高频电子线路课件第
合集下载
高频电子线路_ppt课件
需要注意: 回路的Q越高,
谐振曲线越尖锐,回 路的B0.707越窄,但其 Kr0.1并不改变。
这说明,对于简单并联谐振回路,回路Q 对回路的通频带和高的选择性的矛盾不能兼顾。
.
33
第2章 高频电路基础
1、简单振荡回路 (1)并联谐振回路
并联阻抗: 谐振频率: 品质因数: 并联谐振电阻:
通频带宽与矩形系数: 幅频特性与相频特性:
.
43
第2章 高频电路基础
2. 抽头并联振荡回路
在实际应用中,常用到激励源或负载与回路电感或电 容部分连接的并联振荡回路,即抽头并联振荡回路。
作用:实现回路与信号源的阻抗匹配或者进行阻抗变换。
(1)接入系数 p (或称抽头系数):
与外电路相连的那部分电抗 与本回路参与分压的同性质总 电抗之比。
/0C
i2r
1
0Cr
Zp Cr R0并联谐振回路的等效电路?
.
22
第2章 高频电路基础
并联谐振回路的等效电路
等效电路
L
并联阻抗:ZP
r
C
j(L
1
)
谐振阻抗:
C
Zp
L Cr
R0
.
23
第2章 高频电路基础
(a)谐振频率 (b)特性阻抗 (c)品质因数
0L10C
L C
用 r 表示
Q0L 1 r 0Cr r
为射频扼流圈 RFC)。
高频等效电路:
电感线圈的损耗:在高频电路中是不能忽略的。
分布电容的影响:在分析一般的长、中、短波频段 电路时,通常可以忽略。
.
9
第2章 高频电路基础
2.1 高频电路中的元器件
3、高频电感
谐振曲线越尖锐,回 路的B0.707越窄,但其 Kr0.1并不改变。
这说明,对于简单并联谐振回路,回路Q 对回路的通频带和高的选择性的矛盾不能兼顾。
.
33
第2章 高频电路基础
1、简单振荡回路 (1)并联谐振回路
并联阻抗: 谐振频率: 品质因数: 并联谐振电阻:
通频带宽与矩形系数: 幅频特性与相频特性:
.
43
第2章 高频电路基础
2. 抽头并联振荡回路
在实际应用中,常用到激励源或负载与回路电感或电 容部分连接的并联振荡回路,即抽头并联振荡回路。
作用:实现回路与信号源的阻抗匹配或者进行阻抗变换。
(1)接入系数 p (或称抽头系数):
与外电路相连的那部分电抗 与本回路参与分压的同性质总 电抗之比。
/0C
i2r
1
0Cr
Zp Cr R0并联谐振回路的等效电路?
.
22
第2章 高频电路基础
并联谐振回路的等效电路
等效电路
L
并联阻抗:ZP
r
C
j(L
1
)
谐振阻抗:
C
Zp
L Cr
R0
.
23
第2章 高频电路基础
(a)谐振频率 (b)特性阻抗 (c)品质因数
0L10C
L C
用 r 表示
Q0L 1 r 0Cr r
为射频扼流圈 RFC)。
高频等效电路:
电感线圈的损耗:在高频电路中是不能忽略的。
分布电容的影响:在分析一般的长、中、短波频段 电路时,通常可以忽略。
.
9
第2章 高频电路基础
2.1 高频电路中的元器件
3、高频电感
基础知识高频电子线路PPT课件
sias高频电子线路第1章基础知识一千兆赫几百兆赫几十兆赫最高工作频率可达50可达10小于1相对带宽可小于12可小于4矩形系数可满足多种频率特性性能稳定工作频率高可靠性高性能稳定成本低工作频率较高频率稳定对带宽窄特点符号两端声表面滤波器陶瓷滤波器晶体滤波器滤波器名称12集中选频滤波器sias高频电子线路第1章基础知识13电噪声定义
负 载
LC带载并联回路
❖ 信号源会有相应的输出电阻、输出电容; ❖ 负载除了纯电阻外,还有负载电容
第24页/共72页
信号 源
LC 回路
负载
IS
RS CS
L Re0 C RL CL
并联谐振回路与信号源和负载的连接
第25页/共72页
信号源、负载都等效到LC回路:
其中: C Cs C CL g gs ge0 gL
iS ' RS '
C
b
b
其中:C C1C2
C1 C2
,
L
L1
L1 L2
L2 2
M
第28页/共72页
无互感 有互感
L
RL'
1. 纯电感或纯电容阻抗变换电路 (1)自耦变压器电路
1
L
Is
C Rs
N1
2 N2
RL
3
Is Rs
1 C
RL’ L
3
由于两种情况都只有电阻消耗能量则有:
RL得到的功率 RL得到的功率
❖阻抗电路的串-并联等效转换
由电阻元件和电抗元件组成的阻抗电路的串联形式与并联 形式可以互相转换
Zp
Rp
Xp
Zs Xs
Rs
等效互换的原则:保持其等效阻抗和Q值不变。
等效条件:
负 载
LC带载并联回路
❖ 信号源会有相应的输出电阻、输出电容; ❖ 负载除了纯电阻外,还有负载电容
