第11章全等三角形单元测试题(含答案)2

合集下载

人教版数学八年级上册 第11章 三角形单元测试(配套练习附答案)

人教版数学八年级上册 第11章 三角形单元测试(配套练习附答案)
解:如图,取CG的中点H,连接EH,
∵E是AC的中点,
∴EH是△ACG的中位线,
∴EH∥AD,
∴∠GDF=∠HEF,
∵F是DE的中点,
∴DF=EF,
在△DFG和△EFH中, ,
∴△DFG≌△EFH(ASA),
∴FG=FH,S△EFH=S△DGF,
又∵FC=FH+HC=FH+GH=FH+FG+FH=3FH,
所以,由题意可得180(n-2)=2×360º
解得:n=6
16.十边形的外角和是_____°.
【答案】360
【解析】
【分析】
根据多边形外角和等于360°性质可得.
【详解】根据多边形的外角和等于360°,即可得十边形的外角和是360°.
【点睛】本题考查了多边形的外角和.熟记多边形外角和是关键.
17.若三角形的周长是60cm,且三条边的比为3:4:5,则三边长分别为__________.
考点:找规律-图形的变化
点评:解答此类问题的关键是仔细分析所给图形的特征得到规律,再把这个规律应用于解题.
C. 一个等腰三角形一定不是锐角三角形
D. 一个等边三角形一定不是钝角三角形
【答案】
【解析】
【分析】
根据三角形的分类方法进行分析判断.三角形按角分为锐角三角形、直角三角形和钝角三角形;三角形按边分为不等边三角形和等腰三角形(等边三角形).
【详解】解:A、如等腰直角三角形,既是直角三角形,也是等腰三角形,故该选项错误;
A.4cm2B.6cm2C.8cm2D.9cm2
【答案】A
【解析】
试题分析:取CG的中点H,连接EH,根据三角形的中位线定理可得EH∥AD,再根据两直线平行,内错角相等可得∠GDF=∠HEF,然后利用“角边角”证明△DFG和△EFH全等,根据全等三角形对应边相等可得FG=FH,全等三角形的面积相等可得S△EFH=S△DGF,再求出FC=3FH,再根据等高的三角形的面积比等于底边的比求出两三角形的面积的比,从而得解.

(人教版数学)初中8年级上册-单元检测-第11章 三角形 单元检测

(人教版数学)初中8年级上册-单元检测-第11章 三角形 单元检测

三角形单元测试题一.选择题(共7小题)1.已知如图等腰△ABC,AB=AC,∠BAC=120°,AD⊥BC于点D,点P是BA延长线上一点,点O 是线段AD上一点,OP=OC,下面的结论:①∠APO+∠DCO=30°;②△OPC是等边三角形;③AC=AO+AP;④S△ABC=S四边形AOCP.其中正确的有()个.A.①②③B.①②④C.①③④D.①②③④2.如图,四边形ABCD是直角梯形,AB∥CD,AD⊥AB,点P是腰AD上的一个动点,要使PC+PB 最小,则点P应该满足()A.P B=PC B.P A=PD C.∠BPC=90°D.∠APB=∠DPC3.如图,△ABC是等腰直角三角形,△DEF是一个含30°角的直角三角形,将D放在BC的中点上,转动△DEF,设DE,DF分别交AC,BA的延长线于E,G,则下列结论:①AG=CE ②DG=DE③BG﹣AC=CE ④S△BDG﹣S△CDE=S△ABC其中总是成立的是()A.①②③B.①②③④C.②③④D.①②④4.如图:△ABC中,∠ACB=90°,∠CAD=30°,AC=BC=AD,CE⊥CD,且CE=CD,连接BD,DE,BE,则下列结论:①∠ECA=165°,②BE=BC;③AD⊥BE;④=1.其中正确的是()A.①②③B.①②④C.①③④D.①②③④5.如图,BC∥AM,∠A=90°,∠BCD=75°,点E在AB上,△CDE为等边三角形,BM交CD于F,下列结论:①∠ADE=45°,②AB=BC,③EF⊥CD,④若∠AMB=30°,则CF=DF.其中正确的有()A.①②③B.①②④C.①③④D.②③④6.如图,在△ABC中,AB=AC,∠BAC=90°,直角∠EPF的顶点P是BC的中点,两边PE、PF分别交AB、AC于点E、F,连接EF交AP于G.给出四个结论:①AE=CF;②EF=AP;③△EPF是等腰直角三角形;④∠AEP=∠AGF.其中正确的结论有()A.1个B.2个C.3个D.4个7.如图,AM、BE是△ABC的角平分线,AM交BE于N,AL⊥BE于F交BC于L,若∠ABC=2∠C,下列结论:①B E=EC;②BF=AE+EF;③AC=BM+BL;④∠MAL=∠ABC,其中正确的结论是()A.①②③B.①④C.①②③④D.①②二.解答题(共8小题)8.如图,在△ABC中,AB=AC,E在线段AC上,D在AB的延长线,连DE交BC于F,过点E作EG⊥BC于G.(1)若∠A=50°,∠D=30°,求∠GEF的度数;(2)若BD=CE,求证:FG=BF+CG.9.如图,直角坐标系中,点B(a,0),点C(0,b),点A在第一象限.若a,b满足(a﹣t)2+|b﹣t|=0(t>0).(1)证明:OB=OC;(2)如图1,连接AB,过A作AD⊥AB交y轴于D,在射线AD上截取AE=AB,连接CE,F是CE 的中点,连接AF,OA,当点A在第一象限内运动(AD不过点C)时,证明:∠OAF的大小不变;(3)如图2,B′与B关于y轴对称,M在线段BC上,N在CB′的延长线上,且BM=NB′,连接MN 交x轴于点T,过T作TQ⊥MN交y轴于点Q,求点Q的坐标.10.如图1,在平面直角坐标系中,点A(4,4),点B、C分别在x轴、y轴的正半轴上,S四边形=16.OBAC(1)∠COA的值为_________;(2)求∠CAB的度数;(3)如图2,点M、N分别是x轴正半轴及射线OA上一点,且OH⊥MN的延长线于H,满足∠HON=∠NMO,请探究两条线段MN、OH之间的数量关系,并给出证明.11.如图,已知A(a,b),AB⊥y轴于B,且满足+(b﹣2)2=0,(1)求A点坐标;(2)分别以AB,AO为边作等边三角形△ABC和△AOD,如图1试判定线段AC和DC的数量关系和位置关系.(3)如图2过A作AE⊥x轴于E,F,G分别为线段OE,AE上的两个动点,满足∠FBG=45°,试探究的值是否发生变化?如果不变,请说明理由并求其值;如果变化,请说明理由.12.(2013•日照)问题背景:如图(a),点A、B在直线l的同侧,要在直线l上找一点C,使AC与BC的距离之和最小,我们可以作出点B关于l的对称点B′,连接A B′与直线l交于点C,则点C即为所求.(1)实践运用:如图(b),已知,⊙O的直径CD为4,点A 在⊙O 上,∠ACD=30°,B 为弧AD 的中点,P为直径CD上一动点,则BP+AP的最小值为_________.(2)知识拓展:如图(c),在Rt△ABC中,AB=10,∠BAC=45°,∠BAC的平分线交BC于点D,E、F分别是线段AD和AB上的动点,求BE+EF的最小值,并写出解答过程.13.(2013•六盘水)(1)观察发现如图(1):若点A、B在直线m同侧,在直线m上找一点P,使AP+BP的值最小,做法如下:作点B关于直线m的对称点B′,连接AB′,与直线m的交点就是所求的点P,线段AB′的长度即为AP+BP的最小值.如图(2):在等边三角形ABC中,AB=2,点E是AB的中点,AD是高,在AD上找一点P,使BP+PE的值最小,做法如下:作点B关于AD的对称点,恰好与点C重合,连接CE交AD于一点,则这点就是所求的点P,故BP+PE 的最小值为_________.(2)实践运用如图(3):已知⊙O的直径CD为2,的度数为60°,点B是的中点,在直径CD上作出点P,使BP+AP的值最小,则BP+AP的值最小,则BP+AP的最小值为_________.(3)拓展延伸如图(4):点P是四边形ABCD内一点,分别在边AB、BC上作出点M,点N,使PM+PN+MN的值最小,保留作图痕迹,不写作法.14.(2013•抚顺)在Rt△ABC中,∠ACB=90°,∠A=30°,点D是AB的中点,DE⊥BC,垂足为点E,连接CD.(1)如图1,DE与BC的数量关系是_________;(2)如图2,若P是线段CB上一动点(点P不与点B、C重合),连接DP,将线段DP绕点D逆时针旋转60°,得到线段DF,连接BF,请猜想DE、BF、BP三者之间的数量关系,并证明你的结论;(3)若点P是线段CB延长线上一动点,按照(2)中的作法,请在图3中补全图形,并直接写出DE、BF、BP三者之间的数量关系.15.(2013•东营)(1)如图(1),已知:在△ABC中,∠BAC=90°,AB=AC,直线m经过点A,BD⊥直线m,CE⊥直线m,垂足分别为点D、E.证明:DE=BD+CE.(2)如图(2),将(1)中的条件改为:在△ABC中,AB=AC,D、A、E三点都在直线m上,并且有∠BDA=∠AEC=∠BAC=α,其中α为任意锐角或钝角.请问结论DE=BD+CE是否成立?如成立,请你给出证明;若不成立,请说明理由.(3)拓展与应用:如图(3),D、E是D、A、E三点所在直线m上的两动点(D、A、E三点互不重合),点F为∠BAC平分线上的一点,且△ABF和△ACF均为等边三角形,连接BD、CE,若∠BDA=∠AEC=∠BAC,试判断△DEF的形状.参考答案与试题解析一.选择题(共7小题)1.已知如图等腰△ABC,AB=AC,∠BAC=120°,AD⊥BC于点D,点P是BA延长线上一点,点O 是线段AD上一点,OP=OC,下面的结论:①∠APO+∠DCO=30°;②△OPC是等边三角形;③AC=AO+AP;④S△ABC=S四边形AOCP.其中正确的有()个.A.①②③B.①②④C.①③④D.①②③④考点:等腰三角形的判定与性质;全等三角形的判定与性质;等边三角形的判定与性质.4387773分析:①利用等边对等角,即可证得:∠APO=∠ABO,∠DCO=∠DBO,则∠APO+∠DCO=∠ABO+∠DBO=∠ABD,据此即可求解;②证明∠POC=60°且OP=OC,即可证得△OPC是等边三角形;③首先证明∴△OPA≌△CPE,则AO=CE,AC=AE+CE=AO+AP.④过点C作CH⊥AB于H,根据S四边形AOCP=S△ACP+S△AOC,利用三角形的面积公式即可求解.解答:解:连接OB,∵AB=AC,AD⊥BC,∴BD=CD,∠BAD=∠BAC=×120°=60°,∴OB=OC,∠ABC=90°﹣∠BAD=30°,∵OP=OC,∴OB=OC=OP,∴∠APO=∠ABO,∠DCO=∠DBO,∴∠APO+∠DCO=∠ABO+∠DBO=∠ABD=30°;故①正确;∵∠APC+∠DCP+∠PBC=180°,∴∠APC+∠DCP=150°,∵∠APO+∠DCO=30°,∴∠OPC+∠OCP=120°,∴∠POC=180°﹣(∠OPC+∠OCP)=60°,∵OP=OC,∴△OPC是等边三角形;故②正确;在AC上截取AE=PA,∵∠PAE=180°﹣∠BAC=60°,∴△APE是等边三角形,∴∠PEA=∠APE=60°,PE=PA,∴∠APO+∠OPE=60°,∵∠OPE+∠CPE=∠CPO=60°,∴∠APO=∠CPE,∵OP=CP,在△OPA和△CPE中,,∴△OPA≌△CPE(SAS),∴AO=CE,∴AC=AE+CE=AO+AP;故③正确;过点C作CH⊥AB于H,∵∠PAC=∠DAC=60°,AD⊥BC,∴CH=CD,∴S△ABC=AB•CH,S四边形AOCP=S△ACP+S△AOC=AP•CH+OA•CD=AP•CH+OA•CH=CH•(AP+OA)=CH•AC,∴S△ABC=S四边形AOCP;故④正确.故选D.点评:本题考查了等腰三角形的判定与性质,关键是正确作出辅助线.2.如图,四边形ABCD是直角梯形,AB∥CD,AD⊥AB,点P是腰AD上的一个动点,要使PC+PB 最小,则点P应该满足()A.P B=PC B.P A=PD C.∠BPC=90°D.∠APB=∠DPC考点:轴对称-最短路线问题;直角梯形.专题:压轴题;动点型.分析:首先根据轴对称的知识,可知P点的位置是连接点B和点C关于AD的对称点E与AD的交点,利用轴对称和对顶角相等的性质可得.解答:解:如图,作点C关于AD的对称点E,连接BE交AD于P,连接CP.根据轴对称的性质,得∠DPC=∠EPD,根据对顶角相等知∠APB=∠EPD,所以∠APB=∠DPC.故选D.点评:此题的关键是应知点P是怎样确定的.要找直线上一个点和直线同侧的两个点的距离之和最小,则需要利用轴对称的性质进行确定.3.如图,△ABC是等腰直角三角形,△DEF是一个含30°角的直角三角形,将D放在BC的中点上,转动△DEF,设DE,DF分别交AC,BA的延长线于E,G,则下列结论:①AG=CE ②DG=DE③BG﹣AC=CE ④S△BDG﹣S△CDE=S△ABC其中总是成立的是()A.①②③B.①②③④C.②③④D.①②④考点:旋转的性质;全等三角形的判定与性质.4387773专题:开放型.分析:连DA,由△ABC是等腰直角三角形,D点为BC的中点,根据等腰直角三角形的性质得AD⊥BC,AD=DC,∠ACD=∠CAD=45°,得到∠GAD=∠ECD=135°,由∠EDF=90°,根据同角的余角相等得到∠1=∠2,所以△DAG≌△DCE,AG=E C,DG=DE,由此可分别判断.解答:解:连DA,如图,∵△ABC是等腰直角三角形,D点为BC的中点,∴AD⊥BC,AD=DC,∠ACD=∠CAD=45°,∴∠GAD=∠ECD=135°,又∵△DEF是一个含30°角的直角三角形,∴∠EDF=90°,∴∠1=∠2,∴△DAG≌△DCE,∴AG=EC,DG=DE,所以①②正确;∵AB=AC,∴BG﹣AC=BG﹣AB=AG=EC,所以③正确;∵S△BDG﹣S△CDE=S△BDG﹣S△ADG=S△ADB=S△ABC.所以④正确.故选B.点评:本题考查了旋转的性质:旋转前后的两个图形全等,对应点与旋转中心的连线段的夹角等于旋转角,对应点到旋转中心的距离相等.也考查了等腰直三角形的性质,特别是斜边上的中线垂直斜边并且等于斜边的一半.4.如图:△ABC中,∠ACB=90°,∠CAD=30°,AC=BC=AD,CE⊥CD,且CE=CD,连接BD,DE,BE,则下列结论:①∠ECA=165°,②BE=BC;③AD⊥BE;④=1.其中正确的是()A.①②③B.①②④C.①③④D.①②③④考点:等腰直角三角形;全等三角形的判定与性质;等腰三角形的判定与性质;含30度角的直角三角形.4387773分析:①根据:∠CAD=30°,AC=BC=AD,利用等腰三角形的性质和三角形内角和定理即可求出∠ECA=165°,从而得证结论正确;②根据CE⊥CD,∠ECA=165°,利用SAS求证△ACD≌△BCE即可得出结论;③根据∠ACB=90°,∠CAD=30°,AC=BC,利用等腰三角形的性质和△ACD≌△BCE,求出∠CBE=30°,然后即可得出结论;④过D作DM⊥AC于M,过D作DN⊥BC于N.由∠CAD=30°,可得CM=AC,求证△CMD≌△CND,可得CN=CM=AC=BC,从而得出CN=BN.然后即可得出结论.解答:解:①∵∠CAD=30°,AC=BC=AD,∴∠ACD=∠ADC=(180°﹣30°)=75°,∵CE⊥CD,∴∠DCE=90°,∴∠ECA=165°∴①正确;②∵CE⊥CD,∠ECA=165°(已证),∴∠BAE=∠ECA﹣∠ACB=165﹣90=75°,∴△ACD≌△BCE(SAS),∴BE=BC,∴②正确;③∵∠ACB=90°,∠CAD=30°,AC=BC,∴∠CAB=∠ACB=45°∴∠BAD=∠BAC﹣∠CAD=45﹣30=15°,∵△ACD≌△BCE,∴∠CBE=30°,∴∠ABF=45+30=75°,∴∠AFB=180﹣15﹣75=90°,∴AD⊥BE.④证明:如图,过D作DM⊥AC于M,过D作DN⊥B C于N.∵∠CAD=30°,且DM=AC,∵AC=AD,∠CAD=30°,∴∠ACD=75°,∴∠NCD=90°﹣∠ACD=15°,∠MDC=∠DMC﹣∠ACD=15°,∴△CMD≌△CND,∴CN=CM=AC=BC,∴CN=BN.∵DN⊥BC,∴BD=CD.∴④正确.所以4个结论都正确.故选D.点评:此题主要考查等腰直角三角形,全等三角形的判定与性质,等腰三角形的判定与性质,含30度角的直角三角形等知识点的理解和掌握,此题有一定的拔高难度,属于难题.5.如图,BC∥AM,∠A=90°,∠BCD=75°,点E在AB上,△CDE为等边三角形,BM交CD于F,下列结论:①∠ADE=45°,②AB=BC,③EF⊥CD,④若∠AMB=30°,则CF=DF.其中正确的有()A.①②③B.①②④C.①③④D.②③④考点:直角梯形;等边三角形的性质;含30度角的直角三角形;等腰直角三角形.4387773分析:由BC∥AM得∠CDA=105°,根据等边三角形的性质得∠CDE=60°,则∠EDA=105°﹣60°=45°;过C作CG⊥AM,则四边形ABCG为矩形,于是∠DCG=90°﹣∠BCD=15°,而∠BCE=75°﹣60°=15°,易证得Rt△CBE≌Rt△CGD,则BC=CG,得到AB=BC;由于AG=BC,而AG≠MD,则CF:FD=BC:MD≠1,不能得到F点是CD的中点,根据等边三角形的性质则不能得到EF⊥CD;若∠AMB=30°,则∠CBF=30°,在Rt△AMB中根据含30度的直角三角形三边的关系得到BM=2AB,则BM=2BC,易得∠BFC=75°,所以BF=BC,得MF=BF,由CB∥AM得CF:FD=BF:MF=1,即可有CF=DF.解答:解:∵BC∥AM,∴∠BCD+∠CDA=180°,∵∠BCD=75°,∴∠CDA=105°,∵△CDE为等边三角形,∴∠CDE=60°,∴∠EDA=105°﹣60°=45°,所以①正确;过C作CG⊥AM,如图,∵∠A=90°,∴四边形ABCG为矩形,∴∠DCG=90°﹣∠BCD=15°,而△CDE为等边三角形,∴∠DCE=60°,CE=CD,∴∠BCE=75°﹣60°=15°,∴Rt△CBE≌Rt△CGD,∴BC=CG,∴AB=BC,所以②正确;∵AG=BC,而AG≠MD,∴CF:FD=BC:MD≠1,∴F点不是CD的中点,∴EF不垂直CD,所以③错误;若∠AMB=30°,则∠CBF=30°,∴在Rt△AMB中,BM=2AB,∴BM=2BC,∵∠BCD=75°,∴∠BFC=180°﹣30°﹣75°=75°,∴BF=BC,∴MF=BF,而CB∥AM,∴CF:FD=BF:MF=1,∴CF=FD,所以④正确.故选B.点评:本题考查了直角梯形的性质:有一组对边平行,另一组对边不平行,且有一个直角.也考查了矩形和等边三角形的性质、含30度的直角三角形三边的关系以及相似三角形的判定与性质.6.如图,在△ABC中,AB=AC,∠BAC=90°,直角∠EPF的顶点P是BC的中点,两边PE、PF分别交AB、AC于点E、F,连接EF交AP于G.给出四个结论:①AE=CF;②EF=AP;③△EPF是等腰直角三角形;④∠AEP=∠AGF.其中正确的结论有()A.1个B.2个C.3个D.4个考点:全等三角形的判定与性质;等腰直角三角形.4387773分析:根据等腰直角三角形的性质得:AP⊥BC,AP=BC,AP平分∠BAC.所以可证∠C=∠EAP;∠FPC=∠EPA;AP=PC.即证得△APE与△CPF全等.根据全等三角形性质判断结论是否正确.解答:解:∵AB=AC,∠BAC=90°,直角∠EPF的顶点P是BC的中点,∴AP⊥BC,AP=BC=PC,∠BAP=∠CAP=45°=∠C.∵∠APF+∠FPC=90°,∠APF+∠APE=90°,∴∠FPC=∠EPA.∴△APE≌△CPF(ASA).∴①AE=CF;③EP=PF,即△EPF是等腰直角三角形;∵△ABC是等腰直角三角形,P是BC的中点,∴AP=BC,∵EF不是△ABC的中位线,∴EF≠AP,故②错误;④∵∠AGF=∠EGP=180°﹣∠APE﹣∠PEF=180°﹣∠APE﹣45°,∠AEP=180°﹣∠APE﹣∠EAP=180°﹣∠APE﹣45°,∴∠AEP=∠AGF.故正确的有①、③、④,共三个.因此选C.点评:此题考查全等三角形的判定和性质,综合性较强.7.如图,AM、BE是△ABC的角平分线,AM交BE于N,AL⊥BE于F交BC于L,若∠ABC=2∠C,下列结论:①BE=EC;②BF=AE+EF;③AC=BM+BL;④∠MAL=∠ABC,其中正确的结论是()A.①②③B.①④C.①②③④D.①②考点:全等三角形的判定与性质;等腰三角形的判定与性质.4387773分析:根据角平分线定义求出∠ABE=∠EBC=∠C,根据等角对等边求出BE=CE,即可判断①;证△ABE∽△ACB,推出AB2=AE×AC,求出AF2=AB2﹣BF2=AE2﹣EF2,把AB2=AE×AC代入入上式即可求出BF=AE+EF,即可判断②;延长AB到N,使BN=BM,连接MN,证△AMC≌△AMN,△AFB≌△BLF,推出AB=BL,即可判断③;设∠LAC=x°,∠LAM=y°,则∠BAM=∠MAC=(x+y)°,证△AFB≌△BLF推出∠BAF=∠BLF,∠BAF=∠BAM+∠MAL=x°+y°+y°,∠BLA=∠C+∠LAC=∠C+x°,得出方程x°+y°+y°=∠C+x°,求出∠C=2y°,∠ABC=4y°,即可判断④.解答:解:∵BE是∠ABC的角平分线,∴∠EBC=∠ABE=∠ABC,∵∠ABC=2∠C,∴∠ABE=∠EBC=∠C,∴BE=EC,∴①正确;∵∠ABE=∠ACB,∠BAC=∠EAB∴△ABE∽△ACB,∴=,∴AB2=AE×AC,在Rt△AFB与Rt△AFE中,由勾股定理得:AF2=AB2﹣BF2=AE2﹣EF2,把AB2=AE×AC代入入上式得:AE×AC﹣BF2=AE2﹣EF2,则BF2=AC×AE﹣AE2+EF2=AE×(AC﹣AE)+EF2=AE×EC+EF2=AE×BE+EF2,即(BE﹣EF)2=AE×BE+EF2,∴BE2﹣2BE×EF+EF2=AE×BE+EF2,∴BE2﹣2BE×EF=AE×BE,∴BE﹣2EF=AE,BE﹣EF=AE+EF,即BF=AE+EF,∴②正确;延长AB到N′,使BN=BM,连接MN′,则△BMN′为等腰三角形,∴∠BN′M=∠BMN′,△BN′M的一个外角∠ABC=∠BN′M+∠BM′N=2∠BN′M,则∠BN′M=∠ACB,在△AMC与△AMN′中,∴△AMC≌△AMN′(AAS),∴AN′=AC=AB+BN′=AB+BM,又∵AL⊥BE,∴∠AFB=∠LFB=90°,在△AFB与△LFB中,,∴△AFB≌△BLF(ASA),∴AB=BL,则AN′=AC=AB+BN′=AB+BM=BM+BL,即AC=BM+BL,∴③正确;设∠LAC=x°,∠LAM=y°,∵AM平分∠BAC,∴∠BAM=∠MAC=(x+y)°.∵△AFB≌△BLF,∴∠BAF=∠BLF,∵∠BAF=∠BAM+∠MAL=x°+y°+y°,∠BLA=∠C+∠LAC=∠C+x°,∴x°+y°+y°=∠C+x°,∴∠C=2y°,∵∠ABC=2∠C,∴∠ABC=4y°,即∠MAL=∠ABC,∴④正确.故选C.点评:本题考查了勾股定理,相似三角形的性质和判定,角平分线性质,相似三角形的性质和判定等知识点的综合运用.二.解答题(共8小题)8.如图,在△ABC中,AB=AC,E在线段AC上,D在AB的延长线,连DE交BC于F,过点E作EG⊥BC于G.(1)若∠A=50°,∠D=30°,求∠GEF的度数;(2)若BD=CE,求证:FG=BF+CG.考点:等腰三角形的性质;全等三角形的判定与性质.4387773专题:证明题.分析:(1)根据等腰三角形两底角相等求出∠C,再根据直角三角形两锐角互余求出∠CEG,然后根据三角形的一个外角等于与它不相邻的两个内角的和求出∠CEF,然后计算即可得解;(2)过点E作EH∥AB交BC于H,根据两直线平行,同位角相等可得∠ABC=∠EHC,内错角相等可得∠D=∠FEH,然后求出∠EHC=∠C,再根据等角对等边可得EC=EH,然后求出BD=EH,再利用“角角边”证明△BDF和△HEF全等,根据全等三角形对应边相等可得BF=FH,根据等腰三角形三线合一的性质可得CG=HG,即可得证.解答:(1)解:∵∠A=50°,∴∠C=(180°﹣∠A)=(180°﹣50°)=65°,∵EG⊥BC,∴∠CEG=90°﹣∠C=90°﹣65°=25°,∵∠A=50°,∠D=30°,∴∠CEF=∠A+∠D=50°+30°=80°,∴∠GEF=∠CEF﹣∠CEG=80°﹣25°=55°;(2)证明:过点E作EH∥AB交BC于H,则∠ABC=∠EHC,∠D=∠FEH,∵AB=AC,∴∠ABC=∠C,∴∠EHC=∠C,∴EC=EH,∵BD=CE,∴BD=EH,在△BDF和△HEF中,,∴△BDF≌△HEF(AAS),∴BF=FH,又∵EC=EH,EG⊥BC,∴CG=HG,∴FG=FH+HG=BF+CG.点评:本题考查了等腰三角形的性质,全等三角形的判定与性质,主要利用了等腰三角形两底角相等的性质,等角对等边的性质,(2)作辅助线构造出全等三角形是解题的关键.9.如图,直角坐标系中,点B(a,0),点C(0,b),点A在第一象限.若a,b满足(a﹣t)2+|b﹣t|=0(t>0).(1)证明:OB=OC;(2)如图1,连接AB,过A作AD⊥AB交y轴于D,在射线AD上截取AE=AB,连接CE,F是CE 的中点,连接AF,OA,当点A在第一象限内运动(AD不过点C)时,证明:∠OAF的大小不变;(3)如图2,B′与B关于y轴对称,M在线段BC上,N在CB′的延长线上,且BM=NB′,连接MN交x轴于点T,过T作TQ⊥MN交y轴于点Q,求点Q的坐标.考点:全等三角形的判定与性质;非负数的性质:绝对值;非负数的性质:偶次方;坐标与图形性质;等腰直角三角形.4387773分析:(1)根据a=t,b=t,推出a=b即可;(2)延长AF至T,使TF=AF,连接TC,TO,证△TCF≌△AEF,推出CT=AE,∠TCF=∠AEF,再证△TCO≌△ABO,推出TO=AO,∠TOC=∠AOB,求出△TAO为等腰直角三角形即可;(3)连接MQ,NQ,BQ,B′Q,过M作MH∥CN交x轴于H,证△NTB′≌△MTH,推出TN=MT,证△NQB′≌△MQB,推出∠NB′Q=∠CBQ,求出△BQB′是等腰直角三角形即可.解答:(1)解:∵a,b满足(a﹣t)2+|b﹣t|=0(t>0).∴a﹣t=0,b﹣t=0,∴a=t,b=t,∴a=b,∵B(t,0),点C(0,t)∴OB=OC;(2)证明:延长AF至T,使TF=AF,连接TC,TO,∵F为CE中点,∴CF=EF,在△TCF和△AEF中∴△TCF≌△AEF(SAS),∴CT=AE,∠TCF=∠AEF,∴TC∥AD,∴∠TCD=∠CDA,∵AB=AE,∴TC=AB,∵AD⊥AB,OB⊥OC,∴∠COB=∠BAD=90°,∴∠ABO+∠ADO=180°,∵∠ADO+∠ADC=180°,∴∠ADC=∠ABC,∵∠TCD=∠CDA,∴∠TCD=∠ABO,在△TCO和△ABO中∴△TCO≌△ABO(SAS),∴TO=AO,∠TOC=∠AOB,∵∠AOB+∠AOC=90°,∴∠TOC+∠AOC=90°,∴△TAO为等腰直角三角形,∴∠OAF=45°;(3)解:连接MQ,NQ,BQ,B′Q,过M作MH∥CN交x轴于H,∵B和B′关于关于y轴对称,C在y轴上,∴CB=CB′,∴∠CBB′=∠CB′B,∵MH∥CN,∴∠MHB=∠CB′B,∴∠MHB=∠CBB′,∴MH=BM,∵BM=B′N,∴MH=B′N,∵MH∥CN,∴∠NB′T=∠MHT,在△NTB′和△MTH中∴△NTB′≌△MTH,∴TN=MT,又TQ⊥MN,∴MQ=NQ,∵CQ垂直平分BB′,∴BQ=B′Q,∵在∴△NQB′和△MQB中∴△NQB′≌△MQB (SSS),∴∠NB′Q=∠CBQ,而∠NB′Q+∠CB′Q=180°∴∠CBQ+∠CB′Q=180°∴∠B′CB+∠B′QB=180°,又∠B′CB=90°,∴∠B′QB=90°∴△BQB′是等腰直角三角形,∴OQ=OB=t,∴Q(0,﹣t).点评:本题考查了全等三角形的性质和判定,坐标与图形性质,等腰三角形的性质,等腰直角三角形的性质和判定,相等垂直平分线,偶次方,绝对值等知识点的综合运用.10.如图1,在平面直角坐标系中,点A(4,4),点B、C分别在x轴、y轴的正半轴上,S四边形=16.OBAC(1)∠COA的值为45°;(2)求∠CAB的度数;(3)如图2,点M、N分别是x轴正半轴及射线OA上一点,且OH⊥MN的延长线于H,满足∠HON=∠NMO,请探究两条线段MN、OH之间的数量关系,并给出证明.考点:全等三角形的判定与性质;坐标与图形性质.4387773分析:(1)过A作AN⊥OC于N,AM⊥OB于M,得出正方形NOMA,根据正方形性质求出∠COA=∠COB,代入求出即可;(2)求出CN=BM,证△ANC≌△AMB,推出∠NAC=∠MAB,求出∠CAB=∠NAM,即可求出答案;(3)求出∠HON=∠NMO=22.5°,延长OH至点P使PH=OH,连接MP交OA于L,求出∠HON=∠NMO=∠LMN,求出OL=ML,证△OLP≌△MLN,推出MN=OP,即可得出答案.解答:解:(1)过A作AN⊥OC于N,AM⊥OB于M,则∠ANO=∠AMO=∠COB=90°,∵A(4,4),∴AN=AM=4,∴四边形NOMA是正方形,∴∠COA=∠COB=×90°=45°.故答案为:45°;(2)∵四边形NOMA是正方形,∴AM=AN=4,OM=ON=4,∴OC×AN+OB×AM=16,∴OC+OB=8=ON+OM,即ON﹣OC=OB﹣OM,∴CN=BM,在△ANC和△AMB中,,∴△ANC≌△AMB(SAS),∴∠NAC=∠MAB,∴∠CAB=∠CAM+∠MAB=∠NAM=360°﹣90°﹣90°﹣90°=90°,即∠CAB=90°;(3)MN=2OH,证明:在Rt△OMH中,∠HON+∠NMO+∠NOM=90°,又∵∠NOM=45°,∠HON=∠NMO,∴∠HON=∠NMO=22.5°,延长OH至点P使PH=OH,连接MP交OA于L,∴OM=MP,∠OMP=2∠OMN=45°,∴∠HON=∠NMO=∠LMN,∴∠OLM=90°=∠PLO,∴OL=ML,在△OLP和△MLN中,∴△OLP≌△MLN(ASA),∴MN=OP,∵OP=2HO,∴MN=2HO.点评:本题考查了坐标与图形性质,等腰三角形的性质和判定,正方形的性质和判定,全等三角形的性质和判定等知识点的应用,题目综合性比较强,有一定的难度.11.如图,已知A(a,b),AB⊥y轴于B,且满足+(b﹣2)2=0,(1)求A点坐标;(2)分别以AB,AO为边作等边三角形△ABC和△AOD,如图1试判定线段AC和DC的数量关系和位置关系.(3)如图2过A作AE⊥x轴于E,F,G分别为线段OE,AE上的两个动点,满足∠FBG=45°,试探究的值是否发生变化?如果不变,请说明理由并求其值;如果变化,请说明理由.考点:全等三角形的判定与性质;非负数的性质:偶次方;非负数的性质:算术平方根;坐标与图形性质;等边三角形的性质.4387773专题:探究型.分析:(1)根据二次根式以及偶次方都是非负数,两个非负数的和是0,则每个数一定同时等于0,即可求解;(2)连接OC,只要证明OC是∠AOD的角平分线即可判断AC=CD,求出∠ACD的度数即可判断位置关系;(3)延长GA至点M,使AM=OF,连接BM,由全等三角形的判定定理得出△BAM≌△BOF,△FBG≌△MBG,故可得出FG=GM=AG+OF,由此即可得出结论.解答:解:(1)根据题意得:a﹣2=0且b﹣2=0,解得:a=2,b=2,则A的坐标是(2,2);(2)AC=CD,且AC⊥CD.如图1,连接OC,CD,∵A的坐标是(2,2),∴AB=OB=2,∵△ABC是等边三角形,∴∠OBC=30°,OB=BC,∴∠BOC=∠BCO=75°,∵在直角△ABO中,∠BOA=45°,∴∠AOC=∠BOC﹣∠BOA=75°﹣45°=30°,∵△OAD是等边三角形,∴∠DOC=∠AOC=30°,即OC是∠AOD的角平分线,∴OC⊥AD,且OC平分AD,∴AC=DC,∴∠ACO=∠DCO=60°+75°=135°,∴∠ACD=360°﹣135°﹣135°=90°,∴AC⊥CD,故AC=CD,且AC⊥CD.(3)不变.延长GA至点M,使AM=OF,连接BM,∵在△BAM与△BOF中,,∴△BAM≌△BOF(SAS),∴∠ABM=∠OBF,BF=BM,∵∠OBF+∠ABG=90°﹣∠FBG=45°,∴∠MBG=45°,∵在△FBG与△MBG中,,∴△FBG≌△MBG(SAS),∴FG=GM=AG+OF,∴=1.点评:本题考查的是全等三角形的判定与性质,涉及到非负数的性质及等边三角形的性质等知识,难度适中.12.(2013•日照)问题背景:如图(a),点A、B在直线l的同侧,要在直线l上找一点C,使AC与BC的距离之和最小,我们可以作出点B关于l的对称点B′,连接A B′与直线l交于点C,则点C即为所求.(1)实践运用:如图(b),已知,⊙O的直径CD为4,点A 在⊙O 上,∠ACD=30°,B 为弧AD 的中点,P为直径CD上一动点,则BP+AP的最小值为2.(2)知识拓展:如图(c),在Rt△ABC中,AB=10,∠BAC=45°,∠BAC的平分线交BC于点D,E、F分别是线段AD和AB上的动点,求BE+EF的最小值,并写出解答过程.考点:轴对称-最短路线问题.4387773分析:(1)找点A或点B关于CD的对称点,再连接其中一点的对称点和另一点,和MN的交点P 就是所求作的位置.根据题意先求出∠C′AE,再根据勾股定理求出AE,即可得出PA+PB的最小值;(2)首先在斜边AC上截取AB′=AB,连结BB′,再过点B′作B′F⊥AB,垂足为F,交AD于E,连结BE,则线段B′F的长即为所求.解答:解:(1)作点B关于CD的对称点E,连接AE交CD于点P此时PA+PB最小,且等于AE.作直径AC′,连接C′E.根据垂径定理得弧BD=弧DE.∵∠ACD=30°,∴∠AOD=60°,∠DOE=30°,∴∠AOE=90°,∴∠C′AE=45°,又AC′为圆的直径,∴∠AEC′=90°,∴∠C′=∠C′AE=45°,∴C′E=AE=AC′=2,即AP+BP的最小值是2.故答案为:2;(2)如图,在斜边AC上截取AB′=AB,连结BB′.∵AD平分∠BAC,∴点B与点B′关于直线AD对称.过点B′作B′F⊥AB,垂足为F,交AD于E,连结BE,则线段B′F的长即为所求.(点到直线的距离最短)在Rt△AFB′中,∵∠BAC=45°,AB′=AB=10,∴B′F=AB′•sin45°=AB•sin45°=10×=5,∴BE+EF的最小值为.点评:此题主要考查了利用轴对称求最短路径问题以及锐角三角函数关系等知识,根据已知得出对应点P位置是解题关键.13.(2013•六盘水)(1)观察发现如图(1):若点A、B在直线m同侧,在直线m上找一点P,使AP+BP的值最小,做法如下:作点B关于直线m的对称点B′,连接AB′,与直线m的交点就是所求的点P,线段AB′的长度即为AP+BP的最小值.如图(2):在等边三角形ABC中,AB=2,点E是AB的中点,AD是高,在AD上找一点P,使BP+PE的值最小,做法如下:作点B关于AD的对称点,恰好与点C重合,连接CE交AD于一点,则这点就是所求的点P,故BP+PE 的最小值为.(2)实践运用如图(3):已知⊙O的直径CD为2,的度数为60°,点B是的中点,在直径CD上作出点P,使BP+AP的值最小,则BP+AP的值最小,则BP+AP的最小值为.(3)拓展延伸如图(4):点P是四边形ABCD内一点,分别在边AB、BC上作出点M,点N,使PM+PN+MN的值最小,保留作图痕迹,不写作法.考点:圆的综合题;轴对称-最短路线问题.4387773专题:压轴题.分析:(1)观察发现:利用作法得到CE的长为BP+PE的最小值;由AB=2,点E是AB的中点,根据等边三角形的性质得到CE⊥AB,∠BCE=∠BCA=30°,BE=1,再根据含30度的直角三角形三边的关系得CE=;(2)实践运用:过B点作弦BE⊥CD,连结AE交CD于P点,连结OB、OE、OA、PB,根据垂径定理得到CD平分BE,即点E与点B关于CD对称,则AE的长就是BP+AP的最小值;由于的度数为60°,点B是的中点得到∠BOC=30°,∠AOC=60°,所以∠AOE=60°+30°=90°,于是可判断△OAE为等腰直角三角形,则AE=OA=;(3)拓展延伸:分别作出点P关于AB和BC的对称点E和F,然后连结EF,EF交AB于M、交BC于N.解答:解:(1)观察发现如图(2),CE的长为BP+PE的最小值,∵在等边三角形ABC中,AB=2,点E是AB的中点∴CE⊥AB,∠BCE=∠BCA=30°,BE=1,∴CE=BE=;故答案为;(2)实践运用如图(3),过B点作弦BE⊥CD,连结AE交CD于P点,连结OB、OE、OA、PB,∵BE⊥CD,∴CD平分BE,即点E与点B关于CD对称,∵的度数为60°,点B是的中点,∴∠BOC=30°,∠AOC=60°,∴∠EOC=30°,∴∠AOE=60°+30°=90°,∵OA=OE=1,∴AE=OA=,∵AE的长就是BP+AP的最小值.故答案为;(3)拓展延伸如图(4).点评:本题考查了圆的综合题:弧、弦和圆心角之间的关系以及圆周角定理在有关圆的几何证明中经常用到,同时熟练掌握等边三角形的性质以及轴对称﹣最短路径问题.14.(2013•抚顺)在Rt△ABC中,∠ACB=90°,∠A=30°,点D是AB的中点,DE⊥BC,垂足为点E,连接CD.(1)如图1,DE与BC的数量关系是DE=BC;(2)如图2,若P是线段CB上一动点(点P不与点B、C重合),连接DP,将线段DP绕点D逆时针旋转60°,得到线段DF,连接BF,请猜想DE、BF、BP三者之间的数量关系,并证明你的结论;(3)若点P是线段CB延长线上一动点,按照(2)中的作法,请在图3中补全图形,并直接写出DE、BF、BP三者之间的数量关系.考点:全等三角形的判定与性质;等边三角形的判定与性质;含30度角的直角三角形.4387773分析:(1)由∠ACB=90°,∠A=30°得到∠B=60°,根据直角三角形斜边上中线性质得到DB=DC,则可判断△DCB为等边三角形,由于DE⊥BC,DE=BC;(2)根据旋转的性质得到∠PDF=60°,DP=DF,易得∠CDP=∠BDF,则可根据“SAS”可判断△DCP≌△DBF,则CP=BF,利用CP=BC﹣BP,DE=BC可得到BF+BP=DE;(3)与(2)的证明方法一样得到△DCP≌△DBF得到CP=BF,而CP=BC+BP,则BF﹣BP=BC,所以BF﹣BP=DE.解答:解:(1)∵∠ACB=90°,∠A=30°,∴∠B=60°,∵点D是AB的中点,∴DB=DC,∴△DCB为等边三角形,∵DE⊥BC,∴DE=BC;故答案为DE=BC.(2)BF+BP=DE.理由如下:∵线段DP绕点D逆时针旋转60°,得到线段DF,∴∠PDF=60°,DP=DF,而∠CDB=60°,∴∠CDB﹣∠PDB=∠PDF﹣∠PDB,∴∠CDP=∠BDF,在△DCP和△DBF中,∴△DCP≌△DBF(SAS),∴CP=BF,而CP=BC﹣BP,∴BF+BP=BC,∵DE=BC,∴BC=DE,∴BF+BP=DE;(3)如图,与(2)一样可证明△DCP≌△DBF,∴CP=BF,而CP=BC+BP,∴BF﹣BP=BC,∴BF﹣BP=DE.点评:本题考查了全等三角形的判定与性质:判定三角形全等的方法有“SSS”、“SAS”、“ASA”、“AAS”;全等三角形的对应边相等.也考查了等边三角形的判定与性质以及含30度的直角三角形三边的关系.15.(2013•东营)(1)如图(1),已知:在△ABC中,∠BAC=90°,AB=AC,直线m经过点A,BD⊥直线m,CE⊥直线m,垂足分别为点D、E.证明:DE=BD+CE.(2)如图(2),将(1)中的条件改为:在△ABC中,AB=AC,D、A、E三点都在直线m上,并且有∠BDA=∠AEC=∠BAC=α,其中α为任意锐角或钝角.请问结论DE=BD+CE是否成立?如成立,请你给出证明;若不成立,请说明理由.(3)拓展与应用:如图(3),D、E是D、A、E三点所在直线m上的两动点(D、A、E三点互不重合),点F为∠BAC平分线上的一点,且△ABF和△ACF均为等边三角形,连接BD、CE,若∠BDA=∠AEC=∠BAC,试判断△DEF的形状.考点:全等三角形的判定与性质;等边三角形的判定.4387773专题:压轴题.分析:(1)根据BD⊥直线m,CE⊥直线m得∠BDA=∠CEA=90°,而∠BAC=90°,根据等角的余角相等得∠CAE=∠ABD,然后根据“AAS”可判断△ADB≌△CEA,则AE=BD,AD=CE,于是DE=AE+AD=BD+CE;(2)与(1)的证明方法一样;(3)与前面的结论得到△ADB≌△CEA,则BD=AE,∠DBA=∠CAE,根据等边三角形的性质得∠ABF=∠CAF=60°,则∠DBA+∠ABF=∠CAE+∠CAF,则∠DBF=∠FAE,利用“SAS”可判断△DBF≌△EAF,所以DF=EF,∠BFD=∠AFE,于是∠DFE=∠DFA+∠AFE=∠DFA+∠BFD=60°,根据等边三角形的判定方法可得到△DEF为等边三角形.解答:证明:(1)∵BD⊥直线m,CE⊥直线m,∴∠BDA=∠CEA=90°,∵∠BAC=90°,∴∠BAD+∠CAE=90°,∵∠BAD+∠ABD=90°,∴∠CAE=∠ABD,∵在△ADB和△CEA中,∴△ADB≌△CEA(AAS),∴AE=BD,AD=CE,∴DE=AE+AD=BD+CE;(2)∵∠BDA=∠BAC=α,∴∠DBA+∠BAD=∠BAD+∠CAE=180°﹣α,∴∠CAE=∠ABD,∵在△ADB和△CEA中,∴△ADB≌△CEA(AAS),∴AE=BD,AD=CE,∴DE=AE+AD=BD+CE;(3)由(2)知,△ADB≌△CEA,BD=AE,∠DBA=∠CAE,∵△ABF和△ACF均为等边三角形,∴∠ABF=∠CAF=60°,∴∠DBA+∠ABF=∠CAE+∠CAF,∴∠DBF=∠FAE,∵BF=AF在△DBF和△EAF中,∴△DBF≌△EAF(SAS),∴DF=EF,∠BFD=∠AFE,∴∠DFE=∠DFA+∠AFE=∠DFA+∠BFD=60°,∴△DEF为等边三角形.点评:本题考查了全等三角形的判定与性质:判定三角形全等的方法有“SSS”、“SAS”、“ASA”、“AAS”;全等三角形的对应边相等.也考查了等边三角形的判定与性质.。

