初中数学数据的收集与整理分类汇编附解析(1)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初中数学数据的收集与整理分类汇编附解析(1)
一、选择题
1.在1000个数据中,用适当的方法抽取50个体为样本进行统计,频数分布表中54.5~57.5这一组的频率为0.12,估计总体数据落在54.5~57.5之间的约有()个.A.120 B.60 C.12 D.6
【答案】A
【解析】
【分析】
根据频率的意义,每组的频率=小组的频数:样本容量,据此即可解答.
【详解】
2.下列调查中,适宜采用普查方式的是()
A.调查银川市市民垃圾分类的情况B.对市场上的冰淇淋质量的调查
C.对乘坐某次航班的乘客进行安全检查D.对全国中学生心理健康现状的调查
【答案】C
【解析】
【分析】
普查的定义:为了特定目的而对所有考察对象进行的全面调查叫普查.
【详解】
A.调查银川市市民垃圾分类的情况, 人数多,耗时长,应当采用抽样调查的方式,故本选项错误;
B.对市场上的冰淇淋质量的调查,由于具有破坏性,应当使用抽样调查,故本选项错误;C.对乘坐某次航班的乘客进行安全检查, 因为调查的对象比较重要,应当采用全面调查,故本选项正确;
D.对全国中学生心理健康现状的调查,由于人数多,故应当采用抽样调查;
故选:C
【点睛】
本题属于基础应用题,只需学生熟练掌握普查的定义,即可完成.
3.下列调查中,调查方式选择合理的是()
A.为了解襄阳市初中每天锻炼所用时间,选择全面调查
B.为了解襄阳市电视台《襄阳新闻》栏目的收视率,选择全面调查
C.为了解神舟飞船设备零件的质量情况,选择抽样调查
D.为了解一批节能灯的使用寿命,选择抽样调查
【答案】D
【解析】
【分析】
【详解】
A.为了解襄阳市初中每天锻炼所用时间,选择抽样调查,故A不符合题意;
B.为了解襄阳市电视台《襄阳新闻》栏目的收视率,选择抽样调查,故B不符合题意;C.为了解神舟飞船设备零件的质量情况,选普查,故C不符合题意;
D.为了解一批节能灯的使用寿命,选择抽样调查,故D符合题意;
故选D.
4.为了解2019年泰兴市八年级学生的视力情况,从中随机调查了500名学生的视力情况.下列说法正确的是()
A.2016年泰兴市八年级学生是总体B.每一名八年级学生是个体
C.500名八年级学生是总体的一个样本D.样本容量是500
【答案】D
【解析】
【分析】
总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目.我们在区分总体、个体、样本、样本容量,这四个概念时,首先找出考查的对象.从而找出总体、个体.再根据被收集数据的这一部分对象找出样本,最后再根据样本确定出样本容量.
【详解】
A. 2019年泰兴市八年级学生的视力情况是总体,故A错误;
B. 每一名八年级学生的视力情况是个体,故B错误;
C. 从中随机调查了500名学生的视力情况是一个样本,故C错误;
D. 样本容量是500,故D正确;
故选:D.
【点睛】
此题考查总体、个体、样本、样本容量,解题关键在于掌握它们的定义及区别.
5.下列调查中,适宜抽样调查的是()
A.了解某班学生的身高情况
B.选出某校短跑最快的学生参加全市比赛
C.了解全班同学每周体育锻炼的时间
D.调查某批次汽车的抗撞击能力
【答案】D
【解析】
【分析】
普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似,根据此特征进行判断.
【详解】
A. 了解某班学生的身高情况,范围较小,容易操作,适合普查,故该选项错误;
B. 选出某校短跑最快的学生参加全市比赛,要求比较严格,适合普查,故该选项错误;
C. 了解全班同学每周体育锻炼的时间,范围较小,容易操作,适合普查,故该选项错误;
D. 调查某批次汽车的抗撞击能力,破坏性大,适合抽样调查,故本选项正确.
故选:D
【点睛】
本题考查的是抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查,无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度高的调查、事关重大的调查往往选用普查.
