2020学年高考数学(理)二轮复习解题方法与技巧试题:专题三 三角函数与解三角形

合集下载

高考数学大二轮复习 微专题(三) 三角函数问题的解题技巧——“变角”“变式”

高考数学大二轮复习   微专题(三) 三角函数问题的解题技巧——“变角”“变式”
而 ∈
π
,
π
2
因此 sin
,所以
π
+4
所以 2sin
12
1
于是 t +t2
2
∈ -
π
+4
=
π
θ+4

π
+
4
3π 5π
,
4 4
2 2
,
2 2
,
,
,
∈(-1,1),即 t∈(-1,1).
1
(t+1)2-1∈(-1,1).
2
故 sin θ+cos θ+sin θcos θ 的取值范围是(-1,1).
考查角度
角度一 变角

12
[例 1—1](2021·山东淄博月考)已知 θ∈(0,π),cos 6 - =-13,则 tan +
π
=
6
.
5
答案
12
解析 由于
又因为 cos
π
θ∈(0,π),所以-6

-
6
<
12
π
=- ,所以
13
2
因此 sin

-
6
=
所以 tan

-
6
5
=-12,
4
4
立联系.
,sin 2α,cos 2α等式子也都可以相互转化建
[例2-4](2021·山东潍坊月考)已知θ是钝角,则sin θ+cos θ+sin θcos θ的取值
范围是
.
答案 (-1,1)
2 -1
θ= ,于是
2

2020年高考数学(理)二轮专项复习专题03 三角函数与解三角形(含答案)

2020年高考数学(理)二轮专项复习专题03 三角函数与解三角形(含答案)