2020-2021学年人教版八年级数学上册第11章《三角形》单元测试含答案

2020-2021学年人教版八年级数学上册第11章《三角形》单元测试含答案

2020-2021学年人教版八年级数学上册第11章《三角形》单元测试含答案第11章《三角形》单元测试时间:100分钟满分:100分班级:_______ 姓名:________得分:_______一.选择题(每题3分,共30分)1.下列长度的每组三根小木棒,能组成三角形的一组是()A.3,3,6 B.4,5,10 C.3,4,5 D.2,5,3 2.在△ABC中,∠A=21°,∠B=34°,则△ABC()A.锐角三角形B.直角三角形C.钝角三角形D.锐角或钝角三角形3.已知三角形两边长为5和8,则第三边长a的取值范围是()A.3<a<13 B.3≤a≤13 C.a>3 D.a<11 4.下列四个图形,具有稳定性的有()A.1个B.2个C.3个D.4个5.若n边形的内角和等于外角和的4倍,则边数n为()A.10 B.8 C.7 D.56.如图,在△ABC中,∠A=35°,∠DCA=100°,则∠B的度数为()A.45°B.55°C.65°D.75°7.下列说法中正确的是()A.三角形的角平分线是一条射线B.三角形的一个外角大于任何一个内角C.任意三角形的外角和都是180°D.内角和是1080°的多边形是八边形8.把一副直角三角板按如图所示的方式摆放在一起,其中∠C=90°,∠F=90°,∠D=30°,∠A=45°,则∠1+∠2等于()A.270°B.210°C.180°D.150°9.如图,△ABC是一把直角三角尺,∠ACB=90°,∠B=30°.把三角尺的直角顶点放在一把直尺的一边上,AC与直尺的另一边交于点D,AB与直尺的两条边分别交于点E,F.若∠AFD=58°,则∠BCE的度数为()A.20°B.28°C.32°D.88°10.如图,平面上有两个全等的正八边形ABCDEFGH、A′B′C′D′E′F′G′H′,若点B与点B′重合,点H与点H′重合,则∠ABA′的度数为()A.15°B.30°C.45°D.60°二.填空题(每题4分,共20分)11.在△ABC中∠A:∠B=2:1,其中∠C的外角等于120°,则∠B=.12.如图所示,要使一个六边形木架在同一平面内不变形,至少还要再钉上根木条.13.如图,BP是△ABC中∠ABC的平分线,CP是∠ACB的外角的平分线,如果∠ABP=20°,∠ACP=50°,则∠A=.14.三角形一边长为4cm,另一边长为3cm,且第三边长为偶数,则第三边的长为cm.15.如图,在一个三角形的纸片(△ABC)中,∠C=90°,将这个纸片沿直线DE剪去一个角后变成一个四边形ABED,则图中∠1+∠2的度数为°.三.解答题(每题10分,共50分)16.如图,△ABC中,D为BC上一点,∠C=∠BAD,△ABC的角平分线BE交AD 于点F.(1)求证:∠AEF=∠AFE;(2)G为BC上一点,当FE平分∠AFG且∠C=30°时,求∠CGF 的度数.17.如图,已知点D为△ABC的边BC延长线上一点,DF⊥AB于点F,并交AC于点E,其中∠A=∠D=40°.(1)求∠B的度数;(2)求∠ACD的度数.18.(1)把下面的证明补充完整已知:如图,直线AB、CD被直线EF所截,AB∥CD,EG平分∠BEF,FG平分∠DFE,EG、FG交于点G.求证:EG⊥FG.证明:∵AB∥CD(已知)∴∠BEF+∠DFE=180°(),∵EG平分∠BEF,FG平分∠DFE(已知),∴,(),∴∠GEF+∠GFE=(∠BEF+∠DFE)(),∴∠GEF+∠GFE=×180°=90°(),在△EGF中,∠GEF+∠GFE+∠G=180°(),∴∠G=180°﹣90°=90°(等式性质),∴EG⊥FG().(2)请用文字语言写出(1)所证命题:.19.如图,在△ABC中,AD平分∠BAC(1)若P为线段AD上的一个点,过点P作PE⊥AD交线段BC 的延长线于点E①若∠B=34°,∠ACB=86°,则∠E=°;②猜想∠E与∠B、∠A CB之间的数量关系,并给出证明.(2)若P在线段AD的延长线上,过点P作PE⊥AD交直线BC 于点E.请你直接写出∠PED与∠ABC、∠ACB的数量关系.20.解读基础:(1)图1形似燕尾,我们称之为“燕尾形”,请写出∠A、∠B、∠C、∠D之间的关系,并说明理由;(2)图2形似8字,我们称之为“八字形”,请写出∠A、∠B、∠C、∠D之间的关系,并说明理由:应用乐园:直接运用上述两个结论解答下列各题(3)①如图3,在△ABC中,BD、CD分别平分∠ABC和∠ACB,请直接写出∠A和∠D的关系;②如图4,∠A+∠B+∠C+∠D+∠E+∠F=.(4)如图5,∠BAC与∠BDC的角平分线相交于点F,∠GDC与∠CAF的角平分线相交于点E,已知∠B=26°,∠C=54°,求∠F和∠E 的度数.参考答案一.选择1.解:A、3+3=6,不能构成三角形;B、4+5<10,不能构成三角形;C、3+4>5,能够组成三角形;D、2+3=5,不能组成三角形.故选:C.2.解:由题意∠C=180°﹣∠A﹣∠B=180°﹣21°﹣34°=125°,∴△ABC是钝角三角形,故选:C.3.解:∵三角形的第三边大于两边之差小于两边之和,∴三角形的两边长分别是5、8,则第三边长a的取值范围是3<a <13.故选:A.4.解:第一个图形为个三角形,具有稳定性,第二个图形是四边形,不具有稳定性;第三个图形中左侧含有一个四边形,不具有稳定性;第四个图形被分成了三个三角形,具有稳定性,所以具有稳定性的有2个.故选:B.5.解:设这个多边形的边数为n,则依题意可得:(n﹣2)×180°=360°×4,解得n=10.故选:A.6.解:∵∠DCA=∠A+∠B,∠DCA=100°,∠A=35°,∴∠B=100°﹣35°=65°,故选:C.7.解:A、三角形的角平分线是一条线段,故本选项错误;B、三角形的一个外角大于任何一个和它不相邻的内角,故本选项错误;C、任意多边形的外角和都是360°,故本选项错误;D、1080°÷180°+2=8,即内角和是1080°的多边形是八边形,故本选项正确.故选:D.8.解:如图:∵∠1=∠D+∠DOA,∠2=∠F+∠FPB,∵∠DOA=∠COP,∠EPB=∠CPO,∴∠1+∠2=∠D+∠F+∠COP+∠CPO=∠D+∠F+180°﹣∠C=30°+90°+180°﹣90°=210°.故选:B.9.解:∵CE∥DF,∴∠AEC=∠AFD=58°,∵∠AEC=∠B+∠BCE,∴∠BCE=∠AEC﹣∠B=58°﹣30°=28°;故选:B.10.解:∵两个图形为全等的正八边形,∴ABA′H为菱形,∵∠HAB=∠HA′B==135°∴∠ABA′=180°﹣135°=45°.故选:C.二.填空题(共5小题)11.解:设∠A=2x,则∠B=x,∵∠C的外角等于120°,∴∠A+∠B=120°,即2x+x=120°,解得,x=40°,即∠B=40°,故答案为:40°.12.解:根据三角形的稳定性,要使六边形木架不变形,至少再钉上3根木条;故答案为:3.13.解:∵BP是△ABC中∠ABC的平分线,CP是∠ACB的外角的平分线,∴∠ABC=2∠ABP,∠ACM=2∠ACP,又∵∠ABP=20°,∠ACP=50°,∴∠ABC=2×20°=40°,∠ACM=2×50°=100°,∴∠A=∠ACM﹣∠ABC=60°,故答案为60°.14.解:设第三边长为x,则4﹣3<x<4+3,即1<x<7.又x为偶数,因此x=2或4或6.故答案为:2或4或6.15.解:∵∠C=90°,∴∠A+∠B=90°,∵∠1+∠A+∠B+∠2=360°,∴∠1+∠2=360°﹣90°=270°,故答案为:270.三.解答题(共5小题)16.解:(1)证明:∵BE平分∠ABC,∴∠ABE=∠CBE,∴∠ABF+∠BAD=∠CBE+∠C,∵∠AFE=∠ABF+∠BAD,∠AEF=∠CBE+∠C,∴∠AEF=∠AFE;(2)∵FE平分∠AFG,∴∠AFE=∠GFE,∵∠AEF=∠AFE,∴∠AEF=∠GFE,∴FG∥AC,∵∠C=30°,∴∠CGF=180°﹣∠C=150°.17.解:(1)∵DF⊥AB,∴∠BFD=90°,∴∠B+∠D=90°,∵∠D=40°∴∠B=90°﹣∠D=90°﹣40°=50°;(2)∠ACD=∠A+∠B=40°+50°=90°.18.证明:∵AB∥CD(已知)∴∠BEF+∠DFE=180°(两直线平行,同旁内角互补),∵EG平分∠BEF,FG平分∠DFE(已知),∴∠BEG=∠FEG,∠DFG=∠EFG,(角平分线的定义),∴∠GEF+∠GFE=(∠BEF+∠DFE)(等量代换),∴∠GEF+∠GFE=×180°=90°(等式的性质),在△EGF中,∠GEF+∠GFE+∠G=180°(三角形的内角和),∴∠G=180°﹣90°=90°(等式性质),∴EG⊥FG(垂直的定义);(2)请用文字语言写出(1)所证命题:两条平行线被第三条直线所截,同旁内角的平分线互相垂直.故答案为:两直线平行,同旁内角互补,∠BEG=∠FEG,∠DFG =∠EFG,角平分线定义,等量代换,三角形的内角和,垂直的定义,两条平行线被第三条直线所截,同旁内角的平分线互相垂直19.解:(1)①∵∠B=34°,∠ACB=86°,∴∠BAC=180°﹣∠B﹣∠ACB=60°,∵AD平分∠BAC,∴∠BAD=∠BAC=30°,∴∠PDE=∠B+∠BAD=64°,∵PE⊥AD,∴∠E=90°﹣∠PDE=26°;故答案为:26;②数量关系:∠E=(∠ACB﹣∠B);理由如下:设∠B=x,∠ACB=y,∵AD平分∠BAC,∴∠BAD=∠CAD=∠BAC,∵∠B+∠ACB+∠BAC=180°,∴∠CAB=180°﹣x﹣y.∴∠BAD=(180°﹣x﹣y).∴∠PDE=∠B+∠BAD=x+(180°﹣x﹣y)=90°+(x﹣y).∵PE⊥AD,∴∠PDE+∠E=90°,∴∠E=90°﹣[90°+(x﹣y)]=(y﹣x)=(∠ACB﹣∠B).(2)∠PED=(∠ACB﹣∠ABC),理由如下:①当点E在线段BC上时,如图1所示:设∠ABC=n°,∠ACB=m°,∵AD平分∠BAC,∴∠BAD=∠CAD=∠BAC,∵∠B+∠ACB+∠BAC=180°,∴∠CAB=(180﹣n﹣m)°,∴∠BAD=(180﹣n﹣m)°,∴∠PDE=∠ADC=∠ABC+∠BAD=n°+(180﹣n﹣m)°=90°+n°﹣m°,∵PE⊥AD,∴∠DPE=90°,∴∠PED=90°﹣(90°+n°﹣m°)=(m﹣n)°=(∠ACB﹣∠ABC),②当点E在CB的延长线时,如图2所示:同(2)①可得:∠PDE=∠ADC=∠ABC+∠BAD=n°+(180﹣n ﹣m)°=90°+n°﹣m°,∵PE⊥AD,∴∠DPE=90°,∴∠PED=90°﹣(90°+n°﹣m°)=(m﹣n)°=(∠ACB﹣∠ABC),综上所述,∠PED=(∠ACB﹣∠ABC).20.解:(1)∴∠D=∠A+∠B+∠C;理由如下:如图1,∠BDE=∠B+∠BAD,∠CDE=∠C+∠CAD,∴∠BDC=∠B+∠BAD+∠C+∠CAD=∠B+∠BAC+∠C,∴∠D=∠A+∠B+∠C;(2)∠A+∠D=∠B+∠C;理由如下:如图2,在△ADE中,∠AED=180°﹣∠A﹣∠D,在△BCE中,∠BEC=180°﹣∠B﹣∠C,∵∠AED=∠BEC,∴∠A+∠D=∠B+∠C;(3)①∠A=180°﹣∠ABC﹣∠ACB,∠D=180°﹣∠DBC﹣∠DCB,∵BD、CD分别平分∠ABC和∠ACB,∴∠ABC+∠ACB=∠DBC+∠DCB,∴∠D=180°﹣(∠ABC+∠ACB)=180°﹣(180°﹣∠A)=90°+∠A,故答案为∠D=90°+∠A,②连结BE,∴∠C+∠D=∠CBE+∠DEB,∴∠A+∠B+∠C+∠D+∠E+∠F=∠A+∠ABE+∠F+∠BEF=360°;故答案为360°;(4)由(1)知,∠BDC=∠B+∠C+∠BAC,∵∠B=26°,∠C=54°,∴∠BDC=80°+∠BAC,∴∠CDF=40°+2∠CAE,∵∠BAC=4∠CAE,∠BDC=2∠CDF,∴∠GDE=90°﹣∠CDF,∠AGD=∠B+∠GDB=26°+180°﹣∠CDF,∠GAE=3∠CAE,∴∠E=360°﹣∠GAE﹣∠AGD﹣∠GDE=64°﹣(2∠CAE﹣∠CDF)=64°+×40°=124°;∠F=180°﹣∠AGF﹣∠GAF=180°﹣(206°﹣∠CDF)﹣2∠CAE =﹣26°+∠CDF﹣2∠CAE=﹣26°+40°=14°;。

