八年级数学上册-分式练习(含答案)

合集下载

八年级数学上册《分式》单元测试卷(含答案解析)

八年级数学上册《分式》单元测试卷(含答案解析)

八年级数学上册《分式》单元测试卷(含答案解析)一.选择题1.下列各式﹣3x,,,,,,中,分式的个数为()A.1 B.2 C.3 D.42.下列各式中:①;②;③;④;⑤;⑥分式有()A.1个B.2个C.3个D.4个3.代数式中,,, +b,,分式有()A.1个B.2个C.3个D.4个4.下列约分中,正确的是()A.= B.=0 C.=x3 D.=5.把分式﹣约分结果是()A.﹣B.﹣C.﹣D.﹣6.已知=7,则的值是()A.B.2 C.D.7.下列运算中正确的是()A.= B.C.•=﹣ D.÷=8.当x=﹣2时,下列分式有意义的是()A. B.C. D.9.若分式的值为0,则x的值为()A.﹣5 B.5 C.﹣5和5 D.无法确定10.下列各式,从左到右变形正确的是()A.B. C. D.二.填空题11.当x时,分式有意义.12.约分=.13.写出一个含有字母m,且m≠2的分式,这个分式可以是.14.若分式的值为负数,则x的取值范围是.15.计算=.16.一组按规律排列的式子:,,,,,…,其中第7个式子是,第n个式子是(用含的n式子表示,n 为正整数).17.若式子的值为零,则x的值为.18.不改变分式的值,使分式的分子、分母中各项系数都为整数,=.19.化简:=.20.下列各式中中分式有个.三.解答题21.(1)=(2)=22.当x为何值时,分式的值为0?23.给定下面一列分式:,…,(其中x≠0)(1)把任意一个分式除以前面一个分式,你发现了什么规律?(2)根据你发现的规律,试写出给定的那列分式中的第7个分式.24.下列分式,当x取何值时有意义.(1);(2).25.已知实数a,b满足,6a=2010,335b=2010,求+的值.26.定义:如果一个分式能化成一个整式与一个分子为常数的分式的和的形式,则称这个分式为“和谐分式”.如==+=1+,==a﹣1+,则和都是“和谐分式”.(1)下列分式中,属于“和谐分式”的是:(填序号);①;②;③;④(2)将“和谐分式化成一个整式与一个分子为常数的分式的和的形为:=.(3)应用:已知方程组有正整数解,求整数m的值.参考答案与解析一.选择题1.解:﹣3x,,的分母中均不含有字母,因此它们是整式,而不是分式.﹣,,,分母中含有字母,因此是分式.故选:D.2.解:①分母中含有π,是具体的数,不是字母,所以不是分式;②分母中含有字母a,是分式;③是等式,不是分式;④分母中没有字母,不是分式;⑤分母中含有字母x,是分式;⑥分母中没有字母,不是分式;分式有②⑤2个,故选:B.3.解;代数式, +b的分母中含有字母,是分式,故选:B.4.解:A、=,故此选项错误;B、,无法化简,故此选项错误;C、=x4,故此选项错误;D、=,正确.故选:D.5.解:﹣=﹣=﹣.故选:C.6.解:∵=7,∴=,∴x﹣4﹣=,∴x﹣=,∵的倒数为x﹣1﹣=﹣1=,∴=,故选:C.7.解:A、=≠,不正确;B、=﹣1,正确;C、=,不正确;D、==,不正确;故选:B.8.解:A、当x=﹣2时,x+2=0,无意义;B、当x=﹣2时,有意义;C、当x=﹣2时,x2﹣4=0,无意义;D、当x=﹣2时,x2+3x+2=4﹣6+2=0,无意义.故选:B.9.解:由题意得,|x|﹣5=0,解得x=±5,当x=5时,x2﹣4x﹣5=0,分式无意义;当x=﹣5时,x2﹣4x﹣5=40≠0,分式有意义;∴x的值为﹣5.故选:A.10.解:A、2前面是加号不是乘号,不可以约分,原变形错误,故本选项不符合题意;B、原式=﹣,原变形错误,故本选项不符合题意;C、原式==,原变形正确,故本选项符合题意;D、从左边到右边不正确,原变形错误,故本选项不符合题意;故选:C.二.填空题11.解:由题意得:2x+3≠0,解得:x≠﹣,故答案为:≠﹣.12.解:=.故答案为:.13.解:含有字母m,且m≠2的分式可以是,故答案为:(答案不唯一).14.解:∵分式的值为负数,∴﹣2x+3<0,解得:x>.故答案为:x>.15.解:原式=x=.故答案为:.16.解:∵=(﹣1)2•,=(﹣1)3•,=(﹣1)4•,…∴第7个式子是,第n个式子为:.故答案是:,.17.解:∵式子的值为零,∴x2﹣1=0,(x﹣1)(x+2)≠0,解得:x=﹣1.故答案为:﹣1.18.解:分式的分子,分母同时乘以500就可得到.故答案为:.19.解:原式==,故答案为:.20.解:中分式为:、+1,﹣共3个.故答案为:3.三.解答题21.解:(1)由分式的基本性质,可得故答案为:5y.(2)分式的分子分母同时乘以﹣1,得=,故答案为2﹣x.22.解:∵分式的值为0,∴,解得x=0且x≠3,∴x=0.∴当x=0时,分式的值为0.23.解:(1)﹣÷=﹣;÷(﹣)=﹣…规律是任意一个分式除以前面一个分式恒等于;(2)∵由式子:,…,发现分母上是y1,y2,y3,…故第7个式子分母上是y7,分子上是x3,x5,x7,故第7个式子是x15,再观察符号发现第偶数个为负,第奇数个为正,∴第7个分式应该是.24.解:(1)要使分式有意义,则分母3x+2≠0,解得:x≠﹣;(2)要使分式有意义,则分母2x﹣3≠0,x≠.25.解:∵6a=2010,335b=2010,∴6ab=2010b,335ab=2010a,∴6ab×335ab═2010b+a,(6×335)ab=2010 a+b,∴ab=a+b,∴+==1.26.解:(1)①=,故是和谐分式;②=,故不是和谐分式;③=,故是和谐分式;④=,故是和谐分式;故答案为①③④;(2)===,故答案为;(3)解方程组得,∵方程组有正整数解,∴m=﹣1或﹣7.。

人教版八年级上册数学第15章《分式》单元测试卷(含答案解析)

人教版八年级上册数学第15章《分式》单元测试卷(含答案解析)

人教版八年级上册数学第15章《分式》单元测试卷一.选择题(共10小题,满分30分)1.下列式子中,属于分式的是()A.B.C.D.2.分式的值是零,则x的值为()A.3B.﹣3C.3或﹣3D.03.已知某新型感冒病毒的直径约为0.000002022米,将0.000002022用科学记数法表示为()A.2.022×10﹣5B.0.2022×10﹣5C.2.022×10﹣6D.20.22×10﹣74.计算的结果是()A.B.C.D.5.在①x2﹣x+,②﹣3=a+4,③+5x=6,④=1中,其中关于x的分式方程的个数为()A.1B.2C.3D.46.如果把分式中的x、y的值都扩大2倍,那么分式的值()A.扩大2倍B.扩大4倍C.扩大6倍D.不变7.若将分式与通分,则分式的分子应变为()A.6m2﹣6mn B.6m﹣6nC.2(m﹣n)D.2(m﹣n)(m+n)8.分式,的最简公分母是()A.a B.ab C.3a2b2D.3a3b39.计算结果等于2的是()A.|﹣2|B.﹣|2|C.2﹣1D.(﹣2)0 10.已知,则的值是()A.66B.64C.62D.60二.填空题(共10小题,满分30分)11.分式的最简公分母是.12.要使分式有意义,则分式中的字母b满足条件.13.若表示一个整数,则整数x可取的个数有个.14.约分:=.15.方程的解是.16.若解分式方程产生增根,则m=.17.用漫灌方式给绿地浇水,a天用水10吨,改用喷灌方式后,10吨水可以比原来多用5天,那么喷灌比漫灌平均每天节约用水吨.18.已知若x﹣=3,则x2+=.19.将分式化为最简分式,所得结果是.20.扶贫工作小组对果农进行精准扶贫,帮助果农将一种有机生态水果拓宽了市场.与去年相比,今年这种水果的产量增加了1000千克,每千克的平均批发价比去年降低了1元,批发销售总额比去年增加了20%.已知去年这种水果批发销售总额为10000元,则这种水果今年每千克的平均批发价是元.三.解答题(共7小题,满分90分)21.神舟十三号飞船搭载实验项目中,四川省农科院生物技术研究所共有a粒水稻种子,每粒种子质量大约0.0000325千克;甘肃省天水市元帅系苹果的b粒干燥种粒,每粒种子质量大约0.002275千克,参与航天搭载诱变选育.(1)用科学记数法表示上述两个数.(2)若参与航天搭载这两包种子的质量相等,求的值.(3)若这两包种子的质量总和为1.04千克,水稻种子粒数是苹果种子粒数10倍,求a,b的值.22.若式子无意义,求代数式(y+x)(y﹣x)+x2的值.23.下列分式中,哪些是最简分式?,,;,,,.24.(1)计算:;(2)解不等式组:.25.若关于x 的方程有增根,求实数m的值.26.一船在河流上游A港顺流而下直达B港,用一个小时将货物装船后返航,已知船在静水中的速度是50千米/时,A、B两地距离为150千米,则该船从A港出发到返回A港共用了7.25小时,如果设水流速度是x千米/时,那么x应满足怎样的方程?27.阅读理解材料:为了研究分式与分母x的变化关系,小明制作了表格,并得到如下数据:x…﹣4﹣3﹣2﹣101234…10.50.0.25……﹣0.25﹣0.﹣0.5﹣1无意义从表格数据观察,当x>0时,随着x 的增大,的值随之减小,并无限接近0;当x<0时,随着x 的增大,的值也随之减小.材料2:对于一个分子、分母都是多项式的分式,当分母的次数高于分子的次数时,我们把这个分式叫做真分式.当分母的次数不低于分子的次数时,我们把这个分式叫做假分式.有时候,需要把一个假分式化成整式和真分式的代数和,像这种恒等变形,称为将分式化为部分分式.如:.根据上述材料完成下列问题:(1)当x>0时,随着x的增大,1+的值(增大或减小);当x<0时,随着x的增大,的值(增大或减小);(2)当x>1时,随着x的增大,的值无限接近一个数,请求出这个数;(3)当0≤x≤2时,求代数式值的范围.。

