《同底数幂的除法》教案2

合集下载

同底数幂的除法教案

同底数幂的除法教案

同底数幂的除法教案教案标题:同底数幂的除法教学目标:1. 学生能够理解和应用同底数幂的除法规则;2. 学生能够解决同底数幂的除法运算题目。

教学重点:同底数幂的除法规则以及解题方法。

教学准备:白板、黑板笔、教学PPT。

教学过程:步骤一:引入(5分钟)教师可以用一道问题引起学生的兴趣,比如:5的3次方除以5的2次方等于多少?步骤二:讲解同底数幂的除法规则(10分钟)1. 同底数幂的除法规则:a的m次方除以a的n次方等于a的m-n次方,其中m>n。

2. 解释上面的规则:当分子和分母的底数相同时,我们可以直接将指数相减得到结果。

步骤三:示范例题(10分钟)教师可以给出一些简单的例题,以便学生理解和掌握同底数幂的除法规则。

例题1:计算2的6次方除以2的3次方等于几?例题2:计算10的4次方除以10的2次方等于几?例题3:计算5的7次方除以5的5次方等于几?步骤四:学生练习(15分钟)让学生自己完成若干道练习题,以巩固所学知识。

可以设计一些变化较多的题目,以便学生掌握解题的方法。

步骤五:巩固与拓展(10分钟)1. 让学生在小组之间交流解题的方法和思路,进一步巩固所学知识。

2. 提出一些扩展的问题,让学生思考:如果分子和分母的底数不相等,那么同底数幂的除法规则是否适用?步骤六:总结与课堂反思(5分钟)教师总结同底数幂的除法规则,重点强调解题时要注意底数相同的情况,并鼓励学生提出问题和解决问题的方法。

步骤七:作业布置(5分钟)布置一些课后作业,要求学生运用同底数幂的除法规则解决相关题目,并在下节课检查讲解。

教学扩展:教师可以引导学生进行一些拓展思考,比如研究分子和分母的底数不相等时的除法规则是否存在,以及如何运用同底数幂的除法规则解决实际问题。

北师大版数学七年级下册《同底数幂的除法》教案

北师大版数学七年级下册《同底数幂的除法》教案

北师大版数学七年级下册《同底数幂的除法》教案一. 教材分析《同底数幂的除法》是北师大版数学七年级下册第9章幂的运算中的一节内容。

本节课主要让学生掌握同底数幂的除法法则,并能灵活运用该法则进行计算。

教材通过引入实际问题,引导学生探讨同底数幂的除法运算,培养学生的逻辑思维能力和解决问题的能力。

二. 学情分析学生在七年级上册已经学习了幂的定义、幂的运算性质等基础知识,对幂的概念有一定的了解。

但是,对于同底数幂的除法运算,学生可能还存在一定的困难。

因此,在教学过程中,教师需要关注学生的学习情况,针对学生的实际问题进行讲解,帮助学生理解和掌握同底数幂的除法运算。

三. 教学目标1.知识与技能目标:让学生掌握同底数幂的除法法则,能够正确进行同底数幂的除法运算。

2.过程与方法目标:通过探讨同底数幂的除法运算,培养学生的逻辑思维能力和解决问题的能力。

3.情感态度与价值观目标:激发学生对数学的学习兴趣,培养学生的团队合作精神。

四. 教学重难点1.重点:同底数幂的除法法则。

2.难点:同底数幂的除法运算的灵活运用。

五. 教学方法采用问题驱动法、案例教学法、分组讨论法等多种教学方法,引导学生主动探究、合作交流,培养学生的数学素养。

六. 教学准备1.教师准备:熟练掌握同底数幂的除法运算,了解学生的学习情况,准备相关案例和问题。

2.学生准备:回顾幂的定义和运算性质,准备好笔记本和笔。

七. 教学过程1.导入(5分钟)教师通过提问方式引导学生回顾幂的定义和运算性质,为新课的学习做好铺垫。

2.呈现(10分钟)教师展示同底数幂的除法运算的案例,引导学生观察和分析,提出问题:“如何进行同底数幂的除法运算?”3.操练(10分钟)教师引导学生分组讨论,共同探讨同底数幂的除法法则。

学生在小组内进行练习,教师巡回指导。

4.巩固(10分钟)教师挑选几组学生代表的答案,进行讲解和分析,巩固学生对同底数幂的除法法则的理解。

5.拓展(10分钟)教师提出一些有关同底数幂的除法运算的实际问题,引导学生运用所学知识进行解决,提高学生的解决问题的能力。

同底数幂的除法教案

同底数幂的除法教案

同底数幂的除法教案《同底数幂的除法教案》一、教学目标1. 让学生理解同底数幂的除法法则。

2. 学生能够熟练运用同底数幂的除法法则进行计算。

二、教学重难点1. 重点:同底数幂的除法法则的理解和应用。

2. 难点:对法则中底数不变、指数相减的准确把握。

三、教学方法讲授法、练习法、讨论法。

四、教学过程(一)导入同学们,大家看啊,我前几天去菜市场买菜,看到卖菜的阿姨在算账。

她把一堆西红柿分成了几堆,这就好像我们的同底数幂呀,然后她计算每一堆有多少个西红柿,这其实就和我们今天要学的同底数幂的除法很像呢!(哈哈,是不是很有意思呀)(二)讲解同底数幂的除法法则我们就像分析阿姨分西红柿一样来理解这个法则。

