高三数学数列求和专项复习

合集下载

高三专题数列求和专题复习

高三专题数列求和专题复习

数列专题系列之数列求和许昌二高 陈锟鹏 考纲要求1、熟练掌握等差、等比数列的前n 项和公式.2、掌握非等差、等比数列求和的几种常见方法.3、能在具体的问题情景中识别数列的等差关系或等比关系,并能用相关知识解决相应的问题.命题方向数列求和部分以考查数列求和的方法为重点,与数列的性质相结合,是每年高考中的热点内容.常见的求和的方法,1.公式法;2.分组求和;3.裂项相消法;4.错位相减法;5.并项法;6.倒序相加法.其中裂项相消和错位相减法是考查的重点.知识回顾1.等差数列前n 项和公式2.等比数列前n 项和公式3.数列求和的常用方法典例精析例 1. 求下列数列各项之和) 12 (......531 (1)n-++++ n 2.......8421 (2)+++++练习:. ______ ,32 , }{ }{ 13975==T S b a T S n b a n n n n 则已知与项和为的前、等差数列 .,212}{ .2 项和求它的前的通项公式已知数列例n n a a nn n -=练习:. (16)14,813,412211项和的前,,求数列n)1(1......431321211 .3 +++⨯+⨯+⨯=n n S n 求和例)13)(23(1......1071741411 +-++⨯+⨯+⨯=n n S n 求和练习:.,2 )12( .4 n n n S n n a 项和求它的前已知数列例-=. , 2121. .n nn S n n a 项和求它的前已知数列课堂练习-=.}{,,2}{}{)1(.73,2,1}{ }{ 2015 .2*2533211项和的前求数列)设(的通项公式;和求是等差数列,且的等比数列,是各项均为正数已知数列年天津)(n c N n b a c b a b a a b b b a b a n n n n n n n n ∈∙==-=+==课堂小结:1.等差与等比数列的前n 项和公式2.数列求和的常用方法3.常见的裂项求和形式4.错位相减法的步骤及注意点课后作业:数列专练 作业(十八)。

数列的求和-高考数学一轮复习(新高考专用)

数列的求和-高考数学一轮复习(新高考专用)

第43讲 数列的求和【基础知识回顾】 1.公式法(1)等差数列{a n }的前n 项和S n =n (a 1+a n )2=na 1+n (n -1)d2.推导方法:倒序相加法.(2)等比数列{a n }的前n 项和S n =⎩⎪⎨⎪⎧na 1,q =1,a 1(1-q n )1-q ,q ≠1.推导方法:乘公比,错位相减法. (3)一些常见的数列的前n 项和: ①1+2+3+…+n =n (n +1)2;②2+4+6+…+2n =n (n +1); ③1+3+5+…+(2n -1)=n 2. 2.几种数列求和的常用方法(1)分组转化求和法:一个数列的通项公式是由若干个等差或等比或可求和的数列组成的,则求和时可用分组求和法,分别求和后相加减.(2)裂项相消法:把数列的通项拆成两项之差,在求和时中间的一些项可以相互抵消,从而求得前n 项和.(3)错位相减法:如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,那么求这个数列的前n 项和即可用错位相减法求解.(4)倒序相加法:如果一个数列{a n }与首末两端等“距离”的两项的和相等或等于同一个常数,那么求这个数列的前n 项和即可用倒序相加法求解. 3、常见的裂项技巧①1n (n +1)=1n -1n +1.②1n (n +2)=12⎝⎛⎭⎫1n -1n +2.③1(2n -1)(2n +1)=12⎝⎛⎭⎫12n -1-12n +1.④1n +n +1=n +1-n .⑤1n (n +1)(n +2)=12⎝⎛⎭⎫1n (n +1)-1(n +1)(n +2).1、数列{a n }的通项公式是a n =(-1)n (2n -1),则该数列的前100项之和为( ) A .-200 B .-100 C .200 D .100【答案】 D【解析】 S 100=(-1+3)+(-5+7)+…+(-197+199)=2×50=100. 2、数列{}n a 的前n 项和为n S ,若()11n a n n =+,则5S 等于( )A .1B .56 C .16D .130【答案】:B 【解析】:因为()11111n a n n n n ==-++,所以5111111111151122334455666S ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-+-+-=-= ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭,故选B . 3、设11111++++2612(1)S n n =++,则S =( )A .211n n ++ B .21n n - C .1n n+ D .21n n ++ 【答案】:A 【解析】:由11111++++2612(1)S n n =++,得11111++++122334(1)S n n =+⨯⨯⨯+,111111112111++++222334111n S n n n n +=+-==+++----,故选:A.4、在数列{a n }中,a n =1n (n +1),若{a n }的前n 项和为2 0222 023,则项数n =________.【答案】 2 022【解析】 a n =1n (n +1)=1n -1n +1,∴S n =1-12+12-13+…+1n -1n +1=1-1n +1=n n +1=2 0222 023, ∴n =2 022.5、已知数列a n =⎩⎪⎨⎪⎧n -1,n 为奇数,n ,n 为偶数,则S 100=________.【答案】:5000【解析】:由题意得S 100=a 1+a 2+…+a 99+a 100=(a 1+a 3+a 5+…+a 99)+(a 2+a 4+…+a 100)=(0+2+4+…+98)+(2+4+6+…+100)=5000.6、 在等比数列{a n }中,a 1=2,前n 项和为S n ,若数列{a n +1}也是等比数列,则S n 等于________. 【答案】:2n【解析】:因为数列{a n }为等比数列,则a n =2q n -1,又数列{a n +1}也是等比数列,则3,2q +1,2q 2+1成等比数列,(2q +1)2=3×(2q 2+1),即q 2-2q +1=0q =1,即a n =2,所以S n =2n .考向一 公式法例1、(2020届山东师范大学附中高三月考)设等差数列{}n a 前n 项和为n S .若210a =,540S =,则5a =________,n S 的最大值为________. 【答案】4 42【解析】∵数列{}n a 是等差数列,∵540S =,∴()1535524022a a a ⨯+⨯==,38a ∴=, 又210a ∴=,2d ∴=-,2(2)10(2)(2)142n a a n d n n ∴=+-⨯=+-⨯-=-,514254a ∴=-⨯=,()122(12142)(262)13169(13)13()22224n n n a a n n n n S n n n n n ++--====-=-+=--+, ∴当6n =或7时,n S 有最大值42. 故答案为:(1)4;(2)42.变式1、(2019镇江期末) 设S n 是等比数列{a n }的前n 项的和,若a 6a 3=-12,则S 6S 3=________.【答案】 12【解析】设等比数列{a n }的公比为q ,则q 3=a 6a 3=-12.易得S 6=S 3(1+q 3),所以S 6S 3=1+q 3=1-12=12.变式2、(2019苏锡常镇调研)已知等比数列{}n a 的前n 项和为n S ,若622a a =,则128S S = . 【答案】.37【解析】设等比数列{}n a 的公比为q ,因为622a a =,所以2422a q a =,故24=q .由于1≠q ,故.372121)(1)(1111)1(1)1(23243481281121812=--=--=--=----=q q q q qq a q q a S S 方法总结:若一个数列为等差数列或者等比数列则运用求和公式:①等差数列的前n 项和公式:S n =n (a 1+a n )2=na 1+n (n -1)2d .②等比数列的前n 项和公式(Ⅰ)当q =1时,S n =na 1;(Ⅱ)当q ≠1时,S n =a 1(1-q n )1-q =a 1-a n q1-q.考向二 利用“分组求和法”求和例2、(2020届山东省潍坊市高三上期末)已知各项均不相等的等差数列{}n a 的前4项和为10,且124,,a a a 是等比数列{}n b 的前3项. (1)求,n n a b ; (2)设()11n n n n c b a a =++,求{}n c 的前n 项和n S .【解析】(1)设数列{}n a 的公差为d , 由题意知: ()1234114414+46102a a a a a d a d ⨯-+++==+= ① 又因为124,,a a a 成等比数列, 所以2214a a a =⋅,()()21113a d a a d +=⋅+,21d a d =,又因为0d ≠, 所以1a d =. ② 由①②得11,1a d ==, 所以n a n =,111b a ==,222b a == ,212b q b ==, 12n n b -∴= .(2)因为()111112211n n n c n n n n --⎛⎫=+=+- ⎪++⎝⎭,所以0111111122 (2)12231n n S n n -⎛⎫=++++-+-+⋅⋅⋅+- ⎪+⎝⎭1211121n n -=+--+ 121n n =-+ 所以数列{}n c 的前n 项和121nn S n =-+.变式1、求和S n =1+⎣⎡⎦⎤1+12+⎣⎡⎦⎤1+12+14+…+⎣⎡⎦⎤1+12+14+…+12n -1.【解析】 原式中通项为a n =⎣⎡⎦⎤1+12+14+ (12)-1=1-⎝⎛⎭⎫12n1-12=2⎝⎛⎭⎫1-12n ∴S n =2⎣⎡⎦⎤⎝⎛⎭⎫1-12+⎝⎛⎭⎫1-122+…⎝⎛⎭⎫1-12n =2⎣⎢⎡⎦⎥⎤n -12⎝⎛⎭⎫1-12n1-12 =12n -1+2n -2. 变式2、 已知等差数列{a n }的前n 项和为S n ,且关于x 的不等式a 1x 2-S 2x +2<0的解集为(1,2).(1)求数列{a n }的通项公式;(2)若数列{b n }满足b n =a 2n +2a n -1,求数列{b n }的前n 项和T n . 【解析】(1)设等差数列{a n }的公差为d ,因为关于x 的不等式a 1x 2-S 2x +2<0的解集为(1,2), 所以S 2a 1=1+2=3.