卡方检验及校正卡方检验的计算

合集下载

卡方检验及校正卡方检验的计算

卡方检验及校正卡方检验的计算

2X 检验或卡方检验和校正卡方检验的计算私立广厦学校 郭捷思在教育学量的研究中,各种各样的统计方法已经被广泛的应用,特别是由于统计软件(如:SPSS )的不断成熟,给教育研究者提供了多种量的研究方法。

但是,这并不是无论什么量的研究都要通过统计软件来实现,也不是所有量的研究一定要运用统计软件才能快捷,简便的实现。

本文将教给大家几种简便的方法来实现卡方检验。

2X 检验(chi-square test )或称卡方检验方法可以根据样本数据,推断总体分布与期望分布或某一理论分布是否存在显著差异,是一种吻合性检验,通常适于对有多项分类值的总体分布的分析。

它的零假设是样本来自的总体分布与期望分布或某一理论分布无显著差异。

根据卡方检验基本思想的理论依据,对变量总体分布的检验就可以从对各个观察频数的分析入手。

为检验实际分布与理论分布(期望分布)之间是否存在显著差异,可采用卡方检验统计量。

典型的卡方统计量是pearson 卡方,其基本公式为:∑=-=ki o i e i o i f f f X 12)( 式中k 为子集个数,o f 为观察频数,e f 为期望频数,2X 服从k —1个自由度的卡方分布。

如果2X 值较大,则说明观测频数分布与期望频数分布差距较大;反之,如果2X 值较小,则说明观测频数分布与期望频数分布较接近。

我们将通过代入数据运算这条公式,计算出2X统计量的观测值,并依据卡方分布表计算观测值对应的概率p值。

下面,将通过几个实际例子来探究如何进行卡方检验。

一、四格表资料的卡方检验例1:某学校分别运用传统教学和多媒体教学在两个平行班的数学课上进行试验,目的为了检测两种教学方法对学生的成绩影响是否有差异。

本实验把学生的成绩划分为优秀人数(80分以上)和非优秀人数。

表1:两种教学方法学生成绩优秀率的比较表内这四个数据(斜体)是整个表中的基本资料,其余数据均由此推算出来;这四格资料表就专称四格表(fourfold table),或称2行2列表(2×2 contingency table)从该资料算出的;两种教学的优秀率分别为40%和68.6%,两者的差别可能是抽样误差所致,亦可能是两种教学效果确有所不同。

卡方检验及校正卡方检验的计算

卡方检验及校正卡方检验的计算

卡方检验及校正卡方检验的计算卡方检验是一种统计方法,用于比较一个样本中观察到的频数与期望频数之间的差异。

它适用于分析两个或更多个分类变量之间的关联性或独立性。

卡方统计量的计算方法如下:1.设置原假设(H0)和备择假设(Ha):-H0:观察到的频数与期望频数之间不存在差异,两个变量之间独立。

-Ha:观察到的频数与期望频数之间存在差异,两个变量之间存在关联。

2.构建列联表:- 将两个或多个分类变量的观察值按照行列交叉方式记录在一个称为列联表(Contingency Table)的表格中。

3.计算期望频数:-在H0条件下,计算每个单元格的期望频数。

-期望频数通过总频数除以总行数、总列数或总样本量再乘以各自的行或列的个数来计算。

4.计算卡方统计量:-将观察到的频数与期望频数之间的差异进行量化,可用卡方统计量来表示。

- 卡方统计量的计算方法为:卡方统计量 = sum((观察频数-期望频数)^2 / 期望频数)。

其中sum表示对所有的单元格进行累加。

5. 计算自由度(df):- 自由度是指用于计算卡方统计量时可以自由变动的数值个数。

对于2x2的列联表,自由度为1,对于更大的列联表,自由度为(df)=(行数-1) x (列数-1)。

6.查找临界值:-根据所设定的显著性水平(通常为0.05),查找临界值。

以自由度和显著性水平为参数,在卡方分布表中查找对应的临界值。

7.比较卡方统计量和临界值:-如果计算得到的卡方统计量大于临界值,则拒绝原假设,即观察到的差异是显著的,变量之间存在关联。

-如果计算得到的卡方统计量小于临界值,则接受原假设,即观察到的差异不是显著的,变量之间独立。

校正卡方检验是针对样本容量较小的情况进行的一种修正卡方检验方法。

当使用传统卡方检验时,如果期望频数过低或者有一些单元格的期望频数小于5,那么卡方统计量的计算结果可能不准确。

此时,可以使用校正卡方检验方法,通过修正期望频数来避免这个问题。

校正卡方检验的计算方法如下:1.构建列联表和计算期望频数与卡方统计量的步骤与传统卡方检验相同。

卡平方测验公式

卡平方测验公式

卡平方测验公式
卡方检验(Chi-Square Test)是一种常用于统计学研究中的检验方法,用于判断两个分类变量之间是否存在关联性。

卡方检验的公式为:
χ²=Σ(Oi−Ei)²/Ei
其中,χ²代表卡方值,Oi代表观察值,Ei代表期望值。

观察值是指实际观察到的数据,期望值是指在假设两个变量没有关联的情况下,根据样本的总数和各分类的比例计算出的预期值。

卡方检验的原理是比较观察值与期望值的差异是否显著。

如果观察值与期望值的差异很大,就表明两个变量之间存在关联性,并且卡方值会很大。

如果差异不显著,就表明两个变量之间没有关联性,并且卡方值会接近于0。

在实际应用中,卡方检验常用于分析定类变量之间的关系。

例如,研究不同性别对健康状况的影响,可以将性别和健康状况分别作为两个分类变量,并通过卡方检验来确定它们之间是否存在关联性。

卡方检验的计算步骤

卡方检验的计算步骤

卡方检验的计算步骤
卡方检验是一种常用的统计学方法,用于检验两个或多个分类变量之间是否存在显著的关联性。

以下是卡方检验的计算步骤:
1.提出假设:根据研究问题,确定检验的假设,通常有两个假设:
-H0:两个分类变量之间不存在关联性;
-H1:两个分类变量之间存在关联性。