比如有 a 的 m 次方除以 a 的 n 次方,就相当于把有 m 个 a 的一堆东西分成 n 等份,那每份不就是 a 的(m-n)次方嘛。

大家想想是不是这个道理呀。

(三)例题讲解例 1:计算 x 的 5 次方÷x 的 3 次方。

就像把 5 个 x 分成 3 份,那每份就是 2 个 x 啦,所以结果就是 x 的 2 次方。

例 2:(-a)的 7 次方÷(-a)的 4 次方。

哎呀,就好比把 7 个-a 分成 4 份,每份就是 3 个-a 嘛,结果就是(-a)的 3 次方。

(四)课堂练习让同学们做几道练习题,巩固一下所学知识。

(五)课堂总结同学们,今天我们学习了同底数幂的除法法则,就像菜市场阿姨分西红柿一样简单易懂哦。

大家要记住底数不变,指数相减呀。

(六)布置作业布置一些课后作业,让同学们进一步掌握同底数幂的除法。

哎呀,希望大家都能像理解阿姨分西红柿一样理解同底数幂的除法,这样学起来就轻松多啦!以上教案仅供参考,你可以根据实际情况进行调整和修改哦。

同底数幂的除法教学教案

同底数幂的除法教学教案

同底数幂的除法教学教案第一章:导入1.1 教学目标让学生理解同底数幂的除法概念。

培养学生运用数学知识解决实际问题的能力。

1.2 教学内容引入同底数幂的除法概念。

举例说明同底数幂的除法运算。

1.3 教学方法通过具体例子引导学生理解同底数幂的除法。

让学生通过小组讨论,探索同底数幂的除法规律。

1.4 教学步骤引入同底数幂的除法概念,解释其意义。

给出具体例子,让学生观察和理解同底数幂的除法运算。

引导学生进行小组讨论,探索同底数幂的除法规律。

第二章:同底数幂的除法运算规则2.1 教学目标让学生掌握同底数幂的除法运算规则。

培养学生运用数学知识进行计算的能力。

2.2 教学内容介绍同底数幂的除法运算规则。

举例说明同底数幂的除法运算过程。

2.3 教学方法通过具体例子讲解同底数幂的除法运算规则。

让学生通过练习题,巩固同底数幂的除法运算。

2.4 教学步骤讲解同底数幂的除法运算规则,并举例说明。

让学生进行练习题,巩固同底数幂的除法运算。

第三章:同底数幂的除法与指数法则3.1 教学目标让学生理解同底数幂的除法与指数法则的关系。

培养学生运用指数法则解决同底数幂的除法问题。

3.2 教学内容介绍指数法则。

解释同底数幂的除法与指数法则的关系。

3.3 教学方法通过具体例子讲解指数法则。

引导学生运用指数法则解决同底数幂的除法问题。

3.4 教学步骤讲解指数法则,并举例说明。

引导学生运用指数法则解决同底数幂的除法问题。

第四章:同底数幂的除法在实际问题中的应用4.1 教学目标让学生学会将同底数幂的除法应用于实际问题中。

培养学生运用数学知识解决实际问题的能力。

4.2 教学内容举例说明同底数幂的除法在实际问题中的应用。

引导学生运用同底数幂的除法解决实际问题。

4.3 教学方法通过具体例子引导学生理解同底数幂的除法在实际问题中的应用。

让学生通过小组讨论,运用同底数幂的除法解决实际问题。

4.4 教学步骤举例说明同底数幂的除法在实际问题中的应用,并解释其意义。

同底数幂的除法教案

同底数幂的除法教案

同底数幂的除法教案教案:同底数幂的除法一、教学目标:1.理解同底数幂的除法的概念和规则;2.掌握同底数幂的除法的计算方法;3.能够解决一些实际问题,运用同底数幂的除法进行计算。

二、教学内容:1.同底数幂的概念;2.同底数幂的除法的规则;3.同底数幂的除法的计算方法。

三、教学过程:1.导入新课:通过展示一道题目,激发学生对同底数幂的除法的兴趣,并进行讨论。

题目:计算2的4次方除以2的2次方。

解答:2的4次方除以2的2次方等于2的(4-2)次方,即2的2次方,所以答案是4、这是因为当分子和分母的底数相同时,我们可以把它们的指数相减,得到新的指数。

2.引入同底数幂的概念:通过简单的例子和图示,向学生介绍同底数幂的概念,并强调同底数幂的指数运算规律。

例子:计算3的5次方除以3的3次方。

解答:3的5次方除以3的3次方等于3的(5-3)次方,即3的2次方,所以答案是93.引入同底数幂的除法的规则:向学生介绍同底数幂的除法的规则,并通过举例进行解释。

规则:当同底数幂相除时,我们可以将它们的指数相减,得到新的指数。

例子:计算5的6次方除以5的4次方。

解答:5的6次方除以5的4次方等于5的(6-4)次方,即5的2次方,所以答案是254.练习与讨论:让学生自主完成下面的练习,并进行讨论和答案的讲解。

练习1:计算2的7次方除以2的5次方。

练习2:计算4的8次方除以4的6次方。

练习3:计算7的11次方除以7的8次方。

5.进一步拓展:让学生解决一些与同底数幂的除法相关的实际问题,加深对同底数幂的除法的理解和运用能力。

问题1:假设你每天走路步数都是3的5次方步,一周走了3的7次方步,你能计算出你每天走了几步吗?问题2:一个装有5的4次方毫升水的瓶子里,每天用水3的2次方毫升,这个瓶子里的水能用多少天?问题3:公司每年盈利6的5次方万元,用于分红的部分是6的3次方万元,每人分得的分红是多少万元?四、教学总结:通过本节课的学习,学生应该对同底数幂的除法有了较好的理解。