第24页/共72页
信号 源
LC 回路
负载
IS
RS CS
L Re0 C RL CL
并联谐振回路与信号源和负载的连接
第25页/共72页
信号源、负载都等效到LC回路:
其中: C Cs C CL g gs ge0 gL
iS ' RS '
C
b
b
其中:C C1C2
C1 C2
,
L
L1
L1 L2
L2 2
M
第28页/共72页
无互感 有互感
L
RL'
1. 纯电感或纯电容阻抗变换电路 (1)自耦变压器电路
1
L
Is
C Rs
N1
2 N2
RL
3
Is Rs
1 C
RL’ L
3
由于两种情况都只有电阻消耗能量则有:
RL得到的功率 RL得到的功率
❖阻抗电路的串-并联等效转换
由电阻元件和电抗元件组成的阻抗电路的串联形式与并联 形式可以互相转换
Zp
Rp
Xp
Zs Xs
Rs
等效互换的原则:保持其等效阻抗和Q值不变。
等效条件:
第二章--高频电子电路ppt超好
大能力及频率参数; 4.高频单调谐放大器的选频功能和谐振电压
放大倍数计算; 5.多级单调谐回路放大器。
(二)本章难点
1. 晶体管Y参数等效电路,晶体管的
高频放大能力 2. 高频单管单调谐放大器的选频功能
和谐振电压放大倍数计算.
2.1 概述
小信号调谐放大器的功用: 有选择地对某一频率的信号进行放大,即选频放
上述谐振回路中,信号源和负载都是直接并在L、C元件上。
因此存在以下三个问题:
第一:谐振回路Q 值大大下降,一般不能满足实际要求;
第二: 信号源和负载电阻常常是不相等的,即阻抗不匹
配。当相差较多时,负载上得到的功率可能很小;
第三: 信号源输出电容和负载电容影响回路的谐振频率,
在实际问题中,
给定后,不能任意改
2. 自耦变压器接入 自耦变压器接入电路如图所示(电路说明):
注意:
推导方法与上述互感变压器接入方法一样,可得到
等效后的负载阻抗 R’L如下 :
R'L
(
N1 N2
)2
RL
N1>N2 ,则R’L > RL
谐振频率: 0 1/ LC
优点: 绕制简单。
缺点: 回路与负载有直流回路。需隔直流时,这种回路不 能用。
第二章 小信号调谐放大器
2.1 概述 2.2 LC谐振回路 2.3 单调谐放大器 2.4 晶体管高频等效电路及频率参数 2.5 高频调谐放大器 2.6 调谐放大器的级联 2.7 高频调谐放大器的稳定性 2.8 集中选频小信号调谐放大器
本章重点与难点
(一)本章重点
1.并联谐振回路的选频作用; 品质因数 (Q) ---- quality factor 2.谐振回路的接入方式; 3. 晶体管Y参数等效电路,晶体管的高频放
放大倍数计算; 5.多级单调谐回路放大器。
(二)本章难点
1. 晶体管Y参数等效电路,晶体管的
高频放大能力 2. 高频单管单调谐放大器的选频功能
和谐振电压放大倍数计算.
2.1 概述
小信号调谐放大器的功用: 有选择地对某一频率的信号进行放大,即选频放
上述谐振回路中,信号源和负载都是直接并在L、C元件上。
因此存在以下三个问题:
第一:谐振回路Q 值大大下降,一般不能满足实际要求;
第二: 信号源和负载电阻常常是不相等的,即阻抗不匹
配。当相差较多时,负载上得到的功率可能很小;
第三: 信号源输出电容和负载电容影响回路的谐振频率,
在实际问题中,
给定后,不能任意改
2. 自耦变压器接入 自耦变压器接入电路如图所示(电路说明):
注意:
推导方法与上述互感变压器接入方法一样,可得到
等效后的负载阻抗 R’L如下 :
R'L
(
N1 N2
)2
RL
N1>N2 ,则R’L > RL
谐振频率: 0 1/ LC
优点: 绕制简单。
缺点: 回路与负载有直流回路。需隔直流时,这种回路不 能用。
第二章 小信号调谐放大器
2.1 概述 2.2 LC谐振回路 2.3 单调谐放大器 2.4 晶体管高频等效电路及频率参数 2.5 高频调谐放大器 2.6 调谐放大器的级联 2.7 高频调谐放大器的稳定性 2.8 集中选频小信号调谐放大器
本章重点与难点
(一)本章重点
1.并联谐振回路的选频作用; 品质因数 (Q) ---- quality factor 2.谐振回路的接入方式; 3. 晶体管Y参数等效电路,晶体管的高频放
高频电子线路概要课件
高频电子线路的未来展望
5G及未来通信技术
随着5G及未来通信技术的不断发展,高频 电子线路将发挥更加重要的作用,为通信
技术的发展提供有力支撑。
人工智能技术
人工智能技术的发展将促进高频电子线路 的智能化发展,为高频电子线路的应用提
