华东师大版数学七年级下册 二元一次方程组解决倍差百分率问题练习(Word版含答案)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
7.4.1二元一次方程组解决倍差百分率问题
一.选择题(共7小题)
1.《九章算术》是人类科学史上应用数学的“算经之首”,书中记载:今有三人共车,二车空;
二人共车,九人步.问:人与车各几何?译文:若3人坐一辆车,则两辆车是空的;若2人坐一辆车,则9人需要步行,问:人与车各多少?设有x辆车,人数为y,根据题意可列方程组为()
A.B.
C.D.
2.通过对一份中学生营养快餐的检测,得到以下信息:①快餐总质量为300g;②快餐的成分:蛋白质、碳水化合物、脂肪、矿物质;③蛋白质和脂肪含量占50%;矿物质的含量是脂肪含量的2倍;蛋白质和碳水化合物含量占85%.若设一份营养快餐中含蛋白质x(g),含脂肪y(g),则可列出方程组()
A.
B.
C.
D.
3.有甲、乙两种商品,甲商品的利润率为5%,乙商品的利润率为4%,共获利46元.价格调整后,甲商品的利润率为4%,乙商品的利润率为5%,共获利44元,则两种商品的进价分别是()
A.400元,600元B.600元,400元
C.580元,440元D.520元,460元
4.我国古代数学名著《孙子算经》中记载了一道题,大意是:100匹马恰好拉了100片瓦,已知3匹小马能拉1片瓦,1匹大马能拉3片瓦,求小马,大马各有多少匹.若设小马有x匹,大马有y匹,则下列方程组中正确的是()
A.B.
C.D.
5.某公司上半年生产甲、乙两种型号的无人机若干架,已知甲种型号无人机架数比总架数的一半多11架,乙种型号无人机架数比总架数的三分之一少2架.设甲种型号无人机x架,乙种型号无人机y架,根据题意可列出的方程组是()
A.
B.
C.
D.
6.我国古代问题:以绳测井,若将绳三折测之,绳多四尺,若将绳四折测之,绳多一尺,井深几何?
这段话的意思是:用绳子量井深,把绳三折来量,井外余绳四尺,把绳四折来量,井外余绳一尺,井深几尺?()
A.8尺B.12尺C.16尺D.18尺
7.小慧去花店购买鲜花,若买5支玫瑰和3支百合,则她所带的钱还剩下10元;若买3支玫瑰和5支百合,则她所带的钱还缺4元.若只买8支玫瑰,则她所带的钱还剩下()A.31元B.30元C.25元D.19元
二.填空题(共5小题)
8.小岩打算购买气球装扮学校“毕业典礼”活动会场,气球的种类有笑脸和爱心两种,两种气球的价格不同,但同一种气球的价格相同.由于会场布置需要,购买时以一束(4个气球)为单位,已知第一、二束气球的价格如图所示,则第三束气球的价格为.
9.某公司用30000元购进两种货物,货物卖出后,一种货物的利润是10%,另一种物的利润是11%,共获得利润3150元,该两种货物进货花费分别为x,y元,根据题意列方程组为.10.《九章算术》是我国东汉初年编订的一部数学经典著作.在它的“方程”一章里,一次方
程组是由算筹布置而成的.《九章算术》中的算筹图是竖排的,现在我们把它改为横排,如图1、图2.
图中各行从左到右列出的算筹数分别表示未知数x,y的系数与相应的常数项.把图1所示的算筹图用我们现在所熟悉的方程组形式表述出来,就是.类似地,图2所示的算筹图我们可以表述为.
11.某商家将蓝牙耳机、多接口优盘、迷你音箱共22个,搭配为A,B,C三种盲盒各一个.其中A盒中有2个耳机,3个优盘,1个音箱;B盒中耳机与音箱的数量之和等于优盘的数量,耳机与音箱的数量之比为3:2;C盒中有1个耳机,3个优盘,2个音箱.经核算,A盒的价值为145元,B盒的价值为245元,则C盒的价值为元.
12.某旅馆的客房有三人间和两人间两种,三人间每间每天60元,两人间每间每天50元,一个50人的旅游团到该旅馆住宿,租住了若干客房,且每个客房正好住满,一天共花去住宿费1100元,则三人间客房租了间.