2020年高考数学(理)二轮专项复习专题03 三角函数与解三角形三角函数是一种重要的基本初等函数,它是描述周期现象的一个重要函数模型,可以加深对函数的概念和性质的理解和运用.其主要内容包括:三角函数的概念、三角变换、三角函数、解三角形等四部分.在掌握同角三角函数的基本关系式、诱导公式、两角和与两角差、二倍角的正弦、余弦、正切公式的基础上,能进行简单三角函数式的化简、求值和恒等式证明;理解并能正确解决正弦函数、余弦函数、正切函数的图象和性质问题;运用三角公式和正弦定理、余弦定理解斜三角形.重点考查相关的数学思想方法,如方程的思想、数形结合、换元法等.§3-1 三角函数的概念【知识要点】1.角扩充到任意角:通过旋转和弧度制使得三角函数成为以实数为自变量的函数.2.弧度rad 以及度与弧度的互化: 3.57)π180(rad 1,π180;≈===r l α. 3.三角函数的定义:在平面直角坐标系中,任意角α 的顶点在原点,始边在x 轴正半轴上,终边上任意一点P (x ,y ),|OP |=r (r ≠0),则;cos ;sin r x r y ==αα⋅=xy αtan5.三角函数线:正弦线MP ,余弦线OM ,正切线AT6.同角三角函数基本关系式:⋅==+αααααcos sin tan ,1cos sin 227.诱导公式:任意角α 的三角函数与角ααα±±-2π,π,等的三角函数之间的关系,可以统一为“k ·2π±α ”形式,记忆规律为“将α 看作锐角,符号看象限,(函数名)奇变偶不变”.【复习要求】1.会用弧度表示角的大小,能进行弧度制与角度制的互化;会表示终边相同的角;会象限角的表示方法. 2.根据三角函数定义,熟练掌握三角函数在各个象限中的符号,牢记特殊角的三角函数值, 3.会根据三角函数定义,求任意角的三个三角函数值. 4.理解并熟练掌握同角三角函数关系式和诱导公式. 【例题分析】例1 (1)已知角α 的终边经过点A (-1,-2),求sin α ,cos α ,tan α 的值;(2)设角α 的终边上一点),3(y P -,且1312sin =α,求y 的值和tan α . 解:(1)5||==OA r ,所以.2tan ,55cos ,55252sin ==-==-=-==x y r x r y ααα(2),13123sin ,3||22=+=+==y y y OP r α 得⎪⎩⎪⎨⎧=+>13123022y y y ,解得.3236tan ,6-=-===x y y α 【评析】利用三角函数的定义求某一角三角函数值应熟练掌握,同时应关注其中变量的符号.例2 (1)判断下列各式的符号:①sin330°cos(-260°)tan225° ②sin(-3)cos4 (2)已知cos θ <0且tan θ <0,那么角θ 是( ) A .第一象限角 B .第二象限角 C .第三象限角 D .第四象限角 (3)已知α 是第二象限角,求角αα2,2的终边所处的位置.解:如图3-1-1,图3-1-2 (1)①330°是第四象限角,sin330°<0;-260°是第二象限角,cos(-260°)<0;225°是第三象限角,tan225°>0;所以sin330°cos(-260°)tan225°>0.②-3是第三象限角,sin(-3)<0;5是第四象限角,cos5>0,所以sin(-3)cos5<0或:-3≈-3×57.3°=-171.9°,为第三象限角;5≈5×57.3°=286.5°,是第四象限角【评析】角的终边所处的象限可以通过在坐标系中逆时针、顺时针两个方向旋转进行判断,图3-1-1,图3-1-2两个坐标系应予以重视.(2)cos θ <0,所以角θ 终边在第二或第三象限或在x 轴负半轴上tan θ <0,所以角θ 终边在第二或第四象限中,所以角θ 终边在第二象限中,选B.【评析】角的终边在各个象限中时角的函数值的符号应熟练掌握,(3)分析:容易误认为2α是第一象限角,其错误原因为认为第二象限角的范围是),π,2π(α 是第二象限角,所以2k π+2π<α <2k π+π,(k ∈Z ),所以,2ππ2π4ππ+<<+k k )(Z ∈k 如下图3-1-3,可得2α是第一象限或第三象限角,又4k π+π<2α <4k π+2π,2α 是第三象限或第四象限角或终边落在y 轴负半轴的角.【评析】处理角的象限问题常用方法(1)利用旋转成角,结合图3-1-1,图3-1-2,从角度制和弧度制两个角度处理; (2)遇到弧度制问题也可以由)π180(rad 1=°≈57.3°化为角度处理; (3)在考虑角的终边位置时,应注意考虑终边在坐标轴上的情况. (4)对于象限角和轴上角的表示方法应很熟练. 如第一象限角:)(,2ππ2π2Z ∈+<<k k k α,注意防止2π0<<α的错误写法.例3 (1)已知tan α =3,且α 为第三象限角,求sin α ,cos α 的值; (2)已知31cos -=α,求sin α +tan α 的值;(3)已知tan α =-2,求值:①ααααcos sin cos sin 2-+;②sin 2α +sin α cos α .解:(1)因为α 为第三象限角,所以sin α <0,cos α <0⎪⎩⎪⎨⎧=+=1cos sin 3cos sin 22αααα,得到.1010cos 10103sin ⎪⎪⎩⎪⎪⎨⎧-=-=αα (2)因为031cos <-=α,且不等于-1,所以α 为第二或第三象限角, 当α 为第二象限角时,sin α >0,,22cos sin tan ,322cos 1sin 2-===-=ααααα 所以⋅-=+324tan sin αα 当α 为第三象限角时,sin α <0,,22cos sin tan ,322cos 1sin 2==-=--=ααααα 所以⋅=+324tan sin αα 综上所述:当α 为第二象限角时,324tan sin -=+αα,当α 为第三象限角时,⋅=+324tan sin αα 【评析】已知一个角的某一个三角函数值,求其余的三角函数值的步骤:(1)先定所给角的范围:根据所给角的函数值的符号进行判断(2)利用同角三角函数的基本关系式,求其余的三角函数值(注意所求函数值的符号) (3)当角的范围不确定时,应对角的范围进行分类讨论(3)(法一):因为tan α =-2,所以.cos 2sin ,2cos sin αααα-=-= ①原式1cos 3cos 3cos cos 2cos cos 4=--=--+-=αααααα,②原式=(-2cos α )2+(-2cos α )cos α =2cos 2α ,因为⎩⎨⎧=+-=1cos sin cos 2sin 22αααα,得到51cos 2=α,所以⋅=+52cos sin sin 2ααα (法二):①原式,112141tan 1tan 21cos sin 1cos sin 2=--+-=-+=-+=αααααα②原式⋅=+-=++=++=5214241tan tan tan cos sin cos sin sin 22222αααααααα 【评析】已知一个角的正切值,求含正弦、余弦的齐次式的值:(1)可以利用αααcos sin tan =将切化弦,使得问题得以解决; (2)1的灵活运用,也可以利用sin 2α +cos 2α =1,αααcos sin tan =,将弦化为切.例4 求值:(1)tan2010°=______; (2))6π19sin(-=______; (3)⋅+---+-)2πcos()π3sin()2π3sin()πcos()π2sin(ααααα解:(1)tan2010°=tan(1800°+210°)=tan210°=tan(180°+30°)=3330tan =(2)216πsin )6ππsin()6ππ3sin(619πsin )6π19sin(==+-=+-=-=-或:216πsin )6ππsin()6ππ3sin()6π19sin(==--=--=-【评析】“将α 看做锐角,符号看象限,(函数名)奇变偶不变”,6π2π26ππ-⨯-=--,可以看出是2π的-2倍(偶数倍),借助图3-1-2看出6ππ--为第二象限角,正弦值为正. (3)原式)2πcos()πsin()]2π(πsin[)cos (sin ααααα---+--=⋅⋅⋅⋅-=-=--=αααααααααsin 1sin cos cos sin sin )2πsin(cos ·sin【分析】αα-⨯=-2π32π3,将α 看做锐角,借助图3-1-2看出α-2π3为第三象限角,正弦值为负,2π的3倍(奇数倍),改变函数名,变为余弦,所以可得ααcos )2π3sin(-=-,同理可得ααsin )2πcos(=+-,所以原式αααααααcsc sin 1sin sin cos )cos (sin -=-=---=⋅⋅⋅.【评析】诱导公式重在理解它的本质规律,对于“将α 看做锐角,符号看象限,(函数名)奇变偶不变”要灵活运用,否则容易陷入公式的包围,给诱导公式的应用带来麻烦.例5 已知角α 的终边经过点)5πsin ,5πcos (-,则α 的值为( ) A .5π- B .5π4 C )(,π5πZ ∈+-k k D .)(,π25π4Z ∈+k k解:因为05πsin ,05πcos >>,所以点)5πsin ,5πcos (-在第二象限中,由三角函数定义得,5πtan 5πcos 5πsin tan -=-==x y α,因为角α 的终边在第二象限, 所以)π25π4tan(5π4tan )5ππtan(tan k +==-=α,所以,)(,π25π4Z ∈+=k k α,选D .例6 化简下列各式:(1)若θ 为第四象限角,化简θθ2sin1tan - (2)化简θθ2tan 1cos +(3)化简)4πcos(4sin 21--解:(1)原式=|cos |cos sin |cos |tan cos tan 2θθθθθθθ===, 因为θ 为第四象限角,所以cos θ >0,原式=θθθθsin cos cos sin ==⋅,(2)原式=⋅==+=+=|cos |cos cos 1cos cos sin cos cos cos sin 1cos 222222θθθθθθθθθθθ当θ 为第二、三象限角或终边在x 轴负半轴上时,cos θ <0,所以原式1cos cos -=-=θθ,当θ 为第一、四象限角或终边在x 轴正半轴上时,cos θ >0,所以原式1cos cos ==θθ.(3)原式|4cos 4sin |)4cos 4(sin 4cos 4sin 212+=+=+=.4弧度属于第三象限角,所以sin4<0,cos4<0, 所以原式=-(sin4+cos4)=-sin4-cos4.【评析】利用同角三角函数关系式化简的基本原则和方法: (1)函数名称有弦有切:切化弦;(2)分式化简:分式化整式;(3)根式化简:无理化有理(被开方式凑平方),运用||2x x =,注意对符号的分析讨论;(4)注意公式(sin α ±cos α )2=1±2sin α cos α =1±sin2α 的应用.例7 扇形的周长为定值L ,问它的圆心角θ (0<θ <π)取何值时,扇形的面积S 最大?并求出最大值. 解:设扇形的半径为)20(Lr r <<,则周长L =r ·θ +2r (0<θ <π) 所以44214421)2(2121ππ2,22222222++=++=+==⋅=+=θθθθθθθθθθL L L r r S L r . 因为844244=+⨯≥++θθθθ,当且仅当θθ4=,即θ =2∈(0,π)时等号成立.此时16812122L L S =⨯≤,所以,当θ =2时,S 的最大值为162L .练习3-1一、选择题1.已知32cos -=α,角α 终边上一点P (-2,t ),则t 的值为( ) A .5 B .5± C .55 D .55±2.“tan α =1”是“Z ∈+=k k ,4ππ2α”的( )A .充分而不必要条件B .必要不而充分条件C .充要条件D .既不充分也不必要条件3.已知点P (sin α -cos α ,tan α )在第一象限,则在[0,2π]上角α 的取值范围是( )A .)4π5,π()4π3,2π( B .)4π5,π()2π,4π(C .)2π3,4π5()4π3,2π(D .)π,4π3()2π,4π(4.化简=+170cos 10sin 21( ) A .sin10°+cos10° B .sin10°-cos10° C .cos10°-sin10°D .-sin10°-cos10°二、填空题5.已知角α ,β 满足关系2π0;<<<βα,则α -β 的取值范围是______. 6.扇形的周长为16,圆心角为2弧度,则扇形的面积为______.7.若2π3π,sin <<=ααm ,则tan(π-α )=______. 8.已知:2π4π,81cos sin <<=ααα,则cos α -sin α =______.三、解答题9.已知tan α =-2,且cos(π+α )<0,求 (1)sin α +cos α 的值 (2)θθ2cos sin 22--的值10.已知21tan =α,求值: (1)ααααcos sin cos 2sin -+; (2)cos 2α -2sin α cos α .11.化简ααααααααtan 1tan cos sin ]π)1cos[(]π)1sin[()πcos()πsin(2+++++++-⋅k k k k§3-2 三角变换【知识要点】1.两角和与差的正弦、余弦、正切公式sin(α +β )=sin α cos β +cos α sin β ;sin(α -β )=sin α cos β -cos α sin β ; cos(α +β )=cos α cos β -sin α sin β ;cos(α -β )=cos α cos β +sin α sin β ;⋅+-=--+=+βαβαβαβαβαβαtan tan 1tan tan )tan(;tan tan 1tan tan )tan(2.正弦、余弦、正切的二倍角公式sin2α =2sin α cos α :cos2α =cos 2α -sin 2α =1-2sin 2α =2cos 2α -1;⋅-=ααα2tan 1tan 22tan 【复习要求】1.牢记两角和、差、倍的正弦、余弦、正切公式,并熟练应用; 2.掌握三角变换的通法和一般规律; 3.熟练掌握三角函数求值问题. 【例题分析】例1 (1)求值sin75°=______;(2)设54sin ),π,2π(=∈αα,则=+)4πcos(α______; (3)已知角2α的终边经过点(-1,-2),则)4πtan(+α的值为______;(4)求值=+-15tan 115tan 1______.解:(1)=︒︒+︒︒=︒+︒=︒30sin 45cos 30cos 45sin )3045sin(75sin 222322+⨯ 21⨯426+=. (2)因为53cos ,54sin ),π,2π(-==∈ααα所以, 1027)5453(22sin 22cos 22)4πcos(-=--=-=+ααα(3)由三角函数定义得,342tan 12tan2tan ,22tan2-=-==αααα, 所以71tan 1tan 1tan 4πtan 14πtantan )4πtan(-=-+=-+=+ααααα. (4)3330tan )1545tan(15tan 45tan 115tan 45tan 15tan 115tan 1=︒=︒-︒=︒︒+︒-︒=︒+︒-⋅==-=+-=+-3330tan )1545tan(15tan 45tan 115tan 45tan 15tan 115tan 1o【评析】两角的和、差、二倍等基本三角公式应该熟练掌握,灵活运用,这是处理三角问题尤其是三角变换的基础和核心.注意αααtan 1tan 1)4πtan(-+=+和αααtan 1tan 1)4πtan(+-=-运用. 例2 求值: (1)=-12πsin 12πcos3______; (2)cos43°cos77°+sin43°cos167°=______;(3)=++37tan 23tan 337tan 23tan o ______. 解:(1)原式)12πsin 3πcos 12πcos 3π(sin 2)12πsin 2112πcos 23(2-=-= 24πsin 2)12π3πsin(2==-=.【评析】辅助角公式:,cos ),sin(cos sin 2222ba a xb a x b x a +=++=+ϕϕ⋅+=22sin b a b ϕ应熟练掌握,另外本题还可变形为=-)12πsin 2112πcos 23(2 -12πcos 6π(cos 2.24πcos 2)12π6πcos(2)12πsin 6πsin ==+=(2)分析所给的角有如下关系:77°+43°=120°,167°=90°+77°,原式=cos43°cos77°+sin43°cos(90°+77°)=cos43°cos77°-sin43°sin77° =cos(43°+77°)=cos120°=⋅-21 (3)分析所给的角有如下关系:37°+23°=60°,函数名均为正切,而且出现两角正切的和tan a +tan β 与两角正切的积tan α tan β ,所有均指向公式⋅-+=+βαβαβαtan tan 1tan tan )tan(∵,337tan 23tan 137tan 23tan )3723tan(60tan =︒︒-︒+︒=+=∴,37tan 23tan 3337tan 23tan-=+∴337tan 23tan 337tan 23tan =++o .【评析】三角变换的一般规律:看角的关系、看函数名称、看运算结构.以上题目是给角求值问题,应首看角的关系:先从所给角的关系入手,观察所给角的和、差、倍是否为特殊角,然后看包含的函数名称,以及所给三角式的结构,结合三角公式,找到题目的突破口.公式βαβαβαtan tan 1tan tan )tan(-+=+的变形tan α +tan β =tan(α+β )(1-tan α tan β )应予以灵活运用.例3 41)tan(,52)tan(=-=+βαβα,则tan2α =______; (2)已知1312)4πsin(,53)sin(),π,4π3(,=--=+∈ββαβα,求)4πcos(+α的值.解:(1)分析所给的两个已知角α +β ,α -β 和所求的角2α 之间有关系(α +β )+(α -β )=2α ,=-++=)]()tan[(2tan ββa a a 1813415214152)tan()tan(1)tan()tan(=⨯-+=-+--++βαβαβαβα, (2)∵)π,4π3(,∈βα,∴)43,2π(4π),π2,23π(π∈-∈+ββα,又∵53)sin(-=+βα,∴54)cos(=+βα; ∵1312)4πsin(=-β,∴135)4πcos(-=-β.)4πsin()sin()4πcos()cos()]4π()cos[()4πcos(-++-+=--+=+ββαββαββαα65561312)53()135(54-=⨯-+-⨯=. 【评析】此类题目重在考察所给已知角与所求角之间的运算关系,主要是指看两角之间的和、差、倍的关系,如αββαααββα2)(,4π)4π()(,+-=+=--+++=)(βα)(βα-等,找到它们的关系可以简化运算,同时在求三角函数值时应关注函数值的符号.例4 如图,在平面直角坐标系xOy 中,以Ox 轴为始边做两个锐角α ,β ,它们的终边分别与单位圆相交于A ,B 两点,已知A ,B 的横坐标分别为552,102.(Ⅰ)求tan(α +β )的值; (Ⅱ)求α +2β 的值.解:由三角函数定义可得552cos ,102cos ==βα, 又因为α ,β 为锐角,所以55sin ,1027sin ==βα,因此tan α =7,21tan =β (Ⅰ)3tan tan 1tan tan )tan(-=-+=+βαβαβα;(Ⅱ) 34tan 1tan 22tan 2=-=βββ,所以12tan tan 12tan tan )2tan(-=-+=+βαβαβα, ∵α ,β 为锐角,∴4π32,2π320=+∴<+<βαβα 【评析】将三角函数的定义、两角和的正切、二倍角的正切公式结合在一起进行考查,要求基础知识掌握牢固,灵活运用;根据三角函数值求角,注意所求角的取值范围.例5 化简(1)12cos2sin22sin 22cos 2-+αααα;(2).2sin 3)4πcos()4πcos(2x x x +-+解:(1)原式⋅+-=--=--=-=)4πsin(2sin cos cos sin sin cos cos sin 2cos 22αααααααααα(2)法一:原式x x x x x 2sin 3)sin 22cos 22)(sin 22cos 22(2++-= x x x 2sin 3sin cos 22+-=⋅+=+=+=)6π2sin(2)2sin 232cos 21(22sin 32cos x x x x x法二:,2π)4π()4π(=--+x x 原式x x x 2sin 3)4πcos()]4π(2πcos[2+--+=x x x x x 2sin 3)2π2sin(2sin 3)4πcos()4πsin(2+--=+---=⋅+=+=)6π2sin(22sin 32cos x x x【评析】在进行三角变换时,应从三个角度:角的关系、函数的名称、所给运算式的结构全面入手,注意二倍角的变式(降幂升角)和辅助角公式的应用,此类变换是处理三角问题的基础.例6 (1)已知α 为第二象限角,且415sin =α,求12cos 2sin )4πsin(+++ααα的值. (2)已知323cos sin 32cos 62-=-x x x ,求sin2x 的值. 解:(1)因为α 为第二象限角,且415sin =α,所以41cos -=α, 原式.2cos 42)cos (sin cos 2)cos (sin 221)1cos 2(cos sin 2)cos (sin 222-==++=+-++=ααααααααααα 【评析】此类题目为给值求值问题,从分析已知和所求的三角式关系入手,如角的关系,另一个特征是往往先对所求的三角式进行整理化简,可降低运算量.(2)因为32sin 32cos 32sin 322cos 16+-=-+⋅x x x x3233)6π2cos(323)2sin 212cos 23(32-=++=+-=x x x 所以0)6π2sin(,1)6π2cos(=+-=+x x 216πsin )6π2cos(6πcos )6π2sin(]6π)6π2sin[(2sin =+-+=-+=x x x x【评析】在进行三角变换时,应从三个角度:角的关系、函数的名称、所给运算式的结构全面入手,注意二倍角的变式(降幂升角)22cos 1sin ,22cos 1cos 22αααα-=+=和辅助角公式的应用,此类变换是处理三角问题的基础,因为处理三角函数图象性质问题时往往先进行三角变换.练习3-2一、选择题1.已知53sin ),π,2π(=∈αα,则)4πtan(+α等于( ) A .71 B .7 C .71-D .-72.cos24°cos54°-sin24°cos144°=( ) A .23-B .21 C .23 D .21-3.=-o30sin 1( ) A .sin15°-cos15° B .sin15°+cos15° C .-sin15°-cos15° D .cos15°-sin15°4.若22)4πsin(2cos -=-αα,则cos α +sin α 的值为( ) A .27-B .21-C .21 D .27 二、填空题 5.若53)2πsin(=+θ,则cos2θ =______. 6.=-10cos 310sin 1______.7.若53)cos(,51)cos(=-=+βαβα,则tan α tan β =______. 8.已知31tan -=α,则=+-ααα2cos 1cos 2sin 2______. 三、解答题 9.证明⋅=++2tan cos 1cos .2cos 12sin ααααα10.已知α 为第四象限角,且54sin -=α,求ααcos )4π2sin(21--的值.11.已知α 为第三象限角,且33cos sin =-αα. (1)求sin α +cos α 的值;(2)求αααααcos 82cos 112cos2sin82sin 522-++的值.§3-3 三角函数【知识要点】12π 2π π Z2.三角函数图象是研究三角函数的有效工具,应熟练掌握三角函数的基本作图方法.会用“五点法”画正弦函数、余弦函数和函数y =A sin(ω x +ϕ)(A >0,ω >0)的简图.3.三角函数是描述周期函数的重要函数模型,通过三角函数体会函数的周期性.函数y =A sin(ω x +ϕ)(ω ≠0)的最小正周期:||π2ω=T ;y =A tan(ω x +ϕ)(ω ≠0)的最小正周期:||πω=T .同时应明确三角函数与周期函数是两个不同的概念,带三角函数符号的函数不一定是周期函数,周期函数不一定带三角函数符号.【复习要求】1.掌握三角函数y =sin x ,y =cos x ,y =tan x 的图象性质:定义域、值域(最值)、单调性、周期性、奇偶性、对称性等.2.会用五点法画出函数y =sin x ,y =cos x ,y =A sin(ω x +ϕ)(A >0,ω >0)的简图,掌握图象的变换方法,并能解决相关图象性质的问题.3.本节内容应与三角恒等变换相结合,通过变换,整理出三角函数的解析式,注意使用换元法,转化为最基本的三个三角函数y =sin x ,y =cos x ,y =tan x ,结合三角函数图象,综合考察三角函数性质 【例题分析】例1 求下列函数的定义域(1)xxy cos 2cos 1+=;(2)x y 2sin =.解:(1)cos x ≠0,定义域为},2ππ|{Z ∈+≠k k x x (2)sin2x ≥0,由正弦函数y =sin x 图象(或利用在各象限中和轴上角的正弦函数值的符号可得终边在第一二象限,x 轴,y 轴正半轴上) 可得2k π≤2x ≤2k π+π, 定义域为},2πππ|{Z ∈+≤≤k k x k x例2 求下列函数的最小正周期 (1))23πsin(x y -=;(2))4π2πtan(+=x y ;x y 2cos )3(2=; (4)y =2sin 2x +2sin x cos x ;(5)y =|sin x |.解:(1)π|2|π2=-=T .(2)22ππ==T .(3)214cos 2124cos 1+=+=x x y ,所以2π=T .(4)1)4π2sin(212cos 2sin 2sin 22cos 12+-=+-=+-⨯=x x x x x y ,所以T =π.(5)y =|sin x |的图象为下图,可得,T =π.【评析】(1)求三角函数的周期时,通常利用二倍角公式(降幂升角)和辅助角公式先将函数解析式进行化简,然后用||π2ω=T (正余弦)或||πω=T (正切)求最小正周期. (2)对于含绝对值的三角函数周期问题,可通过函数图象来解决周期问题.例3 (1)已知函数f (x )=(1+cos2x )sin 2x ,x ∈R ,则f (x )是( ) A .最小正周期为π的奇函数 B .最小正周期为π的偶函数 C .最小正周期为2π的奇函数 D .最小正周期为2π的偶函数 (2)若函数f (x )=2sin(2x +ϕ)为R 上的奇函数,则ϕ=______. (3)函数)2π2π(lncos <<-=x x y 的图象( )解:(1),,44cos 12sin 21)cos sin 2(21sin cos 2)(2222R ∈-====x x x x x x x x f 周期为2π,偶函数,选D (2)f (x )为奇函数,f (-x )=-f (x ),所以2sin(-2x +ϕ)=-2sin(2x +ϕ)对x ∈R 恒成立, 即sin ϕcos2x -cos ϕsin2x =-sin2x cos ϕ-cos2x sin ϕ, 所以2sin ϕcos2x =0对x ∈R 恒成立, 即sin ϕ=0,所以ϕ=k π,k ∈Z .【评析】三角函数的奇偶性问题可以通过奇偶性定义以及与诱导公式结合加以解决.如在本题(2)中除了使用奇偶性的定义之外,还可以从公式sin(x +π)=-sin x ,sin(x +2π)=sin x 得到当ϕ=2k π+π或ϕ=2k π+π,k ∈Z ,即ϕ=k π,k ∈Z 时,f (x )=2sin(2x +ϕ)可以化为f (x )=sin x 或f (x )=-sin x ,f (x )为奇函数.(3)分析:首先考虑奇偶性,f (-x )=lncos(-x )=lncos x =f (x ),为偶函数,排除掉B ,D 选项 考虑(0,2π)上的函数值,因为0<cos x <1,所以lncos x <0,应选A 【评析】处理函数图象,多从函数的定义域,值域,奇偶性,单调性等方面综合考虑.例4 求下列函数的单调增区间(1))3π21cos(-=x y ;(2) ]0,π[),6π2sin(2-∈+=x x y ; (3) x x y 2sin 32cos -=;(4))23πsin(2x y -=解:(1)y =cos x 的增区间为[2k π+π,2k π+2π],k ∈Z ,由π2π23π21ππ2+≤-≤+k x k 可得3π14π43π8π4+≤≤+k x k )3π21cos(-=x y 的增区间为Z ∈++k k k ],3π14π4,3π8π4[,(2)先求出函数)6π2sin(2+=x y 的增区间Z ∈+-k k k ],6ππ,3ππ[然后与区间[-π,0]取交集得到该函数的增区间为]6π5,π[--和]0,3π[-,(3))3π2cos(2)2sin 232cos 21(2+=-=x x x y ,转化为问题(1),增区间为 Z ∈++k k k ],6π5π,3ππ[(4)原函数变为)3π2sin(2--=x y ,需求函数)3π2sin(-=x y 的减区间,2π3π23π22ππ2+≤-≤+k x k ,得12π11π12π5π+≤≤+k x k , )23πsin(2x y -=的增区间为.],12π11π,12π5π[Z ∈++k k k【评析】处理形如y =A sin(ω x +ϕ)+k ,(ω <0)的函数单调性时,可以利用诱导公式将x 的分数化正,然后再求相应的单调区间.求三角函数单调区间的一般方法:(1)利用三角变换将解析式化为只含有一个函数的解析式,利用换元法转化到基本三角函数的单调性问题. (2)对于给定区间上的单调性问题,可采用问题(2)中的方法,求出所有的单调增区间,然后与给定的区间取交集即可.例5 求下列函数的值域(1)函数1)6π21cos(2++-=x y 的最大值以及此时x 的取值集合 (2))3π2,6π(,sin 2-∈=x x y(3) )3π,2π(),3π2cos(2-∈+=x x y(4)y =cos2x -2sin x解:(1)当Z ∈+=+k k x ,ππ26π21时,1)6π21cos(-=+x ,函数的最大值为3,此时x 的取值集合为},3π5π4|{Z ∈+=k k x x(2)结合正弦函数图象得:当)3π2,6π(-∈x 时,1sin 21≤<-x该函数的值域为(-1,2](3)分析:利用换元法,转化为题(2)的形式.)6π,3π(),3π2cos(2-∈+=x x y ,,3π23π23π),6π,3π(<+<-∴-∈x x设3π2+=x t ,则原函数变为3π23π,cos 2<<-=t t y ,结合余弦函数图象得:1cos 21≤<-t ,所以函数的值域为(-1,2].(4)y =-2sin 2x -2sin x +1,设t =sin x ,则函数变为y =-2t 2-2t +1,t ∈[-1,1], 因为⋅++-=23)21(22t y结合二次函数图象得,当t =1时,函数最小值为-3,当21-=t 时,函数最大值为23,所以函数的值域为].23,3[-【评析】处理三角函数值域(最值)的常用方法:(1)转化为只含有一个三角函数名的形式,如y =A sin(ω x +ϕ)+k ,y =A cos(ω x +ϕ)+k ,y =A tan(ω x +ϕ)+k 等,利用换元法,结合三角函数图象进行处理.(2)转化为二次型:如A sin 2x +B sin x +C ,A cos 2x +B cos x +C 形式,结合一元二次函数的图象性质求值域. 例6 函数y =sin(ω x +ϕ)的图象(部分)如图所示,则ω 和ϕ的取值是( )A .3π,1==ϕω B .3π,1-==ϕω C .6π,21==ϕω D .6π,21-==ϕω解:π)3π(3π24=--=T ,即ωπ2π4==T ,所以21=ω, 当3π-=x 时,0])3π(21sin[=+-⨯ω,所以Z ∈+=k k ,6ππω,选C例7 (1)将函数x y 21sin =的图象如何变换可得到函数)6π21sin(+=x y 的图象(2)已知函数y =sin x 的图象,将它怎样变换,可得到函数)3π2sin(2-=x y 的图象解:(1)x y 21sin =−−−−−−−−→−个单位图象向左平移3π)6π21sin()3π(21sin +=+=x x y (2)法一:y =sin x −−−−−−−−→−个单位图象向右平移3π)3πsin(-=x y−−−−−−−−−−−−−−−→−倍横坐标变为原来图象上点的纵坐标不变21,)3π2sin(-=x y−−−−−−−−−−−−−−−→−倍纵坐标变为原来图象上点的横坐标不变2,)3π2sin(2-=x y法二:y =sin x −−−−−−−−−−−−−−→−倍横坐标变为原来图象上点的纵坐标不变21,x y 2sin =−−−−−−−−→−个单位图象向右平移6π)6π(2sin -=x y−−−−−−−−−−−−−−−→−倍纵坐标变为原来图象上点的横坐标不变2,)3π2sin(2-=x y【评析】由y =sin x 的图象变换为y =A cos(ω x +ϕ)(ω >0)的图象时,特别要注意伸缩变换和横向平移的先后顺序不同,其横向平移过程中左右平移的距离不同.例8 (1)函数)3π21sin(2-=x y 的一条对称轴方程为( ) A .3π4-=x B .6π5-=x C .3π-=x D .3π2=x (2)函数)3π2cos(-=x y 的对称轴方程和对称中心的坐标解:(1)法一:)3π21sin(2-=x y 的对称轴为Z ∈+=-k k x ,2ππ3π21, 即Z ∈+=k k x ,3π5π2,当k =-1时,3π-=x ,选C法二:将四个选项依次代入)3π21sin(2-=x y 中,寻找使得函数取得最小值或最大值的选项当3π-=x 时,22πsin 2)3π6πsin(2-=-=--=y ,选C(2) )3π2cos(-=x y 的对称轴为Z ∈=-k k x ,π3π2,即Z ∈+=k k x ,6π2π对称中心:,,2ππ3π2Z ∈+=-k k x 此时Z ∈+=k k x ,12π52π所以对称中心的坐标为Z ∈+k k ),0,12π52π(【评析】正余弦函数的对称轴经过它的函数图象的最高点或最低点,对称中心是正余弦函数图象与x 轴的交点,处理选择题时可以灵活运用.例9 已知函数)0(),2πsin(sin 3,sin )(2>++=ωωωωx x x x f 的最小正周期为π. (1)求ω 的值. (2)求f (x )在区间]3π2,0[上的值域. (3)画出函数y =2f (x )-1在一个周期[0,π]上的简图.(4)若直线y =a 与(3)中图象有2个不同的交点,求实数a 的取值范围. 解:(1)x x xx f ωωωcos sin 322cos 1)(+-=21)6π2sin(212cos 21sin 23+-=+-=x x x ωωω 因为函数f (x )的最小正周期为π,且ω >0,所以π2π2=ω,解得ω =1 (2)由(1)得21)6π2sin()(+-=x x f ,因为3π20≤≤x ,所以6π76π26π≤-≤-x ,结合正弦函数图象,得1)6π2sin(21≤-≤-x因此2321)6π2sin(0≤+-≤x ,即f (x )的取值范围为]23,0[(3)由(1)得)6π2sin(21)(2-=-=x x f y列表(4)由图象可得,-2<a <2且a ≠-1.【评析】本节内容应与三角恒等变换相结合,利用降幂升角公式和辅助角公式等三角公式化简三角函数解析式,整理、变形为只含有一个函数名的解析式,如y =A sin(ω x +ϕ)(ω >0)或y =A cos(ω x +ϕ)(ω >0)的形式,利用换元法,结合y =sin x 、y =cos x 的图象,再研究它的各种性质,如求函数的周期,单调性,值域等问题,这是处理三角函数问题的基本方法.练习3-3一、选择题1.设函数),2π2sin()(-=x x f x ∈R ,则f (x )是( ) A .最小正周期为π的奇函数 B .最小正周期为π的偶函数 C .最小正周期为2π的奇函数 D .最小正周期为2π的偶函数 2.把函数y =sin x (x ∈R )的图象上所有的点向左平行移动3π个单位长度,再把所得图象上所有点的横坐标缩短到原来的21倍(纵坐标不变),得到的图象所表示的函数是( ) A .R ∈-=x x y ),3π2sin( B .R ∈+=x x y ),6π2sin(C .R ∈+=x x y ),3π2sin(D .R ∈+=x x y ),32π2sin(3.函数)3π2sin(+=x y 的图象( )A .关于点(3π,0)对称B .关于直线4π=x 对称C .关于点(4π,0)对称D .关于直线3π=x 对称4.函数y =tan x +sin x -|tan x -sin x |在区间)2π3,2π(内的图象大致是( )二、填空题5.函数)2πsin(sin 3)(x x x f ++=的最大值是______. 6.函数)]1(2πcos[)2πcos(-=x x y 的最小正周期为______. 7.函数)2π0,0)(sin(<<>+=ϕωϕωx y 的图象的一部分如图所示,则该函数的解析式为y =______.8.函数y =cos2x +cos x 的值域为______. 三、解答题9.已知函数f (x )=2cos x (sin x -cos x )+1,x ∈R . (Ⅰ)求函数f (x )的对称轴的方程; (Ⅱ)求函数f (x )的单调减区间. 10.已知函数.34sin 324cos 4sin2)(2+-=xx x x f (Ⅰ)求函数f (x )的最小正周期及最值; (Ⅱ)令)3π()(+=x f x g ,判断函数g (x )的奇偶性,并说明理由.11.已知R ∈>++=a a x x x x f ,0(,cos sin 32cos 2)(2ωωωω,a 为常数),且满足条件f (x 1)=f (x 2)=0的|x 1-x 2|的最小值为2π. (Ⅰ)求ω 的值; (Ⅱ)若f (x )在]3π,6π[-上的最大值与最小值之和为3,求a 的值.§3-4 解三角形【知识要点】1.三角形内角和为A +B +C =πA CB -=+π,2π222=++C B A ,注意与诱导公式相结合的问题. 2.正弦定理和余弦定理正弦定理:r CcB b A a 2sin sin sin ===,(r 为△ABC 外接圆的半径). 余弦定理:abc b a C ac b c a B bc a c b A 2cos ;2cos ;2cos 222222222-+=-+=-+= . a 2=b 2+c 2-2bc cos A ;b 2=a 2+c 2-2ac cos B ;c 2=a 2+b 2-2ab cos C .3.在解三角形中注意三角形面积公式的运用:21=∆ABC S ×底×高. 21=∆ABCS ab sin .sin 21sin 21B ac A bc C == 4.解三角形中注意进行“边角转化”,往往结合三角变换处理问题.【复习要求】1.会正确运用正余弦定理进行边角的相互转化;2.会熟练运用正弦定理和余弦定理解决三角形中的求角,求边,求面积问题. 【例题分析】例1 (1)在△ABC 中,3=a ,b =1,B =30°,则角A 等于( )A .60°B .30°C .120°D .60°或120°(2)△ABC 中,内角A ,B ,C 所对的边分别为a 、b 、c ,满足等式(a +b )2=ab +c 2,则角C 的大小为______. (3)在△ABC 中,若sin A ∶sin B ∶sin C =5∶7∶8,则∠B 的大小是______. (4)在△ABC 中,若31tan =A ,C =150°,BC =1,则AB =______. 解:(1)∵,23sin ,30sin 1sin 3,sin sin =∴=∴=A A B b A a 又∵a >b ,∴A >B =30°,∴A =60°或120°,(2)∵(a +b )2=ab +c 2,∴a 2+b 2-c 2=-ab ,∴,120,2122cos 222 =∴-=-=-+=C ab ab ab c b a C (3)∵CcB b A a sin sin sin ==,sin A ∶sin B ∶sin C =5∶7∶8. ∴a ∶b ∶c =5∶7∶8,∴21852*******cos 222=⨯⨯-+=-+=ac b c a B ,∴B =60°. (4)分析:已知条件为两角和一条对边,求另一条对边,考虑使用正弦定理,借助于31tan =A 求sin A 210,150sin 10101,sin sin ,1010sin ,31tan =∴=∴==∴=AB AB B AC A BC A A . 【评析】对于正弦定理和余弦定理应熟练掌握,应清楚它们各自的使用条件,做到合理地选择定理解决问题. 例2 (1)在△ABC 中,a cos A =b cos B ,则△ABC 一定是( )A .直角三角形B .等边三角形C .等腰三角形D .等腰三角形或直角三角形 (2)在△ABC 中,2sin B ·sin C =1+cos A ,则△ABC 的形状为( ) A .直角三角形 B .等边三角形 C .等腰三角形 D .等腰直角三角形 解:(1)法一:BbA a sin sin =,a cos A =b cos B , ∴sin A cos A =sin B cos B ,∴sin2A =sin2B ,∵2A ,2B ∈(0,2π),∴2A =2B 或2A +2B =π, ∴A =B 或2π=+B A ,选D . 法二:∵a cos A =b cos B ,∴acb c a b bc a c b a 2)(2)(222222-+=-+,整理得(a 2-b 2)(a 2+b 2-c 2)=0.所以:a =b 或a 2+b 2=c 2,选D .(2)∵2sin B ·sin C =1+cos A ,cos(B +C )=cos(π-A )=-cos A , ∴2sin B ·sin C =1-(cos B cos C -sin B sin C ), ∴cos B cos C +sin B ·sin C =1, ∴cos(B -C )=1,∵B ,C ∈(0,π),∴B -C ∈(-π,π), ∴B -C =0,∴B =C ,选C .【评析】判断三角形形状,可以从两个角度考虑(1)多通过正弦定理将边的关系转化为角的关系,进而判断三角形形状,(2)多通过余弦定理将角的关系转化为边的关系,进而判断三角形形状,通常情况下,以将边的关系转化为角的关系为主要方向,特别需要关注三角形内角和结合诱导公式带给我们的角的之间的转化.例3 已知△ABC 的周长为12+,且sin A +sin B =2sin C (1)求边AB 的长;(2)若△ABC 的面积为C sin 61,求角C 的度数. 解:(1)由题意及正弦定理,得⎪⎩⎪⎨⎧=++=++ABAC BC AC BC AB 212,解得AB =1. (2)由△ABC 的面积C C AC BC S sin 61sin 21=⋅=,得31=⋅AC BC ,因为2=+AC BC ,所以(BC +AC )2=BC 2+AC 2+2AC ·BC =2,可得3422=+AC BC ,由余弦定理,得212cos 222=-+=⋅BC AC AB BC AC C , 所以C =60°.例4 在△ABC 中,∠A 、∠B 、∠C 所对的边长分别为a 、b 、c ,设a 、b 、c 满足条件b 2+c 2-bc =a 2和bc=321+,求∠A 和tan B 的值. 解(1)由已知和余弦定理得212cos 222=-+=bc a c b A ,所以∠A =60°. (2)分析:所给的条件是边的关系,所求的问题为角,可考虑将利用正弦定理将边的关系转化为角的关系.在△ABC 中,sin C =sin(A +B )=sin(60°+B ),因为B BB B B BC b c sin sin 60cos cos 60sin sin )60sin(sin sin +⋅=+==.32121tan 123+=+=B所以⋅=21tan B 【评析】体现了将已知条件(边321+==b c )向所求问题(角tan B →sin a ,cos α )转化,充分利用了正弦定理和三角形内角关系实现转化过程.例5 在△ABC 中,内角A ,B ,C 对边的边长分别是a ,b ,c ,已知c =2,3π=C . (Ⅰ)若△ABC 的面积等于3,求a ,b ;(Ⅱ)若sin C +sin(B -A )=2sin2A ,求△ABC 的面积.解:(Ⅰ)由余弦定理abc b a C 2cos 222-+=及已知条件得,a 2+b 2-ab =4,又因为△ABC 的面积等于3,所以3sin 21=C ab ,得ab =4.联立方程组⎩⎨⎧==-+,4,422ab ab b a 解得a =2,b =2.(Ⅱ)由题意得sin(B +A )+sin(B -A )=4sin A cos A ,(sin B cos A +cos B sin A )+(sin B cos A -cos B sin A )=4sin A cos A , 即sin B cos A =2sin A cos A , 当cos A =0时,332,334,6π,2π====b a B A ,当cos A ≠0时,得sin B =2sin A ,由正弦定理得b =2a ,联立方程组⎩⎨⎧==-+,2,422a b ab b a 解得334,332==b a . 所以△ABC 的面积332sin 21==C ab S .【评析】以上两例题主要考查利用正弦定理、余弦定理来确定三角形边、角关系等基础知识和基本运算能力.以及三角形面积公式B ac A bc C ab S ABC sin 21sin 21sin 21===∆的运用.同时应注意从题目中提炼未知与已知的关系,合理选择定理公式,综合运用正弦定理和余弦定理实现边角之间的转化.例6 如图,测量河对岸的塔高AB 时,可以选与塔底B 在同一水平面内的两个测点C 与D ,现测得∠BCD =α ,∠BDC =β ,CD =s ,并在点C 测得塔顶A 的仰角为θ ,求塔高AB .解:在△BCD 中,∠CBD =π-α -β . 由正弦定理得.sin sin CBDCDBDC BC ∠=∠所以)sin(sin sin sin βαβ+=∠∠=⋅s CBD BDC CD BC .在Rt △ABC 中,⋅+=∠=⋅)sin(sin tan tan βαβθs ACB BC AB例7 已知在△ABC 中,sin A (sin B +cos B )-sin C =0,sin B +cos2C =0,求角A ,B ,C 的大小. 解:sin A sin B +sin A cos B -sin(A +B )=0,sin A sin B +sin A cos B -(sin A cos B +cos A sin B )=0, sin A sin B -cos A sin B =sin B (sin A -cos A )=0, 因为sin B ≠0,所以sin A -cos A =0,所以tan A =1,4π=A ,可得BC +=4π3, 所以02sin sin )22π3cos(sin )4π3(2cos sin =+=++=++B B B B B B ,sin B +2sin B cos B =0,因为sin B ≠0,所以12π,3π2,21cos ==-=C B B .【评析】考查了三角形中角的相互转化关系,同时兼顾了两角和、二倍角、诱导公式等综合应用. 练习3-4一、选择题1.在△ABC 中,若A ∶B ∶C =1∶2∶3,则a ∶b ∶c =( ) A .1∶2∶3B .2:3:1C .1∶4∶9D .3:2:12.在△ABC 中,角A 、B 、C 的对边分别为a ,b ,c ,3,3π==a A ,b =1,则c =( ) A .1B .2C .13-D .33.△ABC 中,若a =2b cos C ,则△ABC 的形状一定为( ) A .等边三角形 B .直角三角形 C .等腰三角形 D .等腰直角三角形4.△ABC 的三内角A ,B ,C 的对边边长分别为a ,b ,c ,若b a 25=,A =2B ,则cos B =( )A .35 B .45 C .55 D .65 二、填空题5.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若a =1,3π,3==C c ,则A =______. 6.在△ABC 中,角ABC 的对边分别为a 、b 、c ,若ac B b c a 3tan )(222=-+,则角B 的值为______.7.设△ABC 的内角6π=A ,则2sinB cosC -sin(B -C )的值为______. 8.在三角形ABC 中,∠A 、∠B 、∠C 的对边分别为a 、b 、c ,若b cos C =(2a -c )cos B ,则∠B 的大小为______. 三、解答题9.在△ABC 中,53tan ,41tan ==B A . (Ⅰ)求角C 的大小;(Ⅱ)若AB 的边长为17,求边BC 的边长.10.如图,某住宅小区的平面图呈扇形AOC .小区的两个出入口设置在点A 及点C 处,小区里有两条笔直的小路AD ,DC ,且拐弯处的转角为120°.已知某人从C 沿CD 走到D 用了10分钟,从D 沿DA 走到A 用了6分钟.若此人步行的速度为每分钟50米. 求该扇形的半径OA 的长(精确到1米).11.在三角形ABC 中,5522cos ,4π,2===B C a ,求三角形ABC 的面积S .专题03 三角函数参考答案练习3-1一、选择题:1.B 2.B 3.B 4.C 二、填空题 5.)0,2π(-6.16 7.21mm - 8.23- 三、解答题9.解:(1)⋅-=+=-=>55cos sin ,55cos ,552sin ,0cos ααααα (2)原式=222)sin 1(sin sin 21cos 1sin 21θθθθθ-=+-=-+-=⋅+=-=-=5521sin 1|sin 1|θθ 10.解:(1)原式51tan 2tan -=-+=αα(2)原式.0tan 1tan 212=+-=αα11.解:当k 为偶数时,原式.0cos sin cos sin 1cos sin 1cos sin .cos sin )cos (sin cos sin 22=+-=++---=αααααααααααααα当k 为奇数时,原式01cos sin )cos (sin =+-=αααα,综上所述,原式=0.练习3-2一、选择题1.A 2.C 3.D 4.C 二、填空题 5257-6.4 7.21 8.65- 三、解答题9.解:左边=====2tan 2cos 22cos2sin22cos 2sin 2cos 2cos cos 2cos sin 22222.ααααααααααα右边.10.解:原式)sin (cos 2cos 1cos 2cos sin 21cos )2cos 2(sin 12ααααααααα-=-+-=--=, 因为α 为第四象限角,且54sin -=α,所以53cos =α, 所以原式514=. 11.解:(1)由a a a a cos sin 21)cos (sin 2-=-=31可得32cos sin 2=αα,所以a a a a cos sin 21)cos (sin 2+=+=35, 因为α 为第三象限角,所以sin α <0,cos α <0,sin α +cos α <0, 所以315cos sin -=+αα. (2)原式αααααααααcos cos 3sin 4cos )12cos 2(3sin 4cos 82cos 6sin 4522+=-+=-++=3tan 4+=α,因为51tan 1tan cos sin cos sin -=-+=-+αααααα,所以2531515tan -=+-=α, 所以原式.52932534-=+-⨯= 练习3-3一、选择题1.B 2.C 3.A 4.D 二、填空题5.2 6.2 7.)3π2sin(+=x y 8.]2,89[- 三、解答题9.解:x x x x x x f 2cos 2sin 1cos 2cos sin 2)(2-=+-==)4π2sin(2-x . (1)Z ∈+=-k k x ,2ππ4π2,对称轴方程为Z ∈+=k k x ,8π32π, (2)Z ∈+≤-≤+k k x k ,2π3π24π22ππ2,即Z ∈+≤≤+k k x k ,8π7π8π3π,f (x )的单调减区间为Z ∈++k k k ],8π7π,8π3π[.10.解:(I)∵⋅+=+=-+=)3π2sin(22cos 32sin )4sin 21(32sin )(2x x x x x x f∴f (x )的最小正周期.π421π2==T当1)3π2sin(-=+x 时,f (x )取得最小值-2;当1)3π2sin(=+x 时,f (x )取得最大值2.(Ⅱ)由(I)知⋅+=+=)3π()().3π2sin(2)(x f x g x x f 又⋅=+=++=∴2cos 2)2π2sin(2]3π)3π(21sin[2)(xx x x g).(2cos 2)2cos(2)(x g xx x g ==-=-∴函数g (x )是偶函数.11.解:(1)12cos 2sin 32sin 322cos 12)(+++=+++⨯=a x x a x xx f ωωωω。

