高考数学专题复习数列求和
高考数学一轮复习《数列求和》练习题(含答案)

高考数学一轮复习《数列求和》练习题(含答案)一、单选题1.已知数列{}n a 满足()213nn n a a ++-=,11a =,22a =,数列{}n a 的前n 项和为n S ,则30S =( ) A .351 B .353C .531D .5332.已知)*n a n N =∈,则12380a a a a +++⋅⋅⋅+=( ) A .7B .8C .9D .103.已知数列{}n a 满足11a =,()111n n na n a +=++,令nn a b n=,若对于任意*N n ∈,不等式142t n b +<-恒成立,则实数t 的取值范围为( ) A .3,2⎛⎤-∞- ⎥⎝⎦B .(],1-∞-C .(],0-∞D .(],1-∞4.数列{}n a 的前n 项的和n S 满足*1(N )n n S S n n ++=∈,则下列选项中正确的是( )A .数列{}1n n a a ++是常数列B .若113a <,则{}n a 是递增数列C .若11a =-,则20221013S =D .若11a =,则{}n a 的最小项的值为1-5.高斯是德国著名的数学家,近代数学奠基者之一,享有“数学王子”的称号.设x ∈R ,用[]x 表示不超过x 的最大整数,则()[]f x x =称为高斯函数.已知数列{}n a 满足21a =,且121(1)2n n n n a na +++-=,若[]lg n n b a =数列{}n b 的前n 项和为n T ,则2021T =( ) A .3950B .3953C .3840D .38456.已知数列{}n a 的前n 项和为n S ,112a =,对任意的*n ∈N 都有1(2)n n na n a +=+,则2021S =( ) A .20192020B .20202021C .20212022D .101010117.已知数列{}n a 的前n 项和为n S ,且满足12πcos 3n n n n a a a ++++=,11a =,则2023S =( )A .0B .12C .lD .328.已知函数0()e ,xf x x =记函数()n f x 为(1)()n f x -的导函数(N )n *∈,函数()n y f x =的图象在1x =处的切线与x 轴相交的横坐标为n x ,则11ni i i x x +==∑( )A .()132n n ++B .()33nn +C .()()23nn n ++D .()()123n n n +++9.数列{}n a 中,12a =,且112n n n n n a a a a --+=+-(2n ≥),则数列()211n a ⎧⎫⎪⎪⎨⎬-⎪⎪⎩⎭前2021项和为( ) A .20211010B .20211011C .20191010D .4040202110.执行如图所示的程序框图,则输出S 的值为( )A .20202019B .20212020C .20192020D .2020202111.已知数列{an }的前n 项和Sn 满足2n S n =,记数列11n n a a +⎧⎫⎨⎬⎩⎭的前n 项和为Tn ,n ∈N *.则使得T 20的值为( ) A .1939B .3839C .2041D .404112.已知数列{}n a 满足()22N n n n a a n *++=∈,则{}n a 的前20项和20S =( )A .20215-B .20225-C .21215-D .21225-二、填空题13.等差数列{}n a 中,11a =,59a =,若数列11n n a a +⎧⎫⎨⎬⋅⎩⎭的前n 项和为n S ,则10S =___________. 14.已知数列{}n a 满足,()2*111,(1)2,n n n a a a n n n N -=--=-⋅≥∈,则20a =__________.15.在等差数列{}n a 中,72615,18a a a =+=,若数列{}(1)nn a -的前n 项之和为n S ,则100S =__________.16.若数列{}n a 满足()1*1(1)2n n n n a a n ++=-+∈N ,令1351924620,S a a a a T a a a a =++++=++++,则=TS__________.三、解答题17.设n S 为等差数列{}n a 的前n 项和,且32a =,47S =. (1)求{}n a 的通项公式; (2)设11n n n b a a +=,求数列{}n b 的前n 项和n T .18.已知数列{}n a 的前n 项和22n S n n =+. (1)求{}n a 通项公式; (2)设11n n n b a a +=,{}n b 的前n 项和为n T ,求n T .19.已知数列{}n a 满足111,2n n a a a +==,数列{}n b 满足*111,2,n n b b b n +=-=∈N .(1)求数列{}n a 及{}n b 的通项公式; (2)求数列{}n n a b ⋅的前n 项和n S .20.已知数列{}n a 的首项113a =,且满足1341n n n a a a +=+. (1)证明:数列12n a ⎧⎫-⎨⎬⎩⎭是等比数列.(2)若12311112022na a a a ++++<,求正整数n 的最大值.21.已知数列{}n a 满足:11a =,121n n a a n +=+-. (1)设n n b a n =+,证明:数列{}n b 是等比数列; (2)设数列{}n a 的前n 项和为n S ,求n S .22.已知递增数列{}n a 的前n 项和为n S ,且22n n S a n =+,数列{}n b 满足1142,4b a b a ==,221,.n n n b b b n N *++=∈(1)求数列{}n a 和{}n b 的通项公式;(2)记21(67),83log ,nnn n n b n S c b n +-⎧⎪-=⎨⎪⎩为奇数为偶数,数列{}n c 的前2n 项和为2n T ,若不等式24(1)41n nn T n λ-+<+对一切n N *∈恒成立,求λ的取值范围.23.设正项数列{}n a 的前n 项和为n S ,11a =,且满足___________.给出下列三个条件: ①48a =,()112lg lg lg 2n n n a a a n -+=+≥;②()1n n S pa p =-∈R ;③()()12323412nn a a a n a kn k +++⋅⋅⋅++=⋅∈R .请从其中任选一个将题目补充完整,并求解以下问题: (1)求数列{}n a 的通项公式;(2)设()22121log n n b n a =+⋅,n T 是数列{}n b 的前n 项和,求证:1132n T ≤<.24.已知数列{}n a 的各项均为正整数,11a =.(1)若数列{}n a 是等差数列,且101020a <<,求数列11n n a a +⎧⎫⎨⎬⎩⎭的前n 项和n S ;(2)若对任意的*n ∈N ,都有2112112n n n n a a a a +++-<+,求证:12n na a +=参考答案1.B2.B3.D4.D5.D6.C7.C8.B9.B10.D11.C12.D 13.102114.210 15.100 16.2317.(1)设等差数列{}n a 的公差为d ,由32a =,47S =,可得1122,43472a d a d +=⎧⎪⎨⨯+⨯=⎪⎩,解得111,2a d ==, 所以数列{}n a 的通项公式为()111122n n a n +=+-=. (2)由(1)知12n n a +=,则11221141212n n n b a a n n n n +⎛⎫==⋅=- ⎪++++⎝⎭, 故111111114442233412222n T n n n n ⎛⎫⎛⎫=-+-++-=-=- ⎪ ⎪++++⎝⎭⎝⎭. 18.(1)当2n ≥时,2212(1)2(1)21n n n a S S n n n n n --=+----=+=, 当1n =时,由113a S ==,符合上式.所以{}n a 的通项公式为21n a n =+. (2)∵21n a n =+, ∴()()111111212322123n n n b a a n n n n +⎛⎫===- ⎪++++⎝⎭, ∴1111111235572123n T n n ⎡⎤⎛⎫⎛⎫⎛⎫=-+-++- ⎪ ⎪ ⎪⎢⎥++⎝⎭⎝⎭⎝⎭⎣⎦111232369n n n ⎛⎫=-= ⎪++⎝⎭. 19.(1)由已知111,2n n a a a +==所以数列{}n a 是以1为首项,2为公比的等比数列,12n n a -=数列{}n b 满足111,2n n b b b +=-=所以{}n b 是以1为首项,2为公差的等差数列 21n b n =-(2)()11132212n n S n -=⨯+⨯++-①对上式两边同乘以2,整理得()221232212n n S n =⨯+⨯++-②①-②得()()2112222212n n n S n --=++++--()()12121221212n n n --=+⨯---()2323n n =---所以()2323nn S n =⋅-+20.(1)易知{}n a 各项均为正,对1341n n n a a a +=+两边同时取倒数得1111433n n a a +=⋅+, 即1111223n n a a +⎛⎫-=- ⎪⎝⎭,因为1121a -=,所以数列12n a ⎧⎫-⎨⎬⎩⎭是以1为首项,13为公比的等比数列.(2)由(1)知11111233n n n a --⎛⎫-==⎪⎝⎭,即11123n n a -=+, 所以()12311311113122112313n n n f n n n a a a a ⎛⎫⎛⎫- ⎪⎪ ⎪⎝⎭⎛⎫⎝⎭=++++=+=+- ⎪⎝⎭-, 显然()f n 单调递增,因为()10101011313110102021.52022,(1011)2023.520222323f f =-<=-⋅>,所以n 的最大值为1010. 21.(1)数列{}n a 满足:11a =,121n n a a n +=+-. 由n n b a n =+,那么111n n b a n ++=++, ∴1112112n n n n n n b a n a n n b a n a n+++++-++===++; 即公比2q,1112b a =+=,∴数列{}n b 是首项为2,公比为2的等比数列;(2)由(1)可得2nn b =,∴2nn a n +=,那么数列{}n a 的通项公式为:2nn a n =-,数列{}n a 的前n 项和为232122232nn S n =-+-+-+⋅⋅⋅+-()2121222(123)2222nn n n n +=++⋅⋅⋅+-+++⋅⋅⋅+=---.22.(1)解:因为22n n S a n =+,当n =1时,得11a =,当2n ≥时,21121n n S a n --=+-,所以22121n n n a a a -=-+,即221(1)n n a a -=-,又因为数列{}n a 为递增数列,所以11n n a a --=, 数列{}n a 为等差数列, 11a =,d =1, 所以n a n =;所以1142841,b a b a ====, 又因为221,.n n n b b b n N *++=∈ 所以数列{}n b 为等比数列,所以33418b b q q ===,解得2q,所以12n n b -=.