2.计算期望频数:根据样本数据,计算每个单元格(即每个交叉分类)的期望频数。

期望频数等于每个类别在样本中的频率乘以总样本量。

3.计算卡方值:根据期望频数和实际频数,计算卡方值。

卡方值的计算公式为:
其中,O表示实际频数,E表示期望频数。

4.确定自由度:卡方检验的自由度等于行数减去1乘以列数减去1。

5.查找临界值:根据自由度和显著性水平(通常为0.05或0.01),查找卡方分布表中的临界值。

6.作出决策:如果卡方值大于临界值,则拒绝H0,接受H1,认为两个分类变量之间存在关联性。

如果卡方值小于临界值,则不能拒绝H0,认为两个分类变量之间不存在关联性。

需要注意的是,在进行卡方检验时,需要注意样本量是否足够大,以及分类变量的类别是否存在不均衡的情况。

如果存在这些情况,可能会导致检验结果不准确。

x2检验或卡方检验和校正卡方检验的计算

x2检验或卡方检验和校正卡方检验的计算

x2检验或卡方检验和校正卡方检验的计算x2检验(chi-square test)或称卡方检验x2检验(chi-square test)或称卡方检验,是一种用途较广的假设检验方法。

可以分为成组比较(不配对资料)和个别比较(配对,或同一对象两种处理的比较)两类。

一、四格表资料的x2检验例20.7某医院分别用化学疗法和化疗结合放射治疗卵巢癌肿患者,结果如表20-11,问两种疗法有无差别?表20-11 两种疗法治疗卵巢癌的疗效比较组别有效无效合计有效率(%)化疗组19 24 43 44.2 化疗加放疗组34 10 44 77.3合计53 34 87 60.9表内用虚线隔开的这四个数据是整个表中的基本资料,其余数据均由此推算出来;这四格资料表就专称四格表(fourfold table),或称2行2列表(2×2 contingency table)从该资料算出的两种疗法有效率分别为44.2%和77.3%,两者的差别可能是抽样误差所致,亦可能是两种治疗有效率(总体率)确有所不同。

这里可通过x2检验来区别其差异有无统计学意义,检验的基本公式为:式中A为实际数,以上四格表的四个数据就是实际数。

T为理论数,是根据检验假设推断出来的;即假设这两种卵巢癌治疗的有效率本无不同,差别仅是由抽样误差所致。

这里可将两种疗法合计有效率作为理论上的有效率,即53/87=60.9%,以此为依据便可推算出四格表中相应的四格的理论数。

兹以表20-11资料为例检验如下。

检验步骤:1.建立检验假设:H0:π1=π2H1:π1≠π2α=0.052.计算理论数(TRC),计算公式为:TRC=nR.nc/n 公式(20.13)式中TRC是表示第R行C列格子的理论数,nR为理论数同行的合计数,nC为与理论数同列的合计数,n为总例数。

第1行1列: 43×53/87=26.2第1行2列: 43×34/87=16.8第2行1列: 44×53/87=26.8第2行2列: 4×34/87=17.2以推算结果,可与原四项实际数并列成表20-12:表20-12 两种疗法治疗卵巢癌的疗效比较因为上表每行和每列合计数都是固定的,所以只要用TRC式求得其中一项理论数(例如T1.1=26.2),则其余三项理论数都可用同行或同列合计数相减,直接求出,示范如下:T1.1=26.2T1.2=43-26.2=16.8T2.1=53-26.2=26.8T2.2=44-26.2=17.23.计算x2值按公式20.12代入4.查x2值表求P值在查表之前应知本题自由度。

卡方检验 公式

卡方检验 公式

卡方检验公式卡方检验,也称卡方分布检验,是一种常用的假设检验方法,用于检验两个分类变量之间是否存在相关性。

在统计学中,卡方检验是基于卡方分布的检验方法,用于比较实际观察值与理论期望值之间的差异。

卡方检验的原理是比较观察到的频数与期望的频数之间的差异,以判断两个变量是否相关。

它通过计算观察频数与期望频数之间的卡方值,然后根据卡方分布的概率密度函数计算出对应的P值,进而判断两个变量之间的关联性。

卡方检验的公式可以表示为:卡方值(X^2) = Σ (观察频数-期望频数)^2 / 期望频数其中,Σ表示求和,观察频数和期望频数分别表示对应格子中的实际观察值和理论期望值。

在进行卡方检验时,首先需要根据实际数据计算出期望频数。

期望频数是基于某种假设模型计算得出的,它表示在变量之间不存在相关性的情况下,每个分类中的期望频数。

然后,将观察频数和期望频数代入公式中进行计算,得出卡方值。

接下来,需要根据卡方值的大小来判断两个变量之间的关联性。

通常情况下,我们会将卡方值与临界值进行比较。

临界值是根据给定的显著性水平和自由度确定的,用于判断卡方值是否显著。

如果计算得到的卡方值大于临界值,则拒绝原假设,即认为两个变量之间存在相关性;反之,则接受原假设,即认为两个变量之间不存在相关性。

卡方检验的应用非常广泛。

例如,在医学研究中,可以使用卡方检验来判断某种疾病与某种基因型之间是否存在关联;在市场调研中,可以使用卡方检验来分析不同年龄段人群对某个产品的偏好程度;在教育评估中,可以使用卡方检验来比较不同教学方法对学生成绩的影响。

需要注意的是,卡方检验有一些前提条件。

首先,变量应为分类变量,而不是连续变量;其次,观察频数应满足一定的要求,例如每个格子中的观察频数应大于5;最后,卡方检验对样本容量要求较高,当样本容量较小时,卡方检验的结果可能不准确。

卡方检验是一种用于检验两个分类变量之间相关性的假设检验方法。

通过计算卡方值和P值,可以判断两个变量之间是否存在关联。

卡方检验的p值计算公式

卡方检验的p值计算公式

卡方检验的p值计算公式
卡方检验对于一个样本的卡方值,其p值可以用如下公式计算:p值= 1 - F(卡方值,自由度)
其中,F为卡方分布的累积分布函数,需要根据自由度和显著水平进行相应的查表或计算。