2020版高考数学二轮复习第2部分专题1三角函数和解三角形解密高考1三角函数问题重在“变”——变角、变式

2020版高考数学二轮复习第2部分专题1三角函数和解三角形解密高考1三角函数问题重在“变”——变角、变式

母题示例:2019 年全国卷Ⅲ,本小题满分 12 分
△ABC 的内角 A,B,C 的对边分 本题考查:本题主要考查正弦定
别为 a,b,c,已知 asin A+2 C= 理、诱导公式、三角恒等变换、三
bsin A.
角形的面积公式,考查学生的数学
(1)求 B;
运算、转化与化归等能力,考查学
(2)若△ABC 为锐角三角形,且 c 生的逻辑推理及数学运算等核心
面积,结合第(1)问,选择 S=12acsin B,注意到条件 c=1,想到sina A=
c sin
C,△ABC
为锐角三角形可建不等式.
[规范解答·评分标准] (1)根据题意 asinA+2 C=bsin A,得 sin AsinA+2 C= sin Bsin A 因为 0<A<π,故 sin A>0,消去 sin A 得 sinA+2 C=sin B,0<B<π,0<A+2 C<π,故A+2 C=B 或者A+2 C+B= π,而根据题意 A+B+C=π,A+2 C+B=π 不成立,所以A+2 C=B, 又因为 A+B+C=π,代入得 3B=π,所以 B=π3.··6 分

83<S△ABC<
23.故

S△ABC 的取值范围是
83,
23.······12

[构建模板·两种思路] 1.利用正、余弦定理求解问题的思路为“角化边”“边化角”
2.三角恒等变换的思路为“一角二名三结构” 升幂(降幂)公式口诀:“幂降一次,角翻倍;幂升一次,角减半”.
母题突破 1:2019 年昆明模拟 在△ABC 中,内角 A,B,C 所对的边分别为 a,b,c,2acos A- bcos C=ccos B. (1)求角 A; (2)若 a= 3,△ABC 的面积为343,求△ABC 的周长.

高考大题专项(二) 三角函数与解三角形

 高考大题专项(二) 三角函数与解三角形
π
B,C= ,
6
?
解 方案一:选条件①.

π
2 + 2 - 2
C= 6 及余弦定理,得 2
3 2 + 2 - 2
于是 2 3 2
=
3
,由此可得
2
=
3
.由
2
sin A= 3sin B 及正弦定理,得 a= 3b.
b=c.
由①ac= 3,解得 a= 3,b=c=1.
因此,选条件①时,存在符合题意的△ABC,此时 c=1.
=sin(A+B)=sin Acos B+cos Asin B=
所以
1
S=2absin
3+ 3
C= 2 .

