高考数学 分类题库考点10 数列求和()理 人教版(1)
高考数学专题复习练习题12---数列求通项、求和(理)含答案解析
高考数学专题复习练习题12---数列求通项、求和(理)1.已知数列{}n a 的前n 项和21n n S =-,则数列2{}n a 的前10项和为( )A .1041-B .102(21)-C .101(41)3-D .101(21)3-2.已知数列{}n a 的前n 项和为n S ,满足21n n S a =-,则{}n a 的通项公式为n a =( ) A .21n -B .12n -C .21n-D .21n +3.数列{}n a 满足1(1)nn n a a n ++=-⋅,则数列{}n a 的前20项和为( )A .100-B .100C .110-D .1104.已知数列{}n a 的通项公式为100n a n n=+,则122399100||||||a a a a a a -+-++-=L ( ) A .150B .162C .180D .2105.数列{}n a 中,10a =,1n n a a +-=,若9n a =,则n =( )A .97B .98C .99D .1006.在数列{}n a 中,12a =-,111n na a +=-,则2019a 的值为( ) A .2-B .13 C .12D .327.已知n S 是数列{}n a 的前n 项和,且13n n n S S a +=++,4523a a +=,则8S =( ) A .72B .88C .92D .988.在数列{}n a 中,12a =,已知112(2)2n n n a a n a --=≥+,则n a 等于( )A .21n + B .2n C .31n + D .3n9.已知数列21()n a n n =-∈*N ,n T 为数列11{}n n a a +的前n 项和,求使不等式20194039n T ≥成立的最小 正整数( )一、选择题A .2017B .2018C .2019D .202010.已知直线20x y ++=与直线0x dy -+=互相平行且距离为m ,等差数列{}n a 的公差为d ,7835a a ⋅=,4100a a +<,令123||||||||n n S a a a a =++++L ,则m S 的值为( )A .60B .52C .44D .3611.已知定义在R 上的函数()f x 是奇函数且满足3()()2f x f x -=,(2)3f -=-,数列{}n a 是等差数列, 若23a =,713a =,则1232020()()()()f a f a f a f a ++++=L ( ) A .2-B .3-C .2D .312.已知数列满足12323(21)3nn a a a na n ++++=-⋅L ,设4n nnb a =,n S 为数列{}n b 的前n 项和.若n S λ<(常数),n ∈*N ,则λ的最小值为( )A .32B .94C .3112D .311813.已知数列{}n a 的通项公式为12n n a n -=⋅,其前n 项和为n S ,则n S = .14.设数列{}n a 满足1(1)()2n n n na n a n n +-+=∈+*N ,112a =,n a = . 15.已知数列{}n a 满足1(1)(2)nn n a a n n ---=≥,记n S 为数列{}n a 的前n 项和,则40S = .16.等差数列{}n a 中,3412a a +=,749S =,若[]x 表示不超过x 的最大整数,(如[0.9]0=,[2.6]2=,).令[lg ]()n n b a n =∈*N ,则数列{}n b 的前2000项和为 .1.【答案】C答 案 与 解 析二、填空题一、选择题【解析】∵21n n S =-,∴1121n n S ++=-,∴111(21)(21)2n n nn n n a S S +++=-=---=, 又11211a S ==-=,∴数列{}n a 的通项公式为12n n a -=,∴2121(2)4n n n a --==,∴所求值为1010141(41)143-=--. 2.【答案】B【解析】当1n =时,11121S a a =-=,∴11a =;当2n ≥时,1122n n n n n a S S a a --=-=-,∴12n n a a -=,因此12n n a -=.3.【答案】A【解析】121a a +=-,343a a +=-,565a a +=-,787a a +=-,…, 由上述可知,1219201191(13519)1101002a a a a +++++=-⨯++++=-⨯⨯=-L L . 4.【答案】B【解析】由对勾函数的性质知:当10n ≤时,数列{}n a 为递减; 当10n ≥时,数列{}n a 为递增,故12239910012239101110||||||()()()()a a a a a a a a a a a a a a -+-++-=-+-++-+-L L12111009911010010()()1100(1010)(1001)a a a a a a a a +-++-=-+-=+-+++-L (1010)162+=.5.【答案】D【解析】由1n n a a +-==,利用累加法可得,∴11)n a a -=+++L 1=,∵10a =,∴19n a ==10=,100n =. 6.【答案】B【解析】由题意得,12a =-,111n n a a +=-,∴213122a =+=,321133a =-=,4132a =-=-,…, ∴{}n a 的周期为3,∴20193673313a a a ⨯===. 7.【答案】C【解析】∵13n n n S S a +=++,∴113n n n n S S a a ++-=+=, ∴13n n a a +-=,∴{}n a 是公差为3d =的等差数列,又4523a a +=,可得12723a d +=,解得11a =,∴81878922S a d ⨯=+=. 8.【答案】B 【解析】将等式1122n n n a a a --=+两边取倒数,得到11112n n a a -=+,11112n n a a --=, 1{}n a 是公差为12的等差数列,1112a =,根据等差数列的通项公式的求法得到111(1)222n n n a =+-⨯=,故2n a n=. 9.【答案】C【解析】已知数列21()n a n n =-∈*N ,∵111111()(21)(21)22121n n a a n n n n +==--+-+, ∴11111111(1)()()(1)2335212122121n n T n n n n ⎡⎤=-+-++-=-=⎢⎥-+++⎣⎦L , 不等式20194039n T ≥,即2019214039n n ≥+,解得2019n ≥, ∴使得不等式成立的最小正整数n 的值为2019. 10.【答案】B【解析】由两直线平行得2d =-,由两直线平行间距离公式得10m ==,∵77(2)35a a ⋅-=,得75a =-或77a =, ∵410720a a a +=<,∴75a =-,29n a n =-+,∴12310|||||||||7||5||5||7||9||11|52m S a a a a =++++=+++-+-+-+-=L L . 11.【答案】B【解析】由函数()f x 是奇函数且3()()2f x f x -=,得(3)()f x f x +=, 由数列{}n a 是等差数列,若23a =,713a =,可得到21n a n =-, 可得123456()()()()()()0f a f a f a f a f a f a ++=++=,则其周期为3,12320201()()()()()3f a f a f a f a f a ++++==-L .12.【答案】C【解析】∵12323(21)3nn a a a na n ++++=-⋅L ①,当2n ≥时,类比写出12323a a a ++++L 11(1)(23)3n n n a n ---=-⋅②, 由①-②得143n n na n -=⋅,即143n n a -=⋅.当1n =时,134a =≠,∴13,143,2n n n a n -=⎧=⎨⋅≥⎩,14,13,23n n n b n n -⎧=⎪⎪=⎨⎪≥⎪⎩, 214233333n n n S -=++++=L 021*********n n-+++++L ③, 2311112313933333n n n n nS --=++++++L ④, ③-④得,0231112211111231393333339313n n n n n n n S --=++++++-=+--L ,∴316931124312n n n S +=-<⋅,∵n S λ<(常数),n ∈*N ,∴λ的最小值是3112.13.【答案】(1)21nn -+【解析】由题意得01221122232(1)22n n n S n n --=⨯+⨯+⨯++-⋅+⋅L ①,∴1221222n S =⨯+⨯3132(1)22n n n n -+⨯++-⋅+⋅L ②,①-②得231121222222(1)2112nn nn n n S n n n ---=+++++-⋅=-⋅=-⋅--L ,∴(1)21nn S n =-+.14.【答案】21n n +【解析】∵1(1)()2n n n na n a n n +-+=∈+*N ,∴11111(2)(1)12n n a a n n n n n n +-==-+++++,∴11111n n a a n n n n --=--+,…,21112123a a -=-,累加可得11121n a a n n -=-+, 二、填空题∵112a =,∴1111n a nn n n =-=++,∴21n n a n =+. 15.【答案】440【解析】由1(1)(2)nn n a a n n ---=≥可得:当2n k =时,2212k k a a k --=①;当21n k =-时,212221k k a a k --+=-②; 当21n k =+时,21221k k a a k ++=+③;①+②有:22241k k a a k -+=-,③-①得有:21211k k a a +-+=, 则40135739()S a a a a a =+++++L24640109()110(71523)1071084402a a a a ⨯+++++=⨯++++=+⨯+⨯=L L . 16.【答案】5445【解析】设等差数列{}n a 的公差为d ,∵3412a a +=,749S =,∴12512a d +=,1767492a d ⨯+=,解得11a =,2d =, ∴12(1)21n a n n =+-=-,[lg ][lg(21)]n n b a n ==-,1,2,3,4,5n =时,0n b =;650n ≤≤时,1n b =; 51500n ≤≤时,2n b =; 5012000n ≤≤时,3n b =,∴数列{}n b 的前2000项和454502150035445=+⨯+⨯=.。
高中数学数列的求和公式及相关题目解析
高中数学数列的求和公式及相关题目解析在高中数学中,数列是一个非常重要的概念,它是数学中的一种序列,由一系列按照一定规律排列的数所组成。
数列的求和是数学中常见的问题之一,本文将介绍数列的求和公式及相关题目解析,帮助高中学生和他们的父母更好地理解和掌握这一知识点。
一、等差数列的求和公式及相关题目解析1. 等差数列的求和公式等差数列是指数列中相邻两项之差都相等的数列。
对于等差数列,我们可以使用求和公式来快速计算其前n项的和。
设等差数列的首项为a1,公差为d,前n项和为Sn,则等差数列的求和公式为:Sn = (n/2)[2a1 + (n-1)d]其中,n为项数,a1为首项,d为公差。
2. 题目解析例题1:已知等差数列的首项为3,公差为4,求前10项的和。
解析:根据等差数列的求和公式,代入a1=3,d=4,n=10,可以得到:S10 = (10/2)[2*3 + (10-1)*4] = 5[6 + 9*4] = 5[6 + 36] = 5*42 = 210因此,前10项的和为210。
例题2:已知等差数列的首项为-2,公差为5,前n项和为100,求n的值。
解析:根据等差数列的求和公式,代入a1=-2,d=5,Sn=100,可以得到:100 = (n/2)[2*(-2) + (n-1)*5] = (n/2)[-4 + 5n - 5] = (n/2)(5n - 9)化简得到5n^2 - 9n - 200 = 0,解这个二次方程可以得到n≈13.2或n≈-3.8。
由于n必须是正整数,所以n≈13.2不符合题意。
因此,n≈-3.8也不符合题意。
综上所述,n的值为13。
二、等比数列的求和公式及相关题目解析1. 等比数列的求和公式等比数列是指数列中相邻两项之比都相等的数列。
对于等比数列,我们可以使用求和公式来快速计算其前n项的和。
设等比数列的首项为a1,公比为r,前n项和为Sn,则等比数列的求和公式为:Sn = a1(1 - r^n)/(1 - r)其中,n为项数,a1为首项,r为公比。
2024年新高考版数学专题1_7.4 数列求和、数列的综合
1 2
+
1 2
1 3
+…+
1 n
n
1 1
=1-
n
1 1
,
又因为n≥1,所以0< 1 ≤ 1 ,即有 1 ≤Tn<1,
n1 2
2
所以 1 ≤Tn<1 2
≤Tn<1.
解析 (1)选①.因为a4是a3与a5-8的等差中项,所以2a4=a3+a5-8,则16a1=4a1+ 16a1-8,解得a1=2,所以数列{an}的通项公式是an=2n.
选②.设{an}的公比为q,依题意,有 aS23
a1q 4, a1(1 q
13+23+33+…+n3= n(n 1) 2 .
2
2.倒序相加法 如果一个数列{an},与首末两端等“距离”的两项的和相等或等于同一常
数,那么求这个数列的前n项和即可用倒序相加法. 3.错位相减法 如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积 构成的,那么这个数列的前n项和即可用此法来求. 4.裂项相消法 把数列的通项拆成两项之差,在求和时中间的一些项可以相互抵消,从而 求得其和.以下为常见的拆项公式:
1) 1 = 1 - 1 ;
n(n 1) n n 1
2)
(2n
1 1)(2n
1)
=
1 2
1 2n 1
1 2n 1
;
3) 1 = n 1- n .
n n1
5.分组求和法
有一类数列,既不是等差数列,也不是等比数列,若将这类数列适当拆开, 可分为几个等差、等比或常见的数列,即先分别求和,再合并,例如:
高考 数学
专题七 数列
2024年高考数学专项复习数列求和与递推综合归类 (解析版)
数列求和与递推综合归类目录重难点题型归纳 1【题型一】等差与等比型累加法 1【题型二】换元型累加、累积法 3【题型三】周期数列型递推 4【题型四】二阶等比数列型递推 6【题型五】分式型求递推 7【题型六】前n 项积型递推 8【题型七】“和”定值型递推 9【题型八】分段型等差等比求和 11【题型九】函数中心型倒序求和 12【题型十】分组求和型 14【题型十一】错位相减型求和 16【题型十二】正负相间型求和 19【题型十三】无理根式型裂项相消求和 20【题型十四】指数型裂项相消 22【题型十五】等差指数混合型裂项 23【题型十六】裂和型裂项相消 26【题型十七】分离常数型裂项 27好题演练29重难点题型归纳重难点题型归纳题型一等差与等比型累加法【典例分析】1.(等差累加法)已知数列a n 中,已知a 1=2,a n +1-a n =2n ,则a 50等于()A.2451B.2452C.2449D.24502.(等比累加法)已知数列a n 满足a 1=2,a n +1-a n =2n ,则a 9=()A.510B.512C.1022D.10242024年高考数学专项复习数列求和与递推综合归类 (解析版)【技法指引】对于递推公式为a n -a n -1=f n ,一般利用累加法求出数列的通项公式;累乘法:若在已知数列中相邻两项存在:a na n -1=g (n )(n ≥2)的关系,可用“累乘法”求通项.【变式演练】1.已知数列a n n ∈N * 是首项为1的正项等差数列,公差不为0,若a 1、数列a 2n 的第2项、数列a n 2 的第5项恰好构成等比数列,则数列a n 的通项公式为()A.a n =2n -1B.a n =2n +1C.a n =n -1D.a n =n +12.已知数列a n 中,a 1=1,前n 项和S n =n +23a n ,则a n 的通项公式为.题型二换元型累加、累积法【典例分析】1.已知数列a n 满足:a 1=13,(n +1)a n +1-na n =2n +1,n ∈N *,则下列说法正确的是()A.a n +1≥a nB.a n +1≤a nC.数列a n 的最小项为a 3和a 4D.数列a n 的最大项为a 3和a 4【变式演练】1.(换元对数累加法)在数列a n 中,a 1=2,a n +1n +1=a n n +ln 1+1n ,则a n =()A.a 8B.2+n -1 ln nC.1+n +ln nD.2n +n ln n2.已知数列a n 满足a 1=32,a n =n n -1a n -1-n2n .(1)求数列a n 的通项公式;(2)设数列a n 的前n 项和为S n ,求满足S n <12的所有正整数n 的取值集合.【典例分析】1.已知数列a n满足a1=2,a n+1=1+a n1-a n,(n∈N*),则a1⋅a2⋅a3⋅⋯a2009⋅a2010=_________.【变式演练】1.数列{a n}中,a1=1,a2=3,a n+1=a n-a n-1(n≥2,n∈N*),那么a2019=()A.1B.2C.3D.-32.数列a n的首项a1=3,且a n=2-2a n-1n≥2,则a2021=()A.3B.43C.12D.-2题型四【二阶等比数列型递推【典例分析】1.已知数列a n满足a1=2,且a n=2a n-1-1(n≥2,n∈N+),则a n=______________【变式演练】1.已知数列a n中,a1=1,a n=3a n-1+4(n∈N∗且n≥2),则数列a n通项公式a n为() A.3n-1 B.3n+1-2 C.3n-2 D.3n2.已知数列{a n}满足:a n+1=2a n-n+1(n∈N*),a1=3.(1)证明数列b n=a n-n(n∈N*)是等比数列,并求数列{a n}的通项;(2)设c n=a n+1-a na n a n+1,数列{c n}的前n项和为{S n},求证:S n<1.【典例分析】1.在数列{a n}中,a1=1,a n+1=2a na n+2(n∈N*),则22019是这个数列的第________________项.【变式演练】1.已知数列a n满足a1=1,a n+1=2a na n+2.记C n=2na n,则数列Cn的前n项和C1+C2+...+Cn=.2.数列a n满足:a1=13,且na n=2a n-1+n-1a n-1(n∈N*,n≥2),则数列a n的通项公式是a n=.题型六前n项积型递推【典例分析】1.设等比数列a n的公比为q,其前n项和为S n,前n项积为T n,并且满足条件a1>1,a7a8>1,a7-1a8-1<0.则下列结论正确的是(多选题)A.0<q<1B.a7a9<1C.T n的最大值为T7D.S n的最大值为S7【技法指引】类比前n项和求通项过程来求数列前n项积:1.n=1,得a12.n≥2时,a n=T n T n-1所以a n=T1,(n=1) T nT n-1,(n≥2)【变式演练】1.若数列a n满足a n+2=2⋅a n+1a n(n∈N*),且a1=1,a2=2,则数列a n的前2016项之积为()A.22014B.22015C.22016D.220172.设等比数列a n的公比为q,其前n项和为S n,前n项积为T n,并满足条件a1>1,且a2020a2021> 1,a2020-1a2021-1<0,下列结论正确的是(多选题)A.S2020<S2021B.a2020a2022-1<0C.数列T n无最大值 D.T2020是数列T n中的最大值题型七“和”定值型递推【典例分析】1.若数列a n满足a n+2a n+1+a n+1a n=k(k为常数),则称数列a n为等比和数列,k称为公比和,已知数列a n是以3为公比和的等比和数列,其中a1=1,a2=2,则a2019=______.【变式演练】1.已知数列{a n}满足a n+a n+1=12(n∈N*),a2=2,S n是数列{a n}的前n项和,则S21为()A.5B.72C.92D.1322.知数列{a n}满足:a n+1+a n=4n-3(n∈N*),且a1=2,则a n=.题型八分段型等差等比求和【典例分析】1.已知数列a n满足a1=2,a n+1=32a n,n为奇数2a n,n为偶数 .(1)记b n=a2n,写出b1,b2,并求数列b n的通项公式;(2)求a n的前12项和.【变式演练】1.已知数列a n满足a1=1,a n+1=a n+1,n=2k-1, a n,n=2k.(1)求a2,a5的值;(2)求a n的前50项和S50.题型九函数中心型倒序求和【典例分析】1.已知A x 1,y 1 ,B x 2,y 2 是函数f (x )=2x 1-2x,x ≠12-1,x =12的图象上的任意两点(可以重合),点M为AB 的中点,且M 在直线x =12上.(1)求x 1+x 2的值及y 1+y 2的值;(2)已知S 1=0,当n ≥2时,S n =f 1n +f 2n +f 3n +⋯+f n -1n,求S n ;(3)若在(2)的条件下,存在n 使得对任意的x ,不等式S n >-x 2+2x +t 成立,求t 的范围.【变式演练】2.已知a n 为等比数列,且a 1a 2021=1,若f x =21+x2,求f a 1 +f a 2 +f a 3 +⋯+f a 2021 的值.题型十分组求和型【典例分析】1.已知等比数列a n 的公比大于1,a 2=6,a 1+a 3=20.(1)求a n 的通项公式;(2)若b n =a n +1log 3a n +12log 3a n +22,求b n 的前n 项和T n .【技法指引】对于a n +b n 结构,利用分组求和法【变式演练】1.设S n 为数列a n 的前n 项和,已知a n >0,a 2n +2a n =4S n +3n ∈N *,若数列b n 满足b 1=2,b 2=4,b 2n +1=b n b n +2n ∈N *(1)求数列a n 和b n 的通项公式;(2)设c n =1S n,n =2k -1,k ∈N * b n,n =2k ,k ∈N *求数列c n 的前n 项的和T n .【典例分析】1.已知数列a n 满足a 1=2,且a n +1-3 ⋅a n +1 +4=0,n ∈N *.(1)求证:数列1a n -1是等差数列;(2)若数列b n 满足b n =2n +1a n -1,求b n 的前n 项和.【技法指引】对于a n b n 结构,其中a n 是等差数列,b n 是等比数列,用错位相减法求和;思维结构结构图示如下【变式演练】1.已知等比数列a n 的首项a 1=1,公比为q ,b n 是公差为d d >0 的等差数列,b 1=a 1,b 3=a 3,b 2是b 1与b 7的等比中项.(1)求数列a n 的通项公式;(2)设b n 的前n 项和为S n ,数列c n 满足nc n =a 2n S n ,求数列c n 的前n 项和T n .【典例分析】1.已知数列a n各项均为正数,且a1=2,a n+12-2a n+1=a n2+2a n.(1)求a n的通项公式(2)设b n=-1n a n,求b1+b2+b1+⋯+b20.【变式演练】1.设等差数列a n的前n项和为S n,已知a3+a5=8,S3+S5=10. (1)求a n的通项公式;(2)令b n=(-1)n a n,求数列b n的前n项和T n.题型十三无理根式型裂项相消求和【典例分析】1.设数列a n的前n项和为S n,且满足2S n=3a n-3.(1)求数列a n的通项公式:(2)若b n=a n3,n为奇数1log3a n+log3a n+2,n为偶数,求数列和b n 的前10项的和.【变式演练】1.设数列a n的前n项和S n满足2S n=na n+n,n∈N+,a2=2,(1)证明:数列a n是等差数列,并求其通项公式﹔(2)设b n=1a n a n+1+a n+1a n,求证:T n=b1+b2+⋯+b n<1.题型十四指数型裂项相消【典例分析】1.已知数列a n 的前n 项和为S n ,且S n =2a n -1.(1)求a n ;(2)设b n =a n a n +1-1 ⋅a n +2-1 ,求数列b n 的前n 项和T n .【变式演练】1.数列a n 满足:a 1+2a 2+3a 3+⋅⋅⋅+n -1 a n -1=2+n -2 ⋅2n n ≥2 .(1)求数列a n 的通项公式;(2)设b n =a n a n -1 a n +1-1,T n 为数列b n 的前n 项和,若T n <m 2-3m +3恒成立,求实数m 的取值范围.题型十五等差指数混合型裂项【典例分析】1.已知数列a n 满足S n =n a 1+a n 2,其中S n 是a n 的前n 项和.(1)求证:a n 是等差数列;(2)若a 1=1,a 2=2,求b n =2n 1-a n a n a n +1的前n 项和T n .【变式演练】2.已知等比数列a n 的各项均为正数,2a 5,a 4,4a 6成等差数列,且满足a 4=4a 23,数列S n 的前n 项之积为b n ,且1S n +2b n=1.(1)求数列a n 和b n 的通项公式;(2)设d n =b n +2⋅a n b n ⋅b n +1,若数列d n 的前n 项和M n ,证明:730≤M n <13.【典例分析】1.已知数列a n 的满足a 1=1,a m +n =a m +a n m ,n ∈N * .(1)求a n 的通项公式;(2)记b n =(-1)n ⋅2n +1a n a n +1,数列b n 的前2n 项和为T 2n ,证明:-1<T 2n ≤-23.【技法指引】正负相间型裂和,裂项公式思维供参考:-1 n ⋅pn +q kn +b k (n +1)+b=-1 n ⋅t 1kn +b +1k (n +1)+b【变式演练】1.记正项数列a n 的前n 项积为T n ,且1a n =1-2T n .(1)证明:数列T n 是等差数列;(2)记b n =-1 n ⋅4n +4T n T n +1,求数列b n 的前2n 项和S 2n .【典例分析】1.已知等差数列a n 的前n 项和为S n ,若S 8=4a 4+20,且a 5+a 6=11.(1)求a n 的通项公式;(2)设b n =n 2+n +1a n a n +1,求b n 的前n 项和T n .【变式演练】1.已知等差数列a n 的通项公式为a n =2n -c c <2 ,记数列a n 的前n 项和为S n n ∈N * ,且数列S n 为等差数列.(1)求数列a n 的通项公式;(2)设数列4S n a n a n +1的前n 项和为T n n ∈N * ,求T n 的通项公式.好题演练好题演练1.(山东省泰安市2023届高三二模数学试题)已知数列a n 的前n 项和为S n ,a 1=2,a n ≠0,a n a n +1=4S n .(1)求a n ;(2)设b n =-1 n ⋅3n -1 ,数列b n 的前n 项和为T n ,若∀k ∈N *,都有T 2k -1<λ<T 2k 成立,求实数λ的范围.2.(2023·全国·模拟预测)已知正项数列a n 满足a 1=1,a n +1a n =1+1n.(1)求证:数列a 2n 为等差数列;(2)设b n =1a 2n a n +1+a n a 2n +1,求数列b n 的前n 项和T n .3.(2023·全国·学军中学校联考二模)设数列a n 满足a n +1=3a n -2a n -1n ≥2 ,a 1=1,a 2=2.(1)求数列a n 的通项公式;(2)在数列a n 的任意a k 与a k +1项之间,都插入k k ∈N * 个相同的数(-1)k k ,组成数列b n ,记数列b n 的前n 项的和为T n ,求T 27的值.4.(2023·全国·长郡中学校联考二模)已知正项数列a n 的前n 项和为S n ,且a 1=1,a n =S n +S n -1(n ∈N *且n ≥2).(1)求数列a n 的通项公式;(2)设数列a n +22n a n a n +1 的前n 项和为T n ,求证:T n <1.5.