又S 2=2a 1+d ,所以a 1=d , 易知2a 1=2,所以a 1=1,d =1.所以数列{a n }的通项公式为a n =n . (2)由(1)可得,a 2n =2n ,2a n =2n .因为b n =a 2n +2a n -1,所以b n =2n -1+2n ,所以数列{b n }的前n 项和T n =(1+3+5+…+2n -1)+(2+22+23+…+2n ) =n (1+2n -1)2+2(1-2n )1-2=n 2+2n +1-2.变式3、(2021·广东高三专题练习)设数列{a n }满足a n +1=123n a +,a 1=4. (1)求证{a n ﹣3}是等比数列,并求a n ; (2)求数列{a n }的前n 项和T n . 【答案】(1)证明见解析,11()33n n a -=+;(2)31(1)323n n -+.【解析】(1)数列{a n }满足a n +1=123n a +,所以113(3)3n n a a +-=-, 故13133n n a a +-=-, 所以数列{a n }是以13431a -=-=为首项,13为公比的等比数列. 所以1131()3n n a --=⋅,则1*1()3,3n n a n N -=+∈. (2)因为11()33n n a -=+,所以011111()()()(333)333n n T -=++++++⋯+=11(1)33113n n -+-=31(1)323n n -+. 方法总结:数列求和应从通项入手,若无通项,则先求通项,然后通过对通项变形,转化为等差数列或等比数列或可求前n 项和的数列求和.考向三 裂项相消法求和例3、(2021·四川成都市·高三二模(文))已知数列{}n a 的前n 项和n S 满足2n S n =,记数列11n n a a +⎧⎫⎨⎬⎩⎭的前n 项和为n T ,*n ∈N .则使得20T 的值为( )A .1939B .3839C .2041D .4041【答案】C 【解析】当1n =时,111a S ==;当2n ≥时,221(1)21n n n a S S n n n -=-=--=-;而12111a =⨯-=也符合21n a n =-,∴21n a n =-,*n N ∈.又11111()22121n n a a n n +=--+, ∴11111111(1...)(1)2335212122121n nT n n n n =⨯-+-++-=⨯-=-+++,所以202020220141T ==⨯+,故选:C.变式1、(2021·全国高三专题练习)已知在数列{}n a 中,14,0.=>n a a 前n 项和为n S ,若1,2)-+=∈≥n n n a S S n N n .(1)求数列{}n a 的通项公式; (2)若数列11n n a a +⎧⎫⎨⎬⎩⎭的前n 项和为n T ,求证:132020n T <<【解析】(1)在数列{}n a 中,1(2)n n n a S S n -=-≥①∴1n n n a S S -=且0n a >,∴①式÷②11n n S S -= (2)n ≥, ∴数列{}nS 1142S a ===为首项,公差为1的等差数列,2(1)1n S n n =+-=+ ∴2(1)n S n =+当2n ≥时,221(1)21n n n a S S n n n -=-=+-=+;当1n =时,14a =,不满足上式,∴数列{}n a 的通项公式为4,121,2n n a n n =⎧=⎨+≥⎩.(2)由(1)知4,121,2n n a n n =⎧=⎨+≥⎩,,则数列11n n a a +⎧⎫⎨⎬⎩⎭的前n 项和,∴当1n =时,114520n T ==⨯, ∴当1n =时,120n T =,满足132020n T ≤<,∴12233411111n n n T a a a a a a a a +=++++1111455779(21)(2n =++++⨯⨯⨯+111111111111()()()()45257792123202523n n n ⎡⎤=+⨯-+-++-=+⨯-⎢⎥⨯+++⎣⎦ 312046n =-+ ∴在n T 中,1n ≥,n ∈+N ,∴4610n +≥,∴114610n ≤+,∴1104610n >-≥-+,∴131320204620n ≤-<+.所以132020n T << 变式2、(2021·辽宁高三二模)已知数列{}n a 的前n 项和为n S ,且满足()*2n n a S n n =+∈N .(1)求证:数列{}1n a +是等比数列;(2)记()()2221log 1log 1n n n c a a +=+⋅+,求证:数列{}n c 的前n 项和34n T <.【解析】解:(1)因为2n n a S n =+①, 所以()11212n n a S n n --=+-≥② 由①-②得,121n n a a -=+.两边同时加1得()1112221n n n a a a --+=+=+,所以1121n n a a -+=+,故数列{}1n a +是公比为2的等比数列. (2)令1n =,1121a S =+,则11a =. 由()11112n n a a -+=+⋅,得21nn a =-.因为()()()22211111log 1log 1222n n n c a a n n n n +⎛⎫===- ⎪+⋅+++⎝⎭,所以11111111121324112n T n n n n ⎛⎫=-+-+⋅⋅⋅+-+- ⎪-++⎝⎭11113111221242224n n n n ⎛⎫⎛⎫=+--=-+ ⎪ ⎪++++⎝⎭⎝⎭. 因为*11,02224n N n n ∈+>++,所以3113422244n n ⎛⎫-+< ⎪++⎝⎭所以1111311312212422244n n n n n T ⎛⎫⎛⎫=+--=-+< ⎪ ⎪++++⎝⎭⎝⎭. 方法总结:常见题型有(1)数列的通项公式形如a n =1n n +k 时,可转化为a n =1k ⎝ ⎛⎭⎪⎫1n -1n +k ,此类数列适合使用裂项相消法求和. (2)数列的通项公式形如a n =1n +k +n时,可转化为a n =1k(n +k -n ),此类数列适合使用裂项相消法求和.考向四 错位相减法求和例4、(2020届山东省烟台市高三上期末)已知数列{}n a 的前n 项和n S 满足()()21n n S n a n N*=+∈,且12a =.(1)求数列{}n a 的通项公式;(2)设()12n an n b a =-,求数列{}n b 的前n 项和n T .【解析】(1)因为2(1)n n S n a =+,n *∈N , 所以112(2)n n S n a ++=+,n *∈N ,两式相减得112(2)(1)n n n a n a n a ++=+-+, 整理得1(1)n n na n a +=+,即11n n a a n n +=+,n *∈N ,所以n a n ⎧⎫⎨⎬⎩⎭为常数列, 所以121n a a n ==, 所以2n a n =(2)由(1),(1)2=(21)4n ann n b a n =--, 所以 12314+34+54++(21)4n n T n =⨯⨯⨯-231414+34++(23)4(21)4n n n T n n +=⨯⨯-+-…两式相减得:23134+2(4+4++4)(21)4n n n T n +-=⨯--…,2+114434+2(21)414n n n T n +--=⨯---,化简得120(65)4+99n n n T +-= 变式1、(2020·全国高三专题练习(文))已知数列{}n a 是等差数列,其前n 项和为n S ,且22a =,5S 为10和20的等差中项;数列{}n b 为等比数列,且319b b -=,4218b b -=.(1)求数列{}n a ,{}n b 的通项公式; (2)求数列{}n n a b 的前n 项和n M . 【解析】(1)设等差数列{}n a 的公差为d ,因为22a =,5S 为10和20的等差中项,所以112541020522a d a d +=⎧⎪⎨⨯++=⎪⎩,解得111a d =⎧⎨=⎩,所以n a n =. 设等比数列{}n b 的公比为q ,因为319b b -=,4218b b -=,所以2121(1)9(1)18b q b q q ⎧-=⎨-=⎩,解得132b q =⎧⎨=⎩, 所以132n n b -=⋅.(2)由(1)可知132n n n a b n -⋅=⋅,所以213(122322)n n M n -=+⨯+⨯++⋅,令21122322n n P n -=+⨯+⨯++⋅ ①, 则232222322n n P n =+⨯+⨯++⋅ ②,-①②可得2112122222(1)2112nn nn n n P n n n ---=++++-⋅=-⋅=---,所以(1)21nn P n =-+,所以3(1)23n n M n =-+.变式2、(2020·湖北高三期中)在等差数列{}n a 中,已知{}35,n a a =的前六项和636S =.(1)求数列{}n a 的通项公式n a ;(2)若___________(填①或②或③中的一个),求数列{}n b 的前n 项和n T .在①12n n n b a a +=,②(1)nn n b a =-⋅,③2na n nb a =⋅,这三个条件中任选一个补充在第(2)问中,并对其求解.注:如果选择多个条件分别解答,按第一个解答计分. 【解析】(1)由题意,等差数列{}n a 中35a =且636S =,可得112561536a d a d +=⎧⎨+=⎩,解得12,1d a ==,所以1(1)221n a n n =+-⨯=-.(2)选条件①:211(2n 1)(21)2121nb n n n ==--+-+,111111111335212121n T n n n ⎛⎫⎛⎫⎛⎫=-+-++-=- ⎪ ⎪ ⎪-++⎝⎭⎝⎭⎝⎭, 选条件②:由21n a n =-,可得(1)(2n 1)nn b =--,当n 为偶数时,(13)(57)[(23)(21)]22n nT n n n =-++-+++--+-=⨯=; 当n 为奇数时,1n -为偶数,(1)(21)n T n n n =---=-,(1)n n T n =-,选条件③:由21n a n =-,可得212(21)2n a n n n b a n -=⋅=-⋅, 所以135********(21)2n n T n -=⨯+⨯+⨯++-⨯,35721214123252(23)2(21)2n n n T n n -+=⨯+⨯+⨯++-⨯+-⨯,两式相减,可得:()13521213122222(21)2n n n T n -+-=⨯++++--⨯()222181222(21)214n n n -+-=+⋅--⨯-,所以2110(65)299n n n T +-=+⋅. 方法总结:主要用于一个等差数列与一个等比数列对应项相乘所得的数列的求和,即等比数列求和公式的推导过程的推广.。

