3)整数集合:{0,8,-2 …};(4)无理数集合:{,-0.5252252225…,…}.【详解】试题分析:正数包括正有理数和正无理数,负数包括负有理数和负无理数,整数包括正整数、负整数和0,无理数是无限没有循环小数.由此即可解决问题.试题解析:(1)正数集合:{8,,…};(2)负数集合:{﹣2.5,﹣2,﹣0.5252252225…(每两个5之间依次增加1个2)…};(3)整数集合:{0,8,﹣2,…};(4)无理数集合:{,﹣0.5252252225…(每两个5之间依次增加1个2),…}.23. 已知27(x-1)3=-8 ,求x的值.【正确答案】1 3【详解】试题分析:根据立方根的定义,首先求出x-1的值,进而即可求得x的值.试题解析:24. 化简:|.【正确答案】3 -【详解】试题分析:根据值的性质化简后合并即可.试题解析:|﹣|﹣|3﹣|=-﹣(3﹣)=2﹣﹣3.四.综合题(共10分)25. 综合题.(1)如图1,在△ABC中,AB=AC,CD⊥AB于D,BE⊥AC于E,试证明:CD=BE.(2)如图2,在△ABC中,仍然有条件“AB=AC,点D,E分别在AB和AC上”.若∠ADC+∠AEB=180°,则CD与BE是否仍相等?若相等,请证明;若没有相等,请举反例说明.【正确答案】(1)证明见解析(2)CD=BE【详解】试题分析:(1)利用AAS证明△ABE≌△ACD,利用全等三角形的性质即可证得结论;(2)分别作CF⊥AB,BG⊥AC,CD=BE,利用AAS证明△FBC≌△GCB,根据全等三角形的对应边相等可得CF=BG;再证得∠ADC=∠BEG,利用AAS证明△CFD≌△BGE,根据全等三角形的对应边相等即可得结论.试题解析:(1)证明:∵CD⊥AB于点D,BE⊥AC,∴∠AEB=∠ADC=90°,在△ABE与△ACD中,,∴△ABE≌△ACD(AAS).∴CD=BE(2)CD=BE,证明如下:分别作CF⊥AB,BG⊥AC,∴∠CBF=90°,∠BGC=90°,∵AB=AC,∴∠ABC=∠ACB,在△FBC和△GCB中,,∴△FBC≌△GCB.∴CF=BG,∵∠ADC+∠AEB=180°,又∵∠BEG+∠AEB=180°,∴∠ADC=∠BEG,在△CFD和△BGE中,,∴△CFD≌△BGE,∴CD=BE.点睛:本题考查了全等三角形的判定及等腰三角形的性质;三角形全等的判定是中考的,一般以考查三角形全等的方法为主,判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件.广东省深圳市2022-2023学年八年级上册数学期末专项突破模拟(卷二)一、选一选1. 在以下回收、绿色食品、节能、节水四个标志中,是轴对称图形的是( )A. B. C. D.2. 下列长度的三根小木棒能构成三角形的是( )A. 2cm,3cm,5cmB. 7cm,4cm,2cmC. 3cm,4cm,8cmD. 3cm,3cm,4cm3. 下列各式计算正确的是( )A. 2a2+a3=3a5B. (3xy)2÷(xy)=3xyC. (2b2)3=8b5D. 2x•3x5=6x64. 下列四个图形中,线段BE是△ABC的高的是()A. B.C. D.EF ABCD5. 如图,工人师傅砌门时,常用木条固定长方形门框,使其没有变形,这样做的根据是()A. 两点之间,线段最短B. 直角三角形的两个锐角互余C. 三角形三个内角和等于D. 三角形具有稳定性180︒6. 在平面直角坐标系中,点(4, 3)关于x 轴对称的点的坐标是( )A. (4,3)B. (-4,3)C. (3,-4)D. (-3,-4)7. 要使分式有意义,则x 的取值范围是()31x -A. x ≠1B. x >1C. x <1D. x ≠ 18. 生物学家发现了一种,其长度约为,将数据0. 00000032用科学记数法表0.00000032mm 示正确的是( )A. B. C. D. 73.210⨯73.210-⨯83.210⨯83.210-⨯9. 如果正多边形的每个外角等于40°,则这个正多边形的边数是A. 10B. 9C. 8D. 710. 到△ABC 的三边距离相等的点是△ABC 的( )A. 三边中线的交点 B. 三条角平分线的交点C. 三边上高的交点D. 三边垂直平分线的交点二、填 空 题11. 分解因式:2x 2﹣8=_______12. 计算: = __________.01(3)2π---13. 若分式的值为0,则x 的值为 _______________2255x x --14. 在等腰三角形中,若底角等于50°,则顶角的度数是______15. 若的值使得x 2+4x +a=(x -5)(x +9)-2成立,则的值为_____________a a 16. 如图,已知:BD 是∠ABC 的平分线,DE ⊥BC 于E ,S △ABC =36cm2;,AB =12cm ,BC =18cm ,则DE 的长为_________cm .三、解 答 题17.计算:(x ﹣2)2﹣(x ﹣3)(x +3)18. 先化简(1 )÷,再从0, 2, 1,1中选择一个合适的数代入并求值.11x -22441x x x -+-19. 已知:如图,M 是AB 的中点,,.12∠=∠MC MD =求证:.A B ∠=∠20. 如图,已知△ABC ,∠C=90°,AC<BC ,D 为BC 上一点,且到A ,B 两点的距离相等.(1)用直尺和圆规,作出点D 的位置(没有写作法,保留作图痕迹);(2)连结AD ,若∠B=37°,求∠CAD 的度数.21. 水源村在今年退耕还林中,计划植树200亩,全村在完成植树40亩后,某环保组织加入村民植树,并且该环保组织植树的速度是全村植树速度的1.5倍,整个植树过程共用了13天完成.(1)全村每天植树多少亩?(2)如果全村植树每天需2000元工钱,环保组织是义务植树,因此实际工钱比计划节约多少元?22. 如图,△ABC 是等边三角形,D 是 AB 边上一点,以 CD 为边作等边三角形 CDE ,使点E ,A 在直线 DC 同侧,连接 AE .求证:(1)△AEC≌△BDC;(2)AE∥BC.23. 某轮船由西向东航行,在A处测得小岛P的方位是北偏东75°,又继续航行7海里后,在B处测得小岛P的方位是北偏东60°,求:(1)此时轮船与小岛P的距离BP是多少海里;(2)小岛点P方圆3海里内有暗礁,如果轮船继续向东行驶,请问轮船有没有触礁的危险?请说明理由.24. 观察下列各式(x 1)(x+1)=x2 1,(x 1)(x2+x+1)=x3 1,(x 1)(x3+x2+x+1)=x4 1,……(1)根据以上规律,则(x 1)(x6+x5+x4+x3+x2+x+1)= .(2)你能否由此归纳出一般性规律:(x 1)(x n+x n﹣1+…+x+1)= .(3)根据以上规律求1+3+32+…+334+335的结果25. 如图,已知△ABC中,∠B=∠C,AB=8厘米,BC=6厘米,点D为AB的中点,如果点P在线段BC上以每秒2厘米的速度由B点向C点运动,同时,点Q在线段CA上以每秒a厘米的速度由C点向A点运动,设运动时间为t(秒)(0≤t<3).(1)用含t的代数式表示PC的长度.(2)若点P、Q的运动速度相等,1秒后,△BPD与△CQP是否全等,请说明理由;(3)若点P、Q的运动速度没有相等,当点Q的运动速度a为多少时,能够使△BPD与△CQP全等?广东省深圳市2022-2023学年八年级上册数学期末专项突破模拟(卷二)一、选一选1. 在以下回收、绿色食品、节能、节水四个标志中,是轴对称图形的是( )A. B. C. D.【正确答案】B【分析】根据轴对称图形的概念对各选项分析判断,利用排除法求解.【详解】解:A、没有是轴对称图形,故本选项错误;B、是轴对称图形,故本选项正确;C、没有是轴对称图形,故本选项错误;D、没有是轴对称图形,故本选项错误.故选:B.本题主要考查轴对称图形,掌握轴对称图形的概念是解题的关键.2. 下列长度的三根小木棒能构成三角形的是( )A. 2cm,3cm,5cmB. 7cm,4cm,2cmC. 3cm,4cm,8cmD.3cm ,3cm ,4cm 【正确答案】D【详解】A .因为2+3=5,所以没有能构成三角形,故A 错误,没有符合题意;B .因为2+4<6,所以没有能构成三角形,故B 错误,没有符合题意;C .因为3+4<8,所以没有能构成三角形,故C 错误,没有符合题意;D .因为3+3>4,所以能构成三角形,故D 正确,符合题意.故选D .3. 下列各式计算正确的是( )A. 2a 2+a 3=3a 5 B. (3xy )2÷(xy )=3xy C. (2b 2)3=8b 5 D. 2x •3x 5=6x 6【正确答案】D【详解】A 选项,因为2a 2 和a 3没有是同类项,没有能合并,故A 选项错误;B 选项,根据整式的除法,(3xy )2÷(xy )=,故B 选项错误;2299x y xy xy ÷=C 选项,根据积的乘方运算法则可得,,故C 选项错误;()32628b b =D 选项,根据单项式乘单项式的法则可得,,故选项正确,56236x x x ⋅=故选D4. 下列四个图形中,线段BE 是△ABC 的高的是( )A. B. C.D.【正确答案】D【详解】三角形的高线的定义可得,D 选项中线段BE 是△ABC 的高.故选D5. 如图,工人师傅砌门时,常用木条固定长方形门框,使其没有变形,这样做EF ABCD 的根据是( )A. 两点之间,线段最短B. 直角三角形的两个锐角互余C. 三角形三个内角和等于D. 三角形具有稳定性180︒【正确答案】D【分析】根据三角形具有稳定性解答.【详解】解:用木条固定长方形门框,使其没有变形的根据是三角形具有稳定EF ABCD 性.故选:D .【点评】本题考查了三角形具有稳定性在实际生活中的应用,是基础题.6. 在平面直角坐标系中,点(4, 3)关于x 轴对称的点的坐标是( )A. (4,3)B. (-4,3)C. (3,-4)D. (-3,-4)【正确答案】A【分析】【详解】在平面直角坐标系中,点(4,﹣3)关于x 轴对称的点的坐标是(4,3).故选A.关于x 轴对称的两点,横坐标相同,纵坐标互为相反数;关于y 轴对称的两点,纵坐标相同,横坐标互为相反数;关于原点对称的两点,横坐标和纵坐标都互为相反数.7. 要使分式有意义,则x 的取值范围是()31x -A. x ≠1B. x >1C. x <1D. x ≠ 1【正确答案】A【详解】根据分式分母没有为0的条件,要使在实数范围内有意义,31x -必须101x x -≠⇒≠故选A8. 生物学家发现了一种,其长度约为,将数据0. 00000032用科学记数法表0.00000032mm 示正确的是( )A. B. C. D. 73.210⨯73.210-⨯83.210⨯83.210-⨯【正确答案】B【分析】值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n ,与较大数的科学记数法没有同的是其所使用的是负指数幂,指数由原数左边起个没有为零的数字前面的0的个数所决定.【详解】0.00000032=3.2×10-7.故选B .本题考查用科学记数法表示较小的数,一般形式为a×10-n ,其中1≤|a|<10,n 为由原数左边起个没有为零的数字前面的0的个数所决定.9. 如果正多边形的每个外角等于40°,则这个正多边形的边数是A. 10B. 9C. 8D. 7【正确答案】B【详解】360°÷40°=9.故选B .10. 到△ABC 的三边距离相等的点是△ABC 的( )A. 三边中线的交点 B. 三条角平分线的交点C. 三边上高的交点D. 三边垂直平分线的交点【正确答案】B【分析】到三角形三边都相等的点应该在三角形三个内角的角平分线上,可得出答案.【详解】解:设这个点为点P ,∵点P 到AB 、AC 两边的距离相等,∴点P 在∠BAC 的平分线上,同理可得点P 在∠ABC 、∠ACB 的平分线上,∴点P 为三个内角的角平分线的交点,故选:B .本题主要考查了角平分线的性质,掌握角平分线上的点到角两边的距离相等是解题的关键.二、填 空 题11. 分解因式:2x 2﹣8=_______【正确答案】2(x +2)(x ﹣2)【分析】先提公因式,再运用平方差公式.【详解】2x 2﹣8,=2(x 2﹣4),=2(x +2)(x ﹣2).考核知识点:因式分解.掌握基本方法是关键.12. 计算: = __________.01(3)2π---【正确答案】12【详解】原式=.111=22-13. 若分式的值为0,则x 的值为 _______________2255x x --【正确答案】-5【详解】由题意得,x 2-25=0且x -5≠0,解之得x =-5.故-5.本题考查了分式的值为零的条件.若分式的值为零,需同时具备两个条件:(1)分子的值为0;(2)分母的值没有为0.这两个条件缺一没有可.14. 在等腰三角形中,若底角等于50°,则顶角的度数是______【正确答案】80度【详解】由题意得,顶角的度数是:180°-50°-50°=80°.15. 若的值使得x 2+4x +a=(x -5)(x +9)-2成立,则的值为_____________a a 【正确答案】-47【详解】∵(x -5)(x +9)-2=x 2+9x -5x -45-2= x 2+4x -47.∴a =-47.点睛:本题考查了多项式的乘法,根据多项式与多项式的乘法法则把右边化简,然后根据常数项相等求出a 值.16. 如图,已知:BD 是∠ABC 的平分线,DE ⊥BC 于E ,S △ABC =36cm2;,AB =12cm ,BC =18cm ,则DE 的长为_________cm.【正确答案】##2.4125【分析】过点D 作DF ⊥AB 于F ,根据角平分线上的点到角的两边距离相等可得DE =DF ,再根据S △ABC =S △ABD +S △BCD 列出方程求解即可.【详解】解:如图,过点D 作DF ⊥AB于F ,∵BD 是∠ABC 的平分线,DE ⊥BC ,∴DE =DF ,S △ABC =S △ABD +S △BCD =AB •DF +BC •DE ,1212=×12•DE +×18•DE ,1212=15DE ,∵△ABC =36cm 2,∴15DE =36,解得DE =2.4cm .本题考查了角平分线上的点到角的两边距离相等的性质,三角形的面积,熟记性质并作辅助线是解题的关键.三、解 答 题17. 计算:(x ﹣2)2﹣(x ﹣3)(x +3)【正确答案】﹣4x +13.【分析】原式利用完全平方公式,以及平方差公式计算即可求出值.【详解】解:(x ﹣2)2﹣(x ﹣3)(x +3)=x 2﹣4x +4﹣(x 2﹣9)=x 2﹣4x +4﹣x 2+9=﹣4x +13.此题考查了平方差公式,以及完全平方公式,熟练掌握公式是解本题的关键.18. 先化简(1 )÷,再从0, 2, 1,1中选择一个合适的数代入并求值.11x -22441x x x -+-【正确答案】原式=1122xx+=--【详解】试题分析:本题考查了分式的化简求值及使分式有意义的条件,先把括号里通分,再把除法转化为乘法,并把分子分母分解因式约分化简,从所给数中选一个使分式有意义的数代入求值.解:原式=•=当x=0时,∴原式=19. 已知:如图,M 是AB 的中点,,.12∠=∠MC MD =求证:.A B ∠=∠【正确答案】证明见解析.【分析】根据SAS 即可证得△AMC ≌△BMD ,根据全等三角形的性质即可得∠A=∠B .【详解】证明:∵M 是AB 的中点,∴AM=BM ,又∵MC=MD ,∠1=∠2,∴△AMC ≌△BMD (SAS ),∴∠A=∠B .20. 如图,已知△ABC ,∠C=90°,AC<BC ,D 为BC 上一点,且到A ,B 两点的距离相等.(1)用直尺和圆规,作出点D 的位置(没有写作法,保留作图痕迹);(2)连结AD ,若∠B=37°,求∠CAD 的度数.【正确答案】(1)点D 的位置如图所示(D 为AB 中垂线与BC 的交点).(2)16°.【分析】(1)根据到线段两个端点的距离相等的点在这条线段的垂直平分线上,作出AB 的中垂线.(2)要求∠CAD 的度数,只需求出∠CAB ,而由(1)可知:∠BAD=∠B【详解】解:(1)点D 的位置如图所示(D 为AB 中垂线与BC 的交点).(2)∵在Rt △ABC 中,∠B=37°,∴∠CAB=53°.又∵AD=BD ,∴∠BAD=∠B=37°.∴∠CAD=53°—37°=16°.21. 水源村在今年退耕还林中,计划植树200亩,全村在完成植树40亩后,某环保组织加入村民植树,并且该环保组织植树的速度是全村植树速度的1.5倍,整个植树过程共用了13天完成.(1)全村每天植树多少亩?(2)如果全村植树每天需2000元工钱,环保组织是义务植树,因此实际工钱比计划节约多少元?【正确答案】解:(1)设全村每天植树x 亩,根据题意得:,4016013x 2.5x +=解得:x=8,经检验x=8是原方程的解.答:全村每天植树8亩.(2)根据题意得:原计划全村植树天数是,200258=∴可以节省工钱(25﹣13)×2000=24000元.【详解】试题分析:(1)根据整个植树过程共用了13天完成,以及环保组织植树的速度是全村植树速度的1.5倍表示出两者的植树天数得出等式求出即可.(2)根据(1)中所求得出原计划全村植树天数以及节省的费用.22. 如图,△ABC 是等边三角形,D 是 AB 边上一点,以 CD 为边作等边三角形 CDE ,使点E ,A 在直线 DC 同侧,连接 AE .求证:(1)△AEC ≌△BDC ;(2)AE ∥BC .【正确答案】(1)证明过程见解析;(2)证明过程见解析【分析】(1)根据等边三角形性质推出BC=AC ,CD=CE ,∠BCA=∠ECD=60°,求出∠BCD=∠ACE ,根据SAS 证△AEC ≌△BDC ;(2)根据△AEC ≌△BDC 推出∠EAC=∠DBC=∠ACB ,根据平行线的判定推出即可.【详解】解:(1)∵△ABC 和△DEC 是等边三角形,∴BC =AC ,CD =CE ,∠BCA =∠ECD =60°,∠B =60°,∴∠BCA ﹣∠DCA =∠ECD ﹣∠DCA , 即∠BCD =∠ACE ,在△AEC 和△BDC 中,,AC BC ACE BCD CE CD =⎧⎪∠=∠⎨⎪=⎩∴△AEC ≌△BDC (SAS ).(2)∵△AEC ≌△BDC ,∴∠EAC =∠B ,∵∠B =60°,∴∠EAC =∠B =60°=∠ACB ,∴AE//BC .本题考查了等边三角形性质,全等三角形的判定和性质,平行线的判定,关键是求出△ACE ≌△BCD ,主要考查学生的推理能力.23. 某轮船由西向东航行,在A 处测得小岛P 的方位是北偏东75°,又继续航行7海里后,在B 处测得小岛P 的方位是北偏东60°,求:(1)此时轮船与小岛P 的距离BP 是多少海里;(2)小岛点P 方圆3海里内有暗礁,如果轮船继续向东行驶,请问轮船有没有触礁的危险?请说明理由.【正确答案】(1)BP =7海里;(2)没有危险,理由见解析.。
人教版2022-2023学年八年级数学上册期末模拟测试题(附答案)