(2023·四川攀枝花·统考三模)已知等差数列a n的公差为d d≠0,前n项和为S n,现给出下列三个条件:①S1,S2,S4成等比数列;②S4=32;③S6=3a6+2.请你从这三个条件中任选两个解答下列问题.(1)求数列a n的通项公式;(2)若b n-b n-1=2a n n≥2,且b1=3,设数列1b n的前n项和为Tn,求证:13≤T n<12.6.(2023春·江西抚州·高二金溪一中校联考期中)已知数列a n满足a1=2,a n+1= 2a n+2,n为奇数,1 2a n+1,n为偶数.(1)记b n=a2n,证明:数列b n为等差数列;(2)若把满足a m=a k的项a m,a k称为数列a n中的重复项,求数列a n的前100项中所有重复项的和.7.(河北省2023届高三下学期大数据应用调研联合测评(Ⅲ)数学试题)已知数列a n 满足:a 1=12,3a n +1a n =1+a n +11+a n.(1)求证:1a n +1 是等比数列,并求出数列a n 的通项公式;(2)设b n =3n ⋅a n a n +1,求数列b n 的前n 项和S n .8.(2023·全国·模拟预测)已知数列a n 的前n 项和S n 满足S n =n 2-1+a n .(1)求a 1及a n ;(2)令b n =4S n a n a n +1,求数列b n 的前n 项和T n .数列求和与递推综合归类目录重难点题型归纳 1【题型一】等差与等比型累加法 1【题型二】换元型累加、累积法 3【题型三】周期数列型递推 4【题型四】二阶等比数列型递推 6【题型五】分式型求递推 7【题型六】前n项积型递推 8【题型七】“和”定值型递推 9【题型八】分段型等差等比求和 11【题型九】函数中心型倒序求和 12【题型十】分组求和型 14【题型十一】错位相减型求和 16【题型十二】正负相间型求和 19【题型十三】无理根式型裂项相消求和 20【题型十四】指数型裂项相消 22【题型十五】等差指数混合型裂项 23【题型十六】裂和型裂项相消 26【题型十七】分离常数型裂项 27好题演练 29重难点题型归纳重难点题型归纳题型一等差与等比型累加法【典例分析】1.(等差累加法)已知数列a n中,已知a1=2,a n+1-a n=2n,则a50等于()A.2451B.2452C.2449D.2450【答案】B【详解】由a n+1-a n=2n得:a n-a n-1=2n-1,a n-1-a n-2=2n-2,⋯⋯,a3-a2=2×2,a2-a1=2×1,各式相加可得:a n-a1=2×1+2+⋅⋅⋅+n-1=2×n n-12=n n-1,又a1=2,∴a n=2+n n-1=n2-n+2,∴a50=2500-50+2=2452.故选:B.2.(等比累加法)已知数列a n满足a1=2,a n+1-a n=2n,则a9=()A.510B.512C.1022D.1024【答案】B【详解】由a1=2,a n+1-a n=2n得a2-a1=2,a3-a2=22,a4-a3=23,⋮a n -a n -1=2n -1,以上各式相加得,a n -a 1=2+22+⋯+2n -1=21-2n -11-2=2n -2,所以a n =2n -2+a 1=2n ,所以a 9=29=512.故选:B .【技法指引】对于递推公式为a n -a n -1=f n ,一般利用累加法求出数列的通项公式;累乘法:若在已知数列中相邻两项存在:a na n -1=g (n )(n ≥2)的关系,可用“累乘法”求通项.【变式演练】1.已知数列a n n ∈N * 是首项为1的正项等差数列,公差不为0,若a 1、数列a 2n 的第2项、数列a n 2 的第5项恰好构成等比数列,则数列a n 的通项公式为()A.a n =2n -1B.a n =2n +1C.a n =n -1D.a n =n +1【答案】A【分析】根据题意设a n =1+n -1 d ,所以a 2n =1+2n -1 d ,a n 2=1+n 2-1 d ,所以1,1+3d ,1+24d 构成等比数列,即1+3d 2=1×1+24d ,求出d 即可求解.【详解】设等差数列a n 的公差为d d >0 ,所以a n =1+n -1 d ,所以a 2n =1+2n -1 d ,a n 2=1+n 2-1 d ,又a 1、数列a 2n 的第2项、数列a n 2的第5项恰好构成等比数列,即1,1+3d ,1+24d 构成等比数列,所以1+3d 2=1×1+24d ,解得d =2,d =0(舍去),所以a n =2n -1.故选:A .2.已知数列a n 中,a 1=1,前n 项和S n =n +23a n ,则a n 的通项公式为.【答案】a n =n n +12【分析】由S n =n +23a n ,变形可得则S n -1=n +13a n -1,两式相减变形可得a n a n -1=n +1n -1,又由a n =a n a n -1 ×a n -1a n -2 ×⋯⋯×a2a 1×a 1,计算可得a n =n (n +1)2,验证a 1即可得答案.【详解】根据题意,数列{a n }中,a 1=1,S n =n +23a n (n ∈N *),S n =n +23a n ①,S n -1=n +13a n -1②,①-②可得:a n =(n +2)a n 3-(n +1)a n -13,变形可得:a n a n -1=n +1n -1,则a n =a n a n -1 ×a n -1a n -2 ×⋯⋯×a 2a 1×a 1=n +1n -1 ×n n -2 ×⋯⋯×31 ×1=n (n +1)2;n =1时,a 1=1符合a n =n (n +1)2;故答案为:a n =n (n +1)2.题型二换元型累加、累积法【典例分析】1.已知数列a n 满足:a 1=13,(n +1)a n +1-na n =2n +1,n ∈N *,则下列说法正确的是()A.a n +1≥a nB.a n +1≤a nC.数列a n 的最小项为a 3和a 4D.数列a n 的最大项为a 3和a 4【答案】C【详解】令b n =na n ,则b n +1-b n =2n +1,又a 1=13,所以b 1=13,b 2-b 1=3,b 3-b 2=5,⋯,b n -b n -1=2n -1,所以累加得b n =13+n -1 3+2n -1 2=n 2+12,所以a n =b n n =n 2+12n =n +12n,所以a n +1-a n =n +1 +12n +1-n +12n =n -3 n +4 n n +1,所以当n <3时,a n +1<a n ,当n =3时,a n +1=a n ,即a 3=a 4,当n >3时,a n +1>a n ,即a 1>a 2>a 3=a 4<a 5<⋯<a n ,所以数列a n 的最小项为a 3和a 4,故选:C .【变式演练】1.(换元对数累加法)在数列a n 中,a 1=2,a n +1n +1=a n n +ln 1+1n ,则a n =()A.a 8B.2+n -1 ln nC.1+n +ln nD.2n +n ln n【答案】D【详解】由题意得,a n +1n +1=a n n +ln n +1n ,则a n n =a n -1n -1+ln n n -1,a n -1n -1=a n -2n -2+lnn -1n -2⋯,a 22=a 11+ln 21,由累加法得,a n n =a 11+ln n n -1+ln n -1n -2⋯+ln 21,即a n n =a 1+ln n n -1⋅n -1n -2⋅⋯⋅21,则an n=2+ln n ,所以a n =2n +n ln n ,故选:D2.已知数列a n 满足a 1=32,a n =n n -1a n -1-n 2n .(1)求数列a n 的通项公式;(2)设数列a n 的前n 项和为S n ,求满足S n <12的所有正整数n 的取值集合.【答案】(1)a n =n +n2n ;(2)1,2,3,4 .【详解】(1)因为a n =n n -1a n -1-n 2n ,所以a n n -a n -1n -1=-12n .因为a 22-a 11=-122,a33-a 22=-123,⋯,a n n -a n -1n -1=-12n ,所以a n n -a 11=-122+123+⋯+12n=-1221-12 n -11-12=12n-12,于是a n=n+n 2n .当n=1时,a1=1+12=32,所以a n=n+n2n.(2)因为S n-S n-1=a n=n+n2n >0,所以S n是递增数列.因为a1=1+12=32,a2=2+24=52,a3=3+323=278,a4=4+424=174,a5=5+525=16532,所以S1=32,S2=4,S3=598,S4=938<12,S5=53732>12,于是所有正整数n的取值集合为1,2,3,4.题型三周期数列型递推【典例分析】1.已知数列a n满足a1=2,a n+1=1+a n1-a n,(n∈N*),则a1⋅a2⋅a3⋅⋯a2009⋅a2010=_________.【答案】-6【解析】由已知有a2=1+a11-a1=-3,a3=1-31+3=-12,a4=1-121+12=13,a5=1+131-13=2,所以a5=a1=2,所以数列a n是周期数列,且周期为4,a1a2a3a4=a5a6a7a8=⋯=a2005a2006a2007a2008=1,而a2009a2010= a1a2=2×(-3)=-6,所以a1a2a3⋯a2010=-6。
历年(2019-2024)全国高考数学真题分类(数列)汇编(附答案)
历年(2019-2024)全国高考数学真题分类(数列)汇编考点01 数列的增减性1.(2022∙全国乙卷∙高考真题)嫦娥二号卫星在完成探月任务后,继续进行深空探测,成为我国第一颗环绕太阳飞行的人造行星,为研究嫦娥二号绕日周期与地球绕日周期的比值,用到数列{}n b :1111b α=+,212111b αα=++,31231111b ααα=+++,…,依此类推,其中(1,2,)k k α*∈=N .则( ) A .15b b < B .38b b <C .62b b <D .47b b <2.(2022∙北京∙高考真题)已知数列{}n a 各项均为正数,其前n 项和n S 满足9(1,2,)n n a S n ⋅== .给出下列四个结论:①{}n a 的第2项小于3; ②{}n a 为等比数列; ③{}n a 为递减数列; ④{}n a 中存在小于1100的项. 其中所有正确结论的序号是 .3.(2021∙全国甲卷∙高考真题)等比数列{}n a 的公比为q ,前n 项和为n S ,设甲:0q >,乙:{}n S 是递增数列,则( )A .甲是乙的充分条件但不是必要条件B .甲是乙的必要条件但不是充分条件C .甲是乙的充要条件D .甲既不是乙的充分条件也不是乙的必要条件4.(2020∙北京∙高考真题)在等差数列{}n a 中,19a =-,51a =-.记12(1,2,)n n T a a a n ==……,则数列{}n T ( ). A .有最大项,有最小项 B .有最大项,无最小项 C .无最大项,有最小项D .无最大项,无最小项考点02 递推数列及数列的通项公式1.(2023∙北京∙高考真题)已知数列{}n a 满足()31166(1,2,3,)4n n a a n +=-+= ,则( ) A .当13a =时,{}n a 为递减数列,且存在常数0M ≤,使得n a M >恒成立 B .当15a =时,{}n a 为递增数列,且存在常数6M ≤,使得n a M <恒成立 C .当17a =时,{}n a 为递减数列,且存在常数6M >,使得n a M >恒成立 D .当19a =时,{}n a 为递增数列,且存在常数0M >,使得n a M <恒成立2.(2022∙北京∙高考真题)已知数列{}n a 各项均为正数,其前n 项和n S 满足9(1,2,)n n a S n ⋅== .给出下列四个结论:①{}n a 的第2项小于3; ②{}n a 为等比数列; ③{}n a 为递减数列; ④{}n a 中存在小于1100的项. 其中所有正确结论的序号是 .3.(2022∙浙江∙高考真题)已知数列{}n a 满足()21111,3n n n a a a a n *+==-∈N ,则( )A .100521002a <<B .100510032a << C .100731002a <<D .100710042a << 4.(2021∙浙江∙高考真题)已知数列{}n a满足)111,N n a a n *+==∈.记数列{}n a 的前n 项和为n S ,则( )A .100332S << B .10034S << C .100942S <<D .100952S << 5.(2020∙浙江∙高考真题)我国古代数学家杨辉,朱世杰等研究过高阶等差数列的求和问题,如数列(1)2n n +⎧⎫⎨⎬⎩⎭就是二阶等差数列,数列(1)2n n +⎧⎫⎨⎬⎩⎭(N )n *∈ 的前3项和是 .6.(2020∙全国∙高考真题)数列{}n a 满足2(1)31nn n a a n ++-=-,前16项和为540,则1a = .7.(2019∙浙江∙高考真题)设,a b R ∈,数列{}n a 中,211,n n a a a a b +==+,N n *∈ ,则A .当101,102b a =>B .当101,104b a =>C .当102,10b a =->D .当104,10b a =->考点03 等差数列及其前n 项和一、单选题 1.(2024∙全国甲卷∙高考真题)记n S 为等差数列{}n a 的前n 项和,已知510S S =,51a =,则1a =( ) A .72B .73 C .13-D .711-2.(2024∙全国甲卷∙高考真题)已知等差数列{}n a 的前n 项和为n S ,若91S =,则37a a +=( ) A .2-B .73C .1D .293.(2023∙全国甲卷∙高考真题)记n S 为等差数列{}n a 的前n 项和.若264810,45a a a a +==,则5S =( ) A .25B .22C .20D .154.(2023∙全国乙卷∙高考真题)已知等差数列{}n a 的公差为23π,集合{}*cos N n S a n =∈,若{},S a b =,则ab =( )A .-1B .12-C .0D .125.(2023∙全国新Ⅰ卷∙高考真题)记n S 为数列{}n a 的前n 项和,设甲:{}n a 为等差数列;乙:{}nS n为等差数列,则( )A .甲是乙的充分条件但不是必要条件B .甲是乙的必要条件但不是充分条件C .甲是乙的充要条件D .甲既不是乙的充分条件也不是乙的必要条件6.(2022∙北京∙高考真题)设{}n a 是公差不为0的无穷等差数列,则“{}n a 为递增数列”是“存在正整数0N ,当0n N >时,0n a >”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件D .既不充分也不必要条件7.(2020∙浙江∙高考真题)已知等差数列{an }的前n 项和Sn ,公差d ≠0,11a d≤.记b 1=S 2,bn+1=S2n+2–S 2n ,n N *∈,下列等式不可能...成立的是( ) A .2a 4=a 2+a 6B .2b 4=b 2+b 6C .2428a a a = D .2428b b b =8.(2019∙全国∙高考真题)记n S 为等差数列{}n a 的前n 项和.已知4505S a ==,,则 A .25n a n =-B . 310n a n =-C .228n S n n =-D .2122n S n n =-二、填空题 15.(2024∙全国新Ⅱ卷∙高考真题)记n S 为等差数列{}n a 的前n 项和,若347a a +=,2535a a +=,则10S = .16.(2022∙全国乙卷∙高考真题)记n S 为等差数列{}n a 的前n 项和.若32236S S =+,则公差d = . 17.(2020∙山东∙高考真题)将数列{2n –1}与{3n –2}的公共项从小到大排列得到数列{an },则{an }的前n 项和为 .18.(2020∙全国∙高考真题)记n S 为等差数列{}n a 的前n 项和.若1262,2a a a =-+=,则10S = .19.(2019∙江苏∙高考真题)已知数列*{}()n a n ∈N 是等差数列,n S 是其前n 项和.若25890,27a a a S +==,则8S 的值是 .20.(2019∙北京∙高考真题)设等差数列{an }的前n 项和为Sn ,若a 2=−3,S 5=−10,则a 5= ,Sn 的最小值为 .21.(2019∙全国∙高考真题)记n S 为等差数列{}n a 的前n 项和,若375,13a a ==,则10S = . 22.(2019∙全国∙高考真题)记Sn 为等差数列{an }的前n 项和,12103a a a =≠,,则105S S = .考点04 等比数列及其前n 项和一、单选题 1.(2023∙全国甲卷∙高考真题)设等比数列{}n a 的各项均为正数,前n 项和n S ,若11a =,5354S S =-,则4S =( ) A .158B .658C .15D .402.(2023∙天津∙高考真题)已知数列{}n a 的前n 项和为n S ,若()112,22N n n a a S n *+==+∈,则4a =( )A .16B .32C .54D .1623.(2023∙全国新Ⅱ卷∙高考真题)记n S 为等比数列{}n a 的前n 项和,若45S =-,6221S S =,则8S =( ). A .120B .85C .85-D .120-4.(2022∙全国乙卷∙高考真题)已知等比数列{}n a 的前3项和为168,2542a a -=,则6a =( ) A .14B .12C .6D .35.(2021∙全国甲卷∙高考真题)记n S 为等比数列{}n a 的前n 项和.若24S =,46S =,则6S =( ) A .7B .8C .9D .106.(2020∙全国∙高考真题)设{}n a 是等比数列,且1231a a a ++=,234+2a a a +=,则678a a a ++=( ) A .12B .24C .30D .327.(2020∙全国∙高考真题)记Sn 为等比数列{an }的前n 项和.若a 5–a 3=12,a 6–a 4=24,则n nS a =( )A .2n –1B .2–21–nC .2–2n –1D .21–n –18.(2020∙全国∙高考真题)数列{}n a 中,12a =,对任意 ,,m n m n m n N a a a ++∈=,若155121022k k k a a a ++++++=- ,则 k =( ) A .2B .3C .4D .5二、填空题 11.(2023∙全国甲卷∙高考真题)记n S 为等比数列{}n a 的前n 项和.若6387S S =,则{}n a 的公比为 . 12.(2023∙全国乙卷∙高考真题)已知{}n a 为等比数列,24536a a a a a =,9108a a =-,则7a = . 13.(2019∙全国∙高考真题)记Sn 为等比数列{an }的前n 项和.若13314a S ==,,则S 4= . 14.(2019∙全国∙高考真题)记Sn 为等比数列{an }的前n 项和.若214613a a a ==,,则S 5= .考点05 数列中的数学文化1.(2023∙北京∙高考真题)我国度量衡的发展有着悠久的历史,战国时期就已经出现了类似于砝码的、用来测量物体质量的“环权”.已知9枚环权的质量(单位:铢)从小到大构成项数为9的数列{}n a ,该数列的前3项成等差数列,后7项成等比数列,且1591,12,192a a a ===,则7a = ;数列{}n a 所有项的和为 .2.(2022∙全国新Ⅱ卷∙高考真题)图1是中国古代建筑中的举架结构,,,,AA BB CC DD ''''是桁,相邻桁的水平距离称为步,垂直距离称为举,图2是某古代建筑屋顶截面的示意图.其中1111,,,DD CC BB AA 是举,1111,,,OD DC CB BA 是相等的步,相邻桁的举步之比分别为11111231111,0.5,,DD CC BB AAk k k OD DC CB BA ====.已知123,,k k k 成公差为0.1的等差数列,且直线OA 的斜率为0.725,则3k =( )A .0.75B .0.8C .0.85D .0.93.(2021∙全国新Ⅰ卷∙高考真题)某校学生在研究民间剪纸艺术时,发现剪纸时经常会沿纸的某条对称轴把纸对折,规格为20dm 12dm ⨯的长方形纸,对折1次共可以得到10dm 12dm ⨯,20dm 6dm ⨯两种规格的图形,它们的面积之和21240dm S =,对折2次共可以得到5dm 12dm ⨯,10dm 6dm ⨯,20dm 3dm ⨯三种规格的图形,它们的面积之和22180dm S =,以此类推,则对折4次共可以得到不同规格图形的种数为 ;如果对折n次,那么1nk k S ==∑ 2dm .4.(2020∙浙江∙高考真题)我国古代数学家杨辉,朱世杰等研究过高阶等差数列的求和问题,如数列(1)2n n +⎧⎫⎨⎬⎩⎭就是二阶等差数列,数列(1)2n n +⎧⎫⎨⎬⎩⎭(N )n *∈ 的前3项和是 .5.(2020∙全国∙高考真题)0‐1周期序列在通信技术中有着重要应用.若序列12n a a a 满足{0,1}(1,2,)i a i ∈= ,且存在正整数m ,使得(1,2,)i m i a a i +== 成立,则称其为0‐1周期序列,并称满足(1,2,)i m i a a i +== 的最小正整数m 为这个序列的周期.对于周期为m 的0‐1序列12n a a a ,11()(1,2,,1)mi i k i C k a a k m m +===-∑ 是描述其性质的重要指标,下列周期为5的0‐1序列中,满足1()(1,2,3,4)5C k k ≤=的序列是( ) A .11010B .11011C .10001D .110016.(2020∙全国∙高考真题)北京天坛的圜丘坛为古代祭天的场所,分上、中、下三层,上层中心有一块圆形石板(称为天心石),环绕天心石砌9块扇面形石板构成第一环,向外每环依次增加9块,下一层的第一环比上一层的最后一环多9块,向外每环依次也增加9块,已知每层环数相同,且下层比中层多729块,则三层共有扇面形石板(不含天心石)( )A .3699块B .3474块C .3402块D .3339块考点06 数列求和1.(2021∙浙江∙高考真题)已知数列{}n a满足)111,N n a a n *+==∈.记数列{}n a 的前n 项和为n S ,则( )A .100332S << B .10034S << C .100942S <<D .100952S << 2.(2021∙全国新Ⅱ卷∙高考真题)(多选)设正整数010112222k kk k n a a a a --=⋅+⋅++⋅+⋅ ,其中{}0,1i a ∈,记()01k n a a a ω=+++ .则( ) A .()()2n n ωω= B .()()231n n ωω+=+C .()()8543n n ωω+=+D .()21nn ω-=3.(2020∙江苏∙高考真题)设{an }是公差为d 的等差数列,{bn }是公比为q 的等比数列.已知数列{an +bn }的前n 项和221()n n S n n n +=-+-∈N ,则d +q 的值是 .参考答案考点01 数列的增减性1.(2022∙全国乙卷∙高考真题)嫦娥二号卫星在完成探月任务后,继续进行深空探测,成为我国第一颗环绕太阳飞行的人造行星,为研究嫦娥二号绕日周期与地球绕日周期的比值,用到数列{}n b :1111b α=+,212111b αα=++,31231111b ααα=+++,…,依此类推,其中(1,2,)k k α*∈=N .则( ) A .15b b < B .38b b <C .62b b <D .47b b <【答案】D【详细分析】根据()*1,2,k k α∈=N …,再利用数列{}n b 与k α的关系判断{}n b 中各项的大小,即可求解.【答案详解】[方法一]:常规解法因为()*1,2,k k α∈=N ,所以1121ααα<+,112111ααα>+,得到12b b >,同理11223111ααααα+>++,可得23b b <,13b b >又因为223411,11αααα>++112233411111ααααααα++<+++,故24b b <,34b b >;以此类推,可得1357b b b b >>>>…,78b b >,故A 错误; 178b b b >>,故B 错误;26231111αααα>++…,得26b b <,故C 错误;11237264111111αααααααα>++++++…,得47b b <,故D 正确.[方法二]:特值法不妨设1,n a =则1234567835813213455b 2,b b ,b b ,b b ,b 2358132134========,,,47b b <故D 正确.2.(2022∙北京∙高考真题)已知数列{}n a 各项均为正数,其前n 项和n S 满足9(1,2,)n n a S n ⋅== .给出下列四个结论:①{}n a 的第2项小于3; ②{}n a 为等比数列; ③{}n a 为递减数列; ④{}n a 中存在小于1100的项. 其中所有正确结论的序号是 . 【答案】①③④ 【详细分析】推导出199n n n a a a -=-,求出1a 、2a 的值,可判断①;利用反证法可判断②④;利用数列单调性的定义可判断③.【答案详解】由题意可知,N n *∀∈,0n a >,当1n =时,219a =,可得13a =;当2n ≥时,由9n nS a =可得119n n S a --=,两式作差可得199n n n a a a -=-,所以,199n n n a a a -=-,则2293a a -=,整理可得222390a a +-=, 因为20a >,解得2332a =<,①对;假设数列{}n a 为等比数列,设其公比为q ,则2213a a a =,即2213981S S S ⎛⎫= ⎪⎝⎭,所以,2213S S S =,可得()()22221111a q a q q +=++,解得0q =,不合乎题意,故数列{}n a 不是等比数列,②错; 当2n ≥时,()1119990n n n n n n n a a a a a a a ----=-=>,可得1n n a a -<,所以,数列{}n a 为递减数列,③对; 假设对任意的N n *∈,1100n a ≥,则10000011000001000100S ≥⨯=, 所以,1000001000009911000100a S =≤<,与假设矛盾,假设不成立,④对. 故答案为:①③④.【名师点评】关键点名师点评:本题在推断②④的正误时,利用正面推理较为复杂时,可采用反证法来进行推导.3.(2021∙全国甲卷∙高考真题)等比数列{}n a 的公比为q ,前n 项和为n S ,设甲:0q >,乙:{}n S 是递增数列,则( )A .甲是乙的充分条件但不是必要条件B .甲是乙的必要条件但不是充分条件C .甲是乙的充要条件D .甲既不是乙的充分条件也不是乙的必要条件【答案】B【详细分析】当0q >时,通过举反例说明甲不是乙的充分条件;当{}n S 是递增数列时,必有0n a >成立即可说明0q >成立,则甲是乙的必要条件,即可选出答案. 【答案详解】由题,当数列为2,4,8,--- 时,满足0q >, 但是{}n S 不是递增数列,所以甲不是乙的充分条件.若{}n S 是递增数列,则必有0n a >成立,若0q >不成立,则会出现一正一负的情况,是矛盾的,则0q >成立,所以甲是乙的必要条件. 故选:B .【名师点评】在不成立的情况下,我们可以通过举反例说明,但是在成立的情况下,我们必须要给予其证明过程.4.(2020∙北京∙高考真题)在等差数列{}n a 中,19a =-,51a =-.记12(1,2,)n n T a a a n ==……,则数列{}n T ( ).A .有最大项,有最小项B .有最大项,无最小项C .无最大项,有最小项D .无最大项,无最小项【答案】B【详细分析】首先求得数列的通项公式,然后结合数列中各个项数的符号和大小即可确定数列中是否存在最大项和最小项.【答案详解】由题意可知,等差数列的公差511925151a a d --+===--, 则其通项公式为:()()11912211n a a n d n n =+-=-+-⨯=-, 注意到123456701a a a a a a a <<<<<<=<< , 且由50T <可知()06,i T i i N <≥∈, 由()117,ii i T a i i N T -=>≥∈可知数列{}n T 不存在最小项, 由于1234569,7,5,3,1,1a a a a a a =-=-=-=-=-=,故数列{}n T 中的正项只有有限项:263T =,46315945T =⨯=. 