《同底数幂的除法》优秀教案

《同底数幂的除法》优秀教案
【师】请同学们先独立完成这几题,再说说你是怎样做的.
【生1】第1题中1前面有10个0,所以00000000001=1×10-10
【生2】第2题中2前面有12个0,所以00000000000029=29×10-12
【生3】第3题中1前面有9个0,所以0000000001295=1295×10-9
随堂练习一:用科学记数法表示下列各数
⑴00000000023;⑵0000000000001229;⑶00000000015
随堂练习二:小数表示⑴11×10-4;⑵112×10-6;⑶901×10-8.
⑴00000000023;⑵0000000000001229;⑶00000000015.
展评有效
课堂分组学习——口头展示——教师点评——学生纠错
以博致雅:“八有效”文化课堂讲学案
年级
科目
主备人
审核人
总课时数
讲学日期
七年
数学
5
月日
课题
(3)同底数幂的除法(第2课时)
课型
新授课
教具
多媒体
课时
2
教法
讲练结合
目标有效
1、多种知识:会用科学记数法表示小于1的正数
2、多种技能:培养观察、比较、操作、猜想、归纳等思维方法,培养探索意识和合作交流意识。
3、高雅素养:使学生养成互助协作意识,使自己成为高雅之人。
总结有效
师生同台
测试有效
中考链接(结合本节知识点)
板书设计
(3)同底数幂的除法
创设情境归纳总结例题随堂练习
教学反思
七年数学第5次有效作业
1、近似数0230万精确到位,用科学技术法表示该数为
2、把00000000012021学计数法表示为()

8.3同底数幂的除法(2)

8.3同底数幂的除法(2)
教学素材:
A组题:
(1)(-2/3)-2=
(2)(-3/2)-3=
(3)(-a)6÷(-a)-1=
说明:所学法则对负整数指数幂依然适用。
(4)若(x+2)0无意义,
则x取值范围是
(5) (n/m)-p=
(这个可作公式用)
B组题:
(1)(-2/3)-2÷9-3·(1/27)2=
(2)︱x︱﹦(x-1)0,则x =
4.例题解析
例2:题略,详见P59
说明:强调运算过程,步骤尽可能细致些,以求学生对负整数指数幂公式的理解,体验。
5.练一练P60
1、2、3、学生板演,教师评点。
小结:本节课学习了零指数幂公式a0= 1(a≠0),负整数指数幂公式a-n= 1/ an(a≠0 ,n是负整数),理解公式规定的合理性,
并能与幂的运算法则一起进行运算。
语言表述:任何不等于0的数的0次幂等于1。
教师说明此规定的合理性。
3.议一议P59
问:你会计算23÷24吗?2×2×2
我们知道:23÷24==1/2
2×2×2×2
23÷24=23-4=21
所以我们规定a-n= 1/ an(a≠0 ,n是正整数)
语言表述:任何不等于0的数的-n(n是正整数)次幂,等于这个数的n次幂的倒数。
教学方法
讲练结合、探索交流
课型
新授课
教具
投影仪
教师活动
学生活动
一.复习提问:
同底数幂的除法法则是什么?
(1)符号语言:am÷an= am-n
(a≠0 , m、n是正整数,且m>n)
(2)文字语言:同底数幂相除,底数不变,指数相减。
强调:法则的条件。
二.新课讲解:

《同底数幂的除法》教案

《同底数幂的除法》教案

同底数幂的除法教学目标:1、知识与技能目标:掌握同底数幂的除法的运算法则及其应用.2、过程与方法目标:经历探索同底数幂的除法的运算法则的过程,会进行同底数幂的除法运算。

理解同底数幂的除法的运算算理,发展有条理的思考及表达能力。

3、情感态度与价值观目标:经历探索同底数幂的除法运算法则的过程,获得成功的体验,积累丰富的数学经验。

渗透数学公式的简洁美与和谐美。

教学重点:准确熟练地运用同底数幂的除法运算法则进行计算。

教学难点:根据乘、除互逆的运算关系得出同底数幂的除法运算法则。

教学过程(一)创设情境1.叙述同底数幂的乘法运算法则.2.问题:一种数码照片的文件大小是28K,一个存储量为26M(1M=210K)•的移动存储器能存储多少张这样的数码照片?分析:移动器的存储量单位与文件大小的单位不一致,所以要先统一单位.移动存储器的容量为26×210=216K.所以它能存储这种数码照片的数量为216÷28。

216、28是同底数幂,同底数幂相除如何计算呢?这正是我们这节课要探究的问题。

(引入课题)复习同底数设计意图:复习同底数幂的乘法运算法则便于学生区别同底数幂的除法运算法则,然后又第二个实际问题引入新课,学生在探索的过程中,自然地体会到学习同底数幂的除法运算的必要性。