6.下列调查适合作普查的是()
A.了解“嫦娥三号”卫星零部件的状况
B.了解在校大学生的主要娱乐方式
C.日光灯管厂要检测一批灯管的使用寿命
D.了解某市居民对废电池的处理情况
【答案】A
【解析】
【分析】
【详解】
解:A、了解“嫦娥三号”卫星零部件的状况调查需要精确,适合普查,故本选项正确;
B、了解在校大学生的主要娱乐方式适合抽样调查,故本选项错误;
C、日光灯管厂要检测一批灯管的使用寿命适合抽样调查,故本选项错误;
D、了解某市居民对废电池的处理情况适合抽样调查,故本选项错误;
故选A.
【点睛】
本题考查全面调查与抽样调查.
7.在“校园读书月”活动中,小华调查了班级里40名同学本学期购买课外书的花费情况,并将结果绘制成如图所示的统计图.下面有四个推断:
①这次调查获取的样本数据的众数是30元
②这次调查获取的样本数据的中位数是40元
③若该校共有学生1200人,根据样本数据,估计本学期计划购买课外书花费50元的学生有300人
④花费不超过50元的同学共有18人.
其中合理的是()
A.①②B.②④C.①③D.①④
【答案】C
【解析】
【分析】
根据众数、中位数的定义及样本估计总体的思想解答可得.【详解】
解:由条形图知30出现次数最多,即众数为30,故①正确;
由于共有40个数据,则中位数为第20、21个数据的平均数,即中位数为50+50
2
=50,故
②错误;
估计本学期计划购买课外书花费50元的学生有1200×10
40
=300(人),故③正确;
花费不超过50元的同学共有6+12+10=28人,故④错误;
故选:C.
【点睛】
本题主要考查众数、中位数及样本估计总体,熟练掌握众数、中位数的定义及样本估计总体的思想是解题的关键.
8.在某校选拔毕业晚会主持人的决赛中,参与投票的每名学生必须从进入决赛的四名选手中选1名,且只能选1名,根据投票结果,绘制了如下两幅不完整的统计图,则选手B的得票为()
A.300 B.90 C.75 D.85
【答案】C 【解析】 【分析】
先算出总票数,再算出B,D 的票数和,再求出B 的票数. 【详解】
B 的得票为:()00000010535135303075÷⨯---=人 故选:
C 【点睛】
考核知识点:从条形图和扇形图获取信息.
9.为了估计湖中有多少条鱼.先从湖中捕捞n 条鱼作记号,然后放回湖里,经过一段时间,等带记号的鱼完全混于鱼群中之后再捕捞,第二次捕鱼共m 条,有k 条带记号,则估计湖里有鱼( )
A .
mk
n 条 B .
mn
k
条 C .
k mn
条 D .
nk m
条 【答案】B 【解析】 【分析】
第二次捕鱼m 共条,有k 条带记号,说明有记号的占到k
m
,已知共有n 条鱼作记号,由此即可解答. 【详解】 由题意可知:n÷k m =mn k
. 故选B . 【点睛】
本题考查的是通过样本去估计总体,只需将样本“成比例地放大”为总体即可.
10.太阳能是来自太阳的辐射能量,对于地球上的人类来说,太阳能是对环境无任何污染的可再生能源,因此许多国家都在大力发展太阳能.如图是2013﹣2017年我国光伏发电装机容量统计图.根据统计图提供的信息,判断下列说法不合理的是( )
A.截至2017年底,我国光伏发电累计装机容量为13078万千瓦
B.2017年我国光伏发电新装机容量占当年累计装机容量的50%
C.2013﹣2017年,我国光伏发电新增装机容量的平均值约为2500万千瓦
D.2013﹣2017年,我国光伏发电新增装机容量先减少后增加
【答案】B
【解析】
【分析】
依据折线统计图中的数据进行判断,即可得出结论.
