数学《算法的概念》课件人教a版

合集下载

人教a版必修3数学教学课件第1章算法初步第1节算法与程序框图

人教a版必修3数学教学课件第1章算法初步第1节算法与程序框图
HISHISHULI
HONGNANJUJIAO
D典例透析
2.算法的特征
特征
有限性
确定性
可行性
有序性
说明
一个算法运行完有限个步骤后必须结束,而不能无限
地运行
算法的每一步计算,都必须有确定的结果,不能模棱
两可,即算法的每一步只有唯一的执行路径,对于相
同的输入只能得到相同的输出结果
算法中的每一步必须能用实现算法的工具精确表达,
并能在有限步内完成
算法从初始步骤开始,分为若干明确的步骤,每一个
步骤只能有一个确定的后续步骤,只有执行完前一步
才能执行后一步
IANLITOUXI
目标导航
特征
Z 知识梳理 Z重难聚焦
HISHISHULI
HONGNANJUJIAO
D典例透析
IANLITOUXI
说明
算法一般要适用于不同形式的输入值,而不是局限于
目标导航
Z 知识梳理 Z重难聚焦
HISHISHULI
HONGNANJUJIAO
D典例透析
IANLITOUXI
1.算法的概念
12 世纪的算法 用阿拉伯数字进行算术运算的过程
按照一定规则解决某一类问题的明确和有限的步
数学中的算法

通常可以编成计算机程序,让计算机执行并解决
现代算法
问题
名师点拨1.算法没有一个精确化的定义,可以理解为由基本运算
题型四
设计含有重复步骤的算法
【例4】 写出求1×2×3×4×5×6的算法.
分析:思路一:采取逐个相乘的方法;思路二:由于重复作乘法,故可
以设计作重复乘法运算的步骤.
解:算法1:第一步,计算1×2得到2.

高一数学人教A版必修3课件:1.1.1 算法的概念 三

高一数学人教A版必修3课件:1.1.1 算法的概念 三

以视为“算法”.
典 例 剖 析 题型一 算法的概念
例1:下列描述不能看作算法的是(
A.洗衣机的使用说明书 B.解方程x2+2x-1=0
)
C.做米饭需要刷锅、淘米、添水、加热这些步骤 D.利用公式s=πr2计算半径为3的圆的面积,就是计算
π×32
答案:B
解析:A,C,D都描述了解决问题的过程,可以看作算法,而B只描述
5.下列语句表达中是算法的有(
)
①从济南到巴黎可以先乘火车到北京再坐飞机抵达;
1 ②利用公式 S ah 计算底为1、高为2的三角形的面积; 2 1

2 x 2 x 4;
④求M(1,2)与N(-3,-5)两点连线的方程,可先求MN的斜率,再利用 点斜式方程求得.
A.1个
B.2个
C.3个
题型二 含有重要步骤的算法
n( n 1) 例2:写出求1+2+3+4+5+6的一个算法. 2
分析:可以按逐一相加的程序进行,也可以利用公式1+2+„+n 进行,也可以根据加法运算律简化运算过程.
解:算法1:第一步,计算1+2得到3.
第二步,将第一步中的运算结果3与3相加得到6.
第三步,将第二步中的运算结果6与4相加得到10. 第四步,将第三步中的运算结果10与5相加得到15. 第五步,将第四步中的运算结果15与6相加得到21. 第六步,输出运算结果.
这一问题. 解:算法步骤如下: 第一步,取一只空的墨水瓶,设其为白色. 第二步,将黑墨水瓶中的红墨水装入白瓶中. 第三步,将红墨水瓶中的黑墨水装入黑瓶中. 第四步,将白瓶中的红墨水装入红瓶中. 第五步,交换结束.

高一数学人教A版必修3课件:1.1.1 算法的概念 二

高一数学人教A版必修3课件:1.1.1 算法的概念 二

算法的概念
过程 设计 教学 方法 目标 分析
教学 反思
教材 分析
学情 分析
四.教学模式与教法、学法
本课采用“探究——合作”教学模式. 教师的教法 法的引导. 突出活动的组织设计与方
学生的学法
突出探究、发现与交流.
算法的概念
过程 设计
教学 方法 目标 分析
教学 反思
教材 分析
学情 分析
五.教学过程
算法的概念
过程 设计
教学 方法
教学 反思
教材 分析
学情 分析
目标 分析
目标分析
知识技能
M1
解决问题
M2
M4
M3
情感态度
数学思考
知识技能目标
1.了解算法的含义,体会算法的思想
2.能够用自然语言描述解决具体问题的算法 3.理解正确的算法应满足的要求
数学思考
1.通过对具体问题的解决过程与步骤的分析, 让学生体会算法的思想,了解算法的含义.
教材分析
2.教学内容:
《 算法的概念》是全日制普通高级中学教科书必 修3第一章《算法初步》第一节的内容.《算法初步》 是课程标准的新增内容,是数学及其应用的重要组成 部分,也是计算科学的基础.
教材分析
3.地位和作用::
算法概念立足于用自然语言描述解决问题过程中的明确步 骤,是实现用程序框图、程序语言的表示方式的基础. 算法的思想方法几乎贯穿整个高中数学课程的所有章节,如 解三角形、数学归纳法、数学建模等. 本节的内容能为以后学习程序框图、基本算法语句以及选修 1-2第四章“框图”内容奠定基础. 算法是连接人和计算机的纽带,是计算机科学的基础
的步骤吗?
设计意图:在上述“鸡兔同笼”问题中涉及解二元一次方程组的 问题,通过复习所学过的解二元一次方程组的基本步骤,为建立 算法概念做好准备.