(二)、引导探究学生尝试,探索公式1.计算:()·28=216(2))·53=55(3)()·105=107(4)()·a3=a62.再计算:(1)216÷28=()(2)55÷53=()(3)107÷105=()(4)a6÷a3=()3.提问:上述运算能否发现商与除数、被除数有什么关系?学生以小组为单位,展开讨论设计意图:同底数幂的除法法则的推导,应按从具体到一般的步骤进行。

教学中通过几个例子,利用乘法和除法的关系,结合同底数幂相乘的法则,得出除法法则。

同底数幂除法教案

同底数幂除法教案

同底数幂除法教案教学目标:1. 理解同底数幂除法的概念和意义。

2. 掌握同底数幂除法的运算规则和步骤。

3. 能够正确进行同底数幂除法的计算。

教学内容:第一章:同底数幂除法的概念1.1 引入同底数幂除法的概念1.2 解释同底数幂除法的意义第二章:同底数幂除法的运算规则2.1 介绍同底数幂除法的运算规则2.2 演示同底数幂除法的运算步骤第三章:同底数幂除法的计算方法3.1 讲解同底数幂除法的计算方法3.2 进行同底数幂除法的计算示例第四章:同底数幂除法的应用4.1 展示同底数幂除法的应用题4.2 引导学生解决同底数幂除法的应用题第五章:巩固练习5.1 提供同底数幂除法的练习题5.2 学生独立完成练习题并进行讲解教学方法:1. 采用讲授法,讲解同底数幂除法的概念、运算规则和计算方法。

2. 使用示例和应用题,引导学生进行思考和练习。

3. 提供练习题,巩固学生对同底数幂除法的理解和应用能力。

教学评估:1. 课堂上进行同底数幂除法的练习,观察学生的掌握情况。

2. 提供课后作业,收集学生的练习成果并进行批改和反馈。

3. 在下一节课开始时,进行同底数幂除法的测试,评估学生的学习效果。

教学资源:1. 教学PPT,展示同底数幂除法的概念、运算规则和计算方法。

2. 同底数幂除法的练习题和应用题。

3. 课后作业和测试题。

教学计划:1. 第一章:2课时2. 第二章:2课时3. 第三章:2课时4. 第四章:2课时5. 第五章:1课时教学总结:通过本章的教学,学生应该能够理解同底数幂除法的概念和意义,掌握同底数幂除法的运算规则和计算方法,并能够正确进行同底数幂除法的计算。

通过应用题和练习题的练习,学生能够巩固对同底数幂除法的理解和应用能力。

第六章:同底数幂除法的扩展应用6.1 介绍同底数幂除法在实际问题中的应用。

6.2 解决实际问题,如物理中的速度、面积计算等。

教学方法:通过实例讲解同底数幂除法在实际问题中的应用。

引导学生运用同底数幂除法解决生活中的问题。

同底数幂的除法教学教案

同底数幂的除法教学教案

同底数幂的除法教学教案第一章:同底数幂的除法概念引入1.1 学习目标让学生理解同底数幂的除法概念。

让学生掌握同底数幂的除法法则。

1.2 教学内容引入幂的定义:幂是指一个数与另一个数的乘积,表示为a^n,其中a 是底数,n 是指数。

引导学生思考同底数幂的除法:当两个幂的底数相如何计算它们的除法?1.3 教学活动通过举例说明同底数幂的除法,如2^3 ÷2^2 = 2^(3-2) = 2^1 = 2。