高考数学一轮总复习第六章数列专题突破11数列求和课件

高考数学一轮总复习第六章数列专题突破11数列求和课件
(1)求{ }的公比;
(2)若1 = 1,求数列{ }的前项和.
解:(1)设{ }的公比为.由题意,得21 = 2 + 3 ,1 ≠ 0,所以 2 + − 2 = 0.因
为 ≠ 1,所以 = −2.
(2)设{ }的前项和为 ,1 = 1, = −2
+1
=
20
,求.
41
解:(1)设等差数列{ }的公差为 > 0 .
2 3 = 15,
由题意,得ቊ 2
4 = 1 25 ,
1 + 1 + 2 = 15,
1 = 1,
即൝
解得ቊ
1 + 3 2 = 1 1 + 24 ,
= 2.
所以 = 1 + 2 − 1 = 2 − 1.
3 1−31 012
1−3
= 2 × 31 012 − 2.故选A.
1−31 012
1−3
+
4.设{ }为等差数列,其前项和记为 ,已知3 = 7,7 = 70.
(1)求数列{ }的通项公式;
(2)记 =
1
,求数列{ }的前项和 .
+1
解:(1)由7 = 70,得74 = 70,所以4 = 10.
公差 = 4 − 3 = 3,首项1 = 3 − 2 = 1.
所以 = 1 + 3 − 1 = 3 − 2.
1
1
1

3−2 3+1
3 3−2
3+1
1
1
1
1
1
1
[ 1− + − + −
3
4
4
7

高考数学一轮专项复习讲义-数列求和(北师大版)

高考数学一轮专项复习讲义-数列求和(北师大版)