人教版高中数学必修三第一章第1节 1.1.1 算法的概念 课件(共65张PPT)

人教版高中数学必修三第一章第1节 1.1.1 算法的概念 课件(共65张PPT)

1.写出求方程 x 2 + bx + c = 0 的解的 一个算法 ,并画出算法流程图。
开始
计算△=b2 – 4 c
N
△≥0?
Y
输出无解
输出 x b
2a
结束
四、练习
2.任意给定3个正实数,设计一个算法,判断以这3个数为三 边边长的三角形是否存在.画出这个算法的程序框图.
算法步骤如下:
第一步:输入3个正实数 a,b,c;
计算机的问世可谓是20 世纪最伟大的科学 技术发明。它把人类社会带进了信息技术时代。 计算机是对人脑的模拟,它强化了人的思维智能;
21世纪信息社会的两个主要特征: “计算机无处不在” “数学无处不在”
21世纪信息社会对科技人才的要 求: --会“用数学”解决实际问题 --会用计算机进行科学计算
现算法代的研科究和学应用研正是究本课的程的三主题大!支柱
算法(2) 第一步,用2除35,得到余数1。因为余数 不为0,所以2不能整除35。
第二步,用3除35,得到余数2。因为余数 不为0,所以3不能整除35。
第三步,用4除35,得到余数3。因为余数 不为0,所以4不能整除35。
第四步,用5除35,得到余数0。因为余数 为0,所以5能整除35。因此,35不是质数
语句A
左图中,语句A和语句B是依次执 行的,只有在执行完语句A指定的
操作后,才能接着执行语句B所指
语句B
定的操作.
四、练习 2.设计一个求任意数的绝对值的算法,并画出程序框图。
2. 算法:
框图:
第一步:输入x的值;
第二步:若x≥0,则输出x; 若否,则输出-x;
开始 输入x
x≥0?

输出x

人教a版必修3数学教学课件第1章算法初步第3节算法案例

人教a版必修3数学教学课件第1章算法初步第3节算法案例
多项式改写,依次计算一次多项式,由于后项计算用到前项的结果,
故应认真、细心,确保中间结果的准确性.若在多项式中有几项不
存在,可将这些项的系数看成0,即把这些项看成0·xn.
目标导航
题型一
题型二
Z 知识梳理 Z重难聚焦
HISHISHULI
HONGNANJUJIAO
D典例透析
IANLITOUXI
题型三
【变式训练3】 用秦九韶算法求多项式f(x)=8x7+5x6+3x4+2x+1
当x=2时的值.
v3=-24×(-2)+2=50.故f(-2)=50.
错因分析:所求f(-2)的值是正确的,但是错解中没有抓住秦九韶算
法原理的关键,正确改写多项式,并使每一次计算只含有x的一次项.
目标导航
题型一
题型二
Z 知识梳理 Z重难聚焦
HISHISHULI
HONGNANJUJIAO
D典例透析
IANLITOUXI
HONGNANJUJIAO
D典例透析
IANLITOUXI
目标导航
Z 知识梳理 Z重难聚焦
HISHISHULI
HONGNANJUJIAO
D典例透析
IANLITOUXI
【做一做2】 用秦九韶算法求f(x)=2x3+x-3当x=3时的值的过程
中,v2=
.
解析:f(x)=((2x+0)x+1)x-3,
v0=2;
减小数.
解:(1)用辗转相除法求840和1 785的最大公约数.
1 785=840×2+105,
840=105×8.
所以840和1 785的最大公约数是105.

高中数学第一章算法初步111算法的概念课件新人教A版必修3

高中数学第一章算法初步111算法的概念课件新人教A版必修3
功的信念比成功本身更重要,相信人生有挫折没 有失败,相信生命的质量来自决不妥协的信念,
考试加油。
3.甲、乙、丙、丁四个人过一座简易木桥,这四个人 过桥所用的时间分别是2分钟,4分钟,6分钟,8分钟,由于木 桥质量原因,桥上同时最多只能有两个人.请你设计一个方 案,使这4个人在最快的时间过桥,写清步骤,最后算出所需 时间.
【解析】第一步,甲乙先上桥. 第二步,2分钟后甲过了桥同时丁上桥. 第三步,再过2分钟后乙过了桥同时丙上桥. 第四步,再过6分钟后丙、丁同时过了桥. ∴所需时间是2+2+6=10(分钟).
(4)不唯一性:求解某一个问题的解法不一定是唯一 的,对于一个问题可以有不同的算法.
(5)普遍性:很多具体的问题,都可以设计合理的算法 去解决.
2.算法与数学问题解法的区别与联系 (1)联系 算法与解法是一般与特殊的关系,也是抽象与具体的关 系. (2)区别 算法是解决某一类问题所需要的程序和步骤的统称,也 可理解为数学中的“通法通解”;而解法是解决某一个具体问 题的过程和步骤,是具体的解题过程.
数值性问题的算法
【例2】 写出求1+2+3+4+5+6的一个算法. 【解题探究】(1)可以按逐一相加的程序进行. (2)也可以利用公式 1+2+…+n=nn+ 2 1进行. (3)可以根据加法运算律简化运算过程.
【解析】算法一 第一步,计算1+2得到3. 第二步,将第一步中的运算结果3与3相加得到6. 第三步,将第二步中的运算结果6与4相加得到10. 第四步,将第三步中的运算结果10与5相加得到15. 第五步,将第四步中的运算结果15与6相加得到21. 第六步,输出运算结果.
【答案】A 【解析】由算法的概念可知:求解某一类问题的算法不 是唯一的,故A正确;算法可以看成按照要求设计好的有限的 确切的计算序列,并且这样的步骤或序列能解决一类问题,故 B不正确;算法有有限步,结果明确,C是不正确的;算法的 每一步操作必须是明确的,不能有歧义,故D不正确.故选 A.