八年级数学上册分式方程例题专项练习(含答案)

八年级数学上册分式方程例题专项练习(含答案)

八年级数学上册分式方程例题专项练习(含答案)1、甲、乙两人准备整理一批新到的实验器材,甲单独整理需要40分完工;若甲、乙共同整理20分钟后,乙需要再单独整理20分才能完工。

问:乙单独整理需多少分钟完工?解:设乙单独整理需x分钟完工,则解,得x=80经检验:x=80是原方程的解。

答:乙单独整理需80分钟完工。

2、有两块面积相同的试验田,分别收获蔬菜900千克和1500千克,已知第一块试验田每亩收获蔬菜比第二块少300千克,求第一块试验田每亩收获蔬菜多少千克?解:设第一块试验田每亩收获蔬菜x千克,则解,得x=450经检验:x=450是原方程的解。

答:第一块试验田每亩收获蔬菜450千克。

3、甲、乙两地相距19千米,某人从甲地去乙地,先步行7千米,然后改骑自行车,共用了2小时到达乙地。

已知这个人骑自行车的速度是步行速度的4倍。

求步行的速度和骑自行车的速度。

解:设步行速度是x千米/时,则解,得x=5经检验:x =5是原方程的解。

进尔4x=20(千米/时)答:步行速度是5千米/时,骑自行车的速度是20千米/时。

4、小兰的妈妈在供销大厦用12.50元买了若干瓶酸奶,但她在百货商场食品自选室发现,同样的酸奶,这里要比供销大厦每瓶便宜0.2元,因此,当第二次买酸奶时,便到百货商场去买,结果用去18.40元钱,买的瓶数比第一次买的瓶数多,问:她第一次在供销大厦买了几瓶酸奶?解:⑴设她第一次在供销大厦买了x瓶酸奶,则解,得x=5经检验:x=5是原方程的解。

答:她第一次在供销大厦买了5瓶酸奶。

5、某商店经销一种纪念品,4月份的营业额为2000元,为扩大销售,5月份该商店对这种纪念品打九折销售,结果销售量增加20件,营业额增加700元。

⑴求这种纪念品4月份的销售价格。

⑵若4月份销售这种纪念品获利800元,问:5月份销售这种纪念品获利多少元?解:⑴设4月份销售价为每件x元,则解,得x=50经检验:x=50是原方程的解。

⑵4月份销售件数:2000÷50=40(件)每件进价:(2000-800)÷40=30(元)5月份销售这种纪念品获利:(2000+700)-30×(40+20) =900(元)答:4月份销售价为每件50元,5月份销售这种纪念品获利900元。

人教版初中八年级数学上册第十五章《分式》经典测试(含答案解析)

人教版初中八年级数学上册第十五章《分式》经典测试(含答案解析)