§6.5数列求和课标要求 1.熟练掌握等差、等比数列的前n 项和公式.2.掌握非等差数列、非等比数列求和的几种常用方法.知识梳理数列求和的几种常用方法(1)公式法直接利用等差数列、等比数列的前n 项和公式求和.①等差数列的前n 项和公式:S n =n (a 1+a n )2=na 1+n (n -1)2d .②等比数列的前n 项和公式:S n ,=a 1-a n q 1-q,q ≠1.(2)分组求和法与并项求和法①分组求和法若一个数列是由若干个等差数列或等比数列或可求和的数列组成,则求和时可用分组求和法,分别求和后相加减.②并项求和法一个数列的前n 项和中,可两两结合求解,则称之为并项求和.形如a n =(-1)n f (n )类型,可采用两项合并求解.(3)错位相减法如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,那么这个数列的前n 项和即可用此法来求,如等比数列的前n 项和公式就是用此法推导的.(4)裂项相消法把数列的通项拆成两项之差,在求和时中间的一些项可以相互抵消,从而求得其和.常见的裂项技巧①1n (n +1)=1n -1n +1.②1n (n +2)=③1(2n -1)(2n +1)=④1n +n +1=n +1-n .⑤1n (n +1)(n +2)=121n (n +1)-1(n +1)(n +2).常用结论常用求和公式(1)1+2+3+4+…+n =n (n +1)2.(2)1+3+5+7+…+(2n -1)=n 2.(3)12+22+32+…+n 2=n (n +1)(2n +1)6.(4)13+23+33+…+n 3=n (n +1)22.自主诊断1.判断下列结论是否正确.(请在括号中打“√”或“×”)(1)如果数列{a n }为等比数列,且公比q 不等于1,则其前n 项和S n =a 1-a n +11-q .(√)(2)求数列{2n +2n }的前n 项和可用分组求和法.(√)(3)求S n =a +2a 2+3a 3+…+na n 时,只要把上式等号两边同时乘a 即可根据错位相减法求得.(×)(4)当n ≥2时,1n 2-1=1n -1-1n +1.(×)2.数列{a n }的前n 项和为S n .若a n =1n (n +1),则S 5等于()A .1 B.56C.16D.130答案B 解析因为a n =1n (n +1)=1n -1n +1,所以S 5=a 1+a 2+…+a 5=1-12+12-13+…-16=56.3.S n =12+12+38+…+n2n 等于()A.2n -n -12n B.2n +1-n -22nC.2n -n +12n D.2n +1-n +22n答案B解析由S n =12+222+323+…+n2n ,①得12S n =122+223+…+n -12n +n 2n +1,②①-②得,12S n =12+122+123+…+12n -n 2n +1=1211-12-n2n +1=1-n +22n +1=2n +1-n -22n +1,∴S n =2n +1-n -22n.4.数列{a n }的前n 项和为S n ,已知S n =1-2+3-4+…+(-1)n -1·n ,则S 17=_____.答案9解析S 17=1-2+3-4+5-6+…+15-16+17=1+(-2+3)+(-4+5)+(-6+7)+…+(-14+15)+(-16+17)=1+1×8=9.题型一分组求和与并项求和例1(2023·重庆模拟)已知数列{a n }的前n 项和为S n ,a 1=1,S n +1=2S n +1(n ∈N +).(1)求数列{a n }的通项公式;(2)设b n =a n a n +1+log 2(a n a n +1)(n ∈N +),求数列{b n }的前n 项和T n .解(1)因为S n +1=2S n +1,所以S n +1+1=2(S n +1),又S 1+1=a 1+1=2,所以数列{S n +1}是首项为2,公比为2的等比数列,所以S n +1=2×2n -1=2n ,即S n =2n -1,当n ≥2时,S n -1=2n -1-1,所以a n =S n -S n -1=2n -1-2n -1+1=2n -1,当n =1时,a 1=1成立,故a n =2n -1,n ∈N +.(2)b n =a n a n +1+log 2(a n a n +1)=2n -1·2n +log 2(2n -1·2n )=22n -1+2n -1,所以数列{b n }的前n 项和T n =21+23+25+…+22n -1+1+3+5+…+2n -1=2(1-4n )1-4+n (1+2n -1)2=23(4n -1)+n 2.思维升华(1)分组求和法常见题型①若数列{c n }的通项公式为c n =a n ±b n ,且{a n },{b n }为等差或等比数列,可采用分组求和法求数列{c n}的前n项和.②若数列{c n}的通项公式为c n n ,n为奇数,n,n为偶数,其中数列{a n},{b n}是等比数列或等差数列,可采用分组求和法求{c n}的前n项和.(2)并项求和法常见题型①数列{a n}的通项公式为a n=(-1)n f(n),求数列{a n}的前n项和.②数列{a n}是周期数列或a k+a k+1(k∈N+)为定值,求数列{a n}的前n项和.跟踪训练1数列{a n}的前n项和S n满足S n=a n+1-1,n∈N+,且a1=1.(1)求a n;(2)设b n=(-1)n(a n-1),求数列{b n}的前2n项和T2n.解(1)因为S n=a n+1-1,当n=1时,a1=S1=a2-1,由a1=1可得a2=2,当n≥2时,S n-1=a n-1,作差得S n-S n-1=a n+1-1-(a n-1),即2a n=a n+1,n≥2,又a2a1=2,所以数列{a n}是以1为首项,2为公比的等比数列,所以a n=2n-1.(2)由(1)知b n=(-1)n2n-1-(-1)n,所以b2n=22n-1-1,b2n-1=-22n-2+1,所以b2n-1+b2n=4n-1,所以T2n=(b1+b2)+(b3+b4)+…+(b2n-1+b2n)=1+4+…+4n-1=1-4n1-4=4n-13.题型二错位相减法求和例2(12分)(2023·全国甲卷)记S n为数列{a n}的前n项和,已知a2=1,2S n=na n.(1)求{a n}的通项公式;[切入点:利用a n=S n-S n-1(n≥2)找出a n的递推关系](2)n项和T n.[关键点:错位相减法求和][思路分析](1)由a n=S n-S n-1(n≥2)→a n与a n-1的递推关系→累乘法求a n(2)求b n→错位相减法求T n解(1)因为2S n =na n ,当n =1时,2a 1=a 1,即a 1=0;(1分)当n =3时,2(1+a 3)=3a 3,即a 3=2,(2分)当n ≥2时,2S n -1=(n -1)a n -1,所以2S n -2S n -1=na n -(n -1)a n -1=2a n ,化简得(n -2)a n =(n -1)a n -1,(3分)①处利用a n =S n -S n -1(n ≥2)找a n 与a n -1的递推关系则当n ≥3时,a n a n -1=n -1n -2,则a n a n -1·a n -1a n -2·…·a 3a 2=n -1n -2·n -2n -3·…·21,即an a 2=n -1,②处累乘法求a n因为a 2=1,所以a n =n -1,(5分)当n =1,2时都满足上式,所以a n =n -1,n ∈N +.(6分)(2)令b n =a n +12n =n2n ,(7分)③处错位相减法求和即T n =2-2+n2n .(12分)思维升华(1)如果数列{a n }是等差数列,{b n }是等比数列,求数列{a n ·b n }的前n 项和时,常采用错位相减法.(2)错位相减法求和时,应注意:①在写出“S n ”与“qS n ”的表达式时应特别注意将两式“错项对齐”,以便于下一步准确地写出“S n -qS n ”的表达式.②应用等比数列求和公式时必须注意公比q 是否等于1,如果q =1,应用公式S n =na 1.跟踪训练2(2023·郑州质检)在数列{a n }中,a 1=1,a 2=3,a 3=7,且数列{a n +1-a n }为等比数列.(1)求数列{a n }的通项公式;(2)令b n =(2n -1)a n ,求{b n }的前n 项和S n .解(1)因为a 1=1,a 2=3,a 3=7,所以a 2-a 1=2,a 3-a 2=4,因为数列{a n +1-a n }为等比数列,a 3-a 2a 2-a 1=2,所以数列{a n +1-a n }是以2为首项,2为公比的等比数列,所以a n +1-a n =2n ,所以当n ≥2时,a n =(a n -a n -1)+(a n -1-a n -2)+…+(a 2-a 1)+a 1=2n -1+2n -2+…+21+1=2n -1,当n =1时上式也成立.所以a n =2n -1.(2)因为a n =2n -1,所以b n =(2n -1)a n =(2n -1)2n -(2n -1),记数列{(2n -1)2n }的前n 项和为T n ,则T n =1×21+3×22+5×23+…+(2n -3)·2n -1+(2n -1)·2n ,2T n =1×22+3×23+5×24+…+(2n -3)·2n +(2n -1)·2n +1,两式相减得-T n =1×21+2×(22+23+…+2n -1+2n )-(2n -1)·2n+1=2+2×22(1-2n -1)1-2-(2n -1)·2n +1=(3-2n )·2n +1-6,所以T n =(2n -3)·2n +1+6,所以S n =T n -[1+3+5+…+(2n -1)]=T n -n (1+2n -1)2=T n -n 2=(2n -3)·2n +1-n 2+6.题型三裂项相消法求和例3(2022·新高考全国Ⅰ)记S n 为数列{a n }的前n 项和,已知a 1=1是公差为13的等差数列.(1)求{a n }的通项公式;(2)证明:1a 1+1a 2+…+1a n<2.(1)解因为a 1=1,S1a 1=1,是公差为13的等差数列,所以S n a n =1+(n -1)×13=n +23,所以S n =n +23a n .因为当n ≥2时,a n =S n -S n -1=n +23a n -n +13a n -1,所以n +13a n -1=n -13a n (n ≥2),所以a n a n -1=n +1n -1(n ≥2),所以a 2a 1·a3a 2·…·a n -1a n -2·a n a n -1=31×42×53×…·n n -2·n +1n -1=n (n +1)2(n ≥2),所以a n =n (n +1)2(n ≥2),又a 1=1也满足上式,所以a n =n (n +1)2(n ∈N +).(2)证明因为a n =n (n +1)2,所以1a n =2n (n +1)=所以1a 1+1a 2+…+1a n=…=思维升华裂项相消法的原则及规律(1)裂项原则一般是前面裂几项,后面就裂几项,直到发现被消去项的规律为止.(2)消项规律消项后前面剩几项,后面就剩几项,前面剩第几项,后面就剩倒数第几项.跟踪训练3(2024·海口模拟)已知等差数列{a n },其前n 项和S n 满足S n =n 2+m ,m 为常数.(1)求m 及{a n }的通项公式;(2)记b n =a n +2S n S n +1,求数列{b n }的前n 项和T n .解(1)由题意,当n =1时,a 1=S 1=m +1,当n ≥2时,a n =S n -S n -1=n 2+m -(n -1)2-m =2n -1,则a 2=3,a 3=5,因为数列{a n }是等差数列,所以a 1+a 3=2a 2,即m +1+5=2×3,解得m =0,则a 1=1,满足a n =2n -1,所以{a n }的通项公式为a n =2n -1(n ∈N +).(2)由(1)可得S n =n 2,则b n =a n +2S n S n +1=2n +1n 2(n +1)2=1n 2-1(n +1)2,所以T n =b 1+b 2+…+b n=112-122+122-132+…+1n 2-1(n +1)2=1-1(n +1)2=n 2+2n (n +1)2.课时精练1.已知等差数列{a n }的首项为1,且a n >0,________.在①S 11=66;②a 3,a 9,9a 3成等比数列;③S n -na n =n -n 22,其中S n 是数列{a n }的前n 项和这三个条件中选择一个,补充在横线上,并进行解答.(1)求数列{a n }的通项公式;(2)若b n =3n a+2a n ,求数列{b n }的前n 项和T n .注:如果选择多个条件分别解答,则按第一个解答计分.解(1)若选择①:设{a n }的公差为d ,因为S 11=66,a 1=1,所以11+11×102×d =66,解得d =1,所以a n =a 1+(n -1)d =n .若选择②:因为a 3,a 9,9a 3成等比数列,所以a 29=9a 23,又a n >0,所以a 9=3a 3,又a 1=1,设{a n }的公差为d (d >0),所以1+8d =3(1+2d ),解得d =1,所以a n =a 1+(n -1)d =n .若选择③:设{a n }的公差为d ,因为S n -na n =n -n 22,所以na 1+n (n -1)2d -n [a 1+(n -1)d ]=n -n 22,又a 1=1,即n +n (n -1)2d -n -n (n -1)d =n -n 22d =n -n 22,解得d =1,所以a n =a 1+(n -1)d =n .(2)由(1)知b n =3n a+2a n =3n +2n .所以T n =(3+2)+(32+4)+…+(3n +2n ),所以T n =3+32+…+3n +2+4+…+2n ,所以T n =3(1-3n )1-3+(2+2n )n 2=3n +1-32+n 2+n ,所以T n =3n +1+2n 2+2n -32.2.(2024·枣庄模拟)已知数列{a n }的首项a 1=3,且满足a n +1+2a n =2n +2.(1)证明:数列{a n -2n }为等比数列;(2)已知b n n ,n 为奇数,2a n ,n 为偶数,T n 为数列{b n }的前n 项和,求T 10.(1)证明由a n +1+2a n =2n +2可得a n +1-2n +1=2n +1-2a n =-2(a n -2n ).又a 1-21=1≠0,所以数列{a n -2n }是以1为首项,-2为公比的等比数列.(2)解由(1)可得a n -2n =(-2)n -1,即a n =2n +(-2)n -1.当n 为奇数时,b n =a n =2n +(-2)n -1=3×2n -1;当n 为偶数时,b n =log 2a n =log 2[2n +(-2)n -1]=log 22n -1=n -1.所以T 10=(b 1+b 3+b 5+b 7+b 9)+(b 2+b 4+b 6+b 8+b 10)=(3+3×22+3×24+3×26+3×28)+(1+3+5+7+9)=3×(1-45)1-4+(1+9)×52=1048.3.(2023·遂宁模拟)已知数列{a n }的前n 项和为S n ,且2S n =3a n -1.(1)求{a n }的通项公式;(2)若b n =3n(a n +1)(a n +1+1),求数列{b n }的前n 项和T n .解(1)由已知得2S n =3a n -1,①当n =1时,2S 1=3a 1-1,即2a 1=3a 1-1,解得a 1=1,当n ≥2时,2S n -1=3a n -1-1,②①-②得2a n =3a n -3a n -1,即a n =3a n -1,所以数列{a n }是以1为首项,3为公比的等比数列,所以a n =3n -1.(2)因为b n =3n (a n +1)(a n +1+1)=3n (3n -1+1)(3n+1)=32×所以T n =32×-13+1+13+1-132+1+…+13n -1+1-=32×=34-32(3n +1).4.(2023·邢台模拟)已知数列{a n }的前n 项和为S n =2n +1-2,等差数列{b n }满足b 2=a 2+2,b 3=S 2+3.(1)求数列{a n },{b n }的通项公式;(2)求数列{a n b n }的前n 项和T n .解(1)当n =1时,a 1=S 1=22-2=2,当n ≥2时,a n =S n -S n -1=(2n +1-2)-(2n -2)=2n ,当n =1时,上式也成立,所以a n =2n .由题意得b 2=a 2+2=22+2=6,b 3=2+4+3=9,设等差数列{b n }的公差为d ,则d =b 3-b 2=3,b 1=b 2-d =3,故b n =b 1+(n -1)d =3n .综上,a n =2n ,b n =3n .(2)由(1)知a n b n =3n ·2n ,所以T n =a 1b 1+a 2b 2+a 3b 3+…+a n -1b n -1+a n b n=3×21+6×22+9×23+…+3(n -1)·2n -1+3n ·2n ,①2T n =3×22+6×23+9×24+…+3(n -1)·2n +3n ·2n +1,②所以①-②得,-T n =3×(21+22+23+…+2n -1+2n)-3n ·2n +1=3×21-2n +11-2-3n ·2n +1=(3-3n )·2n +1-6,所以T n =(3n -3)·2n +1+6.5.(2023·湘潭模拟)在数列{a n }中,a 12+a 23+a 34+…+a n n +1=n 2+n .(1)求{a n }的通项公式;(2)证明:13a 1+14a 2+…+1(n +2)a n <18.(1)解因为a 12+a 23+a 34+…+a n n +1=n 2+n ,①则当n =1时,a 12=2,即a 1=4,当n ≥2时,a 12+a 23+a 34+…+a n -1n=n 2-n ,②①-②得a n n +1=2n ,所以a n =2n (n +1),n ≥2,a 1=4也满足a n =2n (n +1),故a n =2n (n +1)(n ∈N +).(2)证明因为1(n +2)a n =12n (n +1)(n +2)=12(n +1)·1n (n +2)=14(n +1)·=141n (n +1)-1(n +1)(n +2),所以13a 1+14a 2+…+1(n +2)a n =1411×2-12×3+12×3-13×4+…+1n (n +1)-1(n +1)(n +2)=1412-1(n +1)(n +2)<18.6.(2024·洛阳模拟)已知数列{a n }满足数列{a n +1-a n }为等比数列,a 1=1,a 2=2,且对任意的n ∈N +,a n +2=λa n +1-2a n (λ≠1).(1)求实数λ的值及{a n }的通项公式;(2)当n ∈[a k ,a k +1)时,b n =k (k ∈N +),求数列{b n }的前2n 项和.解(1)设{a n +1-a n }的公比为q .∵a n +2=λa n +1-2a n ,∴a n +2-a n +1=λa n +1-2a n -a n +1=(λ-1)a n +1-2a n =(λ-n +1-2λ-1a q (a n +1-a n ).∴2λ-1=1,解得λ=3,∴q =2.又a 2-a 1=1,∴a n +1-a n =2n -1.∴a n =a 1+(a 2-a 1)+(a 3-a 2)+…+(a n -a n -1)=1+20+21+…+2n -2=1+1-2n -11-2=2n -1(n ≥2),当n =1时,符合上式,∴{a n }的通项公式为a n =2n -1.(2)当b m =k =1时,m ∈[1,2),共2-1=1项,当b m =k =2时,m ∈[2,4),共4-2=2项,当b m =k =3时,m ∈[4,8),共8-4=4项,…当b m =k =n 时,m ∈[2n -1,2n ),共2n -2n -1=2n -1项,又2n b =n +1,∴{b n }的前2n 项和为1×20+2×21+3×22+…+n ·2n -1+n +1.记S n =1×20+2×21+3×22+…+n ·2n -1,则2S n =1×21+2×22+3×23+…+n ·2n ,作差可得-S n =20+21+22+…+2n -1-n ·2n =1-2n 1-2-n ·2n =(1-n )·2n -1,∴S n =(n -1)·2n +1.因此,数列{b n }的前2n 项和为S n +n +1=(n -1)·2n +n +2.。