2020-2021学年高中数学必修3人教A版课件:1.1.1 算法的概念

2020-2021学年高中数学必修3人教A版课件:1.1.1 算法的概念

其中正确的顺序是( )
A.①②③
B.②③①
(2)设计算法时注意的问题 ①算法从初始步骤开始,每一个步骤只能有一个确定的后继步骤,从而组成 一个步骤序列,序列的终止表示问题得到解答或指出问题没有解. ②一个具体问题的算法不唯一,如解二元一次方程组的算法就有消元法、代 入法两种.由于传统数学问题解法的不唯一,使得求解某一个问题的算法也不唯 一. ③不同的算法有简繁、优劣之分,但每一种都会使问题有一个最终的结果.对 于一个具体的问题,我们可以找到一个算法步骤相对较少、执行步骤也较少的算 法,即最优算法.
4.已知 A(x1,y1),B(x2,y2),求直线 AB 的斜率的一个算法如下: (1)输入 x1、y1、x2、y2 的值. (2)计算 Δx=x2-x1,Δy=y2-y1. (3)若 Δx=0,则输出斜率不存在,否则(Δx≠0),k=__①__.
(4)输出斜率 k.
则①处应填________. 解析: 由斜率的计算公式应填ΔΔyx.
[自主练习] 1.下列叙述不能称为算法的是( ) A.从北京到上海先乘汽车到飞机场,再乘飞机到上海 B.解方程 4x+1=0 的过程是先移项再把 x 的系数化成 1 C.利用公式 S=πr2 计算半径为 2 的圆的面积得 π×22 D.解方程 x2-2x+1=0
解析:
A× A,B 两选项给出了解决问题的方法和步骤,是算法
题型二 算法的设计 写出解方程 x2-2x-3=0 的一个算法. [思路探究] 解一元二次方程的方法很多,此处,我们用因式分解法、配方 法、公式法写出算法. , 解析: 法一:算法如下. (1)将方程左边因式分解,得(x-3)(x+1)=0.① (2)由①得 x-3=0,②或 x+1=0.③ (3)解②得 x=3,解③得 x=-1.

高一数学人教A版必修3课件:1.1.1 算法的概念 一

高一数学人教A版必修3课件:1.1.1 算法的概念 一

必须是明确和有效的,而且能够在有限步内
完成.
例1 下列叙述中,
①植树需要运苗、挖坑、栽苗、浇水这些步骤;
②按顺序进行下列运算:1+1=2,2+1=3,3+ 1=4,„,99+1=100; ③从青岛乘火车到济南,再从济南乘飞机到广 州市观看亚运会开幕式;
④3x>x+1;
⑤求所有能被3整除的正数,即3,6,9,12,„.
把较大数放在前面,依次类推,由大到小排列
这三个数.
变式训练2
写出能找出a、b、c三个数中最小
值的一个算法.
解:第一步:输入a、b、c,并且假定min=a;
第二步:若b<min成立,则用b的值替换min;
否则直接执行下一步;
第三步:若c<min成立,则用c的值替换min, 否则直接执行下一步; 第四步:输出min的值,结束.
【解析】
第一步,若a<b,交换a,b的值后,
则是大数在前,小数在后.
第二步,比较a与c,若a<c,则c在a的前面.
第三步,则c在b的前面.
这样得出的结论是由大到小的顺序.
【答案】
B
【思维总结】
这是一个比较大小的算法,必
须先任意取出两个数进行比较,并把两者中的
较大数找出,然后再将它与第三个数比较,并
第二步,令i=1,S=1.
第三步,判断“i≤n”是否成立,若不是,输出
S,结束算法;若是,执行下一步.
第四步,令S的值乘i,仍用S表示,令i的值增加 1,仍用i表示,返回第三步.
【思维总结】
法一称为累乘法,将步骤一
直写下去,便得到任意有限个数相乘的算法. 法二具有代表性,重复做同一种动作时,可 以用这种算法来解决,能节约大量的程序步 骤.同时它还体现了算法的本质:对一类问 题的机械的、统一的求解方法,其中S称为累 乘变量,i称为计数变量.

人教A版高中数学必修3第一章 算法初步1.1 算法与程序框图课件(7)

人教A版高中数学必修3第一章 算法初步1.1 算法与程序框图课件(7)
精品PPT
练习:
1、下列关于程序框图的说法正确的是 A、程序框图是描述算法的语言
A ( )
B、程序框图可以没有输出框,但必须要有输入框给变量赋值
C、程序框图可以描述算法,但不如自然语言描述算法直观
D、程序框图和流程图不是一个概念
精品PPT
例1.写出求任意两个数的平均数的算法,并
画出程序框图
程序框图
如何计算选手最后得分?
第一步:100+20=120 第二步: 120+30=150 第三步:150-15=135 第四步:135+50=185
如果引入变量S S=100; S=S+20; S=S+30; S=S-15; S=S+50 输出S
可使算法的表示非常简洁。
精品PPT
算法的概念
问题1:结合实际过程,应当如何理解“x=x+20”这样的式子? 问题2:左右两边的x的意义或取值是否一样?能不能消去?
求n除以i的余数r
i的值增加1,仍用i表示
i>n-1或r=0?