故数列{}n T 中存在最大项,且最大项为4T . 故选:B.【名师点评】本题主要考查等差数列的通项公式,等差数列中项的符号问题,分类讨论的数学思想等知识,属于中等题.考点02 递推数列及数列的通项公式1.(2023∙北京∙高考真题)已知数列{}n a 满足()31166(1,2,3,)4n n a a n +=-+= ,则( ) A .当13a =时,{}n a 为递减数列,且存在常数0M ≤,使得n a M >恒成立 B .当15a =时,{}n a 为递增数列,且存在常数6M ≤,使得n a M <恒成立 C .当17a =时,{}n a 为递减数列,且存在常数6M >,使得n a M >恒成立 D .当19a =时,{}n a 为递增数列,且存在常数0M >,使得n a M <恒成立【答案】B【详细分析】法1:利用数列归纳法可判断ACD 正误,利用递推可判断数列的性质,故可判断B 的正误. 法2:构造()()31664x f x x =-+-,利用导数求得()f x 的正负情况,再利用数学归纳法判断得各选项n a 所在区间,从而判断{}n a 的单调性;对于A ,构造()()32192647342h x x x x x =-+-≤,判断得11n n a a +<-,进而取[]4m M =-+推得n a M >不恒成立;对于B ,证明n a 所在区间同时证得后续结论;对于C ,记()0143log 2log 61m M ⎡⎤⎢⎥⎣=+⎦-,取[]01m m =+推得n a M >不恒成立;对于D ,构造()()32192649942g x x x x x =-+-≥,判断得11n n a a +>+,进而取[]1m M =+推得n a M <不恒成立. 【答案详解】法1:因为()311664n n a a +=-+,故()311646n n a a +=--,对于A ,若13a =,可用数学归纳法证明:63n a -≤-即3n a ≤, 证明:当1n =时,1363a -=≤--,此时不等关系3n a ≤成立; 设当n k =时,63k a -≤-成立, 则()3162514764,4k k a a +⎛⎫-∈--- ⎝=⎪⎭,故136k a +≤--成立, 由数学归纳法可得3n a ≤成立. 而()()()()231116666441n n n n n n a a a a a a +⎡⎤=---=---⎢⎣-⎥⎦, ()20144651149n a --=-≥>,60n a -<,故10n n a a +-<,故1n n a a +<, 故{}n a 为减数列,注意1063k a +-≤-< 故()()()()23111666649644n n n n n a a a a a +-=≤-=-⨯--,结合160n a +-<,所以()16694n n a a +--≥,故19634n n a +⎛⎫-≥ ⎪⎝⎭,故19634nn a +⎛⎫≤- ⎪⎝⎭,若存在常数0M ≤,使得n a M >恒成立,则9634nM ⎛⎫-> ⎪⎝⎭,故6934nM -⎛⎫> ⎪⎝⎭,故946log 3M n -<,故n a M >恒成立仅对部分n 成立, 故A 不成立.对于B ,若15,a =可用数学归纳法证明:106n a --≤<即56n a ≤<, 证明:当1n =时,10611a ---≤≤=,此时不等关系56n a ≤<成立; 设当n k =时,56k a ≤<成立, 则()31164416,0k k a a +⎛⎫-∈-⎪⎝=⎭-,故1106k a +--≤<成立即 由数学归纳法可得156k a +≤<成立. 而()()()()231116666441n n n n n n a a a a a a +⎡⎤=---=---⎢⎣-⎥⎦, ()201416n a --<,60n a -<,故10n n a a +->,故1n n a a +>,故{}n a 为增数列, 若6M =,则6n a <恒成立,故B 正确.对于C ,当17a =时, 可用数学归纳法证明:061n a <-≤即67n a <≤, 证明:当1n =时,1061a <-≤,此时不等关系成立; 设当n k =时,67k a <≤成立, 则()31160,4164k k a a +⎛⎤-∈ ⎥⎝=⎦-,故1061k a +<-≤成立即167k a +<≤ 由数学归纳法可得67n a <≤成立.而()()21166014n n n n a a a a +⎡⎤=--<⎢⎥⎣⎦--,故1n n a a +<,故{}n a 为减数列,又()()()2111666644n n n n a a a a +-=-⨯-≤-,结合160n a +->可得:()111664n n a a +⎛⎫-≤- ⎪⎝⎭,所以1164nn a +⎛⎫≤+ ⎪⎝⎭, 若1164nn a +⎛⎫≤+ ⎪⎝⎭,若存在常数6M >,使得n a M >恒成立,则164nM ⎛⎫-≤ ⎪⎝⎭恒成立,故()14log 6n M ≤-,n 的个数有限,矛盾,故C 错误.对于D ,当19a =时, 可用数学归纳法证明:63n a -≥即9n a ≥, 证明:当1n =时,1633a -=≥,此时不等关系成立; 设当n k =时,9k a ≥成立,则()3162764143k k a a +-≥=>-,故19k a +≥成立 由数学归纳法可得9n a ≥成立.而()()21166014n n n n a a a a +⎡⎤=-->⎢⎥⎣⎦--,故1n n a a +>,故{}n a 为增数列,又()()()2119666446n n n n a a a a +->=-⨯--,结合60n a ->可得:()11116396449n n n a a --+⎭-⎛⎫⎛⎫-= ⎪⎪⎝⎝⎭> ,所以114963n n a -+⎛⎫⎪⎭≥+⎝,若存在常数0M >,使得n a M <恒成立,则19643n M -⎛⎫⎪⎝>+⎭,故19643n M -⎛⎫⎪⎝>+⎭,故946log 13M n -⎛⎫<+ ⎪⎝⎭,这与n 的个数有限矛盾,故D 错误.故选:B.法2:因为()3321119662648442n n n n n n n a a a a a a a +-=-+-=-+-, 令()3219264842f x x x x =-+-,则()239264f x x x =-+',令()0f x ¢>,得06x <<6x >+;令()0f x '<,得66x << 所以()f x在,6⎛-∞ ⎝⎭和63⎛⎫++∞ ⎪ ⎪⎝⎭上单调递增,在633⎛⎫-+ ⎪ ⎪⎝⎭上单调递减, 令()0f x =,则32192648042x x x -+-=,即()()()146804x x x ---=,解得4x =或6x =或8x =,注意到465<<,768<<, 所以结合()f x 的单调性可知在(),4-∞和()6,8上()0f x <,在()4,6和()8,+∞上()0f x >, 对于A ,因为()311664n n a a +=-+,则()311646n n a a +=--,当1n =时,13a =,()32116643a a =--<-,则23a <, 假设当n k =时,3k a <, 当1n k =+时,()()331311646364k k a a +<---<-=,则13k a +<, 综上:3n a ≤,即(),4n a ∈-∞,因为在(),4-∞上()0f x <,所以1n n a a +<,则{}n a 为递减数列, 因为()332111916612647442n n n n n n n a a a a a a a +-+=-+-+=-+-, 令()()32192647342h x x x x x =-+-≤,则()239264h x x x '=-+,因为()h x '开口向上,对称轴为96324x -=-=⨯, 所以()h x '在(],3-∞上单调递减,故()()2333932604h x h ''≥=⨯-⨯+>,所以()h x 在(],3-∞上单调递增,故()()321933326347042h x h ≤=⨯-⨯+⨯-<,故110n n a a +-+<,即11n n a a +<-, 假设存在常数0M ≤,使得n a M >恒成立,取[]14m M =-+,其中[]1M M M -<≤,且[]Z M ∈,因为11n n a a +<-,所以[][]2132431,1,,1M M a a a a a a -+-+<-<-<- , 上式相加得,[][]()14333M a a M M M -+<--+≤+-=, 则[]14m M a a M +=<,与n a M >恒成立矛盾,故A 错误; 对于B ,因为15a =, 当1n =时,156a =<,()()33211166566644a a =-+=⨯-+<, 假设当n k =时,6k a <,当1n k =+时,因为6k a <,所以60k a -<,则()360k a -<, 所以()3116664k k a a +=-+<, 又当1n =时,()()332111615610445a a =-+=⨯+-->,即25a >, 假设当n k =时,5k a ≥,当1n k =+时,因为5k a ≥,所以61k a -≥-,则()361k a -≥-, 所以()3116654k k a a +=-+≥, 综上:56n a ≤<,因为在()4,6上()0f x >,所以1n n a a +>,所以{}n a 为递增数列, 此时,取6M =,满足题意,故B 正确;对于C ,因为()311664n n a a +=-+,则()311646n n a a +=--,注意到当17a =时,()3216617644a =-+=+,3341166441664a ⎪⎛⎫⎫+=+ ⎪⎝+-⎭⎭⎛= ⎝,143346166144416a ⎢⎛⎫+=⎡⎤⎛⎫=+-⎢⎥ ⎪⎝+ ⎪⎭⎭⎥⎦⎝⎣猜想当2n ≥时,)1312164k k a -⎛⎫+ ⎪=⎝⎭,当2n =与3n =时,2164a =+与43164a ⎛⎫=+ ⎪⎝⎭满足()1312164nn a -⎛⎫+ ⎪=⎝⎭,假设当n k =时,)1312164k k a -⎛⎫+ ⎪=⎝⎭,当1n k =+时,所以()())13113131122311666116664444k k k k a a +-+-⎡⎤⎛⎫⎛⎫⎢⎥=+-+ ⎪⎪⎢⎥⎝⎭⎝⎭⎣⎦-+=+=, 综上:()()13121624n n a n - =⎛⎫+≥⎪⎝⎭,易知310n->,则)13121014n -⎛⎫<< ⎪⎝⎭,故()()()1312166,724n n a n -⎛⎪=⎫+∈≥ ⎝⎭,所以(],67n a ∈,因为在()6,8上()0f x <,所以1n n a a +<,则{}n a 为递减数列, 假设存在常数6M >,使得n a M >恒成立,记()0143log 2log 61m M ⎡⎤⎢⎥⎣=+⎦-,取[]01m m =+,其中[]*00001,N m m m m -<≤∈,则()0142log 6133m mM ->=+, 故()()14log 61312m M ->-,所以()1312614m M -⎛⎫ ⎪<⎝-⎭,即)1312164m M -⎛⎫+ ⎪⎭<⎝, 所以m a M <,故n a M >不恒成立,故C 错误; 对于D ,因为19a =, 当1n =时,()32116427634a a ==->-,则29a >, 假设当n k =时,3k a ≥, 当1n k =+时,()()331116936644k k a a +≥=-->-,则19k a +>,综上:9n a ≥,因为在()8,+∞上()0f x >,所以1n n a a +>,所以{}n a 为递增数列, 因为()332111916612649442n n n n n n n a a a a a a a +--=-+--=-+-, 令()()32192649942g x x x x x =-+-≥,则()239264g x x x '=-+, 因为()g x '开口向上,对称轴为96324x -=-=⨯, 所以()g x '在[)9,+∞上单调递增,故()()2399992604g x g ≥=⨯-⨯+'>',所以()()321999926949042g x g ≥=⨯-⨯+⨯->, 故110n n a a +-->,即11n n a a +>+, 假设存在常数0M >,使得n a M <恒成立, 取[]21m M =+,其中[]1M M M -<≤,且[]Z M ∈,因为11n n a a +>+,所以[][]213211,1,,1M M a a a a a a +>+>+>+ , 上式相加得,[][]1191M a a M M M +>+>+->, 则[]21m M a a M +=>,与n a M <恒成立矛盾,故D 错误. 故选:B.【名师点评】关键名师点评:本题解决的关键是根据首项给出与通项性质相关的相应的命题,再根据所得命题结合放缩法得到通项所满足的不等式关系,从而可判断数列的上界或下界是否成立.2.(2022∙北京∙高考真题)已知数列{}n a 各项均为正数,其前n 项和n S 满足9(1,2,)n n a S n ⋅== .给出下列四个结论:①{}n a 的第2项小于3; ②{}n a 为等比数列; ③{}n a 为递减数列; ④{}n a 中存在小于1100的项. 其中所有正确结论的序号是 . 【答案】①③④ 【详细分析】推导出199n n n a a a -=-,求出1a 、2a 的值,可判断①;利用反证法可判断②④;利用数列单调性的定义可判断③.【答案详解】由题意可知,N n *∀∈,0n a >,当1n =时,219a =,可得13a =;当2n ≥时,由9n n S a =可得119n n S a --=,两式作差可得199n n n a a a -=-,所以,199n n n a a a -=-,则2293a a -=,整理可得222390a a +-=, 因为20a >,解得2332a =<,①对;假设数列{}n a 为等比数列,设其公比为q ,则2213a a a =,即2213981S S S ⎛⎫= ⎪⎝⎭,所以,2213S S S =,可得()()22221111a q a q q +=++,解得0q =,不合乎题意,故数列{}n a 不是等比数列,②错; 当2n ≥时,()1119990n n n n n n n a a a a a a a ----=-=>,可得1n n a a -<,所以,数列{}n a 为递减数列,③对; 假设对任意的N n *∈,1100n a ≥,则10000011000001000100S ≥⨯=, 所以,1000001000009911000100a S =≤<,与假设矛盾,假设不成立,④对. 故答案为:①③④.【名师点评】关键点名师点评:本题在推断②④的正误时,利用正面推理较为复杂时,可采用反证法来进行推导.3.(2022∙浙江∙高考真题)已知数列{}n a 满足()21111,3n n n a a a a n *+==-∈N ,则( )A .100521002a <<B .100510032a << C .100731002a <<D .100710042a << 【答案】B【详细分析】先通过递推关系式确定{}n a 除去1a ,其他项都在()0,1范围内,再利用递推公式变形得到1111133n n n a a a +-=>-,累加可求出11(2)3n n a >+,得出1001003a <,再利用11111111333132n n n a a a n n +⎛⎫-=<=+ ⎪-+⎝⎭-+,累加可求出()111111113323nn a n ⎛⎫-<-++++ ⎪⎝⎭ ,再次放缩可得出10051002a >. 【答案详解】∵11a =,易得()220,13a =∈,依次类推可得()0,1n a ∈ 由题意,1113n n n a a a +⎛⎫=- ⎪⎝⎭,即()1131133n n n n na a a a a +==+--,∴1111133n n n a a a +-=>-, 即211113a a ->,321113a a ->,431113a a ->,…,1111,(2)3n n n a a -->≥, 累加可得()11113n n a ->-,即11(2),(2)3n n n a >+≥, ∴()3,22n a n n <≥+,即100134a <,100100100334a <<, 又11111111,(2)333132n n n n a a a n n +⎛⎫-=<=+≥ ⎪-+⎝⎭-+, ∴211111132a a ⎛⎫-=+ ⎪⎝⎭,321111133a a ⎛⎫-<+ ⎪⎝⎭,431111134a a ⎛⎫-<+ ⎪⎝⎭,…,111111,(3)3n n n a a n -⎛⎫-<+≥ ⎪⎝⎭, 累加可得()11111111,(3)3323n n n a n ⎛⎫-<-++++≥ ⎪⎝⎭ ,∴100111111111333349639323100326a ⎛⎫⎛⎫-<++++<+⨯+⨯< ⎪ ⎪⎝⎭⎝⎭ , 即100140a <,∴100140a >,即10051002a >; 综上:100510032a <<. 故选:B .【名师点评】关键点名师点评:解决本题的关键是利用递推关系进行合理变形放缩. 4.(2021∙浙江∙高考真题)已知数列{}n a满足)111,N n a a n *+==∈.记数列{}n a 的前n 项和为n S ,则( )A .100332S << B .10034S << C .100942S <<D .100952S << 【答案】A【详细分析】显然可知,10032S >,利用倒数法得到21111124n n a a +⎛⎫==+-⎪⎪⎭,再放缩可得12<,由累加法可得24(1)n a n ≥+,进而由1n a +=113n n a n a n ++≤+,然后利用累乘法求得6(1)(2)n a n n ≤++,最后根据裂项相消法即可得到1003S <,从而得解.【答案详解】因为)111,N n a a n *+==∈,所以0n a >,10032S >.由211111124n n n a a a ++⎛⎫=⇒=+=+-⎪⎪⎭2111122n a +⎛⎫∴<⇒<⎪⎪⎭12<()111,222n n n -+<+=≥,当1n =112+=,12n +≤,当且仅当1n =时等号成立,12412(1)311n n n n a n a a a n n n ++∴≥∴=≤=++++ 113n n a n a n ++∴≤+, 由累乘法可得()6,2(1)(2)n a n n n ≤≥++,且16(11)(12)a =++,则6(1)(2)n a n n ≤++,当且仅当1n =时取等号,由裂项求和法得:所以10011111111116632334451011022102S ⎛⎫⎛⎫≤-+-+-++-=-< ⎪ ⎪⎝⎭⎝⎭,即100332S <<. 故选:A .【名师点评】的不等关系,再由累加法可求得24(1)n a n ≥+,由题目条件可知要证100S 小于某数,从而通过局部放缩得到1,n n a a +的不等关系,改变不等式的方向得到6(1)(2)n a n n ≤++,最后由裂项相消法求得1003S <.5.(2020∙浙江∙高考真题)我国古代数学家杨辉,朱世杰等研究过高阶等差数列的求和问题,如数列(1)2n n +⎧⎫⎨⎬⎩⎭就是二阶等差数列,数列(1)2n n +⎧⎫⎨⎬⎩⎭(N )n *∈ 的前3项和是 .【答案】10【详细分析】根据通项公式可求出数列{}n a 的前三项,即可求出. 【答案详解】因为()12n n n a +=,所以1231,3,6a a a ===. 即312313610S a a a =++=++=. 故答案为:10.【名师点评】本题主要考查利用数列的通项公式写出数列中的项并求和,属于容易题.6.(2020∙全国∙高考真题)数列{}n a 满足2(1)31nn n a a n ++-=-,前16项和为540,则1a = .【答案】7【详细分析】对n 为奇偶数分类讨论,分别得出奇数项、偶数项的递推关系,由奇数项递推公式将奇数项用1a 表示,由偶数项递推公式得出偶数项的和,建立1a 方程,求解即可得出结论.【答案详解】2(1)31nn n a a n ++-=-,当n 为奇数时,231n n a a n +=+-;当n 为偶数时,231n n a a n ++=-. 设数列{}n a 的前n 项和为n S ,16123416S a a a a a =+++++135********()()a a a a a a a a =+++++++111111(2)(10)(24)(44)(70)a a a a a a =++++++++++ 11(102)(140)(5172941)a a ++++++++ 118392928484540a a =++=+=,17a ∴=.故答案为:7.【名师点评】本题考查数列的递推公式的应用,以及数列的并项求和,考查分类讨论思想和数学计算能力,属于较难题.7.(2019∙浙江∙高考真题)设,a b R ∈,数列{}n a 中,211,n n a a a a b +==+,N n *∈ ,则A .当101,102b a =>B .当101,104b a =>C .当102,10b a =->D .当104,10b a =->【答案】A【解析】若数列{}n a 为常数列,101a a a ==,则只需使10a ≤,选项的结论就会不成立.将每个选项的b 的取值代入方程20x x b -+=,看其是否有小于等于10的解.选项B 、C 、D 均有小于10的解,故选项B 、C 、D 错误.而选项A 对应的方程没有解,又根据不等式性质,以及基本不等式,可证得A 选项正确.【答案详解】若数列{}n a 为常数列,则1n a a a ==,由21n n a a b +=+,可设方程20x x b -+= 选项A :12b =时,2112n n a a +=+,2102x x -+=, 1210∆=-=-<, 故此时{}n a 不为常数列,222112n n n n a a a +=+=+≥ ,且2211122a a =+≥,792a a ∴≥≥21091610a a >≥>, 故选项A 正确; 选项B :14b =时,2114n n a a +=+,2104x x -+=,则该方程的解为12x =, 即当12a =时,数列{}n a 为常数列,12n a =,则101102a =<,故选项B 错误; 选项C :2b =-时,212n n a a +=-,220x x --=该方程的解为=1x -或2,即当1a =-或2时,数列{}n a 为常数列,1n a =-或2, 同样不满足1010a >,则选项C 也错误;选项D :4b =-时,214n n a a +=-,240x x --=该方程的解为12x =, 同理可知,此时的常数列{}n a 也不能使1010a >, 则选项D 错误. 故选:A.【名师点评】遇到此类问题,不少考生会一筹莫展.利用函数方程思想,通过研究函数的不动点,进一步讨论a 的可能取值,利用“排除法”求解.考点03 等差数列及其前n 项和一、单选题 1.(2024∙全国甲卷∙高考真题)记n S 为等差数列{}n a 的前n 项和,已知510S S =,51a =,则1a =( ) A .72B .73 C .13-D .711-【答案】B【详细分析】由510S S =结合等差中项的性质可得80a =,即可计算出公差,即可得1a 的值. 【答案详解】由105678910850S S a a a a a a -=++++==,则80a =, 则等差数列{}n a 的公差85133a a d -==-,故151741433a a d ⎛⎫=-=-⨯-= ⎪⎝⎭.故选:B.2.(2024∙全国甲卷∙高考真题)已知等差数列{}n a 的前n 项和为n S ,若91S =,则37a a +=( ) A .2-B .73C .1D .29【答案】D【详细分析】可以根据等差数列的基本量,即将题目条件全转化成1a 和d 来处理,亦可用等差数列的性质进行处理,或者特殊值法处理.【答案详解】方法一:利用等差数列的基本量 由91S =,根据等差数列的求和公式,911989193612S a d a d ⨯=+=⇔+=, 又371111222628(936)99a a a d a d a d a d +=+++=+=+=. 故选:D方法二:利用等差数列的性质根据等差数列的性质,1937a a a a +=+,由91S =,根据等差数列的求和公式, 193799()9()122a a a a S ++===,故3729a a +=.故选:D方法三:特殊值法不妨取等差数列公差0d =,则9111199S a a ==⇒=,则371229a a a +==. 故选:D3.(2023∙全国甲卷∙高考真题)记n S 为等差数列{}n a 的前n 项和.若264810,45a a a a +==,则5S =( ) A .25B .22C .20D .15【答案】C【详细分析】方法一:根据题意直接求出等差数列{}n a 的公差和首项,再根据前n 项和公式即可解出; 方法二:根据等差数列的性质求出等差数列{}n a 的公差,再根据前n 项和公式的性质即可解出. 【答案详解】方法一:设等差数列{}n a 的公差为d ,首项为1a ,依题意可得,2611510a a a d a d +=+++=,即135a d +=,又()()48113745a a a d a d =++=,解得:11,2d a ==, 所以515455210202S a d ⨯=+⨯=⨯+=. 故选:C.方法二:264210a a a +==,4845a a =,所以45a =,89a =,从而84184a a d -==-,于是34514a a d =-=-=, 所以53520S a ==. 故选:C.4.(2023∙全国乙卷∙高考真题)已知等差数列{}n a 的公差为23π,集合{}*cos N n S a n =∈,若{},S a b =,则ab =( ) A .-1B .12-C .0D .12【答案】B【详细分析】根据给定的等差数列,写出通项公式,再结合余弦型函数的周期及集合只有两个元素详细分析、推理作答.【答案详解】依题意,等差数列{}n a 中,112π2π2π(1)()333n a a n n a =+-⋅=+-, 显然函数12π2πcos[()]33y n a =+-的周期为3,而N n *∈,即cos n a 最多3个不同取值,又{cos |N }{,}n a n a b *∈=,则在123cos ,cos ,cos a a a 中,123cos cos cos a a a =≠或123cos cos cos a a a ≠=, 于是有2πcos cos()3θθ=+,即有2π()2π,Z 3k k θθ++=∈,解得ππ,Z 3k k θ=-∈, 所以Z k ∈,2ππ4πππ1cos(π)cos[(π)]cos(π)cos πcos πcos 333332ab k k k k k =--+=--=-=-.故选:B5.(2023∙全国新Ⅰ卷∙高考真题)记n S 为数列{}n a 的前n 项和,设甲:{}n a 为等差数列;乙:{}nS n为等差数列,则( )A .甲是乙的充分条件但不是必要条件B .甲是乙的必要条件但不是充分条件C .甲是乙的充要条件D .甲既不是乙的充分条件也不是乙的必要条件【答案】C【详细分析】利用充分条件、必要条件的定义及等差数列的定义,再结合数列前n 项和与第n 项的关系推理判断作答.,【答案详解】方法1,甲:{}n a 为等差数列,设其首项为1a ,公差为d , 则1111(1)1,,222212n n n n S S S n n n d d dS na d a d n a nn n +--=+=+=+--=+,因此{}nS n为等差数列,则甲是乙的充分条件; 反之,乙:{}nS n为等差数列,即111(1)1(1)(1)n n n n n n S S nS n S na S n n n n n n +++-+--==+++为常数,设为t ,即1(1)n nna S t n n +-=+,则1(1)n n S na t n n +=-⋅+,有1(1)(1),2n n S n a t n n n -=--⋅-≥,两式相减得:1(1)2n n n a na n a tn +=---,即12n n a a t +-=,对1n =也成立, 因此{}n a 为等差数列,则甲是乙的必要条件, 所以甲是乙的充要条件,C 正确.