【苏科版】七年级数学下册第十一章 图形的全等 单元测试A卷(含答案)

【苏科版】七年级数学下册第十一章 图形的全等 单元测试A卷(含答案)

七(下)数学下第11章图形的全等 A卷一.选择题(每题4分,共20分)1.全等图形是指两个图形( )A.大小相同B.形状相同C.能够重合D.相等2.如图,△ABC≌△ECD,∠A=48°,∠D=62°点B.C.D在同一直线上,则图中∠ACE的度数是( )A.38°B.48°C.132°D.62°3.下列各组的条件,能判定△ABC≌△A′B′C′的是( )A.AB=A′B′,AC=A′C′,∠C=∠C′ ;B.AB=A′B′,AC=A′C′,∠B=∠B′C.AB=A′B′,AC=A′C′,∠A=∠A′ ;D.∠A=∠A′,∠B=∠B′,∠C=∠C′4.如图,已知AB=AC,BD⊥AC于点D,CE⊥AB于点E,图中全等三角形的组数是( )A.5B.4C.3D.25.说法错误的是( )A.如果两个三角形中,有一角及这个角的平分线以及这个角所对边上的高对应相等,那么这两个三角形全等B.如果两个三角形中,有两条边和第三边上的高对应相等,那么这两个三角形全等C.如果两个三角形中,有一边及该边上的高和中线对应相等,那么这两个三角形全等D.如果两个三角形中,有两个角和其中一角的平分线对应相等,那么这两个三角形全等二.填空题(第6~10题,每题4分,第11题8分,共28分)6.已知,如图,AD=AC,BD=BC,O为AB上一点,那么,图中共有______对全等三角形.7.如图,△ABC≌△ADE,则,AB=_________,∠E=∠________.若∠BAE=120°,∠BAD=40°,则∠BAC=_________°.8.如图,在△ABC中,AD平分∠BAC,D为BC边的中点,DE⊥AB于点E,DF⊥AC于点F,图中有_________对相等的线段,它们是_______________________.9.两根钢条AB′.BA′的中点连在一起,可以做成一个测量工件内槽宽的工具(卡钳),如图,若测得AB=5 cm,则槽宽为__________cm.10.如图,在△ABC和△ABD中,∠C=∠D=90,若利用“AAS”证明△ABC≌△ABD,则需要加条件________或________;若利用“HL”证明△ABC≌△ABD,则需要加条件___________或____________.11.如图,已知∠ACB=∠BDA=90°,要使△ABC≌△BAD还需要增加一个什么条件?把增加的条件在横线上,并将相应的根据填在后面的括号内.(1)_______________;(2)_________________;(3)_______________;(4)_________________.三.解答题(第12.13题,每题8分,第14~17题,每题9分,共52分)12.如图,∠A=∠D,∠C=∠F,要使△ABC≌DEF,还要增加什么条件?试说明你的理由.13.如图,△ABC≌△DEF,∠A=25°,∠B=65°,BF=3 cm,求∠DFE的度数和EC的长.14.如图,△ABC中,AB=AC,D是BC的中点,试说明AD⊥BC.15.如图,A.B两点是湖两岸上的两点,为测A.B两点距离,由于不能直接测量,请你设计一种方案,测出A.B两点的距离,并说明你的方案的可行性.(8分)16.已知:如图.AB=CD,AF=CE,BE=DF,试说明∠B=∠C.你认为本题还可以得到哪些结论,尽可能多地写出来.17.将一个正方形分割成4个全等的部分.你有几种分割的方法?在每一种方法中,每一个全等部分是怎样得到另一个全等部分的?请你至少提供三种不同的方案.参考答案—.1.C 2.B 3.C4.B5.B二.6.3 7.AD,∠C,80 8.5,AB=AC.AE=AF.BE=CF.BD=CD.DE=DF9.510.∠CAB=∠DAB,∠ABC=∠ABD.AC=AD,BC=BD11.AC=BD,BC=AD,SAS∠BAC=∠ABD,AC=BD,ASA;∠BAC=∠ABD,BC=AD,AAS;AC=BD,HL三.12.只要增加一对边相等即可,利用“AAS”或“ASA”证明两三角形全等.13.∠DFE=90°,CE=3 cm14.由已知得△ABD≌△ACD,则∠ADB=∠ADC,进而得AD⊥BC15.构造以AB为一边的三角形以及这个三角形的全等三角形,如过A作河岸的平行线AC,过B作AC的垂直线BD.AC.BD交于点O.在OC上取点C使OC=OA.过C作∠ACD=∠BAC.CD交BD于点D.由“ASA”得△OCD≌△OAB,则有AB=CD,只要测量出CD的长,即可. 16.由AF=CE,得AE=CF,则可证△ABE≌△CDF,即∠B=∠C还可以得到∠D=∠B,∠AEB=∠CFD17.分割成如图1.图2或图3均可(答案不唯一).其中图1.图2的全等部分可以看作是平移得到的;图l.图3的全等部分可以看作是旋转得到的.。

八年级数学上册《全等三角形》单元测试含答案

八年级数学上册《全等三角形》单元测试含答案

八年级数学上册《全等三角形》单元测试含答案全等三角形单元测试一、单项选择题(共10 题;共 30 分)1.如图,已知AE=CF,∠ AFD=∠ CEB,那么增添以下一个条件后,仍没法判断△ADF≌△ CBE的是()A、∠ A=∠ CB、 AD=CBC、 BE='DF'D、 AD∥ BC2.如图, D 在AB 上, E 在AC 上,且∠B=∠ C,那么增补以下条件后,不可以判断△ABE≌△ ACD的是()A、 AD=AEB、 BE=CDC、∠ AEB=∠ADCD、 AB=AC3.以下图,△ABD≌△ CDB,下边四个结论中,不正确的选项是()A.△ ABD 和△ CDB的面积相等B.△ ABD 和△ CDB的周长相等C.∠ A+∠ ABD=∠ C+∠ CBD∥ BC,且AD=BC4.如图,在以下条件中,不可以证明△ABD≌△ ACD的是()A.BD=DC, AB=ACB.∠ ADB=∠ ADC, BD=DCC.∠ B=∠ C,∠ BAD=∠ CADD.∠ B=∠C, BD=DC5.已知图中的两个三角形全等,则∠ 1 等于()°° C.50 ° D.58 °6.两组邻边分别相等的四边形叫做“筝形”,如图,四边形ABCD是一个筝形,此中AD=CD,AB=CB,在研究筝形的性质时,获得以下结论:①△ABD≌△ CBD;② AC⊥ BD;③四边形ABCD的面积=12AC?BD,此中正确的结论有()A.0 个B.1 个C.2 个D.3 个7.如图,已知△ ABE≌△ ACD,∠ 1=∠ 2,∠ B=∠ C,不正确的等式是()A.AB=ACB.∠ BAE=∠ CADC.BE=DCD.AD=DE8.如图,已知MB=ND,∠ MBA=∠ NDC,以下条件中不可以判断△ABM≌△ CDN的是()A.∠ M=∠ NB.AM=CNC.AB=CDD.AM ∥ CN9.已知△ ABC≌△ DEF,∠ A=50°,∠ B=75°,则∠ F 的大小为()°° C.65 ° D.75 °10.如图,在△ ABC和△ DEF中,给出以下六个条件中,以此中三个作为已知条件,不可以判断△ABC和△ DEF 全等的是()①AB=DE ;② BC=EF;③ AC=DF;④∠ A=∠ D;⑤∠B=∠ E;⑥∠ C=∠ F.A、①⑤②B、①②③C、④⑥①D、②③④二、填空题(共8 题;共 27 分)11.如图,△ ABC≌△ ADE,∠ B=100 °,∠ BAC= 30°,那么∠ AED= ________ °.12.以下图,已知△ABC≌△ ADE,∠ C=∠ E,AB=AD,则此外两组对应边为________,此外两组对应角为________.13.如图,△ ACE≌△ DBF,点 A、 B、C、 D 共线,若 AC=5, BC=2,则 CD的长度等于 ________.14.如图, AB=AD,只需增添一个条件________,就能够判断△ABC≌△ ADE.B=∠ C, BC=8厘米,点 D 为AB 的中点.假如点P 在线段BC 上以 2 厘米15.△ ABC中, AB=AC=12厘米,∠/ 秒的速度由 B 点向 C 点运动,同时,点Q 在线段CA 上由 C 点向A 点运动.若点Q 的运动速度为v 厘米 /秒,则当△ BPD 与△ CQP全等时, v 的值为 ________.16.如图,已知△ABC≌△ DCB,∠ BDC=35°,∠ DBC=50°,则∠ ABD=________.17.如图,△ ABC≌△ DEF,点 F 在 BC边上, AB 与 EF订交于点P.若∠ DEF=40°, PB=PF,则∠APF=________ .°18.如图,在△ ABC与△ ADC 中,已知 AD=AB,在不增添任何协助线的前提下,要使△ABC≌△ ADC,只需再增添的一个条件能够是________.三、解答题(共 5 题;共 37 分)19.如图,已知△ABC≌△ BAD, AC 与 BD 订交于点O,求证: OC=OD.20.图中所示的是两个全等的五边形,∠β=115°,d=5,指出它们的对应极点?对应边与对应角,并说出图中标的 a,b ,c, e,α各字母所表示的值.21.如图, AB=CB, BE=BF,∠ 1=∠ 2,证明:△ ABE≌△ CBF.22.已知命题:如图,点A, D, B, E 在同一条直线上,且AD=BE,∠ A=∠ FDE,则△ ABC≌△ DEF.判断这个命题是真命题仍是假命题,假如是真命题,请给出证明;假如是假命题,请增添一个适合条件使它成为真命题,并加以证明.23.如图,已知点 C 是线段 AB 上一点,直线AM⊥ AB,射线 CN⊥ AB, AC=3, CB=2.分别在直线AM 上取一点 D,在射线CN上取一点 E,使得△ ABD 与△ BDE全等,求2的CE值.四、综合题(共 1 题;共 10 分)24.定义:我们把三角形被一边中线分红的两个三角形叫做“朋友三角形”.性质:“朋友三角形”的面积相等.如图 1,在△ ABC中, CD是 AB 边上的中线.那么△ ACD和△ BCD是“朋友三角形”,而且 S△ACD=S△BCD.应用:如图 2,在直角梯形 ABCD中,∠ ABC=90°, AD∥ BC, AB=AD=4, BC=6,点 E 在 BC 上,点 F 在AD 上, BE=AF, AE 与 BF交于点 O.(1)求证:△ AOB 和△ AOF是“朋友三角形”;(2)连结 OD,若△ AOF 和△ DOF是“朋友三角形”,求四边形CDOE的面积.拓展:如图3,在△ ABC中,∠ A=30°, AB=8,点 D 在线段 AB 上,连结 CD,△ ACD和△ BCD是“朋友三角形”,将△ ACD 沿 CD 所在直线翻折,获得△ A′CD,若△ A′CD与△ ABC重合部分的面积等于△ABC 面积的,则△ ABC的面积是 ________(请直接写出答案).答案分析一、单项选择题1、【答案】 B【考点】全等三角形的判断【分析】【剖析】由 AE=CF可得 AF=CE,再有∠ AFD=∠ CEB,依据全等三角形的判断方法挨次剖析各选项即可 .【解答】∵ AE=CF∴AE+EF=CF+EF,即 AF=CE,∵∠ A=∠ C, AF=CE,∠ AFD=∠ CEB,∴△ ADF≌△ CBE( ASA)∵BE=DF,∠ AFD=∠ CEB, AF=CE,∴△ ADF≌△ CBE(SAS)∵AD∥ BC,∴∠ A=∠ C,∵∠ A=∠ C, AF=CE,∠ AFD=∠ CEB,∴△ ADF≌△ CBE( ASA)故 A、 C、D 均能够判断△ ADF≌△ CBE,不切合题意B、 AF=CE, AD=CB,∠ AFD=∠ CEB没法判断△ ADF≌△ CBE,本选项切合题意.【评论】全等三角形的判断和性质是初中数学的要点,贯串于整个初中数学的学习,是中考取比较常有的知识点,一般难度不大,需娴熟掌握.2、【答案】 C【考点】全等三角形的判断【分析】【剖析】 A、依据 AAS(∠ A=∠ A,∠ C=∠B, AD=AE)能推出△ ABE≌△ ACD,正确,故本选项错误;B、依据 AAS(∠ A=∠ A,∠ B=∠ C, BE=CD)能推出△ ABE≌△ ACD,正确,故本选项错误;C、三角对应相等的两三角形不必定全等,错误,故本选项正确;D、依据 ASA(∠ A=∠ A, AB=AC,∠ B=∠ C)能推出△ ABE≌△ ACD,正确,故本选项错误;应选 C.3、【答案】 C【考点】全等三角形的性质【分析】【解答】解: A、∵△ ABD≌△ CDB,∴△ ABD 和△ CDB的面积相等,故本选项错误;B、∵△ ABD≌△ CDB,∴△ ABD 和△ CDB的周长相等,故本选项错误;C、∵△ ABD≌△ CDB,∴∠ A=∠ C,∠ ABD=∠ CDB,∴∠ A+∠ ABD=∠ C+∠ CDB≠∠ C+∠ CBD,故本选项正确;D、∵△ ABD≌△ CDB,∴AD=BC,∠ ADB=∠ CBD,∴AD∥BC,故本选项错误;应选 C.【剖析】依据全等三角形的性质得出对应角相等,对应边相等,推出两三角形面积相等,周长相等,再逐一判断即可.4、【答案】 D【考点】全等三角形的判断【分析】【解答】解: A、∵在△ ABD 和△ ACD中∴△ ABD≌△ ACD( SSS),故本选项错误;B、∵在△ ABD 和△ ACD 中∴△ ABD≌△ ACD( SAS),故本选项错误;C、∵在△ ABD 和△ ACD 中∴△ ABD≌△ ACD( AAS),故本选项错误;D、不切合全等三角形的判断定理,不可以推出△ABD≌△ ACD,故本选项正确;应选 D.【剖析】全等三角形的判断定理有SAS, ASA,AAS, SSS,依据全等三角形的判断定理逐一判断即可.5、【答案】 D【考点】全等三角形的性质【分析】【解答】解:如图,由三角形内角和定理获得:∠2=180°﹣ 50°﹣72°=58°.∵图中的两个三角形全等,∴∠ 1=∠ 2=58°.应选: D.【剖析】依据三角形内角和定理求得∠2=58°;而后由全等三角形是性质获得∠1=∠ 2=58°.6、【答案】 D【考点】全等三角形的判断【分析】【解答】解:在△ABD 与△ CBD中,AD=CDAB=BCDB=DB ,∴△ ABD≌△ CBD( SSS),故①正确;∴∠ ADB=∠ CDB,在△ AOD 与△ COD中,,∴△ AOD≌△ COD( SAS),∴∠ AOD=∠ COD=90°,AO=OC,∴AC⊥ DB,故②正确;四边形 ABCD的面积 =S△ ADB+S△ BDC=12DB×OA+12DB×OC=12AC· BD故③正确;应选 D.【剖析】先证明△ABD 与△ CBD 全等,再证明△AOD 与△ COD 全等即可判断.7、【答案】 D【考点】全等三角形的性质【分析】【解答】解:∵△ABE≌△ ACD,∠ 1=∠ 2,∠B=∠ C,∴ AB=AC,∠ BAE=∠ CAD,BE=DC,AD=AE,故 A、 B、C 正确;AD 的对应边是AE 而非 DE,因此 D 错误.应选 D.【剖析】依据全等三角形的性质,全等三角形的对应边相等,全等三角形的对应角相等,即可进行判断.8、【答案】 B【考点】全等三角形的判断【分析】【解答】解: A、∠ M= ∠ N,切合 ASA,能判断△ ABM≌△ CDN,故 A 选项不切合题意;B、根据条件 AM=CN, MB=ND,∠ MBA=∠ NDC,不可以判断△ ABM≌△ CDN,故 B 选项切合题意;C、 AB=CD,切合 SAS,能判断△ ABM≌△ CDN,故 C 选项不切合题意;D、 AM∥CN,得出∠ MAB=∠ NCD,切合 AAS,能判断△ ABM≌△ CDN,故 D 选项不切合题意.应选: B.【剖析】依据一般三角形全等的判断定理,有9、【答案】 B【考点】全等三角形的性质【分析】【解答】解:∵∠A=50°,∠ B=75°,∴∠ C=55°,AAS、 SSS、 ASA、 SAS四种.逐条考证.又∵∠ A+∠ B+C=180°,∵△ ABC≌△ DEF,∴∠ F=∠ C,即:∠ F=55°.应选 B.【剖析】由∠A=50°,∠ B=75°,依据三角形的内角和定理求出∠全等三角形的性质获得∠F=∠ C,即可获得答案.C的度数,依据已知△ABC≌△ DEF,利用10、【答案】 D【考点】全等三角形的判断【分析】【解答】解:在△ABC 和△ DEF中,,∴△ ABC≌△ DEF( SAS);∴A 不切合题意;在△ ABC和△ DEF中,,∴△ ABC≌△ DEF( SSS);∴ B 不切合题意;在△ ABC和△ DEF中,,∴△ ABC≌△ DEF( AAS),∴C 不切合题意;在△ ABC和△ DEF中,D②③④不可以判断△ ABC和△ DEF全等,应选 D.【剖析】依据全等三角形的判断方法对组合进行判断即可.二、填空题11、【答案】 50【考点】全等三角形的性质【分析】【解答】由于∠B= 100°,∠ BAC= 30°因此∠ ACB= 50°;又由于△ ABC≌△ ADE,因此∠ ACB=∠AED = 50°;【剖析】第一依据全等三角形性质可得对应角相等,再联合图形找到全等三角形的那两个角对应相等,根据题意达成填空.12、【答案】 BC=DE、 AC=AE;∠ B=∠ ADE、∠ BAC=∠DAE 【考点】全等三角形的性质【分析】【解答】∵△ ABC≌△ ADE,∠ C=∠ E, AB=AD,∴AC=AE, BC=DE;∴∠ BAC=∠ DAE,∠ B=∠ ADE.【剖析】由已知△ ABC≌△ ADE,∠ C=∠ E, AB=AD 得 C 点与点 E,点 B 与点 D 为对应点,而后依据全等三角形的性质可得答案.13、【答案】 3【考点】全等三角形的性质【分析】【解答】解:∵△ACE≌△ DBF,∴AC=BD=5,∴CD=BD﹣BC=5﹣ 2=3.故答案为: 3.【剖析】依据全等三角形对应边相等可得AC=BD,而后依据 CD=BD﹣ BC计算即可得解.14、【答案】∠ B=∠ D【考点】全等三角形的判断【分析】【解答】解:增添条件∠B=∠ D,∵在△ ABC和△ ADE 中,∴△ ABC≌△ ADE( ASA),故答案为:∠B=∠D.【剖析】增添条件∠B=∠ D,再由条件∠A=∠A,AB=AD,可利用ASA定理证明△ ABC≌△ ADE,答案不惟一.15、【答案】 2 或 3【考点】全等三角形的判断【分析】【解答】解:当BD=PC时,△ BPD 与△ CQP全等,∵点 D 为 AB 的中点,∴BD= 12 AB=6cm,∵ BD=PC,∴BP=8﹣ 6=2(cm),∵点 P 在线段 BC上以 2 厘米 / 秒的速度由 B 点向 C 点运动,∴运动时间时1s,∵△ DBP≌△ PCQ,∴BP=CQ=2cm,∴v=2÷1=2;当BD=CQ时,△BDP≌△QCP,∵ BD=6cm,PB=PC,∴QC=6cm,∵BC=8cm,∴ BP=4cm,∴运动时间为 4÷2=2( s),∴ v=6÷2=3( m/s ),故答案为: 2 或 3.【剖析】本题要分两种状况:①当BD=PC时,△ BPD 与△ CQP全等,计算出BP的长,从而可得运动时间,BDP≌△ QCP,计算出BP 的长,从而可得运动时间,而后再求v.而后再求v;②当BD=CQ时,△16、【答案】 45°【考点】全等三角形的性质【分析】【解答】解:∵∠ BDC=35°,∠ DBC=50°,∴∠ BCD=180°﹣∠ BDC﹣∠ DBC=180°﹣35°﹣50°=95°,∵△ ABC≌△ DCB,∴∠ ABC=∠ BCD=95°,∴∠ ABD=∠ ABC﹣∠ DBC=95°﹣50°=45°.故答案为: 45°.【剖析】依据三角形的内角和等于180°求出∠BCD,再依据全等三角形对应角相等可得∠ABC=∠ BCD,然后列式进行计算即可得解.17、【答案】 80【考点】全等三角形的性质【分析】【解答】解:∵△ ABC≌△ DEF,∴∠ B=∠DEF=40°,∵PB=PF,∴∠ PFB=∠ B=40°,∴∠ APF=∠ B+∠PFB=80°,故答案为: 80.【剖析】由全等三角形的性质可求得∠B,再利用等腰三角形和外角的性质可求得∠APF.18、【答案】 DC=BC或∠ DAC=∠BAC【考点】全等三角形的判断【分析】【解答】解:增添条件为DC=BC,在△ ABC和△ ADC中,,∴△ ABC≌△ ADC( SSS);若增添条件为∠DAC=∠ BAC,在△ ABC和△ ADC 中,,∴△ ABC≌△ ADC( SAS).故答案为: DC=BC或∠ DAC=∠BAC【剖析】增添 DC=BC,利用 SSS即可获得两三角形全等;增添∠ DAC=∠ BAC,利用 SAS即可获得两三角形全等.三、解答题19、【答案】证明:∵△ ABC≌△ BAD,∴∠ CAB=∠ DBA, AC=BD,∴OA=OB,∴AC﹣OA=BD﹣OB,即: OC=OD.【考点】全等三角形的性质【分析】【剖析】由△ ABC≌△ BAD,依据全等三角形的性质得出∠CAB=∠ DBA, AC=BD,利用等角平等边获得 OA=OB,那么 AC﹣ OA=BD﹣OB,即: OC=OD.20、【答案】解:对应极点: A 和 G, E 和 F,D 和 J,C 和 I, B 和 H,对应边: AB 和 GH,AE 和 GF, ED 和 FJ, CD 和 JI,BC 和 HI;对应角:∠ A 和∠ G,∠ B 和∠ H,∠ C 和∠ I,∠ D 和∠ J,∠ E和∠ F;∵两个五边形全等,∴a=12,c=8, b=10, e=11,α=90°.【考点】全等图形【分析】【剖析】依据能够完整重合的两个图形叫做全等形,重合的极点叫做对应极点;重合的边叫做对应边;重合的角叫做对应角可得对应极点,对应边与对应角,从而可得a,b,c,e,α各字母所表示的值.21、【答案】证明:∵∠ 1=∠ 2,∴∠ 1+∠ FBE=∠ 2+∠ FBE,即∠ ABE=∠ CBF,在△ ABE与△ CBF中,AB=CB∠ ABE=∠ CBFBE=BF,∴△ ABE≌△ CBF( SAS).【考点】全等三角形的判断【分析】【剖析】利用∠1=∠ 2,即可得出∠ABE=∠ CBF,再利用全等三角形的判断SAS得出即可.22、【答案】解:是假命题.以下任一方法均可:①增添条件:AC=DF.证明:∵ AD=BE,∴AD+BD=BE+BD,即 AB=DE.在△ ABC和△ DEF中,AB=DE,∠A=∠ FDE,AC=DF,∴△ ABC≌△ DEF( SAS);②增添条件:∠CBA=∠ E.证明:∵ AD=BE,∴AD+BD=BE+BD,即 AB=DE.在△ABC和△DEF中,∠ A=∠ FDE,AB=DE,∠CBA=∠ E,∴△ ABC≌△ DEF( ASA);③增添条件:∠C=∠ F.证明:∵ AD=BE,∴AD+BD=BE+BD,即 AB=DE.在△ ABC和△ DEF中,∠ A=∠ FDE,∠ C=∠F,AB=DE,∴△ ABC≌△ DEF( AAS)【考点】全等三角形的判断【分析】【剖析】本题中要证△ABC≌△ DEF,已知的条件有一组对应边AB=DE( AD=BE),一组对应角∠ASA),或许是一组A=∠FDE.要想证得全等,依据全等三角形的判断,缺乏的条件是一组对应角( AAS或对应边AC=EF( SAS).只需有这两种状况就能证得三角形全等.23、【答案】解:如图,当△ ABD≌△ EBD时,BE=AB=5,∴CE2=BE2﹣ BC2=25﹣ 4=21.【考点】全等三角形的判断【分析】【剖析】由题意可知只好是△ABD≌△ EBD,则可求得BE,再利用勾股定理可求得CE2四、综合题24、【答案】( 1)证明:∵ AD∥ BC,∴∠ OAF=∠ OEB,在△ AOF 和△ EOB 中,,∴△ AOF≌△ EOB( AAS),∴OF=OB,则 AO 是△ ABF 的中线.∴△ AOB 和△ AOF是“朋友三角形”(2) 8 或 8【考点】全等三角形的判断【分析】【解答】( 2)解:∵△ AOF 和△ DOF 是“朋友三角形”,∴S△AOF=S△DOF,∵△ AOF≌△ EOB,∴S△AOB=S△EOB,∵△ AOB 和△ AOF是“朋友三角形”∴S△AOB=S△AOF,=S =S =S, =× 4× 2=4,∴ S△AOF△DOF△AOB△EOB∴四边形CDOE 的面积 =S 梯形ABCD﹣ 2S△ABE=×(4+6)×4﹣2× 4=12;拓展:解:分为两种状况:①如图 1 所示:∵S△ACD=S△BCD.∴AD=BD= AB=4,∵沿 CD 折叠 A 和 A′重合,∴AD=A′D= AB= ×8=4,∵△ A′CD与△ ABC重合部分的面积等于△ABC面积的,=S =S =S =S,∴ S△DOC△ ABC△ BDC△ ADC△ A′DC∴ DO=OB, A′O=CO,∴四边形 A′DCB是平行四边形,∴ BC=A′D=4,过 B 作 BM⊥ AC 于 M,∵ AB=8,∠ BAC=30°,∴ BM=AB=4=BC,即 C 和 M 重合,∴∠ ACB=90°,由勾股定理得:AC==4,∴△ ABC的面积 =×BC×AC= ×4×4=8;②如图 2 所示:∵S△ACD=S△BCD.∴AD=BD= AB,∵沿 CD 折叠 A 和 A′重合,∴AD=A′D= AB= ×8=4,∵△ A′CD与△ ABC重合部分的面积等于△ABC 面积的,∴ S△DOC=△△△△ ′S ABC=S BDC=S ADC=S A DC,∴DO=OA′, BO=CO,∴四边形 A′BDC是平行四边形,∴A′C=BD=4,过 C 作 CQ⊥ A′D于 Q,∵A′C=4,∠ DA′C=∠BAC=30°,∴ CQ= A′C=2,=2S=2S=2×× A′ D× CQ=2× 4 × 2=8;∴ S△ABC△ADC△ A′DC即△ ABC的面积是8 或 8;故答案为:8 或 8.【剖析】应用:(1)由 AAS 证明△ AOF≌△ EOB,得出 OF=OB, AO 是△ ABF的中线,即可得出结论;( 2)△ AOE和△ DOE 是“友善三角形”,即可获得 E 是 AD 的中点,则能够求得△ ABE和梯形 ABCD的面积的面积,依据 S 四边形CDOF=S矩形ABCD﹣ 2S△ABF即可求解.拓展:画出切合条件的两种状况:①求出四边形A′DCB是平行四边形,求出BC和 A′D推出∠ ACB=90°,依据三角形面积公式求出即可;②求出高CQ,求出△ A′DC的面积.即可求出△ABC的面积。

人教版八年级上学期数学《全等三角形》单元测试题(带答案)

人教版八年级上学期数学《全等三角形》单元测试题(带答案)
7. 已知一等腰三角形的腰长为5,底边长为4,底角为β.满足下列条件的三角形不一定与已知三角形全等的是( )
A. 两条边长分别为4,5,它们的夹角为β
B. 两个角是β,它们的夹边为4
C. 三条边长分别是4,5,5
D. 两条边长是5,一个角是β
[答案]D
[解析]
试题分析:根据全等三角形的判定方法对各选项分析判断后利用排除法求解.
A. B. C. D.
[答案]B
[解析]
[分析]
根据能够完全重合的两个图形是全等图形对各选项分析即可得解.
[详解]观察发现,A.C.D选项的两个图形都可以完全重合,
∴是全等图形,
B选项中圆与椭圆不可能完全重合,
∴不 全等形.
故答案选B.
[点睛]本题考查的知识点是全等图形,解题的关键是熟练的掌握全等图形.
A.B D=D C,A B=A CB.∠A D B=∠A D C,B D=D C
C.∠B=∠C,∠B A D=∠C A DD.∠B=∠C,B D=D C
9.如图所示,A B,C D两条公路相交于点O,小芳和小明 家分别在两条公路的M,N处,并且OM=ON,而学校P恰好在∠AOC的平分线上,学了角平分线的有关知识后,同学们对PM与PN的关系作出了如下判断,其中正确的是()
18.如图,P是∠AOB的平分线上的一点,PC⊥AO于C,PD⊥OB于D,写出图中一组相等的线段__________(只需写出一组即可)
19.在△A B C中,∠C=90°,B C=16Cm,∠B A C的平分线交B C于点D,且B D∶D C=5∶3,则D到A B的距离为____Cm.
20.如图,直线 经过正方形 的顶点 分别过此正方形的顶点 、 作 于点 、 于点 .若 ,则 的长为________.