2022-2023学年八年级数学上册期末模拟测试题(附答案)一.选择题(共8小题,满分24分)1.在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是()A.B.C.D.2.下列运算中正确的是()A.x3•x3=2x3B.(2ab3)2=2a2b6C.(﹣1)﹣10=10D.(﹣)0=13.如图,在Rt△ACB中,∠ACB=90°,∠A=25°,D是AB上一点.将Rt△ABC沿CD 折叠,使B点落在AC边上的E处,则∠ADE等于()A.25°B.30°C.35°D.40°4.如图,已知MB=ND,∠MBA=∠NDC,下列条件中不能判定△ABM≌△CDN的是()A.∠M=∠N B.AB=CD C.AM=CN D.AM∥CN5.已知a,b,c为△ABC的三边,且=0,|b﹣c|=0,则△ABC的形状是()A.等腰三角形B.等边三角形C.直角三角形D.等腰直角三角形6.某优秀毕业生向我校赠送1080本课外书,现用A、B两种不同型号的纸箱包装运送,单独使用B型纸箱比单独使用A型纸箱可少用6个;已知每个B型纸箱比每个A型纸箱可多装15本.若设每个A型纸箱可以装书x本,则根据题意列得方程为()A.=+6B.=﹣6C.=﹣6D.=+67.如图,Rt△ABC的两条直角边AC,BC分别经过正五边形的两个顶点,则∠1+∠2等于()A.126°B.130°C.136°D.140°8.如图,把△ABC沿平行于BC的直线DE折叠,使点A落在边BC上的点F处,若∠B =50°,则∠BDF的度数为()A.40°B.50°C.80°D.100°二.填空题(共7小题,满分21分)9.测得某人的头发直径为0.0000635米,这个数据用科学记数法表示为.10.在平面直角坐标系中,点P(﹣5,2)关于x轴的对称点的坐标是.11.因式分解:3x﹣12x3=.12.若一个正多边形的内角是外角的3倍,则这个正多边形的边数为.13.若分式的值为零,则x的值为.14.如图,在△ABC中,AB=6,BC=7,AC=4,直线m是△ABC中BC边的垂直平分线,P是直线m上的一动点,则△APC的周长的最小值为.15.小军做了一个如图所示的风筝,其中EH=FH,ED=FD,则DH是EF的线.三.解答题(共11小题,满分75分)16.化简:(x﹣2)2+(x+3)(x+1).17.如图,F A⊥EC,垂足为E,∠C=20°,∠F=40°.求∠FBC的度数.18.如图,在△ABC中,∠B=48°,三角形的外角∠DAC和∠ACF的平分线交于点E.求∠AEC的度数.19.如图,F,C是AD上的两点,且AB=DE,AB∥DE,AF=CD.求证:BC∥EF.20.如图,在△ABC中,∠ABC=2∠ACB,BD为△ABC的角平分线;(1)若AB=BD,则∠A的度数为°(直接写出结果);(2)如图1,若E为线段BC上一点,∠DEC=∠A;求证:AB=EC.(3)如图2,若E为线段BD上一点,∠DEC=∠A,求证:AB=EC.21.先化简,再求值:,试从0,1,2,3四个数中选取一个你喜欢的数代入求值.22.已知:M=,N=.(1)当x>0时,判断M与N的大小关系,并说明理由;(2)设y=+N.①当y=3时,求x的值;②若x是整数,求y的正整数值.23.某商场准备购进甲、乙两种商品进行销售,若每个甲商品的进价比每个乙商品的进价少2元,且用80元购进甲商品的数量与用100元购进乙商品的数量相同.设每个乙商品的进价为x元.(1)每个甲商品的进价为元(用含x的式子表示);(2)求每个甲、乙商品的进价分别是多少?24.如图,△ABC是等边三角形,AB=6,动点P沿折线AB﹣BC以每秒1个单位长度的速度向终点C运动;同时,动点Q沿折线CA﹣AB﹣BC以每秒2个单位长度的速度向终点C运动,连接PQ,设点P的运动时间为t(s)(0<t<12).(1)用含t的式子表示BP的长;(2)当△APQ是等边三角形时,求t的值;(3)当线段PQ在△ABC的某条边上时,求t的取值范围;(4)在(3)的条件下,当以点P、Q、A、C中的任意三个点为顶点构成的三角形是以PQ为底的等腰三角形时,直接写出t的值.25.如图,在△ABC中,AB=AC,点D在边BC上(点D不与点B、点C重合),作∠ADE =∠B,DE交边AC于点E.(1)求证:∠BAD=∠CDE;(2)若DC=AB,求证:△ABD≌△DCE;(3)当∠B=50°,且△ADE是等腰三角形时,直接写出∠BDA的度数.26.在△ABC中,D是BC边上的点(不与点B、C重合),连接AD.(1)如图1,当点D是BC边的中点时,S△ABD:S△ACD=;(2)如图2,当AD平分∠BAC时,若AB=m,AC=n,求S△ABD:S△ACD的值(用含m、n的式子表示);(3)如图3,AD平分∠BAC,延长AD到E.使得AD=DE,连接BE,若AC=3,AB =5,S△BDE=10,求S△ABC的值.参考答案一.选择题(共8小题,满分24分)1.解:A、是轴对称图形,故本选项正确;B、不是轴对称图形,故本选项错误;C、不是轴对称图形,故本选项错误;D、不是轴对称图形,故本选项错误.故选:A.2.解:∵x3•x3=x6≠2x3,∴选项A不符合题意;∵(2ab3)2=4a2b6≠2a2b6,∴选项B不符合题意;∵(﹣1)﹣10=1≠10,∴选项C不符合题意;∵(﹣)0=1,∴选项D符合题意;故选:D.3.解:在Rt△ACB中,∠ACB=90°,∠A=25°,∴∠B=90°﹣25°=65°,∵△CDE由△CDB折叠而成,∴∠CED=∠B=65°,∵∠CED是△AED的外角,∴∠ADE=∠CED﹣∠A=65°﹣25°=40°.故选:D.4.解:A、∠M=∠N,符合ASA,能判定△ABM≌△CDN,故A选项不符合题意;B、AB=CD,符合SAS,能判定△ABM≌△CDN,故B选项不符合题意;C、根据条件AM=CN,MB=ND,∠MBA=∠NDC,不能判定△ABM≌△CDN,故C选项符合题意;D、AM∥CN,得出∠MAB=∠NCD,符合AAS,能判定△ABM≌△CDN,故D选项不符合题意.故选:C.5.解:根据题意得,a2﹣2ab+b2=0,b﹣c=0,∴a=b,b=c,∴a=b=c,∴△ABC的形状是等边三角形.故选:B.6.解:∵每个B型纸箱比每个A型纸箱可多装15本,且每个A型纸箱可以装书x本,∴每个B型纸箱可以装书(x+15)本.依题意得:=﹣6.故选:C.7.解:如图:∵(5﹣2)×180°÷5×2=3×180°÷5×2=216°,∠3+∠4=180°﹣90°=90°,∴∠1+∠2=216°﹣90°=126°.故选:A.8.解:∵BC∥DE,∠B=50°,∴∠ADE=50°,又∵△ABC沿线段DE折叠,使点A落在点F处,∴∠ADE=∠EDF=50°,∴∠BDF=180°﹣50°﹣50°=80°,故选:C.二.填空题(共7小题,满分21分)9.解:0.0000635米=6.35×10﹣5米.故答案为:6.35×10﹣5米.10.解:∵P(﹣5,2),∴点P关于x轴的对称点的坐标是(﹣5,﹣2).故答案为:(﹣5,﹣2).11.解:3x﹣12x3=3x(1﹣4x2)=3x(1+2x)(1﹣2x),故答案为:3x(1+2x)(1﹣2x).12.解:设正多边形的边数为n,由题意得:(n﹣2)•180°=3×360°,解得:n=8,故答案为:8.13.解:依题意得:3﹣|x|=0且x+3≠0,解得x=3.故答案是:3.14.解:∵直线m是△ABC中BC边的垂直平分线,∴BP=CP,∴△ACP的周长=AP+PC+AC=BP+AP+AC≥AB+AC,∴当A、B、P三点共线时,△ACP的周长最小,∵AB=6,BC=7,AC=4,∴△ACP的周长6+4=10,∴△ACP的周长最小值为10,故答案为10.15.解:∵EH=FH,∴点H在EF的垂直平分线上;∵ED=FD,点D在EF的垂直平分线上,∴DH垂直平分EF.故答案为:垂直平分.三.解答题(共11小题,满分75分)16.解:原式=x2﹣4x+4+(x2+x+3x+3)=x2﹣4x+4+x2+x+3x+3=2x2+7.17.解:在△AEC中,F A⊥EC,∴∠AEC=90°,∴∠A=90°﹣∠C=70°.∴∠FBC=∠A+∠F=70°+40°=110°.18.解:∵∠B=48°,∴∠BAC+∠BCA=180°﹣48°=132°,∴∠DAC+∠FCA=180°﹣∠BAC+180°﹣∠BCA=360°﹣132=228°,∵AE和CE分别平分∠DAC和∠FCA,∴∠EAC=∠DAC,∠ECA=∠FCA,∴∠EAC+∠ECA=(∠DAC+∠FCA)=114°,∴∠AEC=180°﹣(∠EAC+∠ECA)=180°﹣114°=66°.19.证明:∵AF=CD,∴AF+CF=CD+CF,即AC=DF,∵AB∥DE,∴∠A=∠D,在△ABC和△DEF中,,∴△ABC≌△DEF(SAS),∴BC=EF.20.(1)解:如图1中,设∠C=x.∵∠ABC=2∠C,∴∠ABC=2x,∵BD平分∠ABC,∴∠ABD=∠CBD=x,∵AB=BD,∴∠A=∠ADB=∠DBC+∠C=2x,∵∠A+∠ABC+∠C=180°,∴2x+2x+x=180°,∴x=36°,∴∠A=2x=72°,故答案为:72.(2)证明:如图1中,∵∠ABD=∠DBC=∠C,∴BD=CD,在△ABD和△ECD中,,∴△ABD≌△ECD(AAS),∴AB=EC.(3)证明:如图2中,延长BD到T,使得CD=CT.∵CD=CT,∴∠T=∠CDT=∠ADB,∵BD=CD,∴BD=CT,在△ABD和△ECT中,,∴△ABD≌△ECT(AAS),∴AB=EC.21.解:=•=,当x=0时,原式==﹣.或者,当x=2时,原式==﹣1.22.解:(1)当x>0时,M≥N.理由如下:M﹣N=﹣=,∵x>0,∴(x﹣1)2≥0,2(x+1)>0,∴≥0,∴M≥N;(2)由题意得y=+=,①当y=3即=3时,∴x=1,经检验x=1是原分式方程的解,∴当y=3时,x的值是1.②y===2+.∵x,y是整数,∴是整数,∴x+1可以取±1,±2.当x+1=1,即x=0时,y=2+=4>0;当x+1=﹣1时,即x=﹣2时,y=2+=0(舍去);当x+1=2时,即x=1时,y=2+=3>0;当x+1=﹣2时,即x=﹣3时,y=2+=1>0;所以当x为整数时,y的正整数值是4或3或1.23.解:(1)设每个乙商品的进价为x元,则每个甲商品的进价为(x﹣2)元.故答案为:(x﹣2);(2)依题意得:=,解得x=10,经检验,x=10是原方程的解,且符合题意,∴x﹣2=8.答:每个甲商品的进价为8元,每个乙商品的进价为10元.24.解:(1)根据题意可得,①当0<t≤6时,点P在AB上运动,BP=6﹣t;②当6<t<12时,点P在BC上运动,BP=t﹣6;(2)当△APQ是等边三角形时,∵△APQ是等边三角形,∴AP=AQ,∴AQ=6﹣2t,AP=t∴6﹣2t=t,解得:t=2,∴当t=2s时,△APQ是等边三角形;(3)当点Q运动到点A时,2t=6,解得t=3;当点P到点B时,t=6,此时点Q与点B重合,∴当3≤t<12,且t≠6时,线段PQ在△ABC的某条边上;(4)根据题意有,如图①,当P、Q都在AB上时,满足AQ=BP时,△CPQ是等腰三角形,AQ=2t﹣6,BP=6﹣t,2t﹣6=6﹣t,j解得:t=4;如图②,当P、Q都在BC上时,满足BQ=CP时,△CPQ是等腰三角形,BQ=2t﹣12,CP=12﹣t,2t﹣12=12﹣t,解得:t=8;∴当t=4或t=8时,满足以点P、Q、A、C中的任意三个点为顶点构成的三角形是以PQ为底的等腰三角形.25.(1)证明:∠ADE=∠B,∠BAD+∠B=∠ADC,∠CDE+∠ADE=∠ADC,∴∠BAD=∠CDE;(2)证明:∵AB=AC,∴∠B=∠C,∵DC=AB,∠BAD=∠CDE;在△ABD和△DCE中,,∴△ABD≌△DCE(SAS);(3)解:∵∠B=∠C=50°,∠B+∠C+∠BAC=180°,∴∠BAC=180°﹣∠B﹣∠C=180°﹣50°﹣50°=80°,分三种情况讨论:①当DA=DE时,∠DAE=∠DEA,∵∠ADE=∠B=50°,∠ADE+∠DAE+∠DEA=180°,∴∠DAE=(180°﹣50°)÷2=65°,∴∠BAD=∠BAC﹣∠DAE=80°﹣65°=15°,∵∠B+∠BAD+∠BDA=180°,∴∠BDA=180°﹣∠B﹣∠BAD=180°﹣50°﹣15°=115°;②当AD=AE时,∠AED=∠ADE=50°,∵∠ADE+∠AED+∠DAE=180°,∴∠DAE=180°﹣∠AED﹣∠ADE=180°﹣50°﹣50°=80°,∵∠BAC=80°,∴∠DAE=∠BAE,∴点D与点B重合,不合题意.③当EA=ED时,∠DAE=∠ADE=50°,∴∠BAD=∠BAC﹣∠DAE=80°﹣50°=30°,∵∠B+∠BAD+∠BDA=180°,∴∠BDA=180°﹣∠B﹣∠BAD=180°﹣50°﹣30°=100°,综上所述,当∠BDA的度数为115°或100°时,△ADE是等腰三角形.26.解:(1)过A作AE⊥BC于E,∵点D是BC边上的中点,∴BD=DC,∴S ABD:S△ACD=(BD•AE):(CD•AE)=1:1,故答案为:1:1;(2)过D作DE⊥AB于E,DF⊥AC于F,∵AD为∠BAC的角平分线,∴DE=DF,∵AB=m,AC=n,∴S ABD:S△ACD=(AB•DE):(AC•DF)=m:n;(3)∵AD=DE,∴由(1)知:S△ABD:S△EBD=1:1,∵S△BDE=10,∴S△ABD=10,∵AC=3,AB=5,AD平分∠CAB,∴由(2)知:S△ABD:S△ACD=AB:AC=5:3,∴S△ACD=6,∴S△ABC=10+6=16,故答案为:16.。
2022-2023学年上学期八年级数学期末模拟测试卷(02)
2022-2023学年上学期八年级数学期末模拟测试卷(02)一、选择题(本大题共6小题,每小题2分,共12分。
在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)1.下列图形中,是轴对称图形的是()A.B.C.D.2.在平面直角坐标系中,点(2,﹣2)所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限3.记者乘汽车赴360km外的农村采访,前一段路为高速公路,后一段路为乡村公路,汽车在高速公路和乡村公路上分别以某一速度匀速行驶,汽车行驶的路程y(km)与时间x(h)间的关系如图所示,则该记者到达采访地的时间为()A.4小时B.4.5小时C.5小时D.5.5小时4.下列各组数中,不能作直角三角形三边长的是()A.4,5,6B.1,1,C.5,3,4D.1,,5.在平面直角坐标系中,将直线y=x+3沿y轴向下平移6个单位后,得到一条新的直线,该直线与x轴的交点坐标是()A.(0,3)B.(2,0)C.(4,0)D.(6,0)6.在海面上有两个疑似漂浮目标.接到消息后,A舰艇以12海里/时的速度离开港口O,向北偏西50°方向航行.同时,B舰艇在同地以16海里/时的速度向北偏东方向行驶,如图所示,离开港口1.5小时后两船相距30海里,则B舰艇的航行方向是()A.北偏东60°B.北偏东50°C.北偏东40°D.北偏东30°二、填空题(本大题共10小题,每小题2分,共20分。
请把答案填写在答题卡相应位置上)7.方程(x﹣1)3=﹣27的解为.8.用四舍五入法将0.0586精确到千分位,所得到的近似数为.9.已知直线y=2x﹣3经过点(2+m,1+k),其中m≠0,则的值为.10.如图,在△ABC中,∠EAB=∠EBA,△ABC与△BEC的周长分别是24和14,则AB=.11.如图,将五个边长为1的小正方形组成的十字形纸板剪开,重新拼成一个大正方形,则大正方形的边长为.12.如图,小巷左右两侧是竖直的墙,一架梯子斜靠在左墙时,梯子底端到左墙角的距离为0.7米,顶端距离地面2.4米.如果保持梯子底端位置不动,将梯子斜靠在右墙时,顶端距离地面2米,则小巷的宽度为米.13.一根弹簧长为20cm,最多可挂质量为20kg的物体,挂上物体后弹簧伸长的长度与所挂物体的质量成正比,如果挂上5kg物体后,弹簧长为22.5cm,那么弹簧总长度y(cm)与所挂重物x(kg)之间的函数表达式为(并写出自变量x取值范围).14.如图,直线y=﹣2x+b与x轴交于点(3,0),那么不等式﹣2x+b<0的解集为.15.如图,在△ABC中,S△ABC=21,∠BAC的角平分线AD交BC于点D,点E为AD的中点.连接BE,点F为BE上一点,且BF=2EF.若S△DEF=2,则AB:AC=.16.如图,在4×4的正方形网格中,所有线段的端点都在格点处,则这些线段的长度是无理数的有条.三、解答题(本大题共10小题,共88分。
北师大版八年级(上)数学期末测试试题及答案二
北师大版八年级(上)数学期末测试试题及答案一、选择题(每小题3分,共30分)1.(3分)下列实数中,是无理数的是()A.0B.3.14C.﹣D.2.(3分)点A(﹣1,3)和点B(﹣1,﹣3)在坐标平面内的关系是()A.关于x轴对称B.关于y轴对称C.关于原点对称D.没有对称关系3.(3分)下列说法错误的是()A.是一个二元一次方程组B.是一个二元一次方程组C.是方程组的解D.二元一次方程x﹣7y=11有无数个解4.(3分)若在一组数据4,3,2,4,2中再添加一个数后,它们的平均数不变,则添加数据后这组数据的中位数是()A.3B.4C.3.5D.4.55.(3分)已知一次函数y=kx+b的图象经过点A(3,y1)和点B(4,y2),且y1﹣y2=5,则k的值是()A.﹣1B.5C.﹣5D.﹣6.(3分)如图,AB∥CD,点E在AB上,∠AEC=60°,∠EFD=130°.则∠CEF的度数是()A.60°B.70°C.75°D.80°7.(3分)已知,△ABC中∠A、∠B、∠C的对边分别是a、b、c,下列条件不能判断△ABC是直角三角形的是()A.a2﹣b2=c2B.a=1,b=1,c=C.∠A+∠B=∠C D.a=8,b=40,c=418.(3分)早餐店里,小明妈妈买了5个馒头,3个包子,老板少要1元,只要10元;小红爸爸买了8个馒头,6个包子,老板九折优惠,只要18元.若馒头每个x元,包子每个y元,则所列二元一次方程组正确的是()A.B.C.D.9.(3分)如图,已知AP平分∠BAC,CP平分∠ACD,∠1+∠2=90°,下列结论不一定成立的是()A.AB∥CD B.∠ABE+∠CDF=180°C.AC∥BD D.若∠ACD=2∠E,则∠CAB=2∠F10.(3分)甲、乙两人分别从笔直道路上的A、B两地出发相向匀速而行,已知甲比乙先出发6分钟,两人在C地相遇,相遇后甲立即按原速原路返回A地,乙继续向A地前行,约定先到A地者停止运动就地休息.若甲、乙两人相距的路程y(米)与甲行走的时间x(分钟)之间的关系如图所示,有下列说法:①甲的速度是60米/分钟,乙的速度是80米/分钟;②甲出发30分钟时,两人在C地相遇;③乙到达A地时,甲与A地相距450米,其中正确的说法有()A.0个B.1个C.2个D.3个二、填空题(每小题3分,共15分)11.(3分)如图,△ABC中,∠A=35°,∠C=45°,则这个三角形的外角∠ABD的度数为:.12.(3分)一组数据:1,3,a,5,7的平均数是a,则它们的方差是.13.(3分)计算|1﹣|﹣+2=.14.(3分)直线y=x+1与y=mx+n相交于点P(1,a),则关于x,y的二元一次方程组的解为.15.(3分)如图,直线l1:y=x+5交x轴于点A,交y轴于点B,直线l2:y=﹣5x+5交x轴于点C,交y轴于点B,点P在线段BC上,且点P到l1的距离是2,则点P的坐标是.三、解答题(共8题,75分)16.(10分)(1)计算;(2)解方程.17.(9分)为了让同学们了解自己的体育水平,初三1班的体育刘老师对全班45名学生进行了一次体育模拟测试(得分均为整数),成绩满分为10分,班的体育委员根据这次测试成绩,制作了统计图.根据以上信息,解答下列问题:(1)整理班级成绩得如下表格:平均分中位数众数男生a8c女生7.92b8则a=,b=,c=,(2)请你从平均数、中位数、众数的角度进行分析,1班的男生队、女生队哪个表现更突出一些.18.(9分)如图,四边形BCED中,点A在CB的延长线上,点F在DE的延长线上,连接AF交BD于G,交CE 于H,且∠1=45°,∠2=135°.