【详解】
解:A、截至2017年底,我国光伏发电累计装机容量为13078万千瓦,故本选项正确;
B、2017年我国光伏发电新装机容量约占当年累计装机容量的40.6%,故本选项错误;
C、2013﹣2017年,我国光伏发电新增装机容量的平均值约为2500万千瓦,故本选项正确;
D、2013﹣2017年,我国光伏发电新增装机容量先减少后增加,故本选项正确;
故选:B.
【点睛】
本题主要考查了折线统计图,熟练掌握折线统计图的的特点及数据分析方法是解题的关键.
11.在下列调查方式中,较为合适的是( )
A.为了解石家庄市中小学生的视力情况,采用普查的方式
B.为了解正定县中小学生的课外阅读习惯情况,采用普查的方式
C.为了解某校七年级(2)班学生期末考试数学成绩情况,采用抽样调查方式
D.为了解我市市民对消防安全知识的了解情况,采用抽样调查的方式
【答案】D
【解析】
【分析】
根据普查和抽样调查适用的条件逐一判断即可.
【详解】
A.为了解石家庄市中小学生的视力情况,适合采用抽样调查的方式,故该选项不符合题
意,
B.为了解正定县中小学生的课外阅读习惯情况,采用抽样调查的方式,故该选项不符合题意,
C.为了解某校七年级(2)班学生期末考试数学成绩情况,采用普查方式,故该选项不符合题意,
D.为了解我市市民对消防安全知识的了解情况,采用抽样调查的方式,故该选项符合题意,
故选:D.
【点睛】
本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.
12.某校共有200名学生,为了解本学期学生参加公益劳动的情况,收集了他们参加公益
劳动时间(单位:小时)等数据,以下是根据数据绘制的统计图表的一部分.
学生
类型
人数
时间
010
t
≤<1020
t
≤<2030
t
≤<3040
t
≤<40
t≥
性
别
男73125304
女82926328
学
段
初中25364411
高中
下面有四个推断:
①这200名学生参加公益劳动时间的平均数一定在24.5-25.5之间
②这200名学生参加公益劳动时间的中位数在20-30之间
③这200名学生中的初中生参加公益劳动时间的中位数一定在20-30之间
④这200名学生中的高中生参加公益劳动时间的中位数可能在20-30之间
所有合理推断的序号是()
A.①③B.②④C.①②③D.①②③④
【答案】C
【解析】
【分析】
根据中位数与平均数的意义对每个选项逐一判断即可.
【详解】
解:①解这200名学生参加公益劳动时间的平均数:①(24.5×97+25.5×103)
÷200=25.015,一定在24.5-25.5之间,正确;
②由统计表类别栏计算可得,各时间段人数分别为15,60,51,62,12,则中位数在20~30之间,故②正确.
③由统计表计算可得,初中学段栏0≤t<10的人数在0~15之间,当人数为0时,中位数在20~30之间;当人数为15时,中位数在20~30之间,故③正确.
④由统计表计算可得,高中学段栏各时间段人数分别为0~15,35,15,18,1.当
0≤t<10时间段人数为0时,中位数在10~20之间;当0≤t<10时间段人数为15时,中位数在10~20之间,故④错误
【点睛】
本题考查了中位数与平均数,平均数是指在一组数据中所有数据之和再除以数据的个数.它是反映数据集中趋势的一项指标.将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.
13.小明对九(1)、九(2)班(人数都为50人)参加“阳光体育”的情况进行了调查,统计结果如图所示.下列说法中正确的是( )
A.喜欢乒乓球的人数(1)班比(2)班多B.喜欢足球的人数(1)班比(2)班多
C.喜欢羽毛球的人数(1)班比(2)班多D.喜欢篮球的人数(2)班比(1)班多
【答案】C
【解析】
【分析】
根据扇形图算出(1)班中篮球,羽毛球,乒乓球,足球,羽毛球的人数和(2)班的人数作比较,(2)班的人数从折线统计图直接可看出.