【人教版】八年级上册数学:第11章三角形单元测试(含答案)

【人教版】八年级上册数学:第11章三角形单元测试(含答案)

第十一章三角形单元测试一、单选题(共10题;共30分)1、如图,小正方形边长为1,连结小正方形的三个顶点,可得△ABC,则AC边上的高是()A、 B、C、D、2、等腰三角形的两边分别为5cm、4cm,则它的周长是()A、14cmB、13cmC、16cm或9cmD、13cm或14cm3、若一个多边形有14条对角线,则这个多边形的边数是()A、10B、7C、14D、64、在四边形的内角中,直角最多可以有()A、1个B、2个C、3个D、4个5、一个多边形的内角和是720°,则这个多边形的边数为()A、4B、5C、6D、76、下列图形中有稳定性的是()A、正方形B、直角三角形C、长方形D、平行四边形7、八边形的对角线共有()A、8条B、16条C、18条D、20条8、多边形的每个内角都等于150°,则从此多边形的一个顶点出发可作的对角线共有()A、8条B、9条C、10条D、11条9、若一个多边形的外角和与它的内角和相等,则这个多边形是()A、三角形B、五边形C、四边形D、六边形10、如图,在证明“△ABC内角和等于180°”时,延长BC至D,过点C作CE∥AB,得到∠ABC=∠ECD,∠BAC=∠ACE,由于∠BCD=180°,可得到∠ABC+∠ACB+∠BAC=180°,这个证明方法体现的数学思想是()A、数形结合B、特殊到一般C、一般到特殊D、转化二、填空题(共8题;共27分)11、一个等腰三角形的两边长分别为5厘米、9厘米,则这个三角形的周长为________.12、超重机的底座、输电线路的支架、自行车的斜支架等,都是采用三角形结构,这样做的数学道理是利用了________ .13、若一个多边形从一个顶点可以引8条对角线,则这个多边形的边数是________ ,这个多边形所有对角线的条数是________ .14、现要用两种不同的正多边形地砖铺地板,若已选用正三角形,则还可以选用正________ 边形与它搭配铺成无空隙且不重叠的地面(只需要写出一种即可)15、如果等腰三角形一个角是45°,那么另外两个角的度数为________16、已知一个多边形的内角和是1620°,则这个多边形是________边形.17、在格点图中,横排或竖排相邻两格点问的距离都为1,若格点多边形边界上有200个格点,面积为199,则这个格点多边形内有________个格点.18、一个多边形的每一个内角都是108°,你们这个多边形的边数是________.三、解答题(共5题;共32分)19、如图,已知,l1∥l2, C1在l1上,并且C1A⊥l2, A为垂足,C2, C3是l1上任意两点,点B在l2上.设△ABC1的面积为S1,△ABC2的面积为S2,△ABC3的面积为S3,小颖认为S1=S2=S3,请帮小颖说明理由.20、如图,五边形ABCDE的内角都相等,且∠1=∠2,∠3=∠4,求x的值.21、如图,在△ABC中,∠B=40°,∠C=62°,AD是△ABC的高,AE是△ABC的角平分线.求∠EAD的度数.22、如图,△ABC的中线AD、BE相交于点F.△ABF与四边形CEFD的面积有怎样的数量关系?为什么?23、如图,在7×8的方格纸中,已知图中每个小正方形的边长都为1,求图中阴影部分的面积.四、综合题(共1题;共11分)24、已知点P为∠EAF平分线上一点,PB⊥AE于B,PC⊥AF于C,点M,N分别是射线AE,AF上的点,且PM=PN.(1)如图1,当点M在线段AB上,点N在线段AC的延长线上时,求证:BM=CN;(2)在(1)的条件下,直接写出线段AM,AN与AC之间的数量关系________;(3)如图2,当点M在线段AB的延长线上,点N在线段AC上时,若AC:PC=2:1,且PC=4,求四边形ANPM的面积.答案解析一、单选题1、【答案】 C【考点】三角形的面积,勾股定理【解析】【分析】以AC、AB、BC为斜边的三个直角三角形的面积分别为1、1、,因此△ABC的面积为;用勾股定理计算AC的长为,因此AC边上的高为.【解答】∵三角形的面积等于小正方形的面积减去三个直角三角形的面积,即S△ABC=4-×1×2-×1×1-×1×2=∵=,∴AC边上的高==,故选C.【点评】此题首先根据大正方形的面积减去三个直角三角形的面积计算,再根据勾股定理求得AC的长,最后根据三角形的面积公式计算.2、【答案】 D【考点】三角形三边关系,等腰三角形的性质【解析】【分析】因为等腰三角形的两边分别为5cm和4cm,但没有明确哪是底边,哪是腰,所以有两种情况,需要分类讨论【解答】当4为底时,其它两边都为5,4、5、5可以构成三角形,周长为14cm;当4为腰时,其它两边为4和5,4、4、5可以构成三角形,周长为13cm.故选D.3、【答案】 B【考点】多边形的对角线【解析】【分析】根据多边形的对角线与边的关系,n边形的对角线条数为:(n≥3,且n为整数)。

人教版八年级上册数学《全等三角形》单元综合检测卷(含答案)

人教版八年级上册数学《全等三角形》单元综合检测卷(含答案)
选项C、添加∠A=∠D不能判定△ABC≌△DEF,故本选项正确;
选项D、添加BF=EC可得出BC=EF,然后可用ASA进行判定,故本选项错误.
故选C.
考点:全等三角形的判定.
4.如图,直线L上有三个正方形a,b,c,若a,c的面积分别为1和9,则b的面积为()
A 8B. 9C. 10D. 11
【答案】C
人教版数学八年级上学期
《全等三角形》单元测试
时间:90分钟总分:100
一.选择题(本大题共8小题,共24.0分)
1.如图所示,△ABP与△CDP是两个全等的等边三角形,且PA⊥PD,有下列四个结论:①∠PBC=15°,②AD∥BC,③PC⊥AB,④四边形ABCD是轴对称图形,其中正确的个数为( )
A.1个B.2个C.3个D.4个
A.1个B.2个C.3个D.4个
【答案】D
【解析】
【分析】
根据周角 定义先求出∠BPC的度数,再根据对称性得到△BPC为等腰三角形,∠PBC即可求出;根据题意:有△APD是等腰直角三角形;△PBC是等腰三角形;结合轴对称图形的定义与判定,可得四边形ABCD是轴对称图形,进而可得②③④正确.
【详解】根据题意, ,
∴∠A=∠2,故B正确;
∴∠A+∠D=90°,故A正确;
在△ABC和△CED中,

∴△ABC≌△CED(AAS),故C正确;
故选D.
【点睛】本题考查了全等三角形的判定与性质,等角的余角相等的性质,熟练掌握三角形全等的判定方法并确定出全等的条件∠A=∠2是解题的关键.
6.如图,在△PAB中,PA=PB,M,N,K分别是PA,PB,AB上的点,且AM=BK,BN=AK,若∠MKN=42°,则∠P的度数为( )

全等三角形单元测试题含答案

全等三角形单元测试题含答案

全等三角形单元测试题(含答案)2第11章《全等三角形》单元检测题一、选择题 (每小题4分,共40分) 1. 下列可使两个直角三角形全等的条件是A.一条边对应相等B.两条直角边对应相等C.一个锐角对应相等D.两个锐角对应相等2. 如图,点P 是△ABC 内的一点,若PB =PC ,则A .点P 在∠ABC 的平分线上 B.点P 在∠ACB 的平分线上C .点P 在边AB 的垂直平分线上D .点P 在边BC 的垂直平分线上 3. 如图, AD 是ABC △的中线,E ,F 分别是AD 和AD 延长线上的点,且DE DF ,连结BF ,CE . 下列说法:①CE =BF ;②△ABD 和△ACD 面积相等;③BF ∥CE ;④△BDF ≌△CDE . 其中正确的有A D CBE F3PO DCBA A. 1个 B. 2个 C. 3个 D. 4个4. 在直角梯形ABCD 中,AD ∥BC ,∠B =90°,E 为AB 上一点,且ED 平分∠ADC ,EC 平分∠BCD ,则下列结论中正确的有A.∠ADE =∠CDEB.DE ⊥ECC.AD ·BC =BE ·DED.CD =AD +BC 5. 使两个直角三角形全等的条件是 A. 斜边相等 B. 两直角边对应相等C. 一锐角对应相等D. 两锐角对应相等6. 如图,OP 平分∠AOB ,PC ⊥OA 于C ,PD ⊥OB 于D ,则PC 与PD 的大小关系A.PC >PDB.PC =PDC.PC <PDD.不能确定7. 用两个全等的直角三角形,拼下列图形:①平行四边形;②矩形;③菱形;④正方形;⑤等腰三角形;⑥等边三角形,其中不一定能拼成的图形 A E D是A. ①②③B. ②③C. ③④⑤D. ③④⑥8. 如图,平行四边形ABCD中,AC、BD相交于点O,过点O作直线分别交于AD、BC于点E、F,那么图中全等的三角形共有A.2对B.4对C.6对D.8对9. 给出下列条件:①两边一角对应相等②两角一边对应相等③三角形中三角对应相等④三边对应相等,其中,不能使两个三角形全等的条件是A. ①③B. ①②C. ②③D. ②④10. 如图,P是∠BAC的平分线AD上一点,PE⊥AB于E,PF⊥AC于F,下列结论中不正确的是A. PE PF= B. AE AF=C. △APE≌△APFD. AP PE PF=+AD CBE F45二、简答题 (每小题3分,共24分)11. 如图,ABC ∆中,点A 的坐标为(0,1),点C 的 坐标为(4,3),如果要使ABD ∆与ABC ∆ 全等,那么点D 的坐标是_________.12. 填空,完成下列证明过程.如图,ABC △中,∠B =∠C ,D ,E ,F 分别在AB ,BC,AC 上,且BD CE =,=DEF B ∠∠ 求证:=ED EF .证明:∵∠DEC =∠B +∠BDE ( ), 又∵∠DEF =∠B (已知), ∴∠______=∠______(等式性质).在△EBD 与△FCE 中, ∠______=∠______(已证), ______=______(已知), ∠B =∠C (已知), ∴EBD FCE △≌△( ).xyOABCADE CBF6∴ED=EF ( ).13. 如图,点B 在AE 上,∠CAB =∠DAB ,要使△ABC ≌△ABD , 可补充的一个条件是:-____________(写一个即可).(第13题) (第14题)(第15题)14. 如图,在△ABC 中,AB =AC ,∠A =50°,BD 为∠ABC 的平分线,则∠BDC = °. 15. 如图,在△ABC 中,∠C =90°,AB 的垂直平分线交AC 于D ,垂足为E ,若∠A =30°,DE =2,∠DBC 的度数为__________,CD 的长为__________.16. 如图,已知AD=BC .EC ⊥AB.DF ⊥AB ,C.D为垂足,要使ΔAFD ≌ΔBEC ,还需添加一个条件.若图3DC POBA7FE DCBA 以“ASA ”为依据,则添加的条件是 .17. 如图,AB =CD ,AD 、BC 相交于点O ,要使△ABO≌△DCO ,应添加的条件为 . (添加一个条件即可)18. 如图3,P 是∠AOB 的平分线上一点,C .D 分别是OB .OA 上的点,若要使PD =PC ,只需添加一个条件即可。

八年级数学《全等三角形》单元测试二(附解析)

八年级数学《全等三角形》单元测试二(附解析)