让学生尝试解决一些同底数幂的除法问题,并总结除法法则。

1.4 练习与巩固设计一些同底数幂的除法练习题,让学生独立完成。

让学生互相讨论解题过程,加深对同底数幂除法概念的理解。

第二章:同底数幂的除法法则2.1 学习目标让学生掌握同底数幂的除法法则。

让学生能够应用除法法则解决实际问题。

2.2 教学内容介绍同底数幂的除法法则:同底数幂相除,底数不变,指数相减。

解释除法法则的应用:如何计算a^m ÷a^n 和a^m ÷b^n。

2.3 教学活动通过示例演示同底数幂的除法法则,如2^5 ÷2^3 = 2^(5-3) = 2^2 = 4。

让学生尝试解决一些同底数幂的除法问题,并应用除法法则。

2.4 练习与巩固设计一些同底数幂的除法练习题,让学生独立完成。

让学生互相讨论解题过程,加深对同底数幂除法法则的理解。

第三章:同底数幂的除法与乘法的关系3.1 学习目标让学生理解同底数幂的除法与乘法之间的关系。

让学生能够将除法问题转化为乘法问题。

3.2 教学内容解释同底数幂的除法与乘法之间的关系:同底数幂的除法可以转化为乘法的倒数。

展示如何将除法问题转化为乘法问题,如2^5 ÷2^3 可以写成2^5 ×2^(-3)。

3.3 教学活动通过示例说明同底数幂的除法与乘法之间的关系,如2^5 ÷2^3 = 2^5 ×2^(-3)。

让学生尝试解决一些同底数幂的除法问题,并应用除法与乘法之间的关系。

《同底数幂的除法》教案

《同底数幂的除法》教案

《同底数幂的除法》教案第一章:同底数幂的除法概念引入教学目标:1. 让学生理解同底数幂的除法概念。

2. 让学生掌握同底数幂的除法法则。

教学内容:1. 引入同底数幂的除法概念。

2. 讲解同底数幂的除法法则。

教学步骤:1. 通过具体例子引入同底数幂的除法概念,例如:\( 3^4 ÷3^2 = ? \)。

2. 引导学生观察例子,发现同底数幂的除法法则:\( a^m ÷a^n = a^{m-n} \)。

3. 让学生通过小组讨论,总结同底数幂的除法法则。

教学评价:1. 检查学生对同底数幂的除法概念的理解。

2. 检查学生对同底数幂的除法法则的掌握。

第二章:同底数幂的除法运算教学目标:1. 让学生掌握同底数幂的除法运算。

2. 让学生能够正确进行同底数幂的除法运算。

教学内容:1. 讲解同底数幂的除法运算规则。

2. 进行同底数幂的除法运算练习。

教学步骤:1. 讲解同底数幂的除法运算规则,例如:\( a^m ÷a^n = a^{m-n} \)。

2. 让学生进行同底数幂的除法运算练习,提供一些具体的例子,例如:\( 2^3 ÷2^2 = ? \),\( 5^4 ÷5^2 = ? \)。

3. 引导学生总结同底数幂的除法运算规则,并能够正确进行运算。

教学评价:1. 检查学生对同底数幂的除法运算规则的掌握。

2. 检查学生能够正确进行同底数幂的除法运算。

第三章:同底数幂的除法应用教学目标:1. 让学生能够将同底数幂的除法应用到实际问题中。

2. 让学生能够解决实际问题,提高解决问题的能力。

教学内容:1. 讲解同底数幂的除法在实际问题中的应用。

2. 进行同底数幂的除法应用练习。

教学步骤:1. 通过具体例子讲解同底数幂的除法在实际问题中的应用,例如:计算化学反应中物质的浓度。

2. 让学生进行同底数幂的除法应用练习,提供一些实际问题,例如:计算光强的减弱程度,计算放射性物质的衰变等。

《同底数幂的除法》教案

《同底数幂的除法》教案

《同底数幂的除法》教案一、教学目标1. 让学生理解同底数幂的除法概念,掌握同底数幂相除的运算性质和计算方法。

2. 培养学生运用同底数幂的除法解决实际问题的能力。

3. 提高学生的数学思维能力,培养学生的团队合作精神。

二、教学内容1. 同底数幂的除法概念2. 同底数幂相除的运算性质3. 同底数幂的除法计算方法4. 应用题解析三、教学重点与难点1. 教学重点:同底数幂的除法概念、运算性质和计算方法。

2. 教学难点:同底数幂的除法计算方法在实际问题中的应用。

四、教学方法1. 采用问题驱动法,引导学生探究同底数幂的除法概念和运算性质。

2. 运用案例分析法,让学生通过解决实际问题,掌握同底数幂的除法计算方法。

3. 采用小组讨论法,培养学生的团队合作精神和数学思维能力。

五、教学步骤1. 导入新课:复习幂的定义和性质,引导学生思考同底数幂的除法问题。

2. 讲解同底数幂的除法概念和运算性质,让学生理解并掌握同底数幂相除的规律。

3. 演示同底数幂的除法计算方法,让学生通过例题跟随老师一起计算,巩固所学知识。

4. 布置练习题,让学生独立完成,检测学习效果。

5. 总结本节课所学内容,布置课后作业。

6. 课堂反馈:课后收集学生作业,了解掌握情况,为下一步教学做好准备。

六、教学评估1. 课后作业:布置相关的习题,让学生巩固同底数幂的除法概念和计算方法。

2. 课堂练习:课堂上进行一些即时的练习,通过学生的回答情况来评估学生的理解程度。

3. 小组讨论:在小组讨论中,观察学生是否能够有效地参与讨论,并运用所学的知识解决实际问题。

七、教学反思在课后,对教学过程进行反思,思考教学方法是否适合学生,学生是否掌握了重点内容,教学难点是否得到有效解决。

根据反思的结果,调整教学策略,为下一节课做好准备。

八、拓展活动1. 研究不同底数幂的除法:让学生探索不同底数幂的除法规则,加深对幂的除法概念的理解。

2. 数学竞赛:组织同底数幂的除法竞赛,激发学生的学习兴趣,提高学生的数学能力。

《同底数幂的除法》数学教案

《同底数幂的除法》数学教案

《同底数幂的除法》数学教案
一、教学目标:
1. 理解并掌握同底数幂的除法法则。

2. 能够运用同底数幂的除法法则解决实际问题。

3. 培养学生的逻辑思维能力和计算能力。

二、教学重点与难点:
1. 重点:理解和掌握同底数幂的除法法则。

2. 难点:运用同底数幂的除法法则解决实际问题。

三、教学过程:
(一)导入新课
通过回顾旧知识,引入新课题。

例如,复习幂的概念和性质,引导学生思考“如果两个幂的底数相同,指数不同,那么这两个幂之间有什么关系呢?”
(二)新课讲解
1. 引导学生观察、分析、归纳,得出同底数幂的除法法则:a^m / a^n =
a^(m-n) (a≠0,m,n都是正整数,m>n)。