2024年新高考版数学专题1_7.4 数列求和、数列的综合

2024年新高考版数学专题1_7.4 数列求和、数列的综合

1 2
+
1 2
1 3
+…+
1 n
n
1 1
=1-
n
1 1
,
又因为n≥1,所以0< 1 ≤ 1 ,即有 1 ≤Tn<1,
n1 2
2
所以 1 ≤Tn<1 2
≤Tn<1.
解析 (1)选①.因为a4是a3与a5-8的等差中项,所以2a4=a3+a5-8,则16a1=4a1+ 16a1-8,解得a1=2,所以数列{an}的通项公式是an=2n.
选②.设{an}的公比为q,依题意,有 aS23
a1q 4, a1(1 q
13+23+33+…+n3= n(n 1) 2 .
2
2.倒序相加法 如果一个数列{an},与首末两端等“距离”的两项的和相等或等于同一常
数,那么求这个数列的前n项和即可用倒序相加法. 3.错位相减法 如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积 构成的,那么这个数列的前n项和即可用此法来求. 4.裂项相消法 把数列的通项拆成两项之差,在求和时中间的一些项可以相互抵消,从而 求得其和.以下为常见的拆项公式:
1) 1 = 1 - 1 ;
n(n 1) n n 1
2)
(2n
1 1)(2n
1)
=
1 2
1 2n 1
1 2n 1
;
3) 1 = n 1- n .
n n1
5.分组求和法
有一类数列,既不是等差数列,也不是等比数列,若将这类数列适当拆开, 可分为几个等差、等比或常见的数列,即先分别求和,再合并,例如:
高考 数学
专题七 数列

专题6-2 数列求和归类-2023年高考数学一轮复习热点题型(全国通用)(原卷版)

专题6-2 数列求和归类-2023年高考数学一轮复习热点题型(全国通用)(原卷版)
n 1
)(n N , n 2) ,求 Sn ;
(2)若 S n f ( ) f ( ) ... f (
n
n
n
(1)证明函数 f ( x ) 的图像关于点 ( ,1) 对称;
【提分秘籍】
基本规律
倒序求和,多是具有中心对称的
【变式演练】
1
1.设奇函数� � 对任意� ∈ �都有�(�) = �(� − 1) + 2 .
(2)设数列 bn 满足 bn
2 an 1
, 求数列 bn 的前 n 项和 Rn .
4n
2.设数列 an 的前 n 项和为 Sn , a2 4 ,且对任意正整数 n ,点 an 1 , S n 都在直线 x 3 y 2 0 上.(1)
求 an 的通项公式;
(2)若 bn nan ,求 bn 的前 n 项和 Tn .
【题型五】裂项相消常规型
【典例分析】
设数列 an 满足: a1 1 ,且 2an an 1 an 1 ( n 2 )
, a3 a4 12 .
(1)求 an 的通项公式:

1
的前 n 项和.
已知数列 an 的前 n 项和为 Sn , a1
1
, S n S n 1 S n S n 1 0 n 2 .
2
1
是等差数列;
Sn
Sn
, n为奇数