(1)求证:BD∥CE;(2)若∠C=∠D,求证:∠A=∠F.19.(9分)植树造林不仅可以美化家园,同时也可以调节气候、促进经济发展.在植树节前夕,某单位计划购进A、B两种树苗共17棵,已知A种树苗每棵80元,B种树苗每棵60元.(1)若购进的A、B两种树苗刚好1220元,求A、B两种树苗分别购买了多少棵?(2)若购买A种树苗a棵,所需总费用为w元.求w与a的函数关系式.(3)若购买时A种树苗不能少于5棵,w的最小值是多少?请说明理由.20.(9分)如图,四边形ABCD中,∠B=90°,AC为对角线,DE⊥AC于点E,已知AB=8,BC=6,CD=2,AD=2.(1)请判断△ACD的形状并说明理由.(2)求线段DE的长.21.(9分)如图,在以点O为原点的平面直角坐标系中,点A、B的坐标分别为(a,0)、(a,b),点C在y轴上,且BC∥x轴,a、b满足|a﹣3|+=0.点P从原点出发,以每秒2个单位长度的速度沿着O﹣A﹣B﹣C﹣O 的路线运动(回到点O为止).(1)求出a、b的值并直接写出点A、B、C的坐标;(2)当点P运动3秒时,连接PC、PO,求出点P的坐标,并直接写出∠CPO、∠BCP、∠AOP之间满足的数量关系.22.(10分)如图,在同一坐标系中,直线l1:y=﹣x+1交x轴于点P,直线l2:y=ax﹣3过点P.(1)求a的值;(2)点M、N分别在直线l1、l2上,且关于原点对称(说明:点A(x,y)关于原点对称的点A'的坐标为(﹣x,﹣y),求点M、N的坐标和△PMN的面积.23.(10分)(1)如图1,已知∠A=55°,∠B=30°,∠C=25°.直接写出∠BOC的度数及∠BOC与∠A、∠B、∠C之间的数量关系(2)对于图2,已知AB∥CD,直接写出∠E与∠B和∠D之间的数量关系.(3)如图3,BE平分∠ABD,DE平分∠BDC,且∠E=90°.求证:AB∥CD.(4)拓展与应用:在(3)的条件下,作射线BF和DF交于点F.已知∠ABE=3∠ABF,∠F=30°.请直接判断∠CDF与∠CDE之间的数量关系.参考答案与试题解析一、选择题(每小题3分,共30分)1.(3分)下列实数中,是无理数的是()A.0B.3.14C.﹣D.【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【解答】解:A.0是整数,属于有理数,故本选项不合题意;B.3.14是有限小数,属于有理数,故本选项不合题意;C.是分数,属于有理数,故本选项不合题意;D.是无理数,故本选项符合题意.故选:D.【点评】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.2.(3分)点A(﹣1,3)和点B(﹣1,﹣3)在坐标平面内的关系是()A.关于x轴对称B.关于y轴对称C.关于原点对称D.没有对称关系【分析】根据关于原点对称,关于x轴、y轴对称的点的坐标特征判断即可.【解答】解:点A(﹣1,3)和点B(﹣1,﹣3)在坐标平面内的关系是关于x轴对称,故选:A.【点评】本题考查了关于原点对称,关于x轴、y轴对称的点的坐标,熟练掌握关于原点对称,关于x轴、y轴对称的点的坐标特征是解题的关键.3.(3分)下列说法错误的是()A.是一个二元一次方程组B.是一个二元一次方程组C.是方程组的解D.二元一次方程x﹣7y=11有无数个解【分析】根据二元一次方程组的定义即可判断选项A和选项B,根据方程组的解的定义即可判断选项C;根据二元一次方程的解的定义即可判断选项D,【解答】解:A.是二元一次方程组,故本选项不符合题意;B.是三元一次方程组,故本选项符合题意;C.经检验是方程2x+y=﹣1的解,也是方程x﹣y=4的解,即是方程组的解,故本选项不符合题意;D.二元一次方程x﹣7y=11有无数个解,故本选项不符合题意;故选:B.【点评】本题考查了二元一次方程组的定义,二元一次方程的解的定义,二次一元方程组的解的定义等知识点,能熟记二次一次方程的定义和方程(或组)的解的定义是解此题的关键.4.(3分)若在一组数据4,3,2,4,2中再添加一个数后,它们的平均数不变,则添加数据后这组数据的中位数是()A.3B.4C.3.5D.4.5【分析】根据平均数的公式求出数据4,3,2,4,2的平均数,根据题意可知添加的一个数据是平均数,再根据中位数的定义求解.【解答】解:(4+3+2+4+2)÷5=15÷5=3.∵它们的平均数不变,∴添加的数据为3.∴这组新数据为:2,2,3,3,4,4,这组新数据的中位数为:×(3+3)=3,故选:A.【点评】考查了平均数,中位数,熟练掌握相关概念和公式是解题的关键.5.(3分)已知一次函数y=kx+b的图象经过点A(3,y1)和点B(4,y2),且y1﹣y2=5,则k的值是()A.﹣1B.5C.﹣5D.﹣【分析】根据一次函数y=kx+b的图象上点的坐标特征,求得y1=3k+b,y2=4k+b,根据y1﹣y2=5,得到关于k 的方程,解方程即可求得k的值.【解答】解:由题意得,①﹣②得y1﹣y2=﹣k,∵y1﹣y2=5,∴﹣k=5,解得k=﹣5,故选:C.【点评】本题考查了一次函数图象上点的坐标特征,根据坐标特征列出方程是解题的关键.6.(3分)如图,AB∥CD,点E在AB上,∠AEC=60°,∠EFD=130°.则∠CEF的度数是()A.60°B.70°C.75°D.80°【分析】先利用角平分线的性质求出∠C,再利用三角形外角和内角的关系求出∠CEF.【解答】解:∵AB∥CD,∴∠C=∠AEC=60°.∵∠EFD=∠CEF+∠C,∴∠CEF=∠EFD﹣∠C=130°﹣60°=70°.故选:B.【点评】本题主要考查了平行线的性质,掌握“两直线平行,内错角相等”是解决本题的关键.7.(3分)已知,△ABC中∠A、∠B、∠C的对边分别是a、b、c,下列条件不能判断△ABC是直角三角形的是()A.a2﹣b2=c2B.a=1,b=1,c=C.∠A+∠B=∠C D.a=8,b=40,c=41【分析】利用直角三角形的定义和勾股定理的逆定理逐项判断即可.【解答】解:A、∵a2﹣b2=c2,∴a2=b2+c2,故△ABC是直角三角形;B、∵a2+b2=12+12=2=c2,∴a2+b2=c2,故△ABC是直角三角形;C、∵∠A+∠B=∠C,∴∠C=90°,故△ABC是直角三角形;D、∵82+402≠412,∴a2+b2≠c2,故△ABC不是直角三角形;故选:D.【点评】本题考查了勾股定理的逆定理:如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形.也考查了三角形内角和定理.8.(3分)早餐店里,小明妈妈买了5个馒头,3个包子,老板少要1元,只要10元;小红爸爸买了8个馒头,6个包子,老板九折优惠,只要18元.若馒头每个x元,包子每个y元,则所列二元一次方程组正确的是()A.B.C.D.【分析】根据题意可得等量关系:①5个馒头的钱+3个包子的钱=10+1元;②(8个馒头的钱+6个包子的钱)×9折=18元,根据等量关系列出方程组即可.【解答】解:若馒头每个x元,包子每个y元,由题意得:,故选:B.【点评】本题考查了由实际问题抽象出二元一次方程组,找准等量关系,正确列出二元一次方程组是解题的关键.9.(3分)如图,已知AP平分∠BAC,CP平分∠ACD,∠1+∠2=90°,下列结论不一定成立的是()A.AB∥CDB.∠ABE+∠CDF=180°C.AC∥BDD.若∠ACD=2∠E,则∠CAB=2∠F【分析】利用角平分线的性质和三角形的内角和得到AB∥CD,再根据平行线的性质和外角定理可得答案.【解答】解:∵AP平分∠BAC,∴∠1=∠P AC=∠BAC,∵CP平分∠ACD,∴∠2=∠PCA=∠DCA,又∵∠1+∠2=90°,∴∠BAC+∠DCA=180°,∴AB∥CD,故A一定成立;∵AB∥CD,∴∠ABD+∠CDB=180°,∴∠ABE+∠CDF=180°,故B一定成立;若∠ACD=2∠E,∵∠ACD=2∠PCA,∴∠PCA=∠E,∴AC∥BD,∴∠F=∠CAP,∵∠CAB=2∠F,故D一定成立;题中的条件不能说明AC∥BD,故C不一定成立.故选:C.【点评】此题主要考查了平行线的性质以及平行公理等知识,三角形的内角和定理,正确利用平行线的性质分析是解题关键.10.(3分)甲、乙两人分别从笔直道路上的A、B两地出发相向匀速而行,已知甲比乙先出发6分钟,两人在C地相遇,相遇后甲立即按原速原路返回A地,乙继续向A地前行,约定先到A地者停止运动就地休息.若甲、乙两人相距的路程y(米)与甲行走的时间x(分钟)之间的关系如图所示,有下列说法:①甲的速度是60米/分钟,乙的速度是80米/分钟;②甲出发30分钟时,两人在C地相遇;③乙到达A地时,甲与A地相距450米,其中正确的说法有()A.0个B.1个C.2个D.3个【分析】根据图象可知A、B两地相距3720米;利用速度=路程÷时间可求出甲、乙的速度,由二者相遇的时间=6+A、B两地之间的路程÷二者速度和,可求出二者相遇的时间,再由A、C两地之间的距离=甲的速度×二者相遇的时间可求出A、C两地之间的距离,由A、C两地之间的距离结合甲、乙的速度,可求出乙到达A地时甲与A地相距的路程.【解答】解:由图象可知,A、B两地相距3720米,甲的速度为(3720﹣3360)÷6=60(米/分钟),乙的速度为(3360﹣1260)÷(21﹣6)﹣60=80(米/分钟),故①说法正确;甲、乙相遇的时间为6+3360÷(60+80)=30(分钟),故②说法正确;A、C两地之间的距离为60×30=1800(米),乙到达A地时,甲与A地相距的路程为1800﹣1800÷80×60=450(米).故③说法正确.即正确的说法有3个.故选:D.【点评】本题考查了一次函数的应用,利用数量关系,求出甲、乙的速度及A、C两地之间的距离是解题的关键.二、填空题(每小题3分,共15分)11.(3分)如图,△ABC中,∠A=35°,∠C=45°,则这个三角形的外角∠ABD的度数为:80°.【分析】根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.【解答】解:∵∠A=35°,∠C=45°,∴∠ABD=∠A+∠C=35°+45°=80°.故答案为:80°.【点评】本题考查了三角形的外角性质,是基础题,熟记三角形的一个外角等于与它不相邻的两个内角的和是解题的关键.12.(3分)一组数据:1,3,a,5,7的平均数是a,则它们的方差是4.【分析】先由平均数的公式计算出a的值,再根据方差的公式计算即可.【解答】解:∵数据:1,3,a,5,7的平均数是a,∴5a=1+3+a+5+7,∴a=4,∴这组数据的方差是s2=[(1﹣4)2+(3﹣4)2+(4﹣4)2+(5﹣4)2+(7﹣4)2]=4.故答案为:4.【点评】本题考查方差的定义:一般地设n个数据,x1,x2,…x n的平均数为,则方差S2=[(x1﹣)2+(x2﹣)2+…+(x n﹣)2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.也考查了平均数.13.(3分)计算|1﹣|﹣+2=﹣1﹣.【分析】直接利用绝对值的性质以及二次根式的性质分别化简,进而合并得出答案.【解答】解:原式=﹣1﹣3+2×=﹣1﹣3+=﹣1﹣.故答案为:﹣1﹣.【点评】此题主要考查了二次根式的加减,正确化简二次根式是解题关键.14.(3分)直线y=x+1与y=mx+n相交于点P(1,a),则关于x,y的二元一次方程组的解为.【分析】根据函数图象可以得到两个函数交点坐标,从而可以得到两个函数联立的二元一次方程组的解.【解答】解:根据函数图可知,函数y=x+1与y=mx+n的图象交于点P的坐标是(1,a),把x=1,y=a代入y=x+1,可得:a=1+1=2,解得:a=2,故关于x,y的二元一次方程组的解为,故答案为:.【点评】本题考查一次函数与二元一次方程组,解题的关键是明确题意,利用数形结合的思想解答问题.15.(3分)如图,直线l1:y=x+5交x轴于点A,交y轴于点B,直线l2:y=﹣5x+5交x轴于点C,交y轴于点B,点P在线段BC上,且点P到l1的距离是2,则点P的坐标是(,3).【分析】由两条直线的解析式求得A、B、C的坐标,进一步求得AB和AC,利用三角形面积公式求得S△ABC=,S△APB=13,即可求得S△APC=AC•y P=﹣13=,解得y P=3,代入y=﹣5x+5即可求得P的坐标.【解答】解:∵直线l1:y=x+5交x轴于点A,交y轴于点B,直线l2:y=﹣5x+5交x轴于点C,交y轴于点B,∴A(﹣12,0),B(0,5),C(1,0),∴OA=12,OC=1,OB=5,∴AB==13,AC=12+1=13,∴S△ABC==,∵点P到l1的距离是2,∴S△APB==13,∴S△APC=AC•y P=﹣13=,∴×y p=,∴y P=3,代入y=﹣5x+5得,3=﹣5x+5,解得x=,∴点P的坐标是(,3),故答案为:(,3).【点评】本题考查了一次函数图象上点的坐标特征,三角形的面积,借助三角形的面积求得P的纵坐标是解题的关键.三、解答题(共8题,75分)16.(10分)(1)计算;(2)解方程.【分析】(1)先化简、然后合并同类二次根式即可;(2)先化简方程组,然后根据加减消元法可以解答此方程组.【解答】解:(1)=﹣4=﹣4=﹣=﹣;(2),化简,得:,①﹣②,得:3y=15,解得y=5,将y=5代入①,得:x=8,∴原方程组的解是.【点评】本题考查二次根式的混合运算、解二元一次方程组,解答本题的关键是明确二次根式混合运算的运算法则,会用加减消元法解方程组.17.(9分)为了让同学们了解自己的体育水平,初三1班的体育刘老师对全班45名学生进行了一次体育模拟测试(得分均为整数),成绩满分为10分,班的体育委员根据这次测试成绩,制作了统计图.根据以上信息,解答下列问题:(1)整理班级成绩得如下表格:平均分中位数众数男生a8c女生7.92b8则a=7.9,b=8,c=7,(2)请你从平均数、中位数、众数的角度进行分析,1班的男生队、女生队哪个表现更突出一些.【分析】(1)根据平均数、中位数和众数定义可得答案;(2)根据平均数的大小即可得出答案.【解答】解:(1)这个班共有男生1+2+6+3+5+3=20(人),共有女生45﹣20=25(人),男生的平均分a=×(5+6×2+7×6+8×3+9×5+10×3)=7.9(分),男生的众数为7分,即c=7;把女生的成绩从小到大排列,中位数是第13个数,则b=8.故答案为:7.9,8,7;(2)从平均数看,女生队的平均数高于男生队的平均数,所以女生队表现更突出.【点评】本题主要考查平均数、中位数、众数及条形图、扇形图,根据统计图得出解题所需数据,并熟练掌握平均数、中位数和众数的定义是解题的关键.18.(9分)如图,四边形BCED中,点A在CB的延长线上,点F在DE的延长线上,连接AF交BD于G,交CE 于H,且∠1=45°,∠2=135°.(1)求证:BD∥CE;(2)若∠C=∠D,求证:∠A=∠F.【分析】(1)由∠CHG+∠2=180°,∠2=135°可得出∠CHG=45°=∠1,利用“同位角相等,两直线平行”可证出BD∥CE;(2)由BD∥CE得出∠C=∠ABD,由∠C=∠D得出∠ABD=∠D,利用“内错角相等,两直线平行”得出AC ∥DF,利用“两直线平行,内错角相等”得出∠A=∠F.【解答】证明:(1)∵∠CHG+∠2=180°,∠2=135°,∴∠CHG=45°,∵∠1=45°,∴∠CHG=∠1,∴BD∥CE.(2)∵BD∥CE,∴∠C=∠ABD,∵∠C=∠D,∴∠ABD=∠D.∴AC∥DF,∴∠A=∠F.【点评】本题主要考查了平行线的判定与性质,解题的关键是:(1)通过角的计算,找出∠CHG=∠1;(2)利用平行线的判定得出AC∥DF.19.(9分)植树造林不仅可以美化家园,同时也可以调节气候、促进经济发展.在植树节前夕,某单位计划购进A、B两种树苗共17棵,已知A种树苗每棵80元,B种树苗每棵60元.(1)若购进的A、B两种树苗刚好1220元,求A、B两种树苗分别购买了多少棵?(2)若购买A种树苗a棵,所需总费用为w元.求w与a的函数关系式.(3)若购买时A种树苗不能少于5棵,w的最小值是多少?请说明理由.【分析】(1)设购进A种树苗x棵,购进B种树苗y棵,根据“购进A、B两种树苗共17棵,已知A种树苗每棵80元,B种树苗每棵60元,购进的A、B两种树苗刚好1220元”列方程组解答即可;(2)根据所需费用为w=A种树苗的费用+B种树苗的费用,即可解答;(3)结合(1)的解和购买B种树苗的数量少于A种树苗的数量,可找出方案.【解答】解:设购进A种树苗x棵,购进B种树苗y棵,根据题意得:,解得:,答:购进A种树苗10棵,B种树苗7棵;(2)购进a种树苗A棵,则购进B种树苗(17﹣a)棵根据题意得:w=80a+60(17﹣a)=20a+1020;(3)由题意得a≥5,由w=20a+1020,∵20>0,∴w随a的增大而增大,∴当a=5时,w有最小值,w最小=1120,答:费用最省方案为:购进A种树苗5棵,B种树苗12棵.这时所需费用为1120元.【点评】此题主要考查了二元一次方程组的应用以及一次函数的应用,根据一次函数的增减性得出费用最省方案是解决(3)的关键.20.(9分)如图,四边形ABCD中,∠B=90°,AC为对角线,DE⊥AC于点E,已知AB=8,BC=6,CD=2,AD=2.(1)请判断△ACD的形状并说明理由.(2)求线段DE的长.【分析】(1)先根据勾股定理求出AC=10,再根据勾股定理的逆定理即可判定△ACD的形状;(2)根据△ACD的面积不变即可求出线段DE的长.【解答】解:(1)△ACD是直角三角形,理由如下:在直角△ABC中,∠B=90°,AB=8,BC=6,∴AC===10,∵CD=2,AD=2,∴CD2+AD2=(2)2+(2)2=60+40=100=AC2,∴△ACD是直角三角形;(2)由(1)知,△ACD是直角三角形,且∠ADC=90°.∵S△ACD=AC•DE=AD•DC,∴DE===2.【点评】本题考查了勾股定理及其逆定理,三角形的面积,求出AC的长并判定△ACD是直角三角形是解题的关键.21.(9分)如图,在以点O为原点的平面直角坐标系中,点A、B的坐标分别为(a,0)、(a,b),点C在y轴上,且BC∥x轴,a、b满足|a﹣3|+=0.点P从原点出发,以每秒2个单位长度的速度沿着O﹣A﹣B﹣C﹣O 的路线运动(回到点O为止).(1)求出a、b的值并直接写出点A、B、C的坐标;(2)当点P运动3秒时,连接PC、PO,求出点P的坐标,并直接写出∠CPO、∠BCP、∠AOP之间满足的数量关系.【分析】(1)利用绝对值和二次根式的非负性即可求得;(2)当P运动3秒时,点P运动了6个单位长度,根据AO=3,即可得点P在线段AB上且AP=3,写出P 的坐标即可;作PE∥AO.利用平行线的性质证明即可.【解答】解:(1)∵|a﹣3|+=0,∴|a﹣3|=0,=0,∴a=3,b=4,∴A(3,0),B(3,4),C(0,4);(2)如图,当P运动3秒时,点P运动了6个单位长度,∵AO=3,∴点P运动3秒时,点P在线段AB上,且AP=3,∴点P的坐标是(3,3);如图,过点P作PE∥AO,∵CB∥AO,PE∥AO,∴CB∥PE,∴∠BCP=∠EPC,∠AOP=∠EPO,∴∠CPO=∠BCP+∠AOP.【点评】本题是平面直角坐标系中的动点问题,主要考查了绝对值和二次根式的非负性、平行线的性质、动点路程问题,解决此题的关键是作PE∥AO.22.(10分)如图,在同一坐标系中,直线l1:y=﹣x+1交x轴于点P,直线l2:y=ax﹣3过点P.(1)求a的值;(2)点M、N分别在直线l1、l2上,且关于原点对称(说明:点A(x,y)关于原点对称的点A'的坐标为(﹣x,﹣y),求点M、N的坐标和△PMN的面积.