顺序结构

r=0?
循环结构 否
N不是质数
N是质数
条件结构
你能说出这三种基本逻辑结构的特点吗? 条件结构与循环结构有什么区别和联系?
精品PPT
1、顺序结构
顺序结构是最简单的算法结构,语句与语句之间,框与 框之间是按从上到下的顺序进行的,它是由若干个依次执行 的处理步骤组成的,它是任何一个算法都离不开的一种基本 算法结构。 顺序结构在程序框图中的体现就是用流程线将程 序框自上而下地连接起来,按顺序执行算法步骤。
精品PPT
探究
如图是求解一元二次方程 的 算法

人教版高中数学必修三课件:1.1.1 算法的概念

人教版高中数学必修三课件:1.1.1 算法的概念
解:b→a→c→d→e
考点类析
例2 写出解方程x2-2x-3=0的一个算法.
解:方法一,算法如下: 第一步,将等号左边因式分解,得(x-3)(x+1)=0①; 第二步,由①式得x-3=0或x+1=0; 第三步,解x-3=0得x=3,解x+1=0得x=-1,即x=3或x=-1.
考点类析
例2 写出解方程x2-2x-3=0的一个算法. 解:方法二,算法如下: 第一步,移项,得x2-2x=3①; 第二步,①式等号两边同时加1并配方,得(x-1)2=4②; 第三步,②式等号两边同时开方,得x-1=±2③; 第四步,解③式得x=3或x=-1.
预习探究
(4)不唯一性:求解某一个问题的算法不一定只有唯一的一个,也可以有不同 的算法,这些算法有繁简、优劣之分. (5)普遍性:很多具体的问题,都可以通过设计合理的算法去解决.
预习探究
知识点三
算法的设计要求
设计算法的要求主要有以下几点: (1)写出的算法必须能解决一类问题,并且能够重复使用; (2)要使算法尽量简单、步骤尽量少; (3)要保证算法的各个步骤有效,计算机能够执行,且在有限步骤后能得到结果.
备课素材
累加、累乘问题的算法 解决一个问题的算法一般不是唯一的,不同的算法有优劣之别,保证得到正 确的结果是对每个算法的最基本的要求.另外,还要求算法的每个步骤都要 易于实现、易于理解,效率要高,通用性要好等.
备课素材
备课素材
[例2] 求1×3×5×7×9×11的值,写出其算法.
解:算法如下:
备课素材
[小结]
知识 1.算法的概念; 2.算法的特性; 3.算法的设计
方法
易错
1.根据具体的问题进行判断,是 给出问题,在书写步骤时,不能

数学:1.1.2《算法初步--算法程序框图》课件(新人教a版必修3)

数学:1.1.2《算法初步--算法程序框图》课件(新人教a版必修3)
1.1.2 程序框 图
一、复习 1、算法的定义 2、算法的表示 3、算法的特点 4、算法的作用
二、 算法的表示
1. 用自然语言表示 2. 用程序框图表示
例1 任意给定一个大于1的整数n ,试设计一个程序 或步骤对n是否为质数做出判定。 第一步:判断n是否等于2. 若n=2,则n是质数;若n>2, 则执行第二步. 第二步:依次从2到(n-1)检验是不是n的因数, 即整数n 的数, 若有这样的数, 则n 不是质数; 若没有这样的 数, 则n 是质数.
最便于初学者掌握。
常用流程图符号
终端框
输入输出框
表示一个算法的起始和结束
表示一个算法输入和输出的信息 赋值、计算
处理框
判断框
判断某一条件是否成立,成立时在 出口处标明“是”或“Y”;不成立时 标明“否”或“N”.
表示流程的路径和方向
流程线
三种基本结构(表示一个良好算法的基本单元) ③循环结构 ①顺序结构 ②条件结构(选择结构)
While(当型)循环 Until(直到型)循环
③循环结构
A
A P
成立 不成立
P
不成立
成立
例3 设计一个计算1+2+3+……+100的值的算法,并画出程序框图。 算法分析: 需要一个累加变量和一个计数变量,将累加变量的初始值 设为0,计数变量的值可以从1到100. 开始
i=1 sum=0 i<=100?
二、 算法的表示
比较自然语言与程序框图表示方法的各自特点
1. 用自然语言表示 优点是使用日常用语, 通俗易懂 缺点是文字冗长, 容易出现歧义 2. 用程序框图表示: 用图框表示各种操作 优点是直观形象, 易于理解

新课标高中数学人教A版必修一全册课件-新课标高中数学人教A版必修一全册课件 程序框图与算法的基本逻辑结构

新课标高中数学人教A版必修一全册课件-新课标高中数学人教A版必修一全册课件 程序框图与算法的基本逻辑结构

程序框图:
开始 输入a,b,c △= b2-4ac
△≥0?
程序框图:
开始
输入a,b,c
△= b2-4ac
△≥0?

p
b
2a
程序框图:
开始
输入a,b,c
△= b2-4ac
△≥0?

p
b
2a
q 2a
程序框图:
开始
输入a,b,c
△= b2-4ac
△≥0?

p
b
2a
q 2a
△=0?
程序框图:
开始
输入a,b,c
S p(p a)(p b)(p c)
试用这个公式设计一个计算三角形面积的算 法步骤.
第一步,输入三角形三条边的边长a,b,c.
S = p(p - a)(p - b)(p - c)
例1 若一个三角形的三条边长分别为a,b, c,令p=(a+b+c)/2,则三角形的面积
S p(p a)(p b)(p c)
第一步,给定一个大于2的整数n; 第二步,令i=2; 第三步,用i除n,得到余数r; 第四步,判断“r=0”是否成立.若是,则n不是
质数,结束算法;否则,将i的值增
加1,仍用i表示;
知识探究(一):算法的程序框图 1:复习“判断整数n(n>2)是否为质数”的 算法。
第一步,给定一个大于2的整数n; 第二步,令i=2; 第三步,用i除n,得到余数r; 第四步,判断“r=0”是否成立.若是,则n不是
程序框图:
开始
输入a,b,c
△= b2-4ac
△≥0?