(2)若 Cn n 3
,设数列 C n 的前 n 项和为 Tn ,求 T2n .
【提分秘籍】
基本规律
分组求和法:
c(等比)
1.形如 an= b(等差)

高三总复习数学课件 数列求和

高三总复习数学课件 数列求和
数列求和
(1)熟练掌握等差、等比数列的前n项和公式及倒序相加求和、错位相减求和 法;(2)掌握非等差、等比数列求和的几种常见方法.
目录
CONTENTS
1
知识 逐点夯实
2
考点 分类突破
01 知识 逐点夯实 课前自修
重点准 逐点清 结论要牢记
重点一 公式法 1.等差数列{an}的前n项和Sn=na12+an=na1+nn-2 1d. 推导方法:倒序相加法.
na1,q=1, 2.等比数列{an}的前n项和Sn=a111--qqn,q≠1. 推导方法:乘公比,错位相减法.
[逐点清]
1.(选择性必修第二册24页习题1题改编)已知等差数列{an}的前n项和为Sn,a2=0,a4
=1,则S4=
()
A.12
B.1
C.2
D.3
解析:∵等差数列{an}的前n项和为Sn,a2=0,a4=1,∴aa11+ +d3=d=0,1,
∴an=2n-1,n∈N *. (2)由[a1]=1,[a2]=2,[a3]=4,[a4]=8,[a5]=6,[a6]=2,[a7]=4,…,易知,从 第二项起是周期为 4 的周期数列,∴S100=1+24×(2+4+8+6)+2+4+8=495.
答案:A
3.(易错题)若f(x)+f(1-x)=4,an=f(0)+fn1+…+fn-n 1+f(1)(n∈N *),则数列
{an}的通项公式为________.
解析:由f(x)+f(1-x)=4,可得f(0)+f(1)=4,…,f
1 n
+f
n-1 n
=4,所以2an
=(f(0)+f(1))+fn1+fn-n 1+…+(f(1)+f(0))=4(n+1),即an=2(n+1).

2023届高考一轮复习数列专题 数列求和常用方法(学生版)

2023届高考一轮复习数列专题   数列求和常用方法(学生版)

数列专题 数列求和常用方法(学生版)一、公式法1.等差数列{a n }的前n 项和S n =n (a 1+a n )2=na 1+n (n -1)d 2. 推导方法:倒序相加法.2.等比数列{a n }的前n 项和S n =⎩⎪⎨⎪⎧na 1,q =1,a 1(1-q n )1-q,q ≠1. 例1已知等比数列{a n }的公比q >1,a 1=2,且a 1,a 2,a 3-8成等差数列.(1)求出数列{a n }的通项公式;(2)设数列⎩⎨⎧⎭⎬⎫1a n 的前n 项和为S n ,任意n ∈N *,S n ≤m 恒成立,求实数m 的最小值. 跟踪练习1、已知等差数列{a n }的前n 项和为S n ,a 2=0,a 4=1,则S 4=( )A .12B .1C .2D .32、等差数列{a n }的首项为1,公差不为0.若a 2,a 3,a 6成等比数列,则{a n }的前6项的和为( )A .-24B .-3C .3D .83、(2022·天津模拟)设1+2+22+23+…+2n -1>128(n ∈N *),则n 的最小值为( )A .6B .7C .8D .94、设数列{a n }(n ∈N *)的各项均为正数,前n 项和为S n ,log 2a n +1=1+log 2a n ,且a 3=4,则S 6=( )A .128B .65C .64D .635、已知数列{a n }的前n 项和S n =4n +b (b 是常数,n ∈N *),若这个数列是等比数列,则b =( )A .-1B .0C .1D .46、已知等比数列{a n },a 1=1,a 4=18,且a 1a 2+a 2a 3+…+a n a n +1<k ,则k 的取值范围是( ) A .⎣⎡⎦⎤12,23 B .⎣⎡⎭⎫12,+∞C .⎣⎡⎭⎫12,23D .⎣⎡⎭⎫23,+∞ 7、(多选)已知数列{a n }满足a 1=1,且对任意的n ∈N *都有a n +1=a 1+a n +n ,则下列说法中正确的是( )A .a n =n (n +1)2B .数列⎩⎨⎧⎭⎬⎫1a n 的前2 020项的和为2 0202 021 C .数列⎩⎨⎧⎭⎬⎫1a n 的前2 020项的和为4 0402 021 D .数列{a n }的第50项为2 5508、(多选)设数列{a n }的前n 项和为S n ,若S 2n S 4n为常数,则称数列{a n }为“吉祥数列”.则下列数列{b n }为“吉祥数列”的有( )A .b n =nB .b n =(-1)n (n +1)C .b n =4n -2D .b n =2n9、在数列{a n }中,2a n =a n -1+a n +1(n ≥2),且a 2=10,a 5=-5.(1)求{a n }的通项公式;(2)求{a n }的前n 项和S n 的最大值.10、数列{a n }满足:a 1=1,点(n ,a n +a n +1)在函数y =kx +1的图象上,其中k 为常数,且k ≠0.(1)若a 1,a 2,a 4成等比数列,求k 的值;(2)当k =3时,求数列{a n }的前2n 项的和S 2n .11、已知等差数列{a n }和等比数列{b n }满足a 1=b 1=1,a 2+a 4=10,b 2b 4=a 5.(1)求{a n }的通项公式;二、分组转化法一个数列的通项公式是由若干个等差数列或等比数列或可求和的数列组成的,则求和时可用分组转化法,分别求和后再相加减.例2(2022·北京模拟)已知公差不为0的等差数列{a n }的前n 项和为S n ,S 5=20,a 3是a 2,a 5的等比中项,数列{b n }满足对任意的n ∈N *,S n +b n =2n 2.(1)求数列{a n },{b n }的通项公式;(2)设c n =⎩⎪⎨⎪⎧b n -n 2,n 为偶数,2a n ,n 为奇数,求数列{c n }的前2n 项的和T 2n .跟踪练习1、已知数列{a n }的通项公式为a n =2n +n ,若数列{a n }的前n 项和为S n ,则S 8=( )A .546B .582C .510D .5482、(2022·珠海模拟)已知等差数列{a n }中,a 3+a 5=a 4+7,a 10=19,则数列{a n cos n π}的前2 020项和为( )A .1 009B .1 010C .2 019D .2 0203、若f (x )+f (1-x )=4,a n =f (0)+f ⎝⎛⎭⎫1n +…+f ⎝⎛⎭⎫n -1n +f (1)(n ∈N *),则数列{a n }的通项公式为__ _____.4、(2022·衡水质检)已知各项都不相等的等差数列{a n },a 6=6,又a 1,a 2,a 4成等比数列.(1)求数列{a n }的通项公式;(2)设b n =2n a +(-1)n a n ,求数列{b n }的前2n 项和T 2n .5、已知数列{a n }满足a 1=1,a n +1=⎩⎪⎨⎪⎧a n +1,n 为奇数,a n +2,n 为偶数. (1)记b n =a 2n ,写出b 1,b 2,并求数列{b n }的通项公式;(2)求{a n }的前20项和.6、已知等比数列{a n }的前n 项和为S n ,且S n =2n +a .(1)求a n ;(2)定义[x ]为取整数x 的个位数,如[1]=1,[32]=2,[143]=3,求[a 1]+[a 2]+[a 3]+…+[a 100]的值.7、已知公比大于1的等比数列{a n }满足a 2+a 4=20,a 3=8.(1)求{a n }的通项公式;(2)记b m 为{a n }在区间(0,m ](m ∈N *)中的项的个数,求数列{b m }的前100项和S 100.8、(2022·重庆质检)已知等差数列{a n }的前n 项和为S n ,a 5=9,S 5=25.(1)求数列{a n }的通项公式及S n ;(2)设b n =(-1)n S n ,求数列{b n }的前n 项和T n .9、已知在等差数列{a n }中,S n 为其前n 项和,且a 3=5,S 7=49.(1)求数列{a n }的通项公式;(2)若b n =2n a+a n ,数列{b n }的前n 项和为T n ,且T n ≥1 000,求n 的取值范围.10、(2022·青岛模拟)从“①S n =n ⎝⎛⎭⎫n +a 12;②S 2=a 3,a 4=a 1a 2;③a 1=2,a 4是a 2,a 8的等比中项.”三个条件中任选一个,补充到下面的横线处,并解答.已知等差数列{a n }的前n 项和为S n ,公差d ≠0,________,n ∈N *.(1)求数列{a n }的通项公式;(2)若b n =122n n S S +-,数列{b n }的前n 项和为W n ,求W n .注:如果选择多个条件分别解答,按第一个解答计分.11、(2022·株洲质检)由整数构成的等差数列{a n }满足a 3=5,a 1a 2=2a 4.(1)求数列{a n }的通项公式;(2)若数列{b n }的通项公式为b n =2n ,将数列{a n },{b n }的所有项按照“当n 为奇数时,b n 放在前面;当n 为偶数时,a n 放在前面”的要求进行“交叉排列”,得到一个新数列{c n },b 1,a 1,a 2,b 2,b 3,a 3,a 4,b 4,…,求数列{c n }的前(4n +3)项和T 4n +3.三、裂项相消法把数列的通项拆成两项之差,在求和时中间的一些项可以相互抵消,从而求得前n 项和.(1)1n (n +1)=1n -1n +1; (2)1n (n +2)=12⎝⎛⎭⎫1n -1n +2; (3)1(2n -1)(2n +1)=12⎝⎛⎭⎫12n -1-12n +1; (4)1n +n +1=n +1-n .例3(2022·南京质检)已知数列{a n }的前n 项和为S n ,S n =2a n -1,数列{b n }是等差数列,且b 1=a 1,b 6=a 5.(1)求数列{a n }和{b n }的通项公式;(2)若c n =1b n b n +1,记数列{c n }的前n 项和为T n ,证明:3T n <1.跟踪练习1、(2022·北京模拟)数列{a n }的通项公式为a n =1n +n +1 ,若{a n }的前n 项和为9,则n的值为( )A .576B .99C .624D .625 2、(多选)已知数列{a n }满足a 1=32,a n =a 2n -1+a n -1(n ≥2,n ∈N *).记数列{a 2n }的前n 项和为A n ,数列⎩⎨⎧⎭⎬⎫1a n +1的前n 项和为B n ,则下列结论正确的是( ) A .A n =a n +1-32B .B n =23-1a n +1C .A n B n =32a nD .A n B n <32n +143、在数列{a n }中,a n =1n (n +1),若{a n }的前n 项和为2 0222 023,则项数n =____ ____. 4、已知数列⎩⎨⎧⎭⎬⎫1(2n -1)(2n +1)的前n 项和为T n ,若对任意的n ∈N *,不等式12T n <a 2-a 恒成立,则实数a 的取值范围是__ __.5、(2022·本溪模拟)已知数列{a n }的前n 项和为S n ,且2S n =3a n -3(n ∈N *).(1)求数列{a n }的通项公式;(2)若b n =1log 3a n ·log 3a n +1,求数列{b n }的前n 项和T n .6、已知数列{a n }的前n 项和为S n ,且S n +1=4a n ,n ∈N *,a 1=1.(1)在下列三个结论中选择一个进行证明,并求{a n }的通项公式; ①数列⎩⎨⎧⎭⎬⎫a n 2n 是等差数列; ②数列{}a n +1-2a n 是等比数列;③数列{}S n +1-2S n 是等比数列.(2)记b n =S n +2S n S n +1,求数列{b n }的前n 项和T n . 注:如果选择多个结论分别解答,则按第一个解答计分.7、给出以下三个条件:①4a 3,3a 4,2a 5成等差数列;②∀n ∈N *,点(n ,S n )均在函数y =2x -a 的图象上,其中a 为常数;③S 3=7.请从这三个条件中任选一个将下面的题目补充完整,并求解.设{a n }是一个公比为q (q >0,且q ≠1)的等比数列,且它的首项a 1=1,________.(1)求数列{a n }的通项公式;(2)令b n =2log 2a n +1(n ∈N *),证明:数列⎩⎨⎧⎭⎬⎫1b n b n +1的前n 项和T n <12. 注:如果选择多个条件分别解答,则按第一个解答计分.8、设{a n }是各项都为正数的单调递增数列,已知a 1=4,且a n 满足关系式:a n +1+a n =4+2a n +1a n ,n ∈N *.(1)求数列{a n }的通项公式;(2)若b n =1a n -1,求数列{b n }的前n 项和S n .9、设数列{a n }的前n 项和为S n ,且2S n =3a n -1.(1)求{a n }的通项公式;(2)若b n =3n (a n +1)(a n +1+1),求{b n }的前n 项和T n ,证明:38≤T n <34.10、已知数列{a n }满足a 1=4,且当n ≥2时,(n -1)a n =n (a n -1+2n -2).(1)求证:数列⎩⎨⎧⎭⎬⎫a n n 是等差数列; (2)记b n =2n +1a 2n,求数列{b n }的前n 项和S n .11、(2022·合肥模拟)已知数列{a n }满足:a 1=2,a n +1=a n +2n .(1)求{a n }的通项公式;(2)若b n =log 2a n ,T n =1b 1b 2+1b 2b 3+…+1b n b n +1,求T n .12、已知数列{a n },{b n },{c n }满足a 1=b 1=c 1=1,c n =a n +1-a n ,c n +1=b n b n +2c n,n ∈N *. (1)若{b n }为等比数列,公比q >0,且b 1+b 2=6b 3,求q 的值及数列{a n }的通项公式;(2)若{b n }为等差数列,公差d >0,证明:c 1+c 2+c 3+…+c n <1+1d,n ∈N *.13、已知数列{a n }满足a 1=12,1a n +1=1a n+2(n ∈N *). (1)求数列{a n }的通项公式;(2)求证:a 21+a 22+a 23+…+a 2n <12.14、若S n 是公差不为0的等差数列{a n }的前n 项和,且S 1,S 2,S 4成等比数列,S 2=4. ①求数列{a n }的通项公式;②设b n =3a n a n +1,T n 是数列{b n }的前n 项和,求使得T n <m 20对所有n ∈N *都成立的最小正整数m .四、错位相减法如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,那么求这个数列的前n 项和即可用错位相减法求解.例4(2022·江门模拟)已知数列{a n }满足:a 1=1,a n +1=2a n +n -1.(1)证明:数列{a n +n }是等比数列并求数列{a n }的前n 项和S n ;(2)设b n =(2n -1)·(a n +n ),求数列{b n }的前n 项和T n .跟踪练习1、(2022·广东模拟)在数列{a n }中,a 1=1,a n +1=a n -2a n a n +1.(1)求{a n }的通项公式;(2)若b n =3na n,求数列{b n }的前n 项和S n .2、已知数列{a n }的前n 项和为S n ,对任意正整数n ,均有S n +1=3S n -2n +2成立,a 1=2.(1)求证:数列{a n -1}为等比数列,并求{a n }的通项公式;(2)设b n =na n ,求数列{b n }的前n 项和T n .3、(2022·湖南模拟)某同学在复习数列时,发现曾经做过的一道题目因纸张被破坏,导致一个条件看不清(即下题中“已知”后面的内容看不清),但在(1)的后面保留了一个“答案:S 1,S 3,S 2成等差数列”的记录,具体如下:记等比数列{a n }的前n 项和为S n ,已知_____________.①判断S 1,S 2,S 3的关系;(答案:S 1,S 3,S 2成等差数列)②若a 1-a 3=3,记b n =n 12|a n |,求证:b 1+b 2+…+b n <43. (1)请在本题条件的“已知”后面补充等比数列{a n }的首项a 1的值或公比q 的值(只补充其中一个值),并说明你的理由;(2)利用(1)补充的条件,完成②的证明过程.4设{a n }是公比不为1的等比数列,a 1为a 2,a 3的等差中项.(1)求{a n }的公比;(2)若a 1=1,求数列{na n }的前n 项和.5、已知数列{a n }的前n 项和为S n ,a 1=-94,且4S n +1=3S n -9(n ∈N *). (1)求数列{a n }的通项公式;(2)设数列{b n }满足3b n +(n -4)a n =0(n ∈N *),记{b n }的前n 项和为T n .若T n ≤λb n ,对任意n ∈N *恒成立,求实数λ的取值范围.6、设数列{a n }满足a 1=3,a n +1=3a n -4n .(1)计算a 2,a 3,猜想{a n }的通项公式;(2)求数列{2n a n }的前n 项和S n .7、(2022·济宁模拟)已知数列{a n }是正项等比数列,满足a 3是2a 1,3a 2的等差中项,a 4=16.(1)求数列{a n }的通项公式;(2)若b n =(-1)n log 2a 2n +1,求数列{b n }的前n 项和T n .8、(2022·重庆调研)在等差数列{a n}中,已知a6=12,a18=36.(1)求数列{a n}的通项公式a n;(2)若________,求数列{b n}的前n项和S n,在①b n=4a n a n+1,②b n =(-1)n·a n,③b n=2n ana 这三个条件中任选一个补充在第(2)问中,并对其求解.9、(2022·沈阳模拟)已知正项数列{a n}的前n项和为S n,且a2n+1=2S n+n+1,a2=2.(1)求数列{a n}的通项公式a n;(2)若b n=a n·2n,数列{b n}的前n项和为T n,求使T n>2 022的最小的正整数n的值.。