(2)由题意可知:(1)2n n n S +=, 所以()2167,83log ,n n n n n b n c S b n +⎧-⎪=-⎨⎪⎩为奇数为偶数,故2(67)2,443,n n n n c n n n n -⎧-⎪=+-⎨⎪⎩1为奇数为偶数 , 设{}n c 的前2n 项和中,奇数项的和为n P ,偶数项的和为n Q 所以135212462=,=,n n n n P c c c c Q c c c c -++++++++当n 为奇数时,()()2)2123(67)2(67222=,4432321n n n n n n n c n n n n n n --+----==-+-++-1111所以42220264135221222222==5195132414329n n n n P n c c c n c --⎛⎫⎛⎫⎪+⎛⎫⎛⎫++++-+-+-++ ⎪ ⎪⎭-- ⎪ ⎝⎝⎭⎝⎭⎝⎭0,44411=412=1n nn n --++ 当n 为偶数时n c n =,所以()()246222==246212n n n nQ c c c c n n n +++++++++==+,故()2,4=4=111n n n n T n n P Q n -++++故24(1)41n nn T n λ-+<+,即()()111144(1)(1)4141n nnn n n n n n n λλ-+<-+-++⇒-+<++当n 为偶数时,21n n λ<+-对一切偶数成立,所以5λ<当n 为奇数时,21n n λ<+--对一切奇数成立,所以此时1λ>- 故对一切n N *∈恒成立,则15λ-<< 23.(1)若选①,因为()112lg lg lg 2n n n a a a n -+=+≥,所以()2112n n n a a a n -+=≥,所以数列{}n a 是等比数列设数列{}n a 的公比为q ,0q >由33418a a q q ===得2q所以12n n a -=若选②,因为()1n n S pa p =-∈R ,当1n =时,1111S pa a =-=,所以2p =,即21n n S a =- 当2n ≥时,1122n n n n n a S S a a --=-=-,所以()122n n a a n -=≥ 所以数列{}n a 是以1为首项,2为公比的等比数列所以12n n a -=若选③,因为()()12323412nn a a a n a kn k +++⋅⋅⋅++=⋅∈R ,当1n =时,11222a k =⋅=,所以1k =,即()12323412n n a a a n a n +++⋅⋅⋅++=⋅当2n ≥时,()1123123412n n a a a na n --+++⋅⋅⋅+=-⋅,所以()()()11122n n n a n n -+=+⋅≥,即()122n n a n -=≥,当1n =时,上式也成立,所以12n n a -=(2) 由(1)得()()()221111121log 212122121n n b n a n n n n ⎛⎫===- ⎪+⋅+⋅--+⎝⎭所以()111111111233521212221n T n n n ⎛⎫=-+-+⋅⋅⋅+-=- ⎪-++⎝⎭ ∵*N n ∈,∴()10221n >+,∴()11122212n T n =-<+ 易证*n ∈N 时,()112221n T n =-+是增函数,∴()113n T T ≥=.故1132n T ≤<24.(1)解:设数列{}n a 的公差为d ,由10101920a d <=+<,可得1919d <<, 又由数列{}n a 的各项均为正整数,故2d =,所以21n a n =-, 于是()()()111111221212121n n a a n n n n +==--+-+,所以111111111121335212122121n nS n n n n ⎛⎫⎛⎫=-+-+⋅⋅⋅+-=-=⎪ ⎪-+++⎝⎭⎝⎭. (2)解:因为{}n a 各项均为正整数,即1n a ≥,故112nna a ≥+,于是()211112122112n n n n n n n n n n a a a a a a a a a a +++++-=-≥-++, 又因为21121<12n n n n a a a a +++-+,所以121n n a a +-<, 由题意12n na a +-为整数,所以只能120n n a a +-=,即12n n a a +=。
高三数学最新复习课件数列求和(共42张PPT)

数列的通项的和,分别求出每个数列的和,从
而求出原数列的和.
例1
求下面数列的前 n 项和: 1 1 1 1+1,a+4, 2+7,…, n-1+3n-路点拨】
1 1 1 【解】 Sn= (1+ 1)+( + 4)+ ( 2+ 7)+…+ ( n-1+ 3n a a a - 2) 1 1 1 = (1+ + 2+…+ n-1)+ [1+4+ 7+…+(3n-2)]. a a a 1 1 1 令 Bn= 1+ + 2+…+ n-1, a a a an-1 ∴当 a= 1 时, Bn= n;当 a≠ 1 时, Bn= n n- 1, a -a 3n-1 n Cn= 1+ 4+ 7+…+(3n- 2)= . 2
【名师点评】
利用错位相减法求和时,转化为
等比数列求和.若公比是参数(字母),则应先对参
数加以讨论,一般情况下分等于1和不等于1两种
情况分别进行求和.
裂项相消法求和 裂项相消是将数列的项分裂为两项之差,通过
求和相互抵消,从而达到求和的目的.
例3 (2011 年博州质检 )已知数列 {an}中, a1= 1,
错位相减法求和 一般地,如果数列{an}是等差数列,{bn}是等比 数列,求数列{an· bn}的前n项和时,可采用错位 相减法.
例2
知数列{an}满足a1,a2-a1,a3-a2,…,an
-an-1,…是首项为1,公比为a的等比数列. (1)求an; (2)如果a=2,bn=(2n-1)an,求数列{bn}的前n项 和 S n.
等比数列,再求解.
4.裂项相消法 把数列的通项拆成两项之差求和,正负相消剩 下首尾若干项. 5.倒序相加法 把数列正着写和倒着写再相加(即等差数列求和
公式的推导过程的推广).
高考数学专题复习题:数列求和

高考数学专题复习题:数列求和一、单项选择题(共8小题)1.某旅游景区计划将山脚下的一片荒地改造成一个停车场,根据地形,设计7排停车位,靠近山脚的第1排设计9个停车位,从第2排开始,每排设计的停车位个数是上一排的2倍减去8,则设计的停车位的总数是( ) A .172B .183C .286D .3112.在数列{}n a 中,已知112a =,1(2)n n n a na ++=,则它的前30项的和为( ) A .1929B .2829C .2930D .30313.已知{}n a 是递增的等比数列 ,且34528++=a a a ,等差数列{}n b 满足23b a =,542b a =+,85b a =.如果m 为正整数,且对任意的*n ∈N ,都有12231nn b b b m a a a +≥+++,那么m 的最小值为( ) A .8B .7C .5D .44.数列{}n a 的前n 项和为n S ,11a =−,*(1)(N )n n na S n n n =+−∈,设(1)n n n b a =−,则数列{}n b 的前51项之和为( ) A .149−B .49−C .49D .1495.已知递推数列{}n a 满足11a =,()*121n n a a n +=+∈N ,如果n S 是数列{}n a 的前n 项和,那么9S =( ) A .9210−B .9211−C .10210−D .10211−6.如图,某地毯是一系列正方形图案,在4个大正方形中,着色的小正方形的个数依次构成一个数列{a n }的前4项. 记12100111S a a a =++⋅⋅⋅+,则下列结论正确的为( )A .87S >B .87S =C .87S <D .S 与87的大小关系不能确定7.已知首项为2的数列{}n a 满足114522n n n n a a a a ++−−=,当{}n a 的前n 项和16n S ≥时,则n 的最小值为( ) A .40B .41C .42D .438.如图,用相同的球堆成若干堆“正三棱锥”形的装饰品,其中第1堆只有1层,且只有1个球;第2堆有2层4个球,其中第1层有1个球,第2层有3个球;依次递推;第n 堆有n 层共n S 个球,第1层有1个球,第2层有3个球,第3层有6个球,依次递推.已知201540S =,则2021n n ==∑( )A .2290B .2540C .2650D .2870二、多选题(共3小题)9.已知函数()f x 满足22()()()()f x y f x y f x f y +−=−,(1)1f =,(2)0f =,下列说法正确的是( ) A .(3)1f =−B .(2024)0f =C .21()x k k =+∈Z 时,()(1)kf x =−D .20241()2024k f k ==∑10.利用不等式“ln 10x x −+≤,当且仅当x =1时,等号成立”可得到许多与n (2n ≥且*n ∈N )有关的结论,则下列结论正确的是( ) A .111ln 1231n n <+++⋅⋅⋅+− B .1111ln 4562n n>+++⋅⋅⋅+C .()()()()12121412e 2n n n+++⋅⋅⋅+>⋅D .e12e 1n n n n n ++⋅⋅⋅+<⋅− 11.“杨辉三角”是二项式系数在三角形中的一种几何排列,从第1行开始,第n 行从左至右的数字之和记为n a ,如{}12112,1214,,n a a a =+==++=⋅⋅⋅的前n 项和记为n S ,依次去掉每一行中所有的1构成的新数列2,3,3,4,6,4,5,10,10,5,...,记为{b n },{b n }的前n 项和记为n T ,则下列说法正确的有( )A .101022S =B .12n n n a S S +⎧⎫⎨⎬⋅⎩⎭的前n 项和21122n a +−− C .5766b =D .574150T =三、填空题(共3小题)12.在数列{}n a 中,11a =且1n n a a n +=,当20n ≥时,1231112n n na a a a a λ+++⋅⋅⋅+≤+−,则实数λ的取值范围为__________.13.已知数列{}n a 满足111,21n n a a a n +=+=+,则其前9项和9S =__________,数列1n S ⎧⎫⎨⎬⎩⎭的前2024项的和为__________. 14.函数()[]f x x =称为高斯函数,其中[]x 表示不超过x 的最大整数,如][2.32, 1.92⎡⎤=−=−⎣⎦,已知数列{}n a 满足121,5a a ==,2145n n n a a a +++=,若[]21log ,n n n b a S +=为数列18108n n b b +⎧⎫⎨⎬⋅⎩⎭的前n 项和,则[]2025S =__________.四、解答题(共5小题)15.已知数列{}n a ,{}n b 中,14a =,12b =−,{}n a 是公差为1的等差数列,数列{}n n a b +是公比为2的等比数列. (1)求数列{}n b 的通项公式. (2)求数列{}n b 的前n 项和n T . 16.已知数列{}n a 满足122n n a a n +−=+. (1)证明:数列{}2n a n −是等差数列.(2)若12a =,求数列1n a ⎧⎫⎨⎬⎩⎭的前n 项和n S .17.已知数列{}n a 是递增的等差数列,它的前三项和为9,前三项的积为15. (1)求数列{}n a 的通项公式. (2)记b n =1(an+1)2,设数列{}n b 的前n 项和为n T ,求证:14n T <.18.已知{}n a 是等差数列,{}n b 是等比数列,且{}n b 的前n 项和为n S ,1122a b ==,()5435a a a =−,在①()5434b b b =−,②12n n b S +=+这两个条件中任选其中一个,完成下面问题的解答.(1)求数列{}n a 和{}n b 的通项公式.(2)设数列n n a b ⎧⎫⎨⎬⎩⎭的前n 项和为n T ,求n T .19.已知2()cos 2x f x a x =+.(1)若()f x 在π0,2⎡⎤⎢⎥⎣⎦上单调递增,求a 的取值范围.(2)证明:()2*11112111tan1212tan 3tantan 23n nn n n n−++++>∈+N . 参考答案12.(],1−∞13.45,4048202514.202515.(1)23nn b n =−− (2)n T 217222n n n+−−− 16.(1)通过构造()()22111n n a n a n +⎡⎤−+−−=⎣⎦证明即可 (2)1n nS n =+. 17.(1)21n a n =− (2)先求数列{}n b 的通项,放缩后再裂项求和即可证明。
高考数学总复习6.4数列求和市赛课公开课一等奖省优质课获奖课件

则 S2 017=________.