【分析】(1)根据一次函数图象上点的坐标特征求得P的坐标,代入直线l2:y=ax﹣3即可求得a的值;(2)设M的横坐标为x,由题得M(x,﹣x+1),N(﹣x,x﹣1),由N在直线l2上可得x﹣1=﹣3x﹣3,解方程求得x的值,可得出点M、N的坐标,即可求得.【解答】解:(1)∵直线l1:y=﹣x+1交x轴于点P,∴P(1,0),又∵直线l2:y=ax﹣3过点P,∴0=a﹣3,解得a=3;(2)由a=3得l2:y=3x﹣3,设M的横坐标为x,由题得M(x,﹣x+1),N(﹣x,x﹣1),又N(﹣x,x﹣1)在l2:y=3x﹣3上,∴x﹣1=﹣3x﹣3,解得x=﹣,则M(﹣,),N(,﹣),∴S△PMN=OP•+OP•=×1××2=.【点评】本题考查了待定系数法求一次函数的解析式,一次函数图象上点的坐标特征,关于原点对称的点的坐标特征,熟练掌握一次函数图象上点的坐标特征是解题的关键.23.(10分)(1)如图1,已知∠A=55°,∠B=30°,∠C=25°.直接写出∠BOC的度数及∠BOC与∠A、∠B、∠C之间的数量关系(2)对于图2,已知AB∥CD,直接写出∠E与∠B和∠D之间的数量关系.(3)如图3,BE平分∠ABD,DE平分∠BDC,且∠E=90°.求证:AB∥CD.(4)拓展与应用:在(3)的条件下,作射线BF和DF交于点F.已知∠ABE=3∠ABF,∠F=30°.请直接判断∠CDF与∠CDE之间的数量关系.【分析】(1)结论:∠BOC=∠B+∠A+∠C,如图1,连接OA并延长至点D.利用三角形的外角的性质解决问题即可;(2)结论:∠BED=∠B+∠D.过点E作ET∥AB.利用平行线的性质解决问题即可;(3)欲证明AB∥CD,只要证明∠ABD+∠CDB=180°;(4)作EP∥AB,FQ∥AB,根据平行线的判定和性质解答即可.【解答】(1)解:结论:∠BOC=∠B+∠A+∠C,理由如下:如图1,连接OA并延长至点D.∵∠BOD=∠B+∠BAO,∠COD=∠C+∠CAO,∴∠BOD+∠COD=∠B+∠BAO+∠C+∠CAO.∴∠BOC=∠B+∠BAC+∠C,∴∠BOC=55°+25°+30°=110°;(2)解:结论:∠BED=∠B+∠D,理由:过点E作ET∥AB.∵AB∥CD,AB∥ET,∴ET∥CD,∴∠B=∠1,∠2=∠D,∴∠BED=∠1+∠2=∠B+∠D.(3)证明:如图3中,∵∠E=90°,∴∠EBD+∠EDB=90°,∵BE平分∠ABD,DE平分∠BDC,∴∠ABD=2∠EBD,∠CDB=2∠EDB,∴∠ABD+∠CDB=2(∠EBD+∠EDB)=180°,∴AB∥CD;(4)结论:=,理由如下:作EP∥AB,FQ∥AB,如图2,又∵AB∥CD,∴AB∥CD∥EP,AB∥CD∥FQ,∴∠ABE=∠BEP,∠DEP=∠CDE,∴∠BED=∠BEP+∠DEP=∠ABE+∠CDE=90°,同理,∠BFD=∠ABF+∠CDF,∵∠ABE=3∠ABF,∠BFD=30°,∴∠BFD=∠ABE+∠CDF=30°=∠BED,∴=.【点评】本题考查三角形内角和定理,平行线的性质等知识,解题的关键是掌握平行线的性质,属于中考常考题型.。
湖北省武汉市2023-2024学年八年级上学期期末数学模拟卷及答案解析
湖北省武汉市2023-2024学年八年级上学期期末数学模拟卷一.选择题(共10小题,满分30分,每小题3分)1.下列冰雪运动项目的图标中,是轴对称图形的是()2.下列运算正确的是()A.x3•x2=x6 B.3a3+2a2=5a5C.(m2n)3=m6n3D.x8÷x4=x23.如图,已知△ABC的六个元素,则下面甲、乙、丙三个三角形中和△ABC全等的图形是()A.甲和乙B.乙和丙C.只有乙D.只有丙4.某种颗粒物的直径约为0.0000018米,用科学记数法表示该颗粒物的直径为()A.0.18×10﹣5米 B.1.8×10﹣5米C.1.8×10﹣6米D.18×10﹣5米5.长度分别为3cm,5cm,7cm9cm的四根木棒,能搭成(首尾连接)三角形的个数为()A.1B.2C.3D.46.点P关于x轴对称点M的坐标为(4,﹣5),那么点P关于y轴对称点N的坐标为()A.(﹣4,5)B.(4,5)C.(﹣4,﹣5)D.(﹣5,4)7.如图:已知点E在△ABC的外部,点D在BC边上,DE交AC于F,若∠1=∠2=∠3,AC=AE,则有()A.△ABD≌△AFD B.△AFE≌△ADCC.△AEF≌△DFC D.△ABC≌△ADE8.已知9x2+mxy+16y2能运用完全平方公式因式分解,则m的值为()A.12B.±12C.24D.±249.如图,在平面直角坐标系中,△ABC的顶点均在边长为1个单位长度的正方形网格的格点上,已知点B (3,1),如果在x轴的下方存在一点D,使得△ABD与△ABC全等,那么点D的坐标为()A.(0,﹣1)B.(﹣1,3)C.(﹣1,﹣2)或(3,﹣1)D.(﹣1,﹣1)或(4,﹣1)10.如图,Rt△ACB中,∠ACB=90°,△ACB的角平分线AD,BE相交于点P,过P作PF⊥AD交BC的延长线于点F,交AC于点H,则下列结论:①∠APB=135°;②AD=PF+PH;③DH∥BE;④S四边=2S△ABP;⑤S△APH=S△ADE,其中正确的结论的个数是()形ABDEA.5个B.4个C.3个D.2个二.填空题(共6小题,满分183分)11.因式分解:a3﹣16ab2=12.关于x的分式方程的解是正数,则a的取值范围是.13.若分式方程:无解,则k=.14.若一个整数能表示成a2+b2(a、b是正整数)的形式,则称这个数为“丰利数”.例如,2是“丰利数”,因为2=12+12,再如,M=x2+2xy+2y2=(x+y)2+y2(x+y,y是正整数),所以M也是“丰利数”.(1)11 “丰利数”(“是”或“不是”);(2)若p=4x2+mxy+2y2﹣10y+25(其中x>y>0)是“丰利数”,则m=.15.有一三角形纸片ABC,∠A=80°,点D是AC边上一点,沿BD方向剪开三角形纸片后,发现所得两纸片均为等腰三角形,则∠C的度数可以是.16.如图,等边△ABC中,AD为BC边上的高,点M、N分别在AD、AC上,且AM=CN,连BM、BN,当BM+BN最小时,∠BNC=.三.解答题(共8小题,满分72分)17.(8分)计算:(1)(π﹣3.14)0+()﹣1+|﹣4|﹣2﹣2;(2)÷;18.(8分)先化简,再求值:,其中a为不等式组的整数解.19.(8分)如图,点A、D、C、F在同一条直线上,AD=CF,AB=DE,BC=EF.(1)求证:△ABC≌△DEF;(2)若∠A=60°,∠B=80°,求∠F的度数.20.(8分)如图,△ABC三个顶点的坐标分别为A(1,1),B(4,2),C(3,4).(1)请写出△ABC关于x轴对称的△A1B1C1的各顶点坐标;(2)请画出△ABC关于y轴对称的△A2B2C2;(3)在x轴上求作一点P,使点P到A、B两点的距离和最小,请标出P点,并直接写出点P的坐标.21.(8分)在△ABC中,∠B=60°,D是BC上一点,且AD=AC.(1)如图1,延长BC至E,使CE=BD,连接AE.求证:AB=AE;(2)如图2,在AB边上取一点F,使DF=DB,求证:AF=BC;(3)如图3,在(2)的条件下,P为BC延长线上一点,连接PA,PF,若PA=PF,猜想PC与BD的数量关系并证明.22.(10分)某中学开学初在商场购进A、B两种品牌的足球,购买A品牌足球花费了2500元,购买B品牌足球花费了2000元,且购买A品牌足球数量是购买B品牌足球数量的2倍,已知购买一个B品牌足球比购买一个A品牌足球多花30元.(1)求购买一个A品牌、一个B品牌的足球各需多少元;(2)该中学决定再次购进A、B两种品牌足球共50个,恰逢商场对两种品牌足球的售价进行调整,A 品牌足球售价比第一次购买时提高了8%,B品牌足球按第一次购买时售价的9折出售,如果这所中学此次购买A、B两种品牌足球的总费用不超过3060元,那么该中学此次最多可购买多少个B品牌足球?23.(10分)阅读下列材料,完成相应任务.数学活动课上,老师提出了如下问题:如图1,已知△ABC中,AD是BC边上的中线.求证:AB+AC>2AD.智慧小组的证法如下:证明:如图2,延长AD至E,使DE=AD,∵AD是BC边上的中线,∴BD=CD在△BDE和△CDA中,∴△BDE≌△CDA(依据一),∴BE=CA在△ABE中,AB+BE>AE(依据二),∴AB+AC>2AD.归纳总结:上述方法是通过延长中线AD,使DE=AD,构造了一对全等三角形,将AB,AC,AD转化到一个三角形中,进而解决问题,这种方法叫做“倍长中线法”.“倍长中线法”多用于构造全等三角形和证明边之间的关系.任务:(1)上述证明过程中的“依据1”和“依据2”分别是指:依据1:;依据2:.(2)如图3,AB=6,AC=10,则AD的取值范围是;(3)如图4,在图3的基础上,分别以AB和AC为边作等腰直角三角形,在Rt△ABE中,∠BAE=9 0°,AB=AE;Rt△ACF中,∠CAF=90°,AC=AF.连接EF.试探究EF与AD的数量关系,并说明理由.24.(12分)如图,等腰三角形ABC和等腰三角形ADE,其中AB=AC,AD=AE.(1)如图1,若∠BAC=90°,当C、D、E共线时,AD的延长线AF⊥BC交BC于点F,则∠ACE=;(2)如图2,连接CD、BE,延长ED交BC于点F,若点F是BC的中点,∠BAC=∠DAE,证明:AD⊥CD;(3)如图3,延长DC到点M,连接BM,使得∠ABM+∠ACM=180°,延长ED、BM交于点N,连接AN,若∠BAC=2∠NAD,请写出∠ADM、∠DAE之间的数量关系,并写出证明过程.参考答案与解析一.选择题(共10小题,满分30分,每小题3分)1.下列冰雪运动项目的图标中,是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形的概念对各选项分析判断即可得解.如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴,这时,我们也可以说这个图形关于这条直线(成轴)对称.【解答】解:选项A、B、C均不能找到这样的一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以不是轴对称图形,选项D能找到这样的一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以是轴对称图形,故选:D.2.下列运算正确的是()A.x3•x2=x6B.3a3+2a2=5a5C.(m2n)3=m6n3D.x8÷x4=x2【分析】根据同底数幂的乘法、合并同类项、幂的乘方和积的乘方、同底数幂的除法的运算法则分别求出每个式子的值,再判断即可.【解答】解:A、x3•x2=x5,原计算错误,故此选项不符合题意;B、3a3与2a2不是同类项,不能合并,原计算错误,故此选项不符合题意;C、(m2n)3=m6n3,原计算正确,故此选项符合题意;D、x8÷x4=x4,原计算错误,故此选项不符合题意.故选:C.3.如图,已知△ABC的六个元素,则下面甲、乙、丙三个三角形中和△ABC全等的图形是()A.甲和乙B.乙和丙C.只有乙D.只有丙【分析】全等三角形的判定定理有SAS,ASA,AAS,SSS,根据定理逐个判断即可.【解答】解:图甲不符合三角形全等的判定定理,即图甲和△ABC不全等;图乙符合SAS定理,即图乙和△ABC全等;图丙符合AAS定理,即图丙和△ABC全等;故选:B.4.某种颗粒物的直径约为0.0000018米,用科学记数法表示该颗粒物的直径为()A.0.18×10﹣5米B.1.8×10﹣5米C.1.8×10﹣6米D.18×10﹣5米【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正整数;当原数的绝对值<1时,n是负整数.【解答】解:0.0000018米=1.8×10﹣6米,故选:C.5.长度分别为3cm,5cm,7cm,9cm的四根木棒,能搭成(首尾连接)三角形的个数为()A.1B.2C.3D.4【分析】首先能够找到所有的情况,然后根据三角形的三边关系“任意两边之和大于第三边,任意两边之差小于第三边”,进行分析.【解答】解:根据三角形的三边关系,得3,5,7;3,7,9;5,7,9都能组成三角形.故有3个.故选:C.6.点P关于x轴对称点M的坐标为(4,﹣5),那么点P关于y轴对称点N的坐标为()A.(﹣4,5)B.(4,5)C.(﹣4,﹣5)D.(﹣5,4)【分析】根据关于x轴对称点的坐标特点:横坐标不变,纵坐标互为相反数,即点P(x,y)关于x轴的对称点P′的坐标是(x,﹣y).关于y轴对称点的坐标特点:横坐标互为相反数,纵坐标不变,即点P(x,y)关于y轴的对称点P′的坐标是(﹣x,y).【解答】解:∵点P关于x轴对称点M的坐标为(4,﹣5),∴P(4,5),∴点P关于y轴对称点N的坐标为:(﹣4,5).故选:A.7.如图:已知点E在△ABC的外部,点D在BC边上,DE交AC于F,若∠1=∠2=∠3,AC=AE,则有()A.△ABD≌△AFD B.△AFE≌△ADC C.△AEF≌△DFC D.△ABC≌△ADE【分析】根据图形,猜想全等三角形,即△ABC≌△ADE,根据条件证明三角形全等.【解答】解:设AC与DE相交于点F,∵∠1=∠2=∠3,∴∠1+∠DAC=∠2+∠DAC,即∠BAC=∠DAE,∵∠E=180°﹣∠2﹣∠AFE,∠C=180°﹣∠3﹣∠DFC,∠DFC=∠AFE(对顶角相等),∴∠E=∠C,∵AC=AE,∴△ABC≌△ADE.故选:D.8.已知9x2+mxy+16y2能运用完全平方公式因式分解,则m的值为()A.12B.±12C.24D.±24【分析】这里首末两项是3x和4y个数的平方,那么中间一项为加上或减去3x和4y乘积的2倍,进而得出答案.【解答】解:∵(3x±4y)2=9x2±24xy+16y2,∴在9x2+mxy+16y2中,m=±.故选:D.9.如图,在平面直角坐标系中,△ABC的顶点均在边长为1个单位长度的正方形网格的格点上,已知点B (3,1),如果在x轴的下方存在一点D,使得△ABD与△ABC全等,那么点D的坐标为()A.(0,﹣1)B.(﹣1,3)C.(﹣1,﹣2)或(3,﹣1)D.(﹣1,﹣1)或(4,﹣1)【分析】根据全等三角形的定义画出图形即可.【解答】解:如图,当△ABD≌△ABC时,由图得:D1(4,﹣1),当△BAD≌△ABC时,由图得:D2(﹣1,﹣1),∴在x轴的下方D的坐标为(﹣1,﹣1)或(4,﹣1),使得△ABD与△ABC全等;故选:D.10.如图,Rt△ACB中,∠ACB=90°,△ACB的角平分线AD,BE相交于点P,过P作PF⊥AD交BC 的延长线于点F,交AC于点H,则下列结论:①∠APB=135°;②AD=PF+PH;③DH∥BE;④S四边=2S△ABP;⑤S△APH=S△ADE,其中正确的结论的个数是()形ABDEA.5个B.4个C.3个D.2个【分析】由△ACB的角平分线AD,BE相交于点P,得∠PAB=∠PAC=∠CAB,∠PBA=∠PBC=∠CBA,则∠APE=∠PAB+∠PBA=(∠CAB+∠CBA)=45°,所以∠APB=180°﹣∠APE=13 5°,可判断①正确;由∠APF=∠FPD=90°,得∠FPE=∠APF﹣∠APE=45°,则∠FPB=∠APB=135°,即可证明△FBP≌△ABP,得PF=PA,再证明△PAH≌△PFD,得PH=PD,则AD=PA+PD=PF+PH,可判断②正确;因为∠PDH=∠PHD=45°,所以∠PDH=∠APE,则DH∥BE,可判断③正确;因为DH∥PE,所以S△PDE=S△PHE,则S△PAH=S△APE+S△PHE=S△APE+S△PDE=S△ADE,可判断⑤正确;因为S△ADE=S△PFD,所以S四边形ABDE=S△ABP+S△PBD+S△ADE=S△ABP+S△PBD+S△PFD=S△ABP+S△FBP=2S△ABP,可判断④正确,于是得到问题的答案.【解答】解:∵∠ACB=90°,∴∠CAB+∠CBA=90°,∵△ACB的角平分线AD,BE相交于点P,∴∠PAB=∠PAC=∠CAB,∠PBA=∠PBC=∠CBA,∴∠APE=∠PAB+∠PBA=(∠CAB+∠CBA)=45°,∴∠APB=180°﹣∠APE=135°,故①正确;∵PF⊥AD交BC的延长线于点F,∴∠APF=∠FPD=90°,∴∠FPE=∠APF﹣∠APE=45°,∴∠FPB=180°﹣∠FPE=135°,∴∠FPB=∠APB,在△FBP和△ABP中,,∴△FBP≌△ABP(ASA),∴PF=PA,∵∠PAH+∠ADF=90°,∠F+∠ADF=90°,∴∠PAH=∠F,在△PAH和△PFD中,,∴△PAH≌△PFD(ASA),∴PH=PD,∴AD=PA+PD=PF+PH,故②正确;∵PH=PD,∠HPD=90°,∴∠PDH=∠PHD=45°,∴∠PDH=∠APE,∴DH∥BE,故③正确;∵DH∥PE,∴S△PDE=S△PHE,∴S△PAH=S△APE+S△PHE=S△APE+S△PDE=S△ADE,故⑤正确;∵S△PAH=S△PFD,∴S△ADE=S△PFD,∴S四边形ABDE=S△ABP+S△PBD+S△ADE=S△ABP+S△PBD+S△PFD=S△ABP+S△FBP,∵S△ABP=S△FBP,∴S四边形ABDE=2S△ABP,故④正确,故选:A.二.填空题(共6小题,满分18分,每小题3分)11.因式分解:a3﹣16ab2=a(a+4b)(a﹣4b)【分析】原式提取a,再利用平方差公式分解即可.【解答】解:原式=a(a2﹣16b2)=a(a+4b)(a﹣4b),故答案为:a(a+4b)(a﹣4b)12.关于x的分式方程的解是正数,则a的取值范围是a>﹣5且a≠3.【分析】解分式方程,用a表示,再根据关于x的分式方程的解是正数,列不等式组,解出即可.【解答】解:原分式方程可化为:+1=,x﹣3+x﹣2=﹣2x+a,解得x=,∵关于x的分式方程的解是正数,∴,解得:a>﹣5且a≠3.故答案为:a>﹣5且a≠3.13.若分式方程:无解,则k=1或2.【分析】,去分母,移项合并得, (2﹣k)x=2,根据分式方程无解得出①x﹣2=0,x=2,代入方程(2﹣k)x=2,求出k的值;②2-k=0,k=2【解答】解:∵,去分母得:2(x﹣2)+1﹣kx=﹣1,整理得:(2﹣k)x=2,∵分式方程有增根,∴x﹣2=0,或2-k=0解得:x=2,或k=2把x=2代入(2﹣k)x=2得:k=1.故答案为:1或2.14.若一个整数能表示成a2+b2(a、b是正整数)的形式,则称这个数为“丰利数”.例如,2是“丰利数”,因为2=12+12,再如,M=x2+2xy+2y2=(x+y)2+y2(x+y,y是正整数),所以M也是“丰利数”.(1)11 不是“丰利数”(“是”或“不是”);(2)若p=4x2+mxy+2y2﹣10y+25(其中x>y>0)是“丰利数”,则m=±4.【分析】(1)根据定义判断即可;(2)将p分解因式即可求解.【解答】解:(1)11无法表示为a2+b2或(x+y)2+y2的形式,故11不是“丰利数”,故答案为:不是;(2)p=4x2+mxy+2y2﹣10y+25=(4x2+mxy+y2)+(y2﹣10y+25)=(4x2+mxy+y2)+(y﹣5)2.∵p=4x2+mxy+2y2﹣10y+25(其中x>y>0)是“丰利数”,∴m=±2×2×1=±4.故答案为:±4.15.有一三角形纸片ABC,∠A=80°,点D是AC边上一点,沿BD方向剪开三角形纸片后,发现所得两纸片均为等腰三角形,则∠C的度数可以是25°或40°或10° .