供更加广阔的领域。
物联网技术
物联网技术的发展将促进高频电子线路的 应用,高频电子线路将在物联网领域发挥 更加重要的作用。
高效化
随着通信技术的发展,高频电子线路需要更高的传输效率 和更低的功耗,高效化已成为高频电子线路的重要发展方 向。
集成化
随着集成电路制造工艺的不断进步,高频电子线路的集成 化程度越来越高,芯片级集成的高频电子系统已成为趋势 。
智能化
随着人工智能技术的不断发展,高频电子线路正逐渐向智 能化方向发展,智能化高频电子系统将具有更高的自适应 性、灵活性和可靠性。
高频电子线路进入高速发展阶段,广泛应用于移 动通信、无线局域网等领域。
02
高频电子线路基础知识
高频电子线路的基本元件
电阻
用于限制电流,调节电 压,起到分压、限流的
作用。
电容
用于储存电荷,实现电 场能量的交换和存储。
电感
用于储存磁场能量,实 现磁场能量的交换和存
储。
二极管
用于单向导电,实现整 流、开关等作用。
高频电子线路的基本电路
放大电路
用于放大信号,提高信号的幅度和功率。
滤波电路
用于滤除信号中的噪声和干扰,提高信号的 纯度。
振荡电路
用于产生高频信号,用于高频电子线路的信 号源。
调制解调电路
用于调制和解调信号,实现信号的传输和接 收。
高频电子线路的基本原理
高频电子线路完整章节课件(胡宴如)
相位调制:用基带信号去改变高频振荡信号的
相位,则称为相位调制,简称调相。
16
2021/10/10
1.1、通信与通信系统
典型超外差调幅接收设备的组成框图
17
2021/10/10
1.1、通信与通信系统
超外差接收机
1) 什么是超外差接收机?
为了提高接收机的性能,目前广泛采用超外
差接收方式,超外差接收机的结构特点是具
了解无线电信号所具有的基本特点是必备的基 本知识。
27
2021/10/10
课堂练习一
1.如果广播电台发射的信号频率为 f c =936KHz,
接收机中频
f =455KHz,
问接收机本振频率
f
I
L
问多少?
解: f f f
I
L
C
f f f
L
C
I
=936KHz+455KHz
=1391KHz
答:接收机本振频率为1391KHz。
各部分作用
1) 信息源:提供需要传送的信息;
2) 输入变换器:将信息源(图像、声音等)的信 息变换成电信号,把该信号称为基带信号;
3) 发射机:将基带信号进行某种处理,并以足够 的功率送入信道,以实现有效的传送,其中最 主要的处理为调制,调制后的信号称为已调信 号,或已调波;
8
2021/10/10
1.3、非线性电路的基本概念
线性电路
全部由线性或处于线性工作状态的元器件 组成的电路,称为线性电路。
非线性电路
电路中只要含有一个元器件是非线性的或处于非线
性工作状态,称为非线性电路。但是当作用在非线性器
件上的信号很小、工作点取得适当时非线性器件近似处
高频电子线路正弦波振荡器.ppt
单调谐放大器
高频电子线路——第4章 正弦波振荡器
3.相位(频率)稳定条件
相位稳定条件和频率稳定条件实质上是一回事
正弦信号相位φ和频率ω的关系:
d
dt
dt
振荡器的角频率 增大导致相位不断超前 相位 的不断超前表明角频率 增大
高频电子线路——第4章 正弦波振荡器
(1)相位(频率)稳定过程
原平衡态: L (0 ) f F 0
4.1.2 起振条件
1.起振过程分析
单调谐放大器
刚通电:电路中存在很宽的频谱的电的扰动,幅值很小
通电后:
1)谐振回路的选频功能,从扰动中选出 osc 分量(osc 0)
2)放大器工作在线性放大区, |T (josc)|>1 ,形成增幅振荡
3)忽略晶体管内部相移: f =0
回路谐振: L=0
T (josc) =0,相移为零
起振 过程
平衡 状态
起振 过程
平衡 状态
输出波形:
高频电子线路——第4章 正弦波振荡器
4.1.4 稳定条件
1.平衡状态稳定分析:
(1)振荡电路中存在干扰
单调谐放大器
① 外部:电源电压、温度、湿度的变化,引起管子和回 路参数的变化。
② 内部:存在固有噪声(起振时的原始输入电压,进入平 衡后与输入电压叠加引起波动)。
单调谐放大器
外界干扰后: L (0 ) f F 0
Ub 相位超前 Ub 相位
升高
振荡回路相频特性 L 下降
L () f F 下降
L () f F 0
达到新的平衡 > 0
外界干扰消失后: L () f F 0
Ub 相位滞后 Ub 相位
降低
高频电子线路_第3章.ppt
C
1 1( ) Ucm 2 0 ( ) VCC
1 2
g1( )
其中 Ucm
VCC
为集电极电压利用系数