若选②a=2,由
sin
因为 B∈
π
0, 2
6+ 2
,
4
=

,得
sin
,所以 cos
sin
1
B=2.
sin
B=

=
3
,
2
又因为 sin C=sin[π-(A+B)]=sin(A+B)=sin Acos B+cos Asin B=
要忘记对角的范围的限制,特别是求三角函数值的范围或最值时,先要把自
变量的取值范围求出来,再利用三角函数的单调性确定函数值的范围.
对点训练3(2020山东烟台模拟,17)已知函数f(x)=1-2 3 sin xcos x-2cos2x函数f(x)的单调递增区间;
3.
a-b=2 3(sin A-sin B)=2 3[sin
π
π
π
π
因为 <A< ,所以- <A6

2020高考二轮复习三角函数与解三角形

2020高考二轮复习三角函数与解三角形

第1讲 三角函数的图象与性质[全国卷3年考情分析]函数的单调性、奇偶性、周期性、对称性及最值,并常与三角恒等变换交汇命题.(2)高考对此部分内容主要以选择题、填空题的形式考查,难度为中等偏下,大多出现在第6~12或14~16题位置上.考点一 三角函数的定义、诱导公式及基本关系1.[三角函数的定义及应用](2019·昆明市诊断测试)在平面直角坐标系中,角α的始边与x 轴的正半轴重合,终边与单位圆交于点P ⎝⎛⎭⎫-35,45,则sin ⎝⎛⎭⎫α+π4=( ) A .210B .-210C .7210D .-72102.[同角三角函数的关系式及应用]若tan α=12,则sin 4α-cos 4α的值为( )A .-15B .-35C .15D .353.[诱导公式及应用]设函数f (x )(x ∈R )满足f (x +π)=f (x )+sin x .当0≤x <π时,f (x )=0,则f ⎝⎛⎭⎫23π6=( )A.12 B .32 C .0 D .-121.[与数列交汇]设a n =1n sin n π25,S n =a 1+a 2+…+a n ,在S 1,S 2,…,S 100中,正数的个A .25B .50C .75D .1002.[与算法交汇]某一算法程序框图如图所示,则输出的S 的值为( )A.32B .-32C.3D .03.[借助数学文化考查]《九章算术》是我国古代数学成就的杰出代表作,其中《方田》章给出计算弧田面积所用的经验公式为:弧田面积=12(弦×矢+矢2),弧田(如图)由圆弧和其所对弦所围成,公式中“弦”指圆弧所对弦长,“矢”等于半径长与圆心到弦的距离之差.现有圆心角为2π3,半径等于4 m 的弧田,按照上述经验公式计算所得弧田面积约是( )A .6 m 2B .9 m 2C .12 m 2D .15 m 2考点二 三角函数的图象与解析式题型一 由“图”定“式”[例1] (1)(2019·成都市第二次诊断性检测)将函数f (x )的图象上所有点向右平移π4个单位长度,得到函数g (x )的图象.若函数g (x )=A sin(ωx+φ)⎝⎛⎭⎫A >0,ω>0,|φ|<π2的部分图象如图所示,则函数f (x )的解析式为( )A .f (x )=sin ⎝⎛⎭⎫x +5π12B .f (x )=-cos ⎝⎛⎭⎫2x +π3 C .f (x )=cos ⎝⎛⎭⎫2x +π3 D .f (x )=sin ⎝⎛⎭⎫2x +7π12 (2)(2019·长沙市统一模拟考试)已知P⎝⎛⎭⎫12,2是函数f (x )=A sin(ωx +φ)(A >0,ω>0)图象的一个最高点,B ,C 是与P 相邻的两个最低点.若|BC |=6,则f (x )的图象的对称中心可A .(0,0)B .(1,0)C .(2,0)D .(3,0)题型二 三角函数的图象变换[例2] (1)(2019·福建五校第二次联考)为得到函数y =cos ⎝⎛⎭⎫2x +π3的图象,只需将函数y =sin 2x 的图象( )A .向右平移5π12个单位长度B .向左平移5π12个单位长度C .向右平移5π6个单位长度D .向左平移5π6个单位长度(2)(2019·开封模拟)将函数y =sin 2x -cos 2x 的图象向左平移m (m >0)个单位长度以后得到的图象与函数y =k sin x cos x (k >0)的图象重合,则k +m 的最小值是( )A .2+π4B .2+3π4C .2+5π12D .2+7π12考点三 三角函数的性质[例3] (1)(2019·武昌区调研考试)已知函数f (x )=3sin ωx -cos ωx (ω>0)的最小正周期为2π,则f (x )的单调递增区间是( )A.⎣⎡⎦⎤2k π-π6,2k π+π6(k ∈Z ) B.⎣⎡⎦⎤2k π-π3,2k π+2π3(k ∈Z ) C.⎣⎡⎦⎤2k π-2π3,2k π+π3(k ∈Z ) D.⎣⎡⎦⎤2k π-π6,2k π+5π6(k ∈Z )(2)(2019·全国卷Ⅰ)关于函数f (x )=sin|x |+|sin x |有下述四个结论: ①f (x )是偶函数;②f (x )在区间⎝⎛⎭⎫π2,π单调递增; ③f (x )在[-π,π]有4个零点;④f (x )的最大值为2.其中所有正确结论的编号是( ) A .①②④ B .②④ C .①④D .①③(3)(2019·江西省五校协作体试题)若函数f (x )=sin ⎝⎛⎭⎫ωx +π6(ω>0)在区间(π,2π)内没有最值,则ω的取值范围是( )A.⎝⎛⎦⎤0,112∪⎣⎡⎦⎤14,23 B .⎝⎛⎦⎤0,16∪⎣⎡⎦⎤13,23 C.⎣⎡⎦⎤14,23 D .⎣⎡⎦⎤13,231.(2019·全国卷Ⅱ)下列函数中,以π2为周期且在区间⎝⎛⎭⎫π4,π2单调递增的是( ) A .f (x )=|cos 2x | B .f (x )=|sin 2x | C .f (x )=cos|x | D .f (x )=sin|x |2.(2019·广东六校第一次联考)将函数f (x )=cos 2x 的图象向右平移π4个单位长度后得到函数g (x )的图象,则g (x )具有性质( )A .最大值为1,图象关于直线x =π2对称B .为奇函数,在⎝⎛⎭⎫0,π4上单调递增 C .为偶函数,在⎝⎛⎭⎫-3π8,π8上单调递增 D .周期为π,图象关于点⎝⎛⎭⎫3π8,0对称3.已知f (x )=sin(ωx +φ)(ω>0,|φ|<π)在区间[2,4]上单调,且f (2)=1,f (4)=-1,则ω=________,f (x )在区间⎣⎡⎭⎫12,3上的值域是________.考点四 三角函数图象与性质的综合应用[例4] (2019·浙江高考)设函数f (x )=sin x ,x ∈R . (1)已知θ∈[0,2π),函数f (x +θ)是偶函数,求θ的值;(2)求函数y =⎣⎡⎦⎤f ⎝⎛⎭⎫x +π122+⎣⎡⎦⎤f ⎝⎛⎭⎫x +π42的值域.1.已知函数f (x )=sin 2x +3sin x cos x . (1)求f (x )的最小正周期;(2)若f (x )在区间⎣⎡⎦⎤-π3,m 上的最大值为32,求m 的最小值.2.已知函数f (x )=2sin ωx cos ωx +23sin 2ωx -3(ω>0)的最小正周期为π. (1)求函数f (x )的单调递增区间;(2)将函数f (x )的图象向左平移π6个单位长度,再向上平移1个单位长度,得到函数y =g (x )的图象,若y =g (x )在[0,b ](b >0)上至少含有10个零点,求b 的最小值.3. (2019·全国卷Ⅲ)设函数f (x )=sin ⎝⎛⎭⎫ωx +π5(ω>0),已知f (x )在[0,2π]有且仅有5个零点,下述四个结论:①f (x )在(0,2π)有且仅有3个极大值点; ②f (x )在(0,2π)有且仅有2个极小值点; ③f (x )在⎝⎛⎭⎫0,π10单调递增; ④ ω的取值范围是⎣⎡⎭⎫125,2910. 其中所有正确结论的编号是( ) A .①④ B .②③ C .①②③ D .①③④【课后专项练习】A 组一、选择题1.(2019·广东省七校联考)函数f (x )=tan ⎝⎛⎭⎫x 2-π6的单调递增区间是( )A.⎣⎡⎦⎤2k π-2π3,2k π+4π3,k ∈ZB.⎝⎛⎭⎫2k π-2π3,2k π+4π3,k ∈ZC.⎣⎡⎦⎤4k π-2π3,4k π+4π3,k ∈ZD.⎝⎛⎭⎫4k π-2π3,4k π+4π3,k ∈Z2.(2019·全国卷Ⅱ)若x 1=π4,x 2=3π4是函数f (x )=sin ωx (ω>0)两个相邻的极值点,则ω=( )A .2B .32C .1D .123.(2019·江西七校第一次联考)函数y =sin ⎝⎛⎭⎫2x -π6的图象与函数y =cos ⎝⎛⎭⎫x -π3的图象( ) A .有相同的对称轴但无相同的对称中心 B .有相同的对称中心但无相同的对称轴 C .既有相同的对称轴也有相同的对称中心 D .既无相同的对称中心也无相同的对称轴4.(2019·蓉城名校第一次联考)若将函数g (x )图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再向左平移π6个单位长度得到f (x )的图象,已知函数f (x )=A sin(ωx +φ)⎝⎛⎭⎫A >0,ω>0,|φ|<π2的部分图象如图所示,则( )A .g (x )=sin ⎝⎛⎭⎫4x +π3 B .g (x )=sin ⎝⎛⎭⎫4x +2π3 C .g (x )=sin 4xD .g (x )=cos x5.(2019·湖南省湘东六校联考)已知函数f (x )=|sin x |·|cos x |,则下列说法不正确的是( )A .f (x )的图象关于直线x =π2对称B .f (x )的最小正周期为π2C .(π,0)是f (x )图象的一个对称中心D .f (x )在区间⎣⎡⎦⎤π4,π2上单调递减6.(2019·昆明市质量检测)将函数y =sin ⎝⎛⎭⎫2x -π4的图象向左平移π4个单位长度,所得图象对应的函数在区间[-m ,m ]上单调递增,则m 的最大值为( )A.π8 B.π4 C.3π8 D.π2二、填空题7.(2019·广东揭阳检测改编)已知f (x )=sin ⎣⎡⎦⎤π3(x +1)-3cos ⎣⎡⎦⎤π3(x +1),则f (x )的最小正周期为________,f (1)+f (2)+…+f (2 019)=________.8.(2019·天津高考改编)已知函数f (x )=A sin(ωx +φ)(A >0,ω>0,|φ|<π)是奇函数,将y =f (x )的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),所得图象对应的函数为g (x ).若g (x )的最小正周期为2π,且g ⎝⎛⎭⎫π4=2,则f ⎝⎛⎭⎫3π8=________.9.(2019·福州模拟)已知函数f (x )=sin 2x +2sin 2x -1在[0,m ]上单调递增,则m 的最大值是________.三、解答题10.设函数f (x )=sin ⎝⎛⎭⎫ωx -π6+sin ⎝⎛⎭⎫ωx -π2,其中0<ω<3.已知f ⎝⎛⎭⎫π6=0. (1)求ω;(2)将函数y =f (x )的图象上各点的横坐标伸长为原来的2倍(纵坐标不变),再将得到的图象向左平移π4个单位,得到函数y =g (x )的图象,求g (x )在⎣⎡⎦⎤-π4,3π4上的最小值.11.已知m =⎝⎛⎭⎫sin ⎝⎛⎭⎫x -π6,1,n =(cos x,1). (1)若m ∥n ,求tan x 的值;(2)若函数f (x )=m ·n ,x ∈[0,π],求f (x )的单调递增区间.12.已知函数f (x )=cos x (23sin x +cos x )-sin 2x .(1)求函数f (x )的最小正周期;(2)若当x ∈⎣⎡⎦⎤0,π2时,不等式f (x )≥m 有解,求实数m 的取值范围.B 组1.已知向量m =(2sin ωx ,sin ωx ),n =(cos ωx ,-23sin ωx )(ω>0),函数f (x )=m ·n +3,直线x =x 1,x =x 2是函数y =f (x )的图象的任意两条对称轴,且|x 1-x 2|的最小值为π2.(1)求ω的值;(2)求函数f (x )的单调递增区间.2.已知函数f (x )=3sin 2ωx +cos 4ωx -sin 4ωx +1(0<ω<1),若点⎝⎛⎭⎫-π6,1是函数f (x )图象的一个对称中心.(1)求f (x )的解析式,并求距y 轴最近的一条对称轴的方程; (2)先列表,再作出函数f (x )在区间[-π,π]上的图象.3.函数f (x )=A sin ⎝⎛⎭⎫ωx -π6+1(A >0,ω>0)的最小值为-1,其图象相邻两个最高点之间的距离为π.(1)求函数f (x )的解析式;(2)设α∈⎝⎛⎭⎫0,π2,f ⎝⎛⎭⎫α2=2,求α的值.4.已知函数f (x )=sin(ωx +φ)⎝⎛⎭⎫ω>0,0≤φ≤π2图象的相邻两对称轴之间的距离为π2,且在x =π8时取得最大值1. (1)求函数f (x )的解析式;(2)当x ∈⎣⎡⎦⎤0,9π8时,若方程f (x )=a 恰好有三个根,分别为x 1,x 2,x 3,求x 1+x 2+x 3的取值范围.第2讲 三角恒等变换与解三角形[全国卷3年考情分析](2)若无解答题,一般在选择题或填空题各有一题,主要考查三角恒等变换、解三角形,难度一般,一般出现在第4~9或第13~15题位置上.(3)若以解答题命题形式出现,主要考查三角函数与解三角形的综合问题,一般出现在解答题第17题(或18题)位置上,难度中等.考点一 三角恒等变换1.[化简求值]2sin 47°- 3sin 17°cos 17°=( )A .-3B .-1C .3D .12.[条件求值](2019·全国卷Ⅱ)已知α∈⎝⎛⎭⎫0,π2,2sin 2α=cos 2α+1,则sin α=( ) A.15 B .55C.33D .2553.[给值求角]已知sin α=55,sin(α-β)=-1010,α,β均为锐角,则角β等于( ) A.5π12 B .π3 C.π4D .π64.[与三角函数结合](2019·全国卷Ⅰ)函数f (x )=sin ⎝⎛⎭⎫2x +3π2-3cos x 的最小值为________.1.[与复数交汇](2019·洛阳尖子生第二次联考)若复数z =⎝⎛⎭⎫cos θ-45+⎝⎛⎭⎫sin θ-35i 是纯虚数(i 为虚数单位),则tan ⎝⎛⎭⎫θ-π4的值为( ) A .-7 B .-17C .7D .-7或-172.[与不等式交汇]已知tan 2α=34,α∈⎝⎛⎭⎫-π2,π2,函数f (x )=sin(x +α)-sin(x -α)-2sin α,且对任意的实数x ,不等式f (x )≥0恒成立,则sin ⎝⎛⎭⎫α-π4的值为( ) A .-255B .-55C .-235D .-353.[与向量交汇]设向量a =(cos α,-1),b =(2,sin α),若a ⊥b ,则tan ⎝⎛⎭⎫α-π4=________.考点二 利用正、余弦定理解三角形 题型一 利用正、余弦定理进行边、角计算[例1] (2019·全国卷Ⅰ)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .设(sin B -sin C )2=sin 2A-sin B sin C . (1)求A ;(2)若2a +b =2c ,求sin C .题型二 利用正、余弦定理进行面积计算[例2] (2019·全国卷Ⅲ)△ABC 的内角A ,B ,C 对边分别为a ,b ,c ,已知a sin A +C2=b sin A .(1)求B ;(2)若△ABC 为锐角三角形,且c =1,求△ABC 面积的取值范围.题型三 正、余弦定理的实际应用[例3] 如图,为了估测某塔的高度,在同一水平面的A ,B 两点处进行测量,在点A 处测得塔顶C 在西偏北20°的方向上,仰角为60°;在点B 处测得塔顶C 在东偏北40°的方向上,仰角为30°.若A ,B 两点相距130 m ,则塔的高度CD =________m.1.(2019·全国卷Ⅰ)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知a sin A -b sin B =4c sin C ,cos A =-14,则bc =( )A .6B .5C .4D .32.(2019·天津高考)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .已知b +c =2a,3c sinB =4a sinC .(1)求cos B 的值; (2)求sin ⎝⎛⎭⎫2B +π6的值.3.(2019·广东六校第一次联考)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,已知b 2+c 2-a 2=ac cos C +c 2cos A .(1)求A ;(2)若△ABC 的面积S △ABC =2534,且a =5,求sin B +sin C .考点三 解三角形的综合问题题型一 与平面几何的综合问题[例4] (2019·洛阳尖子生第二次联考)如图,在平面四边形ABCD 中,∠ABC 为锐角,AD ⊥BD ,AC 平分∠BAD ,BC =23,BD =3+6,△BCD 的面积S =3(2+3)2.(1)求CD ; (2)求∠ABC .题型二 与三角函数的交汇问题[例5] 如图,在△ABC 中,三个内角B ,A ,C 成等差数列,且AC =10,BC =15.(1)求△ABC 的面积;(2)已知平面直角坐标系xOy 中点D (10,0),若函数f (x )=M sin(ωx +φ)⎝⎛⎭⎫M >0,ω>0,|φ|<π2的图象经过A ,C ,D 三点,且A ,D 为f (x )的图象与x 轴相邻的两个交点,求f (x )的解析式.1.(2019·福州模拟)如图,在△ABC 中,M 是边BC 的中点,cos ∠BAM =5714,cos ∠AMC=-277.(1)求B ;(2)若AM =21,求△AMC 的面积.2.已知函数f (x )=cos 2x +3sin(π-x )cos(π+x )-12.(1)求函数f (x )在[0,π]上的单调递减区间;(2)在锐角△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,已知f (A )=-1,a =2,b sin C =a sin A ,求△ABC 的面积.3.为了应对日益严重的气候问题,某气象仪器科研单位研究出一种新的“弹射型”气候仪器,这种仪器可以弹射到空中进行气候观测.如图所示,A ,B ,C 三地位于同一水平面上,这种仪器在C 地进行弹射实验,观测点A ,B 两地相距100 m ,∠BAC =60°,在A 地听到弹射声音的时间比B 地晚217s ,在A 地测得该仪器至最高点H 处的仰角为30°.(1)求A ,C 两地间的距离;(2)求这种仪器的垂直弹射高度HC .(已知声音的传播速度为340 m/s)【课后通关练习】A 组一、选择题1.(2019·全国卷Ⅰ)tan 255°=( ) A .-23 B .-2+3 C .2-3 D .2+32.(2019·重庆市学业质量调研)已知15sin θ=cos(2π-θ),则tan 2θ=( ) A .-157 B .157 C .-158D .1583.(2019·湖北省5月冲刺)已知α为锐角,β为第二象限角,且cos(α-β)=12,sin(α+β)=12,则sin(3α-β)=( )A .-12B .12C .-32D .324.(2019·湖南省湘东六校联考)若△ABC 的三个内角满足6sin A =4sin B =3sin C ,则△ABC 是( )A .锐角三角形B .直角三角形C .钝角三角形D .以上都有可能5.(2019·长春市质量监测(一))在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,若b =a cos C +12c ,则角A 等于( )A .60°B .120°C .45°D .135°6.已知台风中心位于城市A 东偏北α(α为锐角)的150千米处,以v 千米/时沿正西方向快速移动,2.5小时后到达距城市A 西偏北β(β为锐角)的200千米处,若cos α=34cos β,则v =( )A .60B .80C .100D .125二、填空题7.(2019·浙江高考)在△ABC 中,∠ABC =90°,AB =4,BC =3,点D 在线段AC 上.若∠BDC =45°,则BD =________,cos ∠ABD =________.8.(2019·开封市定位考试)已知△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,△ABC 的面积为43,且2b cos A +a =2c ,a +c =8,则其周长为________.9.(2019·安徽五校联盟第二次质检)如图,在平面四边形ABCD 中,AD =2,sin ∠CAD =2114,3AC sin ∠BAC +BC cos B =2BC ,且B +D =π,则△ABC 的面积的最大值为________.三、解答题10.(2019·北京高考)在△ABC 中,a =3,b -c =2,cos B =-12.(1)求b ,c 的值; (2)求sin(B -C )的值.11.(2019·长沙模拟)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且a 2+c 2-b 2=ab cos A +a 2cos B .(1)求B ;(2)若b =27,tan C =32,求△ABC 的面积.12.(2019·武汉部分学校调研)已知锐角三角形ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,sin 2B =sin 2A +sin 2C -3sin A sin C .(1)求B ;(2)求sin A +cos C 的取值范围.B 组1.(2019·重庆市七校联合考试)如图,在平面四边形ABCD 中,E 为AB 边上一点,连接CE ,DE .CB =2,BE =1,∠B =∠CED =2π3.(1)求sin ∠AED 的值; (2)若AB ∥CD ,求CD 的长.2.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且sin A sin B =cos 2C2,(c -3b )sin C=(a +b )(sin A -sin B ).(1)求A和B;(2)若△ABC的面积为3,求BC边上的中线AM的长.3.(2019·昆明质量检测)△ABC的内角A,B,C所对的边分别为a,b,c,已知2(c-a cos B)=3b.(1)求A;(2)若a=2,求△ABC面积的取值范围.4.(2019·福州市质量检测)△ABC的内角A,B,C的对边分别为a,b,c.若角A,B,C成等差数列,且b=3 2.(1)求△ABC的外接圆直径;(2)求a+c的取值范围.。