2. 解释法则的意义,并举例说明。

(三)课堂练习
设计一些基础题和提高题,让学生独立完成,然后集体讨论答案,教师进行点评。

(四)拓展应用
设计一些实际问题,让学生运用所学的知识去解决,以培养他们的实际应用能力。

(五)小结与作业
总结本节课的主要内容,布置适当的课后作业。

四、教学策略:
1. 创设情境,激发学生的学习兴趣。

2. 注重学生的主体地位,引导他们自主学习和探究。

3. 运用多媒体教学手段,增强教学效果。

同底数幂的除法数学教案

同底数幂的除法数学教案

同底数幂的除法数学教案
标题:同底数幂的除法数学教案
一、教学目标
1. 知识与技能:理解并掌握同底数幂的除法法则,并能运用该法则解决实际问题。

2. 过程与方法:通过观察、分析、讨论等活动,培养学生的逻辑思维能力和独立解决问题的能力。

3. 情感态度价值观:激发学生对数学的兴趣,培养他们敢于探索、勇于创新的精神。

二、教学重点和难点
1. 教学重点:理解和掌握同底数幂的除法法则。

2. 教学难点:如何将抽象的数学概念转化为直观的理解,以及如何灵活运用法则解决实际问题。

三、教学过程
1. 导入新课:通过一些简单的例子,引导学生发现同底数幂之间的关系,引出课题。

2. 新知讲解:
- 同底数幂的除法法则:同底数幂相除,底数不变,指数相减。

- 通过实例解析,帮助学生理解法则的具体含义。

- 引导学生总结法则,加深印象。

3. 实践应用:设计一些练习题,让学生运用所学法则解决问题,检验他们的理解和掌握程度。

4. 课堂小结:回顾本节课的学习内容,强调重要知识点,解答学生的问题。

5. 布置作业:设计一些习题,让学生在课后进一步巩固和提高。

四、教学反思
对本节课的教学效果进行反思,总结成功经验和存在的问题,为以后的教学提供参考。

苏科版七(下)数学8.3同底数幂除法教学案(2)

苏科版七(下)数学8.3同底数幂除法教学案(2)

《8.3同底数幂的除法》教案2011-3-10教学目标:1..理解并掌握零指数幂与负指数幂的含义;2.了解指数范围由正整数拓宽到整数范围;3.了解零指数幂与负指数幂对于所有幂的运算性质仍然适用;教学重点、难点:对零指数幂与负指数幂的规定的合理性的认识、理解和应用;教学过程:一、复习回顾1. 同底数幂的除法运算法则2. 计算(1)=÷3622 (2)=÷-462)2(二、自学质疑1.用除法计算 (1)=÷)2()2(44 (2)=÷64222.用同底数幂计算 (1)=÷4422 (2)=÷64223.比较运算结果,观察发现:(1)=02 (2)=-224.对比上式中你能具体说说是怎样变化的吗?猜一猜:n a -=?(n a ,0=是正整数),你的猜想正确吗? 试说出你的理由:我们得到结论,任何不等于0的数的-n(-n 是正整数)次幂,等于这个数的n 次幂的倒数我们知道: 23÷24 = = 1/2 2×2×2×223÷24 =23-4 = 2 1所以我们规定a -n = 1/ a n (a ≠0 ,n 是正整数)语言表述:任何不等于0的数的-n (n 是正整数)次幂,等于这个数的n 次幂的倒数。

三、例题选讲例1用小数或分数表示下列各数(1)4-2 (2)-3-3 (3)3.14×10-5例2计算(1) =÷4622 (2) =-÷-46)()(b b(3)(ab )4÷(ab)2= (4)t 2m+3÷t 2(m 是正整数) 四、矫正反馈1. 计算 (1)(-8)12÷(-8)5; (2)x3÷x2; (3)-a3÷a6; (4)a3m÷a2m-1(m是正整数)《8.3同底数幂的除法》学案2011-3-10一、学习目标1.能说出零指数幂、负整数指数幂的意义2. 会正确的使用科学计数法表示绝对值小于1的数二、复习回顾1.同底数幂的除法运算法则2.计算(1)=÷3622 (2)=÷-462)2(三、自学质疑1.用除法计算 (1)=÷)2()2(44 (2)=÷64222.用同底数幂计算 (1)=÷4422 (2)=÷64223.比较运算结果,观察发现:(1)=02 (2)=-224.对比上式中你能具体说说是怎样变化的吗?猜一猜:n a -=?(n a ,0=是正整数),你的猜想正确吗? 试说出你的理由:四、例题选讲:书本例题 五、矫正反馈1.用小数或分数表示下列数:(1) 310- (2)33-- (3)0)1.0(- (4)3101.2-⨯ 2.把下列小数写成负整数指数幂的形式: (1)001.0 (2)0.0000001 (3)641 (4)811《8.3同底数幂的除法》巩固案2011-3-10班级 姓名1. 用分数或小数表示下列各数: (1)24- (2)0)1615((3)1)21(- (4)610027.1-⨯2.计算:(1)3255--÷ (2)2)31()21(--(3)22)51()51()51(-++ (4)33)2()2()21(-⨯-÷-选做题观察下列式子:.......16,8,4,2,54322------x x x x x (1)第8个式子是什么?()根据你发现的规律,写出第n 个式子。