【解析】 因为数列
an=ncos
n2π呈周期性变化,观察此数
列规律如下:a1=0,a2=-2,a3=0,a4=4. 故 S4=a1+a2+a3+a4=2.
∴S2 017=S2 016+a2 017
=2 0416×2+2 017·cos2 0217π
=1 008.
【答案】 1 008
…;a3,a6,a9,…分别成等差数列,且公差为2,
22/45
∴ S25 = (a1 + a4 + a7 + … + a25) + (a2 + a5 + … + a23) + (a3 + a6 + … + a24) = 1×9+9×2 8×2 + 2×8+8×2 7×2 + 3×8+8×2 7×2=233.
边同时乘以 a 即可根据错位相减法求得.( )
7/45
(4)数列21n+2n-1的前 n 项和为 n2+21n.(
)
(5)推导等差数列求和公式的方法叫做倒序求和法,利用此法
可求得 sin21°+sin22°+sin23°+…+sin288°+sin289°=
44.5.( )
【答案】 (1)√ (2)√ (3)× (4)× (5)√
21Tn=12+232+253+274+295+…+2n2-n 1.② ①-②可得 21Tn=2+21+212+…+2n1-2-2n2-n 1=3-2n2+n 3, 故 Tn=6-22nn+-13.
26/45
【方法规律】 用错位相减法求和时,应注意: (1)要善于识别题目类型,尤其是等比数列公比为负数情形 ; (2)在写出“Sn”与“qSn”表示式时应尤其注意将两式“错项对 齐”方便下一步准确写出“Sn-qSn”表示式; (3)在应用错位相减法求和时,若等比数列公比为参数,应 分公比等于1和不等于1两种情况求解.
数列求和5种常考题型总结(解析版)--2024高考数学常考题型精华版

数列求和5种常考题型总结【题型目录】题型一:分组求和法题型二:裂项相消法求和题型三:错位相减法求和题型四:先求和,再证不等式题型五:先放缩,再求和【典型例题】【例1】已知数列{}n a 的前n 项和1*44(N )33n n S n +=-∈.(1)求数列{}n a 的通项公式;(2)若2log n n n b a a =+,求数列{}n b 的前n 项和n T .【例2】已知各项均为正数的数列{}n a 中,11a =且满足221122n n n n a a a a ++-=+,数列{}n b 的前n 项和为n S ,满足213n n S b +=.(1)求数列{}n a ,{}n b 的通项公式;(2)若在k b 与1k b +之间依次插入数列{}n a 中的k 项构成新数列{}1122334564:,,,,,,,,,,n c b a b a a b a a a b ,求数列{}n c 中前40项的和40T .【例3】设n S 是各项为正的等比数列{}n a 的前n 项的和,且*2334N S a n ∈=,=,.(1)求数列{}n a 的通项公式;(2)在数列{}n a 的任意k a 与1k a +项之间,都插入()*N k k ∈个相同的数()1kk -,组成数列{}n b ,记数列{}n b 的前n 项的和为n T ,求100T 的值.【题型专练】1.已知数列{}n a 是等差数列,数列{}n b 是等比数列,若111a b ==,22331a b a b -=-=.(1)求数列{}n a 与数列{}n b 的通项公式;(2)求数列{}n n a b +的前n 项和n S .2.已知数列{}n a 的前n 项和为n S ,且11n n n S S a +=++,请在①4713a a +=;②137,,a a a 成等比数列;③1065S =,这三个条件中任选一个补充在上面题干中,并解答下面问题.(1)求数列{}n a 的通项公式;(2)若数列{}n n b a -是公比为2的等比数列,13b =,求数列{}n b 的前n 项和n T .3.(2022·广东广州·一模)已知公差不为0的等差数列{}n a 中,11a =,4a 是2a 和8a 的等比中项.(1)求数列{}n a 的通项公式:(2)保持数列{}n a 中各项先后顺序不变,在k a 与1(1,2,)k a k += 之间插入2k ,使它们和原数列的项构成一个新的数列{}n b ,记{}n b 的前n 项和为n T ,求20T 的值.4.已知等差数列{}n a 满足121,21n n a a a ==+,设2n an b =.(1)求{}n b 的通项公式,并证明数列{}n b 为等比数列;(2)将1b 插入12,a a 中,23,b b 插入23,a a 中,456,,b b b 插入34,a a 中, ,依此规律得到新数列1122334564,,,,,,,,,,a b a b b a b b b a ,求该数列前20项的和.题型二:裂项相消法求和【例1】首项为4的等比数列{}n a 的前n 项和记为n S ,其中546S S S 、、成等差数列.(1)求数列{}n a 的通项公式;100【例2】已知数列{}n a 的首项为正数,其前n 项和n S 满足2343n n n nS a S a =--.(1)求实数λ的值,使得{}2n S λ+是等比数列;(2)设13n n n n b S S +=,求数列{}2n b 的前n 项和.【解析】(1)当1n =时,111823a a a =-,11S a =,解得22118S a ==;当2n ≥时,把1n n n a S S -=-代入题设条件得:22198n n S S -=+,即()221191nn S S -+=+,很显然}{21n S +是首项为8+1=9,公比为9的等比数列,∴1λ=;(2)由(1)知{}21n S +是首项为21190S +=≠,公比9q =的等比数列,所以291nnS =-,()()()()()()1211191919111188919919199111n nnnn n n n n n b ++++---⎛⎫==⨯=- ---⎝---⎭.故数列{}2n b 的前n 项和为:2221122334112111111111111891919191919191918891n n n n b b b ++⎛⎫⎛⎫++⋅⋅⋅+=-+-+-++-=- ⎪ ⎪---------⎝⎭⎝⎭.【例3】数列{}n a 的前n 项和n S ,342n n S a =-.(1)求n a ;(2)令2log 1n n b a =,求数列{}1n n b b +的前n 项和n T .)问的结论以及对数的运算性质,再利用裂项相消法进行求解【例4】(湖北省二十一所重点中学2023届高三上学期第三次联考数学试题)已知等差数列{}n a 的首项10a >,记数列{}n a 的前n 项和为()*N n S n ∈,且数列为等差数列.(1)证明:数列2n S n ⎧⎫⎨⎬⎩⎭为常数列;(2)设数列11n n n a S a a +⎧⎫⎨⎩⎭的前n 项和为()*N n T n ∈,求{}n T 的通项公式.【例5】已知数列{}n a 满足1n a +=11a =.(1)求数列{}n a 的通项公式;(2)1n c a a =+,n S 是数列{}n c 的前n 项和,求n S .【题型专练】1.记n S 为等比数列{}n a 的前n 项和.已知53227S S S -=-,且12,1,a a -成等差数列.(1)求{}n a 的通项公式;2.已知正项数列{}n a 的前n 项和为n S ,且满足22n n n S a a =+.(1)求数列{}n a 的通项公式;(2)设4n b a a =,数列{}n b 的前n 项和为n T ,证明:3n T <.3.已知数列{}n a 是公差不为零的等差数列,2414a a +=,且1a ,2a ,6a 成等比数列.(1)求{}n a 的通项公式;(2)设11n n n b a a +=,求数列{}n b 的前n 项和n S .【解析】(1)等差数列{}n a 中,324214a a a =+=,解得37a =,因1a ,2a ,6a 成等比数列,即2216a a a =,设{}n a 的公差为d ,于是得()()()277273d d d -=-+,整理得230d d -=,而0d ≠,解得3d =,所以()3332n a a n d n =+-=-.(2)由(1)知,()()1111()323133231n b n n n n ==--+-+,所以111111[(1)()()]34473231n S n n =-+-+⋅⋅⋅+--+11(1)33131nn n =-=++.4.记n S 为数列{}n a 的前n 项和,已知11a =,且13n n S a +=-.(1)求数列{}n a 的通项公式;(2)已知数列{}n c 满足________,记n T 为数列{}n c 的前n 项和,证明:2n T <.从①211(1)(2)n n n n c a a a +++--=②221log n n n a c a ++=两个条件中任选一个,补充在第(2)问中的横线上并作答.【解析】(1)13n n S a +=- ①,当1n =时,123a a =-,24a ∴=;当2n ≥时,13n n S a -=-②①-②得,即12n n a a +=又2142a a =≠,∴数列{}n a 是从第2项起的等比数列,即当2n ≥时,2222n nn a a -=⋅=.1,1,2, 2.n n n a n =⎧∴=⎨≥⎩.(2)若选择①:()()()()()()2211111122211212212121222121n n n n n n n n n n n n a c a a ++++++++⋅⎛⎫====- ⎪--------⎝⎭,2231111111121212212121212121n n n n T ++⎛⎫⎛⎫∴=-+-++-=-< ⎪ ⎪------⎝⎭⎝⎭.若选择②122n n n c ++=,则23134122222nn n n n T +++=++++ ③,34121341222222n n n n n T ++++=++++ ④,③-④得341212131112311212422224422n n n n n n n T ++-+++⎛⎫⎛⎫=++++-=+-- ⎪ ⎪⎝⎭⎝⎭ ,14222n n n T ++∴=-<.5.