【分析】分AB=AD或AB=BD或AD=BD三种情况根据等腰三角形的性质求出∠ADB,再求出∠B DC,然后根据等腰三角形两底角相等列式计算即可得解.【解答】解:由题意知△ABD与△DBC均为等腰三角形,对于△ABD可能有①AB=BD,此时∠ADB=∠A=80°,∴∠BDC=180°﹣∠ADB=180°﹣80°=100°,∠C=(180°﹣100°)=40°,②AB=AD,此时∠ADB=(180°﹣∠A)=(180°﹣80°)=50°,∴∠BDC=180°﹣∠ADB=180°﹣50°=130°,∠C=(180°﹣130°)=25°,③AD=BD,此时,∠ADB=180°﹣2×80°=20°,∴∠BDC=180°﹣∠ADB=180°﹣20°=160°,∠C=(180°﹣160°)=10°,综上所述,∠C度数可以为25°或40°或10°.故答案为:25°或40°或10°.16.如图,等边△ABC中,AD为BC边上的高,点M、N分别在AD、AC上,且AM=CN,连BM、B N,当BM+BN最小时,∠BNC=75° .【分析】如图1中,过点C作CH⊥BC,使得CH=BC,连接NH,BH.证明△ABM≌△CHN(SAS),推出BM=HN,由BN+HN≥BH,可知B,N,H共线时,BM+BN=NH+BN值最小,求出此时∠BNC 的度数即可解决问题.【解答】解:如图1中,过点C作CH⊥BC,使得CH=BC,连接NH,BH.∵△ABC是等边三角形,AD⊥BC,CH⊥BC,∴∠DAC=∠DAB=30°,AD∥CH,∴∠HCN=∠CAD=∠BAM=30°,∵AM=CN,AB=BC=CH,∴△ABM≌△CHN(SAS),∴BM=HN,∵BN+HN≥BH,∴B,N,H共线时,BM+BN=NH+BN的值最小,如图2中,当B,N,H共线时,∵BC=HC,∠BCH=90°,∴∠H=∠CBH=45°,∴∠BNC=∠H+∠HCN=75°∴当BM+BN的值最小时,∠BNC=75°,故答案为:75°.三.解答题(共8小题,满分72分)17.(8分)计算:(1)(π﹣3.14)0+()﹣1+|﹣4|﹣2﹣2;(2)a﹣2b2•(﹣2a2b﹣2)2÷(a﹣4b2);(3)÷;(4)=2﹣.【分析】(1)先根据零指数幂,负整数指数幂,绝对值进行计算,再算加减即可;(2)先根据幂的乘方与积的乘方进行计算,再根据单项式乘单项式和单项式除以单项式进行计算即可;(3)先根据分式的除法法则把除法变成乘法,再根据分式的乘法法则进行计算即可;(4)方程两边都乘x﹣3得出x﹣2=2(x﹣3)+1,求出方程的解,再进行检验即可.【解答】解:(1)(π﹣3.14)0+()﹣1+|﹣4|﹣2﹣2=6;(2)a﹣2b2•(﹣2a2b﹣2)2÷(a﹣4b2)=a﹣2b2•4a4b﹣4÷(a﹣4b2)=a﹣2+4﹣(﹣4)b2+(﹣4)﹣2=a6b﹣4=;(3)÷=•=1;(4)=2﹣,=2+,方程两边都乘x﹣3,得x﹣2=2(x﹣3)+1,解得:x=3,检验:当x=3时,x﹣3=0,所以x=3是增根,即原方程无实数根.18.(8分)先化简,再求值:,其中a为不等式组的整数解.【分析】先化简分式,然后将a的整数解代入求值.【解答】解:原式=•﹣=•﹣=;,解不等式组得:﹣3.5<a≤﹣1,∴不等式组的整数解为a=﹣1,﹣2,﹣3,当a=﹣1时,分式无意义.当a=﹣2时,原式=1,当a=﹣3时,分式无意义,19.(8分)如图,点A、D、C、F在同一条直线上,AD=CF,AB=DE,BC=EF.(1)求证:△ABC≌△DEF;(2)若∠A=60°,∠B=80°,求∠F的度数.【分析】(1)求出AC=DF,根据SSS推出△ABC≌△DEF.(2)由(1)中全等三角形的性质得到:∠A=∠EDF,进而得出结论即可.【解答】证明:(1)∵AC=AD+DC,DF=DC+CF,且AD=CF,∴AC=DF,在△ABC和△DEF中,,∴△ABC≌△DEF(SSS).(2)由(1)可知,∠F=∠ACB,∵∠A=60°,∠B=80°,∴∠ACB=180°﹣(∠A+∠B)=180°﹣(60°+80°)=40°,∴∠F=∠ACB=40°.20.(8分)如图,△ABC三个顶点的坐标分别为A(1,1),B(4,2),C(3,4).(1)请写出△ABC关于x轴对称的△A1B1C1的各顶点坐标;(2)请画出△ABC关于y轴对称的△A2B2C2;(3)在x轴上求作一点P,使点P到A、B两点的距离和最小,请标出P点,并直接写出点P的坐标(2,0).【分析】(1)关于x轴对称的点,横坐标不变,纵坐标互为相反数,由此可得答案.(2)根据轴对称的性质作图即可.(3)作点A关于x轴的对称点A1,连接A1B,与x轴交于点P,连接AP,此时点P到A、B两点的距离和最小,即可得出点P的坐标.【解答】解:(1)∵△ABC与△A1B1C1关于x轴对称,∴点A1(1,﹣1),B1(4,﹣2),C1(3,﹣4).(2)如图,△A2B2C2即为所求.(3)如图,点P即为所求,点P的坐标为(2,0).故答案为:(2,0).21.(8分)在△ABC中,∠B=60°,D是BC上一点,且AD=AC.(1)如图1,延长BC至E,使CE=BD,连接AE.求证:AB=AE;(2)如图2,在AB边上取一点F,使DF=DB,求证:AF=BC;(3)如图3,在(2)的条件下,P为BC延长线上一点,连接PA,PF,若PA=PF,猜想PC与BD的数量关系并证明.【分析】(1)证明△ABD≌△AEC(SAS),由全等三角形的性质得出AB=AE;(2)延长BC到E,使CE=BD,由(1)知,AB=AE,证得△ABE是等边三角形,同理,△DBF是等边三角形,则可得出结论;(3)在CP上取点E,使CE=BD,连接AE,证明△APE≌△PFD(AAS),得出PE=DF,则可得出结论.【解答】(1)证明:∵AC=AD,∴∠ADC=∠ACD,∴180°﹣∠ADC=180°﹣∠ACD,即∠ADB=∠ACE,在△ABD和△AEC中,,∴△ABD≌△AEC(SAS),∴AB=AE;(2)延长BC到E,使CE=BD,由(1)知,AB=AE,∴∠E=∠B=60°,∴∠EAB=180°﹣∠E﹣∠B=60°,∴△ABE是等边三角形,同理,△DBF是等边三角形,∴AB=BE.BF=BD=CE,∴AB﹣BF=BE﹣CE,即AF=BC;(3)猜想:PC=2BD,理由如下:在CP上取点E,使CE=BD,连接AE,由(1)可知:AB=AE,∴∠AEB=∠B=60°,∴∠AEP=180°﹣∠AEB=120°,∵DF=DB,∠DFB=∠B=60°,∴∠PDF=∠DFB+∠B=120°,∴∠AEP=∠PDF,又∵PA=PF,∴∠PAF=∠PFA,∵∠APE=180°﹣∠B﹣∠PAF=120°﹣∠PAF,∠PFD=180°﹣∠DFB﹣∠PFA=120°﹣∠PFA,∴∠APE=∠PFD,在△APE和△PFD中,,∴△APE≌△PFD(AAS),∴PE=DF,又∵DF=DB,∴PE=DB,又∵PC=PE+CE,∴PC=2BD.22.(10分)某中学开学初在商场购进A、B两种品牌的足球,购买A品牌足球花费了2500元,购买B品牌足球花费了2000元,且购买A品牌足球数量是购买B品牌足球数量的2倍,已知购买一个B品牌足球比购买一个A品牌足球多花30元.(1)求购买一个A品牌、一个B品牌的足球各需多少元;(2)该中学决定再次购进A、B两种品牌足球共50个,恰逢商场对两种品牌足球的售价进行调整,A品牌足球售价比第一次购买时提高了8%,B品牌足球按第一次购买时售价的9折出售,如果这所中学此次购买A、B两种品牌足球的总费用不超过3060元,那么该中学此次最多可购买多少个B品牌足球?【分析】(1)设购买一个A品牌的足球需要x元,则购买一个B品牌的足球需要(x+30)元,由题意:购买A品牌足球花费了2500元,购买B品牌足球花费了2000元,且购买A品牌足球数量是购买B品牌足球数量的2倍,列出分式方程,解方程即可;(2)设该中学此次可以购买m个B品牌足球,则可以购买(50﹣m)个A品牌足球,由题意:A品牌足球售价比第一次购买时提高了8%,B品牌足球按第一次购买时售价的9折出售,如果这所中学此次购买A、B两种品牌足球的总费用不超过3060元,列出不等式,一元一次不等式,解之取其中的最小值即可.【解答】解:(1)设购买一个A品牌的足球需要x元,则购买一个B品牌的足球需要(x+30)元,依题意得:=2×,解得:x=50,经检验,x=50是原方程的解,且符合题意,∴x+30=80.答:购买一个A品牌的足球需要50元,购买一个B品牌的足球需要80元.(2)设该中学此次可以购买m个B品牌足球,则可以购买(50﹣m)个A品牌足球,依题意得:50×(1+8%)(50﹣m)+80×0.9m≤3060,解得:m≤20.答:该中学此次最多可购买20个B品牌足球.23.(10分)阅读下列材料,完成相应任务.数学活动课上,老师提出了如下问题:如图1,已知△ABC中,AD是BC边上的中线.求证:AB+AC>2AD.智慧小组的证法如下:证明:如图2,延长AD至E,使DE=AD,∵AD是BC边上的中线∴BD=CD在△BDE和△CDA中,∴△BDE≌△CDA(依据一),∴BE=CA在△ABE中,AB+BE>AE(依据二),∴AB+AC>2AD.归纳总结:上述方法是通过延长中线AD,使DE=AD,构造了一对全等三角形,将AB,AC,AD转化到一个三角形中,进而解决问题,这种方法叫做“倍长中线法”.“倍长中线法”多用于构造全等三角形和证明边之间的关系.任务:(1)上述证明过程中的“依据1”和“依据2”分别是指:依据1:SAS;依据2:三角形任意两边之和大于第三边.(2)如图3,AB=6,AC=10,则AD的取值范围是;(3)如图4,在图3的基础上,分别以AB和AC为边作等腰直角三角形,在Rt△ABE中,∠BAE=9 0°,AB=AE;Rt△ACF中,∠CAF=90°,AC=AF.连接EF.试探究EF与AD的数量关系,并说明理由.【分析】(1):根据SAS证明△BDE≌△CDA,得出BE=CA,由三角形三边关系得出答案;(2):延长AD至点E,使DE=AD,连接CE,证明△ABD≌△CDE(SAS),得出AB=EC=4,由三角形三边关系可得出答案;(3):延长AD至点M,使DM=AD,连接CM,证明△ABD≌△CDM(SAS),由全等三角形的性质得出AB=MC,∠ABD=∠DCM,证明△EAF≌△MCA(SAS),由全等三角形的性质得出AM=EF,则可得出答案.【解答】(1)证明:延长AD至E,使DE=AD,∵AD是BC边上的中线,∴BD=CD,在△BDE和△CDA中,,∴△BDE≌△CDA(SAS),∴BE=CA,在△ABE中,AB+BE>AE(三角形任意两边之和大于第三边),∴AB+AC>2AD.故答案为:SAS,三角形任意两边之和大于第三边.(2)解:如图1,延长AD至点E,使DE=AD,连接CE,∵AD是中线,∴BD=CD,在△ABD和△ECD中,,∴△ABD≌△CDE(SAS),∴AB=EC=4,在△ACE中,AC﹣CE<AE<AC+CE,∴4﹣3<2AD<4+3,∴1<2AD<7,∴.故答案为:.(3)EF与AD的数量关系为EF=2AD.理由如下:如图2,延长AD至点M,使DM=AD,连接CM,∵AD是中线,∴BD=CD,在△ABD和△MCD中,,∴△ABD≌△CDM(SAS),∴AB=MC,∠ABD=∠DCM,∴AE=CM,AB∥CM,∴∠BAC+∠ACM=180°,∵∠BAE=∠CAF=90°,∴∠EAF+∠BAC=180°,∴∠EAF=∠ACM,又∵AF=AC,∴△EAF≌△MCA(SAS),∴AM=EF,∵AM=2AD,∴EF=2AD.24.(12分)如图,等腰三角形ABC和等腰三角形ADE,其中AB=AC,AD=AE.(1)如图1,若∠BAC=90°,当C、D、E共线时,AD的延长线AF⊥BC交BC于点F,则∠ACE=22.5° ;(2)如图2,连接CD、BE,延长ED交BC于点F,若点F是BC的中点,∠BAC=∠DAE,证明:A D⊥CD;(3)如图3,延长DC到点M,连接BM,使得∠ABM+∠ACM=180°,延长ED、BM交于点N,连接AN,若∠BAC=2∠NAD,请写出∠ADM、∠DAE之间的数量关系,并写出证明过程.【分析】(1)由等腰三角形的性质得出∠AED=∠ADE,证出∠ACE=∠DCF,由等腰直角三角形的性质可得出答案;(2)延长DF至Q,使FQ=DF,连接BQ,证明△DAC≌△EAB(SAS),由全等三角形的性质得出D C=BE,∠ADC=∠AEB,证明△DFC≌△QFB(SAS),由全等三角形的性质得出DC=QB,∠CDF=∠Q,证出∠ADC=90°,则可得出结论;(3)在BN上截取BH=CD,连接AH,证明△ABH≌△ACD(SAS),得出∠BAH=∠CAD,AD=A H,∠AHB=∠ADC,证明△AHN≌△DAN(SAS),由全等三角形的性质得出∠AHN=∠ADN,证出∠ADM=∠ADE,由等腰三角形的性质可得出结论.【解答】(1)解:∵AD=AE,∴∠AED=∠ADE,∵∠ADE=∠CDF,∴∠AED=∠CDF,∵∠BAC=90°,∴∠AEC+∠ACE=90°,∵AF⊥BC,∴∠DFC=90°,∴∠CDF+∠DCF=90°,∴∠ACE=∠DCF,∵AB=AC,∠BAC=90°,∴∠ACB=45°,∴∠ACE=∠ACB=22.5°,故答案为:22.5°;(2)证明:延长DF至Q,使FQ=DF,连接BQ,∵∠BAC=∠EAD,∴∠EAB=∠DAC,∵AB=AC,AD=AE,∴△DAC≌△EAB(SAS),∴DC=BE,∠ADC=∠AEB,∵F为BC的中点,∴BF=CF,又∵DF=FQ,∠DFC=∠BFQ,∴△DFC≌△QFB(SAS),∴DC=QB,∠CDF=∠Q,∴QB=BE,∴∠Q=∠BEQ,∵AE=AD,∴∠AED=∠ADE,∴∠AEB=∠AED+∠BEQ=∠ADE+∠Q=∠ADE+∠CDF=∠ADC,∵∠ADE+∠CDF+∠ADC=180°,∴∠ADC=90°,∴AD⊥CD;(3)解:∠DAE+2∠ADM=180°.证明:在BN上截取BH=CD,连接AH,∵∠ABM+∠ACM=180°,∠ACM+∠ACD=180°,∴∠ABM=∠ACD,又∵AB=AC,∴△ABH≌△ACD(SAS),∴∠BAH=∠CAD,AD=AH,∠AHB=∠ADC,∴∠BAC=∠BAH+∠HAC=∠CAD+∠HAC=∠HAD,∵∠BAC=2∠NAD,∴∠HAN=∠NAD,又∵AN=AN,∴△AHN≌△DAN(SAS),∴∠AHN=∠ADN,∵∠AHN+∠AHB=180°,∠ADE+∠ADN=180°,∴∠AHB=∠ADE,∴∠ADM=∠ADE,∵AD=AE,∴∠ADE=∠AED,∴∠DAE+2∠ADE=180°,∴∠DAE+2∠ADM=180°.。
2022-2023学年八年级(上)期末数学模拟试卷(二)
2022-2023学年八年级(上)期末数学模拟试卷(二)一、精心选一选(本大题10个小题,每小题3分,共30分)1.(3分)甲骨文是我国的一种古代文字,是汉字的早期形式,下列甲骨文中,不是轴对称的是()A.B.C.D.2.(3分)科学家可以使用冷冻显微术以高分辨率测定溶液中的生物分子结构,使用此技术测定细菌蛋白结构的分辨率达到0.22纳米,也就是0.000 000 000 22米.将0.000 000 000 22用科学记数法表示为()A.0.22×10﹣9B.2.2×10﹣10C.22×10﹣11D.0.22×10﹣8 3.(3分)如果a8写成下列各式,正确的共有()①a4+a4;②(a2)4;③a16÷a2;④(a4)2;⑤(a4)4;⑥a20÷a12;⑦a4•a4.A.7个B.6个C.5个D.4个4.(3分)对于分式,当x=﹣1时其值为0,当x=1时此分式没有意义,那么()A.a=b=﹣1B.a=b=1C.a=1,b=﹣1D.a=﹣1,b=1 5.(3分)如图,D在AB上,E在AC上,且∠B=∠C,那么补充下列一个条件后,仍无法判定△ABE≌△ACD的是()A.AD=AE B.∠AEB=∠ADC C.BE=CD D.AB=AC 6.(3分)在△ABC中,AB=AD=DC,∠BAD=28°,则∠C的度数为()A.38°B.71°C.35.5°D.76°7.(3分)某市为解决部分市民冬季集中取暖问题需铺设一条长3000米的管道,为尽量减少施工对交通造成的影响,实施施工时“…”,设实际每天铺设管道x米,则可得方程,根据此情景,题中用“…”表示的缺失的条件应补为()A.每天比原计划多铺设10米,结果延期15天才完成B.每天比原计划少铺设10米,结果延期15天才完成C.每天比原计划多铺设10米,结果提前15天才完成D.每天比原计划少铺设10米,结果提前15天才完成8.(3分)如图,边长为a,b的矩形的周长为14,面积为10,则a2b+ab2的值为()A.140B.70C.35D.249.(3分)如图,已知△ABC的面积为12,BP平分∠ABC,且AP⊥BP于点P,则△BPC的面积是()A.10B.8C.6D.410.(3分)已知:∠AOB=10°,射线OA、OB上一点P,在∠AOB内部构造与P1P2相等的线段,如P1P2、P2P3、P3P4,则这样的线段最多有()A.8个B.9个C.10个D.12个二、耐心填一填(本大题6个小题,每小题3分,共18分)11.(3分)分解因式:﹣3x3+6x2y﹣3xy2=.12.(3分)计算:(﹣0.2)2018×52019=.13.(3分)若分式方程无解,则m的值为.14.(3分)如图,将正方形OABC放在平面直角坐标系中,O是原点,A的坐标为(1,),则点C的坐标为.15.(3分)如图,等边△ABC的边AB上一点P,作PE⊥AC于E,Q为BC延长线上的一点,当P A=CQ时,连接PQ交AC于点D,下列结论:①PD=DQ;②2DE=AC;③2AE=CQ;④PQ⊥AB.其中正确的有.(填序号)16.(3分)如图,∠AOB=60°,点P在∠AOB的角平分线上,OP=10cm,点E、F是∠AOB两边OA、OB上的动点,当△PEF的周长最小时,点P到EF距离是.二、用心解一解17.(1)化简:[(x+y)(x﹣y)﹣(x﹣y)2+2y(x﹣y)]÷4y=.(2)解方程=1;(3)先化简:÷(a+),当b=﹣1时,请你为a任选一个适当的数代入求值.18.(6分)如图在平面直角坐标系中,A(﹣1,3),B(﹣2,﹣1)C(3,﹣1).(1)在图中画出△ABC中边BC上的高AM,并写出M的坐标;(2)在图中利用尺规画出∠A的平分线交BC于点D;(3)已知∠B=75°,∠C=45°,求∠MAD的度数.19.如图,P为∠ABC的平分线与AC的垂直平分线的交点,PM⊥BC于M,PN ⊥BA的延长线于N,求证:AN=MC.20.(7分)【知识生成】课本上,我们利用两种不同的方法计算同一图形的面积,可以得到一个公式,如图1,根据图中整体图形的面积可表示为,还可表示为,可以得到的公式是;.【知识迁移】类似地,用两种不同的方法计算同一种几何体的体积,也可以得到一个公式,如图2是边长为a+b的正方体,被如图所示的分割线分成8块,用不同方法计算这个正方体的体积,就可以得到一个公式,这个公式是;【拓展应用】直接用你发现的公式计算:(2m+n)3=.21.如图,在平面直角坐标系中,将直角三角形的直角顶点放在点P(4,4)处,两直角边与坐标轴交于点A和点B.(1)求OA+OB的值;(2)将直角三角形绕点P逆时针旋转,两直角边与坐标轴交于点A和点B,求OA﹣OB的值.22.通惠新城开发某工程准备招标,指挥部现接到甲、乙两个工程队的投标书,从投标书中得知:乙队单独完成这项工程所需天数是甲队单独完成这项工程所需天数的2倍;该工程若由甲队先做6天,剩下的工程再由甲、乙两队合作16天可以完成.(1)求甲、乙两队单独完成这项工程各需要多少天?(2)已知甲队每天的施工费用为0.67万元,乙队每天的施工费用为0.33万元,该工程预算的施工费用为19万元.