……○…………外…………○…………装…………○…………订…………○…………线…………学校:___________姓名:___________班级:___________考号:___________……○…………内…………○…………装…………○…………订…………○…………线…………八年级数学《全等三角形》单元测试二(附解析)注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上第I 卷(选择题)一、单选题1.如图,已知AD 为△ABC 的高线,AD=BC ,以AB 为底边作等腰Rt △ABE ,连接ED ,EC ,延长CE 交AD 于F 点,下列结论:①△ADE ≌△BCE ;②CE ⊥DE ;③BD=AF ;④S △BDE =S △ACE ,其中正确的有()A .①③B .①②④C .①②③④D .②③④2.如图,∠C =∠D =90°,若添加一个条件,可使用“HL”判定Rt △ABC 与Rt △ABD 全等,则以下给出的条件适合的是()A .AC =AD B .AB =AB C .∠ABC =∠ABD D .∠BAC =∠BAD 3.若△MNP ≌△NMQ ,且MN =5cm ,NP =4cm ,PM =2cm ,则MQ 的长为()A .5cm B .4cm C .2cm D .3cm 4.如图,O 是△ABC 的∠ABC ,∠ACB 的平分线的交点,OD ∥AB 交BC 于D ,OE ∥AC 交BC 于E ,若△ODE 的周长为10厘米,那么BC 的长为()……○…………外…………○…………装…………○…………订…………○…………线…………学校:___________姓名:___________班级:___________考号:___________……○…………内…………○…………装…………○…………订…………○…………线…………A .8cm B .9cm C .10cm D .11cm 5.如图,△ABC ≌△BAD ,点A 和点B ,点C 和点D 是对应点,如果AB =6cm ,BD =5cm ,AD =4cm ,那么AC 的长是()A .4cm B .5cm C .6cm D .无法确定6.如图,在△ABC 中,AB =AC ,则添加下列条件后仍不能判定△ABE ≌△ACD 的是()A .BD =CE B .AD =AE C .∠B =∠C D .∠BAD =∠CAE 7.在如图所示的44⨯的正方形网格中,1234567∠+∠+∠+∠+∠+∠+∠=()A .270°B .300°C .315°D .360°8.如图,已知长方形ABCD 的边长AB=20cm ,BC=16cm ,点E 在边AB 上,AE=6cm ,……○…………外…………○…………装…………○…………订…………○…………线…………○…………学校:___________姓名:___________班级:___________考号:___________……○…………内…………○…………装…………○…………订…………○…………线…………○…………如果点P 从点B 出发在线段BC 上以2cm/s 的速度向点C 向运动,同时,点Q 在线段CD 上从点C 到点D 运动.则当时间t 为()s 时,能够使△BPE 与△CQP 全等.A .1B .1或4C .1或2D .3第II 卷(非选择题)二、填空题9.如图,在 ABC 中,AH 是高,AE //BC ,AB =AE ,在AB 边上取点D ,连接DE ,DE =AC ,若5ABC ADE S S △△,BH =1,则BC =___.10.如图,在Rt △ABC 中,AB =AC ,D 、E 是斜边BC 上的两点,且∠DAE =45°.设BE =a ,DC =b ,那么AB =_____(用含a 、b 的式子表示AB ).11.如图,在△ABC 中,∠A=m°,∠ABC 和∠ACD 的平分线交于点A 1,得∠A 1;∠A 1BC 和∠A 1CD 的平分线交于点A 2,得∠A 2;…∠A 2016BC 和∠A 2016CD 的平分线交于点A 2017,则∠A 2017=_____°.……○…………外…………○…………装…………○…………订…………○…………线…………○…………学校:___________姓名:___________班级:___________考号:___________……○…………内…………○…………装…………○…………订…………○…………线…………○…………12.如图,一块余料ABCD ,//AD BC ,现进行如下操作:以点B 为圆心,适当长为半径作圆弧,分别交BA ,BC 于点G ,H ;再分别以点G ,H 为圆心,大于12GH 的长为半径作圆弧,两弧在ABC ∠内部相交于点O ,画射线BO ,交AD 于点E .连结OG 、OH .若124A ∠=︒,则AEB ∠的度数为_____度.13.如图,AB CD ∥,EG 、EM 、FM 分别平分AEF ∠、BEF ∠、EFD ∠,下列结论:①DFE AEF ∠=∠;②90EMF ∠=︒;③EG FM ∥;④AEF EGC ∠=∠.其中正确的是__________(填序号).14.如图所示,已知点A 、D 、B 、F 在一条直线上,∠A=∠F ,AC=FE ,要使△ABC ≌△FDE ,还需添加一个条件,这个条件可以是___________________.(只需填一个即可)15.一正多边形每个外角是内角的13,则它的边数是________.……○…………外…………○…………装…………○…………订…………○…………线…………○…………学校:___________姓名:___________班级:___________考号:___________……○…………内…………○…………装…………○…………订…………○…………线…………○…………16.如图,已知AB ∥CD ,O 为∠CAB 、∠ACD 的角平分线的交点,OE ⊥AC 于E ,且OE =2,CO =3,则两平行线间AB 、CD 的距离等于________.三、解答题17.如图,已知△ABC 中,AB =AC =12厘米,BC =9厘米,AD =BD =6厘米.(1)如果点P 在线段BC 上以3厘米秒的速度由B 点向C 点运动,同时点Q 在线段CA 上由C 点向A 点运动.①若点Q 的运动速度与点P 的运动速度相等,1秒钟时,△BPD 与△CQP 是否全等,请说明理由;②若点Q 的运动速度与点P 的运动速度不相等,点P 运动到BC 的中点时,如果△BPD ≌△CPQ ,此时点Q 的运动速度为多少.(2)若点Q 以(1)②中的运动速度从点C 出发,点P 以原来的运动速度从点B 同时出发,都逆时针沿△ABC 三边运动,求经过多长时间点P 与点Q 第一次在△ABC 的哪条边上相遇?18.如图,点E 、F 在AB 上,且AF =BE ,AC =BD ,AC ∥BD .求证:CF ∥DE .19.如图,在△ABC 中,∠C=90°,AD 平分∠BAC ,DE ⊥AB 于点E ,点F 在AC 上,……○…………外…………○…………装…………○…………订…………○…………线…………○…………学校:___________姓名:___________班级:___________考号:___________……○…………内…………○…………装…………○…………订…………○…………线…………○…………且BD=DF.(1)求证:CF=EB ;(2)请你判断AE 、AF 与BE 之间的数量关系,并说明理由.20.如图1,在 ABC 中,AB =AC ,点D ,E 分别在边AB ,AC 上,且AD =AE ,连接DE ,现将 ADE 绕点A 逆时针旋转一定角度(如图2),连接BD ,CE .(1)求证: ABD ≌ ACE ;(2)延长BD 交CE 于点F ,若AD ⊥BD ,BD =6,CF =4,求线段DF 的长.21.在△ABC 中,∠ABC =45°,AM ⊥MB ,垂足为M ,点C 是BM 延长线上一点,连接AC .(1)如图1,点D 在线段AM 上,且DM =CM .求证:△BDM ≌△ACM ;(2)如图2,在(1)的条件下,点E 是△ABC 外一点,且满足EC =AC ,连接ED 并延长交BC 于点F ,且F 为线段BC 的中点,求证:∠BDF =∠CEF .………外…………○…………装…………○…………订…………○…………线…………○…………学校:___________姓名:___________班级:___________考号:___________………内…………○…………装…………○…………订…………○…………线…………○…………参考答案1.A 【详解】由AB=DC ,BC 是公共边,即可得要证△ABC ≌△DCB ,可利用SSS ,即再增加AC=DB 即可.故选A.2.C 【分析】根据全等三角形的对应边相等分类讨论,分别求出x 值判断即可.【详解】此题需要分类讨论.①若325x -=,则73x =,所以112173x -=≠所以此种情况不符合题意;②若327x -=,则3x =,所以215x -=.所以此种情况符合题意.综上所述:3x =故选C .3.B 【分析】由条件隐含条件是公共角∠A,AE=AF,然后再逐个添加条件,如果不符合判定法则,即为答案.【详解】解:结合已知条件:可发现A 选项满足SAS;C 选项和已知条件AE=AF ,可说明AB=AC,满足SAS 即C 可以;B 选项添加条件后变为SSA ,但SSA 不能证明三角形全等,故B 错误;D 选项满足ASA;故选B………外…………○…………装…………○…………订…………○…………线…………○…………学校:___________姓名:___________班级:___________考号:___________………内…………○…………装…………○…………订…………○…………线…………○…………4.D 【详解】①利用公式:∠CDA=12∠ABC=45°,①正确;②如图:延长GD 与AC 交于点P',由三线合一可知CG=CP',∵∠ADC=45°,DG ⊥CF ,∴∠EDA=∠CDA=45°,∴∠ADP=∠ADF ,∴△ADP'≌△ADF (ASA ),∴AF=AP'=AC+CP'=AC+CG ,故②正确;③如图:∵∠EDA=∠CDA ,∠CAD=∠EAD ,从而△CAD ≌△EAD ,故DC=DE ,③正确;④∵BF ⊥CG ,GD ⊥CF ,………外…………○…………装…………○…………订…………○…………线…………○…………学校:___________姓名:___________班级:___________考号:___________………内…………○…………装…………○…………订…………○…………线…………○…………∴E 为△CGF 垂心,∴CH ⊥GF ,且△CDE 、△CHF 、△GHE 均为等腰直角三角形,∴CD ,故④错误;⑤如图:作ME ⊥CE 交CF 于点M ,则△CEM 为等腰直角三角形,从而CD=DM ,CM=2CD ,EM=EC ,∵∠MFE=∠CGE ,∠CEG=∠EMF=135°,∴△EMF ≌△CEG (AAS ),∴GE=MF ,∴CF=CM+MF=2CD+GE ,故⑤正确;故选D 5.C 【详解】如图1所示,过点作于点,在矩形中,,所以,又,所以,所以,则,因为,,所以当最大、最小时,最小,最大,即当点与点重合时,最大.如图2所示,此时,点、重合,、、三点共线,由可知,所以,在和中,,所以,所以,故的最大值为.故选C.………外…………○…………装…………○…………订…………○…………线…………○…………学校:___________姓名:___________班级:___________考号:___________………内…………○…………装…………○…………订…………○…………线…………○…………6.A 【分析】由SAS 证明△AOC ≌△BOD 得出∠OCA=∠ODB ,AC=BD ,①正确;由全等三角形的性质得出∠OAC=∠OBD ,由三角形的外角性质得:∠AMB+∠OAC=∠AOB+∠OBD ,得出∠AMB=∠AOB=40°,②正确;作OG ⊥MC 于G ,OH ⊥MB 于H ,如图所示:则∠OGC=∠OHD=90°,由AAS 证明△OCG ≌△ODH (AAS ),得出OG=OH ,由角平分线的判定方法得出MO 平分∠BMC ,④正确;由OA >OC ,推出∠OAC<∠OCA ,由三角内角和定理得到∠OMC+∠OCA +∠COM =∠OMB+∠OBD+∠BOM=180︒,故③错误;即可得出结论.【详解】∵∠AOB=∠COD=40°,∴∠AOB+∠AOD=∠COD+∠AOD ,即∠AOC=∠BOD ,在△AOC 和△BOD 中,OA OB AOC BOD OC OD =⎧⎪∠=∠⎨⎪=⎩,∴△AOC ≌△BOD (SAS ),∴∠OCA=∠ODB ,∠OAC=∠OBD ,AC=BD ,①正确;由三角形的外角性质得:∠AMB+∠OAC=∠AOB+∠OBD ,∴∠AMB=∠AOB=40°,②正确;作OG ⊥MC 于G ,OH ⊥MB 于H ,如图2所示:则∠OGC=∠OHD=90°,在△OCG 和△ODH 中,90OGC OHD OCA ODB OC OD ∠=∠=︒⎧⎪∠=∠⎨⎪=⎩,∴△OCG ≌△ODH (AAS ),………外…………○…………装…………○…………订…………○…………线…………○…………学校:___________姓名:___________班级:___________考号:___________………内…………○…………装…………○…………订…………○…………线…………○…………∴OG=OH ,∴MO 平分∠BMC ,④正确;∵OA >OC ,∴∠OAC<∠OCA ,∵△AOC ≌△BOD ,∴∠OAC=∠OBD<∠OCA ,∵MO 平分∠BMC ,∴∠OMC=∠OMB ,∵∠OMC+∠OCA +∠COM =∠OMB+∠OBD+∠BOM=180 ,∴∠COM<∠BOM ,∴MO 并不平分∠BOC ,③错误;综上,正确的是:①②④;故选:A .7.C 【详解】①根据作图的过程可以判定AD 是∠BAC 的∠平分线;②根据作图的过程可以判定出AD 的依据;③利用角平分线的定义可以推知∠CAD=30°,则由直角三角形的性质求∠ADC 的度数;④利用等角对等边可以证得△ADB 的等腰三角形,由等腰三角形的“三合一”的性质可以证明点在AB 的中垂线上.解:如图所示,①根据作图的过程可知,AD 是∠BAC 的∠平分线;故①正确;②根据作图的过程可知,作出AD 的依据是SSS ;故②错误;③∵在△ABC 中,∠C=90°,∠B=30°,∴∠CBA=60°.………外…………○…………装…………○…………订…………○…………线…………○…………学校:___________姓名:___________班级:___________考号:___________………内…………○…………装…………○…………订…………○…………线…………○…………又∵AD 是∠BAC 的平分线,∴∠1=∠2=12∠CAB=30°,∴∠3=90°-∠2=60°,即∠ADC=60°.故③正确;④∵∠1=∠B=30°,∴AD=BD ,∴点D 在AB 的中垂线上.故④正确;故选C.8.C 【分析】取格点E F M ,,,连接MD MB ,,先证明DFM MEB ∆≅∆,得出MD MB DMF MBE =∠=∠,,再证明//AC BM 得出APB PBM ∠=∠,最后证明DMB ∆是等腰直角三角形,得出45DBM ∠=︒,从而得出=45APB ∠︒即可.【详解】解:取格点E F M ,,,连接MD MB ,,由已知条件可知:90MF BE DF EM DFM MEB ==∠=∠=︒,,,∴DFM MEB ∆≅∆,∴MD MB DMF MBE =∠=∠,,同理可得:ACB BME ∆≅∆,∴CAB MBE ∠=∠,∴//AC BM ,∴APB PBM ∠=∠,∵90BME MBE ∠+∠=︒,∴90BME DMF ∠+∠=︒,∴90DMB ∠=︒,∴DMB ∆是等腰直角三角形,∴45DBM ∠=︒,即=45APB ∠︒,………外…………○…………装…………○…………订…………○…………线…………○…………学校:___________姓名:___________班级:___________考号:___________………内…………○…………装…………○…………订…………○…………线…………○…………故选:C .9.3【分析】在AB 上截取AE=AC ,证明△ADE 和△ADC 全等,再证BDE 是等腰三角形即可得出答案.【详解】在AB 上截取AE=AC ∵AD 是∠BAC 的角平分线∴∠EAD=∠CAD 又AD=AD ∴△ADE ≌△ADC(SAS)∴ED=DC ,∠ADE=∠ADC ∵∠ADB =150°∴∠EDB+∠ADE=150°又∵∠DBC =30°,∠ABC +∠ADC =180°∴∠ABD+∠DBC+∠ADC=180°即∠ABD +∠ADC=150°∴∠ABD=∠EDB ∴BE=ED 即BE=CD 又AB=8,AC=5CD=BE=AB-AE=AB-AC=3故答案为3………外…………○…………装…………○…………订…………○…………线…………○…………学校:___________姓名:___________班级:___________考号:___________………内…………○…………装…………○…………订…………○…………线…………○…………10.7.2【分析】根据题意,连接AE 、CE ,利用DE 垂直平分AC ,BE 平分∠MBC ,推出Rt △AME ≌Rt △CNE (HL ),得出AM=CN ,进而证明()Rt EMB Rt ENB HL ∆∆≌,通过等边代换计算即可.【详解】连接AE 、CE ,如图:∵DE 垂直平分AC ,∴AE=CE ,AD=CD ,又∵BE 平分∠MBC ,EM ⊥BM ,EN ⊥BC ,∴EM=EN ,∠M=∠ENC=90°,∴Rt △AME ≌Rt △CNE (HL ),∴AM=CN=2,同理可证,()Rt EMB Rt ENB HL ∆∆≌,2 3.2 5.2BN MB ∴==+=,5.227.2BC BN AM ∴=+=+=,故答案为:7.211.2.5【详解】………外…………○…………装…………○…………订…………○…………线…………○…………学校:___________姓名:___________班级:___________考号:___________………内…………○…………装…………○…………订…………○…………线…………○…………试题分析:∵△DAE 逆时针旋转90°得到△DCM ,∴∠FCM=∠FCD+∠DCM=180°,∴F 、C 、M 三点共线,∴DE=DM ,∠EDM=90°,∴∠EDF+∠FDM=90°,∵∠EDF=45°,∴∠FDM=∠EDF=45°,在△DEF 和△DMF 中,{DE DM EDF FDM DF DF =∠=∠=,∴△DEF ≌△DMF (SAS ),∴EF=MF ,设EF=MF=x ,∵AE=CM=1,且BC=3,∴BM=BC+CM=3+1=4,∴BF=BM ﹣MF=BM ﹣EF=4﹣x ,∵EB=AB ﹣AE=3﹣1=2,在Rt △EBF 中,由勾股定理得EB 2+BF 2=EF 2,即22+(4﹣x )2=x 2,解得:x=52,∴FM=52.12.AB=CD ∠DAC=∠BCA 【详解】∵在△ABC 和△CDA 中,BC AD AC AC AB CD =⎧⎪=⎨⎪=⎩∴△ABC ≌△CDA (SSS );在△ABC 和△CDA 中,AC AC BCA DAC BC AD =⎧⎪∠=∠⎨⎪=⎩∴△ABC ≌△CDA (SAS ),故答案为AB=CD ,∠DAC=∠BCA .13.80︒【分析】首先连接BC ,根据三角形的内角和定理,求出1240∠+∠=︒,∠1+∠2+∠3+∠4=70°;然后判断出3430∠+∠=︒,再根据BE 是∠ABD 的平分线,CF 是∠ACD 的平分线,判断出5630∠+∠=︒;最后根据三角形的内角和定理,用180(123456)︒-∠+∠+∠+∠+∠+∠即可求出∠A 的度数.【详解】如下图所示,连接BC ,………外…………○…………装…………○…………订…………○…………线…………○…………学校:___________姓名:___________班级:___________考号:___________………内…………○…………装…………○…………订…………○…………线…………○…………∵140BDC ∠=︒,∴1218014040∠+∠=︒-︒=︒,∵110BGC ∠=︒,∴123418011070∠+∠+∠+∠=︒-︒=︒,∴34704030∠+∠=︒-︒=︒,∵BE 是∠ABD 的平分线,CF 是∠ACD 的平分线,∴∠3=∠5,∠4=∠6,又∵3430∠+∠=︒,∴5630∠+∠=︒,∴123456123()4567030100()∠+∠+∠+∠+∠+∠=∠+∠+∠+∠+∠+∠=︒+︒=︒,∴18010080A ∠=︒-︒=︒.故答案为:80︒.14.60【分析】根据三角形的一个外角等于与它不相邻的两个内角的和可得∠ACD=∠BAC+∠ABC ,∠ECD=∠BEC+∠EBC ,根据角平分线的定义可得∠EBC=12∠ABC ,∠ECD=12∠ACD ,然后整理得到∠BEC=12∠BAC ,过点E 作EF ⊥BD 于F ,作EG ⊥AC 于G ,作EH ⊥BA 交BA 的延长线于H ,根据角平分线上的点到角的两边距离相等可得EF=EG=EH ,再根据到角的两边距离相等的点在角的平分线上判断出AE 平分∠CAH ,然后列式计算即可得解.【详解】解:由三角形的外角性质得,∠ACD=∠BAC+∠ABC ,∠ECD=∠BEC+∠EBC ,∵BE 、CE 分别平分∠ABC 和∠ACD ,∴∠EBC=12∠ABC ,∠ECD=12∠ACD ,………外…………○…………装…………○…………订…………○…………线…………○…………学校:___________姓名:___________班级:___________考号:___________………内…………○…………装…………○…………订…………○…………线…………○…………∴∠BEC+∠EBC=12(∠BAC+∠ABC ),∴∠BEC=12∠BAC ,∵∠BEC=30°,∴∠BAC=60°,过点E 作EF ⊥BD 于F ,作EG ⊥AC 于G ,作EH ⊥BA 交BA 的延长线于H ,∵BE 、CE 分别平分∠ABC 和∠ACD ,∴EF=EH ,EF=EG ,∴EF=EG=EH ,∴AE 平分∠CAH ,∴∠EAC=12(180°-∠BAC )=12(180°-60°)=60°.故答案为:60°.15.(1,1)2【分析】(1)作PE y ⊥轴于E ,PF x ⊥轴于F ,由角平分线的性质得出PE PF =,得出方程2165m m -=-,解方程求出1m =,即可得出P 点坐标;(2)由ASA 证明BEP AFP ∆≅∆,得出BE AF =,则2OA OB OE OF +=+=.【详解】解:(1)作PE y ⊥轴于E ,PF x ⊥轴于F ,如图所示:根据题意得:PE PF =,………外…………○…………装…………○…………订…………○…………线…………○…………学校:___________姓名:___________班级:___________考号:___________………内…………○…………装…………○…………订…………○…………线…………○…………2165m m ∴-=-,1m ∴=,(1,1)P ∴,故答案为(1,1);(2)由(1)得:90EPF ∠=︒,90BPA ∠=︒ ,1PE PF ==,EPB FPA ∴∠=∠,在BEP ∆和AFP ∆中,90PEB PFA PE PF EPB FPA ∠=∠=︒⎧⎪=⎨⎪∠=∠⎩,()BEP AFP ASA ∴∆≅∆,BE AF ∴=,OA OB OF AF OE BE OF OE ∴+=++-=+,(1,1)P ,1OE OF ∴==,2OA OB ∴+=.故答案为2.16.45【分析】根据角平分线定义得出∠AON =∠CON =12∠AOC ,∠BOM =∠COM =12∠BOC ,求出∠MON =∠COM -∠CON =12∠AOB ,代入求出即可.【详解】∵∠AOB 是直角,ON 平分∠AOC ,OM 平分∠BOC ,∴∠AON =∠CON =12∠AOC ,∠BOM =∠COM =12∠BOC ,∴∠MON =∠COM -∠CON =12(∠BOC -∠AOC )=12∠AOB………外…………○…………装…………○…………订…………○…………线…………○…………学校:___________姓名:___________班级:___________考号:___________………内…………○…………装…………○…………订…………○…………线…………○…………=12×90°=45°,故答案为45.17.(1)证明见解析;(2)EF AD ⊥;(3)EF AD ⊥成立,理由见解析.【分析】(1)通过证明可 Rt AED Rt AFD ≌ 可得 AE AF =,由此可证明AEO AFO △≌△,根据全等三角形的性质 AOE AOF ∠=∠,再据图 +=180AOE AOF ∠∠︒,即可证明结论;(2)与(1)中的证明方式相同,可得EF AD ⊥;(3)得证明方式与(1)相同.【详解】()1证明:AD 是BAC ∠的平分线,,DE AB DF AC ⊥⊥DE DF ∴=在Rt AED △和Rt AFD 中DE DF AD AD =⎧⎨=⎩ Rt AED Rt AFD ∴ ≌ AE AF ∴=在AEO △和AFO V 中 ,,AE AF EAO FAO AO AO =∠=∠= AEO AFO ∴ ≌ AOE AOF ∴∠=∠ 90AOE AOF ∴∠=∠= EF AD ∴⊥()2将(1)中证明过程中的D 用G 替代,即可证明EF 垂直AD ()⊥或EF AD ()3上述结论EF AD ⊥成立理由: 点G 在BAC ∠的平分线AD 上,GE AB GF AC ⊥⊥, GE GF ∴=在Rt AEG 和Rt AFG 中………外…………○…………装…………○…………订…………○…………线…………○…………学校:___________姓名:___________班级:___________考号:___________………内…………○…………装…………○…………订…………○…………线…………○…………GE GF AG AG =⎧⎨=⎩ Rt AEG Rt AFG ∴ ≌在AEO △和AFO V 中 ,,AE AF EAO FAO AO AO =∠=∠=AEO AFO ∴ ≌AOE AOF ∴∠=∠ 90AOE AOF ∴∠=∠= EF AD ∴⊥18.(1)①证明见解析;②20413;(2)证明见解析.【详解】(1)①证明△ACE ≌△BCD ,得到∠1=∠2,由对顶角相等得到∠3=∠4,所以∠BFE=∠ACE=90°,即可得结论;②根据勾股定理求出BD ,利用△ABD 的面积的两种表示方法,即可解答;(2)证明△ACE ≌△BCD ,得到∠1=∠2,又由∠3=∠4,得到∠BFA=∠BCA=90°,即可得结论.试题解析:(1)①证明:如图1,∵在△ACE 和△BCD 中,∴△ACE ≌△BCD ,∴∠1=∠2,∵∠3=∠4,∴∠BFE=∠ACE=90°,∴AF ⊥BD .………外…………○…………装…………○…………订…………○…………线…………○…………学校:___________姓名:___________班级:___________考号:___________………内…………○…………装…………○…………订…………○…………线…………○…………②∵∠ECD=90°,BC=AC=12,DC=EC=5,∴根据勾股定理得:BD=13,∵S △ABD =12AD•BC=12BD•AF ,即11171213•22AF ⨯⨯=⨯∴AF=20413.(2)证明:如图2,∵∠ACB=∠ECD ,∴∠ACB+∠ACD=∠ECD+∠ACD ,∴∠BCD=∠ACE ,在△ACE ≌△BCD 中∴△ACE ≌△BCD (SAS ),∴∠1=∠2,∵∠3=∠4,∴∠BFA=∠BCA=90°,∴AF ⊥BD .19.(1)证明见解析;(2)【分析】(1)求出△ACD ≌△AED ,根据全等三角形的性质得出即可;(2)求出AD=BD ,推出∠B=∠DAB=∠CAD ,求出∠B=30°,即可求出BD=2CD=8,根据勾股定理求出即可.【详解】………外…………○…………装…………○…………订…………○…………线…………○…………学校:___________姓名:___________班级:___________考号:___________………内…………○…………装…………○…………订…………○…………线…………○…………(1)证明:∵在△ABC 中,∠C=90°,AD 平分∠CAB ,DE ⊥AB ,∴CD=DE ,∠AED=∠C=90°,∠CAD=∠EAD ,在△ACD 和△AED 中CAD EAD C AED AD AD ∠∠⎧⎪∠∠⎨⎪⎩===∴△ACD ≌△AED ,∴AC=AE ;(2)解:∵DE ⊥AB ,点E 为AB 的中点,∴AD=BD ,∴∠B=∠DAB=∠CAD ,∵∠C=90°,∴3∠B=90°,∴∠B=30°,∵CD=DE=4,∠DEB=90°,∴BD=2DE=8,由勾股定理得:=20.证明见解析.【分析】根据题中的平行条件AC//BD ,可得内错角∠A=∠B ,结合已知条件,恰能证明ΔACF ≌ΔBDE ,故有∠AFC=∠BED ,也为一对内错角,从而证得CF//DE.【详解】证明:∵AC//BD ∴∠A=∠B ,∵AE=BF ,∵AE+EF=BF+EF ,∴AF=BE ,又∵∠C=∠D ,∴ΔACF ≌ΔBDE(AAS),∴∠AFC=∠BED ,………外…………○…………装…………○…………订…………○…………线…………○…………学校:___________姓名:___________班级:___________考号:___________………内…………○…………装…………○…………订…………○…………线…………○…………∴CF//DE .21.(1)ABE CDE BED ∠+∠=∠;(2)12BFD BED ∠=∠,理由见解析;(3)2360BFD BED ∠+∠=︒,理由见解析【分析】(1)过点E 作EF AB ∥,根据平行线的性质得1ABE ∠=∠,2CDE ∠=∠,进而即可得到结论;(2)由角平分线的定义得12ABF ABE ∠=∠,12CDF CDE ∠=∠,结合第(1)题的结论,即可求证;(3)过点E 作//EG CD ,由平行线的性质得360ABE CDE BED ∠+∠+∠=︒,结合第(1)题的结论与角平分线的定义得1()2BFD ABE CDE ∠=∠+∠,进而即可得到结论.【详解】(1)ABE CDE BED ∠+∠=∠,理由如下:如图1,过点E 作EF AB ∥,∵AB CD ∥,∴EF CD ∥,∴1ABE ∠=∠,2CDE ∠=∠,∴12ABE CDE BED ∠+∠=∠+∠=∠,即ABE CDE BED ∠+∠=∠;(2)12BFD BED ∠=∠.理由如下:∵BF ,DF 分别平分ABE ∠,CDE ∠,∴12ABF ABE ∠=∠,12CDF CDE ∠=∠,∴111()222ABF CDF ABE CDE ABE CDE ∠+∠=∠+∠=∠+∠,由(1)得,1()2BFD ABF CDF ABE CDE ∠=∠+∠=∠+∠,又∵BED ABE CDE ∠=∠+∠,∴12BFD BED ∠=∠;(3)2360BFD BED ∠+∠=︒,理由如下:如图3,过点E 作//EG CD ,………外…………○…………装…………○…………订…………○…………线…………○…………学校:___________姓名:___________班级:___________考号:___________………内…………○…………装…………○…………订…………○…………线…………○…………∵//AB CD ,//EG CD ,∴////AB CD EG ,∴180ABE BEG ∠+∠=︒,180CDE DEG ∠+∠=︒,∴360ABE CDE BED ∠+∠+∠=︒,由(1)知,BFD ABF CDF ∠=∠+∠,又∵BF ,DF 分别平分ABE ∠,CDE ∠,∴12ABF ABE ∠=∠,12CDF CDE ∠=∠,∴1()2BFD ABE CDE ∠=∠+∠,∴2360BFD BED ∠+∠=︒.。

打印 全等三角形单元测试卷(2)

打印  全等三角形单元测试卷(2)

全等三角形 周练习一、填空题(12分)1.已知:如图1,AC=DF ,或AAS )可得AFC ∆≅∆ 图12.如图2,已知AB=AC 3.如图3,AED ABC ∆≅∆ 。

4.如图4,已知: AC ⊥BC 于C , DE ⊥AC 于E , AD ⊥AB 于A , BC=AE .若AB=5 ,AD= 。

图4 图5 图6 5.如图5 , 已知:AB=AC , D 是BC 边的中点 , 则∠1+∠C=_____度.6.如图6,在正方形网格上有一个ΔABC ,①在网格中作一个与它全等的三角形。

②如每一个小正方形的边长为1,则ΔABC 的面积是:二、选择题(16分)1.已知EFG ABC ∆≅∆,有∠B=70°,∠ A. 60° B. 70° C. 52. 已知:如图,AB=BE ,∠1=∠2,A. 2 B. 3 C. 4 D. 5图7 3.如图8,D 在AB 上,E 在AC 上,且∠B 法判定△ABE ≌△ACD 的是( ).A .AD =AE . B.∠AEB =∠ADC . C.BE =CD . D.AB =AC . 4.如图9,在ABC ∆中,︒=∠90C ,DE ⊥AB ,AE 平分∠DAC ,CE=6,则ED=( )A. 8B. 7C. 6D. 5 5.根据下列已知条件,能唯一画出△ABC 的是( )A .AB=3,BC=4,AC=8B .AB=4,BC=3,∠A=30°C .∠A=60°,∠B=45°,AB=4D .∠C=90°,AB=66.在△ABC 中,∠B =∠C ,与△△ABC 中与这100A.∠A B.∠B 7.如图10,已知:A.50°B.40°C.40° 图8.如图11,已知:AB ⊥BC ,BE ⊥A. ∠1=∠EFD B. BE=EC 三、作图题 (6分)如图,在CD 上求作一点P四、解答题(每题8分)1.如图,已知在△ABC 中,BD 为∠ABC 的平分线,AB=BC ,点P 在BF 上,PM ⊥AD 于M ,PN ⊥CD 于N ,求证:PM=PN1.已知,如图A 、F 、C 、D 四点在一直线上,AF=CD ,AB//DE ,且AB=DE ,求证:(1)△ABC ≌△DEF (2)∠CBF=∠FECOD CA B。

第11章全等三角形单元测试

第11章全等三角形单元测试

第2题《全等三角形》单元测试卷班级 __姓名 得分____________一、选择题(每题5分,共30分)1.下列条件中,不能判定两个直角三角形全等的是( )A .一锐角和斜边对应相等B .两条直角边对应相等C .斜边和一直角边对应相等D .两个锐角对应相等2.如图,∠A =∠D ,AB 与DF 、AC 与DE 是对应边,则书写最规范的是( )A .△ABC ≌△DEFB .△ABC ≌△DEF C .△BAC ≌△DEFD .△ACB ≌△DEF3.如图,AB =AD ,BC =CD ,则全等三角形共有( )A .1对;B .2对;C .3对;D .4对; 4.如图,AB ∥FC ,DE =EF ,AB =15,CF =8,则BD =( )A .8;B .7;C .6;D .5;5.如图,O A B △绕点O 逆时针旋转80 到O C D △的位置,已知45AOB?,则A O D Ð等于( )A.55B.45C.40D.356.根据下列已知条件,能惟一画出三角形ABC 的是( ) A.AB =3,BC =4,AC =8; B.AB =4,BC =3,∠A =30; C .∠A =60,∠B =45,AB =4 D .∠C =90,AB =6 二、填空题(每题4分,共20分)1. 如果△ABC≌△DEF ,若AB =DE ,∠B=50°,∠C=70°,则∠D = °2.如图,如果△ABC ≌ △CDA ,则对应边是___________________________________,对应角是__________________________________BACDEF第4题第2题AFB第5题3.如图,AB 与CD 交与O ,∠C=∠D ,再添加条件 ,则△AOD ≌△BOC ,理由是 .4.在△ABC 中,∠BAC ∶∠ACB ∶∠ABC =4∶3∶2, 且△ABC ≌△DEF ,则∠DEF =______.5. 如图所示,已知∠A=90°,BD 是∠ABC 的平分线, AC=10,DC=6,则点D•到BC 的距离DE=_______. 三、证明题(共50分)1.(10分)如图所示在△ABC 中,AB=AC , D 是BD 的中点,求证:△ABD ≌△ACD .2.(10分)如图所示,AE=AD , AB=AC ,求证:△EAB ≌△DAC .3.(15分)已知:∠BAE =∠DAC ,∠E=∠C, AC=AE ,求证:AB=AD .EDCB A4.(15分)如图所示,AD 平分∠BAC ,DE ⊥AB 于E ,DF ⊥AC 于F ,且DB=DC ,求证:EB=FC .FE D CB AD A CBE第5题。

全等三角形单元水平测试含答案

全等三角形单元水平测试含答案

A DCB图1E 第11章《全等三角形》测试题一、选择题1.如图1, AD 是ABC △的中线,E ,F 分别是AD 和AD 延长线上的点,且DE DF =,连结BF ,CE .下列说法:①CE =BF ;②△ABD 和△ACD 面积相等;③BF ∥CE ;④△BDF ≌△CDE .其中正确的有( ) A .1个 B .2个 C .3个 D .4个2.如图2,AD AE =,= = =100 =70BD CE ADB AEC BAE ︒︒,,∠∠∠,下列结论错误的是( )A .△ABE ≌△ACDB .△ABD ≌△ACEC .∠DAE =40°D .∠C =30°3.如图3,在△ABC 中,AB =AC ,D 是BC 的中点,DE ⊥AB 于E ,DF ⊥AC 于F ,则图中共有全等三角形( )A .5对B .4对C .3对D .2对4.将一张长方形纸片按如图4所示的方式折叠,BC BD ,为折痕,则CBD ∠的度数为( )A .60°B .75°C .90°D .95° 5.根据下列已知条件,能惟一画出△ABC 的是( )A .AB =3,BC =4,CA =8 B .AB =4,BC =3,∠A =30° C .∠A =60°,∠B =45°,AB =4D .∠C =90°,AB =6 6.下列命题中正确的是( )A .全等三角形的高相等B .全等三角形的中线相等C .全等三角形的角平分线相等D .全等三角形对应角的平分线相等7.如图5,在△ABC 中,∠A :∠B :∠C =3:5:10,又△MNC ≌△ABC ,则∠BCM :∠BCN 等于( )A .1:2B .1:3C .2:3D .1:48. 如图6,△ABC 的三边AB 、BC 、CA 长分别是20、30、40,其三条角平分线将△ABC 分为三个三角形,则S △ABO ︰S △BCO ︰S △CAO 等于( ) A .1︰1︰1 B .1︰2︰3 C .2︰3︰4 D .3︰4︰59.如图7,从下列四个条件:①BC =B ′C , ②AC =A ′C ,③∠A ′CB =∠B ′CB ,④AB =A ′B ′中,任取三个为条件,余下的一个为结论,则最多可以构成A D OCB图2AD ECB图 3F GAEC 图4B A′E′D正确的结论的个数是( ) A .1个B .2个C .3个D .4个10.如图8所示,△ABE 和△ADC 是△ABC 分别沿着AB ,AC 边翻折180°形成的,若∠1∶∠2∶∠3=28∶5∶3,则∠α的度数为( ) A .80° B .100° C .60° D .45°. 二、填空题11.如图9,AB ,CD 相交于点O ,AD =CB ,请你补充一个条件,使得△AOD ≌△COB .你补充的条件是________。

人教版数学《全等三角形》单元测试题(含答案)

人教版数学《全等三角形》单元测试题(含答案)