三.解答题(共10小题)
13.某校住校生宿舍有大小两种寝室若干间,据统计该校高一年级男生740人,使用了55间大寝室和50间小寝室,正好住满;女生730人,使用了大寝室50间和小寝室55间,也正好住满.求该校的大小寝室每间各住多少人?
14.5月份,甲、乙两个工厂用水量共为200吨.进入夏季用水高峰期后,两工厂积极响应国家号召,采取节水措施.6月份,甲工厂用水量比5月份减少了15%,乙工厂用水量比5月份减少了10%,两个工厂6月份用水量共为174吨,求两个工厂5月份的用水量各是多少?15.去年新冠病毒疫情初期,口罩供应短缺,某地规定:每人每次限购5只.李红出门买口罩时,无论是否买到,都会消耗家里库存的口罩一只,如果有口罩买,他将买回5只.已知李红家原有库存15只,出门10次购买后,家里现有口罩35只.求李红出门没有买到口罩的次数.
16.某校为实现垃圾分类投放,准备在校园内摆放大、小两种垃圾桶.购买2个大垃圾桶和4个小垃圾桶共需600元;购买6个大垃圾桶和8个小垃圾桶共需1560元.
(1)求大、小两种垃圾桶的单价;
(2)该校购买8个大垃圾桶和24个小垃圾桶共需多少元?
17.随着中国传统节日“端午节”的临近,东方红商场决定开展“欢度端午,回馈顾客”的让
利促销活动,对部分品牌粽子进行打折销售.其中,甲品牌粽子打八折,乙品牌粽子打七五折.已知打折前,买6盒甲品牌粽子和3盒乙品牌粽子需660元;打折后,买50盒甲品牌粽子和40盒乙品牌粽子需要5200元,
(1)打折前甲、乙两种品牌粽子每盒分别为多少元?
(2)阳光敬老院需购买甲品牌粽子80盒,乙品牌粽子100盒,问:打折后购买这批粽子比不打折节省了多少钱?
18.在当地农业技术部门指导下,小明家种植的菠萝喜获丰收.去年菠萝的利润(利润=收入﹣支出)为12000元,今年菠萝的收入比去年增加了20%,支出减少了10%,预计今年的利润比去年多11400元.请计算:
(1)今年的利润是元;
(2)列方程组计算小明家今年种植菠萝的收入和支出.
19.某商店需要购进甲、乙两种商品共160件,其进价和售价如下表:(注:利润=售价﹣进价)
甲乙
进价(元/件)1535
售价(元/件)2045
若商店计划销售完这批商品后能使利润达到1100元,问甲、乙两种商品应分别购进多少件?
20.某商场计划拨款9万元从厂家购进50台电视机,已知该厂家生产三种不同型号的电视机,出厂价分别为:甲种每台1500元,乙种每台2100元,丙种每台2500元.
(1)若商场同时购进其中两种不同型号电视机共50台,用去9万元,请你研究一下商场的进货方案;
(2)若商场销售一台甲种电视机可获利150元,销售一台乙种电视机可获利200元,销售一台丙种电视机可获利250元.在同时购进两种不同型号电视机的方案中,为使销售利润最多,你选择哪一种进货方案?
21.甲、乙两种商品原来的单价和为100元.因市场变化,甲商品降价10%,乙商品提价40%,调价后,两种商品的单价和比原来的单价和提高了20%.问甲、乙两种商品原来的单价各是多少元?
22.某校七年级400名学生到郊外参加植树活动,已知用3辆小客车和1辆大客车每次可运送学生105人,用1辆小客车和2辆大客车每次可运送学生110人.
(1)每辆小客车和每辆大客车各能坐多少名学生?
(2)若计划租小客车m辆,大客车n辆,一次送完,且恰好每辆车都坐满:
①请你设计出所有的租车方案;
②若小客车每辆租金150元,大客车每辆租金250元,请选出最省钱的租车方案,并求出最少
租金.
7.4.1二元一次方程组解决倍差百分率问题
参考答案与试题解析
一.选择题(共7小题)
1.《九章算术》是人类科学史上应用数学的“算经之首”,书中记载:今有三人共车,二车空;
二人共车,九人步.问:人与车各几何?译文:若3人坐一辆车,则两辆车是空的;若2人坐一辆车,则9人需要步行,问:人与车各多少?设有x辆车,人数为y,根据题意可列方程组为()
A.B.