为缩短工期,拟安排甲、乙两队同时开工合作完成这项工程,问:该工程预算的施工费用是否够用?若不够用,需要追加预算多少万元?请说明理由.23.如图,点O是等边△ABC内一点,∠AOB=110°,∠BOC=α.以OC为一边作等边三角形OCD,连接AC、AD.(1)当α=150°时,试判断△AOD的形状,并说明理由;(2)探究:当α为多少度时,△AOD是等腰三角形?24.(11分)如图,在△ABC中,AD平分∠BAC,∠C=2∠B,求证:AB=AC+CD.25.如图,在△ABC中,∠ACB=2∠B,∠BAC的平分线AO交BC于点D,点H为AO上一动点,(不与点A重合)过点H作直线l⊥AO于H,分别交直线AB、AC、BC、于点N、E.M.(1)如图1,直接写出AN与AE的数量关系是.(2)当直线l经过点C时(如图2),求证:BN=CD;(3)当M是BC中点时,写出CE和CD之间的等量关系,并加以证明.2018-2019学年内蒙古鄂尔多斯市东胜区八年级(上)期末数学试卷参考答案与试题解析一、精心选一选(本大题10个小题,每小题3分,共30分)1.(3分)甲骨文是我国的一种古代文字,是汉字的早期形式,下列甲骨文中,不是轴对称的是()A.B.C.D.【解答】解:A、是轴对称图形,故本选项错误;B、是轴对称图形,故本选项错误;C、是轴对称图形,故本选项错误;D、不是轴对称图形,故本选项正确.故选:D.2.(3分)科学家可以使用冷冻显微术以高分辨率测定溶液中的生物分子结构,使用此技术测定细菌蛋白结构的分辨率达到0.22纳米,也就是0.000 000 000 22米.将0.000 000 000 22用科学记数法表示为()A.0.22×10﹣9B.2.2×10﹣10C.22×10﹣11D.0.22×10﹣8【解答】解:0.000 000 000 22=2.2×10﹣10,故选:B.3.(3分)如果a8写成下列各式,正确的共有()①a4+a4;②(a2)4;③a16÷a2;④(a4)2;⑤(a4)4;⑥a20÷a12;⑦a4•a4.A.7个B.6个C.5个D.4个【解答】解:①a4+a4=2a4;②(a2)4=a8;③a16÷a2=14;④(a4)2=a8;⑤(a4)4=a16;⑥a20÷a12=a8;⑦a4•a4=a8.结果为a8的有4个.故选:D.4.(3分)对于分式,当x=﹣1时其值为0,当x=1时此分式没有意义,那么()A.a=b=﹣1B.a=b=1C.a=1,b=﹣1D.a=﹣1,b=1【解答】解:∵分式,当x=﹣1时其值为0,当x=1时此分式没有意义,∴﹣1﹣b=0,1+a=0,∴a=﹣1,b=﹣1.故选:A.5.(3分)如图,D在AB上,E在AC上,且∠B=∠C,那么补充下列一个条件后,仍无法判定△ABE≌△ACD的是()A.AD=AE B.∠AEB=∠ADC C.BE=CD D.AB=AC【解答】解:A、根据AAS(∠A=∠A,∠C=∠B,AD=AE)能推出△ABE ≌△ACD,正确,故本选项错误;B、三角对应相等的两三角形不一定全等,错误,故本选项正确;C、根据AAS(∠A=∠A,∠B=∠C,BE=CD)能推出△ABE≌△ACD,正确,故本选项错误;D、根据ASA(∠A=∠A,AB=AC,∠B=∠C)能推出△ABE≌△ACD,正确,故本选项错误;故选:B.6.(3分)在△ABC中,AB=AD=DC,∠BAD=28°,则∠C的度数为()A.38°B.71°C.35.5°D.76°【解答】解:∵AB=AD=DC,∠BAD=28°∴∠B=∠ADB=(180°﹣28°)÷2=76°.∴∠C=∠CAD=76°÷2=38°.故选:A.7.(3分)某市为解决部分市民冬季集中取暖问题需铺设一条长3000米的管道,为尽量减少施工对交通造成的影响,实施施工时“…”,设实际每天铺设管道x米,则可得方程,根据此情景,题中用“…”表示的缺失的条件应补为()A.每天比原计划多铺设10米,结果延期15天才完成B.每天比原计划少铺设10米,结果延期15天才完成C.每天比原计划多铺设10米,结果提前15天才完成D.每天比原计划少铺设10米,结果提前15天才完成【解答】解:设实际每天铺设管道x米,原计划每天铺设管道(x﹣10)米,方程,则表示实际用的时间﹣原计划用的时间=15天,那么就说明实际每天比原计划多铺设10米,结果提前15天完成任务.故选:C.8.(3分)如图,边长为a,b的矩形的周长为14,面积为10,则a2b+ab2的值为()A.140B.70C.35D.24【解答】解:根据题意得:a+b==7,ab=10,∴a2b+ab2=ab(a+b)=10×7=70;故选:B.9.(3分)如图,已知△ABC的面积为12,BP平分∠ABC,且AP⊥BP于点P,则△BPC的面积是()A.10B.8C.6D.4【解答】解:延长AP交BC于E,∵BP平分∠ABC,∴∠ABP=∠EBP,∵AP⊥BP,∴∠APB=∠EPB=90°,在△ABP和△EBP中,,∴△ABP≌△EBP(ASA),∴AP=PE,∴S△ABP =S△EBP,S△ACP=S△ECP,∴S△PBC =S△ABC=×12=6,故选:C.10.(3分)已知:∠AOB=10°,射线OA、OB上一点P,在∠AOB内部构造与P1P2相等的线段,如P1P2、P2P3、P3P4,则这样的线段最多有()A.8个B.9个C.10个D.12个【解答】解:(1)由题意可知,OP1=P1P2,则∠P2OP1=∠OP2P1,∠P2P1A=∠OP3P2,∵∠AOB=10°,∴∠P2P1A=20°,∠P3P2B=30°,∠P4P3A=40°,∠P5P4B=50°,……,∠P9P8B=90°,故这样的线段最多有一共有9条.故选:B.二、耐心填一填(本大题6个小题,每小题3分,共18分)11.(3分)分解因式:﹣3x3+6x2y﹣3xy2=﹣3x(x﹣y)2.【解答】解:原式=﹣3x(x2﹣2xy+y2)=﹣3x(x﹣y)2.故答案为:﹣3x(x﹣y)2.12.(3分)计算:(﹣0.2)2018×52019=5.【解答】解:(﹣0.2)2018×52019===12018×5=1×5=5.故答案为:5.13.(3分)若分式方程无解,则m的值为9.【解答】解:,方程两边同时乘x﹣3得,3x=2x﹣6+m,移项,得3x﹣2x=m﹣6,合并同类项,得x=m﹣6,∵方程无解,∴x=3,∴m=9,故答案为:9.14.(3分)如图,将正方形OABC放在平面直角坐标系中,O是原点,A的坐标为(1,),则点C的坐标为(﹣,1).【解答】解:如图作AF⊥x轴于F,CE⊥x轴于E.∵四边形ABCO是正方形,∴OA=OC,∠AOC=90°,∵∠COE+∠AOF=90°,∠AOF+∠OAF=90°,∴∠COE=∠OAF,在△COE和△OAF中,,∴△COE≌△OAF,∴CE=OF,OE=AF,∵A(1,),∴CE=OF=1,OE=AF=,∴点C坐标(﹣,1),故答案为(﹣,1).15.(3分)如图,等边△ABC的边AB上一点P,作PE⊥AC于E,Q为BC延长线上的一点,当P A=CQ时,连接PQ交AC于点D,下列结论:①PD=DQ;②2DE=AC;③2AE=CQ;④PQ⊥AB.其中正确的有①②③.(填序号)【解答】解:作PF∥BC,交AC于F,∵△ABC是等边三角形,∴∠B=∠ACB=60°,∵PF∥BC,∠PFD=∠DCQ,∴∠APF=∠AFP=60°,∴△APF是等边三角形,∴PF=AP,∵P A=CQ,∴PF=CQ,在△PFD和△QCD中,,∴△PFD≌△QCD(AAS),∴PD=DQ,DF=CD,∵PE⊥AF,△APF是等边三角形,∴AE=EF,2AE=AF=CQ,∴DE=AE+CD=AC,故①②③正确,而CD与CQ不一定相等,∴④错误,故答案为:①②③.16.(3分)如图,∠AOB=60°,点P在∠AOB的角平分线上,OP=10cm,点E、F是∠AOB两边OA、OB上的动点,当△PEF的周长最小时,点P到EF距离是5cm.【解答】解:作P关于OA的对称点,以及关于OB的对称点,连接两个对称点,交OA、OB分别于E、F,则此时△PEF的周长最小,∵点P在∠AOB的角平分线上,∴∠AOP=∠AOB=30°,∴直角△OPG中,PG=OP=5cm.∴PP1=2PG=10cm.∴∠P1PO=60°,∴∠P1=30°,∴PM=PP1=5cm.故答案为5cm.二、用心解一解17.(1)化简:[(x+y)(x﹣y)﹣(x﹣y)2+2y(x﹣y)]÷4y=x﹣y.(2)解方程=1;(3)先化简:÷(a+),当b=﹣1时,请你为a任选一个适当的数代入求值.【解答】解:(1)原式=[x2﹣y2﹣(x2﹣2xy+y2)+2xy﹣2y2]÷4y=(x2﹣y2﹣x2+2xy﹣y2+2xy﹣2y2)÷4y=(4xy﹣4y2)÷4y=x﹣y,故答案为:x﹣y;(2)整理,可得:,去分母,得:2+x(x+2)=(x+2)(x﹣2),去括号,得:2+x2+2x=x2﹣4,移项,合并同类项,得:2x=﹣6,系数化1,得:x=﹣3,经检验,当x=﹣3时,(x+2)(x﹣2)≠0,∴x=﹣3是原分式方程的解;(3)原式=÷==,∵b=﹣1,且a(a+b)(a﹣b)≠0,∴a不能取0和±1,当a取2时,原式==1.18.(6分)如图在平面直角坐标系中,A(﹣1,3),B(﹣2,﹣1)C(3,﹣1).(1)在图中画出△ABC中边BC上的高AM,并写出M的坐标;(2)在图中利用尺规画出∠A的平分线交BC于点D;(3)已知∠B=75°,∠C=45°,求∠MAD的度数.【解答】解:(1)如图,线段AM即为所求,M(﹣1,﹣1);(2)如图,射线AD即为所求;(3)∵AD平分∠BAC,∴∠BAD=∠CAD,∵∠BAC=180°﹣∠B﹣∠C=60°,∴∠BAD=30°,∵AM⊥CB,∴∠AMB=90°,∴∠BAM=90°﹣75°=15°,∴∠DAM=∠BAD﹣∠BAM=30°﹣15°=15°.19.如图,P为∠ABC的平分线与AC的垂直平分线的交点,PM⊥BC于M,PN ⊥BA的延长线于N,求证:AN=MC.【解答】证明:连接AP,PC,∵BP平分∠ABC,PN⊥AB,PM⊥BC,∴PN=PM,∵PE垂直平分AC,∴AP=CP,在Rt△ANP和Rt△CMP中,,∴Rt△ANP≌Rt△CMP(HL)∴AN=CM.20.(7分)【知识生成】课本上,我们利用两种不同的方法计算同一图形的面积,可以得到一个公式,如图1,根据图中整体图形的面积可表示为(a+b)2,还可表示为(a﹣b)2+4ab,可以得到的公式是;(a+b)2=(a﹣b)2+4ab.【知识迁移】类似地,用两种不同的方法计算同一种几何体的体积,也可以得到一个公式,如图2是边长为a+b的正方体,被如图所示的分割线分成8块,用不同方法计算这个正方体的体积,就可以得到一个公式,这个公式是(a+b)3=a3+3a2b+3ab2+b3.;【拓展应用】直接用你发现的公式计算:(2m+n)3=8m3+12m2n+6mn2+n3..【解答】(1)图中整体图形的面积可以表示为:(a+b)2,还可以表示为:(a ﹣b)2+4ab.∴(a+b)2=(a﹣b)2+4ab.故答案为:(a+b)2,(a﹣b)2+4ab,(a+b)2=(a﹣b)2+4ab.(2)图中整个几何体的体积可以表示为:(a+b)3,还可以表示为:a3+3a2b+3ab2+b3.∴(a+b)3=a3+3a2b+3ab2+b3.故答案为:(a+b)3=a3+3a2b+3ab2+b3.拓展应用:∵(a+b)3=a3+3a2b+3ab2+b3.∴(2m+n)3=(2m)3+3(2m)2n+3•2mn2+n3=8m3+12m2n+6mn2+n3.21.如图,在平面直角坐标系中,将直角三角形的直角顶点放在点P(4,4)处,两直角边与坐标轴交于点A和点B.(1)求OA+OB的值;(2)将直角三角形绕点P逆时针旋转,两直角边与坐标轴交于点A和点B,求OA﹣OB的值.【解答】解:(1)如图1,过P作PM⊥x轴于M,PN⊥y轴于N,则∠PNB=∠PMA=90°,∠NPM=90°,∵∠BP A=90°,∴∠NPB=∠MP A=90°﹣∠BPM,∵P(4,4),∴PM=PN=ON=OM=4,在△PBN和△P AM中∴△PBN≌△P AM(ASA),∴P A=PB,BN=AM,∴OA+OB=OM+AM+OB=OM+OB+ON=4+4=8;(2)如图2,过P作PM⊥x轴于M,PN⊥y轴于N,则∠PNB=∠PMA=90°,∠NPM=90°,∵∠BP A=90°,∴∠NPB=∠MP A=90°﹣∠BPM,∵P(4,4),∴PM=PN=4,在△PBN和△P AM中,,∴△PBN≌△P AM(ASA),∴P A=PB,AM=BN,∴OA﹣OB=(OM+AM)﹣(BN﹣ON)=OM+ON=4+4=8.22.通惠新城开发某工程准备招标,指挥部现接到甲、乙两个工程队的投标书,从投标书中得知:乙队单独完成这项工程所需天数是甲队单独完成这项工程所需天数的2倍;该工程若由甲队先做6天,剩下的工程再由甲、乙两队合作16天可以完成.(1)求甲、乙两队单独完成这项工程各需要多少天?(2)已知甲队每天的施工费用为0.67万元,乙队每天的施工费用为0.33万元,该工程预算的施工费用为19万元.为缩短工期,拟安排甲、乙两队同时开工合作完成这项工程,问:该工程预算的施工费用是否够用?若不够用,需要追加预算多少万元?请说明理由.【解答】解:(1)设甲队单独完成这项目需要x天,则乙队单独完成这项工程需要2x天,(1分)根据题意,得(4分)解得x=30(5分)经检验,x=30是原方程的根,则2x=2×30=60(6分)答:甲、乙两队单独完成这项工程各需要30天和60天.(7分)(2)设甲、乙两队合作完成这项工程需要y天,则有,解得y=20(9分)需要施工费用:20×(0.67+0.33)=20(万元)(10分)∵20>19,∴工程预算的施工费用不够用,需追加预算1万元.(11分)23.如图,点O是等边△ABC内一点,∠AOB=110°,∠BOC=α.以OC为一边作等边三角形OCD,连接AC、AD.(1)当α=150°时,试判断△AOD的形状,并说明理由;(2)探究:当α为多少度时,△AOD是等腰三角形?【解答】解:(1)∵△OCD是等边三角形,∴OC=CD,而△ABC是等边三角形,∴BC=AC,∵∠ACB=∠OCD=60°,∴∠BCO=∠ACD,在△BOC与△ADC中,∵,∴△BOC≌△ADC,∴∠BOC=∠ADC,而∠BOC=α=150°,∠ODC=60°,∴∠ADO=150°﹣60°=90°,∴△ADO是直角三角形;(2)∵设∠CBO=∠CAD=a,∠ABO=b,∠BAO=c,∠CAO=d,则a+b=60°,b+c=180°﹣110°=70°,c+d=60°,∴b﹣d=10°,∴(60°﹣a)﹣d=10°,∴a+d=50°,即∠DAO=50°,①要使AO=AD,需∠AOD=∠ADO,∴190°﹣α=α﹣60°,∴α=125°;②要使OA=OD,需∠OAD=∠ADO,∴110°+80°+60°+α=360°∴α=110°;③要使OD=AD,需∠OAD=∠AOD,110°+50°+60°+α=360°,∴α=140°.所以当α为110°、125°、140°时,三角形AOD是等腰三角形.24.(11分)如图,在△ABC中,AD平分∠BAC,∠C=2∠B,求证:AB=AC+CD.【解答】证明:在AB上取点E,使得AE=AC,在△AED和△ACD中,∴△AED≌△ACD(SAS),∴∠AED=∠C,AE=AC,ED=CD,∵∠C=2∠B,且∠AED=∠B+∠BDE,∴∠B=∠BDE,∴BE=DE,∴AB=AE+BD=AC+DE=AC+CD.25.如图,在△ABC中,∠ACB=2∠B,∠BAC的平分线AO交BC于点D,点H为AO上一动点,(不与点A重合)过点H作直线l⊥AO于H,分别交直线AB、AC、BC、于点N、E.M.(1)如图1,直接写出AN与AE的数量关系是AN=AE.(2)当直线l经过点C时(如图2),求证:BN=CD;(3)当M是BC中点时,写出CE和CD之间的等量关系,并加以证明.【解答】(1)解:∵AO平分∠BAC,∴∠NAH=∠EAH,∵直线l⊥AO于H,∴∠AHN=∠AHE=90°,又∵AH=AH,∴△ANH≌△AEH(ASA),∴AN=AE,故答案为:AN=AE;(2)证明:连接ND,如图2所示:同(1)得:△ANH≌△ACH(ASA),∴∠ANC=∠ACN,AN=AC,∵AO平分∠BAC,∴NH=CH,∵AO⊥CN,∴AH是线段NC的中垂线,∴DN=DC,∴∠DNH=∠DCH,∴∠AND=∠ACB,∵∠AND=∠B+∠BDN,∠ACB=2∠B,∴∠B+∠BDN=2∠B,∴∠B=∠BDN,∴BN=DN,∴BN=CD;(3)解:当M是BC中点时,CE和CD之间的等量关系为CD=2CE,理由如下:过点C作CN'⊥AO交AB于N',过点C作CG∥AB交直线l于点G,如图3所示:则∠B=∠MCG,∠ANE=∠CGE,由(1)得:BN'=CD,AN'=AC,AN=AE,∴∠ANE=∠AEN,NN'=CE,∴∠CGE=∠AEN,∴CG=CE,∵M是BC中点,∴BM=CM,又∵∠BMN=∠CMG,∴△BNM≌△CGM(ASA),∴BN=CG,∴BN=CE,∴CD=BN'=NN'+BN=2CE.。
初二年数学期末复习试卷2
八年级数学期末模拟测试1.下列图形中属于轴对称图形的是( )2.石墨烯是人类已知强度最高的物质之一,据科学家们测算,要施加55牛顿的压力才能使0.000 001米长的石墨烯断裂,其中0.000 001用科学记数法表示为( )A .1×10-7B .10×10-7C .0.1×10-5D .1×10-6 3.使分式x x -1有意义的x 的取值范围是( ) A .x ≠1 B .x ≠0 C .x ≠0且x ≠1 D .x ≠-14.下列属于因式分解的是( )A .(x +2)(x -2)=x 2-4B .x 2-4=(x +2)(x -2)C .x 2-4+3x =(x +2)(x -2)+3xD .x 2+4x -2=x (x +4)-25.下列各组数据中,可以构成等腰三角形的是( )A .1,1,2B .1,1,3C .2,2,1D .2,2,56.如图,已知△ABE ≌△ACD ,下列选项中不能被证明的结论是( )A .AD =AEB .DB =AEC .DF =EFD .DB =EC7.若点A (m ,n )和点B (5,-7)关于x 轴对称,则m +n 的值是( )A .2 B .-2 C .12 D .-128.已知x m =6,x n =3,则x 2m -n 的值为( )A .9 B .39 C .12 D .1089.如图,AB =AC ,AE =AF ,BE 与CF 交于点D .对于下列结论:①△ABE ≌△ACF ;②△BDF ≌△CDE ;③D 在∠BAC 的平分线上.其中正确的是( )A .①B .②C .①②D .①②③(第9题) (第10题) (第14题)10.如图,DE ⊥AB 于点E ,DF ⊥BC 于点F ,且DE =DF ,若∠DBC =50°,则∠ABC =________°.11.已知1a -1b =12,则 ab b -a的值是________. 12.已知一个多边形的每一个外角都相等,一个内角与一个外角的度数之比为9∶2,则这个多边形的边数为________.13.已知a -b =3,则代数式a 2-b 2-6b 的值为________.14.如图,在直角三角形ABC 中,∠C =90°,两锐角的平分线AM ,BN 交于点O ,则∠AOB =________.15.如图,△ABC中,点D在BC边上,BD=AD=AC,E为CD的中点.若∠CAE=16°,则∠B=________°.(第15题)(第16题)16.如图,Rt△ABC中,CD是斜边AB上的高,角平分线AE交CD于点H,EF⊥AB于点F,则下列结论中不正确的是________.(填序号)①∠ACD=∠B;②CH=CE=EF;③AC=AF;④CH=HD.17.计算:(2x+3)(2x-3)-4x(x-1)+(x-2)2.18.先化简,再求值:4x-1·x2-12-3(x-1),其中x=2.19.如图,△ABC中,∠C=90°,∠A=30°.(1)用尺规作图作AB边上的垂直平分线DE,交AC于点D,交AB于点E;(2)连接BD,若AD=4,求AC的长度.20.如图,在平面直角坐标系中,△ABC的顶点都在格点上,点A的坐标为(-3,2).(1)画出△ABC关于x轴对称的△A1B1C1,画出△ABC关于y轴对称的△A2B2C2;(2)求△ABC的面积.21.如图,在等边△ABC中,点D,E分别在边BC,AC上,且DE∥AB,过点E作EF⊥DE,交BC的延长线于点F. (1)求∠F的度数;(2)若CD=2,求DF的长.22.如图①,已知等边△ABC,点P,Q分别是AB,BC边上的动点(点A,B除外),点P从点A,点Q从点B同时出发,且它们的运动速度相同,连接AQ,CP交于点M.(1)求证:△ABQ≌△CAP;(2)如图①,当点P,Q分别在AB,BC边上运动时,∠QMC的大小变化吗?若变化,请说明理由;若不变,请求出它的度数;(3)如图②,若点P,Q分别运动到点B和点C后,继续在射线AB,BC上运动,直线AQ,CP交于点M,请直接写出∠QMC的度数.。