方法2,甲:{}n a 为等差数列,设数列{}n a 的首项1a ,公差为d ,即1(1)2n n n S na d -=+, 则11(1)222n S n d d a d n a n-=+=+-,因此{}n S n 为等差数列,即甲是乙的充分条件;反之,乙:{}nS n 为等差数列,即11,(1)1n n n S S S D S n D n n n+-==+-+, 即1(1)n S nS n n D =+-,11(1)(1)(2)n S n S n n D -=-+--,当2n ≥时,上两式相减得:112(1)n n S S S n D --=+-,当1n =时,上式成立, 于是12(1)n a a n D =+-,又111[22(1)]2n n a a a nD a n D D +-=+-+-=为常数, 因此{}n a 为等差数列,则甲是乙的必要条件, 所以甲是乙的充要条件. 故选:C6.(2022∙北京∙高考真题)设{}n a 是公差不为0的无穷等差数列,则“{}n a 为递增数列”是“存在正整数0N ,当0n N >时,0n a >”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件D .既不充分也不必要条件【答案】C【详细分析】设等差数列{}n a 的公差为d ,则0d ≠,利用等差数列的通项公式结合充分条件、必要条件的定义判断可得出结论.【答案详解】设等差数列{}n a 的公差为d ,则0d ≠,记[]x 为不超过x 的最大整数. 若{}n a 为单调递增数列,则0d >,若10a ≥,则当2n ≥时,10n a a >≥;若10a <,则()11n a a n d +-=, 由()110n a a n d =+->可得11a n d >-,取1011a N d ⎡⎤=-+⎢⎥⎣⎦,则当0n N >时,0n a >, 所以,“{}n a 是递增数列”⇒“存在正整数0N ,当0n N >时,0n a >”;若存在正整数0N ,当0n N >时,0n a >,取N k *∈且0k N >,0k a >, 假设0d <,令()0n k a a n k d =+-<可得k a n k d >-,且k ak k d->, 当1k a n k d ⎡⎤>-+⎢⎥⎣⎦时,0n a <,与题设矛盾,假设不成立,则0d >,即数列{}n a 是递增数列.所以,“{}n a 是递增数列”⇐“存在正整数0N ,当0n N >时,0n a >”.所以,“{}n a 是递增数列”是“存在正整数0N ,当0n N >时,0n a >”的充分必要条件. 故选:C.7.(2020∙浙江∙高考真题)已知等差数列{an }的前n 项和Sn ,公差d ≠0,11a d≤.记b 1=S 2,bn+1=S2n+2–S 2n ,n N *∈,下列等式不可能...成立的是( ) A .2a 4=a 2+a 6B .2b 4=b 2+b 6C .2428a a a = D .2428b b b =【答案】D【详细分析】根据题意可得,21212222n n n n n b S a a S ++++=+=-,而1212b S a a ==+,即可表示出题中2468,,,b b b b ,再结合等差数列的性质即可判断各等式是否成立.【答案详解】对于A ,因为数列{}n a 为等差数列,所以根据等差数列的下标和性质,由4426+=+可得,4262a a a =+,A 正确;对于B ,由题意可知,21212222n n n n n b S a a S ++++=+=-,1212b S a a ==+,∴234b a a =+,478b a a =+,61112b a a =+,81516b a a =+. ∴()47822b a a =+,26341112b b a a a a +=+++.根据等差数列的下标和性质,由31177,41288+=++=+可得()26341112784=2=2b b a a a a a a b +=++++,B 正确;对于C ,()()()()2224281111137222a a a a d a d a d d a d d d a -=+-++=-=-, 当1a d =时,2428a a a =,C 正确; 对于D ,()()22222478111213452169b a a a d a a d d =+=+=++,()()()()2228341516111125229468145b b a a a a a d a d a a d d =++=++=++, ()22428112416832b b b d a d d d a -=-=-.当0d >时,1a d ≤,∴()113220d a d d a -=+->即24280b b b ->;当0d <时,1a d ≥,∴()113220d a d d a -=+-<即24280b b b ->,所以24280b b b ->,D 不正确.故选:D.【名师点评】本题主要考查等差数列的性质应用,属于基础题.8.(2019∙全国∙高考真题)记n S 为等差数列{}n a 的前n 项和.已知4505S a ==,,则。
2020年高考数学(理)总复习:数列的求和及综合应用(解析版)
2020年高考数学(理)总复习:数列的求和及综合应用题型一 数列求和 【题型要点】(1)分组求和法:分组求和法是解决通项公式可以写成c n =a n +b n 形式的数列求和问题的方法,其中{a n }与{b n }是等差(比)数列或一些可以直接求和的数列.(2)裂项相消法:将数列的通项分成两个代数式子的差,即a n =f (n +1)-f (n )的形式,然后通过累加抵消中间若干项的求和方法.形如1+n n a a c(其中{a n }是各项均不为0的等差数列,c 为常数)的数列等.(3)错位相减法:形如{a n ·b n }(其中{a n }为等差数列,{b n }为等比数列)的数列求和,一般分三步:①巧拆分;②构差式;③求和.(4)倒序求和法:距首尾两端等距离的两项和相等,可以用此法,一般步骤:①求通项公式;②定和值;③倒序相加;④求和;⑤回顾反思.(5)并项求和法:先将某些项放在一起求和,然后再求S n .(6)归纳猜想法:通过对S 1,S 2,S 3,…的计算进行归纳分析,寻求规律,猜想出S n ,然后用数学归纳法给出证明.【例1】已知各项为正数的等比数列{a n }的前n 项和为S n ,数列{b n }的通项公式b n =⎩⎪⎨⎪⎧n ,n 为偶数,n +1,n 为奇数(n ∈N *),若S 3=b 5+1,b 4是a 2和a 4的等比中项. (1)求数列{a n }的通项公式; (2)求数列{a n ·b n }的前n 项和T n .【反思总结】(1)错位相减法适用于求数列{a n·b n}的前n项和,其中{a n}为等差数列,{b n}为等比数列.(2)所谓“错位”,就是要找“同类项”相减.要注意的是相减后所得部分,求等比数列的和,此时一定要查清其项数.(3)为保证结果正确,可对得到的和取n=1,2进行验证.题组训练一数列求和已知等比数列{a n}的前n项和为S n,且6S n=3n+1+a(a∈N*).(1)求a的值及数列{a n}的通项公式;(2)设b n=(-1)n-1(2n2+2n+1)(log3a n+2)2(log3a n+1)2,求{b n}的前n项和T n.题型二数列与函数的综合问题【题型要点】数列与函数的综合问题主要有以下两类:(1)已知函数条件,解决数列问题,此类问题一般利用函数的性质、图象研究数列问题;(2)已知数列条件,解决函数问题,解决此类问题一般要充分利用数列的范围、公式、求和方法对式子化简变形.【例2】已知数列{a n}的前n项和为S n,且S n=2n2+2n.(1)求数列{a n}的通项公式;(2)若点(b n,a n)在函数y=log2x的图象上,求数列{b n}的前n项和T n.题组训练二 数列与函数的综合问题已知二次函数f (x )=ax 2+bx 的图象过点(-4n,0),且f ′(0)=2n (n ∈N *). (1)求f (x )的解析式;(2)若数列{a n }满足1a n +1=f ′⎪⎪⎭⎫ ⎝⎛na 1,且a 1=4,求数列{a n }的通项公式.题型三 数列与不等式的综合问题 【题型要点】(1)以数列为背景的不等式恒成立问题,多与数列求和相联系,最后利用数列或数列对应函数的单调性求解.(2)以数列为背景的不等式证明问题,多与数列求和有关,常利用放缩法或单调性法证明.(3)当已知数列关系时,需要知道其范围时,可借助数列的单调性,即比较相邻两项的大小即可.【例3】设f n (x )=x +x 2+…+x n -1,x ≥0,n ∈N ,n ≥2. (1)求f n ′(2);(2)证明:f n (x )在⎪⎭⎫⎝⎛32,0内有且仅有一个零点(记为a n ),且0<a n -12<13n⎪⎭⎫ ⎝⎛32.题组训练三 数列与不等式的综合问题1.已知等比数列{a n }满足a n +1+a n =10·4n -1(n ∈N *),数列{b n }的前n 项和为S n ,且b n =log 2a n .(1)求b n ,S n ;(2)设c n =b n +12,证明:c 1·c 2+c 2·c 3+…+c n ·c n +1<12S n +1(n ∈N *).2.已知数列{a n }满足a 1=1,a n +1=a n 1+a 2n,n ∈N *,记S n ,T n 分别是数列{a n },{a 2n }的前n 项和.证明:当n ∈N *时,(1)a n +1<a n ; (2)T n =1a 2n +1-2n -1;(3)2n -1<S n <2n .【专题训练】1.已知数列{a n }的前n 项和为S n ,且a 2=8, S n =a n +12-n -1.(1)求数列{a n }的通项公式; (2)求数列⎩⎨⎧⎭⎬⎫2×3na n a n +1的前n 项和T n .2.已知数列{a n }的前n 项和为S n ,a 1=2,a n +1=S n +2. (1)求数列{a n }的通项公式;(2)已知b n =log 2a n ,求数列⎩⎨⎧⎭⎬⎫1b n b n +1的前n 项和T n .3.已知正项数列{a n }的前n 项和为S n ,且a 1=2,4S n =a n ·a n +1,n ∈N *. (1)求数列{a n }的通项公式;(2)设数列⎩⎨⎧⎭⎬⎫1a 2n 的前n 项和为T n ,求证:n 4n +4<T n <12.4.已知数列{a n}与{b n}的前n项和分别为A n和B n,且对任意n∈N*,a n+1-a n=2(b n+1-b n)恒成立.(1)若A n=n2,b1=2,求B n;(2)若对任意n∈N*,都有a n=B n及b2a1a2+b3a2a3+b4a3a4+…+b n+1a n a n+1<13成立,求正实数b1的取值范围;(3)若a1=2,b n=2n,是否存在两个互不相等的整数s,t(1<s<t),使A1B1,A sB s,A tB t成等差数列?若存在,求出s,t的值;若不存在,请说明理由.2020年高考数学(理)总复习:数列的求和及综合应用题型一 数列求和 【题型要点】(1)分组求和法:分组求和法是解决通项公式可以写成c n =a n +b n 形式的数列求和问题的方法,其中{a n }与{b n }是等差(比)数列或一些可以直接求和的数列.(2)裂项相消法:将数列的通项分成两个代数式子的差,即a n =f (n +1)-f (n )的形式,然后通过累加抵消中间若干项的求和方法.形如1+n n a a c(其中{a n }是各项均不为0的等差数列,c 为常数)的数列等.(3)错位相减法:形如{a n ·b n }(其中{a n }为等差数列,{b n }为等比数列)的数列求和,一般分三步:①巧拆分;②构差式;③求和.(4)倒序求和法:距首尾两端等距离的两项和相等,可以用此法,一般步骤:①求通项公式;②定和值;③倒序相加;④求和;⑤回顾反思.(5)并项求和法:先将某些项放在一起求和,然后再求S n .(6)归纳猜想法:通过对S 1,S 2,S 3,…的计算进行归纳分析,寻求规律,猜想出S n ,然后用数学归纳法给出证明.【例1】已知各项为正数的等比数列{a n }的前n 项和为S n ,数列{b n }的通项公式b n =⎩⎪⎨⎪⎧n ,n 为偶数,n +1,n 为奇数(n ∈N *),若S 3=b 5+1,b 4是a 2和a 4的等比中项. (1)求数列{a n }的通项公式; (2)求数列{a n ·b n }的前n 项和T n .【解析】 (1)∵数列{b n }的通项公式b n =⎩⎪⎨⎪⎧n ,n 为偶数,n +1,n 为奇数(n ∈N *),∴b 5=6,b 4=4,设各项为正数的等比数列{a n }的公比为q ,q >0, ∵S 3=b 5+1=7,∴a 1+a 1q +a 1q 2=7,① ∵b 4是a 2和a 4的等比中项,∴a 2·a 4=a 23=16,解得a 3=a 1q 2=4,②由①②得3q 2-4q -4=0,解得q =2,或q =-23(舍),∴a 1=1,a n =2n -1.(2)当n 为偶数时,T n =(1+1)·20+2·2+(3+1)·22+4·23+(5+1)·24+…+[[(n -1)+1]·2n-2+n ·2n -1=(20+2·2+3·22+4·23+…+n ·2n -1)+(20+22+…+2n -2),设H n =20+2·2+3·22+4·23+…+n ·2n -1,①2H n =2+2·22+3·23+4·24+…+n ·2n ,② ①-②,得-H n =20+2+22+23+…+2n -1-n ·2n=1-2n 1-2-n ·2n =(1-n )·2n -1,∴H n =(n -1)·2n +1,∴T n =(n -1)·2n+1+1-4·2n 1-4=⎪⎭⎫ ⎝⎛-32n ·2n +23.当n 为奇数,且n ≥3时,T n =T n -1+(n +1)·2n -1=⎪⎭⎫ ⎝⎛-35n ·2n -1+23+(n +1)·2n -1=⎪⎭⎫ ⎝⎛-322n ·2n -1+23,经检验,T 1=2符合上式, ∴T n =⎪⎪⎩⎪⎪⎨⎧+⋅⎪⎭⎫ ⎝⎛-+⋅⎪⎭⎫ ⎝⎛--为偶数为奇数n n n n n n ,32232,3223221【反思总结】(1)错位相减法适用于求数列{a n ·b n }的前n 项和,其中{a n }为等差数列,{b n }为等比数列. (2)所谓“错位”,就是要找“同类项”相减.要注意的是相减后所得部分,求等比数列的和,此时一定要查清其项数.(3)为保证结果正确,可对得到的和取n =1,2进行验证.题组训练一 数列求和已知等比数列{a n }的前n 项和为S n ,且6S n =3n +1+a (a ∈N *).(1)求a 的值及数列{a n }的通项公式;(2)设b n =(-1)n -1(2n 2+2n +1)(log 3a n +2)2(log 3a n +1)2,求{b n }的前n 项和T n .【解析】 (1)∵等比数列{a n }满足6S n =3n +1+a (a ∈N *),n =1时,6a 1=9+a ;n ≥2时,6a n =6(S n -S n -1)=3n +1+a -(3n +a )=2×3n .∴a n =3n -1,n =1时也成立,∴1×6=9+a ,解得a =-3,∴a n =3n -1.(2)b n =(-1)n -1(2n 2+2n +1)(log 3a n +2)2(log 3a n +1)2=(-1)n -1(2n 2+2n +1)n 2(n +1)2=(-1)n -1()⎥⎦⎤⎢⎣⎡++22111n n当n 为奇数时,T n =+⋅⋅⋅+⎪⎭⎫ ⎝⎛+-⎪⎭⎫ ⎝⎛+222231212111()⎥⎦⎤⎢⎣⎡++22111n n =1+1(n +1)2; 当n 为偶数时,T n =+⋅⋅⋅+⎪⎭⎫⎝⎛+-⎪⎭⎫ ⎝⎛+222231212111()⎥⎦⎤⎢⎣⎡++22111n n =1-1(n +1)2. 综上,T n =1+(-1)n-11(n +1)2. 题型二 数列与函数的综合问题 【题型要点】数列与函数的综合问题主要有以下两类:(1)已知函数条件,解决数列问题,此类问题一般利用函数的性质、图象研究数列问题; (2)已知数列条件,解决函数问题,解决此类问题一般要充分利用数列的范围、公式、求和方法对式子化简变形.【例2】已知数列{a n }的前n 项和为S n ,且S n =2n 2+2n . (1)求数列{a n }的通项公式;(2)若点(b n ,a n )在函数y =log 2x 的图象上,求数列{b n }的前n 项和T n . 【解】 (1)当n ≥2时,a n =S n -S n -1=2n 2+2n -[2(n -1)2+2(n -1)]=4n , 当n =1时,a 1=S 1=4=4×1, ∴数列{a n }的通项公式为a n =4n .(2)由点{b n ,a n }在函数y =log 2x 的图象上得a n =log 2b n ,且a n =4n ,∴b n =2an =24n =16n ,故数列{b n }是以16为首项,公比为16的等比数列.T n =16(1-16n )1-16=16n +1-1615.题组训练二 数列与函数的综合问题已知二次函数f (x )=ax 2+bx 的图象过点(-4n,0),且f ′(0)=2n (n ∈N *). (1)求f (x )的解析式;(2)若数列{a n }满足1a n +1=f ′⎪⎪⎭⎫ ⎝⎛na 1,且a 1=4,求数列{a n }的通项公式. 【解】 (1)由f ′(x )=2ax +b ,f ′(0)=2n ,得b =2n ,又f (x )的图象过点(-4n,0),所以16n 2a -4nb =0,解得a =12.所以f (x )=12x 2+2nx (n ∈N *).(2)由(1)知f ′(x )=x +2n (n ∈N *), 所以1a n +1=1a n +2n ,即1a n +1-1a n=2n .所以1a n -1a n -1=2(n -1), 1a n -1-1a n -2=2(n -2),…1a 2-1a 1=2,以上各式相加得1a n -14=n 2-n ,所以a n =1n 2-n +14,即a n =4(2n -1)2(n ∈N *). 题型三 数列与不等式的综合问题 【题型要点】(1)以数列为背景的不等式恒成立问题,多与数列求和相联系,最后利用数列或数列对应函数的单调性求解.(2)以数列为背景的不等式证明问题,多与数列求和有关,常利用放缩法或单调性法证明.(3)当已知数列关系时,需要知道其范围时,可借助数列的单调性,即比较相邻两项的大小即可.【例3】设f n (x )=x +x 2+…+x n -1,x ≥0,n ∈N ,n ≥2. (1)求f n ′(2);(2)证明:f n (x )在⎪⎭⎫⎝⎛32,0内有且仅有一个零点(记为a n ),且0<a n -12<13n⎪⎭⎫ ⎝⎛32.(1)【解】 方法一 由题设f n ′(x )=1+2x +…+nx n -1,所以f n ′(2)=1+2×2+…+(n -1)2n -2+n ·2n -1,①则2f n ′(2)=2+2×22+…+(n -1)2n -1+n ·2n ,②由①-②得,-f n ′(2)=1+2+22+…+2n -1-n ·2n=1-2n1-2-n ·2n =(1-n )2n -1, 所以f n ′(2)=(n -1)2n +1.方法二 当x ≠1时,f n (x )=x -x n +11-x-1,则f n ′(x )=[1-(n +1)x n ](1-x )+(x -x n +1)(1-x )2,可得f n ′(2)=-[1-(n +1)2n ]+2-2n +1(1-2)2=(n -1)2n +1.(2)[证明] 因为f n (0)=-1<0,f n ⎪⎭⎫ ⎝⎛32=32132132-⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛-n-1=1-2×n ⎪⎭⎫ ⎝⎛32≥1-2×232⎪⎭⎫ ⎝⎛>0,所以f n (x )在⎪⎭⎫ ⎝⎛32,0内至少存在一个零点,又f ′n (x )=1+2x +…+nx n -1>0,所以f n (x )在⎪⎭⎫ ⎝⎛32,0内单调递增,因此f n (x )在⎪⎭⎫⎝⎛32,0内有且仅有一个零点a n ,由于f n (x )=x -x n +11-x -1,所以0=f n (a n )=a n -a n +1n 1-a n-1,由此可得a n =12+12a n +1n >12,故12<a n <23,所以0<a n -12=12a n+1n <12×132+⎪⎭⎫⎝⎛n =13n⎪⎭⎫⎝⎛32. 题组训练三 数列与不等式的综合问题1.已知等比数列{a n }满足a n +1+a n =10·4n -1(n ∈N *),数列{b n }的前n 项和为S n ,且b n =log 2a n .(1)求b n ,S n ;(2)设c n =b n +12,证明:c 1·c 2+c 2·c 3+…+c n ·c n +1<12S n +1(n ∈N *).【解】 (1)解 由题意知a 2+a 1=10,a 2+a 3=40,设{a n }的公比为q ,则a 2+a 3a 1+a 2=q (a 1+a 2)a 1+a 2=4,∴q =4.则a 1+a 2=a 1+4a 1=10,解得a 1=2,∴a n =2·4n -1=22n -1.∴b n =log 222n -1=2n -1.∴S n =n (b 1+b n )2=n (1+2n -1)2=n 2.(2)证明 法一∵c n =b n +12=2n -1+12=n ,∴S n +1=(n +1)2.要证明c 1·c 2+c 2·c 3+…+c n ·c n +1<12S n +1,即证1×2+2×3+…+n ×(n +1)<12(n +1)2,①当n =1时,1×2<12×(1+1)2=2成立.②假设当n =k (k ∈N *)时不等式成立, 即1×2+2×3+…+k ×(k +1)<12(k +1)2,则当n =k +1(k ∈N *)时,要证1×2+2×3+…+k ×(k +1)+(k +1)(k +2)<12(k +2)2,即证(k +1)(k +2)<12(k +2)2-12(k +1)2,即(k +1)(k +2)<k +32,两边平方得k 2+3k +2<k 2+3k +94显然成立,∴当n =k +1(k ∈N *)时,不等式成立. 综上,不等式成立.法二 ∵c n =b n +12=2n -1+12=n ,S n +1=(n +1)2,由基本不等式可知n (n +1)≤n +n +12=n +12,故1×2<1+12,2×3<2+12,…,n (n +1)≤n +12,∴1×2+2×3+3×4+…+n (n +1)<(1+2+3+…+n )+n 2=n 2+2n 2<n 2+2n +12=(n +1)22,即不等式c 1·c 2+c 2·c 3+…+c n ·c n +1<12S n +1(n ∈N *)成立.2.已知数列{a n }满足a 1=1,a n +1=a n 1+a 2n,n ∈N *,记S n ,T n 分别是数列{a n },{a 2n }的前n 项和.证明:当n ∈N *时,(1)a n +1<a n ; (2)T n =1a 2n +1-2n -1;(3)2n -1<S n <2n .【证明】 (1)由a 1=1及a n +1=a n1+a 2n 知,a n >0,故a n +1-a n =a n 1+a 2n -a n =-a 3n1+a 2n <0, ∴a n +1<a n ,n ∈N *. (2)由1a n +1=1a n +a n ,得1a 2n +1=1a 2n +a 2n +2,从而1a 2n +1=1a 2n +a 2n +2=1a 2n -1+a 2n -1+a 2n +2×2=…=1a 21+a 21+a 22+…+a 2n +2n ,又∵a 1=1,∴T n =1a 2n +1-2n -1,n ∈N *. (3)由(2)知,a n +1=1T n +2n +1,由T n ≥a 21=1,得a n +1≤12n +2,∴当n ≥2时,a n ≤12n =22n <2n +n -1=2(n -n -1),由此S n <a 1+2[(2-1)+(3-2)+…+(n -n -1)]=1+2(n -1)<2n ,n ≥2,又∵a 1=1,∴S n <2n .另一方面,由a n =1a n +1-1a n ,得S n =1a n +1-1a 1≥2n +2-1>2n -1.综上,2n -1<S n <2n .【专题训练】1.已知数列{a n }的前n 项和为S n ,且a 2=8, S n =a n +12-n -1.(1)求数列{a n }的通项公式; (2)求数列⎩⎨⎧⎭⎬⎫2×3na n a n +1的前n 项和T n .【解】 (1)因为S n =a n +12-n -1,故当n =1时,a 1=a 22-1-1=2;当n ≥2时,2S n =a n +1-2n -2,2S n -1=a n -2(n -1)-2,两式相减可得a n +1=3a n +2; 经检验,当n =1时也满足a n +1=3a n +2,故a n +1+1=3(a n +1),故数列{a n +1}是以3为首项,3为公比的等比数列,故a n +1=3n ,即a n =3n -1.(2)由(1)可知,2×3n a n a n +1=2×3n(3n -1)(3n +1-1) =13n-1-13n +1-1, 故T n =131-1-132-1+132-1-133-1+…+13n -1-13n +1-1=12-13n +1-1.2.已知数列{a n }的前n 项和为S n ,a 1=2,a n +1=S n +2. (1)求数列{a n }的通项公式;(2)已知b n =log 2a n ,求数列⎩⎨⎧⎭⎬⎫1b n b n +1的前n 项和T n .【解析】 (1)∵a n +1=S n +2,∴当n ≥2时,a n =S n -1+2,两式相减得,a n +1-a n =S n -S n -1=a n ,则a n +1=2a n ,所以a n +1a n =2(n ≥2),∵a 1=2,∴a 2=S 1+2=4,满足a 2a 1=2,∴数列{a n }是以2为公比、首项为2的等比数列,则a n =2·2n -1=2n ;(2)由(1)得,b n =log 2a n =log 22n =n , ∴1b n b n +1=1n (n +1)=1n -1n +1, ∴T n =⎪⎭⎫ ⎝⎛+-⋅⋅⋅+⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-1113121211n n =1-1n +1=n n +1. 3.已知正项数列{a n }的前n 项和为S n ,且a 1=2,4S n =a n ·a n +1,n ∈N *. (1)求数列{a n }的通项公式;(2)设数列⎩⎨⎧⎭⎬⎫1a 2n 的前n 项和为T n ,求证:n 4n +4<T n <12.【解析】 (1)∵4S n =a n ·a n +1,n ∈N *, ∴4a 1=a 1·a 2,又a 1=2,∴a 2=4.当n ≥2时,4S n -1=a n -1·a n ,得4a n =a n ·a n +1-a n -1·a n .由题意知a n ≠0,∴a n +1-a n -1=4. ①当n =2k +1,k ∈N *时,a 2k +2-a 2k =4,即a 2,a 4,…,a 2k 是首项为4,公差为4的等差数列, ∴a 2k =4+(k -1)×4=4k =2×2k ; ②当n =2k ,k ∈N *时,a 2k +1-a 2k -1=4,即a 1,a 3,…,a 2k -1是首项为2,公差为4的等差数列, ∴a 2k -1=2+(k -1)×4=4k -2=2(2k -1). 综上可知,a n =2n ,n ∈N *.(2)证明:∵1a 2n =14n 2>14n (n +1)=14⎪⎭⎫ ⎝⎛+-111n n ,∴T n =1a 21+1a 22+…+1a 2n>14⎪⎭⎫ ⎝⎛+-⋅⋅⋅+⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-1113121211n n =141-1n +1=n 4n +4. 又∵1a 2n =14n 2<14n 2-1=1(2n -1)(2n +1)=12⎪⎭⎫ ⎝⎛+--121121n n ,∴T n=1a 21+1a 22+…+1a 2n<12⎪⎭⎫ ⎝⎛+--+-+-+-12112171515131311n n =12⎪⎭⎫ ⎝⎛+-1211n <12. 即得n 4n +4<T n <12.4.已知数列{a n }与{b n }的前n 项和分别为A n 和B n ,且对任意n ∈N *,a n +1-a n =2(b n +1-b n )恒成立.(1)若A n =n 2,b 1=2,求B n ;(2)若对任意n ∈N *,都有a n =B n 及b 2a 1a 2+b 3a 2a 3+b 4a 3a 4+…+b n +1a n a n +1<13成立,求正实数b 1的取值范围;(3)若a 1=2,b n =2n ,是否存在两个互不相等的整数s ,t (1<s <t ),使A 1B 1,A s B s ,A tB t成等差数列?若存在,求出s ,t 的值;若不存在,请说明理由. 【解】 (1)因为A n =n 2,所以a n =⎩⎪⎨⎪⎧1,n =1,n 2-(n -1)2,n ≥2, 即a n =2n -1,故b n +1-b n =12(a n +1-a n )=1,所以数列{b n }是以2为首项,1为公差的等差数列,所以B n =n ·2+12·n ·(n -1)·1=12n 2+32n .(2)依题意B n +1-B n =2(b n +1-b n ), 即b n +1=2(b n +1-b n ),即b n +1b n=2,所以数列{b n }是以b 1为首项,2为公比的等比数列,所以a n =B n =1-2n1-2×b 1=b 1(2n -1),所以b n +1a n a n +1=2nb 1(2n -1)·(2n +1-1), 因为b n +1a n a n +1=1b 1⎪⎭⎫ ⎝⎛---+1211211n n所以b 2a 1a 2+b 3a 2a 3+b 4a 3a 4+…+b n +1a n a n +1=1b 1⎪⎭⎫ ⎝⎛---+12112111n ,所以1b 1⎪⎭⎫ ⎝⎛---+12112111n <13恒成立,即b 1>3⎪⎭⎫ ⎝⎛--+12111n ,所以b 1≥3.(3)由a n +1-a n =2(b n +1-b n )得:a n +1-a n =2n +1,所以当n ≥2时,a n =(a n -a n -1)+(a n -1-a n -2)+…+(a 3-a 2)+(a 2-a 1)+a 1=2n +2n -1+…+23+22+2=2n +1-2,当n =1时,上式也成立,所以A n =2n +2-4-2n ,又B n =2n +1-2,所以A n B n =2n +2-4-2n 2n +1-2=2-n2n -1,假设存在两个互不相等的整数s ,t (1<s <t ),使A 1B 1,A s B s ,A t B t 成等差数列,等价于121-1,s 2s -1,t2t -1成等差数列, 即2s 2s-1=121-1+t 2t -1,即2s 2s -1=1+t 2t -1,因为1+t 2t -1>1,所以2s2s -1>1,即2s<2s +1,令h (s )=2s -2s -1(s ≥2,s ∈N *),则h (s +1)-h (s )=2s -2>0所以h (s )递增, 若s ≥3,则h (s )≥h (3)=1>0,不满足2s <2s +1,所以s =2,代入2s 2s -1=121-1+t 2t -1得2t -3t -1=0(t ≥3),当t =3时,显然不符合要求;当t ≥4时,令φ(t )=2t -3t -1(t ≥4,t ∈N *),则同理可证φ(t )递增,所以φ(t )≥φ(4)=3>0,所以不符合要求.所以,不存在正整数s ,t (1<s <t ),使A 1B 1,A s B s ,A tB t成等差数列.。