p
b
2a
q 2a
△=0? 否 x1=p+q x2=p-q 输出x1,x2

最新人教版高中数学必修三课件PPT

最新人教版高中数学必修三课件PPT
C.流程线无论什么方向,总要按箭头的指向执行
D.流程线是带有箭头的线,它可以画成折线
【2】具有判断条件是否成立的程序框是( C )
2021/10/31
画程序框图时应注意:
用框图表示算法比较直观、形象,容易理解,通常说
“一图胜万言”,所以用程序框图能更清楚地展现算法
的逻辑结构,在画程序框图时必须注意:
则,返回第三步.
2021/10/31
当d=0.005时,按照以上算法,可得下面表和图.
a
b
|a-b|
1
2
1
1
1.5
0.5
1.25
1.5
0.25
1.375
1.5
0.125
1.375
1.437 5
0.062 5
1.406 25
1.437 5
0.031 25
1.406 25
1.421 875
0.015 625
- 5)两点连线的方程可
先求MN的斜率,再利用点斜式方程求得。
A.1个
2021/10/31
B.2个
C.3个
D.0个
例题剖析1
设计一个算法判断7是否为质数.
第一步, 用2除7,得到余数1.因为余数不为0,
所以2不能整除7.
第二步, 用3除7,得到余数1.因为余数不为0,
所以3不能整除7.
第三步, 用4除7,得到余数3.因为余数不为0,
算法步骤:
第一步,输入三角形三条边的边长 a,b,c.
a+b+c
第二步,计算 p= 2 .
第三步,计算 S= p(pa)(pb.)(pc)
第四步,输出S.
2021/10/31
新课探究

数学:1.1.1《算法的概念》PPT课件(新人教A版必修3)

数学:1.1.1《算法的概念》PPT课件(新人教A版必修3)

法上的一大成就。此外,在社会上得到广泛使用
的珠算口诀就可以看做是典型的算法,它把复杂
的计算(例如除法)描述为一系列按口诀执行的简
单的算珠拨动操作。 中国古代数学以算法为主要特征,其中最具代表 性的就是《九章算术》。
《九章算术》是战国、秦、汉时期数学发展的 总结,就其数学成就来说,堪称是世界数学名著。其 内容按类分章,以数学问题的形式出现,包括分数四 则运算、开平方与开立方(包括二次方程数值解法)、 盈不足术、各种面积和体积公式、线性方程组解法、 正负数运算的加减法则、勾股形解法(特别是勾股定 理和求勾股数的方法)等。其中方程组解法和正负数 加减法则在世界数学发展上是遥遥领先的。就其特点 来说,它形成了一个以筹算为中心,与古希腊数学完 全不同的独立体系。
(2)确定性(definiteness)
算法的确定性,是指算法中的每一个步骤都必须
是有明确定义的,不允许有模棱两可的解释,也不允许
有多义性。这一特征也反映了算法与数学公式的明显差
异。在解决实际问题时,可能会出现这样的情况:针对
某种特特殊问题,数学公式是正确的,但按此数学公式 设计的计算过程可能会使计算机系统无所适从,这是因 为,根据数学公式设计的计算过程只考虑了正常使用的 情况,而当出现异常情况时,该计算过程就不能适应了。
一种计算公式,而根据精度要求确定的计算过
程才是有穷的算法。
算法的有穷性还应包括合理的执行时间的含义。
如果一个算法的执行时间是有穷的,但却需要
执行千万年.显然这就失去了算法的实用价值。
例如,克莱姆(Cramer )规则是求解线性代数
方程组的一种数学方法,但不能以此为算法,
这是因为,虽然总可以根据克莱姆规则设计出 一个计算过程用于计算所有可能出现的行列式, 但这样的计算过程所需的时间实际上是不能容 忍的。

高中数学人教A版必修三第一章.3进位制-算法案例ppt课件

高中数学人教A版必修三第一章.3进位制-算法案例ppt课件
1.3算法案例
进位制
十进制数3721中的3表示3个千,7表示7个百,2表示2个 十,1表示1个一,从而它可以写成下面的形式:
3721=3×103+7×102+2×101+1×100.
同理: 3421(5)= 3×53+4×52+2×51+1×50.
每一位上的数都是整数.
按照十进制数的运算规则计算出结果, 结果就是十进制下该数的大小了.
89 余数
=81+18+6+1=106.
44
1
0
3
11
0
解:第一步:先把三进制数化为十进制数:
按照十进制数的运算规则计算出结果,
1
0
22
0
结果就是十进制下该数的大小了.
∴ 89=324(5)
2
1
=81+18+6+1=106. 第二步:再把十进制数化为二进制数:
106=1101010(2). ∴10221(3)=106=1101010(2).
课堂小结
1.几进制的基数就是几,基数都是大于1的数.
89=1011001(2)
11
0
17
4
∴ 89=324(5)
十进制数3721中的3表示3个千,7表示7个百,2表示2个十,1表示1个一,从而它可以写成下面的形式:
把89化为五进制的数.
5 89 5 17 53
0
余数
4 2 3
∴ 89=324(5)
练习:把3282化为16进制的数.
10
11
12
13
14
15
ABຫໍສະໝຸດ CDEF
思考 你会把三进制数10221(3)化为二进制数吗?