2021-2022学年浙江省杭州市八年级上学期期末数学典型试卷2(含答案)
2021-2022学年上学期杭州市初中数学八年级期末典型试卷2一.选择题(共10小题)1.(2020秋•上城区期末)等腰三角形两条边长分别是6和8,则其周长为()A.20B.22C.20或22D.242.(2020秋•上城区期末)由下列长度的三条线段,能组成一个三角形的是()A.1,2,3B.3,3,6C.1,5,5D.4,5,10 3.(2020秋•上城区期末)如图,在△ABD中,∠D=80°,点C为边BD上一点,连结AC.若∠ACB=115°,则∠CAD=()A.25°B.35°C.30°D.45°4.(2020秋•钱塘区期末)关于一次函数y=3x﹣1的描述,下列说法正确的是()A.图象经过第一、二、三象限B.函数的图象与x轴的交点坐标是(0,﹣1)C.向下平移1个单位,可得到y=3xD.图象经过点(1,2)5.(2020秋•拱墅区期末)若一次函数y=kx+2﹣k(k是常数,k≠0)的图象经过点P,且函数y的值随自变量x的增大而减小,则点P的坐标可以是()A.(3,2)B.(3,3)C.(﹣1,3)D.(﹣1,1)6.(2020秋•钱塘区期末)若不等式组的解集为x≤﹣m,则下列各式正确的是()A.m≥n B.m≤n C.m>n D.m<n7.(2020秋•钱塘区期末)将一副三角板按如图所示的方式放置,则∠BFD的度数为()A.75°B.85°C.95°D.105°8.(2020秋•上城区期末)一次函数y1=﹣x+7与正比例函数y2=x,若y1<y2,则自变量x的取值范围是()A.x>3B.x<3C.x>4D.x<49.(2020秋•上城区期末)若关于x的不等式组有解,则一次函数y=(a﹣3)x+2的图象一定不经过的象限是()A.第一象限B.第二象限C.第三象限D.第四象限10.(2020秋•上城区期末)如图,在Rt△ABC中,CA=CB,D为斜边AB的中点,Rt∠EDF在△ABC内绕点D转动,分别交边AC,BC点E,F(点E不与点A,C重合),下列说法正确的是()①∠DEF=45°;②BF2+AE2=EF2;③CD<EF≤CD.A.①②B.①③C.②③D.①②③二.填空题(共6小题)11.(2020秋•拱墅区期末)一张小凳子的结构如图所示,∠1=∠2,若∠3=120°,则∠1的度数为.12.(2020秋•拱墅区期末)小明和小杰在同一直道的A,B两点间作匀速往返走锻炼(忽略掉头等时间).小明从A地出发,同时小杰从B地出发,两人第一次相遇时小明曾停下接电话数分钟.图中的折线表示从开始到小杰第一次到达A地止,两人之间的距离y(米)与行走时间x(分)的函数关系图象.则图中的b=米,d=分.13.(2020秋•钱塘区期末)2018年杭黄高铁开通运营,已知杭州到黄山距离300千米,现有直达高铁往返两城市之间,该高铁每次到达杭州或黄山后,均需停留一小时再重新出发.暑假期间,铁路局计划在同线路上加开一列慢车直达旅游专列,在试运行期间,该旅游专列与高铁同时从杭州出发,在整个运行过程中,两列车均保持匀速行驶,经过小时两车第一次相遇.两车之间的距离y千米与行驶时间x小时之间的部分函数关系如图所示.当两车第二次相遇时,该旅游专列共行驶了.14.(2020秋•上城区期末)在平面直角坐标系中,将点A(3,4)向左平移3个单位后得到点的坐标为.15.(2020秋•上城区期末)在平面直角坐标系中,直线y=x+2和直线y=﹣2x+b的交点的横坐标为m.若﹣1≤m<3,则实数b的取值范围为.16.(2020秋•拱墅区期末)如图,在△ABC中,AB=AC,AD平分∠BAC,PD垂直平分AB,连接BD并延长,交边AC于点E.若△BCE是等腰三角形,则∠BAC的度数为.三.解答题(共8小题)17.(2020秋•上城区期末)解不等式(组):(1)5x﹣2>3x+1.(2).18.(2020秋•上城区期末)如图,BD为△ABC的角平分线,E为AB上一点,BE=BC,连结DE.(1)求证:△BDC≌△BDE;(2)若AB=7,CD=2,∠C=90°,求△ABD的面积.19.(2020秋•钱塘区期末)如图,在△ABC和△DEF中,B,E,C,F在同一条直线上,AB∥DE,AB=DE,∠A=∠D.(1)求证:△ABC≌△DEF;(2)若BF=11,EC=5,求BE的长.20.(2020秋•钱塘区期末)如图,△ABC和△DCE都是等腰直角三角形,CA=CB,CD=CE,△DCE的顶点D在△ABC的斜边AB上.(1)连结AE,求证:△ACE≌△BCD.(2)若BD=1,CD=3,求AD的长.21.(2020秋•钱塘区期末)已知∠A=60°,点B、C分别在∠A的两边上(不与点A重合),连接BC,作线段BC的垂直平分线;点D在∠A内部,且在△ABC外,线段BC 的垂直平分线上,∠BDC=120°.(1)求证:BC=BD;(2)求证:AD平分∠BAC;(3)若BC=4,①当线段AB最大时,求四边形ABDC的面积;②在点B的移动过程中,直接写出AD的取值范围.22.(2020秋•上城区期末)已知一次函数y1=mx﹣2m+4(m ≠0).(1)判断点(2,4)是否在该一次函数的图象上,并说明理由;(2)若一次函数y2=﹣x+6,当m>0,试比较函数值y1与y2的大小;(3)函数y1随x的增大而减小,且与y轴交于点A,若点A到坐标原点的距离小于6,点B,C的坐标分别为(0,﹣2),(2,1).求△ABC面积的取值范围.23.(2020秋•拱墅区期末)在平面直角坐标系中,一次函数y=kx+b(k,b是常数,且k ≠0)的图象经过点(2,1)和(﹣1,7).(1)求该函数的表达式;(2)若点P(a﹣5,3a)在该函数的图象上,求点P的坐标;(3)当﹣3<y<11时,求x的取值范围.24.(2020秋•钱塘区期末)一次函数y1=(k﹣1)x+2k,y2=(1﹣k)x+k+1,其中k≠1.(1)判断点A(﹣2,2)是否在函数y1的图象上,并说明理由;(2)若函数y1与y2的图象交于点B,求点B的横坐标;(3)点C(a,m),D(a,n),分别在函数y1与y2的图象上,当k>1时,若CD<k﹣1,求a的取值范围.2021-2022学年上学期杭州市初中数学八年级期末典型试卷2参考答案与试题解析一.选择题(共10小题)1.(2020秋•上城区期末)等腰三角形两条边长分别是6和8,则其周长为()A.20B.22C.20或22D.24【考点】三角形三边关系;等腰三角形的性质.【专题】分类讨论.【分析】分两种情况讨论:当6是腰时或当8是腰时,利用三角形的三边关系进行分析求解即可.【解答】解:①当6是腰长时,三边分别为6、6、8时,能组成三角形,周长=6+6+8=20,②当6是底边时,三边分别为6、8、8,能组成三角形,周长=6+8+8=22,综上所述,等腰三角形的周长为20或22.故选:C.【点评】本题考查了等腰三角形的两腰相等的性质,难点在于要分情况讨论求解,此题难度不大.2.(2020秋•上城区期末)由下列长度的三条线段,能组成一个三角形的是()A.1,2,3B.3,3,6C.1,5,5D.4,5,10【考点】三角形三边关系.【专题】三角形;运算能力.【分析】三角形的任何一边大于其他两边之差,任意两边之和大于第三边,满足此关系的可组成三角形,由此判断选项.【解答】解:A.1+2=3,两边之和不大于第三边,故不可组成三角形;B.3+3=6,两边之和不大于第三边,故不可组成三角形;C.1+5>5,满足任何一边大于其他两边之差,任意两边之和大于第三边,故可组成三角形;D.4+5<10,两边之和不大于第三边,故不可组成三角形,故选:C.【点评】本题考查三角形的三边关系,①三角形任何一边大于其他两边之差,②三角形任意两边之和大于第三边,同时满足①、②公理的才可组成三角形.3.(2020秋•上城区期末)如图,在△ABD中,∠D=80°,点C为边BD上一点,连结AC.若∠ACB=115°,则∠CAD=()A.25°B.35°C.30°D.45°【考点】三角形的外角性质.【专题】三角形;推理能力.【分析】直接利用三角形的外角性质即可求解.【解答】解:∵∠D=80°,∠ACB=115°,∠ACB是△ACD的一个外角,∴∠ACB=∠D+∠CAD,∴∠CAD=∠ACB﹣∠D=35°.故选:B.【点评】本题主要考查三角形的外角性质,解答的关键是熟记三角形的外角性质:三角形的外角等于与它不相邻的两个内角之和.4.(2020秋•钱塘区期末)关于一次函数y=3x﹣1的描述,下列说法正确的是()A.图象经过第一、二、三象限B.函数的图象与x轴的交点坐标是(0,﹣1)C.向下平移1个单位,可得到y=3xD.图象经过点(1,2)【考点】一次函数的性质;一次函数图象上点的坐标特征;坐标与图形变化﹣平移.【专题】一次函数及其应用;运算能力.【分析】A:根据k>0,b<0,判断一次函数经过的象限;B:令y=0,x=,判断与x轴的交点;C:一次函数y=3x﹣1向下平移1个单位,可得到y=3x;D:把x=1代入y=3x﹣1得y=2.【解答】解:A:∵一次函数y=3x﹣1,k=3>0,∴一次函数经过一、三象限,∵b=﹣1,∴一次函数交y轴的负半轴,∴一次函数y=3x﹣1经过一、三、四象限,故A错误;B:令y=0,x=,∴函数的图象与x轴的交点坐标是(,0),故B错误;C:一次函数y=3x﹣1向下平移1个单位,可得到y=3x,故C错误;D:把x=1代入y=3x﹣1得y=2,∴图象经过(1,2),故D正确.故选:D.【点评】本题考查了一次函数图象上点的坐标特征、一次函数的性质、平移变换与坐标变化,掌握这三个知识点的熟练应用是解题关键.5.(2020秋•拱墅区期末)若一次函数y=kx+2﹣k(k是常数,k≠0)的图象经过点P,且函数y的值随自变量x的增大而减小,则点P的坐标可以是()A.(3,2)B.(3,3)C.(﹣1,3)D.(﹣1,1)【考点】一次函数的性质;一次函数图象上点的坐标特征.【专题】一次函数及其应用;运算能力.【分析】由函数值y随x的增大而减小可得出k<0,利用各选项中点的坐标,利用一次函数图象上点的坐标特征求出k值,取k<0的选项即可得出结论.【解答】解:∵函数值y随x的增大而减小,∴k<0.A、将(3,2)代入y=kx+2﹣k,得:2=3k+2﹣k,解得:k=0,∴选项A不符合题意;B、将(3,3)代入y=kx+2﹣k,得:3=3k+2﹣k,解得:k=,∴选项B不符合题意;C、将(﹣1,3)代入y=kx+2﹣k,得:3=﹣k+2﹣k,解得:k=﹣,∴选项C符合题意;D、将(﹣1,1)代入y=kx+2﹣k,得:1=﹣k+2﹣k,解得:k=,∴选项D不符合题意.故选:C.【点评】本题考查了一次函数图象上点的坐标特征以及一次函数的性质,根据点的坐标,利用一次函数图象上点的坐标特征求出k值是解题的关键.6.(2020秋•钱塘区期末)若不等式组的解集为x≤﹣m,则下列各式正确的是()A.m≥n B.m≤n C.m>n D.m<n【考点】解一元一次不等式组.【专题】一元一次不等式(组)及应用;运算能力.【分析】根据口诀:同小取小可得﹣m≤﹣n,再由不等式的基本性质即可得出答案.【解答】解:∵不等式组的解集为x≤﹣m,∴﹣m≤﹣n,则m≥n,故选:A.【点评】本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.7.(2020秋•钱塘区期末)将一副三角板按如图所示的方式放置,则∠BFD的度数为()A.75°B.85°C.95°D.105°【考点】三角形的外角性质.【专题】三角形;推理能力.【分析】由题意可得∠ACB=30°,∠CED=45°,利用三角形的外角性质可得∠BFE =75°,从而可求∠BFD的度数.【解答】解:由题意可得∠ACB=30°,∠CED=45°,∵∠BFE是△CEF的一个外角,∴∠BFE=∠ACB+∠CED=75°,∴∠BFD=180°﹣∠BFE=105°.故选:D.【点评】本题主要考查三角形的外角性质,解答的关键是熟记三角形的外角性质:三角形的一个外角等于与它不相邻的两个内角之和.8.(2020秋•上城区期末)一次函数y1=﹣x+7与正比例函数y2=x,若y1<y2,则自变量x的取值范围是()A.x>3B.x<3C.x>4D.x<4【考点】一次函数的性质;一次函数与一元一次不等式.【专题】一次函数及其应用;几何直观;运算能力.【分析】求得两直线的交点坐标,观察函数图象得到当x>3时,直线y1都在直线y2的下方,即y1<y2.【解答】解:在同一坐标系画出函数图象如图,解得,∴交点的坐标为(3,4),观察图象,当x>3时,直线y1=﹣x+7的图象都在直线y2=x的下方,即y1<y2.故选:A.【点评】本题考查了一次函数与一元一次不等式的关系:从函数的角度看,就是寻求使一次函数y=ax+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.也考查了观察函数图象的能力.9.(2020秋•上城区期末)若关于x的不等式组有解,则一次函数y=(a﹣3)x+2的图象一定不经过的象限是()A.第一象限B.第二象限C.第三象限D.第四象限【考点】一次函数的性质;一次函数与一元一次不等式.【专题】一元一次不等式(组)及应用;一次函数及其应用;运算能力.【分析】根据关于x的不等式组有解得出a的取值范围,即可判断一次函数y=(a﹣3)x+2的图象经过一、二、三象限.【解答】解:不等式组整理得,∵关于x的不等式组有解,∴>2,∴a>5,∴a﹣3>0,∴一次函数y=(a﹣3)x+2的图象经过一、二、三象限,不经过第四象限,故选:D.【点评】本题考查的是一次函数与一元一次不等式,熟知“同,大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.10.(2020秋•上城区期末)如图,在Rt△ABC中,CA=CB,D为斜边AB的中点,Rt∠EDF在△ABC内绕点D转动,分别交边AC,BC点E,F(点E不与点A,C重合),下列说法正确的是()①∠DEF=45°;②BF2+AE2=EF2;③CD<EF≤CD.A.①②B.①③C.②③D.①②③【考点】全等三角形的判定与性质;直角三角形斜边上的中线;勾股定理;等腰直角三角形;旋转的性质.【专题】图形的全等;等腰三角形与直角三角形;平移、旋转与对称;推理能力.【分析】由“ASA”可证△ADE≌△CDF,可得DE=DF,AE=CF,可得∠DEF=∠DFE=45°,EC=BF,可判断①,在直角三角形CEF中,由勾股定理可得BF2+AE2=EF2,可判断②,由特殊位置可求CD的范围,可判断③,即可求解.【解答】解:∵∠ACB=90°,CA=CB,D为斜边AB的中点,∴CD=AD=DB,∠A=∠B=∠ACD=∠BCD=45°,AB⊥CD,∵ED⊥FD,∴∠EDF=∠ADC=90°,∴∠ADE=△CDF,在△ADE和△CDF中,,∴△ADE≌△CDF(ASA),∴DE=DF,AE=CF,∴∠DEF=∠DFE=45°,AC﹣AE=BC﹣CF,故①正确;∴EC=BF,∵CF2+CE2=EF2;∴BF2+AE2=EF2;故②正确;当点E与点A重合时,EF=AC=CD,当DE⊥AC时,则DF⊥BC,∴四边形DECF是矩形,∴EF=CD,∴CD≤EF<CD,故③错误,故选:A.【点评】本题考查了旋转的性质,全等三角形的判定和性质,勾股定理,等腰直角三角形的性质等知识,灵活运用这些性质进行推理是本题的关键.二.填空题(共6小题)11.(2020秋•拱墅区期末)一张小凳子的结构如图所示,∠1=∠2,若∠3=120°,则∠1的度数为60°.【考点】三角形的外角性质.【专题】三角形;推理能力.【分析】根据三角形的外角等于与它不相邻的两个内角的和求解即可.【解答】解:∵∠3=∠1+∠2,∠1=∠2,∴∠3=2∠1,∵∠3=120°,∴∠1=60°,故答案为:60°.【点评】此题考查了三角形的外角性质,熟记三角形的外角等于与它不相邻的两个内角的和是解题的关键.12.(2020秋•拱墅区期末)小明和小杰在同一直道的A,B两点间作匀速往返走锻炼(忽略掉头等时间).小明从A地出发,同时小杰从B地出发,两人第一次相遇时小明曾停下接电话数分钟.图中的折线表示从开始到小杰第一次到达A地止,两人之间的距离y (米)与行走时间x(分)的函数关系图象.则图中的b=3600米,d=62.5分.【考点】一次函数的应用.【专题】数形结合;一次函数及其应用;应用意识.【分析】由折线统计图可知当0<t<c两人相遇,t=c时两人相遇,c<t<40时,小明停下来,小杰一个人在走,40<t<d时,两人都开始走,t=d时,小明到达目的地,d<t <70时,小明返回走,t=70时,小杰到达目的地,两地相距4200米,据此即可得出答案.【解答】解:由折线可知小杰的速度为:4200÷70=60米/分,且=60,解得c=30,则两人速度和为4200÷30=140米/分,故小明速度为:140﹣60=80米/分,d点表示小明到达B地开始返向,4200=30×80+(d﹣40)×80,得d=62.5,则a=62.5×60=3750,b=3750﹣(80﹣60)×7.5=3600.故答案为:3600,62.5.【点评】本题考查了一次函数的应用,准确识图,理解函数图象上点的具体意义是本题的关键.13.(2020秋•钱塘区期末)2018年杭黄高铁开通运营,已知杭州到黄山距离300千米,现有直达高铁往返两城市之间,该高铁每次到达杭州或黄山后,均需停留一小时再重新出发.暑假期间,铁路局计划在同线路上加开一列慢车直达旅游专列,在试运行期间,该旅游专列与高铁同时从杭州出发,在整个运行过程中,两列车均保持匀速行驶,经过小时两车第一次相遇.两车之间的距离y千米与行驶时间x小时之间的部分函数关系如图所示.当两车第二次相遇时,该旅游专列共行驶了250千米.【考点】一次函数的应用.【专题】一次函数及其应用;应用意识.【分析】首先求该旅游专列与高铁的速度分别为200千米/小时和40千米/小时,确定第二次相遇时的位置,因为7.5>6.5,说明第二次相遇时,旅游专列还没走完全程;根据路程相等列方程可得结论.【解答】解:由图形可知:高铁小时,由杭州到黄山,速度为:300÷=200(千米/小时),设旅游专列的速度为a千米/小时,则a+200×(﹣1)=300×2,∴a=40,∴300÷40=7.5(小时),高铁:第一次去黄山:小时,休息1小时;第一次返回:+=4(小时),休息1小时;第二次去成都:5+=6.5<7.5,设当两车第二次相遇时,该旅游专列共行驶了b千米,则200×(﹣5)=b,b=250,则当两车第二次相遇时,该旅游专列共行驶了250千米;故答案为:250千米.