C.D.
【解答】解:设共有y人,x辆车,
依题意得:.
故选:B.
2.通过对一份中学生营养快餐的检测,得到以下信息:①快餐总质量为300g;②快餐的成分:蛋白质、碳水化合物、脂肪、矿物质;③蛋白质和脂肪含量占50%;矿物质的含量是脂肪含量的2倍;蛋白质和碳水化合物含量占85%.若设一份营养快餐中含蛋白质x(g),含脂肪y(g),则可列出方程组()
A.
B.
C.
D.
【解答】解:设一份营养快餐中含蛋白质x(g),含脂肪y(g),根据题意得:
,
即,
故选:D.
3.有甲、乙两种商品,甲商品的利润率为5%,乙商品的利润率为4%,共获利46元.价格调整后,甲商品的利润率为4%,乙商品的利润率为5%,共获利44元,则两种商品的进价分别是()
A.400元,600元B.600元,400元
C.580元,440元D.520元,460元
【解答】解:设甲商品的进价为x元,乙商品的进价为y元,
根据题意可得:,
解得:,
答:甲商品的进价为600元,乙商品的进价为400元,
故选:B.
4.我国古代数学名著《孙子算经》中记载了一道题,大意是:100匹马恰好拉了100片瓦,已知3匹小马能拉1片瓦,1匹大马能拉3片瓦,求小马,大马各有多少匹.若设小马有x匹,大马有y匹,则下列方程组中正确的是()
A.B.
C.D.
【解答】解:根据题意可得:,
故选:C.
5.某公司上半年生产甲、乙两种型号的无人机若干架,已知甲种型号无人机架数比总架数的一半多11架,乙种型号无人机架数比总架数的三分之一少2架.设甲种型号无人机x架,乙种型号无人机y架,根据题意可列出的方程组是()
A.
B.
C.
D.
【解答】解:设甲种型号无人机x架,乙种型号无人机y架,根据题意可列出的方程组是:.
故选:D.
6.我国古代问题:以绳测井,若将绳三折测之,绳多四尺,若将绳四折测之,绳多一尺,井深几何?
这段话的意思是:用绳子量井深,把绳三折来量,井外余绳四尺,把绳四折来量,井外余绳一尺,井深几尺?()
A.8尺B.12尺C.16尺D.18尺
【解答】解:设绳长是x尺,井深是y尺,
依题意得:,
解得:,
即井深是8尺.
故选:A.
7.小慧去花店购买鲜花,若买5支玫瑰和3支百合,则她所带的钱还剩下10元;若买3支玫瑰和5支百合,则她所带的钱还缺4元.若只买8支玫瑰,则她所带的钱还剩下()A.31元B.30元C.25元D.19元
【解答】解:设每支玫瑰x元,每支百合y元,
依题意,得:5x+3y+10=3x+5y﹣4,
∴y=x+7,
∴5x+3y+10﹣8x=5x+3(x+7)+10﹣8x=31.
故选:A.
二.填空题(共5小题)
8.小岩打算购买气球装扮学校“毕业典礼”活动会场,气球的种类有笑脸和爱心两种,两种气球的价格不同,但同一种气球的价格相同.由于会场布置需要,购买时以一束(4个气球)为单位,已知第一、二束气球的价格如图所示,则第三束气球的价格为18元.
【解答】解:笑脸气球的价格为x元,爱心气球的价格为y元,
根据题意,得:,
解得:,
即笑脸气球的价格为3.5元,爱心气球的价格为5.5元,
则第三束气球的价格为2×3.5+2×5.5=18(元),
故答案为:18元.
9.某公司用30000元购进两种货物,货物卖出后,一种货物的利润是10%,另一种物的利润是11%,共获得利润3150元,该两种货物进货花费分别为x,y元,根据题意列方程组为
.
【解答】解:设两种货物进货花费分别为x,y元,
依题意得:.
故答案是:.
10.《九章算术》是我国东汉初年编订的一部数学经典著作.在它的“方程”一章里,一次方程组是由算筹布置而成的.《九章算术》中的算筹图是竖排的,现在我们把它改为横排,如图1、图2.
图中各行从左到右列出的算筹数分别表示未知数x,y的系数与相应的常数项.把图1所示的算筹图用我们现在所熟悉的方程组形式表述出来,就是.类似地,图2所示的算筹图我们可以表述为.