g1( )=
1( ) 0 ( )
Ic1m IC0
为波形系数
值越小,g1( )越大,放大器的效率也越高。
在 1时,可看不同工作状态下放大器的效率分别为: 甲类工作状态 180 , g1( ) 1,C =50% 乙类工作状态 90 , g1( ) 1.57,C =78.5% 丙类工作状态 60 , g1( ) 1.8,C =90%
若VCC、VBB、Vim参变量不变,则放大器的工作状态就由负 载电阻Re决定。此时放大器的电流、输出电压、功率、效 率等随Re而变化的特性,叫做放大器的负载特性(曲线)。
1、欠压、临界和过压工作状态
——根据集电极电流是否进入饱和区
绿线:欠压状态——未进入饱和状态的工作 状态。
为尖顶余弦脉冲。
蓝线:临界状态——刚好不进入饱和状态 的工作状态。
ic gc VBB Uim cost UBE(on)
余弦电流脉冲的主要参量
iC
和
max
,如c 图
当 t c 时,iC 0
cos UBE(on) VBB
Uim
ic gcUim cost cos
而当t 0时,ic iC max
iCmax gcUim 1 cos
iC
iC max
直流分量只能通过回路电感线圈去路,其直流电阻较小,对
直流也可看成短路。
集电极电流流经谐振回路时,只有基波电流才产生压降,
因而LC谐振回路两端输出不失真的高频信号电压。若回路谐振 电阻为Re,则
uc Ic1m Re cost Ucm cost,
高频电子线路PPT课件
第5页/共27页
6.2 二极管大信号包络检波器
ZL
1. 大信号包络检波的工作原理
(1) 电路组成
+ + VD
ui ui
R C
由输入回路、二极管VD和RC低通滤波器组成。 - -
RC低通滤波电路有两个作用:
① 对低频调制信号uΩ来说,电容C的容抗
+ ui
1 R ,电容C相当于开路,电阻R就作为 -
3
uo
(t
)
uo uD
θ
Uim
代入有上:u式o (可t) 得 U:im
(1 3
m3a cos
t ) 3
c3oπsrd
U im
cos
maU im
cos
cos
t
UDC gUdRm cos t R
可见 uo (t ) 有两部分:直流分量 :U DC Uim cos 低频调制分量:u (t ) Um cos t
显(5然) ,底RL部越切小,割U失R分真压值越大,底部切割失真越容易产生;另外,ma
值 越越 小1连大 ,) 接原, 底如因调 部图:幅 切所一波割示般包失,为络真为了的也能取振越有出幅易效低产m地a频生U传i调。m越输制大检信,波号调后,幅的检波低波包频器络调与的制后负信级峰号低值,频U要放im求大(1:-器m的a)
☺调幅解调的分类
振幅调制
AM调制 DSB调制 SSB调制
包络检波 解调
同步检波
第2页/共27页
峰值包络检波 平均包络检波 叠加型同步检波 乘积型同步检波
☺调幅解调的方法
1. 包络检波
调幅波
t 调幅波频谱
非线形电路
ωc-Ω ωc ωc+Ω ω
6.2 二极管大信号包络检波器
ZL
1. 大信号包络检波的工作原理
(1) 电路组成
+ + VD
ui ui
R C
由输入回路、二极管VD和RC低通滤波器组成。 - -
RC低通滤波电路有两个作用:
① 对低频调制信号uΩ来说,电容C的容抗
+ ui
1 R ,电容C相当于开路,电阻R就作为 -
3
uo
(t
)
uo uD
θ
Uim
代入有上:u式o (可t) 得 U:im
(1 3
m3a cos
t ) 3
c3oπsrd
U im
cos
maU im
cos
cos
t
UDC gUdRm cos t R
可见 uo (t ) 有两部分:直流分量 :U DC Uim cos 低频调制分量:u (t ) Um cos t
显(5然) ,底RL部越切小,割U失R分真压值越大,底部切割失真越容易产生;另外,ma
值 越越 小1连大 ,) 接原, 底如因调 部图:幅 切所一波割示般包失,为络真为了的也能取振越有出幅易效低产m地a频生U传i调。m越输制大检信,波号调后,幅的检波低波包频器络调与的制后负信级峰号低值,频U要放im求大(1:-器m的a)
☺调幅解调的分类
振幅调制
AM调制 DSB调制 SSB调制
包络检波 解调
同步检波
第2页/共27页
峰值包络检波 平均包络检波 叠加型同步检波 乘积型同步检波
☺调幅解调的方法
1. 包络检波
调幅波
t 调幅波频谱
非线形电路
ωc-Ω ωc ωc+Ω ω
高频电子线路第章-PPT精品
依靠电容产生反馈电压构成的振荡器则称为电容三点式 振荡器,又称考毕兹振荡器。