一般而言,自由度为样本数量减1。

如果计算出的p值小于设定的显著水平,就拒绝原假设。

需要注意的是,卡方检验并不适用于所有形式的数据。

它通常被用来研究离散变量之间的关系,例如性别和健康状态之间的关系,或者不同年龄组的吸烟率之间的关系等。

对于连续变量的研究,其他方法(例如t检验)通常是更合适的选择。

除了单个样本的卡方检验,还可以进行跨组的卡方检验。

例如,可以用卡方检验来研究两个伴侣之间是否有某种偏好的相似性,或者不同社会群体中是否有某种特定行为的差异等。

在这种情况下,需要根据两个或更多的组之间的卡方值和自由度来计算p值。

总之,卡方检验是一种用于研究离散变量之间关系的统计方法,其p值可以用相应的卡方分布计算公式来计算。

适用范围广泛,但要根据数据类型和研究问题进行相应的选择和解释。

卡方检验及校正卡方检验的计算

卡方检验及校正卡方检验的计算

卡方检验及校正卡方检验的计算卡方检验(Chi-squared test)是一种用于比较观察值与期望值之间的差异是否显著的统计方法。

它可以用于分析两个或多个分类变量之间的关联性或独立性。

卡方检验的原假设是观察值与期望值没有显著差异,备择假设是它们有显著差异。

在进行卡方检验之前,需要计算期望值以比较与观察值的差异。

这可以通过以下步骤完成:1.建立假设:首先,建立原假设和备择假设。

原假设通常假设两个变量之间没有关联性或独立性,备择假设则是它们之间存在关联性或独立性。

2.计算期望频数:对于给定的样本数据,可以计算出每个分类变量的期望频数。

期望频数是基于原假设计算出来的,它表示了在原假设成立的情况下,每个分类变量中的期望观察值数量。

3.计算卡方值:卡方值是观察频数与期望频数的差异的平方的总和除以期望频数的总和。

卡方值越大,观察值与期望值之间的差异越大,意味着更有可能拒绝原假设。

4.确定自由度:自由度是用于计算卡方分布的参数。

对于二维列联表(2x2),自由度为1;对于更大的列联表,自由度为(行数-1)x(列数-1)。

5.判断统计显著性:根据自由度和卡方值,可以查找卡方分布表以确定观察值与期望值之间的差异是否显著。

如果卡方值大于临界值,则可以拒绝原假设,认为观察值与期望值之间存在显著差异。

校正卡方检验(Adjusted Chi-squared test)是对卡方检验的改进,它通过应用连续性修正或其他修正方法来解决离散数据中的小样本问题。

当样本容量较小时,卡方检验可能会产生不准确的结果,因为期望频数可能会小于5,从而违反了卡方检验的假设条件。

校正卡方检验的计算步骤与普通卡方检验类似,但需要应用修正方法来计算期望频数。

修正方法可以是连续性校正(continuity correction)、费希尔校正(Fisher's exact test)或模拟校正(simulation correction)等。

连续性校正是在计算期望频数时,对每个单元格中的观察频数进行微小的调整。

x2检验或卡方检验和校正卡方检验的计算

x2检验或卡方检验和校正卡方检验的计算

x2检验或卡方检验和校正卡方检验的计算x2检验(chi-square test )或称卡方检验x2检验(chi-square test )或称卡方检验,是一种用途较广的假设检验方法。

可以分为成组比较(不配对资料)和个别比较(配对,或同一对象两种处理的比较)两类。

一、四格表资料的x2检验例20.7某医院分别用化学疗法和化疗结合放射治疗卵巢癌肿患者,结果如表20-11,问两种疗法有无差别?表20-11两种疗法治疗卵巢癌的疗效比较表内用虚线隔开的这四个数据是整个表中的基本资料,其余数据均由此推算出来;这四格资料表就专称四格表( fourfold table ),或称2行2列表(2X 2 contingency table )从该资料算出的两种疗法有效率分别为44.2%和77.3%,两者的差别可能是抽样误差所致,亦可能是两种治疗有效率(总体率)确有所不同。

这里可通过x2检验来区别其差异有无统计学意义,检验的基本公式为:£ (A_T,式中A为实际数,以上四格表的四个数据就是实际数。

T为理论数,是根据检验假设推断出来的;即假设这两种卵巢癌治疗的有效率本无不同,差别仅是由抽样误差所致。

这里可将两种疗法合计有效率作为理论上的有效率,即53/87=60.9%,以此为依据便可推算出四格表中相应的四格的理论数。

兹以表20-11资料为例检验如下。

检验步骤:1.建立检验假设:H0 : n 1= n 2H1 : n 1 工n 2a =0.052•计算理论数(TRC,计算公式为:TRC=nR.nc/n 公式(20.13 )式中TRC是表示第R行C列格子的理论数,nR为理论数同行的合计数,nC为与理论数同列的合计数,n为总例数。

第 1 行 1 列:43 X 53/87=26.2第 1 行 2 列:43 X 34/87=16.8第 2 行 1 列:44 X 53/87=26.8第 2 行 2 列:4 X 34/87=17.2以推算结果,可与原四项实际数并列成表20-12 :表20-12两种疗法治疗卵巢癌的疗效比较因为上表每行和每列合计数都是固定的, 所以只要用TRC 式求得其中一项理论数(例如T1.仁26.2 ),则其余三项理论数都可用同行或同列合计数相减,直接求出,示范 如下:T1.1=26.2 T1.2=43-26.2=16.8 T2.1=53-26.2=26.8 T2.2=44-26.2=17.23•计算x2值按公式20.12代入X y- (d —7")" _____ (19—26*2尸 I (24一 t6- B)* . (34™2G• 8)1丁 26.2 "TeTa" 26. 84.查x2值表求P 值在查表之前应知本题自由度。