【解答】解:由题意可得,
图2所示的算筹图我们可以表述为:,
故答案为:.
11.某商家将蓝牙耳机、多接口优盘、迷你音箱共22个,搭配为A,B,C三种盲盒各一个.其中A盒中有2个耳机,3个优盘,1个音箱;B盒中耳机与音箱的数量之和等于优盘的数量,耳机与音箱的数量之比为3:2;C盒中有1个耳机,3个优盘,2个音箱.经核算,A盒的价值为145元,B盒的价值为245元,则C盒的价值为155元.
【解答】解:设1个耳机的价值为x元,1个优盘的价值为y元,1个音箱的价值为z元,B 盒中耳机的数量为3n(n为正整数)个,则音箱的数量为2n个,优盘的数量为5n个,依题意得:.
若n=2,则B盒的价值至少是A盒价值的3倍,
∴n=2不合适,
∴n只能为1,
∴方程②为3x+5y+2z=245③.
3×③﹣4×②得:x+3y+2z=155,
即C盒的价值为155元.
故答案为:155.
12.某旅馆的客房有三人间和两人间两种,三人间每间每天60元,两人间每间每天50元,一个50人的旅游团到该旅馆住宿,租住了若干客房,且每个客房正好住满,一天共花去住宿费1100元,则三人间客房租了10间.
【解答】解:设两人间客房租了x间,三人间客房租了y间,
依题意得:,
解得:,
∴三人间客房租了10间.
故答案为:10.
三.解答题(共10小题)
13.某校住校生宿舍有大小两种寝室若干间,据统计该校高一年级男生740人,使用了55间大寝室和50间小寝室,正好住满;女生730人,使用了大寝室50间和小寝室55间,也正好住满.求该校的大小寝室每间各住多少人?
【解答】解:设该校的大寝室每间住x人,小寝室每间住y人,由题意得:
,
解得:.
答:该校的大寝室每间住8人,小寝室每间住6人.
14.5月份,甲、乙两个工厂用水量共为200吨.进入夏季用水高峰期后,两工厂积极响应国家号召,采取节水措施.6月份,甲工厂用水量比5月份减少了15%,乙工厂用水量比5月份减少了10%,两个工厂6月份用水量共为174吨,求两个工厂5月份的用水量各是多少?
【解答】解:设甲工厂5月份的用水量是x吨,乙工厂5月份的用水量是y吨,
依题意,得:,
解得:.
答:甲工厂5月份的用水量是120吨,乙工厂5月份的用水量是80吨.
15.去年新冠病毒疫情初期,口罩供应短缺,某地规定:每人每次限购5只.李红出门买口罩时,无论是否买到,都会消耗家里库存的口罩一只,如果有口罩买,他将买回5只.已知李红家原有库存15只,出门10次购买后,家里现有口罩35只.求李红出门没有买到口罩的次数.
【解答】解:设李红出门没有买到口罩的次数是x,买到口罩的次数是y,
依题意得:,
解得:.
答:李红出门没有买到口罩的次数是4.
16.某校为实现垃圾分类投放,准备在校园内摆放大、小两种垃圾桶.购买2个大垃圾桶和4个小垃圾桶共需600元;购买6个大垃圾桶和8个小垃圾桶共需1560元.
(1)求大、小两种垃圾桶的单价;
(2)该校购买8个大垃圾桶和24个小垃圾桶共需多少元?
【解答】解:(1)设大垃圾桶的单价为x元,小垃圾桶的单价为y元,
依题意得:,
解得:.
答:大垃圾桶的单价为180元,小垃圾桶的单价为60元.
(2)180×8+60×24=2880(元).
答:该校购买8个大垃圾桶和24个小垃圾桶共需2880元.
17.随着中国传统节日“端午节”的临近,东方红商场决定开展“欢度端午,回馈顾客”的让利促销活动,对部分品牌粽子进行打折销售.其中,甲品牌粽子打八折,乙品牌粽子打七五折.已知打折前,买6盒甲品牌粽子和3盒乙品牌粽子需660元;打折后,买50盒甲品牌粽子和40盒乙品牌粽子需要5200元,
(1)打折前甲、乙两种品牌粽子每盒分别为多少元?
(2)阳光敬老院需购买甲品牌粽子80盒,乙品牌粽子100盒,问:打折后购买这批粽子比不打折节省了多少钱?