依靠电感产生反馈电压构成的振荡器则称为电感三点式 振荡器,又称哈特莱振荡器。
构成三点式的基点是如何取出满足相位条件的正反馈电 压。
5.5.1 构成三点式振荡器的原则(相位判据)
假设: (1)不计晶体管的电抗效应; (2)LC回路由纯电元件组成,即
5.3 振荡器的分析方法
分析振荡器有两种方法:即瞬态分析法和稳态分析法。 这里只介绍稳态分析法。
稳态分析方法考虑问题的基础是:振荡器在起振时是小 信号,属于线性电路。因此,可按线性电路的分析方法来初 理。而振荡器在平衡时虽属大信号非线性电路,但是对基波 而言则属准线性电路,当引入平均参数后,即可按线性电路 来近似处理,使问题的分析得到简化。所以稳态分析法是适 应在线性理论基础之上的。由前面分析可知,正反馈是产生 自激振荡的必要条件。 而正反馈只是反馈放大器的特殊形
由5.5.3和5.5.4式,归结起来,Xbe和Xce性质相同;Xcb 和Xce、Xbe性质相反。这就是三点式振荡器的相位判据。也 可以这样来记忆,与发射极相连接的两个电抗性质相同,另
一个电抗则性质相反。
5.5.2 电容三点式振荡器——考毕兹振荡器
图所示电路是电容三点式的典型电路。LC回路的三个 端点分别与三个电极相连,且Xce和Xbe为容抗,Xcb为感抗。 故属电容反馈三点式振荡器,又称考毕兹振荡器。
电容三点式振荡器
其中ZL为高频扼流圈,防止高频交流接地。Rb1、Rb2、 Re为偏置电阻。下面分析该电路的振荡条件,图 (a)画了交 流等效电路。(b)为Y参数等效电路。
电容三点式振荡器的等效电路
容易判断振荡器属并-并联接,电压取样电流求和的反
馈放大器。设其信号源电流为 Is ,负载电流为 IL ,显然
依靠电感产生反馈电压构成的振荡器则称为电感三点式 振荡器,又称哈特莱振荡器。
构成三点式的基点是如何取出满足相位条件的正反馈电 压。
5.5.1 构成三点式振荡器的原则(相位判据)
假设: (1)不计晶体管的电抗效应; (2)LC回路由纯电元件组成,即
5.3 振荡器的分析方法
分析振荡器有两种方法:即瞬态分析法和稳态分析法。 这里只介绍稳态分析法。
稳态分析方法考虑问题的基础是:振荡器在起振时是小 信号,属于线性电路。因此,可按线性电路的分析方法来初 理。而振荡器在平衡时虽属大信号非线性电路,但是对基波 而言则属准线性电路,当引入平均参数后,即可按线性电路 来近似处理,使问题的分析得到简化。所以稳态分析法是适 应在线性理论基础之上的。由前面分析可知,正反馈是产生 自激振荡的必要条件。 而正反馈只是反馈放大器的特殊形
由5.5.3和5.5.4式,归结起来,Xbe和Xce性质相同;Xcb 和Xce、Xbe性质相反。这就是三点式振荡器的相位判据。也 可以这样来记忆,与发射极相连接的两个电抗性质相同,另
一个电抗则性质相反。
5.5.2 电容三点式振荡器——考毕兹振荡器
图所示电路是电容三点式的典型电路。LC回路的三个 端点分别与三个电极相连,且Xce和Xbe为容抗,Xcb为感抗。 故属电容反馈三点式振荡器,又称考毕兹振荡器。
电容三点式振荡器
其中ZL为高频扼流圈,防止高频交流接地。Rb1、Rb2、 Re为偏置电阻。下面分析该电路的振荡条件,图 (a)画了交 流等效电路。(b)为Y参数等效电路。
电容三点式振荡器的等效电路
容易判断振荡器属并-并联接,电压取样电流求和的反
馈放大器。设其信号源电流为 Is ,负载电流为 IL ,显然
《高频电子线路》课件
《高频电子线路 》PPT课件
目录
• 高频电子线路概述 • 高频电子线路基础知识 • 高频电子线路中的信号传输 • 高频电子线路中的放大器 • 高频电子线路中的滤波器 • 高频电子线路中的混频器与变频
器
01
高频电子线路概述
高频电子线路的定义与特点
总结词
高频电子线路是研究高频信号传输、处理和应用的电子线路。其特点包括信号频率高、频带宽、信号传输速度快 、信号失真小等。
02
高频电子线路基础知识
高频电子线路的基本元件
电阻器
用于限制电流,调节电 压,起到分压、限流的
作用。
电容器
用于存储电荷,实现信 号的滤波、耦合和旁路
。
电感器
用于存储磁场能量,实 现信号的滤波、选频和
延迟。
晶体管
高频电子线路中的核心 元件,用于放大和开关
信号。
高频电子线路的基本电路
01
02
03
04
混频器与变频器的应用实例
混频器的应用实例
在无线通信中,混频器常用于将信号从低频转换为高频,或者将信号从高频转 换为低频。例如,在接收机中,混频器可以将射频信号转换为中频信号,便于 后续的信号处理。