已知数列{}n a 前n 项和为n S ,且()21n S n n =+,记221(1)nn n n na b a a +=-+.(1)求数列{}n a 的通项公式;(2)设数列{}n b 的前n 项和为n T ,求2021T .【解析】(1)()112n S n n =+,当1n =时,111212S =⨯⨯=;当2n ≥,n *∈N 时,()1112n S n n -=-,()()1111122n n n a S S n n n n n -=-=+--=.当1n =时也符合,()n a n n N *∴=∈.(2)()()()()()()221212111111111nn n n n n n n n n a n b a a n n n n n n ++++⎛⎫=-=-=-=-+ ⎪++++⎝⎭202111111111 (122)33420212022T ⎛⎫⎛⎫⎛⎫⎛⎫∴=-++-++-+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭111111112023=1 (1223342021202220222022)--++--+--=--=-.题型三:错位相减法求和【例1】已知数列{}n a 满足12a =,且11220n n n n a a a a +++⋅-=,数列{}n b 是各项均为正数的等比数列,n S 为{}n b 的前n 项和,满足14b a =,378S =.(1)求数列{}n a 的通项公式;(2)设nnb C a =,记数列{}n C 的前n 项和为n T ,求n T 的取值范围.【例2】已知各项均不为零的数列{}n a 满足()1212320n n n n n a a a a a ++++-+=,且11a =,23a =,设1n n nb a a +=-.(1)证明:{}n b 为等比数列;(2)求1n n a ⎧⎫⎨⎬+⎩⎭的前n 项和n T .【例3】已知数列{}n a 的首项*112,322,N n n a a a n n -==+≥∈.(1)求n a ;(2)记()3log 1n n n b a a =⋅+,设数列{}n b 的前n 项和为n S ,求n S .【例4】已知各项为正数的数列{}n a 前n 项和为n S ,若()214n n S a =+.(1)求数列{}n a 的通项公式;(2)设3nn na b =,且数列{}n b 前n 项和为n T ,求证:1n T <.【例5】已知数列{}n a 的前n 项和n S 满足()*22N n n S a n =-∈.(1)求数列{}n a 的通项公式;(2)令4n n b a n =-,求数列n n b a ⎧⎫⎨⎬⎩⎭的前n 项和n T .【题型专练】1.若公比为c 的等比数列{}n a 的首项11a =且满足12(3,4,)2n n n a a a n --+==⋅⋅⋅.(1)求c 的值;(2)求数列{}n na 的前n 项和n S .2.已知数列{}n a 的前n 项和为n S ,11a =,121n n S a +=-.(1)求数列{}n a 的通项公式;(2)设(21)n n b n a =-,数列{}n b 的前n 项和为n T ,若存在*n ∈N 且2n ≥,使得2(1)(1)(1)n T n n n λ-≤-+成立,求实数λ的最小值.3.已知数列{}n a 前n 项和为12,n S a =,且满足()*1,N 2n n S a n n +=+∈.(1)求数列{}n a 的通项公式;(2)设()()211n n b n a =--,求数列{}n b 的前n 项和n T .4.已知数列{}n a 的前n 项和为n S ,且26a =,()121n n a S +=+.(1)证明:{}n a 为等比数列,并求{}n a 的通项公式;(2)求数列{}n na 的前n 项和n T .【答案】(1)证明见解析,123n n a -=⨯(*n ∈N )5.已知等差数列{}n a 的前n 项和为n S ,12a =,426S =.正项等比数列{}n b 中,12b =,2312b b +=.(1)求{}n a 与{}n b 的通项公式;(2)求数列{}n n a b 的前n 项和n T .【答案】(1)31n a n =-,2nn b =,(2)()13428n n T n +=-+【解析】【分析】(1)由等差数列的通项公式与求和公式,等比数列的通项公式求解即可;(2)由错位相减法求解即可(1)设等差数列的公差为d ,由已知得,4342262d ⨯⨯+=,解得3d =,所以()()1123131n a a n d n n =+-=+-=-,即{}n a 的通项公式为31n a n =-;设正项等比数列{}n b 的公比为(),0q q >,因为12b =,2312b b +=,所以()2212q q+=,所以260qq +-=,解得2q =或3q =-(负值舍去),所以2nn b =.(2)()312n n n a b n =-,所以()()1231225282342312n nn T n n -=⨯+⨯+⨯+⋅⋅⋅+-+-,所以()()23412225282342312n n n T n n +=⨯+⨯+⨯+⋅⋅⋅+-+-,相减得,()123412232323232312n n n T n +-=⨯+⨯+⨯+⨯+⋅⋅⋅+⋅--()()211132122231212n n n -+⨯⨯-=⨯+---,所以()13428n n T n +=-+.题型四:先求和,再证不等式【例1】设n S 为数列{n a }的前n 项和,已知123n n S a a +=,且10a ≠.(1)证明:{n a }是等比数列;(2)若12341,21,a a a -+成等差数列,记32log 1n n b a =-,证明12231111n n b b b b b b ++++ <12.【答案】(1)证明见解析(2)证明见解析【例2】已知数列{}n a 的前n 项和为n S ,___________,*n ∈N .在下面三个条件中任选一个,补充在上面问题中并作答.①22n n S a =-;②122222n n a a a n ++⋯⋯+=;③221232n n n a a a a +⋯⋯=注:如果选择多个条件分别解答,按第一个解答计分.(1)求数列{}n a 的通项公式;(2)记(1)(1)n n a b a a =--,n T 是数列{}n b 的前n 项和,若对任意的*n ∈N ,1n kT n>-,求实数k 的取值范围.项和,再将不等式恒成立问题转化求函数的最值问【例3】(2022江西丰城九中高二阶段练习)等差数列{}n a 中,前三项分别为,2,54x x x -,前n 项和为n S ,且2550k S =.(1)求x 和k 的值;(2)求n T =1231111nS S S S ++++ (3)证明:n T 1<【例4】(2022·浙江·高二期末)已知数列{}n a 满足114a =,134n n a a +=-.(1)证明数列{}2n a -为等比数列,并求{}n a 的通项公式;(2)设()()()113131nnn nn a b +-=++,数列{}n b 的前n 项和为n T ,若存在*n ∈N ,使n m T ≥,求m 的取值范围.【题型专练】1.已知数列{}n a 满足:()2222*12323N n a a a n a n n n ++++=+∈ .(1)求数列{}n a 的通项公式;(2)记n S 为数列{}1n n a a +的前n 项和()*N n ∈,求证:24n S ≤<.2.(2022陕西安康市教学研究室高一期末)已知数列{}n a 满足12a =,1(2)2(1)n n n a n a ++=+.(1)求数列{}n a 的通项公式;(2)设n S 为数列{}n a 的前n 项和,证明:6n S <.3.已知数列{}n a 的首项13a =,()*1212,N n n a a n n -=+≥∈,()2log 1n n b a =+.(1)证明:{}1n a +为等比数列;(2)证明:1223111112n n b b b b b b +++⋅⋅⋅+<.【答案】(1)证明见解析4.已知数列{n a }的前n 项和为n S ,342n n S a =-,(1)求数列{n a }的通项公式;(2)设33log 4n n a b =,n T 为数列12n n b b +⎧⎫⎨⎬⎩⎭的前n 项和.证明:12n T ≤<【答案】(1)143n n a -=⨯;(2)证明见解析.【分析】(1)利用,n n a S 关系及等比数列的定义求通项公式;,结合数列单调性即可证结论5.已知数列{}n a 的前n 项和31n n S =-,其中*N n ∈.(1)求数列{}n a 的通项公式;(2)若数列{}n b 满足11b =,()132n n n b b a n -=+≥,(i )证明:数列13nn b -⎧⎫⎨⎬⎩⎭为等差数列;(ii )设数列{}n b 的前n 项和为n T ,求380n n T n -⋅<-成立的n 的最小值.【答案】(1)()1*2·3n n a n -=∈N (2)(i )证明见解析;(ii )5【分析】(1)根据11,1,2n n n S n a S S n -=⎧=⎨-≥⎩即可求解;(2)11323n n n b b --=+⨯,两边除以13n -即可证明等差数列;利用错位相减法求n T ,解不等式即可求得n 的最小值.(1)31n n S =-,6.(2022·安徽·高三开学考试)已知数列{}n a 满足(12122n n a a a a n -+++-=- 且)*N n ∈,且24a =.(1)求数列{}n a 的通项公式;(2)设数列()()1211n n n a a +⎧⎫⎪⎪⎨⎬--⎪⎪⎩⎭的前n 项和为n T ,求证:132<≤n T .【答案】(1)()*2n n a n =∈N (2)证明见解析【分析】(1)将已知条件与1212n n a a a a ++++-=- 两式相减,再结合等比数列的定义即可求解;(2)利用裂项相消求和法求出n T 即可证明.