2020高考数学核心突破《专题3 三角函数、解三角形与平面向量 第2讲 三角变换与解三角形》

2020高考数学核心突破《专题3 三角函数、解三角形与平面向量 第2讲 三角变换与解三角形》

专题三 第2讲1.已知函数f (x )=2cos 2x -sin ⎝⎛⎭⎫2x -7π6. (1)求函数f (x )的最大值,并写出f (x )取最大值时x 的取值集合;(2)已知△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若f (A )=32,b +c =2,求实数a的取值范围.解析 (1)f (x )=(1+cos 2x )-⎝⎛⎭⎫sin 2x cos 7π6-cos 2x sin 7π6 =1+32sin 2x +12cos 2x =1+sin ⎝⎛⎭⎫2x +π6, ∴函数f (x )的最大值为2,当且仅当sin ⎝⎛⎭⎫2x +π6=1, 即2x +π6=2k π+π2,k ∈Z ,即x =k π+π6,k ∈Z 时取到.∴函数f (x )取最大值时x 的取值集合为x ⎪⎪⎭⎬⎫x =k π+π6,k ∈Z . (2)由题意,f (A )=sin ⎝⎛⎭⎫2A +π6+1=32, 化简得sin ⎝⎛⎭⎫2A +π6=12. ∵A ∈(0,π),∴2A +π6∈⎝⎛⎭⎫π6,13π6, ∴2A +π6=5π6,∴A =π3.在△ABC 中,a 2=b 2+c 2-2bc cos π3=(b +c )2-3bc .由b +c =2,知bc ≤⎝⎛⎭⎪⎫b +c 22= 1, 即a 2≥1,当b =c =1时取等号. 又由b +c >a ,得a <2, ∴a 的取值范围是[1,2).2.已知a ,b ,c 分别是△ABC 的内角A ,B ,C 所对的边,且c =2,C =π3.(1)若△ABC 的面积等于3,求a ,b ; (2)若sin C +sin(B -A )=2sin 2A ,求A 的值. 解析 (1)∵c =2,C =π3,∴由余弦定理得4=a 2+b 2-2ab cos π3=a 2+b 2-ab .∵△ABC 的面积等于3, ∴12ab sin C =3,∴ab =4, 联立⎩⎪⎨⎪⎧ a 2+b 2-ab =4,ab =4,解得⎩⎪⎨⎪⎧a =2,b =2.(2)∵sin C +sin(B -A )=2sin 2A , ∴sin(B +A )+sin(B -A )=4sin A cos A , ∴sin B cos A =2sin A cos A . ①当cos A =0时,A =π2;②当cos A ≠0时,sin B =2sin A ,由正弦定理得b =2a ,联立⎩⎪⎨⎪⎧a 2+b 2-ab =4,b =2a ,解得⎩⎨⎧a =233,b =433,∴b 2=a 2+c 2,∵C =π3,∴A =π6.综上所述,A =π2或A =π6.3.(2017·浙江重点中学联考)已知△ABC 的三个内角A ,B ,C 的对边分别为a ,b ,c . (1)若C =2B ,求证:cos A =3cos B -4cos 3B ;(2)若b sin B -c sin C =a ,且△ABC 的面积S =b 2+c 2-a 24,求角B .解析 (1)证明:∵C =2B ,∴A =π-3B , ∴cos A =cos(π-3B )=-cos(B +2B ) =-cos B cos 2B +sin B sin 2B =-cos B (2cos 2B -1)+2sin 2B cos B=cos B -2cos 3B +2cos B (1-cos 2B )=3cos B -4cos 3B , ∴cos A =3cos B -4cos 3B . (2)在△ABC 中,∵S =b 2+c 2-a 24,∴S =b 2+c 2-a 24=12bc sin A .由余弦定理知b 2+c 2-a 24=12bc cos A ,∴12bc cos A =12bc sin A ,∴tan A =1, 而A ∈(0,π),∴A =π4.∵b sin B -c sin C =a ,由正弦定理,得 sin 2B -sin 2C =sin A =22, ∴cos 2C -cos 2B = 2.∵2C =2π-2A -2B =3π2-2B ,∴-sin 2B -cos 2B =2,∴sin ⎝⎛⎭⎫2B +π4=-1. ∵B ∈(0,π),∴2B +π4=3π2,∴B =5π8.4.(2017·武汉武昌五月调研)已和函数f (x )=sin(ωx +φ)⎝⎛⎭⎫ω>0,0<φ<π2的图象经过点⎝⎛⎭⎫0,12,且相邻两条对称轴的距离为π2.(1)求函数f (x )的解析式及其在[0,π]上的单调递增区间;(2)在△ABC 中,a ,b ,c 分别是内角A ,B ,C 的对边,若f ⎝⎛⎭⎫A 2-cos A =12,bc =1,b +c =3,求a 的值.解析 (1)将⎝⎛⎭⎫0,12代入f (x )的解析式,得sin φ=12. 又因为0<φ<π2,所以φ=π6.又因为最小正周期T =π2×2=π,所以ω=2.所以函数f (x )的解析式为f (x )=sin ⎝⎛⎭⎫2x +π6. 因为x ∈[0,π], 所以π6≤2x +π6≤13π6,所以2x +π6∈⎣⎡⎦⎤π6,π2或2x +π6∈⎣⎡⎦⎤3π2,13π6时,f (x )递增,即x ∈⎣⎡⎦⎤0,π6或x ∈⎣⎡⎦⎤2π3,π时,f (x )递增.所以函数f (x )在[0,π]上的单调递增区间是⎣⎡⎦⎤0,π6,⎣⎡⎦⎤2π3,π. (2)由(1)知f ⎝⎛⎭⎫A 2=sin ⎝⎛⎭⎫A +π6,代入已知等式得 sin ⎝⎛⎭⎫A +π6-cos A =32sin A +12cos A -cos A =32sin A -12cos A =sin ⎝⎛⎭⎫A -π6=12, 所以A -π6=π6或5π6,即A =π3或A =π(舍去).又因为bc =1,b +c =3,由余弦定理,得a 2=b 2+c 2-2bc ·cos A =b 2+c 2-bc =(b +c )2-3bc =6,所以a = 6. 5.(2018·山东青岛模拟)在△ABC 中,边a ,b ,c 的对角分别为A ,B ,C ,且b =4,A =π3,面积S =2 3. (1)求a 的值;(2)设f (x )=2(cos C sin x -cos A cos x ),将f (x )图象上所有点的横坐标变为原来的12(纵坐标不变)得到g (x )的图象,求g (x )的单调增区间.解析 (1)在△ABC 中,∵S =12bc sin A ,∴23=12×4×c ×32,∴c =2.∴a =b 2+c 2-2bc cos A =16+4-2×4×2×12=2 3.(2)∵a sin A =b sin B ,即2332=4sin B,∴sin B =1,又0<B <π,∴B =π2,∴C =π6,∴f (x )=2(cos C sin x -cos A cos x )=2sin ⎝⎛⎭⎫x -π6, 将f (x )图象上所有点的横坐标变为原来的12(纵坐标不变),得到的图象对应的函数解析式为g (x )=2sin ⎝⎛⎭⎫2x -π6, 令2k π-π2≤2x -π6≤2k π+π2(k ∈Z ),解得k π-π6≤x ≤k π+π3(k ∈Z ),故g (x )的单调增区间为⎣⎡⎦⎤k π-π6,k π+π3(k ∈Z ). 6.(2018·辽宁协作体一模)设△ABC 是锐角三角形,三个内角A ,B ,C 所对的边分别为a ,b ,c ,且(sin A -sin B )(sin A +sin B )=sin ⎝⎛⎭⎫π3+B sin ⎝⎛⎭⎫π3-B . (1)求角A 的值;(2)若AB →·AC →=12,a =27,求b ,c (其中b <c ).解析 (1)∵(sin A -sin B )(sin A +sin B )=sin ⎝⎛⎭⎫π3+B ·sin ⎝⎛⎭⎫π3-B , ∴sin 2A -sin 2B =⎝⎛⎭⎫32cos B +12sin B⎝⎛⎭⎫32cos B -12sin B ,即sin 2A =34cos 2B -14sin 2B +sin 2B=34(cos 2B +sin 2B )=34, ∵角A 为锐角△ABC 的内角,∴sin A >0,∴sin A =32,∴A =π3. (2)AB →·AC →=bc cos A =12,∴bc =24,又a 2=b 2+c 2-2bc cos A =(b +c )2-3bc =(27)2, ∴b +c =10,又∵b <c ,∴b =4,c =6.。

2020高考数学二轮专题复习 解答题答题策略

2020高考数学二轮专题复习 解答题答题策略

解答题答题策略【考纲解读】1.解答题应写出文字说明,演算步骤或证明过程.2.解答题包含的知识容量大、解题方法多、综合能力要求高,突出了中学数学的主要思想和方法,考查学生的能力与意识.【考点预测】预测今年各省市高考数学解答题,有以下几个特点:1.和前几年一样,虽略有差别,但总体上高考五至六个解答题的模式基本不变,分别为三角函数与平面向量、概率统计、立体几何、数列与不等式、解析几何、函数与导数及不等式.2.一般来说,前三题属于中低档题,第四题属中档偏难题,后两题属难题.其中,三角函数与平面向量、概率统计、立体几何在前三题中出现的概率较高,掌握这几类题的解法是大多数学生成功的关键。

【要点梳理】1.解答题主要内容有:三角函数与平面向量、概率统计、立体几何、数列与不等式、解析几何、函数与导数及不等式.2.解答策略:(1)审题要慢,解答要快.审题时,必须充分搞清题意,综合所有条件,提炼全部线索,形成整体认识;(2)确保运算准确,立足一次成功;(3)讲究书写规范,力争既对又全,这就要求考生在面对试题时, 要会而对,对而全,全而规范.(4)面对难题,讲究策略,争取多得分.解题过程在其中某一环节上卡住时,可以承接这一结论,往下推,或直接利用前面的结论做下面的(2)(3)问.总之,对高三学子来说:准确、规范、速度,高考必胜;刻苦、坚韧、自信,势必成功!【考点在线】考点一 三角函数与平面向量三角函数的解答题是每年的必考题目,主要通过三角恒等变换考查三角函数的求值、三角函数的性质及解三角形,可能与平面向量结合在一起命题。

试题呈现以下特点:(1)利用三角函数公式(同角三角函数基本关系式、诱导公式、两角和与差的三角函数等)求值;(2)通过升、降幂等恒等变形,将所给三角函数化为只含一种函数名的三角函数,然后研究三角函数的性质,如:单调性、奇偶性、周期性、对称性、最值等;(3)利用正、余弦定理及恒等变换解三角形;(4)与平面向量结合,利用向量的运算,将向量式转化为代数式,再进行有关的三角恒等变换。

2020版高三数学二轮复习(全国理)讲义:专题三第二讲三角恒等变换与解三角形

2020版高三数学二轮复习(全国理)讲义:专题三第二讲三角恒等变换与解三角形

[解析] 由题意S △ABC =12ab sin C =a2+b2-c24.即sin C =a2+b2-c22ab .由余弦定理可知sin C =cos C .即tan C =1.又C ∈(0.π).所以C =π4.3.(20xx·全国Ⅰ卷.11)已知角α的顶点为坐标原点.始边与x 轴的非负半轴重合.终边上有两点A ()1,a .B ()2,b .且cos2α=23.则||a -b =( B )A .15B .55C .255D .1[解析] 由cos2α=2cos 2α-1=23可得cos 2α=56=cos2αsin2α+cos2α=1tan2α+1.化简可得tan α=±55;当tan α=55时.可得a 1=55.b 2=55.即a =55.b =255.此时|a -b |=55;当tan α=-55时.仍有此结果.故|a -b |=55. 4.(20xx·天津卷.6)将函数y =sin ⎝ ⎛⎭⎪⎫2x +π5的图象向右平移π10个单位长度.所得图象对应的函数( A )A .在区间⎣⎢⎡⎦⎥⎤3π4,5π4上单调递增 B .在区间⎣⎢⎡⎦⎥⎤3π4,π上单调递减 C .在区间⎣⎢⎡⎦⎥⎤5π4,3π2上单调递增 D .在区间⎣⎢⎡⎦⎥⎤3π2,2π上单调递减 [解析] 选A .因为将函数y =sin ⎝ ⎛⎭⎪⎫2x +π5的图象向右平移π10个单位长度.得到函数y =sin2x 的图象. 用五点法作出草图.如图:从图中可以看出选项A 正确.其他都不正确.⎝ ⎛4-α=5.sin22+=4.+c=.则△7.(20xx·淮北二模)在△ABC 中.角A .B .C 的对边分别为a .b .c .若a 2=3b 2+3c 2-23bc sin A .则C 等于π6.[解析] 由余弦定理得a 2=b 2+c 2-2bc cos A . 所以b 2+c 2-2bc cos A =3b 2+3c 2-23bc sin A .3sin A -cos A =b2+c2bc .2sin(A -π6)=b2+c2bc ≥2.因此b =c .A -π6=π2⇒A =2π3.所以C =π-2π32=π6. 8.(20xx·长沙三模)在锐角△ABC 中.D 为BC 的中点.满足∠BAD +∠C =90°.则角B .C 的大小关系为B =C .(填“B <C ”“B =C ”或“B >C ”)[解析] 设∠BAD =α.∠CAD =β.因为∠BAD +∠C =90°.所以α=90°-C .β=90°-B . 因为D 为BC 的中点. 所以S △ABD =S △ACD . 所以12c ·AD sin α=12b ·AD sin β.所以c sin α=b sin β.所以c cos C =b cos B . 由正弦定理得.sin C cos C =sin B cos B .即sin2C =sin2B .所以2B =2C 或2B +2C =π. 因为△ABC 为锐角三角形.所以B =C .9.为了竖起一块广告牌.要制造三角形支架.如图.要求∠ACB =60°.BC 的长度大于1米.且AC 比AB 长0.5米.为了稳定广告牌.要求AC 越短越好.则AC 最短为2+3.[解析] 由题意设BC =x (x >1)米. AC =t (t >0)米.依题设AB =AC -0.5 =(t -0.5)米.在△ABC 中.由余弦定理得: AB 2=AC 2+BC 2-2AC ·BC cos60°.所以sin2A =2sin A cos A =1213. cos2A =1-2sin 2A =-513. 所以sin(2A +π4)=sin2A cos π4+cos2A sin π4=7226.B 组1.(20xx·福州三模)已知a .b .c 分别是△ABC 的内角A .B .C 所对的边.点M 为△ABC 的重心.若a MA →+b MB →+33c MC →=0.则C =( D )A .π4B .π2 C .5π6D .2π3[解析] ∵M 为△ABC 的重心.则MA →+MB →+MC →=0. ∴MA →=-MB →-MC →. ∵a MA →+b MB →+33c ·MC →=0.∴a ·(-MB →-MC →)+b MB →+33c ·MC →=0.即(b -a )·MB →+(33c -a )·MC →=0.∵MB →与MC →不共线. ∴b -a =0.32c -a =0.得a b33c =111.令a =1.b =1.c =3.则cos C =a2+b2-c22ab =1+1-32×1×1=-12.∴C =2π3.故选D .2.(20xx·××市一模)若sin(π6-α)=13.则cos(2π3+2α)=( A )。