变频器的应用实例
在雷达系统中,变频器可以将发射信号的频率改变,从而实现多普勒测速或者 目标识别。在电子对抗中,变频器可以用于干扰敌方雷达或者通信系统。
传输。
音频系统中的扬声器驱动电路
02
利用音频放大器将音频信号放大后驱动扬声器,实现声音的重
放。
测量仪器中的前置放大器
03
利用电压或电流放大器将微弱信号放大后传输至后续电路,实
现信号的处理和分析。
05
高频电子线路中的滤波器
目录
• 高频电子线路概述 • 高频电子线路基础知识 • 高频电子线路中的信号传输 • 高频电子线路中的放大器 • 高频电子线路中的滤波器 • 高频电子线路中的混频器与变频
器
01
高频电子线路概述
高频电子线路的定义与特点
总结词
高频电子线路是研究高频信号传输、处理和应用的电子线路。其特点包括信号频率高、频带宽、信号传输速度快 、信号失真小等。
02
高频电子线路基础知识
高频电子线路的基本元件
电阻器
用于限制电流,调节电 压,起到分压、限流的
作用。
电容器
用于存储电荷,实现信 号的滤波、耦合和旁路
。
电感器
用于存储磁场能量,实 现信号的滤波、选频和
延迟。
晶体管
高频电子线路中的核心 元件,用于放大和开关
信号。
高频电子线路的基本电路
01
02
03
04
混频器与变频器的应用实例
混频器的应用实例
在无线通信中,混频器常用于将信号从低频转换为高频,或者将信号从高频转 换为低频。例如,在接收机中,混频器可以将射频信号转换为中频信号,便于 后续的信号处理。
变频器的应用实例
在雷达系统中,变频器可以将发射信号的频率改变,从而实现多普勒测速或者 目标识别。在电子对抗中,变频器可以用于干扰敌方雷达或者通信系统。
传输。
音频系统中的扬声器驱动电路
02
利用音频放大器将音频信号放大后驱动扬声器,实现声音的重
放。
测量仪器中的前置放大器
03
利用电压或电流放大器将微弱信号放大后传输至后续电路,实
现信号的处理和分析。
05
高频电子线路中的滤波器
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
主要教材
高频电子线路
高等教育出版社 张肃文主编
华侨大学IC设计中心
高频电子线路学习指导与题解
高等教育出版社 张肃文主编
高频通信电子Βιβλιοθήκη 路天津理工大学 高频电子线路教研组编
教辅参考资料
华侨大学IC设计中心
1. 沈琴 非线性电子线路 高等教育出版社 2004年 2. 谢嘉奎 电子线路-非线性部分高等教育出版 2000年 3. 董在望 通信电路原理 高等教育出版 2002年 4. 张肃文 高频电子线路 高等教育出版社 1993年 5. 张凤言 电子线路基础 高等教育出版 1995年 6.高吉祥 高频电子线路 电子工业出版社 2005年 7.曾兴雯 高频电子线路 西安电子科技大学出版社 2000
无线电通信发展史
华侨大学IC设计中心
早期萌发:
古代的烽火 近代的旗语 19世纪电 磁学理论 1864麦克斯韦 电报(1837莫尔斯) 电磁场方程 电话(1876贝尔) 1887赫兹证明 电磁波的 存在
电磁波 传送信息
无线电 通信 无线电通信 实用阶段
马可尼 1895年首次百米距离通信 (意) 1901年首次横渡大西洋通信 发送设备:火花发射机、电弧发生器等 接收设备:粉末检波器
高频电子线路与无线通信系统
华侨大学IC设计中心
电信系统:传送光或电信号的系统 无线通信系统:以无线介质传送光或电信号的系统。
高频电路是通信系统, 特别是无线通信系统的基础, 是无线通信设备的重要组成部分。 各种不同类型的通信系统, 其系统组成和设备的复 杂程度都有很大不同。但是组成设备的基本电路 及其原理都是相同的, 遵从同样的规律。 本课程将 以模拟通信为重点来研究这些基本电路, 认识其规 律。 这些电路和规律完全可以推广应用到其它类 型的通信系统。
超大规模集成电路的发展对人类进入信息社会起了 不可估量的推动作用!!
无线通信系统概述
无线电 电报通信
华侨大学IC设计中心
电子技术的发展推动着无线电通信技术的发展
无线电电话通信 无线电广播 无线电 传真、电视
概念
电磁波:随时间变化的电场产生磁场,随时间变化的磁场产 生电场,两者互为因果,形成电磁场,电磁场总是 以光速向四周传播,形成电磁波。 天线:在无线电设备中用来发射或接收电磁波的部件 载波:用来产生高频率的交变电磁场的电流称为载波,可以 利用天线向天空辐射 。通常是高频正弦信号。? 调制:将一种信号叠加在另外一种信号的过程称为调制。?