(1)题型五:先放缩,再求和【例1】已知数列{}n a 的前n 项和为12n S a =,,当2n ≥时,()21212n n n S nS n n --=+-.(1)求数列{}n a 的通项公式;(2)求证:2222111123a a a a +++< .【例2】(2022·浙江省义乌中学模拟预测)已知数列{}n a 单调递增且12a >,前n 项和n S 满足2441n n S a n =+-,数列{}n b 满足212n n nb b b ++=,且123a a b +=,233b a +=.(1)求数列{}n a 、{}n b 的通项公式;(2)若1n c a b =,求证:123415n c c c c ++++< .【例3】已知数列{}n a 的前n 项和为n S ,且满足12a =,()1202n n n a S S n -+=≥(1)求n a 和n S (2)求证:22221231124n S S S S n+++⋯+≤-.【例4】已知数列{}n a 的前n 项和为n S ,11a =,22a =,且214n n n S S a ++=+.(1)求n a ;(2)求证:121112111n a a a +++<+++ .【答案】(1)()12n n a n -*=∈N (2)证明见解析【分析】(1)分析可知数列{}21k a -是首项为11a =,公比为4的等比数列,数列{}2k a 是首项为22a =,公比【题型专练】1.已知数列{}n a 满足:12a =,132n n a a +=-,n *∈N .(1)设1n n b a =-,求数列{}n b 的通项公式;(2)设31323log log log n n T a a a =++⋅⋅⋅+,()n *∈N ,求证:()12n n n T ->.【答案】(1)13n n b -=(2)证明见解析2.(2022·全国·高三专题练习)已知数列{}n a 前n 项积为n T ,且*1()n n a T n +=∈N .(1)求证:数列11n a ⎧⎫⎨⎬-⎩⎭为等差数列;(2)设22212n n S T T T =++⋅⋅⋅+,求证:112n n S a +>-.为以3.已知数列{}n a 的前n 项和为n S ,()*322n n a S n n N =+∈.(1)证明:数列{}1n a +为等比数列,并求数列{}n a 的前n 项和为n S ;(2)设()31log 1n n b a +=+,证明:222121111nb b b ++⋅⋅⋅+<.【解析】(1)当1n =时,11322a S =+,即12a =由322n n a S n =+,则()1132212n n a S n n --=+-≥两式相减可得13223n n n a a a -=+-,即132n n a a -=+所以()1131n n a a -+=+,即1131n n a a -+=+数列{}1n a +为等比数列则()112133n n n a -+=+⨯=,所以31n n a =-则()()1231333333132nn n n n n S +--=+++-==--L (2)()1313log 1log 31n n n b a n ++=+==+()()2211111111n b n n n n n =<=+++所以2221211111111111122311n b b b n n n ⎛⎫⎛⎫⎛⎫++⋅⋅⋅+<-+-++-=-< ⎪ ⎪ ⎪++⎝⎭⎝⎭⎝⎭L4.已知数列{}n a 满足11a =,且11n n a a n +-=+,n S 是1n a ⎧⎫⎨⎬⎩⎭的前n 项和.(1)求n S ;(2)若n T 为数列2n S n ⎧⎫⎪⎪⎛⎫⎨⎬ ⎪⎝⎭⎪⎪⎩⎭的前n 项和,求证:232n n T n >>+.。
2024年高考数学专项复习数列求和与递推综合归类 (解析版)

数列求和与递推综合归类目录重难点题型归纳 1【题型一】等差与等比型累加法 1【题型二】换元型累加、累积法 3【题型三】周期数列型递推 4【题型四】二阶等比数列型递推 6【题型五】分式型求递推 7【题型六】前n 项积型递推 8【题型七】“和”定值型递推 9【题型八】分段型等差等比求和 11【题型九】函数中心型倒序求和 12【题型十】分组求和型 14【题型十一】错位相减型求和 16【题型十二】正负相间型求和 19【题型十三】无理根式型裂项相消求和 20【题型十四】指数型裂项相消 22【题型十五】等差指数混合型裂项 23【题型十六】裂和型裂项相消 26【题型十七】分离常数型裂项 27好题演练29重难点题型归纳重难点题型归纳题型一等差与等比型累加法【典例分析】1.(等差累加法)已知数列a n 中,已知a 1=2,a n +1-a n =2n ,则a 50等于()A.2451B.2452C.2449D.24502.(等比累加法)已知数列a n 满足a 1=2,a n +1-a n =2n ,则a 9=()A.510B.512C.1022D.10242024年高考数学专项复习数列求和与递推综合归类 (解析版)【技法指引】对于递推公式为a n -a n -1=f n ,一般利用累加法求出数列的通项公式;累乘法:若在已知数列中相邻两项存在:a na n -1=g (n )(n ≥2)的关系,可用“累乘法”求通项.【变式演练】1.已知数列a n n ∈N * 是首项为1的正项等差数列,公差不为0,若a 1、数列a 2n 的第2项、数列a n 2 的第5项恰好构成等比数列,则数列a n 的通项公式为()A.a n =2n -1B.a n =2n +1C.a n =n -1D.a n =n +12.已知数列a n 中,a 1=1,前n 项和S n =n +23a n ,则a n 的通项公式为.题型二换元型累加、累积法【典例分析】1.已知数列a n 满足:a 1=13,(n +1)a n +1-na n =2n +1,n ∈N *,则下列说法正确的是()A.a n +1≥a nB.a n +1≤a nC.数列a n 的最小项为a 3和a 4D.数列a n 的最大项为a 3和a 4【变式演练】1.(换元对数累加法)在数列a n 中,a 1=2,a n +1n +1=a n n +ln 1+1n ,则a n =()A.a 8B.2+n -1 ln nC.1+n +ln nD.2n +n ln n2.已知数列a n 满足a 1=32,a n =n n -1a n -1-n2n .(1)求数列a n 的通项公式;(2)设数列a n 的前n 项和为S n ,求满足S n <12的所有正整数n 的取值集合.【典例分析】1.已知数列a n满足a1=2,a n+1=1+a n1-a n,(n∈N*),则a1⋅a2⋅a3⋅⋯a2009⋅a2010=_________.【变式演练】1.数列{a n}中,a1=1,a2=3,a n+1=a n-a n-1(n≥2,n∈N*),那么a2019=()A.1B.2C.3D.-32.数列a n的首项a1=3,且a n=2-2a n-1n≥2,则a2021=()A.3B.43C.12D.-2题型四【二阶等比数列型递推【典例分析】1.已知数列a n满足a1=2,且a n=2a n-1-1(n≥2,n∈N+),则a n=______________【变式演练】1.已知数列a n中,a1=1,a n=3a n-1+4(n∈N∗且n≥2),则数列a n通项公式a n为() A.3n-1 B.3n+1-2 C.3n-2 D.3n2.已知数列{a n}满足:a n+1=2a n-n+1(n∈N*),a1=3.(1)证明数列b n=a n-n(n∈N*)是等比数列,并求数列{a n}的通项;(2)设c n=a n+1-a na n a n+1,数列{c n}的前n项和为{S n},求证:S n<1.【典例分析】1.在数列{a n}中,a1=1,a n+1=2a na n+2(n∈N*),则22019是这个数列的第________________项.【变式演练】1.已知数列a n满足a1=1,a n+1=2a na n+2.记C n=2na n,则数列Cn的前n项和C1+C2+...+Cn=.2.数列a n满足:a1=13,且na n=2a n-1+n-1a n-1(n∈N*,n≥2),则数列a n的通项公式是a n=.题型六前n项积型递推【典例分析】1.设等比数列a n的公比为q,其前n项和为S n,前n项积为T n,并且满足条件a1>1,a7a8>1,a7-1a8-1<0.则下列结论正确的是(多选题)A.0<q<1B.a7a9<1C.T n的最大值为T7D.S n的最大值为S7【技法指引】类比前n项和求通项过程来求数列前n项积:1.n=1,得a12.n≥2时,a n=T n T n-1所以a n=T1,(n=1) T nT n-1,(n≥2)【变式演练】1.若数列a n满足a n+2=2⋅a n+1a n(n∈N*),且a1=1,a2=2,则数列a n的前2016项之积为()A.22014B.22015C.22016D.220172.设等比数列a n的公比为q,其前n项和为S n,前n项积为T n,并满足条件a1>1,且a2020a2021> 1,a2020-1a2021-1<0,下列结论正确的是(多选题)A.S2020<S2021B.a2020a2022-1<0C.数列T n无最大值 D.T2020是数列T n中的最大值题型七“和”定值型递推【典例分析】1.若数列a n满足a n+2a n+1+a n+1a n=k(k为常数),则称数列a n为等比和数列,k称为公比和,已知数列a n是以3为公比和的等比和数列,其中a1=1,a2=2,则a2019=______.【变式演练】1.已知数列{a n}满足a n+a n+1=12(n∈N*),a2=2,S n是数列{a n}的前n项和,则S21为()A.5B.72C.92D.1322.知数列{a n}满足:a n+1+a n=4n-3(n∈N*),且a1=2,则a n=.题型八分段型等差等比求和【典例分析】1.