卡方检验的公式

卡方检验的公式

卡方检验的公式卡方检验是一种常用的统计方法,用于检验两个或多个分类变量之间的关系是否显著。

它的原理是比较实际观察值和期望理论值之间的差异,以判断两个变量之间是否存在显著性关系。

在本文中,我们将介绍卡方检验的公式以及如何使用它来进行统计分析。

一、卡方检验的基本原理卡方检验的基本原理是比较实际观察值和期望理论值之间的差异,以判断两个变量之间是否存在显著性关系。

在进行卡方检验时,需要先提出一个假设,即零假设和备择假设。

零假设是指两个变量之间不存在显著性关系,备择假设是指两个变量之间存在显著性关系。

卡方检验的步骤如下:1. 收集数据,将数据按照分类变量进行分组。

2. 计算实际观察值和期望理论值。

3. 计算卡方值。

4. 根据卡方值和自由度,求出p值。

5. 判断p值是否小于显著性水平,如果小于,则拒绝零假设,接受备择假设,说明两个变量之间存在显著性关系。

二、卡方检验的公式卡方检验的公式如下:卡方值 = ∑ [(Oi - Ei)2 / Ei]其中,Oi是实际观察值,Ei是期望理论值。

期望理论值的计算公式如下:Ei = (Ai × Bi) / n其中,Ai是第i行的总计数,Bi是第i列的总计数,n是总样本数。

卡方检验的自由度的计算公式如下:自由度 = (行数 - 1) × (列数 - 1)三、卡方检验的应用卡方检验的应用非常广泛,例如:1. 通过卡方检验,可以检验两个变量之间是否存在显著性关系,例如,检验男女性别和喜欢的运动项目之间是否存在关系。

2. 通过卡方检验,可以检验一个变量在不同组之间是否存在显著性差异,例如,检验不同年龄段的人在购买力方面是否存在显著性差异。

3. 通过卡方检验,可以检验一个变量在时间序列上是否存在显著性差异,例如,检验不同季节的销售额是否存在显著性差异。

四、卡方检验的注意事项在进行卡方检验时,需要注意以下几点:1. 样本量要足够大,否则卡方检验的结果可能不准确。

2. 数据需要按照分类变量进行分组,否则卡方检验的结果可能不准确。

卡方检验的简单计算方法

卡方检验的简单计算方法

卡方检验的简单计算方法卡方检验是用来检验两个分类变量之间是否存在关联的统计方法。

它的原理是通过比较实际观察值与期望理论值之间的差异,判断二者是否相似,从而判断两个变量之间是否存在关联。

在进行卡方检验的计算中,需要进行以下几个步骤:1.假设和设定卡方检验需要假设两个分类变量之间没有关联,这是零假设,即H0:两个变量之间没有关联。

备择假设是H1:两个变量之间存在关联。

2.构建列联表列联表是用来整理并展示两个变量的分布情况的一个表格。

将两个变量的所有可能取值组合成一个表格,结合样本数据,填写各个单元格的频数。

3.计算期望理论值根据零假设,假设两个变量之间没有关联,可以根据边际总和和各个单元格的分布情况,计算得到期望理论值。

期望理论值的计算公式为:期望理论值=(行边际总和*列边际总和)/总样本量。

4.计算卡方值卡方值是衡量实际观察值与期望理论值之间差异的统计量。

卡方值的计算公式为:X²=Σ((观察值-期望值)²/期望值)。

5.确定自由度自由度是指变量可以独立取值的数量。

计算自由度的公式为:自由度=(行数-1)*(列数-1)。

自由度的确定对后续卡方分布的查表有重要意义。

6.查表确定临界值根据自由度,可以查找卡方分布表,找到对应的临界值,即卡方临界值。

卡方临界值是用来判断是否拒绝零假设的标准。

7.比较计算值与临界值将计算得到的卡方值与查表得到的卡方临界值进行比较。

如果计算值大于临界值,则拒绝零假设,即两个变量之间存在关联。

8.统计意义和结论根据卡方检验的结果,可以得出两个变量之间是否存在关联的结论。

如果拒绝了零假设,则说明两个变量之间存在关联;否则,无法得出关联的结论。

需要注意的是,卡方检验的计算只能对两个分类变量之间的关联性进行检验,如果变量间的关系为线性关系,则可以使用相关分析或回归分析等方法进行更详细的分析。

另外,在实际使用中,可以使用统计软件进行卡方检验的计算,避免繁琐的手工计算过程。

卡方检验的简单计算方法

卡方检验的简单计算方法

卡方检验的简单计算方法卡方检验是一种用于确定两个分类变量之间是否相关的统计方法。

它可以用于比较观察到的频率和期望频率之间的差异。

本文将介绍卡方检验的简单计算方法。

假设我们有一个包含两个分类变量的二维表格,例如性别和喜好的调查结果如下:```喜欢不喜欢总计男性503080女性402060总计9050140```我们的目标是研究性别和喜好之间是否存在关联。

首先,我们需要计算每个单元格的期望频率。

期望频率是根据总样本量计算得出的预期值。

在这个例子中,我们可以通过以下公式计算期望频率:```期望频率=(每个行的总计/总样本量)*每个列的总计```由于总样本量为140,我们可以计算出每个单元格的期望频率:```期望频率(男性,喜欢)=(80/140)*90=51.43期望频率(男性,不喜欢)=(80/140)*50=28.57期望频率(女性,喜欢)=(60/140)*90=38.57期望频率(女性,不喜欢)=(60/140)*50=21.43```接下来,我们需要计算卡方值,该值可以通过以下公式得出:```卡方值=Σ[(观察频率-期望频率)^2/期望频率]```我们将计算每个单元格的观察频率与期望频率之差的平方然后除以期望频率,再将所有单元格的计算结果相加即可:```卡方值=[(50-51.43)^2/51.43]+[(30-28.57)^2/28.57]+[(40-38.57)^2/38.57]+[(20-21.43)^2/21.43]=0.027+0.044+0.027+0.044=0.142```最后,我们需要根据卡方值和自由度来确定卡方检验的结果。