2019年高考数学考点突破——数列:数列求和
数列求和【考点梳理】1.公式法(1)等差数列的前n 项和公式:S n =n a 1+a n 2=na 1+n n -2d ;(2)等比数列的前n 项和公式: S n =⎩⎪⎨⎪⎧ na 1,q =1,a 1-a n q 1-q=a 1-q n1-q ,q ≠1.2.分组转化法 把数列的每一项分成两项或几项,使其转化为几个等差、等比数列,再求解.3.裂项相消法(1)把数列的通项拆成两项之差,在求和时中间的一些项可以相互抵消,从而求得其和.(2)裂项时常用的三种变形:①1n n +=1n -1n +1; ②1n -n +=12⎝ ⎛⎭⎪⎫12n -1-12n +1; ③1n +n +1=n +1-n .4.错位相减法如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,这个数列的前n 项和可用错位相减法求解.5.倒序相加法如果一个数列{a n }的前n 项中与首末两端等“距离”的两项的和相等或等于同一个常数,那么求这个数列的前n 项和即可用倒序相加法求解.6.并项求和法一个数列的前n 项和中,可两两结合求解,则称之为并项求和.形如a n =(-1)nf (n )类型,可采用两项合并求解.例如,S n =1002-992+982-972+…+22-12=(100+99)+(98+97)+…+(2+1)=5 050.【考点突破】考点一、公式法求和【例1】已知等差数列{a n }和等比数列{b n }满足a 1=b 1=1,a 2+a 4=10,b 2b 4=a 5.(1)求{a n }的通项公式;(2)求和:b 1+b 3+b 5+…+b 2n -1.[解析] (1)设{a n }的公差为d ,由a 1=1,a 2+a 4=10得1+d +1+3d =10, 所以d =2,所以a n =a 1+(n -1)d =2n -1.(2)由(1)知a 5=9.设{b n }的公比为q ,由b 1=1,b 2·b 4=a 5得qq 3=9,所以q 2=3,所以{b 2n -1}是以b 1=1为首项,q ′=q 2=3为公比的等比数列,所以b 1+b 3+b 5+…+b 2n -1=1·(1-3n )1-3=3n -12. 【类题通法】1.数列求和应从通项入手,若无通项,则先求通项.2.通过对通项变形,转化为等差或等比或可求数列前n 项和的数列来求之.【对点训练】已知等差数列{a n }的前n 项和为S n ,等比数列{b n }的前n 项和为T n ,a 1=-1,b 1=1,a 2+b 2=2.(1)若a 3+b 3=5,求{b n }的通项公式;(2)若T 3=21,求S 3.[解析] (1)设{a n }公差为d ,{b n }公比为q ,由题意得⎩⎪⎨⎪⎧-1+d +q =2,-1+2d +q 2=5,解得⎩⎪⎨⎪⎧d =1,q =2或⎩⎪⎨⎪⎧d =3,q =0(舍去), 故{b n }的通项公式为b n =2n -1.(2)由已知得⎩⎪⎨⎪⎧-1+d +q =2,1+q +q 2=21,解得⎩⎪⎨⎪⎧q =4,d =-1或⎩⎪⎨⎪⎧q =-5,d =8. ∴当q =4,d =-1时,S 3=-6;当q =-5,d =8时,S 3=21.考点二、分组转化求和【例2】已知数列{a n }的前n 项和S n =n 2+n 2,n ∈N *. (1)求数列{a n }的通项公式;(2)设b n =2a n +(-1)n a n ,求数列{b n }的前2n 项和.[解析] (1)当n =1时,a 1=S 1=1;当n ≥2时,a n =S n -S n -1=n 2+n 2-(n -1)2+(n -1)2=n .a 1也满足a n =n ,故数列{a n }的通项公式为a n =n .(2)由(1)知a n =n ,故b n =2n +(-1)nn .记数列{b n }的前2n 项和为T 2n ,则T 2n =(21+22+…+22n )+(-1+2-3+4-…+2n ).记A =21+22+…+22n ,B =-1+2-3+4-…+2n ,则A =2(1-22n )1-2=22n +1-2, B =(-1+2)+(-3+4)+…+[-(2n -1)+2n ]=n .故数列{b n }的前2n 项和T 2n =A +B =22n +1+n -2.【类题通法】1.若数列{c n }的通项公式为c n =a n ±b n ,且{a n },{b n }为等差或等比数列,可采用分组求和法求数列{c n }的前n 项和.2.若数列{c n }的通项公式为c n =⎩⎪⎨⎪⎧a n ,n 为奇数,b n ,n 为偶数,其中数列{a n },{b n }是等比数列或等差数列,可采用分组求和法求{a n }的前n 项和.【对点训练】已知{a n }是等差数列,{b n }是等比数列,且b 2=3,b 3=9,a 1=b 1,a 14=b 4.(1)求{a n }的通项公式;(2)设c n =a n +b n ,求数列{c n }的前n 项和.[解析] (1)设等比数列{b n }的公比为q ,则q =b 3b 2=93=3,所以b 1=b 2q =1,b 4=b 3q =27,所以b n =3n -1(n =1,2,3,…). 设等差数列{a n }的公差为d .因为a 1=b 1=1,a 14=b 4=27,所以1+13d =27,即d =2.所以a n =2n -1(n =1,2,3,…).(2)由(1)知a n =2n -1,b n =3n -1. 因此c n =a n +b n =2n -1+3n -1.从而数列{c n }的前n 项和 S n =1+3+…+(2n -1)+1+3+…+3n -1=n +2n -2+1-3n 1-3=n 2+3n-12. 考点三、裂项相消法求和 【例3】已知等差数列{a n }中,2a 2+a 3+a 5=20,且前10项和S 10=100.(1)求数列{a n }的通项公式;(2)若b n =1a n a n +1,求数列{b n }的前n 项和.[解析] (1)设等差数列{a n }的首项为a 1,公差为d .由已知得⎩⎪⎨⎪⎧ 2a 2+a 3+a 5=4a 1+8d =20,10a 1+10×92d =10a 1+45d =100, 解得⎩⎪⎨⎪⎧ a 1=1,d =2,所以数列{a n }的通项公式为a n =1+2(n -1)=2n -1.(2)b n =1n -n +=12⎝ ⎛⎭⎪⎫12n -1-12n +1, 所以T n =12⎝ ⎛⎭⎪⎫1-13+13-15+…+12n -1-12n +1 =12⎝⎛⎭⎪⎫1-12n +1=n 2n +1. 【类题通法】1.利用裂项相消法求和时,应注意抵消后并不一定只剩下第一项和最后一项,也有可能前面剩两项,后面也剩两项.2.将通项公式裂项后,有时候需要调整前面的系数,使裂开的两项之差和系数之积与原通项公式相等.【对点训练】设S n 为等差数列{a n }的前n 项和,已知S 3=a 7,a 8-2a 3=3.(1)求a n ;(2)设b n =1S n,求数列{b n }的前n 项和为T n . [解析] (1)设数列{a n }的首项为a 1,公差为d ,由题意得⎩⎪⎨⎪⎧3a 1+3d =a 1+6d ,(a 1+7d )-2(a 1+2d )=3,解得a 1=3,d =2,∴a n =a 1+(n -1)d =2n +1.(2)由(1)得S n =na 1+n (n -1)2d =n (n +2), ∴b n =1n (n +2)=12⎝ ⎛⎭⎪⎫1n -1n +2. ∴T n =b 1+b 2+…+b n -1+b n=12⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫1-13+⎝ ⎛⎭⎪⎫12-14+…+⎝ ⎛⎭⎪⎫1n -1-1n +1+⎝ ⎛⎭⎪⎫1n -1n +2 =12⎝⎛⎭⎪⎫1+12-1n +1-1n +2 =34-12⎝ ⎛⎭⎪⎫1n +1+1n +2. 考点四、错位相减法求和【例4】已知数列{a n }的前n 项和为S n ,数列⎩⎨⎧⎭⎬⎫S n n 是公差为1的等差数列,且a 2=3,a 3=5. (1)求数列{a n }的通项公式;(2)设b n =a n ·3n ,求数列{b n }的前n 项和T n .[解析](1)由题意,得S n n=a 1+n -1,即S n =n (a 1+n -1),所以a 1+a 2=2(a 1+1),a 1+a 2+a 3=3(a 1+2),且a 2=3,a 3=5.解得a 1=1,所以S n =n 2,所以当n ≥2时,a n =S n -S n -1=n 2-(n -1)2=2n -1,n =1时也满足.故a n =2n -1.(2)由(1)得b n =(2n -1)·3n ,所以T n =1×3+3×32+…+(2n -1)·3n , 则3T n =1×32+3×33+…+(2n -1)·3n +1. ∴T n -3T n =3+2×(32+33+…+3n )-(2n -1)·3n +1, 则-2T n =3+2×32-3n ×31-3-(2n -1)·3n +1=3n +1-6+(1-2n )·3n +1 =(2-2n )·3n +1-6,故T n =(n -1)·3n +1+3.【类题通法】 1.一般地,如果数列{a n }是等差数列,{b n }是等比数列,求数列{a n ·b n }的前n 项和时,可采用错位相减法求和.2.在写出“S n ”与“qS n ”的表达式时应特别注意将两式“错项对齐”以便下一步准确写出“S n -qS n ”的表达式.【对点训练】已知等差数列{a n }的前n 项和S n 满足S 3=6,S 5=15.(1)求{a n }的通项公式;(2)设b n =2n n a a ,求数列{b n }的前n 项和T n . [解析] (1)设等差数列{a n }的公差为d ,首项为a 1. ∵S 3=6,S 5=15,∴⎩⎪⎨⎪⎧ 3a 1+12-d =6,5a 1+12-d =15,即⎩⎪⎨⎪⎧ a 1+d =2,a 1+2d =3,解得⎩⎪⎨⎪⎧ a 1=1,d =1.∴{a n }的通项公式为a n =a 1+(n -1)d =1+(n -1)×1=n .(2)由(1)得b n =2n n a a =n 2n ,∴T n =12+222+323+…+n -12n -1+n 2n ,① ①式两边同乘12, 得 12T n =122+223+324+…+n -12n +n 2n +1,② ①-②得12T n =12+122+123+…+12n -n 2n +1 =12⎝ ⎛⎭⎪⎫1-12n 1-12-n 2n +1=1-12n -n 2n +1, ∴T n =2-12n -1-n 2n .。
新高考数学数列经典题型专题提升-第10讲 数列求和并项求和法(解析版)
第10讲 数列求和:并项求和法参考答案与试题解析一.选择题(共7小题)1.(2021春•吉安县期中)数列满足,则前40项和为 A .940B .820C .1830D .1880【解答】解:由,可得为奇数时,;为偶数时,.设,则,,,,,,,,所以前40项和为.故选:.2.(2021秋•麒麟区校级月考)已知数列的前项和,数列满足,记数列的前项和为,则 A .2021B .2021C .2018D .2021【解答】解:由数列的前项和为,当时,;当时,,上式对时也成立,,,函数的周期,.故选:.3.(2021•未央区校级模拟)数列满足,,若,且数列的前项和为,则 {}n a 1(1)21n n n a a n ++-=-{}n a ()1(1)21n n n a a n ++-=-n 121n n a a n +-=-n 121n n a a n ++=-1a t =21a t =+32a t =-47a t =-5a t =69a t =+72a t =-815a t =-...{}n a 1234567837383940()()...()a a a a a a a a a a a a ++++++++++++1102642...15410(10154)8202=++++=⨯⨯+=B {}n a n 2n S n n =-{}n b 1sin 2n n n b a π+={}n b n n T 2017(T =){}n a n 2n S n n =-1n =11110a S ==-=2n …221[(1)(1)]22n n n a S S n n n n n -=-=-----=-1n =22n a n ∴=-∴cos2(1)cos22n n n n b a n ππ==- cos2n y π=242T ππ==2017152013262143720154820162017()()()()T b b b b b b b b b b b b b ∴=++⋯++++⋯++++⋯++++⋯++201702(152013)02(372015)4032cos450420162π=-++⋯+++++⋯++=⨯=A {}n a 11a =1(1)(1)n n na n a n n +=+++2cos 3n n n b a π={}n b n n S 11(S =)A .64B .80C .D .【解答】解:数列满足,,则,可得数列是首项为1、公差为1的等差数列,即有,即为,则,则.故选:.4.(2021秋•南昌月考)已知数列满足,则的前20项和 A .B .C .D .【解答】解:数列满足,则的前20项和.故选:.5.(2021秋•内蒙古期末)已知数列是首项为,公比的等比数列,且.若数列的前项和为,则 A .B .C .D .【解答】解:数列是首项为,公比的等比数列,可得,,64-80-{}n a 11a =1(1)(1)n n na n a n n +=+++111n na a n n+=++{}n anna n n=2n a n =222coscos33n n n n b a n ππ==22222222222111(1245781011)(369)2S =-++++++++++222222222222221(1233456678991011)2=-+--++---+--++1(5234159)642=-⨯+++=-C {}n a *22()n n n a a n N ++=∈{}n a 20(S =)20215-20225-21215-21225-{}n a *22()n n n a a n N ++=∈{}n a 2013192420()()S a a a a a a =++⋯++++⋯+5172618(222)(222)=++⋯++++⋯+45245442[(2)1]2[(2)1]2121--=+--21225-=D {}n a 12a =2q =1n n n b a a +=+{}n b n n S (n S =)323n -g 1323n +-g 32ng 1326n +-g {}n a 12a =2q =112232n n n n n n b a a ++=+=+=g 6(12)62612n n n S -==--g故选:.6.(2021春•万载县校级期末)若数列的通项公式是,则等于 A .60B .C .90D .【解答】解:由,可得.故选:.7.(2021春•成都期末)已知数列满足,为的前项和,则 A .300B .320C .340D .360【解答】解:因为,所以当为偶数时,有,,,;,,,.当为奇数时,有,,,,,,,,.故选:.二.解答题(共10小题)8.(2021•山东)在等差数列中,已知公差,是与的等比中项.(Ⅰ)求数列的通项公式;(Ⅱ)设,记,求.【解答】解:(Ⅰ)是与的等比中项,D {}n a (1)(32)n n a n =--1260a a a ++⋅⋅⋅+()60-90-(1)(32)n n a n =--1260(14)(710)(1316)...(175178)a a a ++⋅⋅⋅+=-++-++-+++-+33...333090=+++=⨯=C {}n a 1(1)31n n n a a n ++-=+n S {}n a n 20(S =)1(1)31n n n a a n ++-=+n 131n n a a n ++=+2134n n a a n ++∴-=+265n n a a n +∴+=+2462517a a ∴+=⨯+=6866541a a +=⨯+=⋯182********a a +=⨯+=∴24205(17113)3252a a a ⨯++++== n 131n n a a n +-=+2134n n a a n ++∴+=+23n n a a +∴+=133a a ∴+=573a a +=⋯17193a a +=13195315a a a ∴+++=⨯= 2012320S a a a a ∴=++++ 13192420()()a a a a a a =+++++++ 32515340=+=C {}n a 2d =2a 1a 4a {}n a (1)2n n n b a +=1234(1)n n n T b b b b b =-+-+-⋯+-n T 2a 1a 4a在等差数列中,公差,,即,化为,解得..(Ⅱ),.当时,.当时,.故.(也可以利用“错位相减法” 9.(2021•天津)已知是等比数列,前项和为,且,.(1)求的通项公式;(2)若对任意的,是和的等差中项,求数列的前项和.【解答】解:(1)设的公比为,则,即,解得或.若,则,与矛盾,不符合题意.,,.214 {}n a 2d =∴2111()(3)a d a a d +=+2111(2)(32)a a a +=+⨯2122a =12a =1(1)2(1)22n a a n d n n ∴=+-=+-⨯=(1)2(1)n n n b a n n +==+ 1234(1)1(11)2(21)(1)(1)n n n n T b b b b b n n ∴=-+-+-⋯+-=-⨯++⨯+-⋯+-+g *2()n k k N =∈2212(21)(21)(211)4k k b b k k k k k --=+---+=2143221()()()n k k T b b b b b b -=-+-+⋯+-(1)(2)4(12)42(1)22k k n n k k k ++=++⋯+=⨯=+=*21()n k k N =-∈2143222321()()()n k k k T b b b b b b b ---=-+-+⋯+--(1)(1)(1)2n n n n -+=-+2(1)2n +=-2(2),2(*)2(1),21(*)2n n n n k k N T n n k k N +⎧=∈⎪⎪=⎨+⎪-=-∈⎪⎩){}n a n *()n S n N ∈123112a a a -=663S ={}n a *n N ∈nb 2log n a 21log n a +2{(1)}n nb -2n {}n a q 2111112a a q a q -=2121q q -=2q =1q =-1q =-60S =663S =2q ∴=616(12)6312a S -∴==-11a ∴=(2)是和的等差中项,..是以为首项,以1为公差的等差数列.设的前项和为,则.10.(2021秋•东丽区校级月考)已知数列的各项均为正数,其前项和为,且满足.(Ⅰ)求数列的通项公式;(Ⅱ)若,数列满足,求数列的前项和;(Ⅲ)数列满足为非零整数),都有恒成立,求实数的值.【解答】解:(Ⅰ)当时,,得或,(舍,当时,.则,即,,,即数列是公差为1的等差数列,则,.(Ⅱ)当是奇数时,,当是偶数时,,则数列的前项和.n n b 2log n a 21log n a +221211(log log )(log 222n n n b a a +∴=+=12log 2n -+1)2n n =-11n n b b +∴-={}n b ∴122{(1)}n nb -2n n T 2222221234212()()()n n n T b b b b b b -=-++-++⋯+-+1234212n nb b b b b b -=+++⋯++12112222222n n b b n n +-+==g 22n ={}n a n n S 22nn n a S a =-2n n b ={}n c 22sin cos 22n n n n n c a b ππ=⋅-⋅{}n c 2n 2n T {}n d 1*3(1)2()(n a n n n d n N λλ-=+-⋅∈1n n d d +>λ1n =211112a a a a =-=11a =10a =)2n (2)1112n n n a S a +++=-22111122n n n n n n n n a a S a S a a a ++++-=--+=+111()()n n n n n n a a a a a a ++++-=+0n a > 11n n a a +∴-={}n a 11n a n n =+-=*n N ∈n 22sin cos 22n n n n n n c a b a n ππ=⋅-⋅==n 2n n n c b =-=-{}n c 2n 21221211(121)4(41)14424133n nnn n i i i i n n T c c n +-==+--=+=-=-⋅+-∑∑(Ⅲ),恒成立,当是奇数时,得,得,从而,当是偶数时,得,得,从而,为非零整数,.11.设是等比数列,是递增的等差数列,的前项和为,,,,.(Ⅰ)求与的通项公式;(Ⅱ)设,,求.【解答】解:(Ⅰ)设等比数列的公比为,递增的等差数列的公差为,由,,,,可得,,解得,(舍去)或,,所以,;(Ⅱ)当时,,,2,,,设;当时,,设,所以.12.(2021春•武清区校级期末)已知等比数列的各项均为正数,,,成等差数列,且满足,数列的前项和,,且.(1)求数列和的通项公式;11111113(1)23(1)23(1)23(1)2233(2)n n a a n n n n n n n n n n n n n n d d λλλλλ++-++-+-=+-⋅---⋅=+-⋅---⋅=⨯+-1n n d d +> ∴n 233(2)0n n λ⨯+->23320n n λ⨯->13(2n λ-<1λ<n 233(2)0n n λ⨯+->23320n n λ⨯+>13()2n λ->-32λ>-λ 1λ∴=-{}n a {}n b {}n b n (*)n S n N ∈12a =11b =413S a a =+213a b b =+{}n a {}n b 2(1),2(1)(24),21(1)(3)k k k n n nn b n kd b n k b b ⎧-=⎪=-+⎨=-⎪++⎩k N +∈41ni i d =∑{}n a q {}n b (0)d d >12a =11b =413S a a =+213a b b =+24622d q +=+2112q d =++1q =0d =2q =1d =2n n a =n b n =2()n k k N +=∈22(1)k n k d d k ==-1k =...2n 222222244...(12)(34)...[(21)(2)]1234...(21)2n A d d d n n n n =+++=-++-+++--+=+++++-+22(12)22n n n n +==+21()n k k N +=-∈21212121(1)(24)(1)(42)(1)(3)2(22)k k k n k k k b k d d b b k k -----+-+===+++121111(1)(1)()2(1)21k k k k k k k +=-⋅⋅=⋅-+++134111111111...(1...)(1)2223221221n B d d d n n n -=+++=--++-++=-++421112422ni i d A B n n n ==+=++-+∑{}n a 52a 4a 64a 2434a a ={}n b n (1)2n n n S b +=*n N ∈11b ={}n a {}n b(2)设,,数列的前项和为,求证:;(3)设,求的前项和.【解答】解:(1)设等比数列的公比为,,,成等差数列,且满足,,,解得:,..数列的前项和,,且.时,,化为:,可得.(2)证明:,数列的前项和为,单调递增,,.(3)设,设数列的前项和为,221223n n n n b c b b +++=*n N ∈{}n c n n A 51364n A <…2(1)[(1)(1)]n n n n n d b a b =-+++{}n d n n T {}n a 0q >52a 4a 64a 2434a a =2444224a a q a q ∴=+22333144a q a a a q ==12q =112a =1()2n n a ∴={}n b n (1)2n n n S b +=*n N ∈11b =2n ∴…11(1)22n n n n n n nb S S b b --+=-=-1211121n n b b b bn n -==⋯===-n b n =22222212232311(1)(2)(1)(2)n n n n n c b b n n n n ++++===-⋅++++∴{}n c n 2222222111111112334(1)(2)4(2)n A n n n =-+-+⋯+-=-+++n A 114n A A ∴<…∴51364n A < (221)(1)[(1)(1)](1)((1)(1)()2n n n n n n n d b a b n n =-+++=-+++⨯-1{(1)()}2n n +⨯-n n H则,,,.时,,的前项和.时,,的前项和.为偶数时,数列的前项和.为奇数时,数列的前项和.13.(2021春•温州期中)设等差数列的前项和为,公差为,已知,.(1)求数列的通项公式;(2)若,求数列的前项和.