一、选择题1.若整数a 使得关于x 的方程3222a x x-=--的解为非负数,且使得关于y 的一元一次不等式组322222010y y y a --⎧+>⎪⎪⎨-⎪≤⎪⎩至少有3个整数解,则所有符合条件的整数a 的和为( )A .23B .25C .27D .28B解析:B【分析】表示出不等式组的解集,由不等式至少有3个整数解确定出a 的值,再由分式方程的解为非负数以及分式有意义的条件求出满足题意整数a 的值,进而求出之和.【详解】 解:322222010y y y a --⎧+>⎪⎪⎨-⎪≤⎪⎩, 不等式组整理得:2y y a -⎧⎨≤⎩>, 由不等式组至少有3个整数解,得到-2<y≤a ,解得:a≥1,即整数a=1,2,3,4,5,6,…,3222a x x-=--, 去分母得:2(x-2)-3=-a ,解得:x=72a -, ∵72a -≥0,且72a -≠2, ∴a≤7,且a≠3,由分式方程的解为非负数以及分式有意义的条件,得到a 为1,2,4,5,6,7, 之和为1+2+4+5+6+7=25.故选:B .【点睛】此题考查了解分式方程,以及解一元一次不等式组,熟练掌握运算法则是解本题的关键. 2.2020年新冠肺炎疫情影响全球,某企业临时增加甲、乙两个厂房生产口罩,甲厂房每天生产的数量是乙厂房每天生产数量的2倍,两厂房各加工6000箱口罩,甲厂房比乙厂房少用5天.则甲、乙两厂房每天各生产的口罩箱数为( )A .1200,600B .600,1200C .1600,800D .800,1600A解析:A【分析】 先设乙厂房每天生产x 箱口罩,则甲厂房每天生产2x 箱口罩,根据工作时间=工作总量÷工作效率且两厂房各加工6000箱口罩时甲厂房比乙厂房少用5天,可得出关于x 的分式方程,解方程即可得出结论.【详解】解:设乙厂房每天生产x 箱口罩,则甲厂房每天生产2x 箱口罩, 依题意得:6000600052x x-=, 解得:x =600, 经检验,x =600是原分式方程的解,且符合题意,∴2x =1200.故答案选:A .【点睛】该题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键. 3.已知2,1x y xy +==,则y x x y +的值是( ) A .0B .1C .-1D .2D 解析:D【分析】 将y x x y+进行通分化简,整理出含已知条件形式的分式,即可得出答案. 【详解】 解:2222()2221=21y x y x x y xy x y xy xy ++--⨯+=== 故选D .【点睛】本题考查了分式的混合运算,熟练运用完全平方公式是解题的关键.4.若方程21224k x x -=--有增根,则k =( ) A .4-B .14-C .4D .14B 解析:B【分析】先根据题意对原分式方程去分母,化为整式方程,然后根据增根的情况代入整式方程求解即可.【详解】去分母得:()()22421x k x --+=, 整理得:22290x kx k ---=,∵原分式方程有增根,∴240x -=,解得增根即为:2x =±,当2x =时,代入整式方程得:82290k k ---=,解得: 14k =-, 当2x =-时,代入整式方程无意义,∴14k =-故选:B【点睛】本题考查分式方程的增根,熟记增根是使最简公分母为零的数同时是对应整式方程的解,两者缺一不可.5.如图,若a 为负整数,则表示2a 111a a 1⎛⎫÷- ⎪-+⎝⎭的值的点落在( )A .段①B .段②C .段③D .段④C 解析:C【分析】将所给式子化简,根据a 为负整数,确定化简结果的范围,再从所给图中可得正确答案.【详解】 解:2a 111a a 1⎛⎫÷- ⎪-+⎝⎭=()()a a 111a 1a a 1a 1+⎛⎫÷- ⎪+-++⎝⎭=()()aa 1a 1a a 1÷+-+ =()()a a 11a 1a a+⋅+- =11a -; ∵a 为负整数,且a 1≠-,∴1a -是大于1的正整数,则1101a 2<<-.故选C .【点睛】本题考查了分式的化简及分式加减运算,同时考查了分式值的估算,总体难度中等. 6.下列各式计算正确的是( )A .()23233412ab a b -=- B .()222(2)2224x xy y x y xy x --++=+-C .()2422842a ba b b -÷=- D .()325339a b a b -=- A解析:A【分析】根据单项式乘单项式,幂的乘方,单项式除单项式,单项式乘多项式运算法则判断即可.【详解】 A 、()23233412a b a b -=-,故这个选项正确;B 、()222(2)2224x xy y x y xy x --++=--,故这个选项错误;C 、()24222842a b a b b -÷=-,故这个选项错误;D 、()3263327a b a b -=-,故这个选项错误; 故选:A .【点睛】本题考查了单项式乘单项式,幂的乘方,单项式除单项式,单项式乘多项式,重点是掌握相关的运算法则.7.若实数a 使关于x 的不等式组313212x x a xx +⎧+≥⎪⎪⎨+⎪-≥⎪⎩有解且最多有4个整数解,且使关于y 的方程3233y a y y --++ 1=的解是整数,则符合条件的所有整数a 的个数是( ) A .4B .3C .2D .1D 解析:D【分析】解不等式组得到a+2≤x ≤﹣3,利用不等式组有解且最多有4个整数解得到﹣7<a+2≤﹣3,解关于a 的不等式组得到整数a 为﹣8,﹣7,﹣6,﹣5,再解分式方程得到y =12a +且y ≠﹣3,利用分式方程的解为整数且12a +≠﹣3即可确定符合条件的所有整数a 的值. 【详解】解:313212x x a x x +⎧+≥⎪⎪⎨+⎪-≥⎪⎩①②, 由①得:x ≤﹣3,由②得:x ≥a+2,∴a+2≤x ≤﹣3,因为不等式组有解且最多有4个整数解,所以﹣7<a+2≤﹣3,解得﹣9<a ≤﹣5,整数a 为﹣8,﹣7,﹣6,﹣5, 方程3233y a y y --++ 1=去分母得3y ﹣a +2=y +3, 解得y =12a +且y ≠﹣3, ∴12a +≠﹣3, 解得a ≠﹣7,当a =﹣8时,y =﹣3.5(不是整数,舍去),当a =﹣6时,y =﹣2.5(不是整数,舍去),当a =﹣5时,y =﹣2(是整数,符合题意),所以符合条件的所有整数a 为﹣5.故选:D .【点睛】本题考查了分式方程的解:求出使分式方程中令等号左右两边相等且分母不等于0的未知数的值,这个值叫方程的解.也考查了解一元一次不等式组的整数解.8.2a ab b a++-的结果是( ). A .2a- B .4a C .2b a b -- D .b a- C 解析:C【分析】根据分式的加减运算的法则计算即可.【详解】 222()()a a b a b a b a b b a a b a b a b+-++=-=-----. 故选:C【点睛】本题考查了分式加减运算的法则,熟记法则是解题的关键.9.如果关于x 的不等式组0243(2)x m x x -⎧>⎪⎨⎪-<-⎩的解集为1x >,且关于x 的分式方程1322x m x x -+=--有非负整数解,则符合条件的所有m 的取值之和为( ) A .8-B .7-C .15D .15- B解析:B【分析】解出不等式组,求出不等式组的解集,确定m 的取值范围,再解出分式方程,找到分式方程的非负整数解,进而求出m 的值即可.【详解】 解:0243(2)x m x x -⎧>⎪⎨⎪-<-⎩①②,解不等式①得:x m >,解不等式②得:1x >,不等式组的解集为1x >,∴1m ;1322x m x x -+=-- 方程两边同时乘以()2x -得:()132x m x --=-; 解得:52m x +=, ∴25m x =-,1m ,∴251x -≤,∴3x ≤,分式方程有非负整数解且20x -≠,∴x 的值为:0,1,3,此时对应的m 的值为:5-,3-,1,∴符合条件的所有m 的取值之和为:()5317-+-+=-.故选:B .【点睛】本题考查了分式方程的解以及不等式的解集,求得m 的取值范围以及求出分式方程的解是解题的关键.10.使分式2221x x x ---的值为0的所有x 的值为( ) A .2或1- B .2-或1 C .2 D .1C解析:C【分析】先根据分式为零的条件列出不等式组,然后再求解即可.【详解】解:∵2221x x x ---=0 ∴222=010x x x ⎧--⎨-≠⎩,解得x=2. 故答案为C .【点睛】本题主要考查了分式为零的条件,根据分式为零的条件列出不等式组是解答本题的关键.二、填空题11.规定一种新的运算“ JX x A B →+∞”,其中A 和B 是关于x 的多项式,当A 的次数小于B 的次数时. 0JX x A B →+∞=;当A 的次数等于B 的次数时, JX x A B→+∞的值为A 、B 的最高次项的系数的商,当A 的次数大于B 的次数时, JX x A B →+∞不存在,例如: 201JX x x →+∞=-,2 2212312JXx x x x →+∞+=+-,若223410211A x x B x x -⎛⎫=-÷ ⎪--⎝⎭,则 JX x A B →+∞的值为__________.【分析】根据已知条件化简分式即可求出答案【详解】解:∵的次数等于的次数故答案为:【点睛】本题考查了分式的混合运算熟练分解因式是解题的关键 解析:12【分析】根据已知条件,化简分式即可求出答案.【详解】 解:223410(2)11A x xB x x -=-÷-- ()()()225223111x x x x x x ---⎛⎫=÷ ⎪-+-⎝⎭ ()()()1125112252x x x x x x x x +--+⎛⎫=⨯= ⎪--⎝⎭ 12x x+=, ∵A 的次数等于B 的次数,∴12x A JX B →+∞=, 故答案为:12. 【点睛】 本题考查了分式的混合运算,熟练分解因式是解题的关键.12.已知关于x 的分式方程239133x mx x x ---=--无解,则m 的值为______.1或4【分析】先去分母将原方程化为整式方程根据一元一次方程无解的条件得出一个m 值再根据分式方程无解的条件得出一个m 值即可【详解】解:去分母得:2x-3-mx+9=x-3整理得:(m-1)x=9∴当m解析:1或4【分析】先去分母,将原方程化为整式方程,根据一元一次方程无解的条件得出一个m 值,再根据分式方程无解的条件得出一个m 值即可.【详解】解:去分母得:2x-3- mx+9 =x-3,整理得:(m-1)x=9,∴当m-1=0,即m=1时,方程无解;当m-1≠0时,由分式方程无解,可得x-3=0,即x=3,把x=3代入(m-1)x=9,解得:m=4,综上,m 的值为1或4.故答案为:1或4.【点睛】本题考查了分式方程的解,熟练掌握分式方程及整式方程无解的条件是解题的关键. 13.若分式方程13322a x x x--=--有增根,则a 的值是________.【分析】分式方程去分母转化为整式方程由分式方程有增根求出x 的值代入整式方程计算即可求出a 的值【详解】去分母得:1-3x+6=-3a+x 由分式方程有增根得到x−2=0即x =2把x =2代入得:1-6+6 解析:13【分析】分式方程去分母转化为整式方程,由分式方程有增根求出x 的值,代入整式方程计算即可求出a 的值.【详解】去分母得:1-3x+6=-3a+x ,由分式方程有增根,得到x−2=0,即x =2,把x =2代入得:1-6+6=-3a+2,解得:a =13, 故答案为:13. 【点睛】此题考查了分式方程的增根,增根确定后可按如下步骤进行:①化分式方程为整式方程;②把增根代入整式方程即可求得相关字母的值.14.A B 两地相距36千米,一艘轮船从A 地顺流行至B 地,又立即从B 地逆流返回A 地,共用9小时,已知水流速度为4千米/时,若设该轮船在静水中的速度为x 千米时,则可列方程为__________.【分析】设该轮船在静水中的速度为x 千米/时则一艘轮船从A 地顺流航行至B 地已知水流速度为4千米/时所花时间为;从B 地逆流返回A 地水流速度为4千米/时所花时间为根据题意列方程即可【详解】解:设该轮船在静 解析:3636944x x +=+- 【分析】设该轮船在静水中的速度为x 千米/时,则一艘轮船从A 地顺流航行至B 地,已知水流速度为4千米/时,所花时间为364x +;从B 地逆流返回A 地,水流速度为4千米/时,所花时间为364x -根据题意列方程3636944x x +=+-即可. 【详解】解:设该轮船在静水中的速度为x 千米时,根据题意列方程得:3636944x x +=+- 【点睛】本题考查列分式方程解应用题,关键是正确列出分式方程,找出题干中等量关系式即可. 15.分式2222,39a b b c ac的最简公分母是______.【分析】常取各分母系数的最小公倍数与字母因式的最高次幂的积作公分母这样的公分母叫做最简公分母【详解】分式的分母分别是3b2c9ac2故最简公分母是9ab2c2故答案为:9ab2c2【点睛】本题考查了解析:229ab c【分析】常取各分母系数的最小公倍数与字母因式的最高次幂的积作公分母,这样的公分母叫做最简公分母.【详解】分式222239a b b c ac、的分母分别是3b 2c 、9ac 2,故最简公分母是9ab 2c 2. 故答案为:9ab 2c 2.【点睛】 本题考查了最简公分母的定义及求法.通常取各分母系数的最小公倍数与字母因式的最高次幂的积作公分母,这样的公分母叫做最简公分母. 一般方法:①如果各分母都是单项式,那么最简公分母就是各系数的最小公倍数,相同字母的最高次幂,所有不同字母都写在积里. ②如果各分母都是多项式,就可以将各个分母因式分解,取各分母数字系数的最小公倍数,凡出现的字母(或含字母的整式)为底数的幂的因式都要取最高次幂. 16.计算:()222333a b a b --⋅=_______________.【分析】根据单项式乘单项式计算法则以及幂的乘方与积的乘方负整数指数幂计算即可【详解】原式=故答案为:【点睛】本题主要考查了单项式乘单项式幂的乘方与积的乘方负整数指数幂属于基础计算题 解析:3a b【分析】根据单项式乘单项式计算法则以及幂的乘方与积的乘方,负整数指数幂,计算即可.【详解】原式=44334343113333a a b a b a b a b b----+-=== 故答案为:3a b. 【点睛】 本题主要考查了单项式乘单项式,幂的乘方与积的乘方,负整数指数幂,属于基础计算题.17.甲、乙二人做某种机械零件,已知甲每小时比乙少做8个,甲做160个所用的时间比乙做160个所用的时间多1小时,设甲每小时做x 个零件,列方程为________.