自由度是通过表格的行数和列数计算得出的。

在这个例子中,自由度为(行数-1)*(列数-1)=(2-1)*(2-1)=1我们可以根据卡方值和自由度查询卡方分布表来确定结果。

在显著性水平为0.05的情况下,当卡方值大于临界值3.84时,我们可以拒绝原假设,即得出结论性别和喜好之间存在关联。

x2检验或卡方检验和校正卡方检验的计算

x2检验或卡方检验和校正卡方检验的计算

x2检验或卡方检验和校正卡方检验的计算x2检验(chi-square test)或称卡方检验x2检验(chi-square test)或称卡方检验,是一种用途较广的假设检验方法。

可以分为成组比较(不配对资料)和个别比较(配对,或同一对象两种处理的比较)两类。

一、四格表资料的x2检验例20.7某医院分别用化学疗法和化疗结合放射治疗卵巢癌肿患者,结果如表20-11,问两种疗法有无差别?表20-11 两种疗法治疗卵巢癌的疗效比较表内用虚线隔开的这四个数据是整个表中的基本资料,其余数据均由此推算出来;这四格资料表就专称四格表(fourfold table),或称2行2列表(2×2 contingency table)从该资料算出的两种疗法有效率分别为44.2%和77.3%,两者的差别可能是抽样误差所致,亦可能是两种治疗有效率(总体率)确有所不同。

这里可通过x2检验来区别其差异有无统计学意义,检验的基本公式为:式中A为实际数,以上四格表的四个数据就是实际数。

T为理论数,是根据检验假设推断出来的;即假设这两种卵巢癌治疗的有效率本无不同,差别仅是由抽样误差所致。

这里可将两种疗法合计有效率作为理论上的有效率,即53/87=60.9%,以此为依据便可推算出四格表中相应的四格的理论数。

兹以表20-11资料为例检验如下。

检验步骤:1.建立检验假设:H0:π1=π2H1:π1≠π2α=0.052.计算理论数(TRC),计算公式为:TRC=nR.nc/n 公式(20.13)式中TRC是表示第R行C列格子的理论数,nR为理论数同行的合计数,nC为与理论数同列的合计数,n为总例数。

第1行1列:43×53/87=26.2第1行2列:43×34/87=16.8第2行1列:44×53/87=26.8第2行2列:4×34/87=17.2以推算结果,可与原四项实际数并列成表20-12:表20-12 两种疗法治疗卵巢癌的疗效比较因为上表每行和每列合计数都是固定的,所以只要用TRC式求得其中一项理论数(例如T1.1=26.2),则其余三项理论数都可用同行或同列合计数相减,直接求出,示范如下:T1.1=26.2T1.2=43-26.2=16.8T2.1=53-26.2=26.8T2.2=44-26.2=17.23.计算x2值按公式20.12代入4.查x2值表求P值在查表之前应知本题自由度。

卡方检验基本公式检验方法

卡方检验基本公式检验方法

卡方检验基本公式检验方法卡方检验(Chi-square test)是一种常用的统计方法,用于检验观察值与理论预期值之间的差异是否显著。

它适用于分类变量或频数数据的分析,广泛应用于生物医学研究、社会科学调查、市场调研等领域。

本文将介绍卡方检验的基本公式和检验方法。

1. 卡方检验的基本公式在进行卡方检验之前,我们需要先了解几个基本公式。

1.1 观察频数(O)观察频数指的是实际观察到的频数,也就是实际测量或观察得到的数据。

通常用O表示。

1.2 理论频数(E)理论频数是根据假设或理论计算得到的预期频数,用于与观察频数进行比较。

通常用E表示。

1.3 卡方值(χ²)卡方值是通过观察频数和理论频数的比较计算得到的统计量,用于衡量观察值和理论值之间的差异程度。

卡方值的计算公式为:χ² = Σ [(O - E)² / E]其中,Σ表示对所有分类或组别进行求和。

2. 卡方检验的检验方法卡方检验的检验方法主要分为以下几步:2.1 建立假设在进行卡方检验之前,需要明确要进行的假设检验类型,包括原假设(H0)和备择假设(H1)。

原假设通常是没有差异或关联,备择假设则是存在差异或关联。

2.2 计算卡方值根据观察频数和理论频数的公式,计算出卡方值。

2.3 确定自由度自由度是卡方分布中的参数,它与样本量及分类数相关。

自由度的计算公式为:df = (r - 1) * (c - 1)其中,r表示行数,c表示列数。

2.4 查表确定临界值根据所选的显著性水平和自由度,查找卡方分布表中的临界值。

显著性水平通常选择0.05或0.01,表示可接受的异常结果的概率。

2.5 判断是否显著比较计算得到的卡方值和临界值,根据比较结果来判断是否拒绝原假设。

如果计算得到的卡方值大于临界值,则拒绝原假设,认为存在差异或关联。

反之,如果计算得到的卡方值小于临界值,则接受原假设,认为没有差异或关联。

3. 实例分析为了更好地理解卡方检验的基本公式和检验方法,我们将进行一个简单的实例分析。

2检验或卡方检验和校正卡方检验地计算

2检验或卡方检验和校正卡方检验地计算

x2检验或卡方检验和校正卡方检验的计算x2检验(chi-square test)或称卡方检验x2检验(chi-square test)或称卡方检验,是一种用途较广的假设检验方法。

可以分为成组比较(不配对资料)和个别比较(配对,或同一对象两种处理的比较)两类。

一、四格表资料的x2检验例20.7某医院分别用化学疗法和化疗结合放射治疗卵巢癌肿患者,结果如表20-11,问两种疗法有无差别?表20-11 两种疗法治疗卵巢癌的疗效比较表内用虚线隔开的这四个数据是整个表中的基本资料,其余数据均由此推算出来;这四格资料表就专称四格表(fourfold table),或称2行2列表(2×2 contingency table)从该资料算出的两种疗法有效率分别为44.2%和77.3%,两者的差别可能是抽样误差所致,亦可能是两种治疗有效率(总体率)确有所不同。