同底数幂的除法的教案

同底数幂的除法的教案

一、教学目标:1. 知识与技能:(1)理解同底数幂的除法概念;(2)掌握同底数幂的除法运算方法;(3)能够正确进行同底数幂的除法计算。

2. 过程与方法:(1)通过实例引导学生发现同底数幂的除法规律;(2)利用小组合作、讨论的方式,探索同底数幂的除法运算方法;(3)运用数学归纳法证明同底数幂的除法运算性质。

3. 情感态度与价值观:(1)培养学生的逻辑思维能力;(2)激发学生对数学的兴趣和好奇心;(3)培养学生的团队合作精神。

二、教学重点与难点:1. 教学重点:(1)同底数幂的除法概念;(2)同底数幂的除法运算方法。

2. 教学难点:(1)同底数幂的除法运算规律的发现;(2)同底数幂的除法运算性质的证明。

三、教学准备:1. 教师准备:(1)同底数幂的除法相关知识;(2)教学课件或黑板;(3)练习题及答案。

2. 学生准备:(1)预习同底数幂的除法相关知识;(2)准备笔记本,记录重点知识;(3)积极参与课堂讨论。

四、教学过程:1. 导入:(1)复习同底数幂的乘法知识;(2)提问:“同底数幂的除法与乘法有何不同?”引导学生思考。

2. 新课讲解:(1)介绍同底数幂的除法概念;(2)讲解同底数幂的除法运算方法;(3)利用数学归纳法证明同底数幂的除法运算性质。

3. 例题讲解:(1)展示典型例题,引导学生跟随解题;(2)讲解解题思路,强调重点步骤;(3)邀请学生上台演示解题过程。

4. 课堂练习:(1)发放练习题,要求学生在课堂上完成;(2)引导学生互相讨论,共同解决问题;(3)挑选部分学生上台展示解题过程,并给予评价。

5. 课堂小结:(1)总结本节课所学知识;(2)强调同底数幂的除法运算方法及注意事项;(3)鼓励学生在课后积极复习,巩固知识。

五、课后作业:1. 请学生完成课后练习题,巩固同底数幂的除法知识;2. 鼓励学生进行课后探索,研究同底数幂的除法在实际问题中的应用;3. 提醒学生及时复习,为下一节课做好铺垫。

【开学春季备课】苏科版七年级数学下册8.3同底数幂的除法(2)教案

【开学春季备课】苏科版七年级数学下册8.3同底数幂的除法(2)教案
8.3 同底数幂的除法(2)
课时编号 备课时间 课 题 8.3 同底数幂的除法(2) 1、 明确零指数幂、负整数指数幂的意义 2、能与幂的运算法则一起进行运算 a = 1(a≠0), a
0 -n
教学目标 教学重点 教学难点
= 1/ a (a≠0 ,n 是负整数)公式规定的合理性
n
零 指数幂、负整数指数幂的意义的理解 教 教学内容 学 过 程 教师活动 学生活动
0
教师点评
1、2、3、学生 板演,
通过练习进一 步巩固今天所 学的知识。 培养 学生自主学习 能力。整理知 识, 检验目标的 实施情况
习题
板书设计
作业布置 课后随笔
复习提问: 同底数幂的除法法则是什么? 1.做一做 P59 问(1) :幂是如何变化的? (2) :指数是如何变化的? 2.想一想 P59 ( ) 猜想:1=2 依上规律得: ( 0) 左= 2÷2 = 1 右 = 2 0 所以 2 = 1 0 即1 = 2 所以我们规定 a = 1 (a≠0) 语言表述:任何不等于 0 的数的 0 次幂等于 1。 教师说明此规定的合理性。 P59 3 4 问:你会计算 2 ÷2 吗? 2×2×2 3 4 我们知道: 2 ÷2 = = 1/2 2×2×2×2 3 4 3-4 1 2 ÷2 =2 = 2 -n n 所以我们规定 a = 1/ a (a≠ 0 ,n 是正整数) 语言表述: 任何不等于 0 的数的 -n(n 是正整数)次幂,等于这个数 的 n 次幂的倒数。 例2 用小数或分数表示下列各数: -2 (1)4 -3 (2)-3 -5 (3)3.14×10
0
(1)符号语言:a ÷a = a (a≠0 , m 、 n 是正整数 , 且 m > n) (2)文字语言:同底数幂相除, 底数不变,指数相减。 强激烈的讨 论, 通过开放题 的研究, 意识到 自己在学习中 的自主性 学生积极思考。 口头回答问题