一般数列求和(裂项、错位、分组)-2023届高三数学一轮复习专题

一般数列求和(裂项、错位、分组)-2023届高三数学一轮复习专题

一般数列求和一.裂项求和1.已知数列{a n}满足a1=2,.(1)设,求证:数列{b n}为等差数列,并求数列{a n}的通项公式;(2)设,求数列{c n c n+2}的前n项和为T n,2.已知数列{a n}满足a1=3,且a n+1=2a n﹣n+1.(1)证明:数列{a n﹣n}为等比数列;(2)记,求数列{b n}前n项的和S n.3.设数列{a n}的前n项和为S n,已知a n>0,.(1)求{a n}的通项公式;(2)若数列{b n}满足,求{b n}的前n项和T n.4.已知数列{a n}的前n项和S n满足2S n﹣na n=3n(n∈N*),且a2=5.(1)证明数列{a n}为等差数列,并求{a n}的通项公式;(2)设b n=,求为数列{b n}的前n项和T n.【裂和】5.已知数列{a n}和{}均为等差数列,a1=.(1)求数列{a n}的通项公式;(2)设数列{b n}满足b n=(﹣1)n•,求数列{b n}的前n项和S n.二.错位相减法6.已知等差数列{a n}满足(a1+a2)+(a2+a3)+…+(a n+a n+1)=2n(n+1)(n∈N*).(1)求数列{a n}的通项公式;(2)求数列{}的前n项和S n.三.分组求和【并项求和】7.(2021•湖南模拟)已知正项数列{a n}的前n项和为S n,2S n=a n2+a n﹣2.(1)证明:数列{a n}是等差数列.(2)若b n=(﹣1)n a n2,求数列{b n}的前2n项和为T2n.【分组求和】8.(2020秋•湖北期中)已知数列{a n}的前n项和为S n,a1=2,S n+1=3S n+2,n∈N*.(1)证明:数列{S n+1}为等比数列;(2)若b n=,求数列{b n}的前2n项的和T2n.练习:9.已知数列{a n}和{}均为等差数列,a1=.(1)求数列{a n}的通项公式;(2)设数列{b n}满足b n=(﹣1)n•,求数列{b n}的前n项和S n.10.在数列{a n}中,a1=14,a n+1﹣3a n+4=0.(1)证明:数列{a n﹣2}是等比数列.(2)设b n=,记数列{b n}的前n项和为T n,若对任意的n∈N*,m≥T n恒成立,求m 的取值范围.11.已知等比数列{a n}的前n项和为S n,a1=1,且S3=2S2+1.(1)求数列{a n}的通项公式;(2)若数列{a n}为递增数列,数列{b n}满足,求数列b n的前n项和T n.12.已知等差数列{a n}的前n项和为S n,且S5=25,a2+a5+a10=31.(1)求数列{a n}的通项公式以及前n项和S n;(2)若求数列{b n}的前2n﹣1项和T2n﹣1.答案:1.(2021秋•湖北月考)已知数列{a n}满足a1=2,.(1)设,求证:数列{b n}为等差数列,并求数列{a n}的通项公式;(2)设,数列{c n c n+2}的前n项和为T n,是否存在正整数m,使得对任意的n∈N*都成立?若存在,求出m的最小值;若不存在,试说明理由.【解答】(1)证明:∵,∴,则=.又,且,∴数列{b n}是以1为首项,以1为公差的等差数列,则,即,;(2)解:=,,则=2=<3.要使对任意的n∈N*都成立,只要3,即,解得m≤﹣4或m≥3.∵m>0,∴m≥3,即m的最小值为3.2.(2020秋•湖北期末)已知数列{a n}满足a1=3,且a n+1=2a n﹣n+1.(1)证明:数列{a n﹣n}为等比数列;(2)记,S n是数列{b n}前n项的和,求证:.【解答】证明:(1)依题意,由a n+1=2a n﹣n+1,两边同时减去n+1,可得a n+1﹣(n+1)=2a n﹣n+1﹣(n+1)=2(a n﹣n),∵a1﹣1=3﹣1=2,∴数列{a n﹣n}是以2为首项,2为公比的等比数列.(2)由(1)知,a n﹣n=2•2n﹣1=2n,∴a n=2n+n,∴==﹣,则S n=b1+b2+…+b n=﹣+﹣+…+﹣=﹣=﹣<,∴不等式成立.3.(2018秋•荆州区校级期末)设数列{a n}的前n项和为S n,已知a n>0,.(Ⅰ)求{a n}的通项公式;(Ⅱ)若数列{b n}满足,求{b n}的前n项和T n.【解答】解:(Ⅰ),则,两式相减得:(a n+a n﹣1)(a n﹣a n﹣1﹣2)=0,∵a n>0,∴a n﹣a n﹣1=2(n≥2),且,∴{a n}是以3为首项,2为公差的等差数列,∴a n=2n+1.(Ⅱ)∴=.4.(2019秋•西湖区校级期中)已知数列{a n}的前n项和S n满足2S n﹣na n=3n(n∈N*),且a2=5.(1)证明数列{a n}为等差数列,并求{a n}的通项公式;(2)设b n=,T n为数列{b n}的前n项和,求使T n成立的最小正整数n的值.【解答】解:(1)当n≥2时,2S n﹣1﹣(n﹣1)a n﹣1=3(n﹣1),又2S n﹣na n=3n,相减可得(n﹣1)a n﹣1﹣(n﹣2)a n=3,当n≥3时,(n﹣2)a n﹣2﹣(n﹣3)a n﹣1=3,所以(n﹣1)a n﹣1﹣(n﹣2)a n=(n﹣2)a n﹣2﹣(n﹣3)a n﹣1,可得2a n﹣1=a n﹣2+a n,所以{a n}为等差数列.又2S1﹣a1=3,且a1=S1,得a1=3,又a2=5,所以{a n}为公差为2的等差数列,则a n=2n+1;(2)b n=====(﹣),T n=(﹣+﹣+﹣+﹣+…+﹣)=(﹣),要使T n成立,即(﹣)>,解得n>,所以最小正整数n的值为8.4.(2019秋•湖北月考)已知数列{a n}和{}均为等差数列,a1=.(1)求数列{a n}的通项公式;(2)设数列{b n}满足b n=(﹣1)n•,求数列{b n}的前n项和S n.【解答】解:(1){}均为等差数列,a1=.可得2•=a12+,数列{a n}也为等差数列,公差设为d,可得(a1+d)2=a12+,化为a1=d=,则a n=+(n﹣1)=n;(2)b n=(﹣1)n•=(﹣1)n•=(﹣1)n•(+),S n=﹣(1+)+(+)﹣(+)+…+(﹣1)n•(+)=﹣1+(﹣1)n•.6.已知等差数列{a n}满足(a1+a2)+(a2+a3)+…+(a n+a n+1)=2n(n+1)(n∈N*).(1)求数列{a n}的通项公式;(2)求数列{}的前n项和S n.【解答】解:∵(a1+a2)+(a2+a3)+…+(a n+a n+1)=2n(n+1),①∴(a1+a2)+(a2+a3)+…+(a n﹣1+a n)=2n(n﹣1),②由①﹣②可得,a n+a n+1=4n,③,令n=n﹣1,可得a n+a n﹣1=4(n﹣1),④,由③﹣④可得2d=4,∴d=2,∵a1+a2=4,∴a1=1,∴a n=1+2(n﹣1)=2n﹣1,(2)=(2n﹣1)•()n﹣1,∴S n=1•()0+3•()1+5•()2+…+(2n﹣1)•()n﹣1,∴S n=1•()1+3•()2+5•()3+…+(2n﹣3)•()n+(2n﹣1)•()n,∴S n=1+2•()1+2•()2+2•()3+…+2•()n﹣1﹣(2n﹣1)•()n=1+2﹣(2n﹣1)•()n=3﹣(2n+3)•()n,∴S n=6﹣(2n+3)•()n﹣1.7.(2021•湖南模拟)已知正项数列{a n}的前n项和为S n,2S n=a n2+a n﹣2.(1)证明:数列{a n}是等差数列.(2)若b n=(﹣1)n a n2,求数列{b n}的前2n项和为T2n.【解答】解:(1)证明:因为,所以当n=1时,,即,解得a1=2或a1=﹣1(舍去).当n≥2时,,则,即(a n+a n﹣1)(a n﹣a n﹣1﹣1)=0,因为a n>0,所以a n+a n﹣1>0,则a n﹣a n﹣1﹣1=0,即a n﹣a n﹣1=1,(n∈N*,n⩾2)所以数列{a n}是等差数列.(2)由(1)可得a n=2+n﹣1=n+1,n∈N*,则,n∈N*,从而,故T2n=b1+b2+…+b2n﹣1+b2n(4+1)+(4×2+1)+…+(4n+1)==2n2+3n.8.(2020秋•湖北期中)已知数列{a n}的前n项和为S n,a1=2,S n+1=3S n+2,n∈N*.(1)证明:数列{S n+1}为等比数列;(2)若b n=,求数列{b n}的前2n项的和T2n.【解答】解:(1)证明:∵S n+1=3S n+2,∴,又S1+1=3,∴数列{S n+1}是以3为首项,以3为公比的等比数列;(2)解:由(1)可得,∴,又当n≥2时,,a1=2也适合上式,∴,∴,∴T2n=(b1+b3+…+b2n﹣1)+(b2+b4+…+b2n)=+=.9.(2019秋•湖北月考)已知数列{a n}和{}均为等差数列,a1=.(1)求数列{a n}的通项公式;(2)设数列{b n}满足b n=(﹣1)n•,求数列{b n}的前n项和S n.【解答】解:(1){}均为等差数列,a1=.可得2•=a12+,数列{a n}也为等差数列,公差设为d,可得(a1+d)2=a12+,化为a1=d=,则a n=+(n﹣1)=n;(2)b n=(﹣1)n•=(﹣1)n•=(﹣1)n•(+),S n=﹣(1+)+(+)﹣(+)+…+(﹣1)n•(+)=﹣1+(﹣1)n•.10.在数列{a n}中,a1=14,a n+1﹣3a n+4=0.(1)证明:数列{a n﹣2}是等比数列.(2)设b n=,记数列{b n}的前n项和为T n,若对任意的n∈N*,m≥T n恒成立,求m的取值范围.【解答】(1)证明:∵数列{a n}满足a n+1﹣3a n+4=0,∴a n+1﹣2=3(a n﹣2),即=3(常数).数列{a n﹣2}是以12为首项,3为公比的等比数列;(2)解:由(1)知,即.∴b n==.当n为偶数时,=;当n为奇数时,﹣…+=.当n为偶数时,是递减的,此时当n=2时,T n取最大值﹣,则m≥﹣;当n为奇数时,T n=﹣是递增的,此时T n<﹣,则m≥﹣.综上,m的取值范围是[﹣,+∞).11.已知等比数列{a n}的前n项和为S n,a1=1,且S3=2S2+1.(1)求数列{a n}的通项公式;(2)若数列{a n}为递增数列,数列{b n}满足,求数列b n的前n项和T n.(3)在条件(2)下,若不等式λnT n﹣3λn+b n<0对任意正整数n都成立,求λ的取值范围.【解答】解:(1)等比数列{a n}的公比设为q,前n项和为S n,a1=1,且S3=2S2+1,可得1+q+q2=2(1+q)+1,解得q=﹣1或q=2,则a n=(﹣1)n﹣1;或a n=2n﹣1;(2)数列{a n}为递增数列,可得a n=2n﹣1,数列{b n}满足,即为b n=(2n﹣1)•()n,前n项和T n=1•+3•+…+(2n﹣1)•()n,T n=1•+3•+…+(2n﹣1)•()n+1,相减可得T n=+2(++…+()n)﹣(2n﹣1)•()n+1=+2•﹣(2n﹣1)•()n+1,化为T n=3﹣(2n+3)•()n;(3)不等式λnT n﹣3λn+b n<0对任意正整数n都成立,即为λ(T n﹣3)+<0,即λ>恒成立,可令t=2n﹣1(t为正奇数),可得==,由t+≥4,当t=1时,t+=5,t=3时,t+=,t=5时,t+=,可得t=3,即n=2时,取得最大值,则λ>.12.已知等差数列{a n}的前n项和为S n,且S5=25,a2+a5+a10=31.(1)求数列{a n}的通项公式以及前n项和S n;(2)若求数列{b n}的前2n﹣1项和T2n﹣1.【解答】解:(1)由S5=25,得5a1+d=25①,由a2+a5+a10=31,得a1+d+(a1+4d)+(a1+9d)=3a1+14d=31②,由①②解得,a1=1,d=2,所以数列{a n}的通项公式a n=a1+(n﹣1)d=2n﹣1,前n项和S n==n2.(2)b n===,所以T2n﹣1=(b1+b3+…+b2n﹣1)+(b2+b4+…+b2n﹣2)=(21+25+29+…+22n﹣1)+(﹣+﹣+…+﹣)=+(﹣)=﹣﹣.。

高三数学一轮复习 5.4数列求和部分 重点、考点知识、高考真题讲解及练习

高三数学一轮复习 5.4数列求和部分 重点、考点知识、高考真题讲解及练习

6

13
23
33
n3
n(n 1) 2 2

2.倒序相加法
如果一个数列an ,与首末两端等“距离”的两项的和相等或等于同一常数,那么求这个
数列的前 n 项和即可用倒序相加法,如等差数列的前 n 项和即是用此法推导的.
3.错位相减法
如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,那么这个
8.(2014•芙蓉区校级模拟) t
t
t t t=( )
A.0.1 B.0.3 C.0.6 D.0.9
【解答】解: t t

t)=1﹣ t=0.9
故选:D.
t t t=(1﹣ )+(
)+(
)+…
9.(2014•海淀区校级模拟){an}和{bn},其前 n 项和分别为 Sn,Tn,且 则 t t等于( )
ntn n
=
+
n =
n
t
n+2n+1﹣2.
19.(2018•荆州区校级二模)已知数列{an}是递增的等差数列,a2=3,若 a1,a3
﹣a1,a8+a1 成等比数列.
(1)求数列{an}的通项公式;
(2)若 bn=
,数列{bn}的前 n 项和 Sn,求 Sn.
t
【解答】解:(1)设{an}的公差为 d,d>0,
) t
故答案为: t
14.(2017•金凤区校级模拟)等比数列{an}中,a4=2,a5=5,则数列{lgan}的前 8
项和等于 4 . 【解答】解:∵等比数列{an}中 a4=2,a5=5, ∴a4•a5=2×5=10, ∴数列{lgan}的前 8 项和 S=lga1+lga2+…+lga8 =lg(a1•a2…a8)=lg(a4•a5)4 =4lg(a4•a5)=4lg10=4 故答案为:4.