这里可通过x2检验来区别其差异有无统计学意义,检验的基本公式为:式中A为实际数,以上四格表的四个数据就是实际数。

T为理论数,是根据检验假设推断出来的;即假设这两种卵巢癌治疗的有效率本无不同,差别仅是由抽样误差所致。

这里可将两种疗法合计有效率作为理论上的有效率,即53/87=60.9%,以此为依据便可推算出四格表中相应的四格的理论数。

兹以表20-11资料为例检验如下。

检验步骤:1.建立检验假设:H0:π1=π2H1:π1≠π2α=0.052.计算理论数(TRC),计算公式为:TRC=nR.nc/n 公式(20.13)式中TRC是表示第R行C列格子的理论数,nR为理论数同行的合计数,nC为与理论数同列的合计数,n为总例数。

第1行1列:43×53/87=26.2第1行2列:43×34/87=16.8第2行1列:44×53/87=26.8第2行2列:4×34/87=17.2以推算结果,可与原四项实际数并列成表20-12:表20-12 两种疗法治疗卵巢癌的疗效比较因为上表每行和每列合计数都是固定的,所以只要用TRC式求得其中一项理论数(例如T1.1=26.2),则其余三项理论数都可用同行或同列合计数相减,直接求出,示范如下:T1.1=26.2T1.2=43-26.2=16.8T2.1=53-26.2=26.8T2.2=44-26.2=17.23.计算x2值按公式20.12代入4.查x2值表求P值在查表之前应知本题自由度。

卡方检验的四个基本公式

卡方检验的四个基本公式

卡方检验的四个基本公式
卡方检验是一种常用的统计方法,用于确定两个分类变量之间是否存
在显著关联。

卡方检验的基本原理是比较实际观察值与理论期望值之间的
差异来评估变量之间的关联程度,其计算方式比较复杂,涉及到以下四个
基本公式。

1.观察频数(O):即实际观测到的各类别频数,用于表示实际观察
到的数据。

2.理论频数(E):在变量之间没有关联的假设条件下,根据样本数
据的边际总和计算得到的预期的各类别频数,用于表示期望的频数。

3.卡方值(X2):用于衡量实际观察值与理论期望值之间的差异程度。

其计算公式为:
X2=Σ((O-E)^2/E)
其中O为观察频数,E为理论频数,Σ表示对所有类别进行求和。


和的目的是将各个类别的差异综合起来,以获取一个总体的卡方值。

4. 自由度(df):卡方检验中自由度表示在计算中有多少个自由变量。

自由度的计算公式为:
df = (r - 1) × (c - 1)
其中r表示行数,c表示列数。

自由度是用来调整卡方值的大小以适
应样本数量的影响,从而更准确地评估变量之间的关联程度。

这四个基本公式构成了卡方检验的核心,通过计算观察频数、理论频数、卡方值和自由度,可以对两个分类变量之间的关联进行检验,并判断
其是否显著。

通常会将计算得到的卡方值与临界值进行比较,如果卡方值
大于临界值,则可以拒绝无关联的假设,认为两个变量之间存在显著关联。

卡方计算公式和例题

卡方计算公式和例题

卡方计算公式和例题
卡方检验是一种统计方法,用于确定两个分类变量之间是否存在相关性。

卡方检验的计算公式如下:
卡方值(χ²)= Σ [(观察频数期望频数)² / 期望频数]
其中,Σ代表求和符号,观察频数是实际观察到的频数,期望频数是根据假设的分布计算出来的期望频数。

举个例子来说明卡方检验的计算过程:
假设我们有一个调查数据,想要确定性别和喜欢的音乐类型之间是否存在相关性。

我们观察到男性中喜欢流行音乐的人数为50,期望频数为40;喜欢古典音乐的人数为30,期望频数为35。

女性中喜欢流行音乐的人数为60,期望频数为55;喜欢古典音乐的人数为40,期望频数为45。

现在我们可以使用上面的卡方计算公式来计算卡方值。

首先计算每个单元格的(观察频数期望频数)² / 期望频数,然后将所有单元格的计算结果相加,得到卡方值。

最后,根据自由
度和显著性水平查找卡方分布表,确定卡方统计量的临界值,从而
进行假设检验,判断两个变量之间是否存在相关性。

总之,卡方检验是一种重要的统计方法,用于确定分类变量之
间的相关性,通过计算观察频数和期望频数之间的差异来进行判断。

希望这个例子能帮助你更好地理解卡方检验的计算过程。

2检验或卡方检验和校正卡方检验地计算

2检验或卡方检验和校正卡方检验地计算

x2检验或卡方检验和校正卡方检验的计算x2检验(chi-square test)或称卡方检验x2检验(chi-square test)或称卡方检验,是一种用途较广的假设检验方法。

可以分为成组比较(不配对资料)和个别比较(配对,或同一对象两种处理的比较)两类。

一、四格表资料的x2检验例20.7某医院分别用化学疗法和化疗结合放射治疗卵巢癌肿患者,结果如表20-11,问两种疗法有无差别?表20-11 两种疗法治疗卵巢癌的疗效比较组别有效无效合计有效率(%)化疗组19 24 43 44.2 化疗加放疗组34 10 44 77.3合计53 34 87 60.9表内用虚线隔开的这四个数据是整个表中的基本资料,其余数据均由此推算出来;这四格资料表就专称四格表(fourfold table),或称2行2列表(2×2 contingency table)从该资料算出的两种疗法有效率分别为44.2%和77.3%,两者的差别可能是抽样误差所致,亦可能是两种治疗有效率(总体率)确有所不同。