【解答】解:(1)由题意得,解得,数列的通项公式为.(2),当为奇数时,;231111112()3()4(()(1)()22222n n n H n n -=⨯-+⨯-+⨯-+⋯+⨯-++⨯-23411111112()3()4()()(1)()222222n n n H n n +-=⨯-+⨯-+⨯-+⋯+⨯-++⨯-∴2341111[1()]31111111221(()()()(1)()(1)(1222222221()2n n n n n H n n ++---=-+-+-+-+⋯+--+⨯-=-+-+⨯---5351()992n n n H +∴=-+⨯-2n k =*k N ∈2{(1)((1)}n n -+n 222222(21)(3)3254(1)23122n n n n n B n n n n +++=-+-++-=++⋯+++==21n k =-*k N ∈2{(1)((1)}n n -+n 2221(1)(4)34(2)(2)22n n n n n n B B n n +++++=-+=-+=-n ∴{}n d n (3)5351(2992n n n n n T ++=-+⨯-n {}n d n 2345351()2992n n n n n T +++=--+⨯-{}n a n n S d 11a =39S ={}n a 2(1)n n n b a =-⋅{}n b n n T 3133339S a d d =+=+=2d ={}n a 12(1)21n a n n =+-=-2222(21),(1)(1)(21)(21),nnn nn n n b a b n n n ⎧--=-⋅==--=⎨-⎩为奇数为偶数n 222222222(1)(123)13579(23)(21)2(135723)(21)2(21)212n n n T n n n n n n -+-=-+-+-+⋯+---=++++⋯+---=⨯--=-+当为偶数时,,所以.14.(2021•福建模拟)记为等比数列的前项和,已知,.(1)求;(2)求数列的前项和.【解答】解:(1)当时,由可得,两式相减,可得,即,依题意,为等比数列,故.令,则由可得,即;(2)由(1)可知为首项等于1,公比等于2的等比数列,故;故为首项等于,公比等于的等比数列,故,故数列的前项和.15.(2021•天心区校级一模)已知等差数列的前项和为,且满足,.(1)求数列的通项公式;(2)若数列满足,求数列的前项和.【解答】解:(1)设等差数列的公差为,则由题意可得,解得,,所以数列的通项公式为;(2)因为,n 2222222(121)13579(23)(21)2(13572321)222n n n T n n n n n +-=-+-+-+⋯--+-=++++⋯+-+-=⨯=2221,2,n n n T n n ⎧-+=⎨⎩为奇数为偶数n S {}n a n 11a =1n n S a t +=+t {(cos )}n n a π⋅n 2n …1n n S a t +=+1n n S a t -=+1n n n a a a +=-12n n a a +={}n a 22a =1n =1n n S a t +=+12S a t =+12121t S a a a =-=-=-{}n a 12n n a -={(cos )}n n a π⋅1-2-1(1)(2)n n a -=-⋅-{(cos )}n n a π⋅n 1(2)11(2)1(2)33n n n T -+-==⨯----{}n a n n S 38a =572S a ={}n a {}n b 1cos 2n n n b a n π+=+{}n b 2n 2n T {}n a d 111285452(6)2a d a d a d +=⎧⎪⎨⨯+=+⎪⎩12a =3d ={}n a *23(1)31,n a n n n N =+-=-∈11cos 2(1)2n n n n n n b a n a π++=+=-+所以.16.(2021秋•运城期中)已知正项数列的前项和为,满足,.(1)求数列的通项公式;(2)设,求数列的前项和的表达式.【解答】解:(1)正项数列的前项和为,满足,所以,整理得:,由于数列为正项数列,(常数),所以是以1为首项,1为公差的等差数列,,故,所以(首项符合通项).由于,,当为奇数时,,为偶数时,,所以,,,,所以.17.(2021秋•郸城县校级月考)已知为数列前项和,.(Ⅰ)求和;(Ⅱ)若,求的值.23122143221()()()(222)n n n n T a a a a a a +-=-+-+⋯+-+++⋯+22222(12)332412n n n n +-=+=+--{}n a n n S 2,*)n a n n N =∈…11a ={}n a 1cos n n n nb n a a π+=g{}n b 2n 2n T {}n a n n S 2,*)n a n n N =+∈…1n n S S --=1)0-=1=11n n =+-=2n S n =121n n n a S S n -=-=-11111(22121n n a a n n +=--+111cos cos [()]22121n n n n n b n n a a n n ππ+==--+g n cos 1n π=-n cos 1n π=111(1)23b =--2211()235b =-3311()257b =--⋯21232121112121313141412111211((223232525272729243412414141nn n n n n Tb b b b b n n n n n --=+++⋯++=-+⨯+⨯-⨯-⨯+⨯+⨯-⨯+⋯+-+-=----++n S {}n a n (2sin )(2cos )2n n a n n ππ+=+4k a 41()k a k Z -∈24n S an bn =+a b -【解答】(Ⅰ)解:由已知:.,,又,.(Ⅱ)又由已知:,得:,,得:.所以,,解得:,,.(2sin )(2cos )2n n a n n ππ+=+4(2sin 2)4(2cos 4)()k a k k k k Z ππ∴+=+∈46()k a k k Z ∴=∈41[2sin(2)](41)[2cos(41)]2k a k k k πππ-+-=-+-4141k a k -∴=-42[2sin(2)](42)[2cos(42)]k a k k k πππ-+-=-+-4263k a k -=-433[2sin(2)](43)[2cos(43)]2k a k k k πππ-+-=-+-43413k k a -=-412348128133631542336971233S a b a a a a S a b a a a ⎧=+=+++=+++⎪⎪⎨⎪=+=++⋯+=+++++++⎪⎩263a =113b =5a b ∴-=。
高考数学解答题(新高考)数列求和(奇偶项讨论求和)(典型例题+题型归类练)(解析版)
专题08 数列求和(奇偶项讨论求和)(典型例题+题型归类练)一、必备秘籍有关数列奇偶项的问题是高考中经常涉及的问题,解决此类问题的难点在于搞清数列奇数项和偶数项的首项、项数、公差(比)等.本专题主要研究与数列奇偶项有关的问题,并在解决问题中让学生感悟分类讨论等思想在解题中的有效运用.因此,在数列综合问题中有许多可通过构造函数来解决.类型一:通项公式分奇、偶项有不同表达式;例如:n n na n cb n ⎧⎪=⎨⎪⎩为奇数为偶数角度1:求n n n a n c b n ⎧⎪=⎨⎪⎩为奇数为偶数的前2n 项和2n T角度2:求n n na n cb n ⎧⎪=⎨⎪⎩为奇数为偶数的前n 项和n T类型二:通项含有(1)n -的类型;例如:(1)nn n c a =-类型三:已知条件明确的奇偶项或含有三角函数问题二、典型例题类型一:通项公式分奇、偶项有不同表达式通项公式分奇、偶项有不同表达式;例如:n n na n cb n ⎧⎪=⎨⎪⎩为奇数为偶数角度1:求n n na n cb n ⎧⎪=⎨⎪⎩为奇数为偶数的前2n 项和2n T例题1.(2022·浙江嘉兴·模拟预测)已知公差不为零的等差数列{}n a 满足24692,,,a a a a =成等比数列.数列{}n b 的前n 项和为n S ,且满足()22N n n S b n *=⋅-∈(1)求{}n a 和{}n b 的通项公式;(2)设数列{}n c 满足211,,n n n n n n a a c a n b ++⎧⎪⎪=⎨⎪⎪⎩为奇数为偶数,求数列{}n c 的前2n 项和2n T .第(2)问解题思路点拨:由(1)知:,,可代入到第(2)问中,求出的通项公式:,即:注意到奇偶项通项不同,直接考虑分组求和.奇偶项通项不同,采用分组求和可作为一个解题技巧,由于奇偶项通项比较复杂,可设;,则(注意到本例求解的为偶数项和,最后一项一定是代入偶数的通项公式,否则,若是求,最后一项是代入奇数项通项,还是代入偶数项通项,则需要讨论)分组求和当为奇数 当为偶数,两式相减得:综上:【答案】(1)n a n =;2nn b =(2)2255212n n n n T n +=+-+ (1)由题:46922,24,27a d a d a d =+=+=+,∵2649a a a =⋅,即()()()2242227d d d +=++得:1d =,即n a n = 当1n =时,12b =,当2n ≥时,22n n S b =⋅-,1122n n S b --=⋅-,两式相减整理得12nn b b -=, 即数列{}n b 是以首项12b =,公比2q的等比数列∴2nn b =(2)当n 为奇数时,1111(2)22n c n n n n ⎛⎫==- ⎪++⎝⎭1352111111112335212121n n nA c c c c n n n -⎛⎫=++++=-+-++-= ⎪-++⎝⎭ 当n 为偶数时,n c =23521222n n n B +=+++, 231135212122222n n n n n B +-+=++++ 两式相减得:23111113222213121525122222222222n n n n n n n n n B +-+++++=++++-=+--=- 得:2552n nn B +=-2255212n n n n n n T A B n +=+=+-+角度2:求n n n a n c b n ⎧⎪=⎨⎪⎩为奇数为偶数的前n 项和n T例题2.(2022·山东日照·模拟预测)已知数列{}n a 中,11a =,22a =,2n n a ka +=(1k ≠),n *∈N ,23a a +,34a a +,45a a +成等差数列.(1)求k 的值和{}n a 的通项公式;(2)设22log n n na nb a n ⎧=⎨⎩,为奇数,为偶数,求数列{}n b 的前n 项和n S .第(2)问解题思路点拨:由(1)知,代入即:注意到奇偶项通项不同,直接考虑分组求和.奇偶项通项不同,采用分组求和可作为一个解题技巧当为偶数时,数列{的前项中有个奇数项,有个偶数项.(注意到本例求解的,最后一项是代入奇数项通项,还是代入偶数项通项,需要讨论)(讨论时优先讨论为偶数)为奇数为偶数当为奇数时,为偶数,注意到为偶数,所以可使用偶数项和的结论,代入左侧求和结果:,则:,整理:综上:21n b -++1n a -+,注意到最后一项n 为偶数,再利用1n n a -+,其中奇数项,偶数项各为【答案】(1)2k =,12222n n n n a n -⎧⎪=⎨⎪⎩,为奇数,为偶数(2)12221,38211,38n n n n nn S n n +⎧+-+⎪⎪=⎨--⎪+⎪⎩为偶数为奇数 (1)解:23a a +,34a a +,45a a +成等差数列, 所以()3423452a a a a a a +=+++,得5342a a a a -=-,得()()2311k a k a -=-, 因为1k ≠,所以322a a ==,所以312a k a ==,得12222n n n n a n -⎧⎪=⎨⎪⎩,为奇数,为偶数. (2)由(1)知,122n n n b n n -⎧⎪=⎨⎪⎩,为奇数,为偶数当n 为偶数时,设n =2k ,可得21321242n k k k S S b b b b b b -==++⋅⋅⋅+++++()022212222422k k -=++⋅⋅⋅++++⋅⋅⋅+ ()()22114141142232k k k k k k ++--=+⨯=+-,即()22138n n n nS +-=+; 当n 为奇数时,设n =2k -1,可得2113212422n k k k S S b b b b b b ---==++⋅⋅⋅++++⋅⋅⋅+ ()0222122224222k k -=++⋅⋅⋅++++⋅⋅⋅+- ()()()2221114141142232k k k k k k +-----=+⨯=+-, 即1221138n n n S +--=+. 综上所述,()12221,38211,38n n n n nn S n n +⎧+-+⎪⎪=⎨--⎪+⎪⎩为偶数为奇数.类型二:通项含有(-1)n的类型通项含有(1)n -的类型;例如:(1)nn n c a =-例题3.(2022·河南·开封高中模拟预测(理))在数列{}n a 中,33a =,数列{}n a 的前n 项和n S 满足()()*112n n S a n n =+∈N . (1)求数列{}n a 的通项公式; (2)若()21nn n b a =-,求数列{}n b 的前n 项和n T .【答案】(1)()*n a n n =∈N (2)2*2*,,2,.2n n nn N n T n n n N n ⎧+-∈⎪⎪=⎨+⎪∈⎪⎩且是奇数且是偶数 第(2)问解题思路点拨:由题意知,求,代入:注意到通项中含有“”,会影响最后一项取“正还是负”,通过讨论的奇偶,结合分组求和.奇偶项通项不同,采用分组求和可作为一个解题技巧(注意到本例求解的,代入最后一项,是正,还是负,需要讨论)(讨论时优先讨论为偶数)为奇数为偶数当为奇数时,为偶数,即:注意到为偶数,所以可使用偶数项和的结论,代入左侧求和结果:,则:,整理:综上:(1)因为()112n n S a n =+,所以()12n n nS a =+. 所以当2n ≥时,()11112n n n S a ---=+. 两式相减,得()()1211n n n a na n n a n -=+----, 即()()1211n n n a n a --=--. 所以()111n n n a na +-=-.相减得()()()11121n n n n n a n a na n a +----=--, 即112n n n a a a -+=+. 所以数列{}n a 是等差数列. 当n =1时,()11112a a =+,解得11a =. 所以公差31131a a d -==-. 所以()()*11n a n n n =+-=∈N . (2)()()2211nnn nb a n =-=-⨯, 当n 为奇数时,()()22222212311212n n nT n n n +=-+-+⋅⋅⋅+-⨯=++⋅⋅⋅+--=-⎡⎤⎣⎦;当n 为偶数时,22222123122n n n T n n +=-+-+⋅⋅⋅+=++⋅⋅⋅+=.综上所述,2*2*,,2,.2n n n n N n T n n n N n ⎧+-∈⎪⎪=⎨+⎪∈⎪⎩且是奇数且是偶数例题4.(2022·重庆八中模拟预测)已知n S 是公差不为零的等差数列{}n a 的前n 项和,36S =,2319a a a =⋅.(1)求数列{}n a 的通项公式;(2)设数列()()24141nnn a b n n +=-∈-N ,数列化{}n b 的前2n 项和为2n T感悟升华(核心秘籍)(1)对比例题3,例题4,通项都含有“(1)n-”,在求和时都使用(连续两项分组求和法:即连续的两项分一组);不同的是,例题3求前n 项和nT ;例题4求前2n 项和2nT ;(2)对于例题3求123n n T b b b b =+++⋅⋅⋅+,其中最后一项代入,是取“正”还是取“负”不确定,故需讨论n 为奇数还是偶数,在讨论时,作为核心技巧,先讨论n 为偶数,再利用n 为偶数的结论,快速求n 为奇数的和;;(3)对于例题4求21234212n n n T b b b b b b -=++++++,注意到最后一项2n b 一定是正,故不需要讨论;【答案】(1)*,N na n n =∈(2)21141n T n =-++ (1)公差d 不为零的等差数列{}n a ,由2319a a a =⋅, ()()211182a a d a d +=+,解得1a d =.第(2)问解题思路点拨:由(1)知:,可代入到第(2)问中,求出的通项公式:,注意到通项中含有“”,会影响最后一项取“正还是负”,通过讨论的奇偶,结合分组求和.奇偶项通项不同,采用分组求和可作为一个解题技巧(注意到本例求解的为偶数项和,代入最后一项,一定是正,故不需要讨论)分组求和又31336S a d =+=,可得11a d ==,所以数列{}n a 是以1为首项和公差的等差数列, 所以*,N na n n =∈.(2)解:由(1)可知()()241111412121nn n n b n n n ⎛⎫=-=-+ ⎪--+⎝⎭, 211111111113355743414141n T n n n n ∴=--++--+--++---+1141n =-++, 类型三:已知条件明确的奇偶项或含有三角函数问题例题5.(2022·江西赣州·二模(文))已知数列{}n a 的前n 项和为n S ,且满足()22n n S a n *=-∈N(1)求数列{}n a 的通项公式;(2)已知()2cos log n n b n a π=⋅,求数列{}n b 的前n 项和n T .感悟升华(核心秘籍)第(2)问解题思路点拨:由题意知,求,注意,所以可化简为:,注意到通项中含有“”,会影响最后一项取“正”还是取“负”,通过讨论的奇偶,结合分组求和.奇偶项通项不同,采用分组求和可作为一个解题技巧(注意到本例求解的,代入最后一项,是正,还是负,需要讨论)(讨论时优先讨论为偶数)为奇数为偶数当为奇数时,为偶数,即:注意到为偶数,所以可使用偶数项和的结论,代入左侧求和结果:,则:,,整理:综上:【答案】(1)2n n a =(2),;1,.n n n T n n ⎧=⎨--⎩ 为偶数为奇数(1)当1n =时,1122S a =-,即12a = 当2n ≥时,1122n n S a --=-,即12a =所以1122n n n n n a S S a a --=-=-得()122n n a a n -=≥ 即{}n a 以12a =为首相,公比为2的等比数列 所以数列{}n a 的通项公式为2n n a =(2)()()()cos 2cos 12nn n b n a n n n ππ=⋅=⋅=-⋅①当n 为偶数时,1232468102n n T b b b b n =+++⋅⋅⋅+=-+-+-+⋅⋅⋅+ 22nn =⋅= ②当n 为奇数时,1231n n n n T b b b b T b -=+++⋅⋅⋅+=+ ()12212n n n -=⋅+-=-- 综上:,;1,.n n n T n n ⎧=⎨--⎩ 为偶数为奇数三、题型归类练1.(2022·湖北·荆门市龙泉中学二模)已知数列{}n a 的前n 项和为112n n S a +=-,且214a = (1)求数列{}n a 的通项公式;(2)()0.5*log ,,n n n a n b n N a n ⎧=∈⎨⎩为奇数为偶数,求数列{}n b 的前2n 项和2n T ; 【答案】(1)12nn a ⎛⎫= ⎪⎝⎭(2)211334nn +-⨯ (1)在数列{}n a 中, 由112n n S a +=-可知1212n n S a ++=-, 两式作差可得()()1211212n n n n S a S a +++---=-,即2112n n a a ++=, 当1n =时,1212S a =-,,即112a =,211412a a ==, 所以数列{}n a 是以12为首项,12为公比的等比数列,即1111222n nn a -⎛⎫⎛⎫=⋅= ⎪⎪⎝⎭⎝⎭; (2)由(1)知()*,1,2nn n n b n N n ⎧⎪=∈⎨⎛⎫⎪ ⎪⎝⎭⎩为奇数为偶数, 所以()()21321242n n n T b b b b b b -=+++++++()211113214162n n ⎛⎫=+++-++++ ⎪⎝⎭()111441211214nn n ⎡⎤⎛⎫-⎢⎥ ⎪⎝⎭+-⎢⎥⎣⎦=+-211334nn =+-⨯.2.(2022·全国·模拟预测)已知数列{}n a 满足11a =,14nn n a a +⋅=,*n ∈N .(1)求数列{}n a 的通项公式n a ;(2)若2log ,,1,,n n n a n b a n ⎧=⎨+⎩为奇数为偶数求数列{}n b 的前2n 项和2n S .【答案】(1)12,,2,.n n n n a n -⎧=⎨⎩为奇数为偶数(2)1224433n n S n +=+-(1)由题意,当1n =时,24a =,因为14n n n a a +⋅=①,则1124n n n a a +++⋅=②,可得24n na a +=, 所以数列{}n a 的奇数项和偶数项都是公比为4的等比数列.因为11a =,24a =,所以当n 为奇数时,1112142n n n a a +--=⨯=;当n 为偶数时,12242nn n a a -=⨯=.综上,12,,2,.n n nn a n -⎧=⎨⎩为奇数为偶数 (2)由(1)得1,,21,,n n n n b n -⎧=⎨+⎩为奇数为偶数∴()()21321242n n n S b b b b b b -=++⋅⋅⋅++++⋅⋅⋅+()()41422214nn n n ⎡⎤--⎡⎤⎢⎥=++⎢⎥-⎢⎥⎣⎦⎣⎦124433n n +=+-. 3.(2022·山东·肥城市教学研究中心模拟预测)已知数列{}n a 满足11a =,19nn n a a +⋅=,N n *∈.(1)求数列{}n a 的通项公式n a ;(2)若13log ,1,n n n a n b a n ⎧⎪=⎨⎪-⎩为奇数为偶数,求数列{}n b 的前2n 项和2n S .【答案】(1)13,3,n n nn a n -⎧=⎨⎩为奇数为偶数(2)1229898n n n S +--= (1)解:由题意,当1n =时,129a a =,可得29a =,因为19n n n a a +⋅=,可得1129n n n a .a +++=,所以,29n na a +=, 所以数列{}n a 的奇数项和偶数项都是公比为9的等比数列.所以当n 为奇数时,设()21N n k k *=-∈,则1221211933k k n n k a a ----==⋅==, 当n 为偶数时,设()2N n k k *=∈,则12299933k k k nn k a a -==⋅===.因此,13,3,n n nn a n -⎧=⎨⎩为奇数为偶数. (2)解:由(1)得1,31,n n n n b n -⎧=⎨-⎩为奇数为偶数,()()21321242n n n S b b b b b b -∴=+++++++()()2462024223333n n n =-----+++++-⎡⎤⎣⎦()()12919229892198nn n n n n +----=-+-=-.4.(2022·福建三明·模拟预测)设数列{}n a 的前n 项和为n S ,()122n n S n a +-+=,210a =,1n n b a =-. (1)求证:{}n b 是等比数列;(2)设332,1,log log n n nn b n c n b b +⎧⎪=⎨⎪⋅⎩为奇数为偶数,求数列{}n c 的前21n 项和21n T +.【答案】(1)证明见解析(2)()232133841n n nT n ++-=++ (1)证明:对任意的N n *∈,1224n n S a n +=+-, 当1n =时,则有12228a a =-=,解得14a =,当2n ≥时,由1224n n S a n +=+-可得1226n n S a n -=+-,上述两个等式作差得122n n n a a a +=-+,所以,132n n a a +=-,则()1131n n a a +-=-, 所以,13n n b b +=且1113b a =-=,所以,数列{}n b 是等比数列,且首项和公比均为3.(2)解:由(1)可知1333n nn b -=⨯=,所以,()3,1,2n n n c n n n ⎧⎪=⎨⎪+⎩为奇数为偶数,所以,()1321211113332446222n n T n n ++=++++++⨯⨯+()()3211113332446222n n n +⎡⎤=+++++++⎢⎥⨯⨯+⎣⎦()21339111119412231n n n +⎡⎤-⨯=++++⎢⎥-⨯⨯+⎣⎦()232333111111331842231841n n nn n n ++--⎛⎫=+⨯-+-++-=+ ⎪++⎝⎭. 5.(2022·江西·新余四中模拟预测(理))在数列{}n a 中,21,,2,n nn n a n -⎧=⎨⎩为奇数为偶数 (1)求1a ,2a ,3a ;(2)求数列{}n a 的前n 项和n S .【答案】(1)11a =,24a =,35a =(2)212224,,2324,.23n n n n n n S n n n ++⎧+-+⎪⎪=⎨--⎪+⎪⎩为奇数为偶数 (1)因为21,,2,,n n n n a n -⎧=⎨⎩为奇数为偶数所以12111a =⨯-=,2224a ==,32315a =⨯-=,(2)因为21,,2,,n n n n a n -⎧=⎨⎩为奇数为偶数 所以1a ,3a ,5a ,是以1为首项,4为公差的等差数列,2a ,4a ,6a ,是以4为首项,4为公比的等比数列.当n 为奇数时,数列的前n 项中有12n +个奇数项,有12n -个偶数项.所以()()1231322431n n n n n n S a a a a a a a a a a a a ---=+++⋅⋅⋅+=++⋅⋅⋅+++++⋅⋅⋅++12211141411242214221423n n n n n n n -+⎛⎫++⎛⎫-- ⎪ ⎪++-⎝⎭⎝⎭=⨯+⨯+=+-; 当n 为偶数时,数列{{}n a 的前n 项中有2n 个奇数项,有2n个偶数项.所以()()1231331242n n n n n n S a a a a a a a a a a a a ---=+++⋅⋅⋅+=++⋅⋅⋅+++++⋅⋅⋅++2224141242214221423nn n n n n n +⎛⎫⎛⎫-- ⎪ ⎪--⎝⎭⎝⎭=⨯+⨯+=+-. 所以212224,,2324,.23n n n n n n S n n n ++⎧+-+⎪⎪=⎨--⎪+⎪⎩为奇数为偶数 6.(2022·安徽省舒城中学模拟预测(理))已知数列{}n a 的前n 项和为,239n n n S S a =-. (1)求数列{}n a 的通项公式;(2)若()31log nn n b a =-,求数列{}n b 的前n 项和n T .【答案】(1)13n n a +=;(2),23,2n nn T n n ⎧⎪⎪=⎨+⎪-⎪⎩为偶数为奇数 【详解】(1)当1n =时,11239S a =-.因为11S a =,所以11239a a =-,所以19a =. 因为239n n S a =-,所以11239n n S a ++=-. 两式相减,得11233n n n a a a ++=-,即13n n a a += 又因为19a =,所以0n a >.所以数列{}n a 是以9为首项,3为公比的等比数列.所以11933n n n a -+=⨯=.(2)由(1)可知()()()31log 11n nn n b a n =-=-+故当n 为偶数时,()()()234512n nT n n ⎡⎤=-++-++⋯+-++=⎣⎦当n 为奇数时,()()()()()123451112n n T n n n n -⎡⎤=-++-++⋯+--+-+=-+⎣⎦ 32n +=-所以,23,2n nn T n n 为偶数为奇数⎧⎪⎪=⎨+⎪-⎪⎩ 7.(2022·全国·模拟预测)已知数列{}n a 中,()112,1n n n a n a a a +=-=+. (1)求证:数列1n a n +⎧⎫⎨⎬⎩⎭是常数数列;(2)令(1),nn n n b a S =-为数列{}n b 的前n 项和,求使得99n S ≤-的n 的最小值.