【分析】设甲每小时做x 个零件根据甲做160个所用的时间比乙做160个所用的时间多1小时得出方程解答即可【详解】解:设甲每小时做个零件则乙每小时做个零件依题意得:即故答案为:【点睛】本题考查了由实际问 解析:16016018x x -=+ 【分析】设甲每小时做x 个零件,根据甲做160个所用的时间比乙做160个所用的时间多1小时得出方程解答即可.【详解】解:设甲每小时做x 个零件,则乙每小时做(8)x +个零件,依题意,得:16016018x x -=+, 即16016018x x -=+. 故答案为:16016018x x -=+. 【点睛】本题考查了由实际问题抽象出分式方程,找准等量关系,正确列出分式方程是解题的关键.18.已知1112a b -=,则ab a b-的值是________.-2【分析】先把所给等式的左边通分再相减可得再利用比例性质可得再利用等式性质易求的值【详解】解:∵∴∴即∴故答案为:-2【点睛】本题考查了分式的加减法代数式求值解题的关键是通分得出是解题关键解析:-2【分析】 先把所给等式的左边通分,再相减,可得12b a ab -=,再利用比例性质可得()2ab a b =--,再利用等式性质易求ab a b -的值. 【详解】解:∵1112a b -=, ∴12b a ab -=, ∴()2ab b a =-,即()2ab a b =--, ∴2ab a b=--. 故答案为:-2.【点睛】 本题考查了分式的加减法,代数式求值,解题的关键是通分,得出12b a ab -=是解题关键. 19.某公司生产了A 型、B 型两种计算机,它们的台数相同,但总价值和单价不同.已知A 型计算机总价值为102万元;B 型计算机总价值为81.6万元,且单价比A 型机便宜了2400元.问A 型、B 型两种计算机的单价各是多少万元.若设A 型计算机的单价是x 万元,请你根据题意列出方程________.【分析】设A 型计算机的单价是x 万元/台则B 型计算机的单价是(x-024)万元/台根据单价=总价÷数量即可得出关于x 的分式方程此题得解【详解】解:设型计算机的单价是万元/台则型计算机的单价是解析:10281.6x x 0.24=- 【分析】设A 型计算机的单价是x 万元/台,则B 型计算机的单价是(x-0.24)万元/台,根据单价=总价÷数量即可得出关于x 的分式方程,此题得解.【详解】解:设A 型计算机的单价是x 万元/台,则B 型计算机的单价是()x 0.24-万元/台, 根据题意得:10281.6x x 0.24=-. 故答案为:10281.6x x 0.24=-. 【点睛】 本题考查了由实际问题抽象出分式方程,根据数量关系单价=总价÷数量列出关于x 的分式方程是解题的关键.20.若关于x 的分式方程11222mx x x-=---无解,则m =______.2或1【分析】将分式方程化成整式方程按照一元一次方程无解的条件及分式方程无解的条件求得m 的值即可【详解】解:方程两边同时乘以(x ﹣2)得:1﹣mx =-1﹣2(x ﹣2)整理得:(2﹣m )x =2∵无解∴解析:2或1【分析】将分式方程化成整式方程,按照一元一次方程无解的条件及分式方程无解的条件求得m 的值即可.【详解】 解:方程11222mx x x-=---两边同时乘以(x ﹣2)得: 1﹣mx =-1﹣2(x ﹣2),整理得:(2﹣m )x =2,∵无解,∴当2﹣m =0,即m =2时,方程无解;当x ﹣2=0时,方程也无解,此时x =2,则2(2﹣m )=2,解得m =1.故答案为:2或1.【点睛】 本题考查了分式方程的解,明确分式方程和整式方程无解的条件是解题的关键.21.某商店购进 A B 、两种商品,购买1个A 商品比购买1个B 商品多花10元,并且花费300元购买A 商品和花费100元购买B 商品的数量相等(1)求购买一个A 商品和一个B 商品各需要多少元(2)商店准备购买A B 、两种商品共80个,若A 商品的数量不少于B 商品数量的4倍,并且购买A B 、商品的总费用不低于1000元且不高于1060元,那么商店有哪几种购买方案? 解析:(1)购买一个A 商品需要15元,购买一个B 商品需要5元;(2)商店有3种购买方案,方案①:购进A 商品66个,B 商品14个;方案②:购进A 商品65个,B 商品15个;方案③:购进A 商品64个,B 商品16个【分析】(1)设购买一个B 商品需要x 元,则购买一个A 商品需要()10x +元,列出分式方程求解;(2)设购买B 商品m 个,则购买A 商品()80m -个,根据题意列出不等式组求出m 的范围,取整数解.【详解】解:()1设购买一个B 商品需要x 元,则购买一个A 商品需要()10x +元,依题意, 得:30010010x x=+, 解得:5x =,经检验, = 5x 是原方程的解,且符合题意, 1015x ∴+=,答:购买一个A 商品需要15元,购买一个B 商品需要5元;()2设购买B 商品m 个,则购买A 商品()80m -个,依题意,得:()()804158051000158051060m m m m m m ⎧-≥⎪-+≥⎨⎪-+≥⎩,解得:1416m ≤≤, m 为整数,14m ∴=或15或16,∴商店有3种购买方案,方案①:购进A 商品66个,B 商品14个,方案②:购进A 商品65个,B 商品15个,方案③:购进A 商品64个,B 商品16个.【点睛】本题考查分式方程的应用和不等式的应用,解题的关键是掌握根据题意列分式方程和不等式的方法.22.解方程(1)22211x x x =-+. (2)2127111x x x +=+--. 解析:(1)无解;(2)2x =【分析】(1)先把分式方程化为整式方程,然后解方程,再进行检验,即可得到答案; (2)先把分式方程化为整式方程,然后解方程,再进行检验,即可得到答案;【详解】(1)解:原方程可变形为()()()21111x x x x =+-+, 方程两边同乘最简公分母()()11x x x +-,得21x x =-.解得:1x =-.检验:把1x =-代入最简公分母()()11x x x +-,得()()()()11111110x x x +-=--+--=,因此,1x =-是增根,从而原方程无解.(2)原方程可变形为:()()1271111x x x x +=+-+- 方程两边同乘最简公分母()()11x x +-,得()1217x x -++=解得,2x =检验:把2x =代入最简公分母()()11x x +-,得()()113130x x +-=⨯=≠因此,2x =是原方程的解.【点睛】本题考查了解分式方程,解题的关键是掌握解分式方程的步骤,注意解分式方程需要检验.23.(1)计算:22y x x y x y-++ (2)解方程:4322x x x=+-- 解析:(1)y x -;(2)5x =. 【分析】(1)根据分式运算的性质,结合平方差公式计算,即可得到答案;(2)分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.【详解】(1)22y x x y x y-++, =22y x x y-+, =()()x y x y x y +--+,=()x y y x --=-,y x =-;(2)4322x x x=+--, 去分母得()4=32x x --,去括号得436x x =--,移项合并得210x =,系数化1得5x =,当x=5时,25230x -=-=≠,所以x=5是原方程的解.【点睛】本题考查了分式的混合运算及解分式方程,能正确根据分式的运算法则进行化简以及掌握解分式方程的方法是解答此题的关键,注意解分式方程要验根.24.解方程:(1)3311x x x +=-- (2)23425525x x x +=-+- 解析:(1)3x =;(2)1x =【分析】(1)先去分母,再解整式方程求解,检验解是否为原方程的解即可;(2)先去分母,再解整式方程求解,检验解是否为原方程的解即可.【详解】解:(1)方程两边同乘1x -,得33(1)x x +=-,解得3x =,检验:当3x =时10x -≠,∴原分式方程的解为3x =;(2)方程两边同乘(5)(5)x x -+,得3(5)4(5)2x x ++-=,解得1x =,检验:当1x =时,(5)(5)0x x -+≠,∴原分式方程的解为1x =.【点睛】此题考查解分式方程,掌握解方程的步骤:先去分母,再解整式方程求解,检验解是否为原方程的解.25.某快餐店欲购进A ,B 两种型号的餐盘,每个A 种型号的餐盘比每个B 种型号的餐盘费用多5元,且用120元购进的A 种型号的餐盘与用90元购进的B 种型号的餐盘的数量相同.(1)问A ,B 两种型号的餐盘单价为多少元?(2)若该快餐店决定在成本不超过1900元的前提下购进A ,B 两种型号的餐盘100个,则最多购进A 种型号餐盘多少个?解析:(1)A 种型号的餐盘单价为20元,B 种型号的餐盘单价为15元;(2)最多购进A 种型号餐盘80个【分析】(1)设A 型号的餐盘单价为x 元,则B 型号的餐盘单价为(x ﹣5)元,根据用120元购进的A 种型号的餐盘与用90元购进的B 种型号的餐盘的数量相同这个等量关系列出方程即可;(2)设购进A 种型号餐盘m 个,结合“该快餐店决定在成本不超过1900元的前提购进A 、B 两种型号的餐盘100个”列出不等式并解答.【详解】解:(1)设A 种型号的餐盘单价为x 元,则B 种型号的餐盘单价为(5x -)元, 由题意可列方程120905x x =-, 解得20x .经检验,20x 是原分式方程的解,则520515x -=-=.答:A 种型号的餐盘单价为20元,B 种型号的餐盘单价为15元.(2)设购进A 种型号餐盘m 个,则购进B 种型号餐盘()100m -个.依题意可得()20151001900m m +-≤,解得80m ≤.答:最多购进A 种型号餐盘80个.【点睛】本题考查了分式方程的应用和一元一次不等式的应用.解决本题的关键是读懂题意,找到符合题意的数量关系.准确的解分式方程或不等式是需要掌握的基本计算能力. 26.秋冬来临之际,天气开始慢慢变冷,某商家抓住商机,在十一月份力推甲、乙两款儿童棉服.已知十一月份甲款棉服的销售总额为8400元,乙款棉服的销售总额为9000元,乙款棉服的单价是甲款棉服单价的1.2倍,乙款棉服的销售数最比甲款棉服的销售数量少6件.(1)求十一月份甲款棉服的单价是多少元?(2)十二月份,为了加大推销力度,该商家将甲款棉服的单价在十一月份的基础上下调了%a ,结果甲款棉服的销量比十一月份多卖了24件;乙款棉服的单价在十一月份的基础上下调3%2a ,结果乙款棉服的销量比十一月份多卖了50件.要使十二月份的总销售额不低于22200元,求a 的最大值,解析:(1)十一月份甲款棉服的单价是150元;(2)20【分析】(1)设十一月份甲款棉服的单价是x 元,则十一月份乙款棉服的单价是1.2x 元,根据题意列方程即可得到结论;(2)根据不等量关系,列出关于a 的不等式,即可得到结论.【详解】(1)设十一月份甲款棉服的单价是x 元,则十一月份乙款棉服的单价是1.2x 元,根据题意得,8400900061.2x x-=, 解得:x =150,经检验:x =150是原方程的根, 答:十一月份甲款棉服的单价是150元;(2)由题意得:150(1-%a )(8400÷150+24)+1.2×150(1-3%2a )(8400÷150-6+50)≥22200,解得:a≤20,∴a 的最大值为20.【点睛】本题考查了分式方程的应用,一元一次不等式的应用,正确的理解题意,列出方程和不等式,是解题的关键.27.为了安全与方便,某自助加油站只提供两种自助加油方式:“每次定额只加200元”与“每次定量只加40升”.自助加油站规定每辆车只能选择其中一种自助加油方式,那么哪种加油方式更合算呢?请以两种加油方式各加油两次予以说明.(分析问题)“更合算”指的是两次加油后平均油价更低由于汽油单价会变,不妨设第一次加油时油价为x 元/升,第二次加油时油价为y 元/升.①两次加油,每次只加200元的平均油价为:_______________元/升.②两次加油,每次只加40升的平均油价为:_______________元/升.(解决问题)请比较两种平均油价,并用数学语言说明哪种加油方式更合算.解析:【分析问题】①2xy x y +;②2x y +;【解决问题】22x y xy x y +≥+,当x y =时,两种加油方式均价相等;当x y ≠时,每次加200元更合算【分析】分析问题:①计算出两次加油的总价400元,总的加油量为200200+xy ⎛⎫ ⎪⎝⎭升,从而得到两次加油的平均价格;②计算出两次加油的总价()4040x y +元,总的加油量为80升,从而得到两次加油的平均价格; 解决问题:利用作差法可得22x y xy x y +-+()()22x y x y -=+,再判断()()22x y x y -+的符号,从而可得结论.【详解】解:分析问题:① 第一次加油时油价为x 元/升, ∴ 第一次加油的数量为:200x升,第二次加油时油价为y 元/升,∴ 第二次加油的数量为:200y 升, 所以两次加油的平均价格为每升:()200+2004004002200200200200200xy xy x y x y x y x y xy===++++(元) 故答案为:2xy x y+ ②两次加油,每次只加40升的总价分别为:40x 元,40y 元, 所以两次加油的平均价格为每升:()40404080802x y x y x y +++==元, 故答案为:2x y +. 解决问题:()()()()()222422422x y x y x y xy xy x y x xy y x y x y +++-=--=++++()()22x y x y -=+ x ,y 为两次加油的汽油单价,故0x y +>,()20x y -≥ ()()22022x y x y xy x y x y -+∴-=≥+-,即22x y xy x y +≥+. 结论:当x y =时,两种加油方式均价相等;当x y ≠时,每次加200元更合算.【点睛】本题考查的是列代数式,分式的化简,分式的加减运算的应用,分式除法的应用,代数式的值的大小比较,掌握以上知识是解题的关键.28.先化简,再求值:213(1)211x x x x x +--÷-+-,其中x =12. 解析:1x x -,-1. 【分析】 先计算括号内,再将除法化为乘法,分别因式分解后约分,将x =12代入计算即可. 【详解】 解:原式=222113211x x x x x x x -+---÷-+- =2233211x x x x x x --÷-+- =2(3)1(1)3x x x x x ---- =1x x -, 当x =12时, 原式=121112=--. 【点睛】本题考查分式的化简求值.属于常考题型,熟练掌握分式混合运算的法则是解题的关键.。