2020版数学人教A版必修3课件:第一章 1.1.1 算法的概念 .pdf

2020版数学人教A版必修3课件:第一章 1.1.1 算法的概念 .pdf

第一章§1.1 算法与程序框图1.1.1 算法的概念学习目标XUEXIMUBIAO1.了解算法的含义和特征.2.会用自然语言描述简单的具体问题的算法.NEIRONGSUOYIN内容索引自主学习题型探究达标检测1自主学习PART ONE知识点一 算法的概念12世纪的算法是指用阿拉伯数字进行 的过程数学中的算法通常是指按照解决某一类问题的 和 的步骤现代算法通常可以编成 ,让计算机执行并解决问题算术运算一定规则明确有限计算机程序知识点二 算法的特征算法的五个特征(1)有限性:一个算法的步骤是的,它应在有限步操作之后停止.(2)确定性:算法中的每一步应该是 的,并且能有效地执行且得到确定的结果,而不是模棱两可的.(3)逻辑性:算法从初始步骤开始,分为若干个明确的步骤,前一步是后一步的前提,只有完成前一步,才能进行下一步,而且每一步都是正确无误的,从而组成具有很强逻辑性的 .有限确定步骤序列(4)普遍性:一个确定的算法,应该能够解决一类问题.(5)不唯一性:求解某一个问题的算法不一定只有唯一的一个,也可以有不同的算法.特别提醒:判断一个问题是不是算法,关键是明确算法的含义及算法的特征.知识点三 算法的设计1.设计算法的目的设计算法的目的实际上是寻求一类问题的解决方法,它可以通过计算机来完成.设计算法的关键是把过程分解成若干个明确的步骤,然后用计算机能够接受的“语言”准确地描述出来,从而达到让计算机执行的目的.2.设计算法的要求①写出的算法必须能解决一类问题.②要使算法尽量简单、步骤尽量少.③要保证算法步骤有效,且计算机能够执行.1.算法是解决一个问题的方法.( )2.一个算法可以产生不确定的结果.( )3.算法的步骤必须是明确的、有限的.( )4.求解一类问题的算法是唯一的.( )思考辨析 判断正误SIKAOBIANXIPANDUANZHENGWU××√×2题型探究PART TWO题型一 对算法概念的理解例1 下列说法正确的是A.算法就是某个问题的解题过程√B.算法执行后可以产生不同的结果C.解决某一个具体问题算法不同,则结果不同D.算法执行步骤的次数不可以很多,否则无法实施解析 选项B正确,例如:判断一个整数是否为偶数,结果为“是偶数”和“不是偶数”两种;选项A,算法不能等同于解法;选项C,解决某一个具体问题算法不同,但结果应相同;选项D,算法可以为很多次,但不可以为无限次.反思感悟 算法实际上是解决问题的一种程序性方法,它通常解决某一个或一类问题,用算法解决问题,体现了从特殊到一般的数学思想.跟踪训练1 下列描述不是解决问题的算法的是A.从中山到北京先坐汽车,再坐火车B.解可化为一元一次方程的分式方程的步骤是去分母、去括号、移项、合并同类项、系数化为1√C.方程x2-4x+3=0有两个不相等的实根D.解不等式ax+3>0时,第一步移项,第二步讨论解析 A选项,从中山到北京,先坐汽车,再坐火车,解决了怎样去的问题;B选项,解可化为一元一次方程的分式方程的步骤:去分母、去括号、移项、合并同类项、系数化为1,解决了怎样解一元一次方程的问题;D选项,解不等式ax+3>0时,第一步移项,将不等式化为ax>-3,第二步讨论a的符号,进而根据不等式的基本性质,求出不等式的解集,解决了怎样求不等式解集的问题;选项C只是一个真命题,没有解决什么问题,因此不是算法.题型二 算法的设计解 如图,先给r ,l 赋值,计算h ,再根据圆锥体积公式V= πr 2h 计算V ,然后输出结果.多维探究命题角度1 直接应用数学公式设计算法例2 有一个底面半径为3,母线长为5的圆锥,写出求该圆锥体积的算法.第一步,令r =3,l =5.第四步,输出运算结果.反思感悟 利用公式解决问题时,必须先求出公式中的各个量,在设计算法时,应优先考虑未知量的求法.跟踪训练2 已知一个等边三角形的周长为a,求这个三角形的面积.设计一个算法解决这个问题.解 第一步,输入a的值.第四步,输出S的值.命题角度2 非数值性问题的算法例3 所谓正整数p为素数是指:p的所有约数只有1和p.例如,35不是素数,因为35的约数除了1,35外,还有5与7;29是素数,因为29的约数就只有1和29.试设计一个能够判断一个任意正整数n(n>1)是否为素数的算法.解 算法如下:第一步,给出任意一个正整数n(n>1).第二步,若n=2,则输出“2是素数”,判断结束.第三步,令m=1.第四步,将m的值增加1,仍用m表示.第五步,如果m≥n,则输出“n是素数”,判断结束.第六步,判断m能否整除n,①如果能整除,则输出“n不是素数”,判断结束;②如果不能整除,则转第四步.反思感悟 设计一个具体问题的算法,通常按以下步骤(1)认真分析问题,找出解决该问题的一般数学方法.(2)借助有关变量或参数对算法加以表述.(3)将解决问题的过程划分为若干步骤.(4)用简练的语言将这个步骤表示出来.跟踪训练3 判断一个大于2的整数是否为质数的算法步骤如何设计?解 第一步,给定大于2的整数n.第二步,令i=2.第三步,用i除n,得到余数r.第四步,判断“r=0”是否成立.若是,则n不是质数,结束算法;否则,将i的值增加1,仍用i表示.第五步,判断“i>(n-1)”是否成立.若是,则n是质数,结束算法;否则,返回第三步.核心素养之数学运算解方程组的算法设计HEXINSUYANGZHISHUXUEYUNSUAN典例 写出解方程组的一个算法.解 方法一 (代入消元法) 第一步,由①得y=7-2x.③第二步,将③代入②,得4x+5(7-2x)=11.④第三步,解④得x=4.第四步,将x=4代入③,得y=-1.方法二 (加减消元法)第一步,①×5-②得,(2×5-4)x=7×5-11.⑤第二步,解⑤得x=4.第三步,①×2-②,得(1×2-5)y=7×2-11.⑥第四步,解⑥得y=-1.素养评析 (1)设计算法时,经常遇到解方程组的算法问题,一般是按照数学上解方程组的方法进行设计,但应注意全面考虑方程组解的情况,即先确定方程组是否有解,有解时有几个解,然后依据求解步骤设计算法步骤. (2)从对运算方法的选择,运算程序的设计,到最后求得运算结果,整个过程就是典型的数学运算素养的体现.3达标检测PART THREE1.下列关于算法的说法正确的是A.一个算法的步骤是可逆的√B.描述算法可以有不同的方式C.算法可以看成是按照要求设计好的、有限的、确切的计算序列,并且这样的步骤或序列只能解决当前问题D.算法只能用一种方式显示解析 由算法的定义知A,C,D错.2.下列叙述中:①植树需要运苗、挖坑、栽苗、浇水这些步骤;②按顺序进行下列运算:1+1=2,2+1=3,3+1=4,…,99+1=100;③从青岛乘火车到济南,再从济南乘飞机到广州;④3x>x+1;⑤求所有能被3整除的正数,即3,6,9,12,….能称为算法的个数为√A.2B.3C.4D.5解析 根据算法的含义和特征知,①②③都是算法;④⑤不是算法.其中④只是一个问题,而没有解决问题,不能称为算法;⑤的步骤是无穷的,与算法的有限性矛盾.3.已知直角三角形两直角边长为a,b,求斜边长c的一个算法分下列三步:(1)计算c=;(2)输入直角三角形两直角边长a,b的值;(3)输出斜边长c的值.(2)(1)(3)其中正确的顺序是________.解析 算法的步骤是有先后顺序的,第一步是输入,最后一步是输出,中间的步骤是赋值、计算.4.下面是解决一个问题的算法:第一步:输入x.第二步:若x≥4,转到第三步;否则转到第四步.第三步:输出2x-1.第四步:输出x2-2x+3.12当输入x的值为__时,输出的数值最小值为____.当x≥4时,f(x)=2x-1≥2×4-1=7;当x<4时,f(x)=x2-2x+3=(x-1)2+2≥2,所以f(x)min=2,此时x=1.即输入x的值为1时,输出的数值最小,最小值为2.解析 第一步是给a ,b ,c 赋值.第二步运行后a >b .第三步运行后a >c .第四步运行后b >c ,所以a >b >c .第五步运行后,显示a ,b ,c 的值,且从大到小排列.5.下面算法要解决的问题是____________________________________________.第一步,输入三个数,并分别用a ,b ,c 表示.第二步,比较a 与b 的大小,如果a <b ,则交换a 与b 的值.第三步,比较a 与c 的大小,如果a <c ,则交换a 与c 的值.第四步,比较b 与c 的大小,如果b <c ,则交换b 与c 的值.第五步,输出a ,b ,c .输入三个数a ,b ,c ,并按从大到小的顺序输出6.写出解二元一次方程组的算法.解 第一步,①+2×②得7x=1.③第三步,②×3-①×2得7y=5.④课堂小结KETANGXIAOJIE1.算法的特点:有限性、确定性、逻辑性、普遍性、不唯一性.2.算法设计的要求:(1)写出的算法必须能够解决一类问题(如判断一个整数是否为质数,求任意一个方程的近似解等),并且能够重复使用.(2)要使算法尽量简单,步骤尽量少.(3)要保证算法正确,且算法步骤能够一步一步执行,每步执行的操作必须确切,不能含混不清,而且在有限步后能得到结果.。