《全等三角形》单元测试题一、选择题1. 如图,点E,F在线段BC上,△ABF与△DCE全等,点A与点D,点B与点C是对应顶点,AF与DE相交于点M,则△DCE等于()A.△B B.△A C.△EMF D.△AFB2. 如图,在△ABC中,D,E分别是边AC,BC上的点.若△ADB△△EDB△△EDC,则△C的度数为()A.15° B.20° C.25° D.30°3. 如图,小强画了一个与已知△ABC全等的△DEF,他画图的步骤是:(1)画DE =AB;(2)在DE的同旁画△HDE=△A,△GED=△B,DH,EG相交于点F,小强画图的依据是()A.ASA B.SASC.SSS D.AAS4. 如图,点P是△AOB平分线OC上一点,PD△OB,垂足为D.若PD=2,则点P到边OA的距离是()A. 1B. 2C. 3D. 45. 如图,AO是△BAC的平分线,OM△AC于点M,ON△AB于点N.若ON=8 cm,则OM的长为()A.4 cm B.5 cm C.8 cm D.20 cm6. 如图,P是△AOB的平分线OC上一点,PD△OA,垂足为D.若PD=2,则点P到边OB的距离是()A.4 B. 3 C.2 D.17. 如图,AB=AC,AD=AE,BE=CD,△2=110°,△BAE=60°,则下列结论错误的是()A.△ABE△△ACD B.△ABD△△ACEC.△C=30° D.△1=70°8. 如图,△ACB△△A'CB',△ACA'=30°,则△BCB'的度数为()A.20°B.30°C.35°D.40°9. 如图,AB△CD,且AB=CD.E,F是AD上两点,CE△AD,BF△AD.若CE =a,BF=b,EF=c,则AD的长为()A.a+c B.b+cC.a-b+c D.a+b-c10. 现已知线段a,b(a<b),△MON=90°,求作Rt△ABO,使得△O=90°,OA=a,AB=b.小惠和小雷的作法分别如下:小惠:△以点O为圆心、线段a的长为半径画弧,交射线ON于点A;△以点A为圆心、线段b的长为半径画弧,交射线OM于点B,连接AB,△ABO即为所求.小雷:△以点O为圆心、线段a的长为半径画弧,交射线ON于点A;△以点O为圆心、线段b的长为半径画弧,交射线OM于点B,连接AB,△ABO即为所求.则下列说法中正确的是()A.小惠的作法正确,小雷的作法错误B.小雷的作法正确,小惠的作法错误C.两人的作法都正确D.两人的作法都错误二、填空题11. 如图,已知AB=BD,△A=△D,若要应用“SAS”判定△ABC△△DBE,则需要添加的一个条件是____________.12. 如图,小明和小丽为了测量池塘两端A,B两点之间的距离,先取一个可以直接到达点A和点B的点C,沿AC方向走到点D处,使CD=AC;再用同样的方法确定点E,使CE=BC.若量得DE的长为60米,则池塘两端A,B两点之间的距离是______米.13. 在平面直角坐标系xOy中,已知点A,B的坐标分别为(2,0),(2,4),若以A,B,P为顶点的三角形与△ABO全等,则点P的坐标为___________________.14. 如图,在△ABC中,D,E分别是边AB,AC上的点,过点C作平行于AB 的直线交DE的延长线于点F.若DE=FE,AB=5,CF=3,则BD的长是________.15. 如图,若AB=AC,BD=CD,△A=80°,△BDC=120°,则△B=________°.16. 如图,在△ABC中,E为AC交BC于点D,AB︰AC=2︰3,AD与BE相交于点O.若△OAE的面积比△BOD的面积大1,则△ABC的面积是.三、解答题17. 如图,AB△CD,E是CD上一点,BE交AD于点F,EF=BF.求证:AF=DF.18. 如图,在△ABC中,AC=BC,△C=90°,D是AB的中点,DE△DF,点E,F分别在AC,BC上,求证:DE=DF.19. 如图,已知AP△BC,△P AB的平分线与△CBA的平分线相交于点E,过点E 的直线分别交AP,BC于点D,C.求证:AD+BC=AB.20. 操作探究如果将四根木条首尾相连,在相连处用螺钉连接,就能构成一个平面图形.(1)若固定三根木条AB,BC,AD不动,AB=AD=2 cm,BC=5 cm,如图K-10-17,量得第四根木条DC=5 cm,判断此时△B与△D是否相等,并说明理由.(2)若固定一根木条AB不动,AB=2 cm,量得木条CD=5 cm,如果木条AD,BC的长度不变,当点D移到BA的延长线上时,点C也在BA的延长线上;当点C移到AB的延长线上时,点A,C,D能构成周长为30 cm的三角形,求出木条AD,BC的长度.21. 如图所示,△BAC=△BCA,AD为△ABC中BC边上的中线,延长BC至点E,使CE=AB,连接AE.求证:△CAD=△CAE.全等三角形-答案一、选择题1. 【答案】A2. 【答案】D3. 【答案】A4. 【答案】B5. 【答案】C6. 【答案】C △P 是△AOB 的平分线OC 上一点,PD△OA ,PE△OB ,△PE =PD =2.7. 【答案】C △BE -DE =CD -DE ,即BD =CE. 在△ABD 和△ACE 中,⎩⎨⎧AB =AC ,BD =CE ,AD =AE ,△△ABD△△ACE.由题意易证:△ABE△△ACD ,故A ,B 正确. 由△ABE△△ACD 可得△B =△C. △△2=△BAE +△B ,△△B =△2-△BAE =110°-60°=50°.△△C =△B =50°. 故C 错误.△△ABE△△ACD(已证),△△1=△AED =180°-△2=70°. 故D 正确.故选C.8. 【答案】B △A'CB'-△A'CB.所以△BCB'=△ACA'=30°.9. 【答案】D 10. 【答案】A 二、填空题11. 【答案】AC =DE12. 【答案】60⎩⎨⎧AC =DC ,△ACB =△DCE ,BC =EC ,△△ACB△△DCE(SAS).△DE =AB. △DE =60米,△AB =60米.13. 【答案】(4,0)或(4,4)或(0,4)14. 【答案】2在△ADE 和△CFE 中,⎩⎨⎧△A =△FCE ,△AED =△CEF ,DE =FE ,△△ADE△△CFE(AAS). △AD =CF =3.△BD =AB -AD =5-3=2.15. 【答案】20 在△BAD 和△CAD 中,⎩⎨⎧AB =AC ,AD =AD ,BD =CD ,△△BAD△△CAD(SSS). △△BAD =△CAD ,△B =△C.△△BDF =△B +△BAD ,△CDF =△C +△CAD , △△BDF +△CDF =△B +△BAD +△C +△CAD , 即△BDC =△B +△C +△BAC. △△BAC =80°,△BDC =120°, △△B =△C =20°.16. 【答案】10∵AD 平分△BAC ,DM △AC ,DN △AB , ∵DM=DN.∵S △ABD ︰S △ADC =BD ︰DC ,且S △ABD =12·AB ·DN ,S △ADC =12·AC ·DM , ∵BD∵DC=AB∵AC=2∵3. 设△ABC 的面积为S ,则S △ADC =35S. ∵E 为AC 的中点, ∵S △BEC =12S.∵△OAE 的面积比△BOD 的面积大1, ∵△ADC 的面积比△BEC 的面积大1. ∵35S -12S=1.∵S=10. 故答案为10.三、解答题 17. 【答案】证明:△AB△CD , △△B =△DEF ,(1分) 在△AFB 和△DFE 中,⎩⎨⎧△B =△DEFBF =EF△BFA =△EFD,(3分) △△AFB△△DFE(ASA ),(5分) △AF =DF.(6分)18. 【答案】证明:连接CD ,如解图,(1分)△ △ABC 是直角三角形,AC =BC ,D 是AB 的中点, △ CD =BD ,△CDB =90°,△△CDE +△CDF =90°,△CDF +△BDF =90°, △△CDE =△BDF ,(7分) 在△CDE 和△BDF 中,⎩⎨⎧△ECD =△BCD =BD△CDE =△BDF, △ △CDE△△BDF(ASA ),(9分) △ DE =DF.(10分)19. 【答案】证明:如图,在AB 上截取AF =AD ,连接EF.△AE 平分△PAB , △△DAE =△FAE. 在△DAE 和△FAE 中,⎩⎨⎧AD =AF ,△DAE =△FAE ,AE =AE ,△△DAE△△FAE(SAS). △△AFE =△ADE. △AD△BC , △△ADE +△C =180°. 又△△AFE +△EFB =180°, △△EFB =△C. △BE 平分△ABC , △△EBF =△EBC.在△BEF 和△BEC 中,⎩⎨⎧△EFB =△C ,△EBF =△EBC ,BE =BE ,△△BEF△△BEC(AAS). △BF =BC.△AD +BC =AF +BF =AB. 20. 【答案】 解:(1)相等.理由:如图,连接AC.在△ACD 和△ACB 中,⎩⎨⎧AC =AC ,AD =AB ,DC =BC ,△△ACD△△ACB(SSS). △△B =△D.(2)设AD =x cm ,BC =y cm.当点C ,D 均在BA 的延长线上且点C 在点D 右侧时,由题意,得 ⎩⎨⎧x +2=y +5,x +(y +2)+5=30, 解得⎩⎨⎧x =13,y =10.此时AD =13 cm ,BC =10 cm. 经检验,符合题意.当点C ,D 均在BA 的延长线上且点C 在点D 左侧时,由题意,得 ⎩⎨⎧y =x +5+2,x +(y +2)+5=30, 解得⎩⎨⎧x =8,y =15.此时AD =8 cm ,BC =15 cm. △5+8<2+15,△不合题意. 综上,AD =13 cm ,BC =10 cm. 21. 【答案】证明:如图,延长AD 到点F ,使得DF =AD ,连接CF.11△AD 为△ABC 中BC 边上的中线,△BD =CD.在△ADB 和△FDC 中,⎩⎨⎧AD =FD ,△ADB =△FDC ,BD =CD ,△△ADB△△FDC(SAS).△AB =CF ,△B =△DCF.△CE =AB ,△CE =CF.△△ACE =△B +△BAC ,△ACF =△DCF +△BCA ,△BAC =△BCA , △△ACE =△ACF.在△ACF 和△ACE 中,⎩⎨⎧AC =AC ,△ACF =△ACE ,CF =CE ,△△ACF△△ACE(SAS).△△CAD =△CAE.。

人教版八年级上册数学第十一章 《三角形》单元测试卷(含答案)

人教版八年级上册数学第十一章 《三角形》单元测试卷(含答案)

人教版八年级上册数学第十一章《三角形》单元测试卷一.选择题1.如图,已知∠ABC=∠DCB,添加以下条件,不能使△ABC≌△DCB的是()A.AB=DC B.∠A=∠D C.AC=DB D.∠ACB=∠DBC 2.已知,如图,在△ABC中,∠CAD=∠EAD,∠ADC=∠ADE,CB=5cm,BD=3cm,则ED的长为()A.2cm B.3cm C.5cm D.8cm3.如图,在△ABC中,AB=AC,∠A=112°,E,F,D分别是AB,AC,BC上的点,且BE=CD,BD=CF,则∠EDF的度数为()A.30°B.34°C.40°D.56°4.花花不慎将一块三角形的玻璃打碎成了如图所示的四块(图中所标①、②、③)、④),若要配块与原来大小一样的三角形玻璃,应该带()A.第①块B.第②块C.第③块D.第④块5.下列说法:(1)三角形具有稳定性;(2)有两边和一个角分别相等的两个三角形全等(3)三角形的外角和是180°(4)全等三角形的面积相等.其中正确的个数是()A.1个B.2个C.3个D.4个6.已知△ABC的三个内角三条边长如图所示,则甲、乙、丙三个三角形中,和△ABC全等的图形是()A.甲和乙B.乙和丙C.只有乙D.只有丙7.如图,已知AB=AC,AF=AE,∠EAF=∠BAC,点C、D、E、F共线.则下列结论,其中正确的是()①△AFB≌△AEC;②BF=CE;③∠BFC=∠EAF;④AB=BC.A.①②③B.①②④C.①②D.①②③④8.如图在△ABC中,∠C=90°,AD平分∠BAC,DE⊥AB于E,DE=3,BD=2CD,则BC=()A.7 B.8 C.9 D.109.如图,在△ABC中,D是BC上一点,DE⊥AB,DF⊥AC,DE=DF,G是AC上一点,DG∥AB,下列一定正确的是()①△ADE≌△ADF;②BE=CF;③AG=DG.A.①②B.①③C.②③D.①②③10.如图,OC平分∠MON,P为OC上一点,PA⊥OM,PB⊥ON,垂足分别为A、B,连接AB,得到以下结论:(1)PA=PB;(2)OA=OB;(3)OP与AB互相垂直平分;(4)OP平分∠APB,正确的个数是()A.1 B.2 C.3 D.4二.填空题11.如图,在△ABC中,D、E分别是AC,AB上的点,若△ADE≌△BDE≌△BDC,则∠DBC的度数为.12.在△ABC中,已知∠A=60°,∠ABC的平分线BD与∠ACB的平分线CE相交于点O,∠BOC的平分线交BC于F,则下列说法中正确的是.①∠BOE=60°,②∠ABD=∠ACE,③OE=OD④BC=BE+CD13.如图,四边形ABCD的对角线AC、DB交于点E,AB=CD,AC=DB,图中全等的三角形共。

全等三角形章节测试

全等三角形章节测试

全等三角形单元测验题一、填空题:(每小题4分)1.已知,如图,AD=AC ,BD=BC ,O 为AB 上一点,那么,图中共有 对全等三角形.2、如图,某人把一块三角形的玻璃打碎成了三块,现在你要到玻璃店去配一块完全一样的玻璃,则应带哪块玻璃去__________(填上玻璃序号)。

第1题3.把两根钢条AA ’、BB ’的中点连在一起,可以做成一个测量工件内槽宽工具(卡钳),如图, 若得AB=5厘米,则槽宽A'B'为 米.OEA'BABCADABB'第3题 第4题 第5题4.如图,∠A=∠D ,AB=CD ,则△ ≌△ ,根据是 . 5.如图,在△ABC 和△ABD 中,∠C=∠D=90°,若利用“AAS ”证明△ABC ≌△ABD ,则需要加条件 ;若利用“HL ”证明△ABC ≌△ABD ,则需要加条件 .6.△ABC ≌△DEF ,且△ABC 的周长为12,若AB=3,EF=4,则AC= . 7.到一个角两边距离相等的点在 .D8.如图,在ΔAOC 与ΔBOC 中,若∠1=∠2,加上条件 ,则有ΔAOC ≌ΔBOC 。

DFDDBA 第8题 第9题 第10题9.如图,AE=BF ,AD ∥BC ,AD=BC ,则有ΔADF ≌ ,且DF= 。

10.如图,在ΔABC 与ΔDEF 中,如果AB=DE ,BE=CF ,要证明ΔABC ≌ΔDEF , 还需添加的条件是 。

(只需填一个) 二、选择题(每小题3分)11.根据下列条件,能判定△ABC ≌△DEF 的是 . A. AB=DE ,BC=EF ,∠A=∠D B. ∠A=∠D ,∠C=∠F ,AC=EF C. ∠B=∠E ,∠A=∠D ,AC=EF D. AB=DE ,BC=EF ,∠B=∠E12.如图△ABE ≌△ACD ,AB=AC ,BE=CD ,∠B=50°, ∠AEC=120°,则∠DAC 的度数等于 A 、120° B 、70° C 、60° D 、50° 13.如图,已知△ABD 和△ACE 都是等边三角形, 那么△ADC ≌△ABE 的根据是 . A.边边边 B.边角边 C.角边角 D.角角边B14.具有下列条件的两个三角形,可以证明它们全等的是 .A.两角相等,且其对应角所对的边也相等B.两角相等,且有一边也相等C.一边相等,且这边上的高也相等D.两边相等,且其中一条对应边的对角相等15、如图,△ABC≌△ADE,若∠BAE=120°,∠BAD=40°,则∠BAC= °A、80°B、70°C、60°D、50°16.在△ABC和△A'B'C'中,①AB=A'B',②BC=B'C',③AC=A'C',④∠A=∠A',⑤∠B=∠B',⑥∠C=∠C',则下列条件组不能保证△ABC≌A'B'C'的是 .A.①②③B.①②⑤ B.②④⑤ D.①③⑤三、解答题:(每小题7分)17.如图,△ABC是一个刚架,AB=AC,AD是连接A与BC中点D的支架。

第11章《三角形》单元测试题

第11章《三角形》单元测试题

第11章《三角形》单元测试题一、选择题(本大题10小题,每小题3分,共30分) 1、下列各组线段为边能组成三角形的是:( )A.1cm ,2cm ,4cm .B.2cm ,3cm ,5cm .C.5cm ,6cm ,12cm .D.4cm ,6cm ,8cm . 2、已知三角形的两边长分别为3cm 和8cm ,则它的第三边的长可能是:( ) A.4cm B.5cm C.6cm D.13cm3、一个三角形的三边长分别为x 、2、3,那么x 的取值范围是:( ) A.2<x <3 B. 1<x <5 C. 2<x <5 D. x >24、已知等腰三角形的两边长分别为3和5,则它的周长是:( ) A.8 B. 11 C.13 D.11或135、三角形的角平分线、中线和高:( )A.都是线段B.都是射线C.都是直线D.不都是线段 6、三角形的三条高在:( )A.三角形的内部B. 三角形的外部C.三角形的边上D.三角形的内部、外部或边上 7、八边形的对角线共有:( )A.8条B.16条C.18条D.20条 8、一个四边形截去一个内角后变为:( )A.三角形B.四边形C.五边形D.以上均有可能 9、六边形的内角和等于:( )A.360°B.540°C.720°D.900° 10、直角三角形两锐角的平分线相交所成的钝角是:( ) A.120° B.135° C.150° D.165° 二、填空题(本大题6小题,每小题4分,共24分)11、已知等腰三角形的两边长分别为4和9,则它第三边的长是 .12、盖房子时,在窗框未安装之前,木工师傅常常先在窗框上斜钉上一根木条,这是利用了三角形具有的原理.13、五边形的外角和等于 .14、一个多边形每个外角都是60°,此多边形一定是 边形. 15、如图所示∠A+∠B+∠C+∠D+∠E+∠F = .16、如图所示,已知△ABC 为直角三角形,∠B=90°,若沿图中虚线剪去∠B ,则∠1+∠2 = .15图 16题图三、解答题(一)(本大题3小题,每小题6分,共18分)17、如图所示,用火柴杆摆出一系列三角形图案,共摆有n 层,当n=1时,需3根火柴;当n=2时,需9根火柴,按这种方式摆下去,(1)当n=3时,需 根火柴. (2)当n=20时,需 根火柴.18、如图,AB∥CD,∠A=45°,∠C=∠E,求∠C 的度数.19、如图所示,在△ABC 中,∠A=60°,BD ,CE 分别是AC ,AB 上的高,H 是BD 和CE 的交点,求∠BHC 的度数.n=3n=2n=1AD C四、解答题(二)(本大题3小题,每小题7分,共21分) 20、如图,已知P 是△ABC 内一点,试说明PA+PB+PC>12(AB+BC+AC) .21、如图所示五角星,试求∠A+∠B+∠C+∠D+∠E.22、一个多边形的外角和等于内角和的72,求这个多边形的边数.五、解答题(三)(本大题3小题,每小题9分,共27分)23、如图,AB ∥CD ,∠ABD 、∠BDC 的平分线交于E ,试判断△BED 的形状?24、四边形ABCD 中,∠A =∠C =90°,BE 、CF 分别是∠ABC 、∠ADC 的平分线.求证:(1)∠1+∠2=90°;(2)BE ∥DF.25、(1)如图:点P 为△ABC 的内角平分线BP 与CP 的交点,求证:∠BPC =90°+12∠A. (2)如图:点P 是△ABC 内角平分线BP 与外角平分线CP 的交点,请直接写出∠BPC 与∠A 的关系. (3)如图:点P是△ABC 的外角平分线BP 与CP 的交点,请直接写出∠BPC 与∠A的关系.PCBA第十二章 《全等三角形》单元测试卷一、选择题(本大题10小题,每小题3分,共30分)1、下列方法中,不能判定三角形全等的是: ( ) A .SSA B .SSS C .ASA D .SAS2、如图,△ABE ≌△ACD ,AB=AC ,BE=CD ,∠B=50°,∠AEC=120°,则∠DAC 的度数等于:( )A .120° B.70° C.60° D.50°2题图 3题图 4题图3、某同学把一块三角形的的玻璃打碎成3块,现要到玻璃店去配一块完全一样的玻璃,那么最省事的方法是:( )A .带①去 B.带②去 C.带③去 D.①②③都带去 4、如图所示,AB=CD ,AD=BC ,则图中的全等三角形共有:( )A.1对B. 2对C. 3对D.4对5、使两个直角三角形全等的条件是:( ) A .一锐角对应相等 B.两锐角对应相等 C.一条边对应相等 D.两条边对应相等6、如图所示,DE ⊥AB ,DF ⊥AC ,AE =AF ,则下列结论成立的是:( ) A. BD =CD B. DE =DF C. ∠B =∠C D. AB =ACABCDE F第9题6题图 7题图7、如图,OA =OB ,OC =OD ,∠O =50°,∠D =35°,则∠AEC 等于:( ) A. 60°B. 50°C. 45°D. 30°8、如图,在Rt △ABC 中,∠C=90°,∠BAC 的平分线AD 交BC 于点D ,CD=2,则点D 到AB 的距离是:( )A .1B .2C .3D .48题图 9题图9、如图,直线a 、b 、c 表示三条相互交叉的公路,现要建一个货物中转站,要求它到三条公路的距离相等,则可供选择的地址有:( )A.1处B. 2处C. 3处D.4处 10、到三角形三边距离相等的点是:( )A. 三条中线的交点B. 三条高的交点C. 三条角平分线的交点D. 三边垂直平分线的交点二、填空题(本大题6小题,每小题4分,共24分)11、如图,△ABD ≌△CDB ,若AB=4,AD=5,则BC= . 12、如图,△ABC ≌△DEF ,∠A=30°,∠B=50°,则∠DFE= . 13、如图,AC ⊥BD 于O ,BO=DO ,图中共有全等三角形 对.11题图 12题图 13题图14、如图,∠1=∠2,要使△ABE ≌△ACE ,还需添加一个条件是: (填上你认为适当的一个条件即可).15、如图,AD 是△ABC 的角平分线,若AB :AC=3:2,则S △ABD :S △ACD = .16、如图,△ABC 中,∠C=90°,AD 平分∠BAC,AB =5,CD =2,则△ABD 的面积是 .14题图 15题图 16题图ACBD A DCB三、解答题(一)(本大题3小题,每小题6分,共18分)17、如图,AC 和BD 相交于点O ,OA=OC ,OB=OD ,求证:DC ∥AB .18、已知:如图,C 为BE 上一点,点A ,D 分别在BE 两侧.AB ∥ED ,AB =CE ,BC =ED .求证:AC =CD .19、已知:如图,AD =BC ,BD =AC .求证:∠D =∠C .四、解答题(二)(本大题3小题,每小题7分,共21分)20、如图,在△ABC 中,D 是BC 的中点,DE ⊥AB ,DF ⊥AC ,垂足分别是E 、F ,BE=CF .(1)图中有几对全等的三角形?请一一列出;(2)选择一对你认为全等的三角形进行证明.21、如图,BE ⊥AC 、CF ⊥AB 于点E 、F ,BE 与CF 交于点D ,DE =DF ,连结AD .求证:(1)∠FAD =∠EAD (2)BD =CD .22、如图,已知BE ⊥AD ,CF ⊥AD ,且BE=CF.请你判断AD 是△ABC 的中线还是角平分线?请说明你判断的理由.五、解答题(三)(本大题3小题,每小题9分,共27分)23、已知:BE ⊥CD ,BE =DE ,BC =DA .求证:(1) △BEC ≌△DEA(2)DF ⊥BC .24、已知:如图,∠B=∠C=90°,M 是BC 的中点,DM 平分∠ADC.求证:AM 平分∠DAB.25、已知:∠AOB=90°,OM 是∠AOB 的平分线,将三角板的直角顶P 在射线OM 上滑动,两直角边分别与OA 、OB 交于C 、D .则PC 和PD 有怎样的数量关系,证明你的结论.ACEDBAB第十三章 《轴对称》单元测试卷(时间:60分钟 满分:100分)一、选择题(本大题共有10小题,每小题3分,共30分). 1.下列各时刻是轴对称图形的为( ).A 、B 、C 、D 、2.小明从镜子里看到镜子对面电子钟的像如图所示,实际时间是( ).A 、21:10B 、10:21C 、10:51D 、12:013.如图是屋架设计图的一部分,其中∠A=30°,点D 是斜梁AB 的中点,BC 、DE 垂直于横梁AC ,AB=16m ,则DE 的长为( ).A 、8 mB 、4 mC 、2 mD 、6 m4.如图:∠EAF=15°,AB=BC=CD=DE=EF ,则∠DEF 等于( ).A 、90°B 、 75°C 、70°D 、 60° 5.把一张长方形的纸沿对角线折叠,则重合部分是( ).A 、直角三角形B 、长方形C 、等边三角形D 、等腰三角形 6.已知等腰三角形的两条边长分别为2和5,则它的周长为( ).A . 9B . 12C . 9或12D . 57.如图,点P 为∠AOB 内一点,分别作出点P 关于OA 、OB 的对称点1P 、2P ,连接1P 2P 交OA 于M ,交OB 于N ,若1P 2P =6,则△PMN 的周长为( ). A 、4 B 、5 C 、6 D 、78.如图,∠BAC=110°若MP 和NQ 分别垂直平分AB 和AC,则∠PAQ 的度数是( ) .A 、20°B 、 40°C 、50°D 、 60°9.如图,先将正方形纸片对折,折痕为MN ,再把B 点折叠在折痕MN 上,折痕为AE ,点B 在MN 上的对应点为H ,沿AH 和DH 剪下,这样剪得的三角形中( ).A 、AD DH AH ≠=B 、AD DH AH ==C 、DH AD AH ≠= D 、AD DH AH ≠≠10.下列三角形:①有两个角等于60°;②有一个角等于60°的等腰三角形;③三个外角(每个顶点处各取一个外角)都相等的三角形;④一腰上的中线也是这条腰上的高的等腰三角形.其中是等边三角形的有( ). A .①②③ B .①②④ C .①③ D .①②③④ 二、填空题(本大题共有8小题,每空2分,共16分).11.等腰三角形是轴对称图形,其对称轴是_______________________________.12.已知点A (x , -4)与点B (3,y )关于x 轴对称,那么x +y 的值为____________. 13.等腰三角形一腰上的高与另一腰上的夹角为30°,则顶角的度数为 __ .14.如图,在△ABC 中,AB =AC ,AD 是BC 边上的高,点E 、F 是AD 的三等分点,若△ABC 的面积为12cm 2,则图中阴影部分的面积是 ___ cm 2.15.如图,在△ABC 中, AB=AC, D 为BC 上一点,且,AB=BD,AD=DC,则∠C= ____ 度..16.如图,在等边ABC △中,D E ,分别是AB AC ,上的点,且AD CE =,则BCD CBE ∠+∠=度.17.如图:在△ABC 中,AB=AC=9,∠BAC=120°,AD 是△ABC 的中线,AE 是∠BAD 的角平分线,DF ∥AB 交AE 的延长线于点F ,则DF 的长为 ;18.在直角坐标系内,已知A 、B 两点的坐标分别为A (-1,1)、B (3,3),若M 为x 轴上一点,且MA +MB 最小,则M 的坐标是___________. 三、解答题(本大题共有7小题,共54分). 19.(6分)如图,已知点M 、N 和∠AOB , 求作一点P ,使P 到点M 、N 的距离相等, •且到∠AOB 的两边的距离相等.第2题图第3题图第4题图FE DCBAD C第14题图第15题图第16题图第17题图BCE DABFE DCABMN P 1A P 2OP第7题图 第8题图 第9题图MANCQPBNM DCH EBAB D CE A20.(6分)(1)请画出ABC △关于y 轴对称的A B C '''△ (其中A B C ''',,分别是A B C ,,的对应点,不写画法); (2)直接写出A B C ''',,三点的坐标:(_____)(_____)(_____)A B C ''',,.(3)求△ABC 的面积是多少?21.(8分)在△ABC 中,AB =AC ,AD ⊥BC ,∠BAD =40°,AD =AE .求∠CDE 的度数.22. (8分)已知AB=AC ,BD=DC ,AE 平分∠FAB ,问:AE 与AD 是否垂直?为什么?23.(8分)如图,在△ABC 中,AB =AC ,D 是BC 边上的一点, DE ⊥AB ,DF ⊥AC ,垂足分别为E 、F ,添加一个条件,使DE = DF , 并说明理由. 解: 需添加条件是 . 理由是:24.(8分)如图:E 在△ABC 的AC 边的延长线上,D 点在AB 边上,DE 交BC 于点F ,DF=EF ,BD=CE 。

人教版数学八年级上册《全等三角形》单元综合测试题(含答案)

人教版数学八年级上册《全等三角形》单元综合测试题(含答案)
27.如图,在△ABC和△ADE中,AB=AC,AD=AE,∠BAC=∠DAE=90°.
(1)当点D在AC上时,如图①,线段BD,CE有怎样 数量关系和位置关系?请证明你的猜想;
(2)将图①中的△ADE绕点A顺时针旋转α(0°<α<90°),如图②,线段BD,CE有怎样的数量关系和位置关系?请说明理由.
A. 1个B. 2个C. 3个D. 4个
11.如图,在△ABC和△CDE中,若∠ACB=∠CED=90°,AB=CD,BC=DE,则下列结论中不正确的是( )
A. △ABC≌△CDEB. CE=ACC. AB⊥CDD. E为BC的中点
12.如图,在△ABC中,∠C=90°,AD平分∠BAC,DE⊥AB于E,则下列结论:①AD平分∠CDE;②∠BAC=∠BDE;③DE平分∠ADB;④BE+AC=AB,其中正确的有( )
A. 60°B. 62°C. 64°D. 66°
9.如图,△ABC的三边AB、BC、AC的长分别12,18,24,O是△ABC三条角平分线的交点,则S△OAB:S△OBC:S△OAC=( )
A.1:1:1B.1:2:3C.2:3:4D.3:4:5
10.如图,AD是△ABC的中线,E,F分别是AD和AD延长线上的点,且DE=DF,连结BF,CE,下列说法①△BDF≌△CDE;②△ABD和△ACD面积相等;③BF∥CE;④CE=BF,其中正确的有( )
【答案】B
【解析】
∵AB∥DC,AD∥BC,
∴∠BAC=∠DCA,∠DAC=∠BCA,
而AC=CA,
∴△ABC≌△CDA(ASA).
故选B.
【点睛】全等三角形的判定:全等三角形的5种判定方法中,选用哪一种方法,取决于题目中的已知条件,若已知两边对应相等,则找它们的夹角或第三边;若已知两角对应相等,则必须再找一组对边对应相等,且要是两角的夹边,若已知一边一角,则找另一组角,或找这个角的另一组对应邻边.