初二上册数学分式练习题及答案

初二上册数学分式练习题及答案

初二上册数学分式练习题及答案一、基础练习1. 计算:(6/7) + (3/14) = __________2. 计算:(5/6) - (2/9) = __________3. 计算:(1/2) × (2/3) = __________4. 计算:(3/5) ÷ (1/10) = __________5. 化简:(10/16) = __________6. 化简:(18/24) = __________7. 化简:(9/12) = __________8. 化简:(20/25) = __________二、综合运算1. 计算:(3/8) + (1/4) - (5/16) = __________2. 计算:(7/9) × (2/5) ÷ (3/14) = __________3. 计算:(2/5) + (7/12) - (3/10) × (4/9) = __________三、应用题1. 甲地的一大块土地分成三个相等的部分,其中1/3 种了水稻,1/6 种了玉米,还有一块土地没有种植。

这块土地应该种植什么作物才能使得甲地的所有土地都被种植了?2. 小明家中共有24个苹果和32个橘子,小明想将这些水果装入一些袋子中,每袋中苹果和橘子的数量相同且最多,问最少需要几个袋子?3. 三个人一起清理一间教室,甲人一个小时可以清理 2/5 的面积,乙人一个小时可以清理 1/4 的面积,丙人一个小时可以清理 1/3 的面积。

他们一起工作了 3 小时后,教室的 3/5 的面积被清理了吗?答案:一、基础练习1. 11/142. 19/183. 1/34. 65. 5/86. 3/47. 3/48. 4/5二、综合运算1. 21/322. 392/1353. 21/40三、应用题1. 1/42. 83. 是通过以上题目的练习,我们可以巩固和提高对数学分式的运算能力,希望同学们能够认真对待数学学习,勤于练习,不断提高自己的数学水平。

人教版八年级数学上册分式方程练习题(附答案)

人教版八年级数学上册分式方程练习题(附答案)

人教版八年级数学上册分式方程练习题一、单选题1.下列各式中,是关于x 的分式方程的是( )A.230x y -=B.12327x x +-=C. 352x x =-D.132x x ++- 2.分式方程5211x x x -+=-的解为( ) A.1x =-B.1x =C.2x =D.2x =- 3.解分式方程11222x x x-=---时,去分母变形正确的是( ) A.112(2)x x -+=---B.112(2)x x -=--C.112(2)x x -+=+-D.112(2)x x -=--- 4.把分式方程214x x =+转化为整式方程时,方程两边需同乘以( ) A.x B.2x C.4x + D.(4)x x +5.下列方程中,是分式方程的有( ) ①352123x x +-=;②3212x x -=-;③2133193x x x +=--;④2335x x x-+=. A.①②③ B.②③④ C.①③④ D.①②④6.下列关于x 的方程中,是分式方程的是( ) A.132x =B.2354x x ++=C.12x =D.321x y -= 7.方程2131x x =+-的解是( ) A.53x = B.5x = C.4x = D.5x =-8.解分式方程14322x x-=--时,去分母可得( ) A.()1324x --=B.()1324x --=-C.()1324x --=-D.()1324x --= 9.分式方程1112x x x ++=-的解是( ) A.1x = B.1x =- C.3x = D.3x =-10.下列方程不是分式方程的是( ) A.31x x-=B.1111x x x +=+- C.342x y+= D.1223x x --= 11.在方程573x +=,22x -=,112x π+=,11423x x --=+,391x x+=中,分式方程有( ) A.1个 B.2个C.3个D.4个二、计算题12.解方程: 1.311221x x =-++; 2.21212339x x x -=+--.13.解下列方程: 1.21133xx x -+=--; 2.2121xx x =++-14.解分式方程: (1)22311x x x +=--; (2)222273711x x x x x x --=++--.15.解方程:21122x x x =---.16.解分式方程:2321212141x x x x +-=+--.17.化简227101a a a a ++⋅-+32144a a a +++12a a +÷+18.化简225616x x x -+-22544x x x ++⋅-34x x -÷-参考答案1.答案:C解析:230x y -=是整式方程,故A 错误;1237x x x +-=是整式方程,故B 错误;352x x =-是分式方程,且未知数为x ,故C 正确;132x x ++-不是方程故D 错误故选C 2.答案:A 解析:方程两边乘(1)x x -,得(5)2(1)(1)x x x x x -+-=-,解得1x =-.经检验,1x =-是原分式方程的解.故选A.3.答案:D解析:方程两边乘(2)x -,得112(2)x x -=---.故选D.4.答案:D解析:5.答案:B解析:方程①的分母中不含未知数,所以不是分式方程,方程②③④的分母中都含有未知数,所以是分式方程.故选B.6.答案:C解析:分母中含未知数的方程叫做分式方程,由此可知C 项是分式方程,A,B,D 项是整式方程.故选C.7.答案:B解析:方程的两边都乘()()31x x +-得223x x -=+,解方程得5x =.经检验,5x =是原分式方程的解,所以原方程的解是5x =.故选B.8.答案:B 解析:原方程可变形为14322x x -=---,方程两边同时乘()2x -,得()1324x --=-.故选B 9.答案:A 解析:111,2x x x ++=-去分母,方程两边同时乘(2)x x -得(1)(2)(2),x x x x x +-+=- 2222,1,x x x x x x --+=-=经检验,1x =是原分式方程的解.故选A.10.答案:D解析: A,B,C 选项中的方程分母中都含未知数,是分式方程;D 选项的方程分母中不含未知数,不是分式方程,故选D.11.答案:B解析:2392,1x x x+-==是分式方程,故选B. 12.答案:1.方程两边同乘()21x +,得3222x =+-, 解得32x =,检验:当32x =时,()210x +≠, 所以原分式方程的解为32x =. 2.方程两边同乘()()33x x +-,得32612x x -++=,解得3x =,检验:当3x =时,()()330x x +-=,所以3x =不是原分式方程的解,所以原分式方程无解.解析:13.答案:1.整理得21133x x x --=--,两边同乘()3x -,得213x x --=-,移项、合并同类项,得24x -=-,解得2x =,检验:当2x =时,30x -≠,∴原分式方程的解为2x =. 2.两边同乘()()12x x -+,得()()()()12212x x x x x -=++-+,去括号,得22242x x x x x -=+++-,移项、合并同类项,得42x -=,解得12x =-,检验:当12x =-时,()()120x x -+≠,∴原分式方程的解为12x =-. 解析:14.答案:(1)去分母得223x x +=+,解得1x =.经检验,1x =是增根,此分式方程无解.(2)去分母得3377337x x x x x x -++=-+-,移项,合并同类项得44x =,解得1x =.经检验,1x =是增根.此分式方程无解.解析:15.答案:去分母得221x x =-+,移项合并得1x =-.经检验,1x =-是原分式方程的解.解析:16.答案:去分母得63421x x x ---=+,解得6x =,经检验6x =是分式方程的解. 解析:17.答案:原式=2(2)(5)1a a a a ++⋅-+22(1)(1)(2)a a a a +-++21a a +⋅+ 5a =+解析:18.答案:原式=(2)(3)(4)(4)x x x x --⋅+-(1)(4)(2)(2)x x x x ++⋅+-43x x -- 12x x +=+ 解析:。

人教版八年级数学上册 分式运算 分式方程同步练习题(附答案)

人教版八年级数学上册  分式运算   分式方程同步练习题(附答案)

人教版八年级数学上册分式运算分式方程练习题一、单选题1.当分式31x -有意义时,字母x 应满足( ) A.1x ≠-B.0x =C.1x ≠D.0x ≠ 2.若分式2a a b+中的a b ,的值同时扩大到原来的10倍,则分式的值( ) A.是原来的20倍 B.是原来的10倍 C.是原来的110 D.不变3.如果1m n +=,那么代数式()22221m n m n m mn m +⎛⎫+⋅- ⎪-⎝⎭的值为( ) A.3-B.1-C.1D.3 4.如果2220m m +-=,那么代数式2442m m m m m +⎛⎫+⋅ ⎪+⎝⎭的值是( ) A.-2 B.-1 C.2 D.35.计算2222ab ab a b a b-÷-+的结果是( ) A.22ab b -+ B.2b a b -+ C.22ab b -- D.2b a b-- 6.在分式2222424312,,,412y x x x xy y a ab a x x y ab b +--++-+-中,是最简分式的有( ) A.1个 B.2个 C.3个 D.4个7.若分式22969x x x -++的值为0,则x 的值为( ) A.3 B.3± C.9 D.9±8.计算2422a a a a a a -⎛⎫-⋅ ⎪-+⎝⎭的结果是( ) A.4- B.4 C.2a D.2a -9.老师设计了接力游戏,用合作的方式完成分式化简,规则:每人只能看到前一人给的式子,并进行一步计算,再将结果传递给下一人,最后完成化简.过程如图所示:接力中,自己负责的一步出现错误的是( )A.只有乙B.甲和丁C.乙和丙D.乙和丁 10.计算2235325953x x x x x ÷⋅--+的结果为( ) A.223x B.2(53)3x + C.253x x - D.2159x x - 11.计算2n n m m m ⎛⎫-÷ ⎪-⎝⎭的结果是( ) A.1m -- B. 1m -+ C. mn m -- D.mn n -- 12.计算2221121a a a a a a --⋅+-+结果是( ) A.1a B.a C.11a a +- D.11a a -+ 13.计算222105a b a b ab a b +⋅-的结果为( ) A.2a b - B.a a b - C.b a b - D.2a a b- 14.计算3362b a b a-⋅的结果为( ) A.223a bB.223a b -C.229a b -D.229a b 15.把分式2112,,2(2)(3)(3)x x x x --++通分,下列结论不正确的是( ) A.最简公分母是2(2)(3)x x -+ B.221(3)2(2)(3)x x x x +=--+C.213(2)(3)(2)(3)x x x x x +=-+-+D.22222(3)(2)(3)x x x x -=+-+ 16.化简分式222()x y y x --的结果是( ) A.1- B.1 C.x y y x +- D.x y x y+- 二、计算题17.计算:1.2222255343x y m n xym mn xy n÷ 2.222132(1)441x x x x x x x-++÷+++- 18.先化简,再求值:2221211x x x x x x--+÷+-,其中2x =-. 三、填空题19.计算293242a a a a-+÷--的结果为_________. 20.如果23a b =,那么22242a b a ab --的值是____________. 21.如果2220m m +-=,那么244()2m m m m m ++⋅+的值是 . 参考答案1.答案:C解析:当10x -≠时,分式有意义。