数学教案-同底数幂的除法 第二课时

数学教案-同底数幂的除法 第二课时

数学教案-同底数幂的除法第二课时一、教学目标1.理解同底数幂的除法法则,并能正确运用法则进行运算。

2.培养学生的逻辑思维能力和解决问题的能力。

3.培养学生合作交流、自主探究的学习习惯。

二、教学重难点重点:同底数幂的除法法则的应用。

难点:灵活运用同底数幂的除法法则解决实际问题。

三、教学过程1.导入新课师:同学们,上一节课我们学习了同底数幂的除法,谁能告诉我同底数幂的除法法则是什么?生1:同底数幂相除,底数不变指数相减。

师:很好,那我们今天就来进一步学习同底数幂的除法,看看有哪些新的发现和运用。

2.学习新课(1)探究同底数幂的除法法则生2:同底数幂相除,底数不变指数相减。

(2)巩固练习师:请同学们完成练习题1、2、3。

生3:练习题1,2^5÷2^2=2^(5-2)=2^3。

生4:练习题2,3^7÷3^4=3^(7-4)=3^3。

生5:练习题3,5^9÷5^6=5^(9-6)=5^3。

师:同学们做得很好,看来大家已经掌握了同底数幂的除法法则。

3.拓展提高师:我们来看一些稍微复杂一些的题目。

请同学们完成练习题4、5、6。

生6:练习题4,(2^5)^3÷2^2=2^(53)÷2^2=2^13÷2^2=2^(13-2)=2^11。

生7:练习题5,(3^4)^2÷3^5=3^(42)÷3^5=3^8÷3^5=3^(8-5)=3^3。

生8:练习题6,(5^3)^2÷5^7=5^(32)÷5^7=5^6÷5^7=5^(6-7)=5^(-1)。

师:同学们做得非常好,这些题目涉及到了幂的乘方和同底数幂的除法,需要灵活运用法则。

5.课堂小结师:同学们,今天我们学习了同底数幂的除法,大家掌握得怎么样?谁能来说说同底数幂的除法法则?生9:同底数幂相除,底数不变指数相减。

师:很好,看来大家已经掌握了这个法则。

4.1.4(2)同底数幂的除法(教案)

4.1.4(2)同底数幂的除法(教案)
三、教学难点与重点
1.教学重点
-掌握同底数幂除法的运算法则:a^m / a^n = a^(m-n)(m, n为正整数,且m > n),这是本节课的核心知识,教师需着重讲解和练习。
-能够将同底数幂的除法应用于解决实际问题,包括数学表达式的简化计算和实际应用题的解答。
-理解同底数幂除法与日常生活中比例、分数等概念的联系,强化数学知识在实际生活中的应用。
4.1.4(2)同底数幂的除法(教案)
一、教学内容
本节课我们将探讨人教版七年级数学上册第四章第一小节4.1.4(2)中的同底数幂的除法。教学内容主要包括以下两点:
1.掌握同底数幂相除的计算法则,即当底数相同时,幂的除法等于指数的减法,即a^m / a^n = a^(m-n)(m, n为正整数,且m > n)。
五、教学反思
在今天的教学过程中,我发现学生们对同底数幂的除法这一概念的理解存在一些差异。有的学生能够迅速掌握运算法则,并能够将其应用于解决实际问题,但也有一些学生在指数相减的部分感到困惑。这让我意识到,在讲解这个知识点时,需要更加细致和直观。
我尝试通过生活中的例子来引入这个概念,希望让学生感受到数学与生活的紧密联系。从学生的反馈来看,这种方法还是有效的,他们能够更直观地理解同底数幂除法的意义。但在接下来的理论讲解中,我意识到我需要更多地将抽象的数学概念具体化,比如使用图表或者实物操作来展示指数相减的过程。
举例:讲解时,可通过以下例子进行强调:
a)当a=2时,计算2^5 / 2^2,让学生理解指数相减的意义。
b)给出实际应用题,如“一个物体以2的3次方倍的速度运动,如果每过10分钟速度减少到原来的2的1次方倍,求10分钟后物体的速度是原来速度的多少倍?”,引导学生运用同底数幂的除法解决问题。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《同底数幂的除法》教案
教学目标:
掌握同底数幂的除法计算方法.
教学重点:
会计算同底数幂的除法. 教学难点:
知道a 0=1,a
n -=n a
1 (a ≠0,n 为正整数)的规定,会用科学记数法表示绝对值小于1的数. 教学方法:
引导探索法
教学过程:
(一)、创设情境 引入新课
欣赏细胞分裂的示意图,并思考下列问题:
问题1:一个细胞分裂1次,细胞数目有 个;分裂2次,细胞数目有 个;分裂3、4次呢?……分裂n 次呢?
(二)、探究新知 提高认识
问题2:
1.细胞分裂6次的细胞数目是细胞分裂4次的几倍?
列式解决并归纳出同底数幂除法的性质:
同底数幂相除,底数不变,指数相减.
2.细胞分裂4次的细胞数目是细胞分裂4次的几倍?
在同底数幂除法的角度计算结果为20,猜想20.
3.分别从细胞分裂和数轴的角度说明猜想的合理性.
规定:a 0=1(a ≠0),即:任何非零数的0次幂等于1.
问题3:
细胞分裂4次细胞数目时是细胞分裂5次时的几倍?如果用同底数幂除法的运算性质计算,你将遇到什么挑战?你想作什么样的规定?并解释你规定的合理性.
规定:a n -=n a
1 ( a ≠0,n 为正整数)即:任何不为零的-n (n 为正整数)次幂等于这个数n 次幂的倒数.
(三)、牛刀小试:
判断:
1)3-3表示-3个3相乘
2)a m - (a ≠0,m 是正整数)表示m 个a 相乘的积的倒数.
(四)尝试应用
填空:
(1)=
÷a a 5 (2)()()=-÷-25x x (3)÷
16y =11y (4)÷25b b = (5)()()=-÷-69y x y x 计算:
(1)()ab ab ÷4 (2)133+-÷-n m y y (3)()22
5225.041x x -÷⎪⎭⎫ ⎝⎛-
已知的值。

求m a a m n n ,64,8== 若的值。

)的值;()求(n m n m n m a a a a 2321,5,3--== 把下列小数或分数写成幂的形式:
81 ;0.0001 ;641。

相关文档
最新文档