2020版高三数学二轮复习(全国理)讲义:专题三第二讲三角恒等变换与解三角形

2020版高三数学二轮复习(全国理)讲义:专题三第二讲三角恒等变换与解三角形

高考考点考点解读[解析] 由题意S △ABC =12ab sin C =a2+b2-c24,即sin C =a2+b2-c22ab ,由余弦定理可知sin C =cos C ,即tan C =1,又C ∈(0,π),所以C =π4.3.(20xx·全国Ⅰ卷,11)已知角α的顶点为坐标原点,始边与x 轴的非负半轴重合,终边上有两点A ()1,a ,B()2,b ,且cos2α=23,则||a -b =( B ) A .15B .55C .255D .1[解析] 由cos2α=2cos 2α-1=23可得cos 2α=56=cos2αsin2α+cos2α=1tan2α+1,化简可得tan α=±55;当tan α=55时,可得a 1=55,b 2=55,即a =55,b =255,此时|a -b |=55;当tan α=-55时,仍有此结果,故|a -b |=55. 4.(20xx·天津卷,6)将函数y =sin ⎝ ⎛⎭⎪⎫2x +π5的图象向右平移π10个单位长度,所得图象对应的函数( A )A .在区间⎣⎢⎡⎦⎥⎤3π4,5π4上单调递增 B .在区间⎣⎢⎡⎦⎥⎤3π4,π上单调递减 C .在区间⎣⎢⎡⎦⎥⎤5π4,3π2上单调递增 D .在区间⎣⎢⎡⎦⎥⎤3π2,2π上单调递减 [解析] 选A .因为将函数y =sin ⎝ ⎛⎭⎪⎫2x +π5的图象向右平移π10个单位长度,得到函数y=sin2x 的图象.用五点法作出草图,如图:从图中可以看出选项A 正确,其他都不正确.⎝ ⎛4-α=5,则sin22 .=4+2c=R,则△9.为了竖起一块广告牌,要制造三角形支架,如图,要求∠ACB =60°,BC 的长度大于1米,且AC 比AB 长0.5米,为了稳定广告牌,要求AC 越短越好,则AC 最短为2+3.[解析] 由题意设BC =x (x >1)米, AC =t (t >0)米,依题设AB =AC -0.5 =(t -0.5)米,在△ABC 中,由余弦定理得: AB 2=AC 2+BC 2-2AC ·BC cos60°, 即(t -0.5)2=t 2+x 2-tx ,化简并整理得: t =x2-0.25x -1(x >1),即t =x -1+0.75x -1+2,因为x >1,故t =x -1+0.75x -1+2≥2+3, 当且仅当x =1+32时取等号,此时取最小值2+3.10.(20xx·全国卷Ⅰ,17)在平面四边形ABCD 中,∠ADC =90°,∠A =45°,AB =2,BD =5.(1)求cos ∠ADB ; (2)若DC =22,求BC .[解析] (1)在△ABD 中,由正弦定理得BD sinA =AB sin ∠ADB. 由题设知,5sin45°=2sin ∠ADB ,所以sin ∠ADB =25. 由题意知,∠ADB <90°, 所以cos ∠ADB =1-225=235.∴a ·(-MB →-MC →)+b MB →+33c ·MC →=0.即(b -a )·MB →+(33c -a )·MC →=0,∵MB →与MC →不共线, ∴b -a =0,32c -a =0. 得a b33c =111,令a =1,b =1,c =3, 则cos C =a2+b2-c22ab =1+1-32×1×1=-12,∴C =2π3,故选D .2.(20xx·××市一模)若sin(π6-α)=13,则cos(2π3+2α)=( A ) A .-79B .79C .-29D .29[解析] ∵cos(2π3+2α)=-cos(π3-2α)=-[1-2sin 2(π6-α)]=-(1-29)=-79.3.(20xx·威海二模)已知等腰△ABC 满足AB =AC ,3BC =2AB ,点D 为BC 边上的一点且AD =BD ,则sin ∠ADB 的值为( C )A .36B .23C .223D .63[解析] 如图,设AB =AC =a ,AD =BD =b ,由3BC =2AB ,。

2020高考数学(理)二轮课件:高考解题之法

2020高考数学(理)二轮课件:高考解题之法
第5页
策略 2 和最值有关的问题 【例 2】 (1)设 f(x)=2sinωx 在-π3,4π上的最小值为-2,求 ω 的取值范 围; (2)为了使函数 y=sinωx(ω>0)在区间[0,1]上至少出现 50 次最大值,求 ω 的最小值。
【解】 (1)若 ω>0,则由 x∈-π3,π4⇒-π3ω≤ωx≤4πω。 因为 f(x)=2sinωx 在-π3,4π上的最小值为-2, 所以-3πω≤-π2⇒ω≥32。
第24页
【例 1】 在等腰梯形 ABCD 中,已知 AB∥DC,AB=2,BC=1,∠ ABC=60°。点 E 和 F 分别在线段 BC 和 DC 上,且B→E=23B→C,D→F=16D→C,
→→ 则AE·AF的值为________。
【解析】
第25页
→→
→→
先取基底并表示向量AE,AF,再利用数量积运算求解。取AB,AD为一组基
由对称轴和零点可得- π4ωπ4+ωφ+=φ= k2πk+1π2π,
⇒ω=2k+1,k∈Z。若 ω=11,φ=-π4, 此时 f(x)=sin11x-4π,在1π8,34π4递增,
第9页
在34π4,356π递减,不满足 f(x)在1π8,53π6单调。 若 ω=9,φ=π4,此时 f(x)=sin9x+π4,满足 f(x)在1π8,53π6单调,所 以 ωmax=9。
【解】 因为 f(x)=sinωx-cosωx= 2sinωx-4π, 则T2=ωπ ≥3π-2π⇒ω≤1。 由 ωx-π4=kπ+2π⇒f(x)的对称轴为 x=k+ω43π(k∈Z)。 由题意 x1=k+ω34π≤2π 且 x2=k+1ω+34π≥3π⇒2k+83≤ω≤k3+172,
考前提分必备 高考解题之法 探寻解题之道 追根解题之本