人教新版八年级上册《第11章 三角形》单元测试卷

人教新版八年级上册《第11章 三角形》单元测试卷

人教新版八年级上册《第11章三角形》单元测试卷一.选择题(共18小题)1.如图,△ABC的三边长均为整数,且周长为22,AM是边BC上的中线,△ABM的周长比△ACM的周长大2,则BC长的可能值有()个.A.4B.5C.6D.72.在△ABC中,∠A=50°,∠B=30°,点D在AB边上,连接CD,若△ACD为直角三角形,则∠BCD的度数为()A.60°B.10°C.45°D.10°或60°3.如图,在△ABC中,D是AC上一点,E是AB上一点,BD,CE相交于点F,∠A=60°,∠ABD=20°,∠ACE=35°,则∠EFD的度数是()A.115°B.120°C.135°D.105°4.如图,已知点P是射线ON上一动点(不与点O重合),∠O=30°,若△AOP为钝角三角形,则∠A的取值范围是()A.0°<∠A<60°B.90°<∠A<180°C.0°<∠A<30°或90°<∠A<130°D.0°<∠A<60°或90°<∠A<150°5.如图,△ABC中,∠BAC>∠B,∠C=70°,将△ABC折叠,使得点B与点A重合,折痕PD分别交AB、BC于点D、P,当△APC中有两个角相等时,∠B的度数为()A.35°或20°B.20°或27.5°C.35°或25°或32.5°D.35°或20°或27.5°6.如图,小明从一张三角形纸片ABC的AC边上选取一点N,将纸片沿着BN对折一次使得点A落在A′处后,再将纸片沿着BA′对折一次,使得点C落在BN上的C′处,已知∠CMB=68°,∠A=18°,则原三角形的∠C的度数为()A.87°B.84°C.75°D.72°7.如图,射线BD,AE分别是△ABC的外角∠ABF,∠CAG的角平分线,射线BD与直线AC交于点D,射线AE与直线BC交于点E,若∠BAC=∠ABC+102°,∠D=∠E+27°,则∠ACB的度数为()A.39°B.40°C.41°D.42°8.如图,∠ABD,∠ACD的角平分线交于点P,若∠A=48°,∠D=10°,则∠P的度数()A.19°B.20°C.22°D.25°9.如图,△ABC中,∠C=90°,将△ABC沿DE折叠,使得点B落在AC边上的点F处,若∠CFD=60°且△AEF中有两个内角相等,则∠A的度数为()A.30°或40°B.40°或50°C.50°或60°D.30°或60°10.如图,在直角△ABC中,∠CAB=90°,∠ABC=70°,AD是∠CAB的平分线,交边BC于点D,过点C作△ACD中AD边上的高线CE,则∠ECD的度数为()A.35°B.30°C.25°D.20°11.在平面内,若AB=6,BC=4,∠A=30°,则可以构成的△ABC的个数是()A.0个B.1个C.2个D.不少于2个12.如图,在△ABC中,∠B=28°,将△ABC沿直线m翻折,点B落在点D的位置,则∠1﹣∠2的度数是()A.42°B.46°C.52°D.56°13.如图所示,在△ABC中,∠BAC、∠ABC、∠ACB的三等分线相交于D、E、F(其中∠CAD=2∠BAD,∠ABE=2∠CBE,∠BCF=2∠ACF),且△DFE的三个内角分别为∠DFE=54°、∠FDE=60°、∠FED=66°,则∠BAC=()A.54°B.60°C.66°D.48°14.如图,将△ABC沿DE、HG、EF翻折,三个顶点均落在点O处,若∠1=131°,则∠2的度数为()A.49°B.50°C.51°D.52°15.如图,CG平分正五边形ABCDE的外角∠DCF,并与∠EAB的平分线交于点O,则∠AOG的度数为()A.144°B.126°C.120°D.108°16.将每一个内角都是108o的五边形按如图所示方式放置,若直线m∥n,则∠1和∠2的数量关系是()A.∠1+∠2=90°B.∠1=∠2+72oC.∠1=∠2+36o D.2∠1+∠2=180°17.如图,△ABC≌△DEC,点A和点D是对应顶点,点B和点E是对应顶点,过点A作AF⊥CD,垂足为点F,若∠BCE=65°,则∠CAF的度数为()A.30°B.25°C.35°D.65°18.如图,在正方形网格内(每个小正方形的边长为1),有一格点三角形ABC(三个顶点分别在正方形的格点上),现需要在网格内构造一个新的格点三角形与原三角形全等,且有一条边与原三角形的一条边重合,这样的三角形可以构造出()A.3个B.4个C.5个D.6个二.解答题(共9小题)19.如图所示,已知△ABD≌△CFD,AD⊥BC于D.(1)求证:CE⊥AB;(2)已知BC=7,AD=5,求AF的长.20.如图,已知AB=DC,AB∥CD,E、F是AC上两点,且AF=CE.求证:△ABE≌△CDF.21.如图,点A、F、C、D在同一条直线上,AB∥DE,AB=DE,AF=DC.求证:△ABC ≌△DEF.22.如图①,在Rt△ABC中,∠C=90°,BC=9cm,AC=12cm,AB=15cm,现有一动点P,从点A出发,沿着三角形的边AC→CB→BA运动,回到点A停止,速度为3cm/s,设运动时间为ts.(1)如图(1),当t=时,△APC的面积等于△ABC面积的一半;(2)如图(2),在△DEF中,∠E=90°,DE=4cm,DF=5cm,∠D=∠A.在△ABC 的边上,若另外有一个动点Q,与点P同时从点A出发,沿着边AB→BC→CA运动,回到点A停止.在两点运动过程中的某一时刻,恰好△APQ≌△DEF,求点Q的运动速度.23.直线AB、CD为平面内两条直线,点M、点N分别在直线AB、CD上,点P(P不在直线AB、CD上)为平面内一动点.(1)如图1,若AB、CD相交于点O,∠MON=40°;①当点P在△OMN内部时,求证:∠MPN﹣∠OMP﹣∠ONP=40°;②小芳发现,当点P在∠MON内部运动时,∠MPN、∠OMP、∠ONP还存在其它数量关系,这种数量关系是;③探究,当点P在∠MON外部时,∠MPN、∠OMP、∠ONP之间的数量关系共有种;(2)如图2,若AB∥CD,请直接写出∠MPN与∠AMP、∠CNP之间存在的所有数量关系是.24.直线m与直线n相交于C,点A是直线m上一点,点B是直线n上一点,∠ABC的平分线BP与∠DAB的平分线AE的反向延长线相交于点P.(1)如图1,若∠ACB=90°,则∠P=;若∠ACB=α,则∠P=(结果用含α的代数式表示);(2)如图2,点F是直线n上一点,若点B在点C左侧,点F在点C右侧时,连接AF,∠CAF与∠AFC的平分线相交于点Q.①随着点B、F的运动,∠APB+∠AQF的值是否变化?若发生变化,请说明理由;若不发生变化,试求出其值;②延长AQ交直线n于点G,作QH∥CF交AF于点H,则=.25.如图,在△ABC中,∠1=100°,∠C=80°,∠2=∠3,BE平分∠ABC交AD于E,求∠4的度数.26.已知点B、D分别为射线AM、AN上异于端点A的任一点,点C为∠MAN内部一点(如图1).∠A=α,∠C=β,(0°<α<180°,0°<β<180°).(1)∠ABC+∠ADC=(用含α、β的代数式直接填空);(2)如图2,若α=β=90°,BE平分∠ABC,DG平分∠CDN,若射线BE与DG所在直线交于点F,则∠BDG为角(只填序号);①锐角;②直角;③钝角.(3)①若∠MBC、∠CDN的角平分线相交于点P,α+β=110°,∠BPD=30°,试求α、β的值;②①中的∠BPD是否一定存在?若∠BPD不存在,请直接写出α、β满足的条件.27.同学们以“一块直角三角板和一把直尺”开展数学活动,提出了很多数学问题,请你解答:(1)如图1,∠α和∠β具有怎样的数量关系?请说明理由;(2)如图2,∠DFC的平分线与∠EGC的平分线相交于点Q,求∠FQG的大小;(3)如图3,点P是线段AD上的动点(不与A,D重合),连接PF、PG,的值是否变化?如果不变,请求出比值;如果变化,请说明理由.人教新版八年级上册《第11章三角形》参考答案与试题解析一.选择题(共18小题)1.如图,△ABC的三边长均为整数,且周长为22,AM是边BC上的中线,△ABM的周长比△ACM的周长大2,则BC长的可能值有()个.A.4B.5C.6D.7【分析】依据△ABC的周长为22,△ABM的周长比△ACM的周长大2,可得2<BC<11,再根据△ABC的三边长均为整数,即可得到BC=4,6,8,10.【解答】解:∵△ABC的周长为22,△ABM的周长比△ACM的周长大2,∴2<BC<22﹣BC,解得2<BC<11,又∵△ABC的三边长均为整数,△ABM的周长比△ACM的周长大2,∴AC=为整数,∴BC边长为偶数,∴BC=4,6,8,10,即BC的长可能值有4个,故选:A.【点评】本题主要考查了三角形三边关系的运用,解题时注意:三角形两边之和大于第三边,三角形的两边差小于第三边.2.在△ABC中,∠A=50°,∠B=30°,点D在AB边上,连接CD,若△ACD为直角三角形,则∠BCD的度数为()A.60°B.10°C.45°D.10°或60°【分析】当△ACD为直角三角形时,存在两种情况:∠ADC=90°或∠ACD=90°,根据三角形的内角和定理可得结论.【解答】解:分两种情况:①如图1,当∠ADC=90°时,∵∠B=30°,∴∠BCD=90°﹣30°=60°;②如图2,当∠ACD=90°时,∵∠A=50°,∠B=30°,∴∠ACB=180°﹣30°﹣50°=100°,∴∠BCD=100°﹣90°=10°,综上,∠BCD的度数为60°或10°,故选:D.【点评】本题考查了三角形的内角和定理,分情况讨论是解决本题的关键.3.如图,在△ABC中,D是AC上一点,E是AB上一点,BD,CE相交于点F,∠A=60°,∠ABD=20°,∠ACE=35°,则∠EFD的度数是()A.115°B.120°C.135°D.105°【分析】由△ABD的内角和为180°,可以求∠ADB,由△AEC内角和为180°,可以求∠AEC,再根据四边形AEFD内角和为360°,可求∠EFD.【解答】解:在△AEC中,∠A+∠ACE+∠AEC=180°,∴∠AEC=180°﹣∠A﹣∠ACE=180°﹣60°﹣35°=85°,在△ABD中,∠A+∠ABD+∠ADB=180°,∴∠ADB=180°﹣∠A﹣∠ABD=180°﹣60°﹣20°=100°,在四边形AEFD中,∠A+∠AEC+∠ADB+2∠EFD=360°,∴∠EFD=360°﹣∠A﹣∠AEC﹣∠ADB=360°﹣60°﹣85°﹣100°=115°,故选:A.【点评】本题考查三角形的内角和定理和四边形的内角和,掌握三角形的内角和定理是解本题的关键.4.如图,已知点P是射线ON上一动点(不与点O重合),∠O=30°,若△AOP为钝角三角形,则∠A的取值范围是()A.0°<∠A<60°B.90°<∠A<180°C.0°<∠A<30°或90°<∠A<130°D.0°<∠A<60°或90°<∠A<150°【分析】由∠O=30°可分两种情况:若∠A为钝角,则90°<∠A<180°﹣30°,可直接求解∠A的范围;若∠A为锐角,则90°<∠A<180°﹣30°,再根据三角形外角的性质可求解.【解答】解:∵∠O=30°,若∠A为钝角,则90°<∠A<180°﹣30°,即90°<∠A<150°,若∠A为锐角,则0°<∠APN<90°,∵∠APN=∠O+∠A,∴∠A+30°<90°,∴0°<∠A<60°,综上,∠A的取值范围为0°<∠A<60°或90°<∠A<150°,故选:D.【点评】本题主要考查三角形的内角和定理,三角形外角的性质,分类讨论是解题的关键.5.如图,△ABC中,∠BAC>∠B,∠C=70°,将△ABC折叠,使得点B与点A重合,折痕PD分别交AB、BC于点D、P,当△APC中有两个角相等时,∠B的度数为()A.35°或20°B.20°或27.5°C.35°或25°或32.5°D.35°或20°或27.5°【分析】分三种情况,利用三角形的内角和定理、等腰三角形的性质先求出∠APC的度数,再利用折叠的性质和三角形的内角和定理求出∠B.【解答】解:由折叠的性质知:∠BPD=∠APD=∠BP A,∠BDP=∠ADP=90°.当AP=AC时,∠APC=∠C=70°,∵∠BPD=(180°﹣∠APC)=55°,∴∠B=90°﹣55°=35°;当AP=PC时,∠P AC=∠C=70°,则∠APC=40°.∵∠BPD=(180°﹣∠APC)=70°,∴∠B=90°﹣70°=20°;当PC=AC时,∠APC=∠P AC,则∠APC=55°.∵∠BPD=(180°﹣∠APC)=62.5°,∴∠B=90°﹣62.5°=27.5°.故选:D.【点评】本题考查了折叠的性质、三角形的内角和定理、等腰三角形的性质等知识点,掌握折叠、等腰三角形的性质、三角形的内角和定理及分类讨论的思想方法是解决本题的关键.6.如图,小明从一张三角形纸片ABC的AC边上选取一点N,将纸片沿着BN对折一次使得点A落在A′处后,再将纸片沿着BA′对折一次,使得点C落在BN上的C′处,已知∠CMB=68°,∠A=18°,则原三角形的∠C的度数为()A.87°B.84°C.75°D.72°【分析】已知∠A=18°,欲求∠C,需求∠ABC.如图,由题意得:△ABN≌△A′BN,△C′BN≌△CBM,得∠1=∠2=∠3,∠CMB=∠C′MB=68°,则需求∠3.根据三角形内角和定理,得∠3+∠C=112°,∠ABC+∠C+18°=180°,即3∠3+∠C=162°,故求得∠3=25°.【解答】解:如图,由题意得:△ABN≌△A′BN,△C′BN≌△CBM.∴∠1=∠2,∠2=∠3,∠CMB=∠C′MB=68°.∴∠1=∠2=∠3.∴∠ABC=3∠3.又∵∠3+∠C+∠CMB=180°,∴∠3+∠C=180°﹣∠CMB=180°﹣68°=112°.又∵∠A+∠ABC+∠C=180°,∴18°+2∠3+(∠3+∠C)=180°.∴18°+2∠3+112°=180°.∴∠3=25°.∴∠C=112°﹣∠3=112°﹣25°=87°.故选:A.【点评】本题主要考查折叠的性质以及三角形内角和定理,熟练掌握三角形内角和定理是解决本题的关键.7.如图,射线BD,AE分别是△ABC的外角∠ABF,∠CAG的角平分线,射线BD与直线AC交于点D,射线AE与直线BC交于点E,若∠BAC=∠ABC+102°,∠D=∠E+27°,则∠ACB的度数为()A.39°B.40°C.41°D.42°【分析】设∠ABC=x,∠E=y,则∠BAC=x+102°,∠D=y+27°.由∠BAC+∠ABC+∠ACB=180°,得∠ACB=78°﹣2x°.由AE平分∠CAG,得∠GAE=39°﹣.同理可得:∠DBF=90°﹣.由∠GAE=∠ABC+∠E,∠DBF=∠D+∠ACB,得39°﹣=x+y,90°﹣=y+27°+78°﹣2x,得x=18°.那么,∠ACB=78°﹣2x=78°﹣2×18°=42°.【解答】解:设∠ABC=x,∠E=y,则∠BAC=x+102°,∠D=y+27°.∵∠BAC+∠ABC+∠ACB=180°,∴∠ACB=180°﹣(∠ABC+∠BAC)=78°﹣2x°.∵AE平分∠CAG,∴∠GAE===39°﹣.同理可得:∠DBF=90°﹣.∵∠GAE=∠ABC+∠E,∴39°﹣=x+y.∵∠DBF=∠D+∠ACB,∴90°﹣=y+27°+78°﹣2x.∴x=18°.∴∠ACB=78°﹣2x=78°﹣2×18°=42°.故选:D.【点评】本题主要考查三角形外角的性质以及角平分线的定义,熟练掌握三角形外角的性质是解决本题的关键.8.如图,∠ABD,∠ACD的角平分线交于点P,若∠A=48°,∠D=10°,则∠P的度数()A.19°B.20°C.22°D.25°【分析】延长PC交BD于E,根据角平分线的定义可得∠1=∠2,∠3=∠4,再根据三角形的内角和定理可得∠A+∠1=∠P+∠3,然后根据三角形的一个外角等于与它不相邻的两个内角的和表示出∠5,整理可得∠P=(∠A﹣∠D),然后代入数据计算即可得解.【解答】解:如图,延长PC交BD于E,∵∠ABD,∠ACD的角平分线交于点P,∴∠1=∠2,∠3=∠4,由三角形的内角和定理得,∠A+∠1=∠P+∠3①,在△PBE中,∠5=∠2+∠P,在△DCE中,∠5=∠4﹣∠D,∴∠2+∠P=∠4﹣∠D②,①﹣②得,∠A﹣∠P=∠P+∠D,∴∠P=(∠A﹣∠D),∵∠A=48°,∠D=10°,∴∠P=(48°﹣10°)=19°.故选:A.【点评】本题考查了三角形的内角和定理,三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记性质并作辅助线然后整理出∠A、∠D、∠P三者之间的关系式是解题的关键.9.如图,△ABC中,∠C=90°,将△ABC沿DE折叠,使得点B落在AC边上的点F处,若∠CFD=60°且△AEF中有两个内角相等,则∠A的度数为()A.30°或40°B.40°或50°C.50°或60°D.30°或60°【分析】分三种情形:①当AE=AF时,②当AF=EF时,③当AE=EF时,分别求解即可.【解答】解:①当AE=AF时,则∠AFE=∠AEF=(180°﹣∠A),∵∠B=∠EFD=90°﹣∠A,∠CFD=60°,∴∠AFD=120°,∴(180°﹣∠A)+90°﹣∠A=120°,∴∠A=40°.②当AF=EF时,∠AFE=180°﹣2∠A,同法可得180°﹣2∠A+90°﹣∠A=120°,∴∠A=50°.③当AE=EF时,点F与C重合,不符合题意.综上所述,∠A=40°或50°,故选:B.【点评】本题考查三角形内角和定理,翻折变换等知识,解题的关键是学会用分类讨论的思想思考问题,属于中考常考题型.10.如图,在直角△ABC中,∠CAB=90°,∠ABC=70°,AD是∠CAB的平分线,交边BC于点D,过点C作△ACD中AD边上的高线CE,则∠ECD的度数为()A.35°B.30°C.25°D.20°【分析】先根据角平分线定义求出∠CAD=∠BAD=∠CAB=45°,再根据直角三角形两锐角互余求出∠ACB及∠ACE,再通过∠ECD=∠ACE﹣∠BCA求解.【解答】解:∵∠CAB=90°,AD是∠CAB的角平分线,∴∠CAD=∠BAD=∠CAB=45°,∵CE⊥AD,∴∠ECA=∠CEA﹣∠CAE=45°,∵∠BCA=∠CAB﹣∠B=20°,∴∠ECD=∠ACE﹣∠BCA=25°,故选:C.【点评】本题考查三角形的内角和定理,解题关键掌握三角形内角和定理及直角三角形两个锐角互余.11.在平面内,若AB=6,BC=4,∠A=30°,则可以构成的△ABC的个数是()A.0个B.1个C.2个D.不少于2个【分析】利用30°角所对的直角边是斜边的一半可求出BH=3,再根据BC>3,可知符合条件的三角形有2个.【解答】解:如图,∵∠A=30°,AB=6,BH⊥AD,∴BH=3,∵BC=4>3,∴AD边上存在两个点C,使得BC=4,∴可以构成的△ABC的个数是2个,故选:C.【点评】本题主要考查了30°角所对的直角边是斜边的一半这一性质,解决问题的关键是作图,求出B到AD的距离.12.如图,在△ABC中,∠B=28°,将△ABC沿直线m翻折,点B落在点D的位置,则∠1﹣∠2的度数是()A.42°B.46°C.52°D.56°【分析】根据折叠得出∠D=∠B=28°,根据三角形的外角性质得出∠1=∠B+∠BEF,∠BEF=∠2+∠D,求出∠1=∠B+∠2+∠D即可.【解答】解:∵∠B=28°,将△ABC沿直线m翻折,点B落在点D的位置,∴∠D=∠B=28°,∵∠1=∠B+∠BEF,∠BEF=∠2+∠D,∴∠1=∠B+∠2+∠D,∴∠1﹣∠2=∠B+∠D=28°+28°=56°,故选:D.【点评】本题考查了三角形的外角性质和折叠的性质,能熟记三角形的外角性质是解此题的关键,注意:三角形的一个外角等于与它不相邻的两个内角的和.13.如图所示,在△ABC中,∠BAC、∠ABC、∠ACB的三等分线相交于D、E、F(其中∠CAD=2∠BAD,∠ABE=2∠CBE,∠BCF=2∠ACF),且△DFE的三个内角分别为∠DFE=54°、∠FDE=60°、∠FED=66°,则∠BAC=()A.54°B.60°C.66°D.48°【分析】设∠BAD=x,∠CBE=y,∠ACF=z,则∠CAF=2x,∠ABD=2y,∠BCE=2z,利用三角形的外角的性质构建方程组解决问题即可.【解答】解:∵∠CAD=2∠BAD,∠ABE=2∠CBE,∠BCF=2∠ACF,∴可以假设∠BAD=x,∠CBE=y,∠ACF=z,则∠CAF=2x,∠ABD=2y,∠BCE=2z,∵∠DFE=∠ACF+∠CAF,∠FDE=∠DAB+∠ABD,∠DEF=∠CBE+∠BCE,∴54°=2x+z,60°=x+2y,66°=y+2z,解得x=16°,y=22°,z=22°,∴∠BAC=3x=48°,故选:D.【点评】本题考查三角形内角和定理,三角形的外角的性质等知识,解题的关键是学会利用参数构建方程解决问题,属于中考常考题型.14.如图,将△ABC沿DE、HG、EF翻折,三个顶点均落在点O处,若∠1=131°,则∠2的度数为()A.49°B.50°C.51°D.52°【分析】先根据折叠性质得:∠HOG=∠B,∠DOE=∠A,∠EOF=∠C,根据三角形内角和为180°和周角360°求出结论.【解答】解:由折叠得:∠HOG=∠B,∠DOE=∠A,∠EOF=∠C,∵∠A+∠B+∠C=180°,∴∠HOG+∠DOE+∠EOF=180°,∵∠1+∠2+∠HOG+∠DOE+∠EOF=360°,∴∠1+∠2=180°,∵∠1=131°,∴∠2=180°﹣131°=49°,故选:A.【点评】本题是折叠问题,考查了折叠的性质,熟练掌握折叠前后的两个角相等,结合三角形的内角和求出角的度数.15.如图,CG平分正五边形ABCDE的外角∠DCF,并与∠EAB的平分线交于点O,则∠AOG的度数为()A.144°B.126°C.120°D.108°【分析】欲求∠AOG,可求∠AOC,则需求∠BCO、∠OAB、∠B.因为五边形ABCDE 是正五边形,所以∠EAB=∠E=∠BCD=108°.又因为AO平分∠EAB,CG平分∠DCF,所以可求得∠OAB=54°,∠BCG=108°+=144°.【解答】解:∵任意多边形的外角和等于360°,∴∠DCF=360°÷5=72°.∴这个正五边形的每个内角为180°﹣72°=108°.∴∠B=∠EAB=∠BCD=108°.又∵AO平分∠EAB,∴∠OAB=.又∵CG平分∠DCF,∴∠DCG=.∴∠BCO=∠BCD+∠DCG=108°+36°=144°.∴∠AOC=360°﹣(∠BAO+∠B+∠BCG)=360°﹣(54°+108°+144°)=54°.∴∠AOG=180°﹣∠AOC=180°﹣54°=126°.故选:B.【点评】本题主要考查任意多边形的外角和、正多边形的性质、角平分线的定义以及四边形的内角和,熟练掌握正多边形的性质、角平分线的定义以及四边形的内角和是解决本题的关键.16.将每一个内角都是108o的五边形按如图所示方式放置,若直线m∥n,则∠1和∠2的数量关系是()A.∠1+∠2=90°B.∠1=∠2+72oC.∠1=∠2+36o D.2∠1+∠2=180°【分析】如图,延长DC交直线n于2点H.由m∥n,得∠2=∠CHG.由四边形内角和等于360°,得∠4+∠5+∠A+∠B=360°,故∠1+∠A+∠B+∠5=360°,那么∠5=144°﹣∠1.由∠3+∠GCH+∠CGH=180°,得∠CGH=108°﹣∠2,故108°﹣∠2=144°﹣∠1.进而推断出∠1=36°﹣∠2.【解答】解:如图,延长DC交直线n于2点H.由题意得:∠A=∠B=∠DCB=108°.∴∠GCH=180°﹣∠DCB=180°﹣108°=72°.∵∠1和∠4是对顶角,∴∠1=∠4.∵∠4+∠5+∠A+∠B=360°,∴∠4+∠5=360°﹣(∠A+∠B)=360°﹣(108°+108°)=144°.∴∠1+∠5=144°.∴∠5=144°﹣∠1.∵∠5与∠CGH是对顶角,∴∠5=∠CGH.∵m∥n,∴∠2=∠CHG.又∵∠GCH+∠3+∠CGH=180°,∴72°+∠2+∠5=180°.∴∠5=108°﹣∠2.∴108°﹣∠2=144°﹣∠1.∴∠1=∠2+36°.故选:C.【点评】本题主要考查正多边形的性质、平行线的性质、对顶角的性质以及三角形内角和定理,熟练掌握正多边形的性质、平行线的性质、对顶角的性质以及三角形内角和定理是解决本题的关键.17.如图,△ABC≌△DEC,点A和点D是对应顶点,点B和点E是对应顶点,过点A作AF⊥CD,垂足为点F,若∠BCE=65°,则∠CAF的度数为()A.30°B.25°C.35°D.65°【分析】由全等三角形的性质可求得∠ACD=65°,由垂直可得∠CAF+∠ACD=90°,进而可求解∠CAF的度数.【解答】解:∵△ABC≌△DEC,∴∠ACB=∠DCE,∵∠BCE=65°,∴∠ACD=∠BCE=65°,∵AF⊥CD,∴∠AFC=90°,∴∠CAF+∠ACD=90°,∴∠CAF=90°﹣65°=25°,故选:B.【点评】本题主要考查全等三角形的性质,由全等三角形的性质求解∠ACD的度数是解题的关键.18.如图,在正方形网格内(每个小正方形的边长为1),有一格点三角形ABC(三个顶点分别在正方形的格点上),现需要在网格内构造一个新的格点三角形与原三角形全等,且有一条边与原三角形的一条边重合,这样的三角形可以构造出()A.3个B.4个C.5个D.6个【分析】根据全等三角形的判定依据题目要求画出图形即可.【解答】解:如图满足条件的三角形如图所示,有5个.故选:C.【点评】本题考查全等三角形的判定,解题的关键是理解题意,灵活运用所学知识解决问题.二.解答题(共9小题)19.如图所示,已知△ABD≌△CFD,AD⊥BC于D.(1)求证:CE⊥AB;(2)已知BC=7,AD=5,求AF的长.【分析】(1)由△ABD≌△CFD,得出∠BAD=∠DCF,再利用三角形内角和即可得出答案;(2)根据全等三角形的性质得出AD=DC,即可得出BD=DF,进而解决问题.【解答】(1)证明:∵△ABD≌△CFD,∴∠BAD=∠DCF,又∵∠AFE=∠CFD,∴∠AEF=∠CDF=90°,∴CE⊥AB;(2)解:∵△ABD≌△CFD,∴BD=DF,∵BC=7,AD=DC=5,∴BD=BC﹣CD=2,∴AF=AD﹣DF=5﹣2=3.【点评】此题考查了全等三角形的性质,熟练应用全等三角形的性质是解决问题的关键.20.如图,已知AB=DC,AB∥CD,E、F是AC上两点,且AF=CE.求证:△ABE≌△CDF.【分析】根据SAS证明即可.【解答】证明:∵AB∥CD,∴∠A=∠DCF,∵AF=CE,∴AF﹣EF=CE﹣EF,即AE=CF,在△ABE和△CDF中,,∴△ABE≌△CDF(SAS).【点评】本题考查全等三角形的判定,平行线的性质等知识,解题的关键是根据平行线的性质得到∠A=∠DCF.21.如图,点A、F、C、D在同一条直线上,AB∥DE,AB=DE,AF=DC.求证:△ABC ≌△DEF.【分析】根据平行线的性质得出∠A=∠D,求出AC=DF,再根据全等三角形的判定定理推出即可.【解答】证明:∵AB∥DE,∴∠A=∠D,∵AF=DC,∴AF+CF=DC+CF,即AC=DF,在△ABC和△DEF中,∴△ABC≌△DEF(SAS).【点评】本题考查了平行线的性质和全等三角形的判定定理,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS,两直角三角形全等还有HL.22.如图①,在Rt△ABC中,∠C=90°,BC=9cm,AC=12cm,AB=15cm,现有一动点P,从点A出发,沿着三角形的边AC→CB→BA运动,回到点A停止,速度为3cm/s,设运动时间为ts.(1)如图(1),当t=或时,△APC的面积等于△ABC面积的一半;(2)如图(2),在△DEF中,∠E=90°,DE=4cm,DF=5cm,∠D=∠A.在△ABC 的边上,若另外有一个动点Q,与点P同时从点A出发,沿着边AB→BC→CA运动,回到点A停止.在两点运动过程中的某一时刻,恰好△APQ≌△DEF,求点Q的运动速度.【分析】(1)分两种情况进行解答,①当点P在BC上时,②当点P在BA上时,分别画出图形,利用三角形的面积之间的关系,求出点P移动的距离,从而求出时间即可;(2)由△APQ≌△DEF,可得对应顶点为A与D,P与E,Q与F;于是分两种情况进行解答,①当点P在AC上,AP=4,AQ=5,②当点P在AB上,AP=4,AQ=5,分别求出P移动的距离和时间,进而求出Q的移动速度.【解答】解:(1)①当点P在BC上时,如图①﹣1,若△APC的面积等于△ABC面积的一半;则CP=BC=cm,此时,点P移动的距离为AC+CP=12+=,移动的时间为:÷3=秒,②当点P在BA上时,如图①﹣2若△APC的面积等于△ABC面积的一半;则PD=BC,即点P为BA中点,此时,点P移动的距离为AC+CB+BP=12+9+=cm,移动的时间为:÷3=秒,故答案为:或;(2)△APQ≌△DEF,即,对应顶点为A与D,P与E,Q与F;①当点P在AC上,如图②﹣1所示:此时,AP=4,AQ=5,∴点Q移动的速度为5÷(4÷3)=cm/s,②当点P在AB上,如图②﹣2所示:此时,AP=4,AQ=5,即,点P移动的距离为9+12+15﹣4=32cm,点Q移动的距离为9+12+15﹣5=31cm,∴点Q移动的速度为31÷(32÷3)=cm/s,综上所述,两点运动过程中的某一时刻,恰好△APQ≌△DEF,点Q的运动速为cm/s或cm/s.【点评】考查直角三角形的性质,全等三角形的判定,画出相应图形,求出各点移动的距离是正确解答的关键.23.直线AB、CD为平面内两条直线,点M、点N分别在直线AB、CD上,点P(P不在直线AB、CD上)为平面内一动点.(1)如图1,若AB、CD相交于点O,∠MON=40°;①当点P在△OMN内部时,求证:∠MPN﹣∠OMP﹣∠ONP=40°;②小芳发现,当点P在∠MON内部运动时,∠MPN、∠OMP、∠ONP还存在其它数量关系,这种数量关系是∠MPN+∠OMP+∠ONP=320°;③探究,当点P在∠MON外部时,∠MPN、∠OMP、∠ONP之间的数量关系共有5种;(2)如图2,若AB∥CD,请直接写出∠MPN与∠AMP、∠CNP之间存在的所有数量关系是∠AMP=∠MPN+∠CNP或∠CNP=∠MPN+∠AMP或∠AMP+∠CNP+MPN=360°.【分析】(1)①延长OP至点E,利用三角形的外角性质和整体思想求证;②分类讨论,点P在△OMN内部和外部进行讨论;③直线MN和直线AB、直线CD将平面分为7个部分,讨论点P在∠MON外部的5个部分进行讨论;(3)直线MN和直线AB、直线CD将平面分为6个部分,讨论点P在这6个部分时三个角之间的关系.【解答】(1)①证明:如图1,延长OP至点E,∵∠MPE和∠NPE分别是△MOP和△NOP的外角,∴∠MPE=∠MOP+∠OMP,∠NPE=∠NOP+∠ONP,∴∠MPE+∠NPE=∠MOP+∠NOP+∠OMP+∠ONP,即∠MPN=∠MON+∠OMP+∠ONP,∴∠MPN﹣∠OMP﹣∠ONP=∠MON=40°.②解:如图2,当点P在∠MON内部,且在直线MN右侧时,延长OP至点E,则∠MPO+∠MOP+∠OMP=180°,∠NPO+∠NOP+∠ONP=180°,∴∠MPO+∠NPO+∠MOP+∠NOP+∠OMP+∠ONP=360°,即∠MPN+∠MON+∠OMP+∠ONP=360°,∴∠MPN+∠OMP+∠ONP=360°﹣∠MON=360°﹣40°=320°.故答案为:∠MPN+∠OMP+∠ONP=320°.③解:如图3,当点P落在直线MN左侧,且在∠COB内部时,记PN与AB的交点为点E,∵∠OEP是△MEP和△OEN的外角,∴∠OEP=∠MPN+∠OMP,∠OEP=∠MON+∠ONP,∴∠MPN+∠OMP=∠MON+∠ONP,即∠MPN+∠OMP﹣∠ONP=∠MON,∴∠MPN+∠OMP﹣∠ONP=40°;如图4,当点P落在直线MN的右侧,且在∠COB内部时,记PN与AB的交点为点E,∵∠OMP是△MEP的外角,∠OEP是△OEN的外角,∴∠OMP=∠MPN+∠OEP,∠OEP=∠MON+∠ONP,∴∠OMP=∠MPN+∠MON+∠ONP,即∠OMP﹣∠ONP﹣∠MPN=∠MON,∴∠OMP﹣∠ONP﹣∠MPN=40°;如图5,当点P落在直线MN左侧,且在∠AOD内部时,记PM与CD的交点为点F,∵∠OFP是△MOF和△FNP的外角,∴∠OFP=∠MON+∠OMP,∠OFP=∠MPN+∠ONP,∴∠MON+∠OMP=∠MPN+∠ONP,即∠MPN+∠ONP﹣∠OMP=∠MON,∴∠MPN+∠ONP﹣∠OMP=40°;如图6,当点P落在直线MN右侧,且在∠AOD内部时,记PM与CD的交点为点F,∵∠OFP是△MOF的外角,∠ONP是△FNP的外角,∴∠OFP=∠MON+∠OMP,∠ONP=∠MPN+∠OFP,∴∠ONP=∠MPN+∠MON+∠OMP,∴∠MPN+∠OMP+∠ONP=∠MON=40°;如图7,当点P落在∠AOC内部时,延长PO至点G,∵∠MOG和∠NOG分别是△MOP和△NOP的外角,∴∠MOG=∠MPO+∠PMO,∠NOG=∠NPO+∠PNO,∴∠MOG+∠NOG=∠MPO+∠NPO+∠PMO+∠PNO,即∠MON=∠MPN+∠PMO+∠PNO,∴∠MPN+∠PMO+∠PNO=40°,综上所述:当点P在∠MON外部时,∠MPN、∠OMP、∠ONP之间的数量关系共有5种.(2)解:如图8,当点P在直线MN右侧,且在直线AB上方时,记PN与直线AB的交点为H,∵AB∥CD,∴∠AHP=∠CNP,∵∠AMP是△MPH的外角,∴∠AMP=∠MPN+∠AHP,∴∠AMP=∠MPN+∠CNP;如图9,当点P在直线MN的左侧,且在直线AB上方时,记PN与直线AB的交点为H,∵AB∥CD,∴∠AHP=∠CNP,∵∠AHP是△MPH的外角,∴∠AHP=∠MPN+∠AMP,∴∠CNP=∠MPN+∠AMP;如图10,当点P在直线MN右侧,且在直线AB和直线CD之间时,∵AB∥CD,∴∠BMP+∠PMN+∠PNM+∠PND=180°,∵∠BMP=180°﹣∠AMP,∠PND=180°﹣∠PNC,∠PMN+∠PNM=180°﹣∠MPN,∴∠AMP+∠CNP+MPN=360°,如图11,当点P在直线MN左侧,且在直线AB和直线CD之间时,∵AB∥CD,∴∠AMP+∠PMN+∠CNP+∠PNM=180°,∵∠PMN+∠PNM=180°﹣∠MPN,∴∠AMP+∠CNP=∠MPN,如图12,当点P在直线MN右侧,且在直线CD下方时,记PN与CD的交点为H,∵AB∥CD,∴∠AMP=∠CHP,∵∠CNP是△NHP的外角,∴∠CNP=∠CHP+∠MPN,∴∠CNP=∠AMP+∠MPN;如图13,当点P在直线MN的左侧,且在直线CD下方时,记PN与CD的交点为H,∵AB∥CD,∴∠AMP=∠CHP,∵∠CHP是△PHN的外角,∴∠CHP=∠MPN+∠CNP,∴∠AMP=∠MPN+∠CNP,综上所述,当AB∥CD时,∠MPN与∠AMP、∠CNP之间存在的所有数量关系是:∠AMP=∠MPN+∠CNP或∠CNP=∠MPN+∠AMP或∠AMP+∠CNP+MPN=360°.故答案为:∠AMP=∠MPN+∠CNP或∠CNP=∠MPN+∠AMP或∠AMP+∠CNP+MPN =360°.【点评】本题考查了平行线的性质、三角形的外角性质和三角形的内角和定理,解题的关键是根据点P的位置进行分类讨论.分类情况较多,同学们可以将对应的图形一一画出,然后求出给定的三个角的数量关系.24.直线m与直线n相交于C,点A是直线m上一点,点B是直线n上一点,∠ABC的平分线BP与∠DAB的平分线AE的反向延长线相交于点P.(1)如图1,若∠ACB=90°,则∠P=45°;若∠ACB=α,则∠P=(结果用含α的代数式表示);(2)如图2,点F是直线n上一点,若点B在点C左侧,点F在点C右侧时,连接AF,∠CAF与∠AFC的平分线相交于点Q.①随着点B、F的运动,∠APB+∠AQF的值是否变化?若发生变化,请说明理由;若不发生变化,试求出其值;②延长AQ交直线n于点G,作QH∥CF交AF于点H,则=.【分析】(1)根据BP、AE分别是∠ABC、∠BAD的平分线,得∠ABP=∠ABC,∠EAB=∠BAD,再根据外角的性质得∠BAD=∠ABC+∠ACB,∠EAB=∠ABP+∠P,化简即可;(2)①由AQ、FQ分别是∠CAF、∠AFB的平分线,导出∠AQF=90°+∠ACF,由(1)知:∠P=∠ACB,则∠APB+∠AQF=90°+∠ACF+∠ACB=180°,从而解决问题;②根据外角的性质得:∠AGC﹣∠HQF=∠GQF,由①知:∠AQF=90°+∠ACF,则∠GQF=90°﹣∠ACF,而∠ACB=180°﹣∠ACF,即可得出答案.【解答】解:(1)∵BP、AE分别是∠ABC、∠BAD的平分线,∴∠ABP=∠ABC,∠EAB=∠BAD,∵∠BAD是△ABC的外角,∴∠BAD=∠ABC+∠ACB,∴∠BAD=∠ABC+∠ACB,∵∠EAB是△ABP的外角,∴∠EAB=∠ABP+∠P,∴∠P=∠ACB,当∠ACB=90°时,∠P=45°;当∠ACB=α时,∠P=;故答案为:45°,;(2)①∵AQ、FQ分别是∠CAF、∠AFB的平分线,∴∠QAF=∠CAF,∠AFQ=∠AFC,∴∠QAF+∠AFQ=(∠CAF+∠AFC),∴∠AQF=180°﹣(∠QAF+∠AFQ)=180°﹣(∠CAF+∠AFC)=180°﹣(180°﹣∠ACF)=90°+∠ACF,由(1)知:∠P=∠ACB,∴∠APB+∠AQF=90°+∠ACF+∠ACB=180°,∴∠APB+∠AQF的值不变,为180°;②∵QH∥CF,∴∠HQF=∠QFG,∴∠AGC﹣∠HQF=∠GQF,由①知:∠AQF=90°+∠ACF,∴∠GQF=90°﹣∠ACF,∵∠ACB=180°﹣∠ACF,∴=,故答案为:.【点评】本题主要考查了三角形角平分线的定义、三角形内角和定理等知识,能熟练进行角之间的转化是解题的关键.25.如图,在△ABC中,∠1=100°,∠C=80°,∠2=∠3,BE平分∠ABC交AD于E,求∠4的度数.【分析】首先根据三角形的外角的性质求得∠3,再根据已知条件求得∠2,进而根据三角形的内角和定理求得∠ABD,再根据角平分线的定义求得∠ABE,最后根据三角形的外角的性质求得∠4.【解答】解:∵∠1=∠3+∠C,∠1=100°,∠C=80°,∴∠3=20°,∵∠2=∠3,∴∠2=10°,∴∠ABC=180°﹣100°﹣10°=70°,∵BE平分∠ABC,∴∠ABE=35°,∵∠4=∠2+∠ABE,∴∠4=45°.【点评】本题主要考查三角形的内角和,三角形的外角,解答的关键结合图形找出角与角之间的关系.26.已知点B、D分别为射线AM、AN上异于端点A的任一点,点C为∠MAN内部一点(如图1).∠A=α,∠C=β,(0°<α<180°,0°<β<180°).(1)∠ABC+∠ADC=360°﹣α﹣β(用含α、β的代数式直接填空);(2)如图2,若α=β=90°,BE平分∠ABC,DG平分∠CDN,若射线BE与DG所在直线交于点F,则∠BDG为①角(只填序号);①锐角;②直角;③钝角.(3)①若∠MBC、∠CDN的角平分线相交于点P,α+β=110°,∠BPD=30°,试求α、β的值;②①中的∠BPD是否一定存在?若∠BPD不存在,请直接写出α、β满足的条件.【分析】(1)由四边形内角和等于360°,可得∠ABC+∠ADC=360°﹣∠A﹣∠C=360°﹣α﹣β.(2)由(1)知:∠ABC+∠ADC=360°﹣α﹣β,得∠ABC+∠ADC=180°.由DG平分∠CDN,得∠CDG=90°﹣.欲证∠BDG与90°的大小关系,需证∠CDG+∠BDC与90°的大小关系,即证∠BDC与的关系.由BE平分∠ABC,得∠ABF =∠CBF,故∠ABD<CBD.由∠A+∠ABD+∠ADB=∠C+∠CBD+∠BDC,得∠ABD>∠BDC,故∠BDC<.进而推断出∠BDG为锐角.(3)如图3,连接PC并延长至Q.由BP平分∠MBC,得∠PBC=.同理可证:∠CDP=.那么,∠BCD=∠PBC+∠CDP+∠BPD=β=210°﹣=210°﹣.又因为α+β=110°,所以α=25°,β=85°.(4)如图4,BE平分∠MBC,BF平分∠CDN,过点C作GH∥BE,得∠BCG=∠EBC =90°﹣,故∠GCD=∠BCD﹣∠BCG=β﹣(90°﹣)=β+﹣90°.若∠CDF=∠GCD,则=β+﹣90°,即α=β,则GH∥DF,故BE∥DF.此时,P不存在.【解答】解:(1)∵四边形内角和等于360°,∴∠A+∠ABC+∠C+∠ADC=360°.∴∠ABC+∠ADC=360°﹣∠A﹣∠C=360°﹣α﹣β.故答案为:360°﹣α﹣β.(2)由(1)知:∠ABC+∠ADC=360°﹣α﹣β.∵α=β=90°,∴∠ABC+∠ADC=360°﹣90°﹣90°=180°.∵DG平分∠CDN,∴∠CDG==.∵BE平分∠ABC,∴∠ABE=∠CBE.∴∠ABD<∠CBD.又∵∠A=∠C=90°,∴∠ABD+∠ADB=∠CBD+∠CDB.∴∠ADB>∠BDC.∴2∠BDC<∠BDC+∠ADB=∠ADC.∴∠BDC<.∴0<∠BDG=∠CDG+∠BDC=90°﹣+∠BDC<90°﹣+=90°.∴∠BDG为锐角.故答案为:①.(3)①:如图3,连接PC并延长至Q.∵BP平分∠MBC,∴∠PBC=.同理可证:∠CDP=.∵∠QCB=∠PBC+∠BPC,∠QCD=∠CDP+∠CPD,∴∠QCB+∠QCD=∠CBP+∠BPC+∠CDP+∠CPD.∴∠BCD=∠PBC+∠CDP+∠BPD.∴β=90°﹣+90°﹣+30°.∴β=210°﹣=210°﹣.∴β﹣α=60°.又∵α+β=110°,∴α=25°,β=85°.②:∠BPD不一定存在,当α=β时,∠BPD不存在.如图4,BE平分∠MBC,BF平分∠CDN,过点C作GH∥BE.由①,可证:∠EBC=90°﹣,∠CDF=90°﹣.由(1)得:∠ABC+∠ADC=360°﹣α﹣β.∴∠ADC=360°﹣α﹣β﹣∠ABC.∴∠CDF=.∵BE∥GH,∴∠BCG=∠EBC=90°﹣.∴∠GCD=∠BCD﹣∠BCG=β﹣(90°﹣)=β+﹣90°.若∠CDF=∠GCD,则=β+﹣90°,即α=β.∴GH∥DF.又∵BE∥GH,∴BE∥DF.此时,P不存在,即∠BPD不存在.∴当α=β时,∠BPD不存在.【点评】本题主要考查四边形内角和等于360°、角平分线的定义、三角形外角的性质以及平行线的性质,熟练掌握四边形内角和等于360°、角平分线的额定义以及三角形外角的性质是解决本题的关键.27.同学们以“一块直角三角板和一把直尺”开展数学活动,提出了很多数学问题,请你解答:(1)如图1,∠α和∠β具有怎样的数量关系?请说明理由;(2)如图2,∠DFC的平分线与∠EGC的平分线相交于点Q,求∠FQG的大小;(3)如图3,点P是线段AD上的动点(不与A,D重合),连接PF、PG,的值是否变化?如果不变,请求出比值;如果变化,请说明理由.【分析】(1)如图1,延长AM交EG于M.由题意知:DF∥EG,∠ACB=90°,故∠α=∠GMC,∠ACB=∠GMC+∠CGM=90°.进而推断出∠β+∠α=90°.(2)如图2,延长AC交EG于N.由题意知:DF∥EN,∠ACB=90°,得∠1=∠GNC,∠CGN+∠GNC=90°,故∠1+∠CGN=90°.因为∠DFC的平分线与∠EGC的平分线相交于点Q,所以∠QFC=,∠GQC=90°﹣.那么,∠FQG=360°﹣∠QFC﹣∠QGC﹣∠ACB=135°.(3)由题意知:DF∥EG,得∠FOG=∠EGO,故==1.【解答】解:(1)如图1,延长AM交EG于M.∠β+∠α=90°,理由如下:由题意知:DF∥EG,∠ACB=90°.∴∠α=∠GMC,∠ACB=∠GMC+∠CGM=90°.∵∠EGB和∠CGM是对顶角,∴∠β=∠CGM.∴∠β+∠α=90°.(2)如图2,延长AC交EG于N.由题意知:DF∥EN,∠ACB=90°.。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第 11 章《全等三角形题(4 分,共 40 分)1. 下列可使两个直角三角形全等的条件是 A. 条相等 B .两条直角C.一个锐相等 D.两个锐相等 2. 如图,点 P 是△ ABC 内的一点,若 PB =PC ,则A .点 P 在∠ ABC 的平分线上 B.点 P 在∠ ACB 的平分线上C.点 P 在边 AB 的垂直平分线上D.点 P 在边 BC 的垂直平分线上 3. 如图, AD 是 △ ABC 的中线, E ,F 分别是 AD 和 AD 延长线上的 A点,且 DE DF ,连结 BF ,CE. 下列说法:① CE =BF ;②△ ABD 和△ ACD 面积相等; ③BF ∥CE ;④△ BDF ≌ △ CDE . 其中正确的有 EA. 1 个B. 2 个C. 3 个D. 4 个4.平分∠ ADC ,EC 平分∠ BCD ,则下列结论中正确的有FA. ∠ADE =∠CDEB.DE ⊥ECC.AD·B C=BE·D ED. C D=AD+BCA C5. 使两个直角三角形全等的条件是PA.斜边相等 B . 两直角相等 BO D C . 一锐相等 D . 两锐相等6. 如图, OP 平分∠ AOB ,PC ⊥OA 于 C ,PD ⊥OB 于 D ,则 PC 与 PD 的大小关系 A. PC >PD B.PC =PD C. P C <PD D.不能确定7. 用两个全等的直角三角形,拼下列图形:①平行四边形;②矩形;③菱形;④正方形; ⑤等腰三角形;⑥等边三角形,其中不一定能拼成的图形是 A E DA. ①②③B. ②③C. ③④⑤D. ③④⑥ 8. 如图 ,平行四边形 ABCD 中,AC 、BD 相交于点 O,过点 O 作直线 O分别交于 AD 、BC 于点 E 、F,那么图中全等的三角形共有BF C- 1 -A.2 对B.4 对C.6 对D.8 对9. 给出下列条件:①两边一角对应相等②两角一边对应相等③三角形中三角对应相等④三边对应相等,其中,不能使两个三角形全等的条件是 A. ①③B. ①②C. ②③D. ②④10. 如图, P 是∠ BAC 的平分线A D 上一点, PE ⊥AB 于 E , PF ⊥ACA于 F ,下列结论中不正确的是A. PE PFB. AE AFE FC. △APE ≌ △ APFD. AP PE PFBDC二题(3 分,共 24 分)y11.如图,AB C中,点A的( 0, 1),点 C 的( 4,3),如果要使 ABD 与 ABC 全等, C那么点 D 的坐标是 _________. AB12. 填空,完成下列证明过程. xO如图, △ ABC 中,∠ B =∠ C ,D ,E ,F 分别在 AB , BC , AC 上,且 BD CE ,∠DEF =∠B求证: ED =EF . 证明:∵∠ DEC =∠ B +∠ BDE ( ),又∵∠ DEF =∠ B (已知),A∴∠ ______=∠ ______(等式性质) . F在△ EBD 与△ FCE 中,D∠______=∠ ______(已证), BC______=______(已知), E∠B =∠ C (已知), ∴ △ EBD ≌ △ FCE ( ).∴ED = EF().13. 如图,点 B 在 AE 上,∠ CAB =∠DAB ,要使△ ABC ≌ △ ABD , 可补充的一个条件是 :-____________(写一个即可).-2 -(第)(第 )(第 )14. 如图,在△ ABC 中,AB =AC ,∠A = 50°,BD 为∠ ABC 的平分线, 则∠ BDC = °.15. 如图,在△ABC 中,∠C=90°,AB 的垂直平分线交 AC 于 D ,垂足为 E ,若∠A=30°,DE =2, ∠D B C 的度数为 __________,C D为 __________.16. 如图,已知A D=BC .EC ⊥ AB.DF ⊥ AB ,C.D 为垂足,要使 Δ AFD ≌ Δ BEC ,还需添 加一个条件 .若以“ ASA ”为依据, 则添加的条件是 . AA B E F D O P A C B DC D O BC 图3(第 16题) (第 17题) (第 18题) 17. 如图 ,AB= C D ,AD 、BC 相交于点 O ,要使△ ABO ≌ △ DCO ,应添加的条件为 .(添加一个条件即可 ) 18. 如图 3,P 是∠ AOB 的平分线上一点, C.D 分别是 OB .OA 上的点,若要使 PD =PC ,只需添加一个条件即可。