八年级上册数学分式方程练习题及答案

八年级上册数学分式方程练习题及答案

八年级上册数学分式方程练习题及答案一、选择题:1、下列式子:22x1am?n,,,1?,, 中是分式的有个x3a?ba?b?A、B、C、D、22、下列等式从左到右的变形正确的是bb2bb?1ababbmA、?B、?C、2? D、? aaaa?1baamb3、下列分式中是最简分式的是m2?142m?1A、 B、C、2D、 m?12a1?mm?14、下列计算正确的是11111?mB、?m?m??1 C、m4??m3?1 D、n?m?n? nmmmn 3m22n35、计算?的结果是 ?2n3mnn2n2nA、 B、?C、 D、?m3m3m3mA、m?n?6、计算xy的结果是 ?x?yx?yxyx?y D、 x?yx?yA、1 B、0C、m27、化简m?n?的结果是 m?nm2?n2mnA、 B、?C、 D、? m?nm?nnm8、下列计算正确的是A、??1B、9、如果关于x的方程0?1?1 C、3a?2?35?32??a D、ax?8k??8无解,那么k的值应为 x?77?xA、1B、-1C、?1D、910、甲、乙两人做某一工程,如果两人合作,6天可以完成,如果单独工作,甲比乙少用5天,两人单独工作各需多少天完成?设乙单独工作x天完成,则根据题意列出的方程是A、111111111111??B、??C、??D、?? xx?56xx?56xx?56xx?56a2?a二、填空题: 11、分式,当a______时,分式的值为0;当a______时,分式无意义,当a______时,分式有意义12、x2?y22a?1a,2,2x?y.13、9?3aa?9a?6a?9的最简公分母是_____________. ?xa?1a?1ab??_____________.15、??_____________. abba?bb ?a116、?2?_____________. 17、把?0.0000000358用科学记数法表示为______________14、18、如果方程2则m=________ 19、如果x?x?1?5,则x2?x?2?___________ ?3的解是5,m20、一轮船在顺水中航行100千米与在逆水中航行60千米所用的时间相等,已知水流速度为3千米/时,求该轮船在静水中的速度?设该轮船在静水中的速度为x千米/时,则所列方程为___________________三、解答题21、计算:0?11?3??1x?yx??2??4???3?11x?12?3?2?23 232a2?? x?1x?212?21b?aa?b2a2?4??1?0 10baba?b??xy??2y?x?y?x2?2x2x?11?,其中x??2、先化简,再求值2x?13x?1 分式方程一.选择题1.分式方程1?1的解为x?3x?x?1x??1 x??22.第六次火车大提速后,从北京到上海的火车运行速度提高了25%,运行时间缩短了2h。

人教版八年级数学上分式题及答案

人教版八年级数学上分式题及答案

八年级上册数学分式综合题人教版一、单选题(共9道,每道11分)1.在下列各式,,,,,,中,分式的个数为()A.2个B.3个C.4个D.5个答案:C试题难度:三颗星知识点:分式定义2.分式有意义的条件为()A.x≠0且x≠1B.x≠1且x≠3C.x≠0,x≠1且x≠3D.x≠1,x≠2且x≠3答案:D试题难度:三颗星知识点:分式有意义的条件3.如果把分式中的、都扩大2倍,那么分式的值()A.缩小2倍B.扩大2倍C.扩大4倍D.不变答案:B试题难度:三颗星知识点:分式的基本性质4.若分式的值为整数,则整数x有()个。

A.1B.2C.3D.4答案:D试题难度:三颗星知识点:分式的值5.当分式的值为正时,x的范围为()A.B.C.D.答案:B试题难度:三颗星知识点:分式与不等式6.已知,则代数式的值为()A.B.C.4D.-2答案:C试题难度:三颗星知识点:整体代入7.如果,则A,B的值分别为()A.-1,1B.1,-1C.0,2D.2,0答案:A试题难度:三颗星知识点:分式加减逆运算8.先化简,然后从不等式组的解集中,从下面选项中选取你认为合适的一个整数x代入求值,那么应该选择,最后的结果为.()A.5,10B.-5,0C.4,9D.6,11答案:C试题难度:三颗星知识点:选取合适的值代入9.计算的值为()A.B.C.D.答案:B试题难度:三颗星知识点:有一分式分母为1。

八年级数学上册《第一章 分式》练习题-含答案(湘教版)

八年级数学上册《第一章 分式》练习题-含答案(湘教版)

八年级数学上册《第一章 分式》练习题-含答案(湘教版)一、选择题1.下列式子是分式的是( ) A.a -b 2 B.5+y π C.x +3xD.1+x 2.下列各式:其中分式共有( )A.2个B.3个C.4个D.5个3.如果分式11 x 在实数范围内有意义,则x 的取值范围是( ) A.x ≠﹣1 B.x >﹣1 C.全体实数 D.x=﹣14.若分式x -2x +1无意义,则( ) A.x =2 B.x =-1 C.x =1 D.x ≠-1 5.若分式2x +63x -9 的值为零,则x 等于( ) A.2 B.3 C.-3 D.3或-36.已知5a=2b ,则值为( )A.25B.35C.23 D.1.47.已知a ﹣b ≠0,且2a ﹣3b =0,则代数式2a -b a -b的值是( ) A.﹣12 B.0 C.4 D.4或﹣128.已知1x -1y =3,则代数式2x +3xy -2y x -xy -y的值是( ) A.-72 B.-112 C.92 D.34二、填空题9.某工厂计划a 天生产60件产品,则平均每天生产该产品 件.10.有游客m 人,若每n 个人住一个房间,结果还有一个人无房住,则客房的间数为.11.若分式2x+1的值不存在,则x的值为 .12.把分式a+13b34a-b的分子、分母中各项系数化为整数的结果为________.13.如果x=-1,那么分式x-2x2-4的值为________.14.若4x+1表示一个整数,则所有满足条件的整数x的值为___________.三、解答题15.下列各分式中,当x取何值时有意义?(1)1x-8;(2)3+x22x-3;(3)xx-3.16.当m为何值时,分式的值为0?(1)mm-1; (2)|m|-2m+2; (3)m2-1m+1.17.求下列各分式的值.(1)5x3x2-2,其中x=12;(2)x-12x2+1,其中x=-1;(3)x-yx+y2,其中x=2,y=-1.18.某公司有一种产品共300箱,将其分配给批发部和零售部销售,批发部经理对零售部经理说:“如果把你们分到的产品让我们卖,可卖得3 500元.”零售部经理对批发部经理说:“如果把你们分到的产品让我们卖,可卖得7 500元.”若假设零售部分到的产品是a箱,则:(1)该产品的零售价和批发价分别是每箱多少元?(2)若a=100,则这批产品一共能卖多少元?19.已知x,y满足xy=5,求分式x2-2xy+3y24x2+5xy-6y2的值.20.对于任意非零实数a,b,定义新运算“*”如下:a*b=a-bab,求2*1+3*2+…+10*9的值.参考答案1.C2.A3.A4.B5.C6.D7.C8.D.9.答案为:60a. 10.答案为:m -1n. 11.答案为:-1.12.答案为:12a +4b 9a -12b13.答案为:114.答案为:-2,-3,-5,0,1,3.15.解:(1)x ≠8 (2)x ≠32(3)x ≠3. 16.解:(1)∵⎩⎨⎧m =0,m -1≠0,∴m =0. (2)∵⎩⎨⎧|m|-2=0,m +2≠0,∴m =2. (3)∵⎩⎨⎧m 2-1=0,m +1≠0,∴m =1. 17.解:(1)把x =12 代入5x 3x 2-2,得原式=-2. (2)当x =-1时,x -12x 2+1 =-1-12×(-1)2+1 =-23. (3)当x =2,y =-1时,x -y x +y 2 =2-(-1)2+(-1)2 =33=1.18.解:(1)该产品的零售价是每箱7 500300-a 元,批发价是每箱3 500a元. (2)这批产品一共能卖10 750元.19.解:∵x y =5,∴x =5y ∴x 2-2xy +3y 24x 2+5xy -6y 2=(5y )2-2×5y ·y +3y 24×(5y )2+5×5y ·y -6y 2=18y 2119y 2=18119. 20.解:2*1+3*2+…+10*9=2-12×1+3-23×2+…+10-910×9=1﹣110=910.。