这里可通过x2检验来区别其差异有无统计学意义,检验的基本公式为:式中A为实际数,以上四格表的四个数据就是实际数。

T为理论数,是根据检验假设推断出来的;即假设这两种卵巢癌治疗的有效率本无不同,差别仅是由抽样误差所致。

这里可将两种疗法合计有效率作为理论上的有效率,即53/87=60.9%,以此为依据便可推算出四格表中相应的四格的理论数。

兹以表20-11资料为例检验如下。

检验步骤:1.建立检验假设:H0:π1=π2H1:π1≠π2α=0.052.计算理论数(TRC),计算公式为:TRC=nR.nc/n 公式(20.13)式中TRC是表示第R行C列格子的理论数,nR为理论数同行的合计数,nC为与理论数同列的合计数,n为总例数。

第1行1列: 43×53/87=26.2第1行2列: 43×34/87=16.8第2行1列: 44×53/87=26.8第2行2列: 4×34/87=17.2以推算结果,可与原四项实际数并列成表20-12:表20-12 两种疗法治疗卵巢癌的疗效比较因为上表每行和每列合计数都是固定的,所以只要用TRC式求得其中一项理论数(例如T1.1=26.2),则其余三项理论数都可用同行或同列合计数相减,直接求出,示范如下:T1.1=26.2T1.2=43-26.2=16.8T2.1=53-26.2=26.8T2.2=44-26.2=17.23.计算x2值按公式20.12代入4.查x2值表求P值在查表之前应知本题自由度。

23卡方检验公式

23卡方检验公式

2×3卡方检验公式
卡方检验公式是用于检验两个分类变量之间是否存在相关性的统计方法。

对于一个2×3的列联表,卡方检验的公式如下:
卡方值(χ²)= Σ (观察频数 - 期望频数)² / 期望频数
其中,观察频数是指实际观察到的每个单元格中的频数,期望频数是指在两个变量之间不存在相关性的情况下,每个单元格中的预期频数。

具体计算步骤如下:
1. 计算每个单元格的期望频数。

期望频数可以通过以下公式计算:期望频数 = (行总频数× 列总频数) / 总频数
2. 计算每个单元格的观察频数与期望频数之差的平方。

即 (观察频数 - 期望频数)²
3. 将所有单元格的观察频数与期望频数之差的平方相加,得到Σ (观察频数 - 期望频数)²
4. 将Σ (观察频数 - 期望频数)²除以期望频数,得到卡方值(χ²)。

根据卡方值的大小和自由度,可以查找卡方分布表来确定是否存在显著性差异。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2X 检验或卡方检验和校正卡方检验的计算私立广厦学校 郭捷思在教育学量的研究中,各种各样的统计方法已经被广泛的应用,特别是由于统计软件(如:SPSS )的不断成熟,给教育研究者提供了多种量的研究方法。

但是,这并不是无论什么量的研究都要通过统计软件来实现,也不是所有量的研究一定要运用统计软件才能快捷,简便的实现。

本文将教给大家几种简便的方法来实现卡方检验。

2X 检验(chi-square test )或称卡方检验方法可以根据样本数据,推断总体分布与期望分布或某一理论分布是否存在显著差异,是一种吻合性检验,通常适于对有多项分类值的总体分布的分析。

它的零假设是样本来自的总体分布与期望分布或某一理论分布无显著差异。

根据卡方检验基本思想的理论依据,对变量总体分布的检验就可以从对各个观察频数的分析入手。

为检验实际分布与理论分布(期望分布)之间是否存在显著差异,可采用卡方检验统计量。

典型的卡方统计量是pearson 卡方,其基本公式为:∑=-=ki oi e i o i f f f X 12)( 式中k 为子集个数,o f 为观察频数,e f 为期望频数,2X 服从k —1个自由度的卡方分布。

如果2X 值较大,则说明观测频数分布与期望频数分布差距较大;反之,如果2X 值较小,则说明观测频数分布与期望频数分布较接近。

我们将通过代入数据运算这条公式,计算出2X 统计量的观测值,并依据卡方分布表计算观测值对应的概率p 值。

下面,将通过几个实际例子来探究如何进行卡方检验。

一、四格表资料的卡方检验例1:某学校分别运用传统教学和多媒体教学在两个平行班的数学课上进行试验,目的为了检测两种教学方法对学生的成绩影响是否有差异。

本实验把学生的成绩划分为优秀人数(80分以上)和非优秀人数。

表1:两种教学方法学生成绩优秀率的比较表内这四个数据(斜体)是整个表中的基本资料,其余数据均由此推算出来;这四格资料表就专称四格表(fourfold table),或称2行2列表(2×2 contingency table)从该资料算出的;两种教学的优秀率分别为40%和68.6%,两者的差别可能是抽样误差所致,亦可能是两种教学效果确有所不同。

这里可通过卡方检验来区别其差异有无统计学意义,检验步骤:1.建立检验假设:H0:π1=π2 (表示样本来自的总体分布与期望分布无显著差异,即传统教学和多媒体教学对学生成绩的影响并没有存在差异)H1:π1≠π2(传统教学和多媒体教学对学生成绩的影响存在差异)α=0.05(显著性水平;该值将用于与求出2X的概率p值进行比较,如果2X的概率p值小于显著水平α,则应拒绝零假设;反之则不能拒绝零假设)2.计算理论(期望)频数(TRC),计算公式为:TRC=n nnCR公式(20.13)式中TRC是表示第R行C列格子的理论数,Rn为理论数同行的合计数,Cn为与理论数同列的合计数,n为总例数。

(这里期望频数精确到0.0001是为了减小误差)第1行1列: 50×55/101=27.2277第1行2列: 50×46/101=22.7723第2行1列: 51×55/101=27.7723第2行2列: 51×46/101=23.2277以推算结果,可与原四项实际数并列成表2:表2:某学校分别运用传统教学和多媒体教学在两个平行班的数学课的试验结果比较因为上表每行和每列合计数都是固定的,所以只要用TRC式求得其中一项理论数(例如T1.1=27.2277),则其余三项理论数都可用同行或同列合计数相减,直接求出,示范如下:第1行1列:27.2277第1行2列:50-27.2277=22.7723第2行1列:55-27.2277=27.7723第2行2列:51-27.7723=23.22773.计算x2值按公式∑=-=ki oi e i o i f f f X 12)(代入 2787.82277.23)2277.2316(7723.27)7723.2735(7723.22)7723.2230(2277.27)2277.2720()(2222412=-+-+-+-=-=∑=i oie i o if f f X4.查2X 值表求P 值在查表之前应知本题自由度。