高中数学 程序框图课件 新人教A版必修3

高中数学 程序框图课件 新人教A版必修3

i=1
sum=0 i=i+1 sum=sum+1 i≤100? 否 输出sum 输出 结束

练习2 练习 城区一中学生数学模块学分 认定由模块成绩决定, 认定由模块成绩决定,模块 成绩由模块考试成绩和平时 成绩构成,各占50%,若模 成绩构成,各占 , 块成绩大于或等于60分 块成绩大于或等于 分,获 学分, 得2学分,否则不能获得学分 学分 设计一算法, (为0分),设计一算法,通 分),设计一算法 过考试成绩和平时成绩计算 学分, 学分,并画出程序框图 开始 输入a,b 输入 S=(a+b)*0.5 否 S>=60? 是 credit=2 输出credit 输出 结束 credit=0
课堂作业P11
练习1
开始
输入a
N
a ≥0
Y
输出 |a|=a
输出 |a|=-a
结束
开始 X1=1
练习2
X2=2
m=(x1+x2)/2 N m*m -3<>0 y (x1*x1 -3)*(m*m -3) >0
x1=m N |x1 -x2|<0.005 y m=(x1+x2)/2
x2=m
输出所求的近似值m
条件结构: 条件结构:
满足条件? 满足条件? 是 步骤A 步骤