【详解】
解:A、乒乓球:(1)班50×16%=8人,(2)班有9人,8<9,故本选项错误;
B、足球:(1)班50×14%=7人,(2)班有13人,7<13,故本选项错误;
C、羽毛球:(1)班50×40%=20人,(2)班有18人,20>18,故本选项正确;
D、篮球:(1)班50×30%=15人,(2)班有10人,15>10,故本选项错误.
故选C.
【点睛】
本题考查扇形统计图和折线统计图,扇形统计图表现部分占整体的百分比,折线统计图表现变化,在这能看出每组的人数,求出(1)班喜欢球类的人数和(2)班比较可得出答案.
14.图1是2020年3月26日全国新冠疫情数据表,图2是3月28日海外各国疫情统计表,图3是中国和海外的病死率趋势对比图,根据这些图表,选出下列说法中错误的一项()
A.图1显示每天现有确诊数的增加量=累计确诊增加量-治愈人数增加量-死亡人数增加量.
B.图2显示美国累计确诊人数虽然约是德国的两倍,但每百万人口的确诊人数大约只有德国的一半.
C.图2显示意大利当前的治愈率高于西班牙.
D.图3显示大约从3月16日开始海外的病死率开始高于中国的病死率
【答案】C
【解析】
【分析】
A中,读图1,将数据代入公式验证;B中,直接读图2比较即可;C中,治愈率=治愈人数÷患病人数,需要计算分析;D中,直接读图3可得出
【详解】
A中,现有确诊增加量为:-297,累计确诊增加量为:114,治愈增加量为:405,死亡增加量为:6,代入A中的公式,成立,A正确;
B中,美国累计确诊人数为:104661,百万人口确诊:318,德国累计确诊人数为:50871,百万人口确诊:625,美国累计确诊人数约是德国的2倍,正确.德国百万人口确诊数约是美国的2倍,正确.故B正确.;
C中,意大利治愈人数为:10950,患病人数为:86498,治愈率为0.127;西班牙治愈人数为:9357,患病人数为:65719,治愈率为:0.142.故西班牙治愈率更高,C错误;
D中,从图3知,从3月16日开始,海外的病死率曲线比中国高,即高出中国,D正确故选:C
【点睛】
本题考查图表数据的分析能力,在解题过程中需要注意,有些数据是需要计算分析的,如治愈率,切不可仅观察表面数据
15.如图,是根据某市2010年至2014年工业生产总值绘制的折线统计图,观察统计图获得以下信息,其中信息判断错误的是()
A.2010年至2014年间工业生产总值逐年增加
B.2014年的工业生产总值比前一年增加了40亿元
C.2012年与2013年每一年与前一年比,其增长额相同
D.从2011年至2014年,每一年与前一年比,2014年的增长率最大
【答案】D
【解析】
【分析】
【详解】
解:A、2010年至2014年间工业生产总值逐年增加,正确,不符合题意;
B、2014年的工业生产总值比前一年增加了40亿元,正确,不符合题意;
C、2012年与2013年每一年与前一年比,其增长额相同,正确,不符合题意;
D、从2011年至2014年,每一年与前一年比,2012年的增长率最大,故D符合题意;
故选D.
【点睛】
本题考查折线统计图.
16.某市为了解旅游人数的变化情况,收集并整理了2017年1月至2019年12月期间的月接待旅游量(单位:万人次)的数据并绘制了统计图如下:
根据统计图提供的信息,下列推断不合理
...的是()
A.2017年至2019年,各年的月接待旅游量高峰期大致在7,8月份
B.2019年的月接待旅游量的平均值超过300万人次
C.2017年至2019年,年接待旅游量逐年增加
D.2017年至2019年,各年下半年(7月至12月)的月接待旅游量相对于上半年(1月至6月)波动性更小,变化比较平稳
【答案】D
【解析】
【分析】
根据折线统计图的反映数据的增减变化情况,这个进行判断即可.