后摩尔定律(More Than Moore)
华侨大学IC设计中心
半导体产业正面临着双重挑战:一方面,利用先进 CMOS技术开发SoC的成本飞涨;另一方面,体积的继 续缩小将把摩尔定律推向末路。 可能在16纳米时,即2016~2018年左右,可以理解为即 便到那时尺寸还能缩小下去(技术上可行),但是由于经 济上成本太高,自然就很少被人采用。这时摩尔定律 不再正确。 由此在半导体业界诞生了More than Moore ,业界把More than Moore称之为后摩尔定律 。即芯片发展要注重功 耗降低及性价比的提高,实际上转向更加务实的满足 市场的需求。
集成电路的发展
华侨大学IC设计中心
晶体管之父肖克莱
1971年,Intel发布了第一个微处理器4004, 采用10微米工艺生产,仅包含2300多个晶 体管,时钟频率为108KHz
集成电路的发展
华侨大学IC设计中心
2007年,Intel推出首款45nmCPU,双核心版本内建 4.1 亿个晶体管。
无线电传播为什么要用高频(调制)?
天线
华侨大学IC设计中心
无线电发射机输出的射频信号功率,通过电缆输送到 天线,由天线以电磁波形式辐射出去。电磁波到达接 收地点后,由天线接下来并通过电缆送到无线电接收 机。线是发射和接收电磁波的一个重要的无线电设备, 没有天线也就没有无线电通信 。 在自由空间中, 信号的波长与频率存在以下关系: c=fλ 式中: c为光速, f 和λ分别为无线电波的频率和波长
无线电通信发展史
华侨大学IC设计中心
1904年,弗莱明发明电子二极管,进入无线电电子 学时代。
1907年李· 德· 福雷斯特发明了电子三极管,用它可 组成多种重要功能的电子线路。
1948年肖克莱等人发明了晶体三极管,它在许多方 面已取代了电子管的传统地位。成为电子技术发展 的第二个里程碑 20世纪60年代开始出现将“管”、“路”结合起来 的集成电路。 几十年来取得了巨大的成就,成为 电子技术发展的第三个里程碑。
摩尔定律(The law of Moore)
华侨大学IC设计中心
英特尔公司创始人之一戈登· 摩尔提出著名的“摩尔定律”, 集成 电路的晶体管密度每18至24个月翻一番. 其精确性一直为集成电路 工业所验证 1971年,Intel发布了第 一个微处理器4004, 2300多个晶体管
2007年,45nm CPU, 8.2 亿个晶体管
无线电电子学时代:
1948年晶体管 1958年集成电路 1967年大规模集成电路 1978年超大规模集成电路
1904年电子二极管 1907年电子三极管
无线电通信发展史
华侨大学IC设计中心
1837年莫尔斯发明电报,创造莫尔斯电码,开创通 信的新纪元。(有线) 1876年贝尔发明电话,能够直接将语言信号变为电 信号沿导线传送。(有线) 1864年英国物理学家麦克斯韦从理论上证明了电磁 波的存在,为后来的无线电发明和发展奠定了坚实 的理论基础。 1887年德国物理学家赫兹以卓越的实验技巧证实了 电磁波是客观存在的。 1895年马可尼首次在几百米的距离实现电磁波通信, 1901年首次完成横渡大西洋的通信。
课程安排
华侨大学IC设计中心
1.讲课54学时,实验18学时。 2.考试在考试周进行,闭卷笔试形式。 3.成绩=平时+实验+期末 4.平时成绩=作业+出勤+随堂作业
答疑时间和地点:待定 办公地点:待定 联系方式:xiaoyanghqu@
课程特点
华侨大学IC设计中心
1、电子信息与通信专业学生必须掌握的一 门专业 基础课程。 2、它是电路理论、信号与线性系统、低频电子线 路等课程的后继课程。 3、在学习这门课程时要注意它与低频电路 理论的 不同分析方法和实验测试的不同点。
高频电子线路
高等教育出版社 张肃文主编
华侨大学IC设计中心
高频电子线路学习指导与题解
高等教育出版社 张肃文主编
高频通信电子Βιβλιοθήκη 路天津理工大学 高频电子线路教研组编
教辅参考资料
华侨大学IC设计中心
1. 沈琴 非线性电子线路 高等教育出版社 2004年 2. 谢嘉奎 电子线路-非线性部分高等教育出版 2000年 3. 董在望 通信电路原理 高等教育出版 2002年 4. 张肃文 高频电子线路 高等教育出版社 1993年 5. 张凤言 电子线路基础 高等教育出版 1995年 6.高吉祥 高频电子线路 电子工业出版社 2005年 7.曾兴雯 高频电子线路 西安电子科技大学出版社 2000
无线电通信发展史
华侨大学IC设计中心
早期萌发:
古代的烽火 近代的旗语 19世纪电 磁学理论 1864麦克斯韦 电报(1837莫尔斯) 电磁场方程 电话(1876贝尔) 1887赫兹证明 电磁波的 存在
电磁波 传送信息
无线电 通信 无线电通信 实用阶段
马可尼 1895年首次百米距离通信 (意) 1901年首次横渡大西洋通信 发送设备:火花发射机、电弧发生器等 接收设备:粉末检波器
高频电子线路与无线通信系统
华侨大学IC设计中心
电信系统:传送光或电信号的系统 无线通信系统:以无线介质传送光或电信号的系统。
高频电路是通信系统, 特别是无线通信系统的基础, 是无线通信设备的重要组成部分。 各种不同类型的通信系统, 其系统组成和设备的复 杂程度都有很大不同。但是组成设备的基本电路 及其原理都是相同的, 遵从同样的规律。 本课程将 以模拟通信为重点来研究这些基本电路, 认识其规 律。 这些电路和规律完全可以推广应用到其它类 型的通信系统。
超大规模集成电路的发展对人类进入信息社会起了 不可估量的推动作用!!