请写出这一个..条件: 。

三、解答题(共 56 分 )19. B ,C ,D 三点在一条直线上,△ABC 和△ ECD 是等边三角形.求证B E= A D .- 3 -20. 如图,正三角形ABC 的边长为2,D 为AC 边上的一点,延长AB 至点E,使BE=CD,连结DE,交BC 于点P。

C(1)求证:DP =PE;D(2)若D 为AC 的中点,求BP 的长。

PEAB21. 如图7,在梯形ABCD 中,若AB// D C,AD =B C,对角线BD、AC 把梯形分成了四个小三角形.(1)列出从这四个小三角形中任选两个三角形的所有可能情况,并求出选取到的两个三角形是相似三角形的概率是多少(注意:全等看成相似的特例)?D C(2)请你任选一组相似三角形,并给出证明.①④②O③A B图7-4 -http :// w ww. c 22. 证明:在一个角的内部,到角的两边距离相等的点,在这个角的平分线上.(要求画出图形,写出已知.求证.证明).23. 如图14-73 所示,在△ABC 中,∠C=90°,∠BAC =60°,AB 的垂直平分线交AB 于D,交BC 于E,若CE=3cm,求BE 的长.24. 如图,在△ABC 中,∠CAB=90°,F 是AC 边的中点,FE∥AB 交BC 于点E,D 是BA 延长线上一点,且DF =BE.D1求证:AD=A2 AB.FB CE-5 -http :// w ww. c 25. 已知,△ABC 和△DBC 的顶点 A 和D 在BC 的同旁,AB= D C,AC=DB,AC 和DB 相交于点O.求证:OA=OD .26. 如图,AD 是ΔABC 的角平分线,过点 D 作直线DF // B A ,交ΔABC 的外角平分线AF于点 F ,DF 与AC 交于点 E ,求证:DE = EF.CE FDBA-6 -参考答案一、 1 2 3 4 5678910BDDABDB B DC AD 4. [ 解析 ]这是一道不定项选择题, 答案不唯一 .可以直接确定 A 正确, B 选项利用平行线的性质、角平分线, D可以通(在 CD 上截取 DF =AD )法利用三角形全等证得 CF =BC. 二、简答题答案 : 11. (4, 1) ( 1,3) ( 1, 1) 12. 三角形的一个外角等于与它不相邻两个内角的和, BDE ,CEF ,BDE ,CEF , BD ,CE , ASA ,全等三角形对应边相等. 13. 答案不唯一如:∠ CBA=∠DBA ;∠ C=∠D ;AC=AD ;∠ CBE=∠DBE 14. 82.5 15. 30° 2 16. CE= D F17. ∠A=∠ D 或∠ B=∠ C 或 AB ∥CD 或 AD 、 BC 互相平分等 . 18. OD =OC 等(答案不唯一) 三、解答题答案 :19. ∵△ ABC 和△ ECD 是等边三角形,∴∠ ACB=∠ ECD =60°, BC=AC ,EC=CD. ∴∠ ACB+∠ ACE=∠ECD +∠ ACE , 即∠ BCE=∠ ACD . 在△ BCE 和△ ACD 中,∴△ BCE ≌ △ ACD (SAS ).∴BE=AD (全等三角形的对应边相等).- 7 -20. (1)作DF ∥AB (1 分)证△DPF≌△EPB (3 分)∴DP =PE (1 分)(2)若D为A C 的中点,则F也是BC 的中点,由(1)知FP=PB,BP=0.5(5 分)21. (1)任选两个三角形的所有可能情况如下六种情况:①②,①③,①④,②③,②④,③④,,,,, 2分其中有两组(①③,②④)是相似的.∴选取到的二个三角形是相似三角形的概率是P= 13,,,, 4 分(2)证明:选择①、③证明.在△AOB 与△COD 中, ∵AB∥CD,∴∠CDB=∠DBA , ∠DCA=∠CAB,∴△AOB∽△COD,,,,,,,,,,,,,,,,, 8 分选择②、④证明.∵四边形ABCD 是等腰梯形, ∴∠DAB=∠CAB ,∴在△DAB 与△CBA 中有AD =BC, ∠DAB=∠CAB ,AB=AB,∴△DAB ≌△CBA,,,,,,,,,,,,,,,,, 6 分∴∠ADO=∠BCO .又∠DOA=∠COB ,∴△DOA∽△COB,,,,,,,,, 8 分A 22. 已知:如图,PD⊥OA,PE⊥OB,垂足分别为D,E,且PD = P E.D求证:点P在∠A O B的P已知,求证正确2分)OBE 证明Rt△ODP≌Rt△OEP(HL),,,,, 7 分得到∠DOP =∠EOP,∴点P 在∠AOB 的平分线上.,,,,, 8 分23. 连接A E,∵∠C=90°,∠BAC=60°,∴∠B=30°.又∵DE 是AB 的垂直平分线,-8 -http :// w ww. c ∴EA=EB.∴∠EAB=∠B=30°.∴∠CAE =30°.∴AE 是∠CAB 的平分线.又∵∠C=90°,ED⊥AB,∴DE =E C=3cm.在Rt△DBE 中,∠B=30°,∠EDB =90°,∴DE= 1BE,∴BE=2×3=6( cm).224. ∵∠BAC=90°,∴∠FAD =90°,∵EF∥AB,F 是AC 边的中点,∴ E 是BC 边的中点,即E C= B E ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 1 分∵EF 是△ABC 的中位线∴FE= 12 AB. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯分2∵FD = B E,∴DF =EC,⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 3 分∠CFE =∠DAF = 90°,D在RtΔFAD 和RtΔCFE 中,ADF=EC ,AF=FC.F ∴RtΔFAD≌RtΔCFE . ⋯⋯⋯⋯4分BC ∴AD =FE,E∴AD= 12 AB. ⋯⋯⋯⋯⋯⋯⋯⋯⋯分5AC DB25. 证明:在△ABC 和△DCB 中AB DCBC CB∴△ABC≌△DCB(SSS)-9 -http :// w ww. c ∴∠A=∠DA D在△AOC 和△DOB 中AOC DOBAC DB∴△AOC≌△DOB(AAS)∴OA=OD .26. (略)-10 -。

相关文档
最新文档