满足条件? 满足条件? 是

步骤B 步骤
步骤A 步骤
例3:设计求︱x︱的算法,并画出程序框图表示。 :设计求︱ ︱的算法,并画出程序框图表示。 算法分析: 算法分析: 第一步: 第一步:输入 x 第二步: 第二步:若x≥0,则 , ︱x︱= x ︱ 第三步: < , 第三步:若x<0,则 ︱x︱=-x ︱ 第四步:输出︱ ︱ 第四步:输出︱x︱的值
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
计__普__算__遍__机__性__程__概序____括,__让性__计____算__逻__机__辑__执__性行____并____有解__穷__决_.性问__题__不_唯__一__性___ 2.算法具有_______自_、然__语__言____、_框__图_语__言__、
__程__序__语_言_、________等特征.
式作为解决问题的算法.
整理ppt
18
题型四 实际问题中的算法 例4:设计一个算法,对任意3个整数a、b、c,求出其中的最小值. 分析:先假定第一个数a为最小值,然后将它和下一个数b比较,找出其中的最小值,
3.算法有三种表示方法,用________表示;用
整理ppt
3
名师讲解
1.算法概念的理解 (1)算法是指可以用计算机来解决的某一类问题的程序或步骤,这些程序或步骤必
须是明确的和有效的,而且能够在有限步骤之内完成. (2)算法与一般意义上具体问题的解法既有联系,又有区别,它们之间是一般和特
殊的关系,也是抽象与具体的关系.算法的获得要借助一般意义上具体问题的 求解方法,而任何一个具体问题都可以利用这类问题的一般算法来解决.
有执行完前一步才能进行下一步,而且每一步都是正确无误的,从而组成了一 个有着很强逻辑性的步骤序列.
整理ppt
6
(3)有穷性:算法有一个清晰的起始步,终止步是表示问题得到解答或指出问题没 有解答,所有序列必须在有限个步骤之内完成,不能无停止地执行下去.
(4)不唯一性:求解某一个问题的算法不一定只有唯一的一个,可以有不同的算法, 当然这些算法有简繁之分、优劣之别.
整理ppt
8
解析:A,C,D都描述了解决问题的过程,可以看作算法,而B只描述了一个事例,没 有说明怎样解决问题,不是算法.
整理ppt
9
变式训练1:下列对算法的理解不正确的是( ) A.算法有一个共同特点就是对一类问题都有效(而不是个别问题) B.算法要求是一步步执行,每一步都能得到唯一的结果 C.算法一般是机械的,有时要进行大量重复的计算,它的优点是一种通法 D.任何问题都可以用算法来解决 解析:由算法的概念知,A、B、C正确,D不正确. 答案:D
第一章 算法初步 §1.1 算法与程序框图
1.1.1 算法的概念
整理ppt
1
自学导引 1.了解算法的含义,体会算法的思想. 2.能够用自然语言叙述算法. 3.掌握正确的算法应满足的要求. 4.会写出解线性方程(组)的算法. 5.会写出一个求有限整数序列中的最大值的算法.
整理ppt
2
课前热身
1在.算数法学是中指,通常是指按照一定规则解决某一类问 题__的__明__确_和__有__限__的_步__骤__.现__在__,算__法__通__常_可__以__编__成__
整理ppt
4
(3)算法一方面具有具体化、程序化、机械性的特点,同时又有高度的抽象性、概括 性、精确性,所以算法在解决问题中更具有条理性、逻辑化的特点.
整理ppt
5
2.算法的五个特征:概括性、逻辑性、有穷性、不唯一性、普遍性 (1)概括性:写出的算法必须能解决某一类问题,并且能够重复使用. (2)逻辑性:算法从初始步骤开始,分为若干明确的步骤,前一步是后一步的前提,只
整理ppt
14
变式训练2:写出1×2×3×4×5的一个算法. 解:算法:第一步,计算1×2得到2. 第二步,将第一步得到的结果2乘以3得到6. 第三步,将第二步得到的结果6乘以4得到24. 第四步,将第三步得到的结果24乘以5得到120. 第五步,输出运算结果.
整理ppt
15
题型三 直接应用数学公式的算法 例3:写出求解一元二次方程ax2+bx+c=0(a≠0)的根的算法. 分析:应根据一元二次方程的判别式Δ的情况确定方程解的不同情况. 解:算法步骤如下: 第一步,输入a、b、c. 第二步,计算Δ=b2-4ac. 第三步,如果Δ<0,则原方程无实数解;否则Δ≥0,计算
整理ppt
12
算法2:第一步,取n=6.
第二步,计算
n(n 1)
.
第三步,输出运算结果. 2
算法3:第一步,将原式变形为(1+6)+(2+5)+(3+4)=3×7.
第二步,计算3×7.
第三步,输出运算结果.
整理ppt
13
规律技巧:算法1是最原始的方法,最为繁琐,步骤较多,当加数较大时,比如 1+2+3+…+10000,再用这种方法是行不通的;算法2与算法3都是比较简单的 算法,但比较而言,算法2最为简单,且易于在计算机上执行操作.
第四步,输出解x1、x2或无实数解的信息.
b b x1 2a ,x2 2a .
整理ppt
16
误区警示:由于算法是用来解决一类问题的,因此,算法的设计必须要考虑到这类 问题可能出现的各种情况,否则这种算法就不是有效的.
整理ppt
17
变式训练3:求半径为2的圆的面积,设计该问题的算法(精确度为0.001). 分析:根据S=πr2求解,由于精确度为0.001,π取3.1416. 解:算法如下: 第一步,取r=2. 第二步,计算S=3.1416×22. 第三步,输出结果. 第四步,根据精确度,确定答案. 规律技巧:求平面图形的面积,是有公式可以套用的,在选算法时,一般选择面积公
整理ppt
10
题型二 含有重要步骤的算法
例2:写出求1+2+3+4+5+6的一个算法.
分析:可以按逐一相加的程序进行,也可以利用公式1+2+…+n 进行,也可以根据加法运算律简化运算过程.
n(n 1) 2
整理ppt
11
解:算法1:第一步,计算1+2得到3. 第二步,将第一步中的运算结果3与3相加得到6. 第三步,将第二步中的运算结果6与4相加得到10. 第四步,将第三步中的运算结果10与5相加得到15. 第五步,将第四步中的运算结果15与6相加得到21. 第六步,输出运算结果.
(5)普遍性:很多具体的问题,都可以设计合理的算法去解决.例如手算、心算或用 算盘、用计算器去计算都要经过有限的、事先设计好的步骤加以解决,同样的一 个工作计划、生产流程等都可以视为“算法”.
整理ppt
7
典 例 剖 析 题型一 算法的概念 例1:下列描述不能看作算法的是( ) A.洗衣机的使用说明书 B.解方程x2+2x-1=0 C.做米饭需要刷锅、淘米、添水、加热这些步骤 D.32 答案:B
相关文档
最新文档