【点评】本题考查一次函数的应用,正确理解函数图象横纵坐标表示的意义,理解问题的过程,就能够通过图象得到函数问题的相应解决.14.(2020秋•上城区期末)在平面直角坐标系中,将点A(3,4)向左平移3个单位后得到点的坐标为(0,4).【考点】坐标与图形变化﹣平移.【专题】平移、旋转与对称;推理能力.【分析】根据平移规律:横坐标右移加,左移减;纵坐标上移加,下移减即可得.【解答】解:平移后点A的坐标为(3﹣3,4),即A(0,4),故答案为:(0,4).【点评】此题主要考查了坐标与图形变化﹣平移,平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.掌握点的坐标的变化规律是解题的关键.15.(2020秋•上城区期末)在平面直角坐标系中,直线y=x+2和直线y=﹣2x+b的交点的横坐标为m.若﹣1≤m<3,则实数b的取值范围为﹣1≤b<11.【考点】一次函数图象与系数的关系;两条直线相交或平行问题.【专题】一次函数及其应用;运算能力.【分析】求得两直线交点的横坐标,即可得到关于b的不等式组,解不等式组即可求得.【解答】解:令x+2=﹣2x+b,解得x=,∵直线y=x+2和直线y=﹣2x+b的交点的横坐标为m.∴m=,∵﹣1≤m<3,∴﹣1≤<3,∴﹣1≤b<11,故答案为:﹣1≤b<11.【点评】本题是两条直线相交问题,考查了两条直线交点的求法,根据题意得到关于b 的不等式组是解题的关键.16.(2020秋•拱墅区期末)如图,在△ABC中,AB=AC,AD平分∠BAC,PD垂直平分AB,连接BD并延长,交边AC于点E.若△BCE是等腰三角形,则∠BAC的度数为45°或36°.【考点】线段垂直平分线的性质;等腰三角形的性质.【专题】等腰三角形与直角三角形;几何直观.【分析】设∠BAD=∠CAD=α,根据等腰三角形的性质和三角形外角的性质∠EBC,∠BEC和∠C,再分三种情况讨论即可求解.【解答】解:∵AD平分∠BAC,∴∠BAD=∠CAD=α,∵AB=AC,∴∠ABC=∠C==90°﹣α,∵PD垂直平分AB,∴AD=BD,∴∠ABD=∠BAD=α,∠EBC=∠ABC﹣∠ABE=90°﹣2α,∴∠BEC=∠ABE+∠BAC=3α,当BE=BC时,∠BEC=∠C,即90°﹣α=3α,解得α=22.5°,∴∠BAC=2α=45°;当BE=CE时,∠EBC=∠C,此时点E和点A重合,舍去;当CE=BC时,∠BEC=∠EBC,即90°﹣2α=3α,解得α=18°,∴∠BAC=2α=36°.故∠BAC的度数为45°或36°.故答案为:45°或36°.【点评】本题考查了等腰三角形的性质,三角形外角的性质,三角形内角和定理和垂直平分线的性质,掌握方程思想,能正确表示相关的角是解题的关键.三.解答题(共8小题)17.(2020秋•上城区期末)解不等式(组):(1)5x﹣2>3x+1.(2).【考点】解一元一次不等式;解一元一次不等式组.【专题】一元一次不等式(组)及应用;运算能力.【分析】(1)依次移项、合并同类型、系数化为1即可;(2)分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集.【解答】解:(1)移项,得:5x﹣3x>1+2,合并同类项,得:2x>3,系数化为1,得:x>1.5;(2)解不等式2x+3>2(2﹣x),得:x>,解不等式≥﹣1,得:x≤1,则不等式组的解集为<x≤1.【点评】本题考查的是解一元一次不等式和一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.18.(2020秋•上城区期末)如图,BD为△ABC的角平分线,E为AB上一点,BE=BC,连结DE.(1)求证:△BDC≌△BDE;(2)若AB=7,CD=2,∠C=90°,求△ABD的面积.【考点】全等三角形的判定与性质;角平分线的性质.【专题】图形的全等;运算能力;推理能力.【分析】(1)根据SAS可证明△BDC≌△BDE;(2)由全等三角形的性质得出∠BED=∠C=90°,DC=DE,根据三角形的面积公式可得出答案.【解答】(1)证明:∵BD为△ABC的角平分线,∴∠BCD=∠EBD,在△BDC和△BDE中,,∴△BDC≌△BDE(SAS);(2)解:∵△BDC≌△BDE,∴∠BED=∠C=90°,DC=DE,∵DC=2,∴DE=2,∴S△ABD=AB•DE=×7×2=7.【点评】本题考查了全等三角形的判定与性质,三角形的面积,证明△BDC≌△BDE是解题的关键.19.(2020秋•钱塘区期末)如图,在△ABC和△DEF中,B,E,C,F在同一条直线上,AB∥DE,AB=DE,∠A=∠D.(1)求证:△ABC≌△DEF;(2)若BF=11,EC=5,求BE的长.【考点】全等三角形的判定与性质.【专题】图形的全等;推理能力.【分析】(1)由平行线的性质得出∠B=∠DEF,根据AAS可证明△ABC≌△DEF;(2)由全等三角形的性质得出BE=CF,则可求出答案.【解答】(1)证明:∵AB∥DE,∴∠B=∠DEF,在△ABC与△DEF中,,∴△ABC≌△DEF(ASA);(2)解:∵△ABC≌△DEF,∴BC=EF,∴BC﹣EC=EF﹣EC,即BE=CF.∵BF=11,EC=5,∴BE+CF=BF﹣CE=11﹣5=6,∴BE=3.【点评】本题考查了平行线的性质,全等三角形的性质和判定,关键是根据平行线性质推出∠B=∠DEF解答.20.(2020秋•钱塘区期末)如图,△ABC和△DCE都是等腰直角三角形,CA=CB,CD =CE,△DCE的顶点D在△ABC的斜边AB上.(1)连结AE,求证:△ACE≌△BCD.(2)若BD=1,CD=3,求AD的长.【考点】全等三角形的判定与性质;等腰直角三角形.【专题】图形的全等;等腰三角形与直角三角形;运算能力;推理能力.【分析】(1)根据SAS可证明△ACE≌△BCD;(2)由全等三角形的性质得到BD=AE,△ADE是直角三角形;由勾股定理可知AD2+AE2=DE2,则可求出答案.【解答】(1)证明:∵△ABC和△DCE都是等腰直角三角形,∴∠ACD=∠ACB=90°,∴∠ACE=∠BCD.在△ACE和△BCD中,,∴△ACE≌△BCD(SAS);(2)解:∵△ACE≌△BCD,∴AE=BD,∠CBD=∠CAE=45°,又∵∠CAB=45°,∴∠DAE=∠CAB+∠CAE=90°.在Rt△ADE中,由勾股定理可知AD2+AE2=DE2,在Rt△CDE中,ED2=DC2+EC2=2DC2,∴AD===.【点评】本题考查了全等三角形的判定与性质,等腰直角三角形的性质,勾股定理,证明△ACE≌△BCD是解题的关键.21.(2020秋•钱塘区期末)已知∠A=60°,点B、C分别在∠A的两边上(不与点A重合),连接BC,作线段BC的垂直平分线;点D在∠A内部,且在△ABC外,线段BC的垂直平分线上,∠BDC=120°.(1)求证:BC=BD;(2)求证:AD平分∠BAC;(3)若BC=4,①当线段AB最大时,求四边形ABDC的面积;②在点B的移动过程中,直接写出AD的取值范围.【考点】全等三角形的判定与性质;四边形综合题;解直角三角形.【专题】几何综合题;推理能力.【分析】(1)过点D作DE⊥BC于E.利用等腰三角形的性质求解即可.(2)如图2中,连接AD,过点D作DE⊥AC于点E,作⊥DF⊥AB于F.证明△DEC ≌△DFB(AAS)推出DE=DF,可得结论.(3)①当BC⊥AC时,AB的值最大,求出AB的最大值,此时四边形ABDC的面积最大.②当AB最大时,AD的值最大,再求出当点C与A重合或点B与A重合时,AD=CD=4,可得结论.【解答】(1)证明:过点D作DE⊥BC于E.∵DC=DB,DE⊥CB,∴CE=EB,∠CDE=∠BDE=∠CDB=60°,∴∠DCE=∠DBE=30°,∴CD=2DE,∴EC===CD=BD,∴BC=2EC=BD.(2)证明:如图2中,连接AD,过点D作DE⊥AC于点E,作⊥DF⊥AB于F.∵∠EAF=60°,∠AED=∠AFD=90°,∴∠EDF=∠CDB=120°,∴∠CDE=∠FDB,在△DEC和△DFB中,,∴△DEC≌△DFB(AAS)∴DE=DF,∵DE⊥AE,DF⊥AB,∴AD平分∠CAB.(3)解:①当BC⊥AC时,AB的值最大,最大值AB=BC=8,此时AC=AB=4,四边形ABDC的面积=×4×4+×4×2=12.②当AD⊥BC时,AD的值最大,最大值为8,当点C与A重合或点B与A重合时,AD=CD=4,∴4<AD≤8.【点评】本题属于四边形综合题,考查了四边形的面积,全等三角形的判定和性质,解直角三角形等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题.22.(2020秋•上城区期末)已知一次函数y1=mx﹣2m+4(m≠0).(1)判断点(2,4)是否在该一次函数的图象上,并说明理由;(2)若一次函数y2=﹣x+6,当m>0,试比较函数值y1与y2的大小;(3)函数y1随x的增大而减小,且与y轴交于点A,若点A到坐标原点的距离小于6,点B,C的坐标分别为(0,﹣2),(2,1).求△ABC面积的取值范围.【考点】一次函数的性质;一次函数与一元一次不等式.【专题】一次函数及其应用;运算能力.【分析】(1)把点(2,4)代入解析式即可判断;(2)求得两直线的交点为(2,4),根据一次函数的性质即可比较函数值y1与y2的大小;(3)根据题意求得A的纵坐标的取值,然后根据三角形面积公式即可求得.【解答】解:(1)把x=2代入y1=mx﹣2m+4得,y1=2m﹣2m+4=4,∴点(2,4)在该一次函数的图象上;(2)∵一次函数y2=﹣x+6的图象经过点(2,4),点(2,4)在一次函数y1=mx﹣2m+4的图象上,∴一次函数y2=﹣x+6的图象与函数y1=mx﹣2m+4的图象的交点为(2,4),∵y2随x的增大而减小,y1随x的增大而增大,∴当x>2时,y1>y2;当x=2时,y1=y2;当x<2时,y1<y2;(3)由题意可知,﹣6<﹣2m+4<6且m<0,∴﹣1<m<0,∵点B,C的坐标分别为(0,﹣2),(2,1).∴1<AB<2,∴1<S△ABC<2.【点评】本题考查了一次函数与一元一次不等式,一次函数图象上点的坐标特征,三角形的面积,熟练掌握一次函数的性质是解题的关键.23.(2020秋•拱墅区期末)在平面直角坐标系中,一次函数y=kx+b(k,b是常数,且k ≠0)的图象经过点(2,1)和(﹣1,7).(1)求该函数的表达式;(2)若点P(a﹣5,3a)在该函数的图象上,求点P的坐标;(3)当﹣3<y<11时,求x的取值范围.【考点】一次函数的性质;一次函数图象上点的坐标特征;待定系数法求一次函数解析式.【专题】一次函数及其应用;运算能力.【分析】(1)利用待定系数法求一次函数解析式即可;(2)根据题意得出3a=﹣2(a﹣5)+5,解方程即可求得.(3)利用一次函数增减性得出即可.【解答】解:(1)一次函数y=kx+b(k,b是常数,且k≠0)的图象经过点(2,1)和(﹣1,7).∴,解得:,∴这个函数的解析式为:y=﹣2x+5;(2)∵点P(a﹣5,3a)在该函数的图象上,∴3a=﹣2(a﹣5)+5,解得a=3∴点P的坐标为(﹣2,9).(3)把y=﹣3代入y=﹣2x+5得,﹣3=﹣2x+5,解得x=4,把y=11代入y=﹣2x+5得,11=﹣2x+5,解得x=﹣3,∴x的取值范围是﹣3<x<4.【点评】本题考查了待定系数法求一次函数的解析式,一次函数图象上点的坐标特征,解题时注意:直线上任意一点的坐标都满足函数关系式y=kx+b.24.(2020秋•钱塘区期末)一次函数y1=(k﹣1)x+2k,y2=(1﹣k)x+k+1,其中k≠1.(1)判断点A(﹣2,2)是否在函数y1的图象上,并说明理由;(2)若函数y1与y2的图象交于点B,求点B的横坐标;(3)点C(a,m),D(a,n),分别在函数y1与y2的图象上,当k>1时,若CD<k ﹣1,求a的取值范围.【考点】一次函数的性质;一次函数图象上点的坐标特征.【专题】计算题;一次函数及其应用;运算能力.【分析】(1)把x=﹣2代入y1=(k﹣1)x+2k,求y的值即可判断;(2)函数y1与y2的图象相交,得y1=y2,解出x的值;(3)CD=|m﹣n|,再根据CD<k﹣1,求出a的取值范围.【解答】解:(1)A(﹣2,2)是在函数y1的图象上,把x=﹣2代入y1=(k﹣1)x+2k,得,y1=2,∴A(﹣2,2)是在函数y1的图象上;(2)∵函数y1与y2的图象交于点B,∴(k﹣1)x+2k=(1﹣k)x+k+1,解得x=﹣,(3)∵|m﹣n|=|(k﹣1)a+2k﹣(1﹣k)a﹣k﹣1|=|2(k﹣1)a+k﹣1|,∵k>1,∴|m﹣n|=(k﹣1)|2a+1|,∵CD<k﹣1,∴|(k﹣1)|2a+1|<k﹣1,∵k>1,∴k﹣1>0,∴|2a+1|<1,∴a的取值范围﹣1<a<0.【点评】本题考查了一次函数图象点的特征、一次函数的性质,掌握两个性质的熟练应用,函数y1与y2的图象相交,得y1=y2,CD=|m﹣n|,是解题关键.考点卡片1.解一元一次不等式根据不等式的性质解一元一次不等式基本操作方法与解一元一次方程基本相同,都有如下步骤:①去分母;②去括号;③移项;④合并同类项;⑤化系数为1.以上步骤中,只有①去分母和⑤化系数为1可能用到性质3,即可能变不等号方向,其他都不会改变不等号方向.注意:符号“≥”和“≤”分别比“>”和“<”各多了一层相等的含义,它们是不等号与等号合写形式.2.解一元一次不等式组(1)一元一次不等式组的解集:几个一元一次不等式的解集的公共部分,叫做由它们所组。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
八年级(上)数学期末模拟试卷2 第1页,共4页
八年级(上)数学期末模拟试卷2 第2页,共4页
长沙初中八年级(上)期末数学模拟试题2 (满分120分,考试时间:120分钟,考试范围:本册,出题人:郑喜钊)
一、选择题(每题3分,共30分) 1. 下列运算正确的是 ( )
A .1·23=÷a a a
B .33)(ab ab =
C .632)(a a =
D .5210a a a =÷ 2.已知x 、y 为实数,且3-x +3(y-4)2=0,则x-y 的值为 ( ) A .1 B .7 C . -1 D .-7
3.若31=-x x ,则221
x
x +的值为( )
A. 9
B. 7
C. 11
D. 6
4.下列的真命题中,它的逆命题也是真命题的有( )
①两直线平行,同旁内角互补;②等边三角形是锐角三角形;③两个图形关于某直线成轴对称,则这两个图形是全等图形;④若a=b ,则a 2
=b 2
;⑤平行四边形的对边相等 A.1个 B.2个 C.3个 D.4个
5.若2x x k -+是一个完全平方式,则k 的值为( )
A.14
B.14-
C.12-
D.12 6.在△ABC 和△DEF 中,已知AB=DE, ∠A=∠D ,若补充下列 条件中的一个,就能判定△ABC ≌△DEF 的是( ) ①AC=DF ②BC=EF ③∠
B=∠E ④∠C=
∠F
A. ①②③
B. ②③④
C.
①③④ D. ①②④ 7.如图,已知DE ⊥BC 于E
,BE=CE ,AB+AC=15, 则⊿ABD 的周长( )A.15 B.20 C.25 D.30 8.如右图,带阴影的矩形面积是( )平方厘米 A .9 B .24 C .45 D .51 9.下列各数中,是无理数的有( )
π, 3.1416-,137
22 ,0.54321 A .2个
B .3个
C .4个
D .5个
10.(x
2
+px+8)(x 2
-3x+q)乘积中不含x 2
项和x 3
项,则p,q 值 (
)
A.p=0,q=0
B.p=3,q=1 C .p=–
3, q=–9 D.p=–3,q=1
二、填空题 (每题3分,共30分)
11.计算:=⋅3
4
23x x ; )3
2(3y x x
--
=_______________.
12.如果(x -2)(x+3)=x 2+bx -6, 则
b= 13.(-0.125)
5
⨯86
=
14.若,
,则
的值是
15. 如图,
相交于点,,试添加一个条件使得,你添加的条件是_________(只需写一个).
16.若5x -3y -2=0,则y x 351010÷= .
17.已知:的值求22224,49)2(,1)2(b a b a b a +=-=+
18.已知 x ,y 是实数,且y=42-x +x 4-2+3,则x Y = 。
19.某宾馆打算在宽为2米的一段楼梯面上铺上地毯,台阶的侧面如图所示,如果这种地毯每平方米售价为80元,则购买这种地毯至少需要 元。
20.如图,长方体的长、宽、高分别为8cm ,4cm ,5cm 。
一只蚂蚁沿着长方体的表面从点A 爬到点B 。
则蚂蚁爬行的最短路径的长是 cm 。
三、简答题:(共60
分)
21.计算 :(每题4分,共8分)
(1) 3801.04
1
--+ (2)[(x+y )2-(x -y )2]÷(2xy)
22.分解因式(每小题4分,共8分):
(1)22ax ax a -+ (2) )()(2x y y x x -+-
20题图
E
D
C
B
A
15题图 19题图
八年级(上)数学期末模拟试卷2 第3页,共4页
八年级(上)数学期末模拟试卷2 第4页,共4页
D H G
F
E
A C
B
23.(本题6分)化简求值:()()()y x y x y x 3232322
-+--,其中x =31,y =-2
1
24.(本题7分)如图所示的一块地,已知AD=4m ,CD=3m , AD ⊥DC ,AB=13m ,BC=12m ,求这块地的面积。
25.(本题6分)求下列图形中阴影部分的面积:
(1)如图1,AB=8,AC=6; (2)如图2,AB=13,AD=14,CD=2.
26....(.本题..7.分.).如图,一架云梯长........25 m ...,斜靠在一面墙上,梯子靠墙的一端距地面...................24 m.(1).......这个梯子底端离墙有多少米?.............
(2)...如.果梯子的顶.....端下滑了....4 m ..,那么梯子的底部在水平方向也滑动了.................4 m ..吗?..
27.(本题7分)八年级(2)班同学为了解2012年某小区家庭月均用水情况,
随机调查了该小区部分家庭,并将调查数据进行如下整理, 请解答以下问题:
(1)把上面的频数分布表和频数分布直方图补充完整;
(2)该小区用水量不超过15t 的家庭占被调查家庭总数的百分比;
(3)若该小区有1000户家庭,根据调查数据估计,该小区月均用水量超过20t 的家庭大约有多少户?
28.(11分)已知:如图,ABC △中,45ABC ∠=°,CD AB ⊥于D ,BE 平分ABC ∠,且BE AC ⊥于E ,与CD 相交于点F H ,是BC 边的中点,连结DH 与BE 相交于
点G .(1)求证:BF AC =; (2)求证:1
2
CE BF =; (3)试探索CE ,GE ,BG 之间的数量关系,并证明你的结论.
月均用水量x (t) 频数(户) 频率 05x <≤ 6
0.12 510x <≤ 0.24 1015x <≤ 16 0.32 1520x <≤ 10 0.20 2025x <≤
4 2530x <≤
2 0.04 第20
题
月用水量(t)
A
D
C B。