已知数列a n满足a1=2,a n+1=32a n,n为奇数2a n,n为偶数 .(1)记b n=a2n,写出b1,b2,并求数列b n的通项公式;(2)求a n的前12项和.【变式演练】1.已知数列a n满足a1=1,a n+1=a n+1,n=2k-1, a n,n=2k.(1)求a2,a5的值;(2)求a n的前50项和S50.题型九函数中心型倒序求和【典例分析】1.已知A x 1,y 1 ,B x 2,y 2 是函数f (x )=2x 1-2x,x ≠12-1,x =12的图象上的任意两点(可以重合),点M为AB 的中点,且M 在直线x =12上.(1)求x 1+x 2的值及y 1+y 2的值;(2)已知S 1=0,当n ≥2时,S n =f 1n +f 2n +f 3n +⋯+f n -1n,求S n ;(3)若在(2)的条件下,存在n 使得对任意的x ,不等式S n >-x 2+2x +t 成立,求t 的范围.【变式演练】2.已知a n 为等比数列,且a 1a 2021=1,若f x =21+x2,求f a 1 +f a 2 +f a 3 +⋯+f a 2021 的值.题型十分组求和型【典例分析】1.已知等比数列a n 的公比大于1,a 2=6,a 1+a 3=20.(1)求a n 的通项公式;(2)若b n =a n +1log 3a n +12log 3a n +22,求b n 的前n 项和T n .【技法指引】对于a n +b n 结构,利用分组求和法【变式演练】1.设S n 为数列a n 的前n 项和,已知a n >0,a 2n +2a n =4S n +3n ∈N *,若数列b n 满足b 1=2,b 2=4,b 2n +1=b n b n +2n ∈N *(1)求数列a n 和b n 的通项公式;(2)设c n =1S n,n =2k -1,k ∈N * b n,n =2k ,k ∈N *求数列c n 的前n 项的和T n .【典例分析】1.已知数列a n 满足a 1=2,且a n +1-3 ⋅a n +1 +4=0,n ∈N *.(1)求证:数列1a n -1是等差数列;(2)若数列b n 满足b n =2n +1a n -1,求b n 的前n 项和.【技法指引】对于a n b n 结构,其中a n 是等差数列,b n 是等比数列,用错位相减法求和;思维结构结构图示如下【变式演练】1.已知等比数列a n 的首项a 1=1,公比为q ,b n 是公差为d d >0 的等差数列,b 1=a 1,b 3=a 3,b 2是b 1与b 7的等比中项.(1)求数列a n 的通项公式;(2)设b n 的前n 项和为S n ,数列c n 满足nc n =a 2n S n ,求数列c n 的前n 项和T n .【典例分析】1.已知数列a n各项均为正数,且a1=2,a n+12-2a n+1=a n2+2a n.(1)求a n的通项公式(2)设b n=-1n a n,求b1+b2+b1+⋯+b20.【变式演练】1.设等差数列a n的前n项和为S n,已知a3+a5=8,S3+S5=10. (1)求a n的通项公式;(2)令b n=(-1)n a n,求数列b n的前n项和T n.题型十三无理根式型裂项相消求和【典例分析】1.设数列a n的前n项和为S n,且满足2S n=3a n-3.(1)求数列a n的通项公式:(2)若b n=a n3,n为奇数1log3a n+log3a n+2,n为偶数,求数列和b n 的前10项的和.【变式演练】1.设数列a n的前n项和S n满足2S n=na n+n,n∈N+,a2=2,(1)证明:数列a n是等差数列,并求其通项公式﹔(2)设b n=1a n a n+1+a n+1a n,求证:T n=b1+b2+⋯+b n<1.题型十四指数型裂项相消【典例分析】1.已知数列a n 的前n 项和为S n ,且S n =2a n -1.(1)求a n ;(2)设b n =a n a n +1-1 ⋅a n +2-1 ,求数列b n 的前n 项和T n .【变式演练】1.数列a n 满足:a 1+2a 2+3a 3+⋅⋅⋅+n -1 a n -1=2+n -2 ⋅2n n ≥2 .(1)求数列a n 的通项公式;(2)设b n =a n a n -1 a n +1-1,T n 为数列b n 的前n 项和,若T n <m 2-3m +3恒成立,求实数m 的取值范围.题型十五等差指数混合型裂项【典例分析】1.已知数列a n 满足S n =n a 1+a n 2,其中S n 是a n 的前n 项和.(1)求证:a n 是等差数列;(2)若a 1=1,a 2=2,求b n =2n 1-a n a n a n +1的前n 项和T n .【变式演练】2.已知等比数列a n 的各项均为正数,2a 5,a 4,4a 6成等差数列,且满足a 4=4a 23,数列S n 的前n 项之积为b n ,且1S n +2b n=1.(1)求数列a n 和b n 的通项公式;(2)设d n =b n +2⋅a n b n ⋅b n +1,若数列d n 的前n 项和M n ,证明:730≤M n <13.【典例分析】1.已知数列a n 的满足a 1=1,a m +n =a m +a n m ,n ∈N * .(1)求a n 的通项公式;(2)记b n =(-1)n ⋅2n +1a n a n +1,数列b n 的前2n 项和为T 2n ,证明:-1<T 2n ≤-23.【技法指引】正负相间型裂和,裂项公式思维供参考:-1 n ⋅pn +q kn +b k (n +1)+b=-1 n ⋅t 1kn +b +1k (n +1)+b【变式演练】1.记正项数列a n 的前n 项积为T n ,且1a n =1-2T n .(1)证明:数列T n 是等差数列;(2)记b n =-1 n ⋅4n +4T n T n +1,求数列b n 的前2n 项和S 2n .【典例分析】1.已知等差数列a n 的前n 项和为S n ,若S 8=4a 4+20,且a 5+a 6=11.(1)求a n 的通项公式;(2)设b n =n 2+n +1a n a n +1,求b n 的前n 项和T n .【变式演练】1.已知等差数列a n 的通项公式为a n =2n -c c <2 ,记数列a n 的前n 项和为S n n ∈N * ,且数列S n 为等差数列.(1)求数列a n 的通项公式;(2)设数列4S n a n a n +1的前n 项和为T n n ∈N * ,求T n 的通项公式.好题演练好题演练1.(山东省泰安市2023届高三二模数学试题)已知数列a n 的前n 项和为S n ,a 1=2,a n ≠0,a n a n +1=4S n .(1)求a n ;(2)设b n =-1 n ⋅3n -1 ,数列b n 的前n 项和为T n ,若∀k ∈N *,都有T 2k -1<λ<T 2k 成立,求实数λ的范围.2.(2023·全国·模拟预测)已知正项数列a n 满足a 1=1,a n +1a n =1+1n.(1)求证:数列a 2n 为等差数列;(2)设b n =1a 2n a n +1+a n a 2n +1,求数列b n 的前n 项和T n .3.(2023·全国·学军中学校联考二模)设数列a n 满足a n +1=3a n -2a n -1n ≥2 ,a 1=1,a 2=2.(1)求数列a n 的通项公式;(2)在数列a n 的任意a k 与a k +1项之间,都插入k k ∈N * 个相同的数(-1)k k ,组成数列b n ,记数列b n 的前n 项的和为T n ,求T 27的值.4.(2023·全国·长郡中学校联考二模)已知正项数列a n 的前n 项和为S n ,且a 1=1,a n =S n +S n -1(n ∈N *且n ≥2).(1)求数列a n 的通项公式;(2)设数列a n +22n a n a n +1 的前n 项和为T n ,求证:T n <1.5.(2023·四川攀枝花·统考三模)已知等差数列a n的公差为d d≠0,前n项和为S n,现给出下列三个条件:①S1,S2,S4成等比数列;②S4=32;③S6=3a6+2.请你从这三个条件中任选两个解答下列问题.(1)求数列a n的通项公式;(2)若b n-b n-1=2a n n≥2,且b1=3,设数列1b n的前n项和为Tn,求证:13≤T n<12.6.(2023春·江西抚州·高二金溪一中校联考期中)已知数列a n满足a1=2,a n+1= 2a n+2,n为奇数,1 2a n+1,n为偶数.(1)记b n=a2n,证明:数列b n为等差数列;(2)若把满足a m=a k的项a m,a k称为数列a n中的重复项,求数列a n的前100项中所有重复项的和.7.(河北省2023届高三下学期大数据应用调研联合测评(Ⅲ)数学试题)已知数列a n 满足:a 1=12,3a n +1a n =1+a n +11+a n.(1)求证:1a n +1 是等比数列,并求出数列a n 的通项公式;(2)设b n =3n ⋅a n a n +1,求数列b n 的前n 项和S n .8.(2023·全国·模拟预测)已知数列a n 的前n 项和S n 满足S n =n 2-1+a n .(1)求a 1及a n ;(2)令b n =4S n a n a n +1,求数列b n 的前n 项和T n .数列求和与递推综合归类目录重难点题型归纳 1【题型一】等差与等比型累加法 1【题型二】换元型累加、累积法 3【题型三】周期数列型递推 4【题型四】二阶等比数列型递推 6【题型五】分式型求递推 7【题型六】前n项积型递推 8【题型七】“和”定值型递推 9【题型八】分段型等差等比求和 11【题型九】函数中心型倒序求和 12【题型十】分组求和型 14【题型十一】错位相减型求和 16【题型十二】正负相间型求和 19【题型十三】无理根式型裂项相消求和 20【题型十四】指数型裂项相消 22【题型十五】等差指数混合型裂项 23【题型十六】裂和型裂项相消 26【题型十七】分离常数型裂项 27好题演练 29重难点题型归纳重难点题型归纳题型一等差与等比型累加法【典例分析】1.