无线通信系统概述
无线电 电报通信
华侨大学IC设计中心
电子技术的发展推动着无线电通信技术的发展
无线电电话通信 无线电广播 无线电 传真、电视
概念
电磁波:随时间变化的电场产生磁场,随时间变化的磁场产 生电场,两者互为因果,形成电磁场,电磁场总是 以光速向四周传播,形成电磁波。 天线:在无线电设备中用来发射或接收电磁波的部件 载波:用来产生高频率的交变电磁场的电流称为载波,可以 利用天线向天空辐射 。通常是高频正弦信号。? 调制:将一种信号叠加在另外一种信号的过程称为调制。?
后摩尔定律(More Than Moore)
华侨大学IC设计中心
半导体产业正面临着双重挑战:一方面,利用先进 CMOS技术开发SoC的成本飞涨;另一方面,体积的继 续缩小将把摩尔定律推向末路。 可能在16纳米时,即2016~2018年左右,可以理解为即 便到那时尺寸还能缩小下去(技术上可行),但是由于经 济上成本太高,自然就很少被人采用。这时摩尔定律 不再正确。 由此在半导体业界诞生了More than Moore ,业界把More than Moore称之为后摩尔定律 。即芯片发展要注重功 耗降低及性价比的提高,实际上转向更加务实的满足 市场的需求。
集成电路的发展
华侨大学IC设计中心
晶体管之父肖克莱
1971年,Intel发布了第一个微处理器4004, 采用10微米工艺生产,仅包含2300多个晶 体管,时钟频率为108KHz
集成电路的发展
华侨大学IC设计中心
2007年,Intel推出首款45nmCPU,双核心版本内建 4.1 亿个晶体管。
无线电传播为什么要用高频(调制)?
天线
华侨大学IC设计中心
无线电发射机输出的射频信号功率,通过电缆输送到 天线,由天线以电磁波形式辐射出去。电磁波到达接 收地点后,由天线接下来并通过电缆送到无线电接收 机。线是发射和接收电磁波的一个重要的无线电设备, 没有天线也就没有无线电通信 。 在自由空间中, 信号的波长与频率存在以下关系: c=fλ 式中: c为光速, f 和λ分别为无线电波的频率和波长
无线电通信发展史
华侨大学IC设计中心
1904年,弗莱明发明电子二极管,进入无线电电子 学时代。
1907年李· 德· 福雷斯特发明了电子三极管,用它可 组成多种重要功能的电子线路。
1948年肖克莱等人发明了晶体三极管,它在许多方 面已取代了电子管的传统地位。成为电子技术发展 的第二个里程碑 20世纪60年代开始出现将“管”、“路”结合起来 的集成电路。 几十年来取得了巨大的成就,成为 电子技术发展的第三个里程碑。
摩尔定律(The law of Moore)
华侨大学IC设计中心
英特尔公司创始人之一戈登· 摩尔提出著名的“摩尔定律”, 集成 电路的晶体管密度每18至24个月翻一番. 其精确性一直为集成电路 工业所验证 1971年,Intel发布了第 一个微处理器4004, 2300多个晶体管
2007年,45nm CPU, 8.2 亿个晶体管
无线电电子学时代:
1948年晶体管 1958年集成电路 1967年大规模集成电路 1978年超大规模集成电路
1904年电子二极管 1907年电子三极管
无线电通信发展史
华侨大学IC设计中心
1837年莫尔斯发明电报,创造莫尔斯电码,开创通 信的新纪元。(有线) 1876年贝尔发明电话,能够直接将语言信号变为电 信号沿导线传送。(有线) 1864年英国物理学家麦克斯韦从理论上证明了电磁 波的存在,为后来的无线电发明和发展奠定了坚实 的理论基础。 1887年德国物理学家赫兹以卓越的实验技巧证实了 电磁波是客观存在的。 1895年马可尼首次在几百米的距离实现电磁波通信, 1901年首次完成横渡大西洋的通信。
课程安排
华侨大学IC设计中心
1.讲课54学时,实验18学时。 2.考试在考试周进行,闭卷笔试形式。 3.成绩=平时+实验+期末 4.平时成绩=作业+出勤+随堂作业
答疑时间和地点:待定 办公地点:待定 联系方式:xiaoyanghqu@
课程特点
华侨大学IC设计中心
1、电子信息与通信专业学生必须掌握的一 门专业 基础课程。 2、它是电路理论、信号与线性系统、低频电子线 路等课程的后继课程。 3、在学习这门课程时要注意它与低频电路 理论的 不同分析方法和实验测试的不同点。