2020年高考数学理科二轮复习考情分析与核心整合学案:3.3三角变换与解三角形 Word版含解析

2020年高考数学理科二轮复习考情分析与核心整合学案:3.3三角变换与解三角形 Word版含解析

第3讲 三角变换与解三角形考点1 三角恒等变换1.三角求值“三大类型”“给角求值”、“给值求值”、“给值求角”.2.三角函数恒等变换“四大策略”(1)常值代换:特别是“1”的代换,1=sin 2θ+cos 2θ=tan45°等;(2)项的分拆与角的配凑:如sin 2α+2cos 2α=(sin 2α+cos 2α)+cos 2α,α=(α-β)+β等;(3)降次与升次:正用二倍角公式升次,逆用二倍角公式降次;(4)弦、切互化:一般是切化弦.[例1] (1)[2019·全国卷Ⅱ]已知α∈⎝ ⎛⎭⎪⎫0,π2,2sin 2α=cos 2α+1,则sin α=( )A.15B.55C.33D.255(2)[2019·天津南开大学附属中学月考]已知sin α=55,sin β=1010,且α,β为锐角,则α+β为( )A.π4B.π4或3π4C.3π4D.π3【解析】 (1)本题主要考查同角三角函数的基本关系、二倍角公式,意在考查考生的逻辑思维能力、运算求解能力,考查的核心素养是逻辑推理、数学运算.由2sin 2α=cos 2α+1,得4sin αcos α=1-2sin 2α+1,即2sin αcos α=1-sin 2α.因为α∈⎝ ⎛⎭⎪⎫0,π2,所以cos α=1-sin 2α,所以2sin α1-sin 2α=1-sin 2α,解得sin α=55,故选B.(2)∵sin α=55,sin β=1010,且α,β为锐角,∴cos α=255,cos β=31010,∴cos(α+β)=255×31010-55×1010=22,又0<α+β<π,∴α+β=π4.故选A.【答案】(1)B(2)A化简三角函数式的规律规律解读一角一看“角”,这是最重要的一环,通过角之间的差别与联系,把角进行合理地拆分,从而正确使用公式二名二看“函数名称”,看函数名称之间的差异,从而确定使用的公式,常见的有“弦切互化”三结构三看“结构特征”,分析结构特征,找到变形的方向,常见的有“遇到分式要通分”,“遇根式化被开方式为完全平方式”等温馨(1)常用技巧:弦切互化,异名化同提醒 名,异角化同角,降幂或升幂,“1”的代换等.(2)根式的化简常常需要升幂去根号,在化简过程中注意角的范围,以确定三角函数值的正负 『对接训练』1.[2019·山东济南长清月考]若2cos 2θcos ⎝ ⎛⎭⎪⎫π4+θ=3sin 2θ,则sin2θ=( ) A.13 B.23C .-23D .-13解析:通解 ∵2cos 2θcos ⎝ ⎛⎭⎪⎫π4+θ=3sin 2θ,∴2sin ⎝ ⎛⎭⎪⎫π2+2θcos ⎝ ⎛⎭⎪⎫π4+θ=22sin ⎝ ⎛⎭⎪⎫π4+θ=3sin 2θ,∴22sin ⎝ ⎛⎭⎪⎫π4+θ=-3cos ⎝ ⎛⎭⎪⎫2θ+π2,∴23sin 2⎝ ⎛⎭⎪⎫θ+π4-22sin ⎝ ⎛⎭⎪⎫θ+π4-3=0,得sin ⎝ ⎛⎭⎪⎫θ+π4=-66, ∴sin 2θ=-cos ⎝ ⎛⎭⎪⎫π2+2θ=2sin 2⎝ ⎛⎭⎪⎫π4+θ-1=-23.故选C.优解∵2cos 2θcos ⎝ ⎛⎭⎪⎫π4+θ=3sin 2θ,∴2(cos 2θ-sin 2θ)22(cos θ-sin θ)=3sin 2θ, ∴2(cos θ+sin θ)=3sin 2θ,∴3sin 22θ-4sin 2θ-4=0,得sin 2θ=-23.故选C.答案:C2.[2019·全国高考信息卷]若α为第二象限角,且sin 2α=sin ⎝ ⎛⎭⎪⎫α+π2cos(π-α),则2cos ⎝ ⎛⎭⎪⎫2α-π4的值为( )A .-15 B.15C.43 D .-43解析:∵sin 2α=sin ⎝ ⎛⎭⎪⎫α+π2cos(π-α),∴2sin αcos α=-cos 2α,∵α是第二象限角,∴cos α≠0,2sin α=-cos α,∴4sin 2α=cos 2α=1-sin 2α,∴sin 2α=15,∴2cos ⎝ ⎛⎭⎪⎫2α-π4=cos 2α+sin 2α=cos 2α-sin 2α+2sin αcos α=-sin 2 α=-15.故选A.答案:A考点2 利用正、余弦定理解三角形1.正弦定理及其变形在△ABC 中,a sin A =b sin B =c sin C =2R (R为△ABC 的外接圆半径).变形:a =2R sin A ,sin A =a 2R ,a :b :c =sin A :sin B :sin C 等.2.余弦定理及其变形在△ABC 中,a 2=b 2+c 2-2bc cos A ;变形:b 2+c 2-a 2=2bc cos A ,cos A =b 2+c 2-a 22bc. 3.三角形面积公式S △ABC =12ab sin C =12bc sin A =12ac sin B .[例2] (1)[2019·全国卷Ⅱ]△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .若b =6,a =2c ,B =π3,则△ABC 的面积为________;(2)[2019·江西南昌段考]在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,若a sin B cos C +c sin B cos A =12b ,且a >b ,则B 等于( )A.5π6B.π3C.2π3D.π6【解析】 (1)本题主要考查余弦定理、三角形的面积公式,意在考查考生的逻辑思维能力、运算求解能力,考查方程思想,考查的核心素养是逻辑推理、数学运算.解法一 因为a =2c ,b =6,B =π3,所以由余弦定理b 2=a 2+c 2-2ac cos B ,得62=(2c )2+c 2-2×2c ×c cos π3,得c =23,所以a =43,所以△ABC 的面积S =12ac sin B=12×43×23×sin π3=6 3.解法二 因为a =2c ,b =6,B =π3,所以由余弦定理b 2=a 2+c 2-2ac cos B ,得62=(2c )2+c 2-2×2c ×c cos π3,得c =23,所以a =43,所以a 2=b 2+c 2,所以A =π2,所以△ABC 的面积S =12×23×6=6 3.(2)因为a sin B cos C +c sin B cos A =12b ,所以由正弦定理得sin A sin B cos C +sinC sin B cos A =12sin B ,又sin B ≠0,所以sinA cos C +cos A sin C =12,即sin(A +C )=12,因为A +C =π-B ,所以sin(π-B )=12,即sin B =12.又a >b ,所以A >B ,所以B 为锐角,所以B =π6.故选D.【答案】 (1)63 (2)D(1)正、余弦定理的适用条件①“已知两角和一边”或“已知两边和其中一边的对角”应采用正弦定理. ②“已知两边和这两边的夹角”或“已知三角形的三边”应采用余弦定理.(2)三角形面积公式的应用原则①对于面积公式S =12ab sin C =12ac sin B =12bc sin A,一般是已知哪一个角就使用含哪个角的公式.②与面积有关的问题,一般要利用正弦定理或余弦定理进行边和角的互化. 『对接训练』3.[2019·广西南宁摸底联考]在△ABC 中,角A,B,C的对边分别为a,b,c,已知c=3,C=π3,sin B=2sin A,则△ABC的周长是()A.3 3 B.2+ 3C.3+ 3 D.4+ 3解析:因为sin B=2sin A,所以由正弦定理得b=2a,由余弦定理得c2=a2+b2-2ab cos C=a2+4a2-2a2=3a2,又c=3,所以a=1,b=2.故△ABC的周长是3+ 3.故选C.答案:C4.[2019·福建泉州阶段检测]已知△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若cos C =223,b cos A +a cos B =2,则△ABC 的外接圆面积为( )A .4πB .8πC .9πD .36π解析:由余弦定理得b ·b 2+c 2-a 22bc +a ·a 2+c 2-b 22ac =2,即b 2+c 2-a 2+a 2+c 2-b 22c=2,得c =2,由cos C =223得sin C =13.设△ABC 外接圆的半径为R ,由正弦定理可得2R =c sin C =6,得R =3,所以△ABC的外接圆面积为πR 2=9π.故选C.答案:C考点3 正、余弦定理的综合应用 [例3] [2019·全国卷Ⅲ]△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知a sin A +C 2=b sin A .(1)求B ;(2)若△ABC 为锐角三角形,且c =1,求△ABC 面积的取值范围.【解析】 本题主要考查正弦定理、余弦定理、三角形的面积公式等知识,考查考生的化归与转化能力、运算求解能力,考查的核心素养是数学运算.(1)由题设与正弦定理得sin A sin A +C 2=sin B sin A .因为sin A ≠0,所以sin A +C 2=sin B .由A +B +C =180°,可得sin A +C 2=cos B 2,故cos B 2=2sin B 2cos B 2.因为cos B 2≠0,故sin B 2=12.又B 是三角形内角,因此B =60°.(2)由题设及(1)知△ABC 的面积S △ABC=34a .由正弦定理得a =c sin A sin C =sin (120°-C )sin C =32tan C +12. 由于△ABC 为锐角三角形,故0°<A <90°,0°<C <90°.由(1)知A +C =120°,所以30°<C <90°,故12<a <2,从而38<S △ABC <32.因此,△ABC 面积的取值范围是⎝ ⎛⎭⎪⎫38,32.1.注意利用第(1)问中的结果:在题设条件下,如果第(1)问中的结果第(2)问能用得上,可以直接用,有些题目不用第(1)问中的结果甚至无法解决,如本题即是在第(1)问中的基础上求解.2.写全得分关键:在三角函数及解三角形类解答题中,应注意解题中的关键点,有则给分,无则不得分,所以在解答题时一定要写清得分关键点,如第(1)问中,没有将正弦定理表示出来的过程,则不得分;第(2)问中没有将面积表示出来则不得分. 『对接训练』5.[2019·湖南长沙调研]在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且c =2.(1)若A =π3,b =3,求sin C 的值;(2)若sin A cos 2B 2+sin B cos 2A 2=3sin C ,且△ABC 的面积S =252sin C ,求a 和b 的值.解析:(1)由余弦定理得a 2=b 2+c 2-2bc cos A =9+4-2×3×2×12=7,解得a=7.由正弦定理a sin A =c sin C ,得sin C =217. (2)由已知得sin A ×1+cos B 2+sin B ×1+cos A 2=3sin C , sin A +sin A cos B +sin B +sin B cos A =6sin C ,sin A +sin B +sin(A +B )=6sin C , sin A +sin B =5sin C ,所以由正弦定理得a +b =5c =10, ①又S =12ab sin C =252sin C ,所以ab =25 ②由①②得a =b =5.考点4 与解三角形有关的交汇问题[交汇创新]解三角形问题一直是近几年高考的重点,主要考查以斜三角形为背景求三角形的基本量、面积或判断三角形的形状,解三角形与平面向量、不等式、三角函数性质、三角恒等变换交汇命题成为高考的热点.[例4] [2019·石家庄质量检测]在△ABC 中,a ,b ,c 分别是角A ,B ,C 的对边,若c cos B +b cos C =2a cos A ,AM →=23AB →+13AC →,且AM =1,则b +2c 的最大值是________.【解析】 通解 ∵c cos B +b cos C =2a cos A ,∴sin C cos B +sin B cos C =2sin A cos A ,∴sin(C +B )=2sin A cos A ,∴sin A =2sin A cos A .∵0<A <π,∴sin A ≠0,∴cos A =12,∴A =π3.∵AM →=23AB →+13AC →,且AM =1,∴⎝ ⎛⎭⎪⎫23AB →+13AC →2=1,∴49c 2+29bc +19b 2=1,即4c 2+2bc +b 2=9.∵2bc ≤(b +2c )24,∴9=4c 2+2bc +b 2=(b+2c )2-2bc ≥34(b +2c )2,∴b +2c ≤23,当且仅当b =2c ,即⎩⎪⎨⎪⎧ b =3c =32时等号成立,∴b +2c 的最大值为2 3. 优解 ∵c cos B +b cos C =2a cos A ,∴a 2+c 2-b 22a +a 2+b 2-c 22a=2a cos A ,a =2a cos A ,∴cos A =12.∵0<A <π,∴A =π3.∵AM →=23AB →+13AC →,且AM =1,∴⎝ ⎛⎭⎪⎫23AB →+13AC →2=1,∴49c 2+29bc +19b 2=1,即4c 2+2bc +b 2=9.∵2bc ≤(b +2c )24,∴9=4c 2+2bc +b 2=(b +2c )2-2bc ≥34(b +2c )2,∴b +2c ≤23,当且仅当b =2c ,即⎩⎪⎨⎪⎧ b =3c =32时等号成立,∴b +2c 的最大值为2 3.利用解三角形的知识解决平面向量问题是高考在知识的交汇处命制试题的一个热点.解决这类试题的基本方法是根据正、余弦定理求出平面向量的模和夹角,从而达到利用解三角形求解平面向量数量积的目的.『对接训练』6.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,a cos B +b cos A =c sin C ,数列{a n }满足a n =(n 2+2n )sin(2n -1)C ,则数列{a n }的前100项和S 100=________.解析:由a cos B +b cos A =c sin C 得 sin A cos B +sin B cos A =sin 2C∴sin(A +B )=sin 2C∴sin C =sin 2C ,又∵0<C <π,sin C ≠0,∴sin C =1,∴C =π2,∴a n =(n 2+2n )sin (2n -1)π2, 即a n =[(n +1)2-1]sin (2n -1)π2,从而S 100=(22-1)-(32-1)+(42-1)-(52-1)+…+(1002-1)-(1012-1)=22-32+42-52+…+1002-1012=-(2+3+4+5+…+100+101)=-5 150.答案:-5 150课时作业8 三角变换与解三角形1.[2019·河南开封定位考试]已知cos ⎝ ⎛⎭⎪⎫π2+α=-13,则cos 2α的值为( ) A .-79 B.79C .-223 D.13解析:因为cos ⎝ ⎛⎭⎪⎫π2+α=-13,所以sin α=13,则cos 2α=1-2sin2α=1-2×⎝ ⎛⎭⎪⎫132=79.故选B.答案:B2.[2019·河北省级示范性高中联合体联考]已知tan α=2,且sin ⎝ ⎛⎭⎪⎫α+π4sin ⎝ ⎛⎭⎪⎫α-π4=m tan 2α,则m =( )A .-49B .-94C.49D.94解析:依题意,得sin ⎝ ⎛⎭⎪⎫α+π4sin ⎝ ⎛⎭⎪⎫α-π4=22(sin α+cos α)22(sin α-cos α)=sin α+cos αsin α-cos α=tan α+1tan α-1=3,tan 2α=2tan α1-tan 2α=-43,所以3=-43m ,解得m =-94.故选B.答案:B3.[2019·山东青岛一中月考]在△ABC中,若sin 2A +sin 2B <sin 2C ,则△ABC 的形状是( )A .锐角三角形B .直角三角形C .钝角三角形D .不能确定解析:∵sin 2A +sin 2B <sin 2C ,∴a 2+b 2<c 2,∴cos C =a 2+b 2-c 22ab <0,又0°<C <180°,∴C 为钝角,∴△ABC 是钝角三角形,故选C.答案:C4.[2019·黑龙江牡丹江一中月考]满足条件a =4,b =32,A =45°的三角形的个数是( )A .1B .2C .无数个D .不存在解析:由正弦定理得sin B =b sin A a =34,∵22<34<32,∴45°<B <60°或120°<B <135°,均满足A +B <180°,∴B 有两解,满足条件的三角形的个数是2,故选B.答案:B5.[2019·宁夏银川月考]已知锐角α,β满足cos α=255,sin(α-β)=-35,则sin β的值为( )A.255B.55C.2525D.525解析:∵α是锐角,β是锐角,cos α=255,sin(α-β)=-35,∴sin α=55,cos(α-β)=45,∴sin β=sin[α-(α-β)]=55×45-255×⎝ ⎛⎭⎪⎫-35=255.故选A. 答案:A6.[2019·广西两校第一次联考]已知sin(α+β)=12,sin(α-β)=13,则log 5⎝ ⎛⎭⎪⎫tan βtan α12=( ) A .-1 B .-2C.12 D .2解析:因为sin(α+β)=12,sin(α-β)=13,所以sin αcos β+cos αsin β=12,sin αcos β-cos αsin β=13,则sin αcos β=512,cos αsinβ=112,所以tan βtan α=15,于是log 5⎝ ⎛⎭⎪⎫tan βtan α12=log 5⎝ ⎛⎭⎪⎫1512=log 55-1=-1.故选A. 答案:A7.[2019·云南曲靖月考]一艘海轮从A 处出发,以每小时40海里的速度沿南偏东40°的方向直线航行,30分钟后到达B 处.在C 处有一座灯塔,海轮在A 处观察灯塔,其方向是南偏东70°,在B 处观察灯塔,其方向是北偏东65°,那么B ,C 两点间的距离是( )A .102海里B .103海里C .203海里D .202海里解析:画出示意图如图所示,易知,在△ABC 中,AB =20海里,∠CAB =30°,∠ACB =45°,根据正弦定理得BC sin 30°=AB sin 45°,解得BC =102(海里).故选A. 答案:A8.[2019·河北省级示范性高中联合体联考]△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若3sin A =2sin C ,b =5,cos C=-13,则a =( )A .3B .4C .6D .8解析:因为3sin A =2sin C ,由正弦定理得3a =2c ,设a =2k (k >0),则c =3k .由余弦定理得cos C =a 2+b 2-c 22ab =25-5k 220k =-13,解得k =3或k =-53(舍去),从而a =6.故选C.答案:C9.[2019·广东仲元中学期中]在△ABC 中,内角A,B,C所对的边分别为a,b,c,若a2+b2=2c2,则cos C的最小值为()A.32 B.22C.12D.-12解析:∵cos C=a2+b2-c22ab,a2+b2=2c2,∴cos C=a2+b24ab≥2ab4ab=12,当且仅当a=b时取等号,∴cos C的最小值为12,故选C.答案:C10.[2019·河北五校第二次联考]已知tan 2α=34,α∈⎝⎛⎭⎪⎫-π2,π2,函数f(x)=sin(x+α)-sin(x-α)-2sin α,且对任意的实数x ,不等式f (x )≥0恒成立,则sin ⎝ ⎛⎭⎪⎫α-π4的值为( ) A .-255 B .-55C .-235D .-35解析:由tan 2α=34,即2tan α1-tan 2α=34,求得tan α=13或tan α=-3.又对任意的实数x ,f (x )=sin(x +α)-sin(x -α)-2sin α=2sin α·(cos x -1)≥0恒成立,所以sin α≤0,则α∈⎝ ⎛⎦⎥⎤-π2,0,所以tan α=-3,sin α=-310,cos α=110.于是sin ⎝ ⎛⎭⎪⎫α-π4=sin αcos π4-cos α sin π4=-310×22-110×22=-255.故选A. 答案:A11.[2019·安徽五校联盟第二次质检]若α是锐角,且cos ⎝ ⎛⎭⎪⎫α+π6=35,则cos ⎝ ⎛⎭⎪⎫α+3π2=________. 解析:因为0<α<π2,所以π6<α+π6<2π3,又cos ⎝ ⎛⎭⎪⎫α+π6=35,所以sin ⎝⎛⎭⎪⎫α+π6=45,则cos ⎝ ⎛⎭⎪⎫α+3π2=sin α=sin ⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫α+π6-π6=sin ⎝ ⎛⎭⎪⎫α+π6cos π6-cos ⎝ ⎛⎭⎪⎫α+π6sin π6=45×32-35×12=43-310.答案:43-31012.[2019·陕西咸阳一中月考]在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,且a =7,b =2,A =π3,则△ABC 的面积为________.解析:由正弦定理得sin B =b sin A a =2sin π37=217,∵b <a ,∴B <A ,∴cos B =277,∴sin C =sin(A +B )=32114,∴△ABC 的面积为12ab sin C =332.答案:33213.[2019·陕西西安五中综合卷]已知tan(α+β)=13,tan β=12,则tan ⎝ ⎛⎭⎪⎫α+π4=________.解析:∵tan α=tan[(α+β)-β]=tan (α+β)-tan β1+tan (α+β)tan β=-17,∴tan ⎝ ⎛⎭⎪⎫α+π4=tan α+11-tan α=34. 答案:3414.[2019·湖南重点高中大联考]已知a ,b ,c 分别为锐角三角形ABC 内角A ,B ,C 的对边,ab sin C =c 2-(a -b )2,若锐角三角形ABC 的面积为4,则c 的最小值为________.解析:由已知条件及余弦定理,可得ab sin C =a 2+b 2-2ab cos C -(a 2-2ab +b 2)=2ab -2ab cos C ,即2cos C =2-sin C ,两边平方,得4(1-sin 2 C )=4-4sin C +sin 2C ,因为0°<C <90°,所以可得sin C =45,则cos C =35.所以12ab ×45=4,得ab =10,所以c 2=a 2+b 2-2ab cos C =a 2+b 2-2ab ×35≥2ab -65ab =45ab =8,当且仅当a =b 时取等号,所以c ≥22,即c 的最小值为2 2.答案:2 215.[2019·江苏宜兴月考]已知sin ⎝ ⎛⎭⎪⎫α+π4=7210,α∈⎝ ⎛⎭⎪⎫π4,π2. (1)求cos α;(2)求f (x )=cos 2x +52sin αsin x 的最值.解析:(1)∵sin ⎝ ⎛⎭⎪⎫α+π4=7210,α∈⎝ ⎛⎭⎪⎫π4,π2.∴cos ⎝ ⎛⎭⎪⎫α+π4=-210,∴cos α=cos ⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫α+π4-π4=-210×22+7210×22=35.(2)由(1)得cos α=35,∵α∈⎝ ⎛⎭⎪⎫π4,π2,∴sinα=45,∴f (x )=cos 2x +2sin x =-2sin2x +2sin x +1=-2⎝ ⎛⎭⎪⎫sin x -122+32,∴当sin x =12时,f (x )取得最大值32,当sin x =-1时,f (x )取得最小值-3. 16.[2019·辽宁六校协作体期中]设△ABC 的内角A ,B ,C 所对的边分别是a ,b ,c ,且c ·cos C 是a ·cos B 与b ·cos A 的等差中项.(1)求角C 的大小; (2)若c =2,求△ABC 的周长的最大值.解析:(1)由题意得a cos B +b cos A =2c cos C ,由正弦定理得sin A cos B +sin B cos A =2sin C cos C ,即sin(A +B )=sin C =2sinC cos C ,解得cos C =12,C 是三角形内角,所以C =60°.(2)方法一 由余弦定理得c 2=4=a 2+b 2-2ab cos C =a 2+b 2-ab =(a +b )2-3ab ≥(a +b )2-3⎝ ⎛⎭⎪⎪⎫a +b 22=(a +b )24,得a +b ≤4,当且仅当a =b 时等号成立,故△ABC 周长的最大值为6.方法二 由正弦定理得a sin A =bsin B =c sin C =433,故△ABC 的周长为a +b +c =433(sin A +sin B )+2=433[sin A +sin(A +60°)]+2=433⎝ ⎛⎭⎪⎫32sin A +32cos A +2=4sin(A +30°)+2.∵A ∈(0,120°),∴当A =60°时,△ABC 周长的最大值为6. 17.[2019·湖北武汉部分重点中学第二次联考]已知函数f (x )=cos 2x +23sin ⎝ ⎛⎭⎪⎫π2+x cos ⎝ ⎛⎭⎪⎫3π2+x -sin 2x . (1)当x ∈⎣⎢⎡⎦⎥⎤0,π2时,求f (x )的最大值和最小值;(2)若f (θ)=65,求tan 2⎝ ⎛⎭⎪⎫π6-θ的值. 解析:(1)依题意,知f (x )=cos 2x +3sin 2x =2sin ⎝ ⎛⎭⎪⎫2x +π6.因为x ∈⎣⎢⎡⎦⎥⎤0,π2,所以π6≤2x +π6≤7π6,所以-12≤sin ⎝ ⎛⎭⎪⎫2x +π6≤1,则-1≤2sin ⎝ ⎛⎭⎪⎫2x +π6≤2,于是当x ∈⎣⎢⎡⎦⎥⎤0,π2时,f (x )min =-1,f (x )max =2.(2)因为f (θ)=65,所以sin ⎝ ⎛⎭⎪⎫2θ+π6=35,所以cos ⎝ ⎛⎭⎪⎫π3-2θ=sin ⎣⎢⎡⎦⎥⎤π2-⎝ ⎛⎭⎪⎫π3-2θ=sin ⎝ ⎛⎭⎪⎫2θ+π6=35,于是tan 2⎝ ⎛⎭⎪⎫π6-θ=sin 2⎝ ⎛⎭⎪⎫π6-θcos 2⎝ ⎛⎭⎪⎫π6-θ=1-cos ⎝ ⎛⎭⎪⎫π3-2θ1+cos ⎝ ⎛⎭⎪⎫π3-2θ=1-351+35=14. 18.[2019·福州市质量检测]在Rt △ABC 中,∠C =90°,点D ,E 分别在边AB ,BC 上,CD =5,CE =3,且△EDC 的面积为3 6.(1)求边DE 的长;(2)若AD =3,求sin A 的值.解析:(1)如图所示,在△ECD 中,S △ECD =12CE ·CD sin ∠DCE =12×3×5×sin ∠DCE =36,所以sin ∠DCE =265, 因为0°<∠DCE <90°, 所以cos ∠DCE =1-⎝⎛⎭⎪⎫2652=15, 所以DE2=CE 2+CD2-2·CE ·CD ·cos ∠DCE =9+25-2×3×5×15=28,所以DE =27.(2)因为∠ACB =90°,所以sin ∠ACD=sin(90°-∠DCE )=cos ∠DCE =15,在△ADC中,ADsin∠ACD =CD sin A,即3 1 5=5sin A,所以sin A=13.。