【详解】
解:A、2017年至2019年,各年的月接待旅游量高峰期大致在7,8月份,故选项不符合题意;
B、从2019年3月起,每个月的人数均超过300万人,并且整体超出的还很多,故选项不符合题意;
C、从折线统计图的整体变化情况可得2017年至2019年,年接待旅游量逐年增加,故选项不符合题意;
D、从统计图中可以看出2017年至2019年,各年下半年(7月至12月)的月接待旅游量相对于上半年(1月至6月)波动性要大,故选项符合题意;
故选:D.
【点睛】
本题考查折线统计图的意义和反映数据的增减变化情况,正确的识图是正确判断的前提.
17.为了了解某地区七年级学生每天体育锻炼的时间,要进行抽样调查.以下是几个主要步骤:①随机选择该地区一部分七年级学生完成调查问卷:②设计调查问卷:③用样本估计总体:④整理数据:⑤分析数据.正确的顺序是()
A.②①③④B.②①④③⑤C.①②④⑤③D.②①④⑤③【答案】D
【解析】
【分析】
直接利用抽样调查收集数据的过程与方法分析排序即可.
【详解】
了解某地区七年级学生每天体育锻炼的时间所要经历的步骤顺序为:②设计调查问卷、①随机选择该地区一部分七年级学生完成调查问卷、④整理数据、⑤分析数据、③用样本估计总体,
则正确顺序为:②①④⑤③,
故选:D.
18.小明在做“抛一枚正六面体骰子”的实验时,他连续抛了10次,共抛出了3次“6”向上,则出现“6”向上的频率是()
A.
3
10
B.
1
6
C.
3
5
D.
1
2
【答案】A
【解析】
【分析】
根据频率是指每个对象出现的次数与总次数的比值(或者百分比),即频率=频数÷数据总数进行计算即可.
【详解】
∵连续抛了10次,共抛出了3次“6”向上
∴出现“6”向上的频率是:
3
10
,
故选A.
【点睛】
本题考查频数与频率,频率=频数÷数据总数,理解并熟记公式是解题关键.
19.要反映某市某一周每天的最高气温的变化趋势,宜采用()
A.条形统计图B.扇形统计图
C.折线统计图D.以上均可
【答案】C
【解析】
【分析】
根据统计图的特点进行分析可得:扇形统计图表示的是部分在总体中所占的百分比,但一般不能直接从图中得到具体的数据;折线统计图表示的是事物的变化情况;条形统计图能清楚地表示出每个项目的具体数目.由此即可解答.
【详解】
根据统计图的特点,要反映某市某一周每天的最高气温的变化趋势,应采用折线统计图.故选C.
【点睛】
本题考查了折线统计图的特点,熟知折线统计图表示的是事物的变化情况是解决问题的关键.
20.为了解中学生获取信息的主要渠道,设置“A:报纸,B:电视,C:网络,D:身边的人,E:其他”五个选项(五项中必选且只能选一项)的调查问卷,先随机抽取50名中学生进行该问卷调查,根据调查的结果绘制条形图如图,该调查的方式和图中a的值分别是()
A.抽样调查,24 B.普查,24 C.抽样调查,26 D.普查,26
【答案】A
【解析】
分析:因为普查是针对调查对象的全体,抽查是针对调查对象中抽取部分样本进行调查,求频数可根据频数=样本容量-已知频数之和.
详解:因为为了解中学生获取信息的主要渠道, 先随机抽取50名中学生进行该问卷调查,
所以属于抽样调查,
因为样本容量是50,
所以图中a=50-6-10-6-4=24,
故选A.
点睛:本题主要考查抽查的概念和频数的求解方法,解决本题的关键是要熟练掌握抽查的概念和频数的求解方法.。