【解答】解:(1)设打折前甲品牌粽子每盒x元,乙品牌粽子每盒y元,
根据题意得:,
解得:,
答:打折前甲品牌粽子每盒70元,乙品牌粽子每盒80元.
(2)80×70×(1﹣80%)+100×80×(1﹣75%)=3120(元).
答:打折后购买这批粽子比不打折节省了3120元.
18.在当地农业技术部门指导下,小明家种植的菠萝喜获丰收.去年菠萝的利润(利润=收入﹣支出)为12000元,今年菠萝的收入比去年增加了20%,支出减少了10%,预计今年的利润比去年多11400元.请计算:
(1)今年的利润是23400元;
(2)列方程组计算小明家今年种植菠萝的收入和支出.
【解答】解:(1)12000+11400=23400(元).
故答案为:23400.
(2)设小明家去年种植菠萝的收入为x元,支出是y元,
依题意得:,
解得:,
∴(1+20%)x=(1+20%)×42000=50400,(1﹣10%)y=(1﹣10%)×30000=27000.答:小明家今年种植菠萝的收入为50400元,支出是27000元.
19.某商店需要购进甲、乙两种商品共160件,其进价和售价如下表:(注:利润=售价﹣进价)
甲乙
进价(元/件)1535
售价(元/件)2045
若商店计划销售完这批商品后能使利润达到1100元,问甲、乙两种商品应分别购进多少件?
【解答】解:设甲种商品应购进x件,乙种商品应购进y件,依题意得:
,
解得:,
答:甲种商品应购进100件,乙种商品应购进60件.
20.某商场计划拨款9万元从厂家购进50台电视机,已知该厂家生产三种不同型号的电视机,出厂价分别为:甲种每台1500元,乙种每台2100元,丙种每台2500元.
(1)若商场同时购进其中两种不同型号电视机共50台,用去9万元,请你研究一下商场的进货方案;
(2)若商场销售一台甲种电视机可获利150元,销售一台乙种电视机可获利200元,销售一台丙种电视机可获利250元.在同时购进两种不同型号电视机的方案中,为使销售利润最多,你选择哪一种进货方案?
【解答】解:(1)解分三种情况计算:
①设购甲种电视机x台,乙种电视机y台.
解得.
②设购甲种电视机x台,丙种电视机z台.
则,
解得:.
③设购乙种电视机y台,丙种电视机z台.
则
解得:(不合题意,舍去);
(2)方案一:25×150+25×200=8750.
方案二:35×150+15×250=9000元.
答:购甲种电视机25台,乙种电视机25台;或购甲种电视机35台,丙种电视机15台.购买甲种电视机35台,丙种电视机15台获利最多.
21.甲、乙两种商品原来的单价和为100元.因市场变化,甲商品降价10%,乙商品提价40%,调价后,两种商品的单价和比原来的单价和提高了20%.问甲、乙两种商品原来的单价各是多少元?
【解答】解:设甲种商品原来的单价是x元,乙种商品原来的单价是y元,依题意得
,
解得:.
答:甲种商品原来的单价是40元,乙种商品原来的单价是60元.
22.某校七年级400名学生到郊外参加植树活动,已知用3辆小客车和1辆大客车每次可运送学生105人,用1辆小客车和2辆大客车每次可运送学生110人.
(1)每辆小客车和每辆大客车各能坐多少名学生?
(2)若计划租小客车m辆,大客车n辆,一次送完,且恰好每辆车都坐满:
①请你设计出所有的租车方案;
②若小客车每辆租金150元,大客车每辆租金250元,请选出最省钱的租车方案,并求出最少
租金.
【解答】解:(1)设每辆小客车能坐x人,每辆大客车能坐y人,
据题意:,
解得:,
答:每辆小客车能坐20人,每辆大客车能坐45人;
(2)①由题意得:20m+45n=400,
∴n=,
∵m、n为非负整数,
∴或或,
∴租车方案有三种:
方案一:小客车20车、大客车0辆,
方案二:小客车11辆,大客车4辆,
方案三:小客车2辆,大客车8辆;
②方案一租金:150×20=3000(元),
方案二租金:150×11+250×4=2650(元),方案三租金:150×2+250×8=2300(元),∴方案三租金最少,最少租金为2300元.。