2024年-人教版数学八年级上册第15章——15.3《分式方程》同步练习及(含答案)3

2024年-人教版数学八年级上册第15章——15.3《分式方程》同步练习及(含答案)3
15.3 第3课时 分式方程的应用
一、选择题
1.小明和小张两人 练习 电脑打字,小明每分钟比小张少打6个字,小明打120个字所用的时间和小张打180个字所用的时间相 等。设小明打字速度为x个/分钟,则列方程正确的 是( )
A: B: C: D:
2.甲、乙两班学生植树造林,已知甲班每天比乙班多植5棵树,甲班植80棵树所用的天数与乙班植70棵树所 用的天数相等,若设甲班每天植 树x棵,则根据题意列出的方程是().
20.列方程或方程组解应用题:
据林业专家分析,树叶在光合作用后产生的分泌物能够吸附空气中的一些悬浮颗粒物,具有滞尘净化空气的作用.已知一片银杏树叶一年的平均滞尘量比一片国槐树叶一年的平均滞尘量的2倍少4毫克,若一年滞尘1000毫克所需的银杏树叶的片数与一年滞尘550毫克所需的国槐树叶的片数相同,求一片国槐树叶一年的平均滞尘量.
A. = B. = C. = D. =
5.甲队修路120 m与乙队修路100 m所用天数相同,已知甲队比乙队每天多修10 m,设甲队每天修路xm.依题意,下面所列方程正确的是
A. = B. =
C. = D. =
6.一艘轮船在静水中的最大航速为30千米/时,它沿江以最大航速顺流航行100千米所用时间,与以最大航速逆流航行60 千米所用时间相等,江水的流速为多少?设江水的流速为x千米/时,则可列方程()
18 .某工地调来72人参加挖土和运土,已知3人挖出的土1人恰好全部运走,怎么样调配劳动力才能使挖出的土能及时运走且不窝工,解决此问题可设派x人挖土,其他人运土,列方程:.
三、解答题
19.某人驾车从A地到B地,出发2小时后车子出了点毛病,耽搁了半小时修车,为了弥补耽搁的时间他将车速增加到后来的1.6倍,结果按时到达,已知A、B两地相距100千米,求某人原来驾车的速度.

初二上册数学分式练习题及答案

初二上册数学分式练习题及答案

初二上册数学分式练习题及答案练习题一:1. 将以下分数化为最简形式:a) 12/18b) 15/25c) 24/36d) 36/482. 求下列分数的和,并将结果化为最简形式:a) 2/3 + 1/4b) 3/8 + 5/12c) 7/10 + 2/5d) 9/16 + 3/83. 将下列分数转化为整数或混合数:a) 7/7b) 9/3c) 16/4d) 18/64. 求下列分数的积,并将结果化为最简形式:a) 2/3 × 1/4b) 3/8 × 5/12c) 7/10 × 2/5d) 9/16 × 3/85. 求下列分数的差,并将结果化为最简形式:a) 2/3 - 1/4b) 3/8 - 5/12c) 7/10 - 2/5d) 9/16 - 3/8答案:1.a) 12/18 = 2/3b) 15/25 = 3/5c) 24/36 = 2/3d) 36/48 = 3/42.a) 2/3 + 1/4 = 11/12b) 3/8 + 5/12 = 11/24c) 7/10 + 2/5 = 9/10d) 9/16 + 3/8 = 15/163.a) 7/7 = 1 (整数)b) 9/3 = 3 (整数)c) 16/4 = 4 (整数)d) 18/6 = 3 (整数)4.a) 2/3 × 1/4 = 1/6b) 3/8 × 5/12 = 5/32c) 7/10 × 2/5 = 7/25d) 9/16 × 3/8 = 27/1285.a) 2/3 - 1/4 = 5/12b) 3/8 - 5/12 = -1/24c) 7/10 - 2/5 = 1/10d) 9/16 - 3/8 = 3/16练习题二:1. 将以下分数化为最简形式:a) 8/12b) 10/15c) 16/20d) 21/282. 求下列分数的和,并将结果化为最简形式:a) 3/4 + 2/5b) 5/6 + 1/3c) 7/8 + 3/10d) 9/10 + 2/53. 将下列分数转化为整数或混合数:a) 12/12b) 15/3c) 24/6d) 30/54. 求下列分数的积,并将结果化为最简形式:a) 3/4 × 2/5b) 5/6 × 1/3c) 7/8 × 3/10d) 9/10 × 2/55. 求下列分数的差,并将结果化为最简形式:a) 3/4 - 2/5b) 5/6 - 1/3c) 7/8 - 3/10d) 9/10 - 2/5答案:1.a) 8/12 = 2/3b) 10/15 = 2/3c) 16/20 = 4/5d) 21/28 = 3/42.a) 3/4 + 2/5 = 23/20b) 5/6 + 1/3 = 4/3c) 7/8 + 3/10 = 29/20d) 9/10 + 2/5 = 19/103.a) 12/12 = 1 (整数)b) 15/3 = 5 (整数)c) 24/6 = 4 (整数)d) 30/5 = 6 (整数)4.a) 3/4 × 2/5 = 3/10b) 5/6 × 1/3 = 5/18c) 7/8 × 3/10 = 21/80d) 9/10 × 2/5 = 9/255.a) 3/4 - 2/5 = 7/20b) 5/6 - 1/3 = 1/6c) 7/8 - 3/10 = 47/80d) 9/10 - 2/5 = 1/10以上是初二上册数学分式的练习题及答案,希望对你的学习有所帮助。

人教版八年级数学上册第十五章分式-测试题带答案

人教版八年级数学上册第十五章分式-测试题带答案

人教版数学八年级上册第十五章《分式》考试试卷(时间:120分钟 满分:120分)一、选择题(每小题3分,共30分) 1.分式x -1x +1的值为0,则x =( B )A .-1B .1C .±1D .02.将分式方程1x =2x -2去分母后得到的整式方程,正确的是( A )A .x -2=2xB .x 2-2x =2x C .x -2=x D .x =2x -4 3.化简xy -2yx 2-4x +4的结果是( D )A.x x +2 B.x x -2 C.y x +2 D.yx -24.已知a =2-2,b =(3-1)0,c =(-1)3,则a ,b ,c 的大小关系是( B ) A .a >b >c B .b >a >c C .c >a >b D .b >c >a5.一种微粒的半径是0.000041米,0.000041这个数用科学记数法表示为( B ) A .41×10-6B .4.1×10-5C .0.41×10-4D .4.1×10-46.下列运算正确的是( D ) A.aa -b -bb -a=1 B.m a -n b =m -na -bC.b a -b +1a =1a D.2a -b -a +b a 2-b 2=1a -b7.化简(1-2x +1)÷1x 2-1的结果是( B )A .(x +1)2B .(x -1)2C.1(x +1)2 D.1(x -1)28.分式方程1x -1-2x +1=4x 2-1的解是( D )A .x =0B .x =-1C .x =±1D .无解9.两个小组同时从甲地出发,匀速步行到乙地,甲乙两地相距7500米,第一组步行的速度是第二组的1.2倍,并且比第二组早15分钟到达乙地.设第二组的步行速度为x 千米/小时,根据题意可列方程是( D )A.7500x -75001.2x =15B.7500x -75001.2x =14 C.7.5x -7.51.2x =15 D.7.5x -7.51.2x =1410.已知关于x 的分式方程m x -1+31-x=1的解是非负数,则m 的取值范围是( C ) A .m >2 B .m ≥2C .m ≥2且m ≠3D .m >2且m ≠3 二、填空题(每小题3分,共18分) 11.计算:xy2xy=__y __.12.计算:(-2xy -1)-3=__-y 38x3__.13.方程2x -1x -3=1的根是x =__-2__.14.若(x -y -2)2+|xy +3|=0,则(3x x -y -2x x -y )÷1y 的值是__-32__.15.若a 2+5ab -b 2=0,则b a -a b的值为__5__.16.已知x 2-3x -4=0,则代数式x x 2-x -4的值是__12__.三、解答题(共72分) 17.(12分)计算:(1)4a 2b ÷(b 2a )-2·a b 2; (2)(a a -2-4a 2-2a )÷a +2a ;解:ab 解:1(3)a 2-b 2a ÷(a -2a -b2a ).解:a +b a -b18.(6分)x 2+x x 2-2x +1÷(2x -1-1x ).(1)化简已知分式;(2)从-2<x≤2的范围内选取一个合适的x 的整数值代入求值. 解:(1)x 2x -1(2)∵x≠±1,且x≠0,且-2<x≤2,∴x =2,将x =2代入得原式=419.(8分)解下列分式方程. (1)2x +3=1x -1; 解:x =5,经检验x =5是分式方程的解 (2)1x -2=1-x 2-x-3. 解:解得x =2.检验:x =2时,x -2=0,所以x =2不是原方程的解,∴原方程无解20.(7分)当x 为何值时,分式3-x 2-x 的值比分式1x -2的值大3?解:解得x =1.经检验,x =1是方程3-x 2-x -1x -2=3的解.即当x =1时,分式3-x2-x的值比分式1x -2的值大321.(7分)已知:[(x 2+y 2)-(x -y)2+2y(x -y)]÷4y=1,求4x 4x 2-y 2-12x +y 的值.解:∵[(x 2+y 2)-(x -y )2+2y (x -y )]÷4y =x -12y ,∴x -12y =1,∴4x4x 2-y2-12x +y=12x -y=12(x -12y )=1222.(7分)已知关于x 的方程1x -2+k x +2=3x 2-4无解,求k 的值.解:去分母,得(1+k )x =2k +1,∵方程无解,∴x =±2,将x =2代入得不成立,将x =-2代入得k =-3423.(7分)已知x 2x 2-2=3,求(11-x -11+x )÷(xx 2-1+x)的值.解:原式化简,得-2x 2.∵x 2x 2-2=3,∴x 2-2x 2=13,∴1-2x 2=13,∴-2x 2=-2324.(8分)马小虎的家距离学校1800米,一天马小虎从家去上学,出发10分钟后,爸爸发现他的数学课本忘记拿了,立即带上课本去追他,在距离学校200米的地方追上了他,已知爸爸的速度是马小虎速度的2倍,求马小虎的速度.解:设马小虎的速度为x 米/分,则爸爸的速度是2x 米/分,依题意得1800-200x=1800-2002x+10,解得x =80.经检验,x =80是原方程的根.答:马小虎的速度是80米/分25.(10分)“汉十”高速铁路襄阳段正在建设中,甲、乙两个工程队计划参与一项工程建设,甲队单独施工30天完成该项工程的13,这时乙队加入,两队还需同时施工15天,才能完成该项工程.(1)若乙队单独施工,需要多少天才能完成该项工程?(2)若甲队参与该项工程施工的时间不超过36天,则乙队至少施工多少天才能完成该项工程?解:(1)设乙队单独施工,需要x 天才能完成该项工程,∵甲队单独施工30天完成该项工程的13,∴甲队单独施工90天完成该项工程,根据题意可得:13+15(190+1x )=1,解得:x =30,检验得:x =30是原方程的根,答:乙队单独施工,需要30天才能完成该项工程 (2)设乙队参与施工y 天才能完成该项工程,根据题意可得:190×36+y ×130≥1,解得:y ≥18,答:乙队至少施工18天才能完成该项工程附赠材料:怎样提高做题效率做题有方,考试才能游刃有余提到考试,映入我眼帘的就是一大批同学在题海里埋头苦干的情景。