按2X 检验的自由度v=(行数-1)(列数-1),则该题的自由度v=(2-1)(2-1)=1,查2X 界值表(附表1),找到2X 0.01(1)=6.63,2X 0.001(1)=10.83而本题2X =8.2787即2X 0.001(1)>2X >2X 0.01(1),所以0.001<P <0.01,按α=0.05水准,p <α,拒绝H0,差异有高度统计学意义,可以认为传统教学和多媒体教学对差生成绩的影响存在显著差异。

通过2X 界值表可以看出,2X 越大,p 值就会越小,那么试验中的差异具有的统计学意义越大。

而从这个实例中,我们可以得到期望频数和实际频数相差越大,2X 值就会越大。

另一方面,2X 值的大小又跟子集个数的多少有关,格子数越多,2X 也会越大。

也就是说2X 随自由度的增大也增大。

二、用专用公式计算卡方2X 值对于四格表资料,还可用以下专用公式求2X 值。

首先把四个表依次表上字母。

如图所示:表3: 两种教学方法学生学习成绩的比较然后套用专用公式:))()()(()(22d b c a d c b a nbc ad X ++++-= 式中a 、b 、c 、d 各表示四个表中四个实际数,n 表示总例数。

结果可以得到:2787.846555150101)35301620(2=⨯⨯⨯⨯⨯-⨯=X计算结果与前述用基本公式一致,这种方法的更为简便。

三、四格表2X 值的校正算法。

上面讲解的例子中的2X 值是根据正态分布中∑=-=ki oi e i o i f f f X 12)(的定义计算出来的。

但是当自由度为1时(即在四格表中),如果出现期望频数e i f 小于5而总例数又大于40,应用以下的校正公式:∑=--=ki oi e i o i f f f X 122)5.0(如果用四格表专用公式,亦应用下式校正:))()()(()2(22d b c a d c b a nnbc ad X ++++--=例2,对某学校的学生是否在课外时间请家教进行调查,目的是为了检测课外辅导是否对学生的成绩有影响,结果如表4。

表4: 学生是否在课外时间请家教的对成绩的影响的卡方校正计算从表4可见,T1.2和T2.2数值都<5,且总例数大于40,故宜用校正公式检验。

步骤如下:1.检验假设:H0:π1=π2(表示样本来自的总体分布与期望分布无显著差异,即有请家教和没请家教对学生成绩的影响并没有存在差异)H1:π1≠π2(即有请家教和没请家教对学生成绩的影响存在差异)α=0.052.计算理论数:(已完成列入四格表括弧中)3.计算x2值:应用公式∑=--=ki oi e i o i f f f X 122)5.0(运算如下:∑=--=4122)5.0(i oi e i o i f f f X =2(3230.44780.5)30.4478--+2(2 3.55220.5)3.5522--+2(2829.5520.5)3.5522--+2(5 3.44780.5)3.4478--=0.7067则该题的自由度v=(2-1)(2-1)=1,查2X 界值表(附表1),找到2X 0.05(1)=3.84,而本题2X =0.7067即2X <2X 0.05(1),P>0.05,按α=0.05水准,接受H0,无统计学意义。

实验结果表明是否参加课外辅导对学生的学习成绩影响并不存在差异。

四、行×列表的卡方检验(2X test for R ×C table ) 前面所阐述的是适用于两个组的率或百分比差别的显著性检验,而对于两个组以上的卡方检验。

其检验步骤与上述相同,简单计算公式如下:211o k i i R C f X n n n =⎛⎫=- ⎪⎝⎭∑式中n 为总例数;o i f 为各观察值;R n 和C n 为与各o i f 值相应的行和列合计的总数。

例3:许多教育学专家提出母亲的教育背景跟学生的学习成绩有很大的关系,通过以下的实验来验证该理论在某个学校中是否成立。

首先把母亲教育水平分为本科及本科以上、专科、中学和小学及小学以下;学生分为优秀(80分以上)和非优秀。

表5:母亲的教育背景与孩子的学习成绩的优秀率的比较该表资料由2行4列组成,称2×4表,可用公式⎪⎭⎫⎝⎛-=∑=1812i n n f C R o i n X 检验。

式中k 为子集个数,o f 为观察频数,R n 为理论数同行的合计数,C n 为与理论数同列的合计数,n 为总例数。

1.检验假设H0:不同母亲的教育背景下学生学习成绩的优秀率相同 H1:不同母亲的教育背景下学生学习成绩的优秀率不同 α=0.05 2.计算2X 值⎪⎭⎫⎝⎛-=∑=1812i n n f C R o i n X =400(280195110⨯+26019595⨯+23019590⨯+225105195⨯+230205110⨯+23512595⨯+26020590⨯+280205105⨯)=67.923.确定P 值和分析本例v=(2-1)(4-3)=3,据此查附表1:2X 0.001(3)=16.27,本题2X =67.92,2X >2X 0.001(3),P <0.001,按α=0.05水准,拒绝H0,可以认为不同教育水平的母亲,孩子的优秀率存在差异。

五.行×列表2X 检验注意事项1.一般认为行×列表中不宜有1/5以上格子的理论数小于5,或有小于1的理论数。

当理论数太小可采取下列方法处理:①增加样本含量以增大理论数;②删去上述理论数太小的行和列;③将太小理论数所在行或列与性质相近的邻行邻列中的实际数合并,使重新计算的理论数增大。

由于后两法可能会损失信息,损害样本的随机性,不同的合并方式有可能影响推断结论,故不宜作常规方法。

2.如检验结果拒绝检验假设,只能认为各总体百分比或总体构成比之间总的来说有差别,但不能说明它们彼此之间都有差别,或某两者间有差别。

附表 1:(作者:私立广厦学校郭捷思 )。

相关文档
最新文档