(等差累加法)已知数列a n中,已知a1=2,a n+1-a n=2n,则a50等于()A.2451B.2452C.2449D.2450【答案】B【详解】由a n+1-a n=2n得:a n-a n-1=2n-1,a n-1-a n-2=2n-2,⋯⋯,a3-a2=2×2,a2-a1=2×1,各式相加可得:a n-a1=2×1+2+⋅⋅⋅+n-1=2×n n-12=n n-1,又a1=2,∴a n=2+n n-1=n2-n+2,∴a50=2500-50+2=2452.故选:B.2.(等比累加法)已知数列a n满足a1=2,a n+1-a n=2n,则a9=()A.510B.512C.1022D.1024【答案】B【详解】由a1=2,a n+1-a n=2n得a2-a1=2,a3-a2=22,a4-a3=23,⋮a n -a n -1=2n -1,以上各式相加得,a n -a 1=2+22+⋯+2n -1=21-2n -11-2=2n -2,所以a n =2n -2+a 1=2n ,所以a 9=29=512.故选:B .【技法指引】对于递推公式为a n -a n -1=f n ,一般利用累加法求出数列的通项公式;累乘法:若在已知数列中相邻两项存在:a na n -1=g (n )(n ≥2)的关系,可用“累乘法”求通项.【变式演练】1.已知数列a n n ∈N * 是首项为1的正项等差数列,公差不为0,若a 1、数列a 2n 的第2项、数列a n 2 的第5项恰好构成等比数列,则数列a n 的通项公式为()A.a n =2n -1B.a n =2n +1C.a n =n -1D.a n =n +1【答案】A【分析】根据题意设a n =1+n -1 d ,所以a 2n =1+2n -1 d ,a n 2=1+n 2-1 d ,所以1,1+3d ,1+24d 构成等比数列,即1+3d 2=1×1+24d ,求出d 即可求解.【详解】设等差数列a n 的公差为d d >0 ,所以a n =1+n -1 d ,所以a 2n =1+2n -1 d ,a n 2=1+n 2-1 d ,又a 1、数列a 2n 的第2项、数列a n 2的第5项恰好构成等比数列,即1,1+3d ,1+24d 构成等比数列,所以1+3d 2=1×1+24d ,解得d =2,d =0(舍去),所以a n =2n -1.故选:A .2.已知数列a n 中,a 1=1,前n 项和S n =n +23a n ,则a n 的通项公式为.【答案】a n =n n +12【分析】由S n =n +23a n ,变形可得则S n -1=n +13a n -1,两式相减变形可得a n a n -1=n +1n -1,又由a n =a n a n -1 ×a n -1a n -2 ×⋯⋯×a2a 1×a 1,计算可得a n =n (n +1)2,验证a 1即可得答案.【详解】根据题意,数列{a n }中,a 1=1,S n =n +23a n (n ∈N *),S n =n +23a n ①,S n -1=n +13a n -1②,①-②可得:a n =(n +2)a n 3-(n +1)a n -13,变形可得:a n a n -1=n +1n -1,则a n =a n a n -1 ×a n -1a n -2 ×⋯⋯×a 2a 1×a 1=n +1n -1 ×n n -2 ×⋯⋯×31 ×1=n (n +1)2;n =1时,a 1=1符合a n =n (n +1)2;故答案为:a n =n (n +1)2.题型二换元型累加、累积法【典例分析】1.已知数列a n 满足:a 1=13,(n +1)a n +1-na n =2n +1,n ∈N *,则下列说法正确的是()A.a n +1≥a nB.a n +1≤a nC.数列a n 的最小项为a 3和a 4D.数列a n 的最大项为a 3和a 4【答案】C【详解】令b n =na n ,则b n +1-b n =2n +1,又a 1=13,所以b 1=13,b 2-b 1=3,b 3-b 2=5,⋯,b n -b n -1=2n -1,所以累加得b n =13+n -1 3+2n -1 2=n 2+12,所以a n =b n n =n 2+12n =n +12n,所以a n +1-a n =n +1 +12n +1-n +12n =n -3 n +4 n n +1,所以当n <3时,a n +1<a n ,当n =3时,a n +1=a n ,即a 3=a 4,当n >3时,a n +1>a n ,即a 1>a 2>a 3=a 4<a 5<⋯<a n ,所以数列a n 的最小项为a 3和a 4,故选:C .【变式演练】1.(换元对数累加法)在数列a n 中,a 1=2,a n +1n +1=a n n +ln 1+1n ,则a n =()A.a 8B.2+n -1 ln nC.1+n +ln nD.2n +n ln n【答案】D【详解】由题意得,a n +1n +1=a n n +ln n +1n ,则a n n =a n -1n -1+ln n n -1,a n -1n -1=a n -2n -2+lnn -1n -2⋯,a 22=a 11+ln 21,由累加法得,a n n =a 11+ln n n -1+ln n -1n -2⋯+ln 21,即a n n =a 1+ln n n -1⋅n -1n -2⋅⋯⋅21,则an n=2+ln n ,所以a n =2n +n ln n ,故选:D2.已知数列a n 满足a 1=32,a n =n n -1a n -1-n 2n .(1)求数列a n 的通项公式;(2)设数列a n 的前n 项和为S n ,求满足S n <12的所有正整数n 的取值集合.【答案】(1)a n =n +n2n ;(2)1,2,3,4 .【详解】(1)因为a n =n n -1a n -1-n 2n ,所以a n n -a n -1n -1=-12n .因为a 22-a 11=-122,a33-a 22=-123,⋯,a n n -a n -1n -1=-12n ,所以a n n -a 11=-122+123+⋯+12n=-1221-12 n -11-12=12n-12,于是a n=n+n 2n .当n=1时,a1=1+12=32,所以a n=n+n2n.(2)因为S n-S n-1=a n=n+n2n >0,所以S n是递增数列.因为a1=1+12=32,a2=2+24=52,a3=3+323=278,a4=4+424=174,a5=5+525=16532,所以S1=32,S2=4,S3=598,S4=938<12,S5=53732>12,于是所有正整数n的取值集合为1,2,3,4.题型三周期数列型递推【典例分析】1.已知数列a n满足a1=2,a n+1=1+a n1-a n,(n∈N*),则a1⋅a2⋅a3⋅⋯a2009⋅a2010=_________.【答案】-6【解析】由已知有a2=1+a11-a1=-3,a3=1-31+3=-12,a4=1-121+12=13,a5=1+131-13=2,所以a5=a1=2,所以数列a n是周期数列,且周期为4,a1a2a3a4=a5a6a7a8=⋯=a2005a2006a2007a2008=1,而a2009a2010= a1a2=2×(-3)=-6,所以a1a2a3⋯a2010=-6。
高考数学《数列求和及综合应用》复习

C. 2019
2020
√D. 2020 2021
由
a1
1 2
,an1
1 2 an
,得 a2
1 2 a1
2 3
,a3
3 4
,归纳可得
an
n
n
1
.当
n
1
时,a1
1 2
满足
an
n.
n 1
假设当 n k 时满足,即 ak
k
k 1
,当
n
k
1 时,
ak 1
1 2 ak
1 2 k
k 1 ,满足该式,故
an
SS1n,
n
1 Sn1, n
2, n N
只有 a1 S1 ,满足 n 2 的情形,通项公式才可以统一写成 an Sn . Sn1
1.已知数列an
满足
a1
1 2
,
an1
2
1 an
n N*
,则 a1
a2 22
a3 32
a2020 的值是(
20202
)
A. 2018
2019
B. 1009
3.以等差(比)数列为命题背景,考查等差(比)的前n项和公式、 分组求和 4.以递推数列、等差(比)数列为命题背景, 考查错位相减、裂项相消、倒序相加等求和方法
考点解读
5.等差(比)数列的求和、分组求和、错位相减求和及裂项相消求和 6.常与不等式、函数、解析几何相结合考查数列求和函数、 不等式的性质等
2.已知等比数列an 的前 n 项和为 Sn ,且 Sn 2n1 2 ,
则数列
log
2
an
1 log2
an1
专题6-2 数列求和归类-2023年高考数学一轮复习热点题型(全国通用)(原卷版)

)(n N , n 2) ,求 Sn ;
(2)若 S n f ( ) f ( ) ... f (
n
n
n
(1)证明函数 f ( x ) 的图像关于点 ( ,1) 对称;
【提分秘籍】
基本规律
倒序求和,多是具有中心对称的
【变式演练】
1
1.设奇函数� � 对任意� ∈ �都有�(�) = �(� − 1) + 2 .
(2)设数列 bn 满足 bn
2 an 1
, 求数列 bn 的前 n 项和 Rn .
4n
2.设数列 an 的前 n 项和为 Sn , a2 4 ,且对任意正整数 n ,点 an 1 , S n 都在直线 x 3 y 2 0 上.(1)
求 an 的通项公式;
(2)若 bn nan ,求 bn 的前 n 项和 Tn .
【题型五】裂项相消常规型
【典例分析】
设数列 an 满足: a1 1 ,且 2an an 1 an 1 ( n 2 )
, a3 a4 12 .
(1)求 an 的通项公式:
1
的前 n 项和.
已知数列 an 的前 n 项和为 Sn , a1
1
, S n S n 1 S n S n 1 0 n 2 .
2
1
是等差数列;
Sn
Sn
, n为奇数
(2)若 Cn n 3
,设数列 C n 的前 n 项和为 Tn ,求 T2n .