人教版八年级数学上册第十五章分式测试题(附答案)

人教版八年级数学上册第十五章分式测试题(附答案)

人教版八年级数学上册第十五章分式测试题(附答案)一、单选题(共12题;共24分)1.当分式的值为0时,x的值是()A. 0B. 1C. -1D. -22.若分式有意义,则x满足的条件是()A. B. C. D.3.某校九年级学生从学校出发,到相距8千米的科技馆参观,第一组学生骑自行车先走,过了20分钟,第二组学生乘汽车出发,结果两组学生同学同时到达科技馆,已知第二组学生的速度是第一组学生速度的2倍,设第一组学生的速度为x千米/时,下面所列方程正确的是()A. ﹣=B. =20C. ﹣=D. =204.若分式的值为零,则x的值为()A. 3B. 3或﹣3C. 0D. -35.A,B两地相距48千米,一艘轮船从A地顺流航行至B地,又立即从B地逆流返回A地,共用去9小时,已知水流速度为4千米/时,若设该轮船在静水中的速度为x千米/时,则可列方程()A. +=9B.C. +4=9D.6.关于x的方程=1的解是正数,则a的取值范围是()A. a>-1B. a>-1且a≠0C. a<-1D. a<-1且a≠-27.某工程队准备修建一条长1200m的道路,由于采用新的施工方式,实际每天修建道路的速度比原计划快20%,结果提前2天完成任务.若设原计划每天修建道路x m,则根据题意可列方程为()A. ﹣=2B. ﹣=2C. ﹣=2D. ﹣=28.已知某项工程由甲、乙两队合做12天可以完成,乙队单独完成这项工程所需时间是甲队单独完成这项工程所需时间的2倍少10天.甲、乙两队单独完成这项工程分别需要多少天?设甲队单独完成需x天,根据题意列出的方程正确的是()A. B. C. D.9.不改变分式的值,使分子、分母的最高次项的系数都为正,正确的变形是()A. B. C. D.10.化简:=()A. 0B. 1C. xD.11.用甲乙两种饮料按照x:y(重量比)混合配制成一种新饮料,原来两种饮料成本是:甲每500克5元,乙每500克4元。

八年级数学上册《分式》专项测试卷及答案-人教版

八年级数学上册《分式》专项测试卷及答案-人教版

八年级数学上册《分式》专项测试卷及答案-人教版(考试时间:60分钟 总分:100分)一、选择题(共8题,共40分)1.若分式 1x 2−9 有意义,则 x 满足的条件是 ( ) A . x ≠3 B . x ≠−3C . x ≠±3D . x 为任意实数2.已知关于 x 的分式方程 1x+1=3k x无解,则 k 的值为 ( )A . 0B . 0 或 −1C . −1D . 0 或 133.下列各式从左到右的变形,一定正确的是 ( ) A .−b+c a =−b+c aB . a−0.3b a+0.2b =a−3ba+2bC . ba=b+1a+1D . a 2−9(a+3)2=a−3a+34.下列各式中,是分式的是 ( ) A . x2B . 13x 2C .2x+1x−3D . 15(x −y )5.若n 为整数,则能使 n+1n−1也为整数的n 的个数有( )A .1个B .2个C .3个D .4个6.a 、 b 为实数,且 ab =1 ,设 P =a a+1+b b+1,Q =1a+1+1b+1则 P 和 Q 的大小关系是( ) A .P >Q B .P <QC .P =QD .不能确定7.下列变形不是根据等式性质的是( ) A .0.3x 0.5y =3x5yB .若﹣a=x ,则x+a=0C .若x ﹣3=2﹣2x ,则x+2x=2+3D .若﹣12x=1,则x=﹣28.计算20-1的结果是( )A.-1B.0C.1D.19二、填空题(共5题,共15分)9.写出一个分式,并保证无论字母取何值分式均有意义.10.若1y −1x=5,则x+4xy−y2x−3xy−2y的值为.11.若关于x的不等式(a﹣2)x>a﹣2解集为x<1,化简|a﹣3|= .12.甲、乙两个机器人检测零件,甲比乙每小时多检测20个,甲检测300个比乙检测200个所用的时间少10%,若设甲每小时检测x个,则根据题意,可列出方程.13.分式1xy ,2x2y,3xyz的最简公分母为.三、解答题(共3题,共45分)14.先化简代数式:11−x +x−2x−1×3x2−4然后再从−2≤x≤2的范围内选取一个合适的整数代入求值.15.小鹏的家距离学校1600米,一天小鹏从家去上学,出发10分钟后,爸爸发现他的数学课本忘了拿,立即带上课本去追他,在学校门口追上了他,已知爸爸的速度是小鹏速度的2倍,求小鹏的速度.16.某服装店购进一批甲、乙两种款型时尚的T恤衫,其中甲种款型共用7800元,乙种款型共用6000元,甲种款型的件数是乙种款型件数的1.5倍,甲种款型每件的进价比乙种款型每件的进价少8元.(1) 甲、乙两种款型的T恤衫各购进多少件?(2) 若甲种款型T恤衫每件售价比乙种款型T恤衫的每件售价少10元,且这批T恤衫全部售出后,商店获利不少于6700元,则甲种T恤衫每件售价至少多少元?参考答案1. 【答案】C2. 【答案】D3. 【答案】D4. 【答案】C5.【答案】D6.【答案】C7.【答案】A8.【答案】B9. 【答案】1a2+1(答案不唯一)10. 【答案】9711. 【答案】120x −120x+35=11212. 【答案】m<313. 【答案】k<6且k≠314. 【答案】原式=11−x +3(x−1)(x+2)=−(x+2)+3(x−1)(x+2) =−(x−1)(x−1)(x+2) =−1x+2.当x=0时,原式=−12.15. 【答案】设小鹏的速度为x米/分,爸爸的速度为2x米/分由题意得1600x −16002x=10解得:x=80经检验x=80是原分式方程的解,且符合题意.答:小鹏的速度为80米/分.16. 【答案】(1) 设购进乙x件,则购进甲1.5x件78001.5x =6000x−8解得x=100.经检验x=100是原方程的解∴1.5x=1.5×100=150答:甲购进150件,乙购进100件.(2) 设甲每件售价m元则150m+100(m+10)−7800−6000≥6700.解得:m≥78.答:甲每件售价至少78元.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

八年级数学上册-分式练习(含答案)一、选择题(每小题3分,共18分)
1.计算
1
a-1

a
a-1
的结果为( )
A.1+a
a-1
B.-
a
a-1
C.-1 D.1-a
2.化简
2x
x2-9

1
3-x
的结果是( )
A.
1
x-3
B.
1
x+3
C.
1
3-x
D.
3x+3
x2-9
3.下列运算正确的是( )
A.4=2 B.(-3)2=-9
C.2-3=8 D.20=0
4.一种细胞的直径约为0.000 001 56米,将0.000 001 56用科学记数法表示应为( ) A.1.56×105 B.1.56×10-6
C.1.56×10-5 D.15.6×10-4
5.若(x-3)0+(
x
3x-6
)-2有意义,则x的取值范围是( )
A.x≠3且x≠2
B.x≠3或x≠2
C.x≠3或x≠2或x≠0 D.x≠3且x≠2且x≠0
6.化简2x-6
x-2
÷(
5
x-2
-x-2)的结果是( )
A.-
2
x+3
B.
2
x+3
C.2x-11
5
D.
2x-6
5-(x-2)2
二、填空题(每小题4分,共16分)
7.计算:(1
2
)-1+(1-2)0=________.
8.某单位全体员工计划在植树节义务植树240棵,原计划每小时植树a棵,实际每小时植树的棵数是原计划的1.2倍,那么实际比原计划提前了________h完成任务(用含a的代数式表示).
9.若1
m

1
n

7
m+n
,则
n
m

m
n
的值为________.
10.若
1
(2n-1)(2n+1)

a
2n-1

b
2n+1
对任意自然数n都成立,则a=________,b=
________.
三、解答题(共66分)
11.(8分)(广东中考)计算:9+|-4|+(-1)0-(1
2
)-1.
12.(24分)计算:
(1)
a
a-b

b
b-a
+1;
(2)x2+2x+1
x+2
÷
x2-1
x-1

x
x+2

(3)a2+3a
a2-3a

a-3
a
·(
2a
a-3
)2;
(4)(
1
x-4

1
x+4

2
x2-16
.
13.(10分)(广东中考)先化简,再求值:(
2
x-1

1
x+1
)·(x2-1),其中x=
3-1
3
.
14.(12分)(巴中中考)先化简2a+2
a-1
÷(a+1)+
a2-1
a2-2a+1
,然后a在-1、1、2三个数中任选
一个合适的数代入求值.
15.(12分)已知a为整数,且a+1
a-3

a-3
a+2
÷
a2-6a+9
a2-4
也为整数,求所有符合条件的a的值的和.
参考答案
1.C
2.B
3.A
4.B
5.D
6.A
7.3
8.
40a 9.5 10.12 -12
11.原式=3+4+1-2=6.
12.(1)原式=a a -b -b a -b +1=a -b a -b
+1=1+1=2. (2)原式=1x +2
. (3)原式=3-3a a -3
. (4)原式=x.
13.原式=3x +1.
当x =3-13
时,原式= 3. 14.原式=a +3a -1
. 当a =2时,原式=
2+32-1=5. 15.原式=3a -3
. ∵a 为整数且3a -3
是整数. ∴分母a -3=±1或a -3=±3,解得a =4或2或6或0. 由题意知a ≠3且a ≠±2,
∴符合条件的a 的值的和为4+6+0=10.。

相关文档
最新文档