【答案】(1)证明见解析;(2)最小值为67. (1)由()11n n n n a a a +-=+得:()111n n na n a +=++,即()1111n n a a n n n n +=+++ 11111n n a a n n n n +∴=+-++,即有111,1n n a a n n +++=∴+数列1n a n +⎧⎫⎨⎬⎩⎭是常数数列; (2)由(1)知:()1113,31,(1)31n n n n a a a n b n n+=+=∴=-∴=-- 即()31,31,n n n b n n -⎧⎪=⎨--⎪⎩为偶数为奇数,∴当n 为偶数时,()()()()32581134312n nS n n ⎡⎤=-++-+++--+-=⎣⎦,显然99n S -无解; 当n 为奇数时,()()11313131122n n n n n S S a n ++++⎡⎤=-=-+-=-⎣⎦,令99n S ≤-,解得:66n , 结合n 为奇数得:n 的最小值为67. 所以n 的最小值为67.8.(2022·重庆八中模拟预测)已知{n a }是各项都为正数的数列,其前n 项和为n S ,且满足12n n nS a a =+. (1)求证:数列{2n S }为等差数列; (2)设()1nnnb a =-,求{n b }的前64项和64T .【答案】(1)证明见解析;(2){}n b 的前64项和648T =. (1)∵ 12n n nS a a =+,所以221n n n S a a -= 当2n ≥时,有1n n n a S S -=-,代入上式得()12n n n S S S -- ()211n n S S ---=整理得()22112n n S S n --=≥.又当1n =时, 211121S a a -=解得11S =;∴数列{}2n S 是首项为1,公差为1的等差数列. (2)由(1)可得211n S n n =+-=,∵{}n a 是各项都为正数,∴n S ,∴12)n n n a S S n -=-=≥, 又111a S ==,∴n a则(1)(1)n nn n n b a -===-,6411)T ∴=-+-+⋅⋅⋅-+=11-+⋅⋅⋅8,即:648T =.∴{}n b 的前64项和648T =.9.(2022·辽宁·模拟预测)已知n S 为等差数列{}n a 的前n 项和,1522a a +=,()22n n S n a n =-+. (1)求{}n a 的通项公式; (2)设()1821nn n n n b a a ++=-⋅,求数列{}n b 的前21n 项和21n T +. 【答案】(1)41n a n =-(2)8102421n n +-+(1)解:设等差数列{}n a 的公差为d . 由1522a a +=,得311a =,由()22n n S n a n =-+,得()2222S a =-, 又21222S a a a d =+=-,解得4d =, 所以()3341n a a n d n =+-=-. (2)由(1)得()1821nn n n n b a a ++=-⋅, ()()()8214143+=-⋅-+nn n n ,()1114143⎛⎫=-+ ⎪-+⎝⎭n n n ,所以21123221++=+++++n n n T b b b b b ,111111113771111158183⎛⎫⎛⎫⎛⎫⎛⎫=-+++-++++ ⎪ ⎪ ⎪ ⎪-+⎝⎭⎝⎭⎝⎭⎝⎭n n 118387⎛⎫-+ ⎪++⎝⎭n n , 11387=--+n ,8102421+=-+n n .10.(2022·山东济宁·三模)已知等差数列{}n a 的前n 项和为n S ,且31a =,67S =,数列{}n b 满足11222n n b b b ++++=-.(1)求数列{}n a 和{}n b 的通项公式;(2)记()tan n n n c b a π=⋅,求数列{}n c 的前3n 项和. 【答案】(1)3n n a =,2nn b =(2))187n - (1)解:设等差数列{}n a 的公差为d ,则3161216157a a d S a d =+=⎧⎨=+=⎩,解得113a d ==,所以,()111333n na n =+-=,当1n =时,21222b ,当2n ≥时,112122n n n b b b b +-++++=-,可得12122n n b b b -+++=-,上述两个等式作差可得1222n n nn b +=-=,12b =也满足2n n b =,故对任意的N n *∈,2n n b =.(2)解:由(1)可得2tan3nn n c π=, 设(323132323132202n n n n n n n p c c c -----=++=⨯+=,所以,18nn p p +==,所以,数列{}n p 是等比数列,且首项为1p =-8, 因此,数列{}n c 的前3n 项和为))31818187n n n T ---==-.11.(2022·陕西西安·三模(理))设公差不为零的等差数列{}n a 的前n 项和为n S ,36S =,2a ,4a ,8a 成等比数列,数列{}n b 满足11b =,121n n b b +=+. (1)求数列{}n a 和{}n b 的通项公式; (2)求10021πsin 2kk k aa =⎛⎫⋅⋅ ⎪⎝⎭∑的值.【答案】(1)n a n =,21nn b =-;(2)5000-.(1)设等差数列{}n a 的公差为d (0d ≠),由题意得()()()31211133637S a d a d a d a d =+=⎧⎪⎨+=++⎪⎩,解得111a d =⎧⎨=⎩, 故数列{}n a 的通项公式n a n =. ∵121n n b b +=+,∴()1121n n b b ++=+,即1121n n b b ++=+(*n ∈N ),又11b =, ∴{}1n b +是以2为首项,2为公比的等比数列,12nn b +=, ∴21nn b =-.(2)当2k m =,*m ∈N 时,()22πsin 2sin π02k k a a m m ⎛⎫⋅⋅== ⎪⎝⎭,当21k m =-,*m ∈N 时,()()()2122π21sin 21sinπ12122m k k m a a m m +-⎛⎫⋅⋅=-=-⋅- ⎪⎝⎭, ∴10022222221πsin 135797992kk k aa =⎛⎫⋅⋅=-+-+⋅⋅⋅+- ⎪⎝⎭∑()()()()()()1313575797999799=-++-++⋅⋅⋅+-+()2135797995000=-⨯++++⋅⋅⋅++=-.12.(2022·江苏·南京市第一中学三模)数列{}n a 满足116nn n a a +=,12a =.(1)求{}n a 的通项公式;(2)若2sin 2n n n b a π=,求数列{}n b 的前20项和20S .【答案】(1)212n n a -=(2)()4022115- (1)116nn n a a +=11216n n n a a +++∴=,两式相除得:216n na a +=, 当21n k =-时, 1357211352316k k k a a a a a a a a ---⨯⨯⨯⨯= 121216k k a --∴=⨯ ,212n n a -∴=当2n k =时, 168242462216k kk a a a a a a a a --⨯⨯⨯⨯= 12816k k a -∴=⨯,212n n a -∴=综上所述,{}n a 的通项公式为:212n n a -=(2)由(1)知:212n n a -∴=2212sin 2n n n b π-∴= ∴ 数列{}n b 的前20项和:20123419201357373949163614002sin2sin2sin 2sin 2sin2sin 222222S b b b b b b ππππππ=++++++=⋅+⋅+⋅+⋅++⋅+⋅1537373993614164002sin 2sin 2sin2sin 2sin 2sin222222ππππππ⎛⎫⎛⎫=⋅+⋅++⋅+⋅+⋅++⋅ ⎪ ⎪⎝⎭⎝⎭()()()104401593337404421222122222221122115⎡⎤--⎢⎥⎣⎦=+++++===--- 13.(2022·广东茂名·模拟预测)已知数列{}n a 的前n 项和为n S ,满足()213n n S a =-,*n N ∈. (1)求数列{}n a 的通项公式; (2)记sin2n n n b a π=⋅,求数列{}n b 的前100项的和100T . 【答案】(1)()2nn a =-,n *∈N (2)101225- (1)当2n ≥时,()()11221133n n n n n a S S a a --=-=---, 整理得12nn a a -=-, 又()111213a S a ==-,得12a =- 则数列{}n a 是以-2为首项,-2为公比的等比数列. 则()2nn a =-,n *∈N(2)当4,n k k N *=∈时,()4442sin 02k kk b π=-⋅=, 当41,n k k N *=-∈时,()()444111412sin22k k k k b π----=-⋅=, 当42,n k k N *=-∈时,()()4242422sin 02k k k b π---=-⋅=, 当43,n k k N *=-∈时,()()444333432sin22k k k k b π----=-⋅=-,则()()5973799100123100222222T b b b b =++++=-+++++++()()25254334101442222222212125-⋅-⋅-=-+=--。
高中数列求和题型归纳总结
高中数列求和题型归纳总结在高中数学学习中,数列求和是一个重要的考点。
学生们需要熟练掌握不同类型的数列求和题目,并能灵活运用各种求和公式和技巧。
下面,我将对高中数列求和题型进行归纳总结,以便同学们更好地理解和应用。
一、等差数列求和等差数列是指数列中每个相邻的两项之间的差恒定的数列。
对于等差数列,我们可以使用以下公式来求和:1. 如果已知等差数列的首项为a₁,公差为d,项数为n,则该等差数列的前n项和Sn为:Sn = n/2 * (2a₁ + (n-1)d)2. 若已知等差数列的首项为a₁,末项为an,项数为n,则该等差数列的前n项和Sn为:Sn = n/2 * (a₁ + an)二、等比数列求和等比数列是指数列中每个相邻的两项之间的比恒定的数列。
对于等比数列,我们可以使用以下公式来求和:1. 如果已知等比数列的首项为a₁,公比为q(|q|<1),项数为n,则该等比数列的前n项和Sn为:Sn = a₁ * (1 - q^n) / (1 - q)2. 如果已知等比数列的首项为a₁,末项为an,项数为n,则该等比数列的前n项和Sn为:Sn = a₁ * (1 - q^n) / (1 - q)三、特殊数列求和除了等差数列和等比数列,还有一些特殊的数列求和方法,我们来看两个常见的例子。
1. 平方和求和:求1² + 2² + 3² + ... + n²的和,可以使用以下公式进行求解: Sn = n * (n + 1) * (2n + 1) / 62. 立方和求和:求1³ + 2³ + 3³ + ... + n³的和,可以使用以下公式进行求解: Sn = [n * (n + 1) / 2]^2四、应用题型除了基本的数列求和题型,我们还要学会将数列求和运用到实际问题中。
以下是一些常见的应用题型:1. 排球比赛:有一支排球队,第一天进行了一场比赛,第二天进行了两场比赛,第三天进行了三场比赛,以此类推,第n天进行了n场比赛。
高考数学(人教文科)总复习配套:数列求和 pptx
(2)求 a1+a3+a9+…+������3������ .
解 (1)因为等差数列{an}的各项均为正数, 其公差为2,a2a4=4a3+1. 所以(a1+2)(a1+6)=4a1+17,解得a1=1或a1=-5(舍去). 所以{an}的通项公式为an=2n-1. (2)a1+a3+a9+…+������3������ =(2×1-1)+(2×3-1)+(2×32-1)+…+(2×3n-1) =2×(1+3+32+…+3n)-(n+1) =2×1-13-���3���+1-(n+1) =3n+1-n-2.
3.(2017河北保定模拟)若数列{an}的通项公式是an=(-1)n(3n-2),则 a1+a2+…+a10=( A )
A.15 B.12 C.-12 D.-15
解析:因为an=(-1)n(3n-2),
所以a1+a2+…+a10=(-1+4)+(-7+10)+…+(-25+28)=3×5=15.
知识梳理 考点自测
由b3=a4-2a1,可得3d-a1=8.① 由S11=11b4,可得a1+5d=16,② 联立①②,解得a1=1,d=3,由此可得an=3n-2.
所以,{an}的通项公式为an=3n-2,{bn}的通项公式为bn=2n.
考点一
考点二
考点三
考点四
-19-
(2)设数列{a2nbn}的前n项和为Tn,由a2n=6n-2,
高考数学二轮复习 专题10 数列求和及其应用教学案 理-人教版高三全册数学教学案
专题10 数列求和及其应用高考对本节内容的考查仍将以常用方法求和为主,尤其是错位相减法及裂项求和,题型延续解答题的形式.预测2018高考对数列求和仍是考查的重点.数列的应用以及数列与函数等的综合的命题趋势较强,复习时应予以关注.1.数列求和的方法技巧(1)公式法:直接应用等差、等比数列的求和公式求和.(2)错位相减法这种方法主要用于求数列{a n·b n}的前n项和,其中{a n}、{b n}分别是等差数列和等比数列.(3)倒序相加法这是在推导等差数列前n项和公式时所用的方法,也就是将一个数列倒过来排列(反序),当它与原数列相加时若有公因式可提,并且剩余项的和易于求得,则这样的数列可用倒序相加法求和.(4)裂项相消法利用通项变形,将通项分裂成两项或几项的差,通过相加过程中的相互抵消,最后只剩下有限项的和.(5)分组转化求和法有些数列,既不是等差数列,也不是等比数列,若将数列通项拆开或变形,可转化为几个等差、等比数列或常见的数列,可先分别求和,然后再合并.2.数列的综合问题(1)等差数列与等比数列的综合.(2)数列与函数、方程、不等式、三角、解析几何等知识的综合.(3)增长率、分期付款、利润成本效益的增减等实际应用问题. 数列的实际应用问题一般文字叙述较长,反映的事物背景陌生,知识涉及面广,因此要解好应用题,首先应当提高阅读理解能力,将普通语言转化为数学语言或数学符号,实际问题转化为数学问题,然后再用数学运算、数学推理予以解决.【误区警示】1.应用错位相减法求和时,注意项的对应.2.正确区分等差与等比数列模型,正确区分实际问题中的量是通项还是前n 项和.考点一.数列求和例1、25.【2017江苏,19】 对于给定的正整数k ,若数列{}n a 满足1111n k n k n n n k n k a a a a a a --+-++-++++++++2n ka =对任意正整数()n n k >总成立,则称数列{}n a 是“()P k 数列”.(1)证明:等差数列{}n a 是“(3)P 数列”;(2)若数列{}n a 既是“(2)P 数列”,又是“(3)P 数列”,证明:{}n a 是等差数列.【答案】(1)见解析(2)见解析(2)数列{}n a 既是“()2P 数列”,又是“()3P 数列”,因此,当3n ≥时, 21124n n n n n a a a a a --+++++=,①当4n ≥时, 3211236n n n n n n n a a a a a a a ---++++++++=.② 由①知, 3214n n n a a a ---+=- ()1n n a a ++,③2314n n n a a a ++++=- ()1n n a a -+,④将③④代入②,得112n n n a a a -++=,其中4n ≥, 所以345,,,a a a 是等差数列,设其公差为'd .在①中,取4n =,则235644a a a a a +++=,所以23'a a d =-, 在①中,取3n =,则124534a a a a a +++=,所以122'a a d =-, 所以数列{}n a 是等差数列.【变式探究】(2016·浙江卷)设数列{a n }的前n 项和为S n ,已知S 2=4,a n +1=2S n +1,n ∈N *.(1)求通项公式a n ;(2)求数列{|a n -n -2|}的前n 项和.【举一反三】 若A n 和B n 分别表示数列{a n }和{b n }的前n 项的和,对任意正整数n ,a n =2(n +1),3A n -B n =4n .(1)求数列{b n }的通项公式;(2)记c n =2A n +B n ,求{c n }的前n 项和S n .解:(1)由于a n =2(n +1), ∴{a n }为等差数列,且a 1=4. ∴A n =n (a 1+a n )2=n (4+2n +2)2=n 2+3n ,∴B n =3A n -4n =3(n 2+3n )-4n =3n 2+5n ,当n =1时,b 1=B 1=8,当n ≥2时,b n =B n -B n -1=3n 2+5n -[3(n -1)2+5(n -1)]=6n +2.由于b 1=8适合上式, ∴b n =6n +2.(2)由(1)知c n =2A n +B n =24n 2+8n =14⎝ ⎛⎭⎪⎫1n -1n +2, ∴S n =14⎣⎢⎡⎝ ⎛⎭⎪⎫11-13+⎝ ⎛⎭⎪⎫12-14+⎝ ⎛⎭⎪⎫13-15+⎝ ⎛⎭⎪⎫14-16+…+⎦⎥⎤⎝ ⎛⎭⎪⎫1n -1-1n +1+⎝ ⎛⎭⎪⎫1n -1n +2= 14⎝ ⎛⎭⎪⎫1+12-1n +1-1n +2=38-14⎝ ⎛⎭⎪⎫1n +1+1n +2. 【变式探究】(2016·山东卷)已知数列{a n }的前n 项和S n =3n 2+8n ,{b n }是等差数列,且a n =b n +b n +1.(1)求数列{b n }的通项公式;(2)令c n =(a n +1)n +1(b n +2)n ,求数列{c n }的前n 项和T n .(2)由(1)知c n =(6n +6)n +1(3n +3)n =3(n +1)·2n +1. 又T n =c 1+c 2+…+c n ,得T n =3×[2×22+3×23+…+(n +1)×2n +1],2T n =3×[2×23+3×24+…+(n +1)×2n +2],两式作差,得-T n =3×[2×22+23+24+…+2n +1-(n +1)×2n +2]=3×⎣⎢⎡⎦⎥⎤4+4(1-2n)1-2-(n +1)×2n +2=-3n ·2n +2, ∴T n =3n ·2n +2.考点二、数列和函数、不等式的交汇例4、(2016·四川卷)已知数列{a n }的首项为1,S n 为数列{a n }的前n 项和,S n +1=qS n +1,其中q >0,n ∈N *.(1)若2a 2,a 3,a 2+2成等差数列,求数列{a n }的通项公式;(2)设双曲线x 2-y 2a 2n =1的离心率为e n ,且e 2=53,证明:e 1+e 2+…+e n >4n -3n3n -1.(2)证明:由(1)可知,a n =qn -1,∴双曲线x 2-y 2a 2n =1的离心率e n =1+a 2n =1+q2(n -1). 由e 2=1+q 2=53解得q =43.∵1+q2(k -1)>q2(k -1),∴1+q2(k -1)>qk -1(k ∈N *).于是e 1+e 2+…+e n >1+q +…+q n -1=q n-1q -1,故e 1+e 2+…+e n >4n -3n3n -1.【变式探究】已知数列{a n }的前n 项和为S n ,且S n =2n 2+2n . (1)求数列{a n }的通项公式;(2)若点(b n ,a n )在函数y =log 2x 的图象上,求数列{b n }的前n 项和T n .1.【2017天津,理18】已知{}n a 为等差数列,前n 项和为()n S n *∈N ,{}n b 是首项为2的等比数列,且公比大于0,2312b b +=,3412b a a =-,11411S b =.(Ⅰ)求{}n a 和{}n b 的通项公式;(Ⅱ)求数列221{}n n a b -的前n 项和()n *∈N . 【答案】 (1)32n a n =-.2n n b =.(2)1328433n n n T +-=⨯+. 【解析】(I )设等差数列{}n a 的公差为d ,等比数列{}n b 的公比为q . 由已知2312b b +=,得()2112b q q +=,而12b =,所以260q q +-=. 又因为0q >,解得2q =.所以, 2n n b =. 由3412b a a =-,可得138d a -= ①. 由114=11S b ,可得1516a d += ②,联立①②,解得11a =, 3d =,由此可得32n a n =-.所以,数列{}n a 的通项公式为32n a n =-,数列{}n b 的通项公式为2n n b =.(II )解:设数列221{}n n a b -的前n 项和为n T , 由262n a n =-, 12124n n b --=⨯,有()221314n n n a b n -=-⨯, 故()23245484314n n T n =⨯+⨯+⨯++-⨯,()()23414245484344314n n n T n n +=⨯+⨯+⨯++-⨯+-⨯,上述两式相减,得()231324343434314n n n T n +-=⨯+⨯+⨯++⨯--⨯得1328433n n n T +-=⨯+. 所以,数列221{}n n a b -的前n 项和为1328433n n +-⨯+. 2.【2017江苏,19】 对于给定的正整数k ,若数列{}n a 满足1111n k n k n n n k n k a a a a a a --+-++-++++++++2n ka =对任意正整数()n n k >总成立,则称数列{}n a 是“()P k 数列”.(1)证明:等差数列{}n a 是“(3)P 数列”;(2)若数列{}n a 既是“(2)P 数列”,又是“(3)P 数列”,证明:{}n a 是等差数列.【答案】(1)见解析(2)见解析(2)数列{}n a 既是“()2P 数列”,又是“()3P 数列”,因此, 当3n ≥时, 21124n n n n n a a a a a --+++++=,①当4n ≥时, 3211236n n n n n n n a a a a a a a ---++++++++=.② 由①知, 3214n n n a a a ---+=- ()1n n a a ++,③3.【2017山东,理19】已知{x n }是各项均为正数的等比数列,且x 1+x 2=3,x 3-x 2=2(Ⅰ)求数列{x n }的通项公式;(Ⅱ)如图,在平面直角坐标系xOy 中,依次连接点P 1(x 1, 1),P 2(x 2, 2)…P n+1(x n+1, n+1)得到折线P 1 P 2…P n+1,求由该折线与直线y =0,11n x x x x +==,所围成的区域的面积n T .【答案】(I)12.n n x -=(II )(21)21.2n n n T -⨯+=(II )过123,,,P P P ……1n P +向x 轴作垂线,垂足分别为123,,,Q Q Q ……1n Q +,由(I)得111222.n n n n n x x --+-=-= 记梯形11n n n n P P Q Q ++的面积为n b . 由题意12(1)2(21)22n n n n n b n --++=⨯=+⨯, 所以123n T b b b =+++……+n b=101325272-⨯+⨯+⨯+……+32(21)2(21)2n n n n ---⨯++⨯ ① 又0122325272n T =⨯+⨯+⨯+……+21(21)2(21)2n n n n ---⨯++⨯ ② ①-②得=1132(12)(21)2.212n n n ---+-+⨯- 所以(21)21.2n n n T -⨯+=1.【2016高考天津理数】已知{}n a 是各项均为正数的等差数列,公差为d ,对任意的,b n n N ∈*是n a 和1n a +的等差中项.(Ⅰ)设22*1,n n n c b b n N +=-∈,求证:{}n c 是等差数列;(Ⅱ)设 ()22*11,1,nnn n k a d T b n N ===-∈∑,求证:2111.2nk kT d =<∑【答案】(Ⅰ)详见解析(Ⅱ)详见解析2.【2016高考新课标3理数】已知数列{}n a 的前n 项和1n n S a λ=+,其中0λ≠.(I )证明{}n a 是等比数列,并求其通项公式; (II )若53132S =,求λ.【答案】(Ⅰ)1)1(11---=n n a λλλ;(Ⅱ)1λ=-. 3.【2016高考浙江理数】设数列{}n a 满足112n n a a +-≤,n *∈N . (I )证明:()1122n n a a -≥-,n *∈N ;(II )若32nn a ⎛⎫≤ ⎪⎝⎭,n *∈N ,证明:2n a ≤,n *∈N .【答案】(I )证明见解析;(II )证明见解析. 【解析】(I )由112n n a a +-≤得1112n n a a +-≤,故111222n n nn na a ++-≤,n *∈N ,所以1<,因此()1122n n a a -≥-.(II )任取n *∈N ,由(I )知,对于任意m n >,112n -<, 故3224mn ⎛⎫=+⋅ ⎪⎝⎭.4.【2016年高考北京理数】(本小题13分)设数列A :1a ,2a ,…N a (N ≥).如果对小于n (2n N ≤≤)的每个正整数k 都有k a <n a ,则称n 是数列A 的一个“G 时刻”.记“)(A G 是数列A 的所有“G 时刻”组成的集合.(1)对数列A :-2,2,-1,1,3,写出)(A G 的所有元素; (2)证明:若数列A 中存在n a 使得n a >1a ,则∅≠)(A G ; (3)证明:若数列A 满足n a -1n a - ≤1(n=2,3, …,N),则)(A G 的元素个数不小于N a -1a .【答案】(1)()G A 的元素为2和5;(2)详见解析;(3)详见解析.(Ⅲ)当1a a N ≤时,结论成立. 以下设1a a N >. 由(Ⅱ)知∅≠)(A G .设{}p p n n n n n n A G <⋅⋅⋅<<⋅⋅⋅=2121,,,,)(.记10=n . 则pn n n n a a a a <⋅⋅⋅<<<21.对p i ,,1,0⋅⋅⋅=,记{},ii i k n G k n k N a a *=∈<≤>N .如果∅≠i G ,取i i G m min =,则对任何iim n k i a a a m k <≤<≤,1.从而)(A G m i ∈且1+=i i n m .又因为p n 是)(A G 中的最大元素,所以∅=p G . 从而对任意p n k N ≤≤,pn k a a ≤,特别地,pn N a a ≤.对i i n n a a p i ≤-⋅⋅⋅=-+11,1,,1,0.因此1)(111111+≤-+=--++++i i i i i n n n nn a a a a a .所以p a a a a a a i i pn pi n n N ≤-=-≤--∑=)(1111.因此)(A G 的元素个数p 不小于1N a a -.5.【2016年高考四川理数】(本小题满分12分)已知数列{n a }的首项为1,n S 为数列{}n a 的前n 项和,11n n S qS +=+ ,其中q>0,*n N ∈ .(Ⅰ)若2322,,2a a a + 成等差数列,求{}n a 的通项公式;(Ⅱ)设双曲线2221n y x a -= 的离心率为n e ,且253e = ,证明:121433n nn n e e e --++⋅⋅⋅+>.【答案】(Ⅰ)1=n n a q ;(Ⅱ)详见解析. (Ⅱ)由(Ⅰ)可知,1nn a q .所以双曲线2221n y x a 的离心率 22(1)11nn n e a q .由2513qq 解得43q . 因为2(1)2(1)1+k kq q 1)1*kk q kN (). 于是11211+1n n nq e e e qqq , 故1231433n n n e e e .6.【2016高考上海理数】(本题满分18分)本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分8分.若无穷数列{}n a 满足:只要*(,)p q a a p q N =∈,必有11p q a a ++=,则称{}n a 具有性质P .(1)若{}n a 具有性质P ,且12451,2,3,2a a a a ====,67821a a a ++=,求3a ;(2)若无穷数列{}n b 是等差数列,无穷数列{}n c 是公比为正数的等比数列,151b c ==,5181b c ==,n n n a b c =+判断{}n a 是否具有性质P ,并说明理由;(3)设{}n b 是无穷数列,已知*1sin ()n n n a b a n N +=+∈.