高三数学(理)二轮复习:题型精讲第三讲解答题的解法三角函数.docx

高三数学(理)二轮复习:题型精讲第三讲解答题的解法三角函数.docx

高中数学学习材料马鸣风萧萧*整理制作第三讲解答题的解法(见学生用书P121)三角函数(见学生用书P121)从近几年高考数学三角试题来看,三角函数解答题通常放在第一个,总体难度不大,属容易题,要求每一位同学不失分.主要考查三大方面;1.三角变换.主要考查的内容有三角函数的恒等变形(用到的公式主要有二倍角公式,辅助角公式)已知三角函数值求角(要注意已知角的范围,有的是条件直接给出,有的是三角形的内角,要留心锐角三角形的内角的限制条件).同角三角函数的基本关系式和辅助角公式等.2.三角函数的图象与性质.要注意图象的特征点(最高点,零点和对称中心)、特征线(对称轴)及最小正周期的求法,也要注意三角函数的最值问题,包括利用辅助公式将已知三角函数式转化为一个三角函数求最值,或转化为以某一三角函数为自变量的二次函数的最值问题.3.解三角形问题.正弦、余弦定理的应用,注意面积公式的应用.最后,要注意向量和三角函数的交汇性试题的备考,及书写格式的规范性与完整性.同时,要控制复习的难度,重点突破以上三方面问题及理解、记忆它们涉及到的所有公式和知识点.考点一 三角变换与三角函数求值此类题目主要有以下几种题型:(1)考查运用诱导公式和逆用两角和的正弦、余弦公式化简三角函数式能力,以及求三角函数的值的基本方法.(2)考查运用诱导公式、倍角公式,两角和的正弦公式,以及利用三角函数的有界性来求的值的问题.(3)考查已知三角恒等式的值求角的三角函数值的基本转化方法,考查三角恒等变形及求角的基本知识.三角函数的化简、计算、证明的恒等变形的基本思路是:一角二名三结构.即首先观察角与角之间的关系,注意角的一些常用变式,角的变换是三角函数变换的核心;第二看函数名称之间的关系,通常“切化弦”;第三观察代数式的结构特点,选用合适公式化简. 例 1-1(2015·四川卷)如图,A ,B ,C ,D 为平面四边形ABCD 的四个内角.(1)证明:tan A 2=1-cos Asin A ;(2)若A +C =180°,AB =6,BC =3,CD =4,AD =5,求tan A2+tan B 2+tan C 2+tan D2的值.分析:(1)直接切化弦进行证明.(2)由(1)知,tan A 2+tan B 2+tan C 2+tan D 2=2sin A +2sin B ,连接BD ,构造△ABD 、△BCD ,利用在两个三角形中,BD 均相等,求出sin A .同理,连接AC ,构造△ABC 、△ACD ,利用在两个三角形中,AC 均相等,求出sin B ,从而得出结论.解析:(1)tan A2=sin A 2cos A 2=2sin 2A 22sin A 2cos A 2=1-cos A sin A .(2)由A +C =180°,得C =180°-A ,同理:D =180°-B . 由(1),有tan A 2+tan B 2+tan C 2+tan D 2 =1-cos A sin A+1-cos B sin B+1-cos (180°-A )sin (180°-A )+1-cos (180°-B )sin (180°-B )=2sin A +2sin B .连接BD ,图略.在△ABD 中,有BD 2=AB 2+AD 2-2AB ·AD cos A ,在△BCD 中,有BD 2=BC 2+CD 2-2BC ·CD cos C .所以AB 2+AD 2-2AB ·AD cos A =BC 2+CD 2+2BC ·CD ·cos A . 则cos A =AB 2+AD 2-BC 2-CD 22(AB ·AD +BC ·CD )=62+52-32-422×(6×5+3×4)=37. 于是sin A =1-cos 2A =1-⎝ ⎛⎭⎪⎫37=2107. 连结AC .同理可得cos B =AB 2+BC 2-AD 2-CD 22(AB ·BC +AD ·CD )=62+32-52-422×(6×3+5×4)=119, 于是sin B =1-cos 2B =1-⎝ ⎛⎭⎪⎫1192=61019. 所以,tan A 2+tan B 2+tan C 2+tan D 2=2sin A +2sin B =2×7210+2×19610=4103. 例 1-2(2015·广东卷)在平面直角坐标系xOy 中,已知向量m =⎝ ⎛⎭⎪⎫22,-22,n =(sin x ,cos x ),x ∈⎝⎛⎭⎪⎫0,π2.(1)若m ⊥n ,求tan x 的值;(2)若m 与n 的夹角为π3,求x 的值. 分析:(1)利用m ⊥n ,m·n =0,求出tan x . (2)根据向量数量积的定义及三角函数值,求出x . 解析:(1)因为m ⊥n ,所以m·n =22sin x -22cos x =0, 即sin x =cos x .又x ∈⎝⎛⎭⎪⎫0,π2,所以tan x =sin xcos x =1.(2)易求得|m |=1,|n |=sin 2x +cos 2x =1. 因为m 与n 的夹角为π3,所以cos π3=m ·n |m |·|n |=22sin x -22cos x1×1.则22sin x -22cos x =sin ⎝ ⎛⎭⎪⎫x -π4=12.又因为x ∈⎝⎛⎭⎪⎫0,π2,所以x -π4∈⎝ ⎛⎭⎪⎫-π4,π4.所以x -π4=π6,解得x =5π12. 考点二 三角函数的图象与性质三角函数的图象和性质:考查三角函数的图象和性质的题目,是高考的重点题型.此类题目要求考生在熟练掌握三角函数图象的基础上要对三角函数的性质灵活运用.会用数形结合的思想来解题.例 2-1(2014·济宁一模)已知函数f (x )=sin x ·cos ⎝ ⎛⎭⎪⎫x +π3+34.(1)当x ∈⎣⎢⎡⎦⎥⎤-π3,π6时,求函数f (x )的值域;(2)将函数y =f (x )的图象向右平移π3个单位后,再将得到的图象上各点的横坐标变为原来的12倍,纵坐标保持不变,得到函数y =g (x )的图象,求函数g (x )的表达式及对称轴方程.分析:(1)由条件利用三角函数的恒等变换求得函数f (x )的解析式,再根据-π3≤x ≤π6,利用正弦函数的定义域和值域,求得f (x )的值域. (2)根据函数y =A sin(ωx +φ)的图象变换规律,求得g (x )的解析式,从而求得它的对称轴方程.解析:(1)f (x )=sin x cos ⎝ ⎛⎭⎪⎫x +π3+34=sin x ⎝ ⎛⎭⎪⎫12cos x -32sin x +34=14sin 2x -32·1-cos 2x 2+34 =14sin 2x +34cos 2x =12sin ⎝⎛⎭⎪⎫2x +π3.∵-π3≤x ≤π6,故-π3≤2x +π3≤2π3,∴-32≤sin ⎝ ⎛⎭⎪⎫2x +π3≤1,∴f (x )∈⎣⎢⎡⎦⎥⎤-34,12.(2)将函数y =f (x )的图象向右平移π3个单位后,可得函数y =12sin ⎣⎢⎡⎦⎥⎤2⎝⎛⎭⎪⎫x -π3+π3=12sin ⎝ ⎛⎭⎪⎫2x -π3的图象,再将得到的图象上各点的横坐标变为原来的12倍,纵坐标保持不变,得到函数y =g (x )=12sin4x -π3的图象.令4x -π3=k π+π2,k ∈Z ,求得x =k π4+5π24,k ∈Z , 故函数g (x )的图象的对称轴方程为 x =k π4+5π24,k ∈Z .例 2-2(2015·湖北卷)某同学用“五点法”画函数f (x )=A sin(ωx +φ)⎝ ⎛⎭⎪⎫ω>0,|φ|<π2在某一个周期内的图象时,列表并填入了部分数据,如下表:ωx +φ 0 π2 π 3π2 2π x π3 5π6 A sin(ωx +φ)5-5(1)请将上表数据补充完整,并直接写出函数f (x )的解析式; (2)将y =f (x )图象上所有点向左平行移动θ(θ>0)个单位长度,得到y =g (x )的图象.若y =g (x )图象的一个对称中心为⎝ ⎛⎭⎪⎫5π12,0,求θ的最小值.分析:(1)由表格知,⎩⎨⎧π3·ω+φ=π2,5π6·ω+φ=32π,可求出ω,φ,由表格中的最值可确定A =5.(2)写出y =g (x )的函数解析式,类比y =sin x 图象的对称中心为(k π,0),k ∈Z ,利用整体思想,建立关于θ的方程,根据k ∈Z 及θ>0,求出θ的最小值.解析:(1)根据表中已知数据,解得A =5,ω=2,φ=-π6. 数据补全如下表:ωx +φ 0 π2 π 3π2 2π x π12 π3 7π12 5π6 1312π A sin(ωx +φ)5-5且函数表达式为f (x )=5sin ⎝⎛⎭⎪⎫2x -π6.(2)由(1)知f (x )=5sin ⎝ ⎛⎭⎪⎫2x -π6. 得g (x )=5sin ⎝⎛⎭⎪⎫2x +2θ-π6.因为y =sin x 的对称中心为(k π,0),k ∈Z , 令2x +2θ-π6=k π,解得x =k π2+π12-θ,k ∈Z .由于函数y =g (x )的图象关于点⎝ ⎛⎭⎪⎫5π12,0成中心对称,令k π2+π12-θ=5π12,解得θ=k π2-π3,k ∈Z . 由θ>0可知,当k =1时,θ取得最小值π6. 考点三 解三角形问题此类题目主要考查三角恒等变形、利用正弦、余弦定理处理三角形中的边角关系,突出考查边角互化的转化思想的应用.以及考查基本的运算为主要特征.解此类题目要注意综合应用上述知识.例 3-1(2014·重庆模拟)在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,且满足b 2+c 2=a 2+65bc ,AB→·AC →=3. (1)求△ABC 的面积;(2)若c =1,求cos ⎝⎛⎭⎪⎫B +π6的值.分析:(1)直接利用余弦定理通过已知条件,求出A 的余弦值,利用同角三角函数的基本关系式,求出A 的正弦值,利用向量的数量积求出bc ,即可求△ABC 的面积.(2)通过c =1,集合(1)求出b 的大小,利用余弦定理求出a ,求出cos B ,sin B ,展开cos ⎝⎛⎭⎪⎫B +π6,即可求解它的值.解析:(1)∵b 2+c 2=a 2+65bc ,∴b 2+c 2-a 2=65bc ,则cos A =b 2+c 2-a 22bc =35. 又A ∈(0,π),∴sin A =1-cos 2A =45,而AB →·AC →=|AB →|·|AC →|·cos A =35bc =3, 所以bc =5,所以△ABC 的面积为:12bc sin A =12×5×45=2. (2)由(1)知bc =5,而c =1, 所以b =5,所以a =b 2+c 2-2bc cos A =25+1-2×3=2 5.∴cos B =a 2+c 2-b 22ac =-55,sin B =255,∴cos ⎝⎛⎭⎪⎫B +π6=32cos B -12sin B=32×⎝ ⎛⎭⎪⎫-55-12×255=-15+2510. 例 3-2(2015·江苏卷)在△ABC 中,已知AB =2,AC =3,A =60°. (1)求BC 的长; (2)求sin 2C 的值.分析:(1)根据已知条件,在△ABC 中,直接利用余弦定理求BC 的长.(2)在△ABC 中,先利用正弦定理求得sin C 的值,再求cos C 的值,最后用二倍角公式求得sin 2C 的值.解析:(1)由余弦定理知, BC 2=AB 2+AC 2-2AB ·AC ·cos A =4+9-2×2×3×12=7, 所以BC =7.(2)由正弦定理知,AB sin C =BCsin A , 所以sin C =AB BC ·sin A =2sin 60°7=217.因为AB <BC ,所以C 为锐角, 则cos C =1-sin 2C =1-37=277.因此sin 2C=2sin C·cos C=2×217×277=437.马鸣风萧萧。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

专题三 三角函数与解三角形1、 求22sin20cos 803sin 20cos80︒+︒+︒︒的值.2、在△ABC 中,角A B C ,,所对的边分别是a b c ,,,且cos cos sin A B C a b c +=. (1)证明:sin sin sin A B C =;(2)若22265b c a bc +-=,求tan B .3、函数1π()sin()(0,0,)2f x A x A ωϕωϕ=+>><的一段图象如下图所示,(1)求函数1()f x 的解析式;(2)将函数1()y f x =的图象向右平移π4个单位,得函数2()y f x =的图象,求2()y f x =在π[0,]2x ∈的单调增区间.4、已知ABC ∆的内角,,A B C 的对边分别是,,a b c ,且3sin cos cos c b B C a A--=. (1)求A ;(2)若4a =,求ABC ∆面积的最大值.5、已知函数()2sin cos cos 2f x x x x =+.(1)求()f x 的最小正周期及单调递增区间;(2)求()f x 在区间π02⎡⎤⎢⎥⎣⎦,上的最大值和最小值.6、在平面四边形ABCD 中,已知3π4ABC ∠=,AB AD ⊥,1AB =.(1)若5AC =,求ABC △的面积;(2)若25sin 45CAD AD ∠==,,求CD 的长.7、如图所示,游客从某旅游景区的景点A 处下山至C 处有两种路径.一种是从A 沿直线步行到C ,另一种是先从A 沿索道乘缆车到B ,然后从B 沿直线步行到C .现有甲、乙两位游客从A 处下山,甲沿AC 匀速步行,速度为50m/min .在甲出发2min 后,乙从A 乘缆车到B ,在B 处停留1min 后,再从B 匀速步行到C .假设缆车匀速直线运行的速度为130m/min ,山路AC 长为1260m ,经测量,123cos cos 135A C ==,.(1)求索道AB 的长;(2)问乙出发多少分钟后,乙在缆车上与甲的距离最短?(3)为使两位游客在C 处互相等待的时间不超过3分钟,乙步行的速度应控制在什么范围内?答案以及解析1答案及解析: 答案:22sin 20cos 803sin 20cos80︒+︒+︒︒1cos 401cos160 3sin 20cos8022-︒+︒=++︒︒ ()()131cos160cos 40sin100sin 6022=+︒-︒+︒-︒ 331sin100sin 60sin10024=-︒⋅︒+︒- 1331sin100sin1004224=-︒+︒=2答案及解析:答案:(1)根据正弦定理,可设(0)sin sin sin a b c k k A B C===>. 则sin ,sin ,sin a k A b k B c k C ===. 代入cos cos sin A B C a b c +=中,得cos cos sin sin sin sin A B C k A k B k C+=, 变形可得sin sin sin cos cos sin sin()A B A B A B A B =+=+.在△ABC 中,由A B C π++=,有()()sin sin sin A B C C π+=-=,所以sin sin sin A B C =. (2)由已知,22265b c a bc +-=, 根据余弦定理,得2223cos 25b c a A bc +-==. 所以24sin 1cos 5A A =-=. 由(1)知,sin sin sin cos cos sin AB A B A B =+, 所以443sin cos sin 555B B B =+, 故sin tan 4cos B B B ==.3答案及解析:答案:(1)如图,由题意得,()10A f x >,的最大值为2,2A ∴=. 又πππ2362T =+=,∴πT =,即2ππω=, ∴2ω=, ()1f x 的图像过最高点π,212⎛⎫ ⎪⎝⎭,则π22sin 212ϕ⎛⎫=⨯+ ⎪⎝⎭, π2ϕ<,π3ϕ∴=, 即()1π2sin 23f x x ⎛⎫=+ ⎪⎝⎭. (2)依题意得,()2πππ2sin 22sin 2436f x x x ⎛⎫⎛⎫⎛⎫=⨯-+=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, ∴πππ2π22π262k x k -+≤-≤+,Z k ∈, 解得:ππππZ 63k x k k -+≤≤+∈,. π0,2x ⎡⎤∈⎢⎥⎣⎦,则()2f x 的单调增区间为π0,3⎡⎤⎢⎥⎣⎦.4答案及解析:答案:(1)3sin cos cos c b B C a A--=, 由正弦定理可得:sin sin 3sin cos sin cos C B B C A A--=, 3sin sin sin cos sin cos sin cos A B A C C A B A ∴-=-,3sin sin sin cos sin cos sin cos A B B A A C C A ∴+=+,即 ()sin 3sin cos sin B A A B +=, sinB 0>,所以3sinA cos 2sin 16A A π⎛⎫+=+= ⎪⎝⎭, 可得1sin()62A π+=, (0,)A π∈, 7(,)666A πππ∴+∈, 566A ππ∴+=,可得23A π=. (2)方法1:由余弦定理得:22222161cos 222b c a b c A bc bc +-+-===-,得2216216b c bc bc +-=-≥-,163bc ∴≤. 当且仅当433b c ==时取等号, 1343sin 243S bc A bc ==≤ , △ABC 面积的最大值为433 . 方法2: sin sin sin a b c A B C ==, 83sin 3b B ∴=,8383sin sin()333c C B π==-, 138383163sin sin sin()sin sin()2433333S bc A B B B B ππ∴==⨯⨯-=-, 1634343sin sin()[2sin(2)1]33363S B B B ππ∴=-=+-≤, 当且仅当sin(2)16B π+=,即262B ππ+=,当6B C π==时取等号. ABC ∆面积的最大值为433 .5答案及解析:答案:(1)sin c )2(2os x f x x =+Q 2sin 24x π⎛⎫=+ ⎪⎝⎭, ()f x ∴的最小正周期22T π==π. 由222242k x k πππ-+π<+<+π,得388k x k ππ-+π<<+π. 所以()f x 的单调递增区间是3Z 88k k k ππ⎛⎫-+π+π∈ ⎪⎝⎭,,. (2)0,2x π⎡⎤∈⎢⎥⎣⎦Q ,52+,444x πππ⎡⎤∴∈⎢⎥⎣⎦. 当242x ππ+=,即8x π=时,函数取得最大值是2. 当5244x ππ+=,即2x π=时,函数取得最小值52sin 14π=-. ()f x ∴在区间π02⎡⎤⎢⎥⎣⎦,上的最大值和最小值分别为2和1-.6答案及解析:答案:(1)在ABC △中,2222cos AC AB BC AB BC ABC =+-⋅⋅∠,22512240BC BC BC BC =++⇒+-=,解得2BC =, ∴1121sin 122222ABC S AB BC ABC =⋅⋅∠=⨯⨯⨯=△. (2)∵2590sin 5BAD CAD ∠=︒∠=,, ∴25cos 5BAC ∠=,5sin 5BAC ∠=, ∴()π2225510sin sin cos sin 4225510BCA BAC BAC BAC ⎛⎫⎛⎫∠=-∠=∠-∠=-= ⎪ ⎪ ⎪⎝⎭⎝⎭, 在ABC △中,sin sin AC AB ABC BCA =∠∠,∴sin 5sin AB ABC AC BCA⋅∠==∠, ∴22252cos 516254135CD AC AD AC AD CAD =+-⋅⋅∠=+-⨯⨯⨯=, ∴13CD =.7答案及解析:答案:(1)在ABC △中, 123cos ,cos 135A C ==, 54sin ,sin 135A C ∴==. 从而sin sin(π)B AC =-+sin()A C =+sin cos cos sin A C A C =+531246313513565=⨯+⨯=, 由sin sin AB AC C B=得 12604sin 1040(m)63sin 565AC AB C B=⨯=⨯=. 所以索道AB 的长为1040m .(2)设乙出发min t 后,甲、乙两游客距离为m d ,此时,甲行走了(10050)m t +, 乙距离A 处130m t , 由余弦定理得22212(10050)(130)2130(10050)13d t t t t =++-⨯⨯+⨯2200(377050)t t =-+, 10400130t ≤≤,即08t ≤≤, 故当35min 37t =时,甲、乙两游客距离最短. (3)由sin sin BC AC A B=,得12605sin 500(m)63sin 1365AC BC A B =⨯=⨯=,乙从B出发时,甲已走了50(281)550(m)⨯++=,还需走710m才能到达C. 设乙步行的速度为m/minv,由题意得5007103350v-≤-≤,解得12506254314v≤≤,所以为使两位游客在C处互相等待的时间不超过3min,乙步行的速度应控制在1250625[,]4314(单位:m/min)范围内.。

相关文档
最新文档