【提分秘籍】
基本规律
分组求和法:
c(等比)
1.形如 an= b(等差)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第4讲数列求和一、选择题1.设数列{(-1)n}的前n项和为S n,则对任意正整数n,S n=( )A.n[1n-1]2B.1n-1+12C.1n+12D.1n-12解析∵数列{(-1)n}是首项与公比均为-1的等比数列,∴S n=11n111=1n-12.答案 D2.已知数列{a n}的前n项和S n=n2-4n+2,则|a1|+|a2|+…+|a10|=( ) A.66 B.65C.61 D.56解析当n=1时,a1=S1=-1,当n≥2时,a n=S n-S n-1=n2-4n+2-[(n -1)2-4(n -1)+2]=2n-5.∴a2=-1,a3=1,a4=3,…,a10=15,∴|a1|+|a2|+…+|a10|=1+1+81+152=2+64=66.答案 A3.在数列{a n}中,a n=1n n +1,若{a n}的前n项和为2 0132 014,则项数n为( ).A.2 011 B.2 012 C.2 013 D.2 014解析∵a n=1n n +1=1n-1n+1,∴S n=1-1n+1=nn+1=2 0132 014,解得n=2013.答案 C4.数列{a n}满足a n+1+(-1)n a n=2n-1,则{a n}的前60项和为( ).A.3 690 B.3 660 C.1 845 D.1 830解析当n=2k时,a2k+1+a2k=4k-1,当n=2k-1时,a2k-a2k-1=4k-3,∴a 2k +1+a 2k -1=2,∴a 2k +1+a 2k +3=2, ∴a 2k -1=a 2k +3,∴a 1=a 5=…=a 61.∴a 1+a 2+a 3+…+a 60=(a 2+a 3)+(a 4+a 5)+…+(a 60+a 61)=3+7+11+…+(4×30-1)=303+1192=30×61=1 830.答案 D5.若把能表示为两个连续偶数的平方差的正整数称为“和平数”,则 1~100这100个数中,能称为“和平数”的所有数的和是( ) A .130 B .325 C .676D .1 300解析 设两个连续偶数为2k +2和2k (k ∈N +),则(2k +2)2-(2k )2=4(2k +1),故和平数 是4的倍数,但不是8的倍数,故在1~100之间,能称为和平数的有4×1,4×3,4×5,4×7,…,4×25,共计13个,其和为4×1+252×13=676. 答案 C6.数列{a n }满足a n +a n +1=12(n ∈N *),且a 1=1,S n 是数列{a n }的前n 项和,则S 21= ( ). A.212B .6C .10D .11解析 依题意得a n +a n +1=a n +1+a n +2=12,则a n +2=a n ,即数列{a n }中的奇数项、偶数项分别相等,则a 21=a 1=1,S 21=(a 1+a 2)+(a 3+a 4)+…+(a 19+a 20)+a 21=10(a 1+a 2)+a 21=10×12+1=6,故选B.答案 B 二、填空题7.在等比数列{a n }中,若a 1=12,a 4=-4,则公比q =________;|a 1|+|a 2|+…+|a n |=________.解析 设等比数列{a n }的公比为q ,则a 4=a 1q 3,代入数据解得q 3=-8,所以q =-2;等比数列{|a n |}的公比为|q |=2,则|a n |=12×2n -1,所以|a 1|+|a 2|+|a 3|+…+|a n |=12(1+2+22+…+2n -1)=12(2n -1)=2n -1-12.答案 -2 2n -1-128.数列{a n }的前n 项和为S n ,a 1=1,a 2=2,a n +2-a n =1+(-1)n (n ∈N *),则S 100=________.解析 由a n +2-a n =1+(-1)n ,知a 2k +2-a 2k =2,a 2k +1-a 2k -1=0,∴a 1=a 3=a 5=…=a 2n -1=1,数列{a 2k }是等差数列,a 2k =2k . ∴S 100=(a 1+a 3+a 5+…+a 99)+(a 2+a 4+a 6+…+a 100)=50+(2+4+6+…+100)=50+100+2502=2 600.答案 2 6009.等差数列{a n }中有两项a m 和a k (m ≠k ),满足a m =1k ,a k =1m,则该数列前mk 项之和是S mk =________.解析 设数列{a n }的首项为a 1,公差为d .则有⎩⎪⎨⎪⎧a m =a 1m -1d =1k ,a k=a1k -1d =1m ,解得⎩⎪⎨⎪⎧a 1=1mk ,d =1mk ,所以S mk =mk ·1mk+mk mk -12·1mk=mk +12.答案mk +1210.把公差d =2的等差数列{a n }的各项依次插入等比数列{b n }中,将{b n }按原 顺序分成1项,2项,4项,…,2n -1项的各组,得到数列{c n }:b 1,a 1,b 2,b 3,a 2, b 4,b 5,b 6,b 7,a 3,…,数列{c n }的前n 项和为S n .若c 1=1,c 2=2,S 3=134.则数列{c n } 的前100项之和S 100=________.解析:由已知得b 1=1,a 1=2,b 2=14,令T n=1+2+22+…+2n-1=2n-1,则T6=63,T7=127,∴数列{c n}的前100项中含有数列{a n}的前6项,含有数列{b n}的前94项,故S100=(b1 +b2+…+b94)+(a1+a2+…+a6)=1-⎝⎛⎭⎪⎫14941-14+6×2+6×52×2=13⎣⎢⎡⎦⎥⎤130-⎝⎛⎭⎪⎫12186.答案13⎣⎢⎡⎦⎥⎤130-⎝⎛⎭⎪⎫12186三、解答题11.已知公差为d(d>1)的等差数列{a n}和公比为q(q>1)的等比数列{b n},满足集合{a3,a4,a5}∪{b3,b4,b5}={1,2,3,4,5},(1)求通项a n,b n;(2)求数列{a n·b n}的前n项和S n.解 (1)∵1,2,3,4,5这5个数中成公差大于1的等差数列的三个数只能是1,3,5;成公比大于1的等比数列的三个数只能是1,2,4.而{a3,a4,a5}∪{b3,b4,b5}={1,2,3,4,5},∴a3=1,a4=3,a5=5,b3=1,b4=2,b5=4,∴a1=-3,d=2,b1=14,q=2,∴a n=a1+(n-1)d=2n-5,b n=b1×q n-1=2n-3.(2)∵a n b n=(2n-5)×2n-3,∴S n=(-3)×2-2+(-1)×2-1+1×20+…+(2n-5)×2n-3,2S n=-3×2-1+(-1)×20+…+(2n-7)×2n-3+(2n-5)×2n-2,两式相减得-S n=(-3)×2-2+2×2-1+2×20+…+2×2n-3-(2n-5)×2n-2=-34-1 +2n-1-(2n-5)×2n-2∴S n=74+(2n-7)×2n-2.12.已知数列{a n }的前n 项和为S n ,且a 1=1,a n +1=12S n (n =1,2,3,…).(1)求数列{a n }的通项公式;(2)设b n =log 32(3a n +1)时,求数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫1b n b n +1的前n 项和T n . 解(1)由已知得⎩⎪⎨⎪⎧a n +1=12S n,a n=12S n -1n ≥2得到a n +1=32a n (n ≥2).∴数列{a n }是以a 2为首项,以32为公比的等比数列.又a 2=12S 1=12a 1=12,∴a n =a 2×⎝ ⎛⎭⎪⎫32n -2=12⎝ ⎛⎭⎪⎫32n -2(n ≥2).又a 1=1不适合上式,∴a n=⎩⎨⎧1,n =1,12⎝ ⎛⎭⎪⎫32n -2,n ≥2.(2)b n =log 32(3a n +1)=log 32⎣⎢⎡⎦⎥⎤32·⎝ ⎛⎭⎪⎫32n -1=n .∴1b n b n +1=1n1+n =1n -11+n . ∴T n =1b 1b 2+1b 2b 3+1b 3b 4+…+1b n b n +1=⎝ ⎛⎭⎪⎫11-12+⎝ ⎛⎭⎪⎫12-13+⎝ ⎛⎭⎪⎫13-14+…+⎝ ⎛⎭⎪⎫1n -11+n =1-11+n =nn +1. 13.设数列{a n }满足a 1+3a 2+32a 3+…+3n -1a n =n3,n ∈N *.(1)求数列{a n }的通项;(2)设b n=nan,求数列{b n}的前n项和S n.解(1)∵a1+3a2+32a3+…+3n-1a n=n3,①∴当n≥2时,a 1+3a2+32a3+…+3n-2a n-1=n-13,②①-②得3n-1a n=13,∴a n=13n.在①中,令n=1,得a1=13,适合a n=13n,∴a n=13n.(2)∵b n=nan,∴b n=n·3n.∴S n=3+2×32+3×33+…+n·3n,③∴3S n=32+2×33+3×34+…+n·3n+1. ④④-③得2S n=n·3n+1-(3+32+33+…+3n),即2S n=n·3n+1-31-3n1-3,∴S n=2n-13n+14+34.14.将数列{a n}中的所有项按每一行比上一行多两项的规则排成如下数表:a1a 2a3a4a 5a6a7a8a9…已知表中的第一列数a1,a2,a5,…构成一个等差数列,记为{b n},且b2=4,b5=10.表中每一行正中间一个数a1,a3,a7,…构成数列{c n},其前n项和为Sn.(1)求数列{b n}的通项公式;(2)若上表中,从第二行起,每一行中的数按从左到右的顺序均构成等比数列,公比为同一个正数,且a13=1.①求S n;②记M={n|(n+1)c n≥λ,n∈N*},若集合M的元素个数为3,求实数λ的取值范围.解 (1)设等差数列{b n }的公差为d , 则⎩⎨⎧b 1+d =4,b 1+4d =10,解得⎩⎨⎧b 1=2,d =2,所以b n =2n .(2)①设每一行组成的等比数列的公比为q .由于前n 行共有1+3+5+…+(2n -1)=n 2个数,且32<13<42,a 10=b 4=8, 所以a 13=a 10q 3=8q 3,又a 13=1,所以解得q =12.由已知可得c n =b n q n -1,因此c n =2n ·⎝ ⎛⎭⎪⎫12n -1=n 2n -2.所以S n =c 1+c 2+c 3+…+c n =12-1+220+321+…+n2n -2, 12S n =120+221+…+n -12n -2+n2n -1, 因此12S n =12-1+120+121+…+12n -2-n 2n -1=4-12n -2-n 2n -1=4-n +22n -1,解得S n =8-n +22n -2.②由①知c n =n 2n -2,不等式(n +1)c n ≥λ,可化为n n +12n -2≥λ.设f (n )=n n +12n -2,计算得f (1)=4,f (2)=f (3)=6,f (4)=5,f (5)=154. 因为f (n +1)-f (n )=n +12-n2n -1,所以当n ≥3时,f (n +1)<f (n ).因为集合M 的元素个数为3,所以λ的取值范围是(4,5].。