求证:“对任意1,{}n a a 都具有性质P ”的充要条件为“{}n b 是常数列”.【答案】(1)316a =.(2){}n a 不具有性质P .(3)见解析. (3)[证]充分性:当{}n b 为常数列时,11sin n n a b a +=+.对任意给定的1a ,只要p q a a =,则由11sin sin p q b a b a +=+,必有11p q a a ++=.充分性得证. 必要性:用反证法证明.假设{}n b 不是常数列,则存在k *∈N , 使得12k b b b b ==⋅⋅⋅==,而1k b b +≠.下面证明存在满足1sin n n n a b a +=+的{}n a ,使得121k a a a +==⋅⋅⋅=,但21k k a a ++≠.设()sin f x x x b =--,取m *∈N ,使得m b π>,则()0f m m b ππ=->,()0f m m b ππ-=--<,故存在c 使得()0f c =.取1a c =,因为1sin n n a b a +=+(1n k ≤≤),所以21sin a b c c a =+==, 依此类推,得121k a a a c +==⋅⋅⋅==.但2111sin sin sin k k k k a b a b c b c ++++=+=+≠+,即21k k a a ++≠. 所以{}n a 不具有性质P ,矛盾. 必要性得证.综上,“对任意1a ,{}n a 都具有性质P ”的充要条件为“{}n b 是常数列”.7.【2016高考新课标2理数】n S 为等差数列{}n a 的前n 项和,且17=128.a S =,记[]=lg n n b a ,其中[]x 表示不超过x 的最大整数,如[][]0.9=0lg 99=1,.(Ⅰ)求111101b b b ,,;(Ⅱ)求数列{}n b 的前1 000项和.【答案】(Ⅰ)10b =,111b =, 1012b =;(Ⅱ)1893. 8.【2016高考山东理数】(本小题满分12分)已知数列{}na 的前n 项和S n =3n 2+8n ,{}nb 是等差数列,且1.n n n a b b +=+(Ⅰ)求数列{}nb 的通项公式;(Ⅱ)令1(1).(2)n n n nn a c b ++=+ 求数列{}n c 的前n 项和T n .【答案】(Ⅰ)13+=n b n ;(Ⅱ)223+⋅=n n n T .(Ⅱ)由(Ⅰ)知11(66)3(1)2(33)n n n nn c n n +++==+⋅+, 又n n c c c c T +⋅⋅⋅+++=321,得23413[223242(1)2]n n T n +=⨯⨯+⨯+⨯+⋅⋅⋅++⨯,345223[223242(1)2]n n T n +=⨯⨯+⨯+⨯+⋅⋅⋅++⨯,两式作差,得 所以223+⋅=n n n T9.【2016高考江苏卷】(本小题满分16分)记{}1,2,100U =…,.对数列{}()*n a n N ∈和U 的子集T ,若T =∅,定义0T S =;若{}12,,k T t t t =…,,定义12+kT t t t S a a a =++….例如:{}=1,3,66T 时,1366+T S a a a =+.现设{}()*n a n N ∈是公比为3的等比数列,且当{}=2,4T 时,=30T S . (1)求数列{}n a 的通项公式;(2)对任意正整数()1100k k ≤≤,若{}1,2,k T ⊆…,,求证:1T k S a +<; (3)设,,C D C U D U S S ⊆⊆≥,求证:2C CDD S S S +≥.【答案】(1)13n n a -=(2)详见解析(3)详见解析 (3)下面分三种情况证明. ①若D 是C 的子集,则2C C DC D D D D S S S S S S S +=+≥+=. ②若C 是D 的子集,则22C CDC C CD S S S S S S +=+=≥.③若D 不是C 的子集,且C 不是D 的子集. 令UE CD =,UF DC =则E ≠∅,F ≠∅,E F =∅.于是C E C D S S S =+,D F C D S S S =+,进而由C D S S ≥,得E F S S ≥. 设k 是E 中的最大数,l 为F 中的最大数,则1,1,k l k l ≥≥≠. 由(2)知,1E k S a +<,于是1133l k l F E k a S S a -+=≤≤<=,所以1l k -<,即l k ≤.又k l ≠,故1l k ≤-,从而1121131133222l l k E F l a S S a a a ----≤+++=+++=≤≤, 故21E F S S ≥+,所以2()1C C DD CDS S S S -≥-+,即21C CDD S S S +≥+.综合①②③得,2C C DD S S S +≥.10.【2016高考山东理数】(本小题满分12分)已知数列{}na 的前n 项和S n =3n 2+8n ,{}nb 是等差数列,且1.n n n a b b +=+(Ⅰ)求数列{}nb 的通项公式;(Ⅱ)令1(1).(2)n n n nn a c b ++=+ 求数列{}n c 的前n项和T n .【答案】(Ⅰ)13+=n b n ;(Ⅱ)223+⋅=n n n T .(Ⅱ)由(Ⅰ)知11(66)3(1)2(33)n n n nn c n n +++==+⋅+, 又n n c c c c T +⋅⋅⋅+++=321,得23413[223242(1)2]n n T n +=⨯⨯+⨯+⨯+⋅⋅⋅++⨯,345223[223242(1)2]n n T n +=⨯⨯+⨯+⨯+⋅⋅⋅++⨯,两式作差,得 所以223+⋅=n n n T【2015江苏高考,11】数列}{n a 满足11=a ,且11+=-+n a a n n (*N n ∈),则数列}1{na 的前10项和为【答案】2011【2015高考天津,理18】(本小题满分13分)已知数列{}n a 满足212()*,1,2n n a qa q q n N a a +=≠∈==为实数,且1,,且233445,,a a a a a a 成等差数列.(I)求q 的值和{}n a 的通项公式; (II)设*2221log ,nn n a b n N a -=∈,求数列nb 的前n 项和.【答案】(I) 1222,2,.n n nn a n -⎧⎪=⎨⎪⎩为奇数,为偶数; (II) 1242n n n S -+=-.【解析】(Ⅰ) 由已知,有34234534a a a a a a a a ,即4253a a a a -=-,所以23(1)(1)a q a q -=-,又因为1q ≠,故322a a ==,由31a a q =,得2q =,当21(*)n k n N =-∈时,1122122n k n k a a ---===,当2(*)n k n N =∈时,2222nkn k a a ===,所以{}n a 的通项公式为1222,2,.n n nn a n -⎧⎪=⎨⎪⎩为奇数,为偶数【2015高考四川,理16】设数列{}n a 的前n 项和12n n S a a =-,且123,1,a a a +成等差数列.(1)求数列{}n a 的通项公式;(2)记数列1{}na 的前n 项和n T ,求得1|1|1000n T -<成立的n 的最小值.【答案】(1)2n n a =;(2)10.【解析】(1)由已知12n n S a a =-,有1122(1)n n n n n a S S a a n --=-=->, 即12(1)n n a a n -=>. 从而21312,4a a a a ==.又因为123,1,a a a +成等差数列,即1322(1)a a a +=+. 所以11142(21)a a a +=+,解得12a =.所以,数列{}n a 是首项为2,公比为2的等比数列. 故2n n a =. (2)由(1)得112n n a =.所以2311[1()]1111122112222212n n n nT -=++++==--. 由1|1|1000n T -<,得11|11|21000n --<,即21000n >. 因为9102512100010242=<<=, 所以10n ≥. 于是,使1|1|1000n T -<成立的n 的最小值为10. 【2015高考新课标1,理17】n S 为数列{n a }的前n 项和.已知na >0,2n n a a +=43n S +.(Ⅰ)求{n a }的通项公式; (Ⅱ)设11n n n b a a +=,求数列{n b }的前n 项和. 【答案】(Ⅰ)21n +(Ⅱ)11646n -+【2015江苏高考,20】(本小题满分16分)设1234,,,a a a a 是各项为正数且公差为d (0)d ≠的等差数列 (1)证明:31242,2,2,2a a a a 依次成等比数列;(2)是否存在1,a d ,使得2341234,,,a a a a 依次成等比数列,并说明理由;(3)是否存在1,a d 及正整数,n k ,使得k n k n k n n a a a a 342321,,,+++依次成等比数列,并说明理由.【答案】(1)详见解析(2)不存在(3)不存在(3)假设存在1a ,d 及正整数n ,k ,使得1n a ,2n k a +,23n k a +,34n ka +依次构成等比数列,则()()()221112n kn k n a a d a d +++=+,且()()()()32211132n kn kn k a d a d a d +++++=+.分别在两个等式的两边同除以()21n k a +及()221n k a+,并令1d t a =(13t >-,0t ≠), 则()()()22121n kn k t t +++=+,且()()()()32211312n kn kn k t t t +++++=+.将上述两个等式两边取对数,得()()()()2ln 122ln 1n k t n k t ++=++,且()()()()()()ln 13ln 1322ln 12n k t n k t n k t +++++=++. 化简得()()()()2ln 12ln 12ln 1ln 12k t t n t t +-+=+-+⎡⎤⎡⎤⎣⎦⎣⎦, 且()()()()3ln 13ln 13ln 1ln 13k t t n t t +-+=+-+⎡⎤⎡⎤⎣⎦⎣⎦. 再将这两式相除,化简得()()()()()()ln 13ln 123ln 12ln 14ln 13ln 1t t t t t t +++++=++(**).令()()()()()()()4ln 13ln 1ln 13ln 123ln 12ln 1g t t t t t t t =++-++-++,则()()()()()()()()()()222213ln 13312ln 1231ln 111213t t t t t t g t t t t ⎡⎤++-+++++⎣⎦'=+++.令()()()()()()()22213ln 13312ln 1231ln 1t t t t t t t ϕ=++-+++++,则()()()()()()()613ln 13212ln 121ln 1t t t t t t t ϕ'=++-+++++⎡⎤⎣⎦. 【2015高考浙江,理20】已知数列{}n a 满足1a =12且1n a +=n a -2n a (n ∈*N )(1)证明:112nn a a +≤≤(n ∈*N ); (2)设数列{}2n a 的前n 项和为n S ,证明112(2)2(1)n S n n n ≤≤++(n ∈*N ).【答案】(1)详见解析;(2)详见解析.【解析】(1)由题意得,210n n n a a a +-=-≤,即1n n a a +≤,12n a ≤,由11(1)n n n a a a --=-得1211(1)(1)(1)0n n n a a a a a --=--⋅⋅⋅->,由102n a <≤得,211[1,2]1n n n n n n a a a a a a +==∈--,即112n n a a +≤≤;(2)由题意得21n n n a a a +=-, ∴11n n S a a +=-①,由1111=n n n n a a a a ++-和112n n a a +≤≤得,11112n n a a +≤-≤, ∴11112n n n a a +≤-≤,因此*111()2(1)2n a n N n n +≤≤∈++②,由①②得 112(2)2(1)n S n n n ≤≤++. 【2015高考山东,理18】设数列{}n a 的前n 项和为n S .已知233n n S =+.(I )求{}n a 的通项公式;(II )若数列{}n b 满足3log n n n a b a =,求{}n b 的前n 项和n T .【答案】(I )13,1,3,1,n n n a n -=⎧=⎨>⎩; (II )13631243n nn T +=+⨯. (Ⅱ)因为3log n n n a b a = ,所以113b =当1n > 时,()11133log 313n n nn b n ---==-⋅所以1113T b ==当1n > 时,所以()()01231132313n n T n --=+⨯+⨯++- 两式相减,得所以13631243n nn T +=+⨯ 经检验,1n = 时也适合, 综上可得:13631243n nn T +=+⨯ 【2015高考安徽,理18】设*n N ∈,n x 是曲线221n y x +=+在点(12),处的切线与x 轴交点的横坐标.(Ⅰ)求数列{}n x 的通项公式;(Ⅱ)记2221321n n T x x x -=,证明14n T n≥. 【答案】(Ⅰ)1n n x n =+;(Ⅱ)14n T n≥.1. 【2014高考湖南理第20题】已知数列{}n a 满足111,n n n a a a p +=-=,*n N ∈.(1)若{}n a 为递增数列,且123,2,3a a a 成等差数列,求P 的值; (2)若12p =,且{}21n a -是递增数列,{}2n a 是递减数列,求数列{}n a 的通项公式.【答案】(1)13p = (2) 1141,33241,332n n n n a n --⎧-⎪⎪=⎨⎪+⎪⎩为奇数为偶数或()114332n n n a --=+ (2)由题可得122122212121111,222n n n n n n n n n a a a a a a +-++-+-=⇒-=-=,因为{}21n a -是递增数列且{}2n a 是递减数列,所以2121n n a a +->且222n n a a +<,则有22221221222121n n n n n n n n a a a a a a a a +-++-+-<-⎧⇒-<-⎨<⎩,因为(2)由题可得122122212121111,222n n n n n n n n n a a a a a a +-++-+-=⇒-=-=,因为{}21n a -是递增数列且{}2n a 是递减数列,所以21210n n a a +-->且2220n n a a +-<()2220n n a a +⇒-->,两不等式相加可得()21212220n n n n a a a a +-+--->2212221n n n n a a a a -++⇒->-,又因为2212112n n n a a ---=22212112n n n a a +++>-=,所以2210n n a a -->,即2212112n n n a a ---=,同理可得2322212n n n n a a a a +++->-且2322212n n n n a a a a +++-<-,所以212212n n n a a +-=-, 则当2n m =()*m N ∈时,21324322123211111,,,,2222m m m a a a a a a a a ---=-=--=-=,这21m -个等式相加可得2113212422111111222222m m m a a --⎛⎫⎛⎫-=+++-+++⎪ ⎪⎝⎭⎝⎭212222111111111224224113321144m m m -----=-=+--22141332m m a -⇒=+. 当21n m =+时,2132432122321111,,,,2222m m ma a a a a a a a +-=-=--=-=-,这2m 个等式相加可得2111321242111111222222m m m a a +-⎛⎫⎛⎫-=+++-+++ ⎪ ⎪⎝⎭⎝⎭2122211111111224224113321144m m m---=-=--- 21241332m m a +=-,当0m =时,11a =符合,故212241332m m a --=- 综上1141,33241,332n n n n a n --⎧-⎪⎪=⎨⎪+⎪⎩为奇数为偶数.【考点定位】等差数列、等比数列、数列单调性2. 【2014高考江西理第17题】已知首项都是1的两个数列(),满足.(1)令,求数列的通项公式; (2)若13n n b -=,求数列的前n 项和【答案】(1)2 1.n c n =-(2)(1)3 1.nn S n =-⋅+ 【考点定位】等差数列、错位相减求和3. 【2014高考全国1第17题】已知数列{}n a 的前n 项和为n S ,11a =,0n a ≠,11n n n a a S λ+=-,其中λ为常数,(I )证明:2n n a a λ+-=;(II )是否存在λ,使得{}n a 为等差数列?并说明理由. 【答案】(I )详见解析;(II )存在,4λ=.【考点定位】递推公式、数列的通项公式、等差数列. 4. 【2014高考全国2第17题】已知数列{}n a 满足1a =1,131n n a a +=+.(Ⅰ)证明{}12n a +是等比数列,并求{}n a 的通项公式;(Ⅱ)证明:1231112na a a ++<…+.【答案】n a =312n -【解析】本题第(1)问,证明等比数列,可利用等比数列的定义来证明,之后利用等比数列,求出其通项公式;对第(2)问,可先由第(1)问求出1na ,然后转化为等比数列求和,放缩法证明不等式.试题解析:(1)证明:由131n n a a +=+得1113()22n n a a ++=+3,(2)由(1因为当1n ≥时,13123n n --≥⋅,所以+1na 1113n -≤+++=1+21a +1n a 32< 【考点定位】本小题考查等比数列的定义、数列通项公式的求解、数列中不等式的证明5. 【2014高考山东卷第19题】已知等差数列{}n a 的公差为2,前n 项和为n S ,且124,,S S S 成等比数列. (Ⅰ)求数列{}n a 的通项公式;(Ⅱ)令114(1)n n n n nb a a -+=-,求数列{}n b 的前n 项和n T .【答案】(I )21n a n =-.(II )22,212,21n n n n T n n n +⎧⎪⎪+=⎨⎪⎪+⎩为奇数为偶数,(或1n 21(1)2+1n n T n -++-=)(II )11144(1)(1)(21)(21)n n n n n n nb a a n n --+=-=--+111(1)()2121n n n -=-+-+ 当n 为偶数时,1111111(1)()()()33523212121n T n n n n =+-+++--+---+1121n =-+221nn =+ 当n 为奇数时,1111111(1)()()()33523212121n T n n n n =+-++++-+---+1121n =++2221n n +=+ 所以22,212,21n n n n T n n n +⎧⎪⎪+=⎨⎪⎪+⎩为奇数为偶数,(或1n 21(1)2+1n n T n -++-=)【考点定位】等差数列的前n 项和、等比数列及其性质 。
高考数学《数列求和》重要考点整理
(3)
1 n+
n+1=
n+1-
n;
(4)loga1+1n=loga(n+1)-logan.
7
一、思考辨析(正确的打“√”,错误的打“×”)
(1)如果数列{an}为等比数列,且公比不等于1,则其前n项和Sn
=a11--aqn+1.
()
(2)当n≥2时,n2-1 1=12n-1 1-n+1 1.
()
8
3
4.错位相减法 如果一个数列的各项是由一个等差数列和一个等比数列的对应 项之积构成的,这个数列的前n项和可用错位相减法求解. 5.倒序相加法 如果一个数列{an}的前n项中与首末两端等“距离”的两项的和 相等或等于同一个常数,那么求这个数列的前n项和即可用倒序相 加法求解.
4
6.并项求和法 一个数列的前n项和中,可两两结合求解,则称之为并项求 和.形如an=(-1)nf(n)类型,可采用两项合并求解. 例如,Sn=1002-992+982-972+…+22-12 =(100+99)+(98+97)+…+(2+1)=5 050.
(3)求Sn=a+2a2+3a3+…+nan之和时只要把上式等号两边同
时乘以a即可根据错位相减法求得.
()
(4)推导等差数列求和公式的方法叫做倒序求和法,利用此法可
求得sin21°+sin22°+sin23°+…+sin288°+sin289°=44.5.
()
[答案] (1)√ (2)√ (3)× (4)√
5
[常用结论] 1.一些常见的数列前n项和公式 (1)1+2+3+4+…+n=nn+ 2 1; (2)1+3+5+7+…+2n-1=n2; (3)2+4+6+8+…+2n=n2+n.
6
2.常用的裂项公式
高考数学考点10数列求和.docx
温馨提示:此题库为Word 版,请按住Ctrl,滑动鼠标滚轴,调节合适的观 看比例,关闭Word 文档返回原板块。
考点10 数列求和一、选择题1.(2012·大纲版全国卷高考理科·T5)已知等差数列{}n a 的前n 项和为n S ,55a =,515S =,则数列11{}n n a a +的前100项和为( ) (A )100101 (B )99101 (C )99100 (D )101100【解题指南】本题考查等差数列的通项公式和前n 项和公式的运用,以及裂项求和的综合应用,通过a 5=5,S 5=15,求出1a 和d ,进而求出等差数列的通项公式,利用裂项法求和.【解析】选A.设{}n a 的公差为d,则有115a 4d 55(a a )152+=⎧⎪⎨⨯+=⎪⎩,,解得1,11==d a ,则n a n =, 111)1(111+-=+=+n n n n a a n n ,设数列11{}n n a a +的前100项和为T 100, 100111111100T (1)()()1223100101101101∴=-+-+⋅⋅⋅+-=-=. 2.(2012·大纲版全国卷高考文科·T6)已知数列{}n a 的前n 项和为n S ,11=a ,12+=n n a S ,则=n S ( )(A )12-n (B )1)23(-n (C )1)32(-n (D )121-n【解题指南】思路一:利用公式1--=n n n S S a ,求出1,+n n a a 之间的关系.思路二:采用特殊值法,求出2a ,在四个选项中求2S 进行验证.【解析】选B.方法一:当1=n 时,11=a ,当2≥n 时,n n n n n a a S S a 2211-=-=+-,解得123+=n n a a ,23`1=∴+n n a a ,n n 21,n 1,a 13(),n 2,22-=⎧⎪∴=⎨≥⎪⎩11)23(231)23(21211--=--+=∴n n n S .方法二:2112a a S ==Θ,12=∴a .311212=+=+=∴a a S .3.(2012·重庆高考理科·T1)在等差数列{}n a 中,,5,142==a a 则{}n a 的前5项和=5S ( )(A)7 (B)15 (C)20 (D)25【解题指南】直接根据等差数列的性质即可求出前5项的和5S 的值. 【解析】选B. 因为{}n a 为等差数列,且,5,142==a a 则152)51(52)(52)(542515=+=+=+=a a a a S . 二、解答题4. (2012·重庆高考文科·T16)已知{}n a 为等差数列,且831=+a a ,.1242=+a a (1)求{}n a 的通项公式;(2)记{}n a 的前n 项和为n S ,若21,,+k k S a a 成等比数列,求正整数k 的值.【解题指南】直接根据等差数列、等比数列的定义及等差数列的前n 项和公式求解即可.【解析】(1)设数列{}n a 的公差为d ,由题意知112a 2d 8,2a 4d 12,+=⎧⎨+=⎩解得2,21==d a ,所以n n d n a a n 2)1(22)1(1=-+=-+=,即n a 2n =. (2)由(1)可得).1(2)22(2)(1+=+=+=n n n n a a n S n n 因21,,+k k S a a 成等比数列,所以212+=k k S a a ,从而)3)(2(2)2(2++=k k k ,即0652=--k k ,解得6=k 或1-=k (舍去) , 因此6=k .关闭Word 文档返回原板块。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
考点10 数列求和
一、选择题
1.(2012·大纲版全国卷高考理科·T5)已知等差数列{}n a 的前n 项和为n S ,55a =,515S =,则数列11{}n n a a +的前100项和为( ) 100101 (B )(A )99101
(C )99100 (D )101100 【解题指南】本题考查等差数列的通项公式和前n 项和公式的运用,以及裂项求和的综合应用,通过a 5=5,S 5=15,求出1a 和d ,进而求出等差数列的通项公式,利用裂项法求和.
【解析】选A.设{}n a 的公差为d,则有115a 4d 55(a a )152
+=⎧⎪⎨⨯+=⎪⎩,,解得1,11==d a ,则n a n =, 111)1(111+-=+=+n n n n a a n n ,设数列1
1{}n n a a +的前100项和为T 100, 100111111100T (1)()()1223100101101101
∴=-+-+⋅⋅⋅+-=-=. 2.(2012·大纲版全国卷高考文科·T6)已知数列{}n a 的前n 项和为n S ,11=a ,12+=n n a S ,则=n S ( )
(A )12-n (B )1)23
(-n (C )1)32
(-n (D )121
-n
【解题指南】思路一:利用公式1--=n n n S S a ,求出1,+n n a a 之间的关系.
思路二:采用特殊值法,求出2a ,在四个选项中求2S 进行验证.
【解析】选B.方法一:当1=n 时,11=a ,
当2≥n 时,n n n n n a a S S a 2211-=-=+-,解得123+=n n a a ,
23`1=∴+n n a a ,n n 21,n 1,a 13(),n 2,22-=⎧⎪∴=⎨≥⎪⎩11)23(2
31)23(21211--=--+=∴n n n S . 方法二:2112a a S ==Θ,212=∴a .2
3211212=+=+=∴a a S . 选项 代入验证 验证标准 是否符合
3.(2012·重庆高考理科·T1)在等差数列{}n a 中,,5,142==a a 则{}n a 的前5项和=5S ( )
(A)7 (B)15 (C)20 (D)25
【解题指南】直接根据等差数列的性质即可求出前5项的和5S 的值.
【解析】选B. 因为{}n a 为等差数列,且,5,142==a a 则152)
51(5
2)(52)(
542515=+=+=+=a a a a S .
二、解答题
4. (2012·重庆高考文科·T16)已知{}n a 为等差数列,且831=+a a ,.1242=+a a
(1)求{}n a 的通项公式;
(2)记{}n a 的前n 项和为n S ,若21,,+k k S a a 成等比数列,求正整数k 的值.
【解题指南】直接根据等差数列、等比数列的定义及等差数列的前n 项和公式求解即可.
【解析】(1)设数列{}n a 的公差为d ,由题意知
11
2a 2d 8,
2a 4d 12,+=⎧⎨+=⎩解得2,
21==d a ,
所以n n d n a a n 2)1(22)1(1=-+=-+=,即n a 2n =.
(2)由(1)可得).1(2)
22(2)
(1+=+=+=n n n n a a n S n n
因21,,+k k S a a 成等比数列,所以212
+=k k S a a ,
从而)3)(2(2)2(2++=k k k ,即0652=--k k ,解得6=k 或1-=k (舍去) , 因此6=k .
A.12-n 22=S 2
32=S 否 B.1)23(-n 232=S 是 C.1)32(-n 322=S 否 D.121-n 212=S 否。