高三数学数列求和

高三数学数列求和

的前n项和.
数列求和的方法:
3. 分组法求和:
1 例4. 设正项等比数列{an}的首项 a1 , 2
前n项和为Sn,且
(1) 求{an}的通项;
210S30-(210+1)S20+S10 =0. (2) 求{nSn}的前n项和Tn.
数列求和的方法:
3. 分组法求和: 例5. 求数列
1, 1 a , 1 a a , ,1 a a a
2 2
n 1
,
的前n项和Sn.
数列求和的方法:
4. 裂项法求和: 例6. 求和:
1 1 1 1 . 1 2 1 2 3 1 2 n
数列求和的方法:
4. 裂项法求和: 例7. 求数列 1 1 , , , 1 2 2 3 的前n项和Sn.
1 n n1
湖南省长沙市一中卫星远程学校
,
课堂小结
常用数列求和方法有: (1) 公式法: 直接运用等差数列、等比数列 求和公式; (2) 化归法: 将已知数列的求和问题化为等 差数列、等比数列求和问题; (3) 倒序相加法: 对前后项有对称性的数列 求和; (4) 错位相减法: 对等比数列与等差数列组 合数列求和;
课堂小结
常用数列求和方法有: (5) 并项求和法: 将相邻n项合并为一项求 和; (6) 分部求和法:将一个数列分成n部分 求和; (7) 裂项相消法:将数列的通项分解成两 项之差,从而在求和时产生相消为零 的项的求和方法.
课后作业
《学案》P.62 单元检测题.
湖南省长沙市一中卫星远程学校
思考题
1 1 1 1. 求数列: 2 , 4 , 6 , 前n项的和. 4 8 16 1 2 n 2. 在数列{a n }中: an , n1 n1 n1 2 又bn , 求数列{bn }的前n项的和. a n a n1

数列求和课件高三数学一轮复习

数列求和课件高三数学一轮复习

-2n
1
9·4 -1
+
1
1
+…+
2
4
4



4 +1

3·4

4 +1
.②

− 4 +1 ,
1
3
1
3·4
4
9
3+4
.
9·4
= −
= −


4 +1
,
规律方法 错位相减求和法的方法步骤
设{anbn}的前n项和为Sn,其中数列{an}为公差为d的等差数列,数列{bn}为公
所以当 k 为偶数时,(Sn)max= =
2
当 k 为奇数时,(Sn)max=+1 =
2
2
=25,解得
4
2 -1
=25,此时
4
k=10;
k 无整数解.
综上可得,k=10,Sn=-n2+10n.
当n=1时,a1=S1=9.
当n≥2时,an=Sn-Sn-1=(-n2+10n)-[-(n-1)2+10(n-1)]=-2n+11,

故数列{an}是等比数列,且首项为2,公比为2,所以an=2n.
(2)由(1)知 bn=log2a2n-1=2n-1,
1
所以
+1
所以
=
=
1
Tn=
1 2
1
1
(1-3
2
1
3
1
(2-1)(2+1)
+
1
2 3
1
5

高考数学冲刺复习数列求和考点速查

高考数学冲刺复习数列求和考点速查

高考数学冲刺复习数列求和考点速查在高考数学中,数列求和是一个重要的考点,也是许多同学感到头疼的部分。

在冲刺复习阶段,对数列求和考点进行速查和梳理,能够帮助我们查漏补缺,提高解题能力,从而在高考中取得更好的成绩。

一、等差数列求和等差数列是指从第二项起,每一项与它的前一项的差等于同一个常数的数列。

对于等差数列\(\{a_n\}\),其通项公式为\(a_n =a_1 +(n 1)d\),其中\(a_1\)为首项,\(d\)为公差。

等差数列的前\(n\)项和公式为:\(S_n =\frac{n(a_1 +a_n)}{2} = na_1 +\frac{n(n 1)d}{2}\)在解题时,我们需要根据题目所给条件,灵活选择合适的求和公式。

例如,已知等差数列\(\{a_n\}\)的首项\(a_1 = 2\),公差\(d = 3\),求前\(10\)项的和\(S_{10}\)。

首先,求出第\(10\)项\(a_{10} = a_1 + 9d = 2 + 9×3 = 29\)然后,利用求和公式\(S_{10} =\frac{10×(2 + 29)}{2} =155\)二、等比数列求和等比数列是指从第二项起,每一项与它的前一项的比值等于同一个常数的数列。

对于等比数列\(\{b_n\}\),其通项公式为\(b_n= b_1q^{n 1}\),其中\(b_1\)为首项,\(q\)为公比。

当公比\(q ≠ 1\)时,等比数列的前\(n\)项和公式为:\(S_n=\frac{b_1(1 q^n)}{1 q}\)当公比\(q =1\)时,等比数列的前\(n\)项和为\(S_n =nb_1\)例如,已知等比数列\(\{b_n\}\)的首项\(b_1 = 3\),公比\(q = 2\),求前\(5\)项的和\(S_{5}\)。

因为公比\(q ≠ 1\),所以\(S_{5} =\frac{3×(1 2^5)}{1 2}= 93\)三、错位相减法错位相减法主要用于求一个等差数列与一个等比数列对应项乘积构成的新数列的前\(n\)项和。

(完整版)高中数学数列求和专题复习_知识点,习题.docx

(完整版)高中数学数列求和专题复习_知识点,习题.docx

高中数学必修 5 作业 班级 学号 姓名数列求和例题精讲1. 公式法求和(1)等差数列前 n 项和公式S nn(a 1 a n ) n(a k 1a n k ) na 1n(n 1) d222(2)等比数列前 n 项和公式q 1 时S nna 1q1 时S na 1 (1 q n ) a 1 a n q1 q 1 q(3)前 n 个正整数的和1 23n(n 1)n2前 n 个正整数的平方和1222 32n 2n(n1)(2n 1)6前 n 个正整数的立方和1323 33 n 3[ n(n1) ] 2( 1)弄准求和项数 n 的值; 2公式法求和注意事项( 2)等比数列公比 q 未知时,运用前 n 项和公式要分类。

例 1.求数列 1,4,7, ,3n 1 的所有项的和例 2.求和 1 x x 2x n 2 ( n 2, x0 )2.分法求和例 3.求数列 1, 1 2 , 1 2 3 ,⋯, 1 2 3n 的所有的和。

5n 1 (n为奇数 )例 4.已知数列a n中,a n,求 S2m。

(2) n (n为偶数 )3.并法求和例 5.数列a n中, a n( 1) n 1 n2,求 S100。

例 6.数列a n中,,a n( 1) n 4n ,求 S20及 S35。

4.位相减法求和若a n为等差数列,b n为等比数列,求数列a n b n(差比数列)前 n项和,可由 S n qS n求 S n,其中 q b n的公比。

例 7.求和12x 3x 2nx n 1(x0 )。

5.裂项法求和 : 把数列各项拆成两项或多项之和,使之出现成对互为相反数的项。

例 8.求和1111。

1 3 3 5 5 7(2n 1)(2n 1)例 9.求和1111。

2 13 2 23n 1n[练习]11⋯⋯1求和: 11 2 3 2 3 ⋯⋯n1 21( a n⋯⋯, S n 21⋯⋯)n 16 . 倒序相加法:把数列的各项顺序倒写,再与原来顺序的数列相加。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中数学数列求和专题复习
1.公式法求和
( 1 )等差数列前项和公式
( 2 )等比数列前项和公式时

( 3 )前个正整数的和
前个正整数的平方和
前个正整数的立方和
公式法求和注意事项( 1 )弄准求和项数的值;
( 2 )等比数列公比未知时,运用前项和公式要分类。

例 1 .求数列的所有项的和
例 2 .求和 ( )
2 .分组法求和
有一类数列,既不是等差数列,也不是等比数列,若将这类数列适当拆开,可分为几个等差、等比或常见的数列,然后分别求和,再将其合并即可.形如:
的形式,其中{ a n }、{ b n }是等差数列、等比数列或常见的数列. 例 1 、求数列的前 n 项和:,…
例 2.求数列 1 ,,,…,的所有项的和。

例 3 .已知数列中,,求。

练习 1 、求和:
练习 2 、求数列 1, , 前 n 项的和 .
练习 3 、已知: .求 .
练习 4 、已知等比数列分别是某等差数列的第 5 项、第 3 项、第 2 项,且
(Ⅰ)求;
(Ⅱ)设,求数列
3 .并项法求和
针对一些特殊的数列,将某些项合并在一起就具有某种特殊的性质,因此,在求数列的和时,可将这些项放在一起先求和,然后再求 S n .
例 1 、求 cos1 ° + cos 2 ° + cos 3 ° + ··· + cos 178 ° + cos1 79 °的值 .
例 2 、在各项均为正数的等比数列中,若
的值 .
例 3 .数列中,,求。

例 64.数列中,,,求及。

4 .错位相减法求和
例 1 、
练习 1 、已知数列
练习 2 、已知数列,求数列的前 n 项和。

练习 3.求和()。

5 .裂项法求和 : 把数列各项拆成两项或多项之和,使之出现成对互为相反数的项。

把一个数列的通项公式分成两项差的形式,相加过程中消去中间项,只剩下有限项再求和.常见的拆项公式有:
若是公差为的等差数列,则;



* ;
例 1 .求和。

例 2 .求和。

练习1、数列 { } 的前 n 项和为,且满足
( I )求与的关系式,并求 { } 的通项公式;
( II )求和
6 . 倒序相加法:把数列的各项顺序倒写,再与原来顺序的数列相加。

例 1 、求的值
例 2 、
练习 1 、设,求:(1);(2)
练习 2 、函数 f ( x ) 对任意 x ∈ R 都有
( 1 )求的值;
(2)数列 { a n } 满足: = +
,数列是等差数列吗?请给予证明 .
专题训练数列求和练习
1 、数列的通项,则数列的前项和为 ( )
A .
B .
C .
D .
2 、数列的前项和可能为 ( )
A .
B .
C .
D .
3 、已知数列的前项和,则等于 ( )
A .
B .
C .
D .
4 、数列的通项公式 , 若前项和为 10 ,则项数
为 ( )
A . 11
B . 99
C . 120
D . 121
5 、在数列中,且,则

6 、已知,则

7 、已知等差数列的前项和为,若
,则=.
8 、已知数列中,,当时,其前 n 项和满足。

( 1 )求的表达式;( 2 )设,求的前 n 项和.
9 、等比数列同时满足下列条件:① ,② ,③三个数
依次成等差数列.( 1 )求数列的通项公式;( 2 )记,
求数列的前 n 项和 T n .
10 、等差数列各项均为正整数,,前项和为,在等比数列中,
且,公比为 8 。

(1)求和;(2)证明:。

相关文档
最新文档